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ABSTRACT OF THE DISSERTATION

Electron transport and plasmons in Dirac materials and in
two-dimensional materials

by

Jhih-Sheng Wu

Doctor of Philosphy in Physics

University of California, San Diego, 2016

Professor Michael Fogler, Chair

Two-dimensional materials are one-atom-thick crystals, which are stable under

ambient conditions. Heterostructures by stacking of two-dimensional (2D) crystals

via the van der Waals force provide a versatile platform for investigation of emergent

properties of composite materials. In this thesis, I studied three 2D materials, graphene,

Bi2Se3 and hexagonal boron nitride (hBN), of which the first two materials host 2D

Dirac fermions. The core of this thesis is to study the transport and optical properties

of 2D Dirac fermions interacted with their three-dimensional (3D) environments.

In Chapter 2, we consider electron transport of graphene, adsorbing clusters
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of charged impurities. We model the clusters as circular barriers. We calculate

the differential, total, and transport cross-sections for scattering of two-dimensional

massless Dirac electrons by a circular barrier. For scatterer of a small radius, the

cross-sections are dominated by quantum effects such as resonant scattering that can

be computed using the partial-wave series. Scattering by larger size barriers is better

described within the classical picture of reflection and refraction of rays, which leads to

phenomena of caustics, rainbow, and critical scattering. Refraction can be negative if

the potential of the scatterer is repulsive, so that a p-n junction forms at its boundary.

Qualitative differences of this case from the n-N doping case are examined. Quantum

interference effects beyond the classical ray picture are also considered, such as normal

and anomalous diffraction, and also whispering-gallery resonances. Implications of

these results for transport and scanned-probe experiments in graphene and topological

insulators are discussed.

In Chapter 3, we consider how the Dirac plasmons of Bi2Se3 are coupled with

its phonon polaritons. Layered topological insulators, for example, Bi2Se3 are optically

hyperbolic materials in a range of THz frequencies. Such materials possess deeply

subdiffractional, highly directional collective modes: hyperbolic phonon-polaritons.

In thin crystals the dispersion of such modes is split into discrete subbands and is

strongly influenced by electron surface states. If the surface states are doped, then

hybrid collective modes result from coupling of the phonon-polaritons with surface

plasmons. The strength of the hybridization can be controlled by an external gate

that varies the chemical potential of the surface states. Momentum-dependence of

the plasmon-phonon coupling leads to a polaritonic analog of the Goos-Hänchen

effect. Directionality of the polaritonic rays and their tunable Goos-Hänchen shift are

xiv



observable via THz nanoimaging.
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Chapter 1

Overview and introduction

Two-dimensional (2D) materials have attracted tremendous research interests in

both fundamental science and application during the past decade [GG13, NMCCN16]

since the isolation of graphene in 2004 by the Nobel Laureates Andre Geim and

Konstantin Novoselov. The graphene-related studies lead to ten thousands papers

every year. Although ‘simple graphene’ has been well studied and explored, composite

materials by stacking of different 2D crystals bring up abundant new research directions.

On the other hand, many of 2D materials, such as graphene and Bi2Se3 appear to be

described by Dirac fermions. The materials, having Dirac nodes in the spectrum, are

called “Dirac materials”, which share many universal properties.[WBSB14] This thesis

focuses on the transport and optical properties of 2D Dirac fermions interacted with

their three-dimensional environments, which hopefully shed light on understanding

composite materials of 2D crystals.

1
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1.1 2D Dirac fermions and plasmons

In 2D, the Dirac Hamiltonian has the form

HD = vσ · p+mσz, (1.1)

where σ = (σx, σy) and σz are the Pauli matrices. The term mσz gives rise to a gap of

2m in the sprectrum. Quasiparticles described by this Hamiltonian are called “Dirac

fermons”. More and more condensed matter systems are found to be described by

the Hamiltonian (see Table 1 of [WBSB14]). In the context of condensed matters, the

velocity v is the Fermi velocity vF .

In the case of m = 0, the Hamiltonian has a linear and gapless sprectrum,

which results in distinct physical properties compared with those materials of parabolic

bands. The peculiarities of Driac fermions are attributed to the two features: (i) spinor

and (ii) constant velocity, regardless of Fermi energy. For example, the momentum is

locked to the spin, that is, the direction of momentum determines the allowed spin.

Such spin-momentum locking leads to the famous Klein tunneling, which states that

there is no back scattering for a massless Dirac fermion encountering a barrier. Due to

the spinor structure, it is inevitable to introduce the Berry phase in order to describe

the quasiparticles semiclassically. In Chapter 2, we use the ray picture, incorporating

the Berry phase, to understand scattering of Dirac fermions by a large charged cluster.

We also discuss the regimes where the ray picture is not valid.

Plasmons are the collective modes of charged particles due to their Coulomb

interactions. Due to the gapless spectrum, the Coulomb interactions can occur via two

channels: (i) the intraband electron-hole excitations and (ii) the interband electron-
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(a) (b)

Figure 1.1: Electron-hole excitations of Dirac fermions via (a) the intraband
transition and (b) the interband transition.

hole excitations (Fig. 1.1). These electron-hole excitations create a dynamic and

nonlocal dielectric function ε(q, ω). The relation between the dielectric function ε(q, ω)

and the 2D conductivity σ(q, ω) is

ε(q, ω) = 1 +
2πiqσ(q, ω)

κ(q, ω)ω
, (1.2)

where κ(q, ω) is the effective dielectric function of the 3D environment. The plasmon

dispersions are given by solving ε(q, ω) = 0. Without considering κ(q, ω) and in the

small q limit, the conductivity σ(q, ω) is of the Drude form, and the plasmon has the

typical dispersion of 2D electron gas, ω ∼ √q . The role of κ(q, ω) is to modify the

Coulomb interation between 2D Dirac fermions. In Chapter 3, we study the case,

where κ(q, ω) arises from the anisotropic optical phonons of Bi2Se3 and hBN. We show

that the interplay between Dirac plasmons and the phonon polaritons is analogous to

the optical phenomenon, “Goos-Hächen effect”.
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Figure 1.2: Artistic diagram of how to experiemntally launch Dirac plasmons
by scattering-type near-field optical microscopy, where light is scattered by a
metalic tip.



Chapter 2

Scattering of two-dimensional

massless Dirac electrons by a

circular potential barrier

2.1 Introduction

Recently, much interest has been attracted by electronic properties of materials

where quasiparticles behave as massless two-dimensional (2D) Dirac fermions. Exam-

ples of such materials include graphene [CNGP+09] and surface states of topological

insulators. [FKM07, HK10] Graphene has been studied more extensively because of

advances in sample fabrication and a number of exceptional virtues, including a wide

tunability of doping level and superior transport properties. The latter are character-

ized by mean-free paths approaching several microns and the corresponding transport

times τtr in the range of picoseconds. [CNGP+09, Per10, DSAHR11, BFL+14a] How-

ever, scattering mechanisms limiting the transport mobility of graphene are still not

5
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fully understood. For instance, a weak dependence of the mobility on the impurity

density found in some experiments [SGM+07] remains an open problem. It was argued

that this weak dependence could be due to correlations in impurity positions. Both

negative, i.e., repulsive [LHRDS11] and positive, i.e., attractive correlations could

impact the mobility. An example of the latter is aggregation of impurities into clusters

of size of tens of nanometers. Modelled as circularly symmetric potential barriers with

sharp boundaries, such finite-size scatterers were predicted [KGG09] to degrade the

mobility much less compared to random uncorrelated impurities. Another observable

signature of finite-size scatterers is a significant difference between the transport time

τtr and the quantum lifetime τq. (The latter can be extracted from magnetotransport

measurements.) Although the ratio

η ≡ τtr/τq (2.1)

varies widely among different experiments, it can be as high as a factor of six. [Gor09]

For massive 2D fermions scattered by random sharp barriers, η should approach 3/2

when the barriers become impenetrable. [YM07] Since graphene quasiparticles behave

as massless fermions, they can penetrate arbitrary high potential barriers (lower

than the total energy bandwidth) via the process of Klein’s tunneling and associated

negative refraction. [KNG06, CFA07, CPP07] Therefore, the dependence of η on the

barrier parameters is another open problem. For these and other reasons, scattering

of quasiparticles by finite-size defects warrants further qualitative and quantitative

investigation in order to better understand transport and magnetotransport properties

of graphene. While there have been already a number of previous studies of circular

potential barriers in graphene, [KN07, CPP07, Gui08, MP08, HA08, BTB09, KGG09,
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φeikx

f(φ)√
r

Figure 2.1: (Color online) Electron plane wave scattered by a circularly
symmetric step-like potential in a Dirac metal such as graphene or a surface
of a topological insulator.

HBF13] they have not elucidated in a comprehensive way how scattering by such a

barrier depends on its size and strength. Furthermore, some of this prior work contains

minor errors. In this paper, we correct, refine, and extend these investigations.

The question of what limits the surface electron conduction in topological

insulators is even more wide open. There are few studies that examined scattering

of Dirac fermions by circular potential barriers in this context although other types

of scattering defects have been considered. [PLV+11, FZWL11, PCG+14] Most of

our results for this problem should also apply to Dirac fermions at the surface of

topological insulators.

The effective low-energy Hamiltonian of the model we study is [KN07, CPP07,

Gui08, MP08, HA08, BTB09, KGG09, HBF13]

H = vF (σxpx + σypy) + V (r) , (2.2)

where pν are the momentum operators, σν are the Pauli matrices, and vF ∼ 108 cm/s
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Figure 2.2: (a) The first three rays p = 0, 1, 2 in the ray series for an n-N
junction (b) Same for an n-p junction. (c) Ray tunneling and a whispering
gallery mode inside the scatterer.

is the Fermi velocity. The potential V (r) is assumed to be step-like,

V (r) = V0 θ(a− r), (2.3)

where θ(r) is the unit step function and a is the radius of the disk. The scattering of

an electron with energy E > 0 by this potential is characterized by two dimensionless

parameters,

X =
Ea

~vF
≡ ka and ρ = −V0a

~vF
, (2.4)

which specify the size and the strength of the barrier, respectively; X also gives an

estimate of the maximum angular momentum involved in the scattering.
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Consider a plane wave incident on the scatterer. The problem is to find the

far-field scattering amplitude f(φ) as a function of the deflection angle φ, see Fig. 2.1.

The differential cross-section is then calculated from

dσ

dφ
= |f(φ)|2 . (2.5)

The formal solution of this problem is given by the standard partial-wave decomposition

(PWD)

f(φ) = − i√
2πk

∑

j

(
e2iδj − 1

)
ei(j−1/2)φ, (2.6)

where δj is the phase shift for angular momentum j. The well-known peculiarity of

Dirac fermions is that j’s are not integers but half-integers, see Appendix 2.8.

Integrating the differential cross-section over φ, we can express the total and

the transport cross-sections in terms of the phase shifts [SKL07]

σ =
4

k

∑

j

sin2 δj , (2.7)

σtr =
4

k

∑

j>0

sin2(δj+1 − δj) . (2.8)

The total cross-section obeys the optical theorem

σ =

√
8π

k
Imf(0) . (2.9)

For X � 1 the PWD is dominated by a first few terms and the result has an intuitive

interpretation in terms of resonant scattering. Conversely, for X � 1, PWD suffers
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from slow convergence and lacks a transparent physical meaning. In fact, it appears

that numerical results reported in a previous work on this problem [KGG09] are

inaccurate [See the second paragraph below Eq. (2.25).]. The main effort in this paper

is devoted to treating this difficult X � 1 regime by alternative methods. Especially

instructive one is the semiclassical approximation. This approach leads to the so-called

ray series, which accounts for most of the observable features of the X � 1 regime

and has an intuitive representation in terms of ray paths (Fig. 2.2). In this context it

is convenient to introduce another dimensionless parameter, the refractive index:

n =
X ′

X
= 1 +

ρ

X
, (2.10)

where X ′ is defined as

X ′ ≡ X + ρ . (2.11)

The refractive index n can be of either sign. If it is positive (negative), we deal with,

respectively, n–N and n-p junction at r = a. In the latter case, realized for ρ < −X,

the Dirac quasiparticles exhibit the aforementioned negative refraction.[CFA07] This

modifies the ray trajectories qualitatively,[CPP07] cf. Figs. 2.2(a) and 2.2(b) and

Sec. 2.3.

The remainder of the paper is organized as follows. In Sec. 2.2 we classify the

regimes of scattering according to X and ρ. We present the global regime diagram

(Fig. 2.3) and give the formulas for the cross-sections in each regime. We find the most

feature-rich case to be X � 1. In Sec. 2.3, we study this case using the semiclassical

method. In Sec. 2.4, we discuss phenomena beyond the semiclassical approximation.
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-1
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Figure 2.3: (Color online) Regime diagram of the scattering. RS: reso-
nant scatterer, SR: strong reflector, FP: Fabry-Pérot resonator, WR: weak
reflector, WS: weak scatterer, HEA: high energy approximation, BA: Born
approximation. VR: Veselago reflector, where negative refraction occurs.

In Sec. 2.5, the angular dependence of the differential cross-section in various large-X

regimes is analyzed. Besides far-field scattering, we also consider the structure of the

electron wavefunctions near the scatterer. In Sec. 2.6, we briefly discuss implications

of these near-field effects for scanned-probe experiments with graphene and topological

insulators. In Sec. 2.7, we summarize our contributions and comment on possible

future extensions of our study. The general outline of our analytical derivations is

presented in Secs. 2.3–2.5, with the additional details provided in the Appendices.

2.2 Main results

We start with a brief overview of different scattering regimes indicated in

Fig. 2.3. These regimes are classified according to the behavior of the cross-sections as

functions of X and ρ. The horizontal line X = 1 partitions Fig. 2.3 into two domains.

In the upper one, X � 1, the scattering has a predominantly semiclassical character.
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Except for the region of small deflection angles φ < 1/X, which is governed by

diffraction, the scattering amplitude is obtained by summing the ray series (Fig. 2.2),

expressed mathematically by the Debye expansion. [Nus69, Gra00] In the lower domain,

X � 1, scattering is dictated by quantum effects and the ray picture generally does

not apply.

In the strong reflector (SR) and weak reflector (WR) regimes of Fig. 2.3, the

interference between the rays and the diffraction can be neglected. As a consequence of

the Babinet principle, each of the two contributes 2a to the total cross-section,[YM07]

and so the total cross-section is

σ ' 4a (SR and WR regimes) . (2.12)

In contrast, in the weak scatterer (WS) regime of Fig. 2.3, where most of the rays

are scattered by small angles, the interference of the ray and diffraction amplitudes

becomes important. In this “anomalous diffraction” (AD) regime [vdH57] the ray

picture fails. Instead, the scattering can be dealt with the perturbation theory, such as

the high energy approximation (HEA) and the Born approximation (BA). As discussed

below, Eq. (2.12) becomes replaced by more complicated expressions, Eqs. (2.17a)

and (2.20), that predict oscillations of σ as a function of ρ. The BA in fact describes

the entire |ρ| � 1 strip in Fig. 2.3, including the X � 1 part.

In the rest of the quantum domain X � 1, |ρ| � 1, the cross-sections σ and σtr

are determined by resonant scattering (RS), see Fig. 2.3. These cross-sections can be

efficiently computed by summing the partial-wave series, Eqs. (2.7) and (2.8). Unlike

the |ρ| � 1 case, where the lowest angular momenta [KN07] j = ±1/2 dominate, here

significant contributions arise from certain high j for which the resonant tunneling
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Figure 2.4: Analytical approximation [Eq. (2.13)] for the transport cross-
section as a function of the refractive index.

condition is satisfied.

Let us now give more detailed information about each of the regimes. The

transport cross-sections in the SR and WR regimes are dominated by the ray series,

since the diffraction is restricted to small angles. Neglecting interference among

different rays, we obtained the result

σtr
a

=
8

3
− sgn(n)ς(n) , (2.13)

ς(n) = 4

min(1,|n|)∫

0

db
(2n− 1)b2 − n
n2 − (2n− 1)b2

√
n2 − b2

√
1− b2 (2.14)

(SR and WR regimes).

The correction term ς(n) can also be written as a linear combination of the complete

elliptical integrals, see Sec. 2.3. Equation (2.13) predicts the following asymptotic
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behavior of the transport cross-section:

σtr
a
'





3(n− 1)2 ln

∣∣∣∣
1

n− 1

∣∣∣∣ , n ' 1 ,

8

3
− 2π(

√
2 − 1)|n|, |n| � 1 ,

8

3
− π

2
, |n| � 1

(2.15)

(SR and WR regimes).

Notable features include the zero of σtr at n = 1 and the plateau-like inflection

point at n = −0.96 (see Fig. 2.4). The left SR regime in Fig. 2.3 corresponds to

the negative refractive index n < 0, and so we gave it an additional appellation of

“Veselago reflector” (VR). The typical ray trajectories are shown in Fig. 2.2(b). The

left diagonal line X = −ρ separating the WR and the SR(VR) regimes corresponds

to n = 0. Along this line the ray formalism predicts a cusp in σtr, see Fig. 2.4 and

the second line of Eq. (2.15). (In reality, the cusp is rounded and shifted by O(1/X)

quantum corrections, cf. Fig. 2.7 below.) On the other hand, transport cross-section

varies smoothly across the right diagonal line X = ρ (or n = 2) in Fig. 2.3 separating

the WR and the SR regimes.

Another analytical result can be derived in the limit |n| → ∞, which describes

the leftmost and rightmost parts of the SR regimes in Fig. 2.3. The rays pass almost

through the center of the disk in this limit, and so it is possible to sum the ray
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Figure 2.5: (Color online) Transport cross-section for |n| � 1 case as a
function of {X ′/π}, the fractional part of X ′/π. The line labelled “exact”
represents Eq. (2.8) evaluated for a fixed X = 103 and {X ′/π} = X ′/π − 107.
The line labelled “ray” is Eq. (2.16).

amplitudes fully taking into account their interference and obtain

σtr
a
' 8

3
+ sec5 2X ′

[
cos 2X ′ − 7

3
cos 6X ′

+
1

4
(−8 cos 4X ′ + cos 8X ′ + 7) ln tan2X ′

]
(2.16)

(SR regime, |n| → ∞ limit).

This expression is π/2-periodic in X ′ and if ρ is fixed, also in X, as expected for the

Fabry-Pérot (FP) resonator of length 2a. Figure 2.5 shows the transport cross-section

and the comparison between the exact result and Eq. (2.16).

The border of the WS regime in Fig. 2.3 is defined by the curves X3 = ±ρ

at X > 1 and ρ = ±1 at X < 1. The X > 1 part is described by the HEA. More
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precisely, the HEA describes the small-angle part of the scattering amplitude; however,

it is sufficient for computing both the total and transport cross-sections in the WS

regime. The total cross-section is given by

σ

a
= 2πH1(2ρ) (2.17a)

'





16

3
ρ2, ρ� 1 ,

4

[
1− π

4ρ
cos
(

2ρ− π

4

)]
, ρ� 1

(2.17b)

(HEA regime),

where H1(z) is the Struve function. The transport cross-section has the form

σtr
a
' 2ρ2

X2
lnX (HEA regime). (2.18)

The |ρ| � 1 part of the HEA domain is alternatively described by the BA. Additionally,

the BA gives the form of the differential cross-section for arbitrary angles φ:

dσ

dφ
=
π

2

ρ2a

X
cot2

(
φ

2

)
J2
1

(
2X sin

φ

2

)
(BA). (2.19)
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Integrating Eq. (2.19) over φ, we obtain

σ

a
'





16

3
ρ2, X � 1 ,

π2

2
ρ2X, X � 1 ,

(2.20)

σtr
a
'





2ρ2

X2
lnX, X � 1 ,

π2

4
ρ2X, X � 1

(2.21)

(BA regime).

The upper lines in these equations agree with the HEA. The formulas on the lower

lines differ from Eq. (12) of Ref. [Gui08] and Eq. (51) of Ref. [KN07] proposed earlier

for the same regime. We believe ours to be the correct ones. Unlike in the SR and WR

domains, the cross-sections in the WS regime (both HEA or BA) cannot be written

solely in terms of the classical quantities n and a.

A component missing in the ray series is the resonant tunneling of the rays

with impact parameters b larger than the radius of the disk [Fig. 2.2(c)]. These

rays correspond to the partial wave with j = kb > X. Within the semiclassical

picture the region a < r < b is classically forbidden due to the “centrifugal” potential

barrier. The tunneling through such a barrier is usually exponentially small unless the

resonance condition is met. For certain values of ρ and X, tunneling of the waves with

specific ±jr becomes strongly enhanced, which creates sharp maxima of the cross-

sections.[Gra00] The resonant tunneling may be encountered for either type of doping.

A necessary condition for the resonance is that some of disk interior is classically

allowed. This is possible if n > 1 or n < −1, so that the interval X < |j| < |X ′|



18

exists. The condition for the zth resonance (z = 1, 2, . . .) can be derived from the

Bohr-Sommerfeld quantization rule valid for X � 1. This condition has the form

2
√
X ′2 − j2 − 2|j| cos−1

|j|
X ′

+ 2Θ+ −
π

2
= 2πz , (2.22)

where Θ+ ∼ 1 is the phase shift of the inner reflection at the disk boundary, cf. Sec. 2.4.1.

Since Eq. (2.22) is invariant under the sign change of j, a pair j = ±jr would resonate

simultaneously. From Eq. (2.7) we see that each resonant partial wave with |j| > X

contributes up to 4a/X to the cross-section, so each resonant pair contributes up to

8a/X. This amount is parametrically small compared to the collective contributions

∼ a of all the j < X partial waves. Hence, the resonances produce only a small “ripple

structure” in the cross-section.[Chý76] In contrast, at X � 1 and ρ� 1, the RS is

the dominant effect. In this regime, the cross-sections are given by the approximate

formulas [HA08, BTB09] (see Sec. 2.4.1)

dσ

dφ
'
∑

j≥1/2

σj
π

cos2 jφ , (2.23)

σj =
8a

X

∞∑

z=1

γ2

(ρ− ρj,z)2 + γ2
, (2.24)

σ '
∑

j≥1/2

σj , σtr '
σ1/2

2
+
∑

j≥3/2

σj (2.25)

(RS regime)

with ρj,z and γ defined by Eqs. (2.53) and (2.56) in Sec. 2.4.

Let us now illustrate some of the above formulas by specific examples. The RS

behavior is depicted in Fig. 2.6, which shows the differential cross-sections for X = 0.3
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Figure 2.6: Transport cross-section in the BA and RS regimes, X = 0.3.
Labels j and z denote the angular momentum of the resonant partial waves
and index of the quasibound state in the disk.

and varying ρ. Note that j = 3/2 resonance is much more narrow that j = 1/2, in

agreement with the formula γ ∼ X2j [Eq. (2.56)] for the linewidth. The BA behavior

σtr ∝ ρ2 [Eq. (2.21)] is seen to occur at small ρ.

Next, consider the dependence of the cross-section as a function of the electron

density, ne = k2/π = X2/(πa2) for a fixed potential strength V0 in SR and WR

regimes. Figure 2.7(a) shows the transport cross-section for V0 = −0.5 eV, which

models the effect of Al, Ag, or Cu adsorbates weakly coupled to graphene.[GKB+08]

In this case, the system is always a n-N junction, i.e., n > 0. The dashed-dotted

curve in Fig. 2.7(a) is given by the ray formula, Eq. (2.13). It fits well with the

(numerically) exact results from PWD, especially for a = 100 nm. For a = 20 nm, the

deviations of the PWD curve from the ray formula are larger. However, they almost

never exceed 8a/X, the vertical shift between the dashed-dotted and dotted curves.
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Figure 2.7: (Color online) Transport cross-section as a function of electron
density. (a) V0 = −0.5 eV or ρ ≈ +300 nm/a. (b) V0 = +0.5 eV or ρ ≈
−300 nm/a. Thick solid curves: the exact result from PWD for a = 20 nm.
Thin solid curves: the exact result from PWD for a = 100 nm. Dashed-dotted
curves: Eq. (2.13), from the ray picture. Dotted curves: the sum of the ray
term [Eq. (2.13)] and a single resonance 8a/X for a = 20 nm. The inset of
(b) shows the effect of the resonances at small density where n < −1.
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This shows that this contribution comes predominantly from a single resonant pair;

bunching of the resonances is atypical. We checked that the positions of the resonances

are rather well described by Eq. (2.22). Figure 2.7 also shows that as ne increases,

the resonance contribution becomes smaller compared to the ray term, as expected

because X increases. The curve marked a = 20 nm in Fig. 2.7(a) is computed for the

same parameters as in Fig. 2 of Ref. [KGG09]. The results are clearly different both

in magnitude and periodicity. The reason for the disagreement is unknown because

the same mathematical formula [Eq. (2.8)] was used both in our calculation and in

Ref. [KGG09]. We believe our results are correct because they are consistent with our

analytic formulas.

In Fig. 2.7(b), we consider V0 = +0.5 eV, where the system changes from an

n-p junction to a n-N junction as the electron density increases. The ripple structure

exists only at n < −1, in agreement with the condition discussed above. It is worth

noting that in the limit |n| � 1, the transport cross-section, σtr approaches the value

of 8a/3, the known result for an impenetrable disk.[YM07] This is the maximum

transport cross-section one can get for massless Dirac fermions at X � 1. However,

in the opposite limit |n| � 1, which would also correspond to impenetrable disk

for massive fermions, Eq. (2.15) predicts a different and significantly smaller value

σtr = (8/3− π/2)a ≈ 1.1a. This highlights the ability of massless Dirac to penetrate

high barriers via Klein’s tunneling.

Consider now graphene with many randomly positioned identical disks of low

enough concentration nc � 1/a2. Our results can be used to compute the conductivity

G of such a system if its size is larger than the mean-free path l = vF τtr. The
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Figure 2.8: (Color online) The ratio η of the quantum and transport times
as a function of the electron density ne. (a) V0 = −0.5 eV or ρ ≈ +300 nm/a,
same as in Fig. 2.7(a). (b) V0 = +0.5 eV or ρ ≈ −300 nm/a, same as in
Fig. 2.7(b). (c) “Point-like” scatterer, a = 1 nm.
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conductivity is related to the transport cross-section by

G =
2e2

h
kFvF τtr = 2

√
π
e2

h

√
ne

ncσtr
. (2.26)

Note that Eq. (2.26) neglects logarithmic corrections due to multiple scattering

effects. [AE06, OGM06] If the disks are slightly different in size or shape or the

system is at finite temperature, we expect the ripple structure in σtr to be washed

out leaving only the overall trends. For example, for parameters used in Fig. 2.7,

the disorder-averaged transport cross-section should change slowly with the carrier

concentration ne, remaining close to ∼ a. Hence, the conductance will have an

approximately
√
ne dependence. Such a dependence is different from those for both

the charged impurities and the short-ranged defects computed within the BA in

Ref. [HDS08], which are, respectively, linear and constant in ne.

An important parameter η characterizing the spatial structure of impurities

is the ratio of the transport time τtr and the quantum lifetime τq [Eq. (2.1)]. This

parameter is related to the cross-sections via

η =
τtr
τq

=
σ

σtr
. (2.27)

Experimentally, τtr can be extracted from the conductivity measured in the absence

of magnetic field [Eq. (2.26)] whereas τq can be obtained from the damping rate of

the Shubnikov-de Haas oscillations in magnetotransport. A large η indicates that

scattering is predominantly in the forward direction while a small η indicates that

scattering by large angle is possible. The former is a feature of long-range impurities.

The latter may indicate either that the impurities are short-range or they are have
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sharp boundaries.

In Fig. 2.8(a) and Fig. 2.8(b), we compute η for large scatterers and V0 =

±0.5 eV, respectively. For the n-type scatterers (V0 < 0) in Fig. 2.8(a), η increases

from 4 to 7 with the electron density, which is a range of values found in the

experiment.[Gor09] The ray formula is basically the envelope of the exact results. The

ripple structure exists everywhere since |n| > 1 for all the electron density. For the

p-type scatterers (V0 > 0) in Fig. 2.8(b), the ray formula fits even better except again

for the ripple structure at n < −1. Parameter η exhibits a minimum at n = 0, which

is due to the maximum of the transport cross-section at such n, Fig. 2.7(b).

In Fig. 2.8(c), we show η computed for disks of small radius a = 1 nm. Note

that two scattering regimes are possible for small impurities, RS (ρ � 1) and WS

(ρ � 1). In the WS regime, the scattering dominated by the partial waves with

|j| = 1/2, so that η ≈ 2, cf. Eqs. (2.24) and (2.25). In the RS regime, partial waves

with |j| > 1/2 can also contribute due to the resonant tunneling. These higher-j

partial waves can interfere with |j| = 1/2 partial waves to form Fano-like resonance, see

the ρ = 6.5 and −4.5 curves in Fig. 2.8(c). The Fano-like resonance leads to η < 2 at

some electron density. It is worth noting that η can be smaller than unity (σtr > σ) at

the Fano-like resonance, which is unusual: it implies that the backscattering dominates

the forward scattering. Similar physics is discussed in Ref. [HBF13]. However, as

mentioned earlier, small randomness in size or shape of the disks unavoidable in

practice would cause the ripple structure in η, including the Fano-like resonances, to

be suppressed.
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2.3 Semiclassical ray picture

In this Section we outline the derivation of the ray series, which is a useful

tool for investigating the X � 1 regimes, where the PWD series [Eq. (2.6)], although

formally exact, suffers from slow convergence and does not give much physical insight.

We label the rays by integer p. Figure 2.2 shows schematically a first few rays in

the series: the reflected ray p = 0, the directly transmitted ray p = 1, and the ray

transmitted after one internal reflection p = 2. The higher-order rays undergo p− 1

internal reflections. The refraction angle β is related to the incidence angle α (Fig. 2.2)

by Snell’s law

sin β =
sinα

n
. (2.28)

As in optics, the ray series can be derived from the PWD via an intermediate step of

the so-called Debye series, where the summation over j, Eq. (2.6), is transformed into

an integral and evaluated by the saddle-point approximation. We applied a similar

procedure to our problem, see Appendix 2.9 for details. The final result has the form

f(φ) =
∞∑

p=0

fp(φ) + i

√
2

πk

sinXφ

φ
, (2.29a)

fp(φ) = e−
iπ
4

∑

α

∣∣∣∣
dφp
db

∣∣∣∣
− 1

2

Cp(α)eiϕo+iϕc , (2.29b)

where φp is the total deflection angle of ray p given by

φp = π − 2α− p(π − 2β) . (2.30)
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Each scattering angle φ may correspond to multiple, single, or none of the rays,

depending on the number of real solutions of the equation

φ = φp + 2πl , (2.31)

where l is some integer. If the dependence of φp on α is nonmonotonic, there may be

several solutions for α even for the same l, in which case they all need to be included

in the calculation of fp.

Since the impact parameter (Fig. 2.2) is given by

b = a sinα, (2.32)

the derivative dφp/db in Eq. (2.29b) can be written as

dφp
db

=
1

a cosα

dφp
dα

. (2.33)

For now, we assume that this derivative is nonvanishing. Later in Sec. 2.4.2 we

explain how to modify Eq. (2.29b) if this is not the case. The ray amplitude Cp(α)

in Eq. (2.29b) is expressed in terms of the plane-wave reflection and transmission
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coefficients of the ray at a flat interface:[KN07]

Cp(α) =





Rout , p = 0 ,

ToutTinR
p−1
in , p > 0 ,

(2.34)

Rout = ieiα
sin
(α− β

2

)

cos
(α + β

2

) , (2.35)

Tout = 1 +Rout , (2.36)

and Rin (Tin) are obtained from Rout (Tout) by interchanging α and β. The two phases

appearing in the exponential in Eq. (2.29b) are

ϕo = −2X cosα + 2pX ′ cos β , (2.37)

ϕc = −π
2

[
p− 1

2

(
1 + sgn

dφp
db

)]
≡ −π

2
Nc . (2.38)

Here ϕo represents the phase due to the optical path length and ϕc is the phase shift

due to passing of the caustics,[LL75] which occurs Nc times. Finally, the last term of

f(φ) in Eq. (2.29a) is the usual Kirchhoff diffraction contribution.

The ray series converge much more rapidly than the PWD because for most

rays Rin and Rout are appreciably less than unity. (Recall that for the normal incidence

the reflection vanishes exactly.) In particular, for small ρ, it suffices to consider only

p = 0, 1, and 2 terms. To the leading order in ρ the solutions for α = α(φ) and

β = β(φ) can be analytically. Substituting these into Eq. (2.29b), we obtain the first
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three terms of the ray series as follows:

f0(φ) = − ρ

X

√
a

8

cos
φ

2

sin3/2 φ

2

exp

[
−i
(
π

4
+
φ

2
+ 2X sin

φ

2

)]
, (2.39)

f1(φ) =

√
X

ρ

√
a

2

[
1 +

(
Xφ

2ρ

)2
]−3/4

exp
[
i
(
−π

4
+
√

4ρ2 +X2φ2
)]
, (2.40)

f2(φ) = − ρ

X

√
a

8

cos
φ

2

sin3/2 φ

2

exp

[
i

(
π

4
− φ

2
+ 2X sin

φ

2

)]
. (2.41)

These formulas will be important for the discussion of the differential cross-

sections in Sec. 2.5.

The summation of the full ray series is possible using certain approximations.

Consider the calculation of the transport cross-section. Neglecting the ray interference

and the diffraction term (which is important only for forward scattering), we arrive at

σtr =

a∫

−a

db(1− cosφ)
∑

p

|Ap|2 , (2.42)

with b defined by Eq. (2.32) and Ap given by

Ap = Cp(α)eiϕo+iϕc . (2.43)

Using Eqs. (2.30), (2.34)–(2.36), we obtain

σtr = 2a+ a

π/2∫

−π/2

dα cosα

[
R2 cos 2α− Re

ei(2β−2α)

1 +R2e2iβ

]
, (2.44)

where R = |Rout| = |Rin|. After some changes of variable Eq. (2.44) can be transformed
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to Eqs. (2.13) and (2.14). It is possible to express the correction ς(n) in the latter

in terms of K(m), E(m) and Π(z,m), which are the complete elliptic integrals of,

respectively, the first, the second, and the third kind. The result is

ς(n) = −4

3

sgn(n)

(2n− 1)2
Re
[
c1E

(
1

n2

)
+ c2K

(
1

n2

)

+ c3 Π

(
2n− 1

n2
,

1

n2

)]
, (2.45a)

c1 = −n(2n− 1)
(
2n3 − 4n2 + 5n− 1

)
, (2.45b)

c2 = (n− 1)(4n4 − 6n2 + 7n− 3) , (2.45c)

c3 = −6(n− 1)4 . (2.45d)

Another tractable limit is n → ∞, where β → 0 so that all the odd-p rays

scatter into the same final direction and interfere with each other, and similar for all

the even-p rays. Equation (2.42) is modified to

σtr =

a∫

−a

db(1− cosφ)
∣∣∣
∑

p

Ap

∣∣∣
2

, (2.46)

while the ray amplitudes are found to be

∣∣∣
∑

p

Ap

∣∣∣
2

=
∣∣∣
∑

p odd

Ap

∣∣∣
2

+
∣∣∣
∑

p even

Ap

∣∣∣
2

, (2.47a)

∣∣∣
∑

p odd

Ap

∣∣∣
2

=
cos2

φ

2

1− sin2 φ

2
cos2 Φ

, (2.47b)

∣∣∣
∑

p even

Ap

∣∣∣
2

=
sin2 φ

2
sin2 Φ

1− cos2
φ

2
cos2 Φ

. (2.47c)
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Substituting Eqs. (2.47a)–(2.47c) into Eq. (2.46), we obtain Eq. (2.16) by an elementary

integration.

2.4 Beyond the ray picture

In the previous sections, we have shown the benefits of the ray series for

understanding the primary features of the scattering amplitudes in the large-X

semiclassical regime. Here we address some interesting secondary effects that are

beyond the ray picture. Technically, the ray series is derived using the saddle-

point approximation to evaluate the contour integral leading to the Debye series

(Appendix 2.9). The additional effects can be, in principle, derived by a more accurate

approximation of the same contour integral. Thus, the resonances that produce the

ripples (Sec. 2.2) can be accounted for by including contributions from not only the

saddle-point but also the poles in the complex j plane.[Nus69, Gra00] However, below

we use a simpler derivation directly from the PWD.

The saddle-point approximation is also insufficient if the ray deflection angle

φp is a nonmonotonic function of the impact parameter b, so that dφp/db may vanish.

In this case Eq. (2.29b) cannot be used as it gives a divergent result. This problem

is especially apparent for refraction index in the interval 1 < n < 2 where the

divergent contribution is not overshadowed by other, non-divergent terms. The same

divergence is encountered in the theory of rainbow in optics[Gra00] and a common

remedy for it is to replace the saddle-point approximation by a so-called uniform

approximation.[CFU56] Similar issues arise for rays with incident angle α close to the

critical angle. This regime is realized for |n| < 1 and is known as the near-critical

scattering.[Gra00] Finally, the saddle-point approximation becomes inaccurate if the
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optical phase shift φo [Eq. (2.37)] is small, which occurs when the scattering potential

is weak. To handle this case we use an alternative approach based on perturbation

theory, either the HEA or the BA. Let us now consider each of these special regimes

in more detail.

2.4.1 Resonances

As explained in Sec. 2.1, the contribution to the cross-sections from a partial

wave of a given angular momentum j is proportional to sin2 δj , where δj is the scattering

phase shift. This quantity can be written in the form

sin2 δj =
1

1 +

(
Im sj
Re sj

)2 . (2.48)

The exact expression for sj given in Appendix A [cf. Eq. (2.83)] involves a combination

of Bessel functions. It can be simplified in certain limits using suitable asymptotic

expansions of these functions. Thus, for X � 1 we can use the Debye expansion to

arrive, after some algebra, at

Im sj
Re sj

' sin(Φc + Θ+)

sin(Φc + Θ−)
exp

(
−2
√
j2 −X2 + 2j cosh−1

j

X

)
, (2.49)

Φc ≡
√
X ′2 − j2 − j cos−1

j

X ′
− π

4
, (2.50)

Θ± =
π

2
+ tan−1




√
X ′2 − j2
X ′

|j| ±
√
j2 −X2

X
− |j|
X ′


 . (2.51)

The resonance occurs when sin2 δj attains a maximum, i.e., when the left-hand side of

Eq. (2.49) is equal to zero. Therefore, the resonance condition is sin(Φc + Θ+) = 0,
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which gives Eq. (2.22) and corresponds physically to the whispering-gallery modes.

To find the resonance condition in the opposite limit of X � 1, we use a Taylor

expansion of the Bessel functions that have X as an argument. We obtain

sin2 δj '
{

1 +

[
4jΓ(1/2 + j)2

πX2j

Jj−1/2(X
′)

Jj+1/2(X ′)

]2}−1
, (2.52)

where Γ(x) is the Euler Gamma-function. Let Zj,z be the zth zero of one of the

remaining Bessel functions, Jj−1/2(Zj,z) = 0. We define

ρj,z ≡ Zj,z −X (2.53)

and expand Jj−1/2(X
′) = Jj−1/2(X + ρ) to the linear order in ρ− ρj,z:

Jj−1/2(X
′) ' −Jj+1/2(Zj,z)(ρ− ρj,z) . (2.54)

From Eqs. (2.52)–(2.53), we obtain

sin2 δj =
γ2

(ρ− ρjr)2 + γ2
, (2.55)

γ =
π

4jΓ(j + 1/2)2
X2j , (2.56)

which leads to Eqs. (2.23)–(2.25). It is interesting to note that γ vanishes if the incident

electron has zero energy (X = 0). Accordingly, the lifetime 1/γ of the resonance is

infinite. Physical, it means that Dirac quasiparticles can be trapped indefinitely inside

a locally doped region embedded in the otherwise undoped graphene. [HA08, BTB09,

MP08]
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Figure 2.9: (Color online) Differential cross-section forX = 200 and n = 1.33.
The main p = 2 rainbow appears at φ/π = 0.76. The right inset shows the
comparison among the uniform approximation, the ray formula, and the
PWD. The left inset shows the comparison between the Kirchhoff diffraction
and the PWD.

2.4.2 Dirac rainbow

If φp(α) is a nonmonotonic function of α, there may exist αr such that

dφp
dα

∣∣∣∣
α=αr

= 0 . (2.57)

The same condition corresponds to the rainbow phenomenon in optics. Near α = αr,

Eq. (2.30) has more than one root. Two of such roots, α+ and α−, coalesce at α→ αr.

At α = αr, the ray formula Eq. (2.29b) diverges and cannot be used. The divergence

is cured by the uniform approximation of the Debye series,[CFU56, Ber66, Nus69]
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with which we obtain

fp(φ) = (−i)peiϕ (−ζ)1/4

×
∑

µ=±1

(
Ai(ζ) + iµ

Ai′(ζ)

(−ζ)1/2

) √−µπ√
dφp
db

∣∣∣∣
αµ

Cp(αµ) , (2.58)

where Ai(ζ) is the Airy function. α± are chosen such that ϕo(p, α+)− ϕo(p, α−) > 0,

and ϕ and ζ are defined by

ϕ =
1

2
[ϕo(p, α+) + ϕo(p, α−)] , (2.59)

ζ =

{
3i

4
[ϕo(p, α+)− ϕo(p, α−)]

}2/3

. (2.60)

An advantage of the uniform approximation is that it can be used for both φ < φr and

φ > φr if we allow the roots α± to be complex numbers (which are always conjugate

to each other). In doing so, the branch cut of ζ(φ) should be chosen such that ζ is

negative for real α±, and positive when they acquire imaginary parts.

In Fig. 2.9 we compare the results of the uniform approximation, the ray

formula, and the PWD for the differential cross-sections computed for n = 1.33. The

rainbow condition, Eq. (2.57), can be satisfied for p ≥ 2 rays. The main p = 2 rainbow

appears at φ = 0.76π, and the secondary p = 3 rainbow is found at φ = 0.23π. As one

can see from Fig. 2.9, the ray formula strongly deviates from the exact PDW result

at the rainbow angles. On the other hand, at such angle the uniform approximation

agrees well with the PWD (right inset). In the left inset of Fig. 2.9 we show the

differential cross-section for small φ where the ray formula also fails. However, the

differential cross-section is adequately described by the Kirchhoff diffraction formula
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Figure 2.10: Differential scattering cross-section for n = 0.5 and X = 200
computed by the PWD. The critical angle φc = 2π/3 [Eq. (2.61)] above which
the p = 0 ray is totally reflected is labeled on the horizontal axis. Near this
angle the cross-section exhibits oscillations similar to those near the rainbow
angle in Fig. 2.9.

[the last term in Eq. (2.29a)].

2.4.3 Near critical scattering

Another phenomenon reminiscent of rainbow is the near critical scattering,

which is realized at |n| < 1. At such n, the p = 0 ray is totally reflected for deflection

angles larger than the critical angle [cf. Eq. (2.30)]

φc = π − 2 arcsinn . (2.61)

At φ < φc, the scattering enhanced due to the total reflection exhibits the “su-

pernumerary” oscillation, while at φ > φc, the scattering rapidly decays. These

Airy-function-like features are illustrated by Fig. 2.10.
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Figure 2.11: (Color online) Differential cross-section as a function of the
deflection angle. The labels on the graphs stand for D: diffraction, C: central
rays (b � a), E: edge rays (|b| ≈ a), AD: anomalous diffraction. (a) The
exact results for X = 106 and several ρ computed using the PWD. (b)–(e)
are the schematic diagrams illustrating different regimes. (b) SR regime. At
angles less than 1/

√
X the cross-section is dominated by diffraction. At larger

angles, the cross-section can be computed from geometrical optics; however,
accurate results require summing over many p in the ray series. (c) WR
regime. Diffraction dominates at small angles, followed by the p = 1 ray and
then by the p = 0 and 2 rays. A shallow dip followed by a peak exists in
the narrow gap between the last two angular regions, at φ ∼

√
ρ/X. The

peak, which occurs on the ray-0,2 side, is the Dirac rainbow (Sec. 2.4.2).
The dip between the ray-1 region and the rainbow exhibits another effect
beyond the ray approximation — the Fock transition.[Gra00] (d) HEA regime.
Diffraction dominates at small angles followed by the p = 1 ray and smoothly
continued by the p = 0, 2 rays. (e) BA regime. Anomalous diffraction exists
at angles smaller than 1/X. At larger angles the scattering is dominated by
the p = 0 and 2 rays.



37

2.4.4 Born approximation and high energy approximation

The development of the perturbation theory for the scattering begins with the

exact Lippmann-Schwinger equation

Ψ(r) =
1√
2




1

1


 eikx +

∫
G0(r− r′)Ṽ (r′)Ψ(r′)d2r′ , (2.62)

where Ṽ (r) = V (r)/(~vF ), G0(r) is the Green’s function for the 2D Dirac equation,

G0(r) = −ik
4




H
(1)
0 (kr) ie−iφH

(1)
1 (kr)

ieiφH
(1)
1 (kr) H

(1)
0 (kr)


 , (2.63)

and H
(1)
j (x) is the Hankel functions of the first kind. Following the standard

route,[LL77] we seek the solution of Eq. (2.62) in the form

Ψ(r) =
1√
2




1

1


 eikxP (r) . (2.64)

The corresponding scattering amplitude is

f(φ) = −
√

k

2π
e−iφ/2 cos

φ

2

∫
Ṽ (r)P (r)e−iq·rd2r , (2.65)

q = k(cosφ− 1, sinφ) . (2.66)
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One can show that for small angles and weak enough scattering potential, φ� ρ/X �

1, function P is approximately equal to

P (x, y) = exp

(
−i
∫ x

−∞
Ṽ (x′, y)dx′

)
. (2.67)

This approximation [LL77] is known as the HEA. (The similar method called “paraxial

approximation” optics was applied to graphene in Ref. [MMP11].) Since φ is always

considered to be small within the HEA, we can achieve further simplification by

writing the change in momentum [Eq. (2.66)] as

q ' kφŷ . (2.68)

Substituting this into Eq. (2.65) and integrating over x, we obtain

f(φ) = −i
√

k

2π
e−iφ/2 cos

φ

2

×
∫ ∞

−∞
[P (∞, y)− 1] e−ikφydy . (2.69)

Furthermore, under the condition
∫
Ṽ dr � 1, the quantity P (∞, y) − 1 can be

expanded to the first order in V , which leads to the first Born approximation (BA).

Within the latter, the formula for the scattering amplitude can be simplified by

integrating over the polar angle:

f(φ) = −
√

k

2π
e−iφ/2 cos

φ

2

∫ ∞

0

2πṼ (r)J0(qr)rdr . (2.70)
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Although the HEA is valid only for small φ, the BA result holds for any φ as long

as the potential V is weak, as specified above, and we use Eq. (2.66) for q, i.e.,

q = |q| = 2k sin(φ/2). For the step potential [Eq. (2.3)], the calculations according to

Eqs. (2.69), (2.70), and (2.9) yield the formulas for the total cross-sections presented in

Sec. 2.2. Computing the transport cross-sections within the HEA and BA [Eqs. (2.18)

and (2.21)] requires deriving the differential cross-sections first. These quantities are

discussed in the next Section.

2.5 Differential cross-sections in each regime

In principle, numerical evaluation of the PWD series is not difficult even

for large X as long as one keeps enough terms in the summation and uses reliable

library subroutines for computing the requisite Bessel functions. The results of these

calculations, which can be considered numerically exact, for X = 106 are presented in

Fig. 2.11(a). While it is too high to be practical for graphene, choosing such a large

X enables us to show more clearly the qualitative trends displayed by the differential

cross-section dσ/dφ as a function of φ for four different fixed ρ. These trends are

schematically illustrated in Figs. 2.11(b)–(e). In the rest of this Section we discuss how

these trends can be understood based on the analytical approximations we developed

above.

We begin with the SR regime where the ray series is accurate, and so Eqs. (2.29a)

and (2.29b) can be used. At small angles, the last (diffraction) term in Eq. (2.29a)

is the dominant one. It goes to a constant at φ = 0 and decays as dσ/dφ ∼ φ−2

at φ � 1/X. A crude sketch illustrating this behavior is shown in Fig. 2.11(b). It

consists of a plateau at φ < 1/X and a straight line at φ > 1/X. We label it by “D”
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(for “diffraction”). The ray series dominates the diffraction at φ > 1/
√
X, as shown

schematically in Fig. 2.11(b). Since the scattering potential is strong, there is no

particular restriction on the characteristic deflection angle of the rays. For any p, it

can be as small as zero or as large as the maximum possible angle π. Therefore, the

differential cross-section due to the ray contribution is shown to be flat in Fig. 2.11(b),

meaning it does not vary much on the logarithmic scale. This is indeed the behavior

exhibited by the ρ = 3× 106 curve in Fig. 2.11(a), which corresponds to the largest

refraction index curve (n = 4) in that Figure.

In the WR regime, the “D” feature is also present, see Fig. 2.11(c). The ray

contribution exceeds that of diffraction at φ >
√
ρ/X. From Eqs. (2.39)–(2.41), one

can show that the p = 1 ray dominates at
√
ρ/X < φ <

√
ρ/X and the p = 0

and p = 2 rays take over at φ >
√
ρ/X. The contribution of the p = 1 ray to the

cross-section decays at φ > ρ/X as dσ/dφ ∼ φ−3. This occurs because at such φ the

p = 1 rays graze along the edge of the disk, b ≈ a; hence, this domain is labeled “E”

in Fig. 2.11(c). Note that a small dip in dσ/dφ exists at φ ∼
√
ρ/X that separates

angular intervals dominated by p = 1 ray and the p = 0, 2 rays. Inside this dip no

classical solutions exist for either p = 1 or 2 ray, while the contribution of p = 0 ray is

already small. However, on the high-φ side of the dip there are two such solutions

for p = 2. The interference between them gives rise to the Dirac rainbow, which was

discussed in Sec. 2.4.2.

In the HEA and BA regimes, Figs. 2.11(d) and 2.11(e), respectively, the

formulas from Sec. 2.4.4 apply. In the HEA regime, we use Eqs. (2.3) and (2.69) to



41

obtain

f(φ) = i

√
2

πk

sinXφ

φ
+ I(φ) , (2.71)

I(φ) = −i
√

k

2π

1∫

−1

dy e−iXφy exp
(

2iρ
√

1− y2
)
. (2.72)

The first term of Eq. (2.71) is the same as the diffraction term in Eq. (2.29a). The

second term I(φ) admits analytical approximations in some limits. At φ � ρ2/X,

it can be calculated by the saddle-point approximation. The result is identical

to f1(φ) given by Eq. (2.40). At ρ2/X � φ � 1, the leading-order analytical

approximation to I(φ) can be calculated by deforming the contour to a rectilinear

path (−1,−1− iν∞, 1− iν∞, 1), with ν = sgn ρ. The result is

I(φ) ' −2ρ

X

√
a

φ3
cos
(
Xφ+

π

4

)
, (2.73)

which is equal to the sum of f0(φ) and f2(φ), Eqs. (2.39) and (2.41). In the intermediate

region, φ ∼ ρ2/X, the two approximations match by the order of magnitude but none

of them is quantitatively accurate. If desired, the integral I(φ) can be calculated

numerically. The result would then provide a smooth connection between the p = 1

and p = 0, 2 ray formulas. Unlike in the WR regime, the differential cross-section has

neither a dip nor a peak (rainbow) in this regime. Such geometrical optics features are

smeared out in the HEA regime. Apart from this, it is remarkable that the HEA, which

is typically considered a quantum theory, can be reproduced using the semiclassical

ray picture. It is not very difficult to show that the crossover between the HEA and

the WR occurs at X ∼ |ρ|3, see Fig. 2.3.
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The differential cross-section of the HEA regime is shown schematically in

Fig. 2.11(d). The p = 1 ray dominates over diffraction at φ >
√
ρ/X. Its contribution

to the cross-section behaves as φ−3 at φ > ρ/X. The same trend is smoothly continued

by the p = 0, 2 rays, which dominate at φ > ρ2/X.

Lastly, in the BA regime, we use Eqs. (2.3) and (2.70) to obtain

f(φ) =
√

2πXa ρ e−iφ/2 cos
φ

2

J1

(
2X sin

φ

2

)

2X sin
φ

2

, (2.74)

which entails Eq. (2.19). The differential cross-section in the BA regime is shown

in Fig. 2.11(e). As mentioned in Sec. 2.2, the small-angle scattering in the BA

regime is described by the anomalous diffraction, which originates from the destructive

interference of the p = 1 rays with the usual diffraction. Consequently, the maximum

value σ′(0) = (π/2)aρ2X of the differential cross-section is much smaller than the

Kirchhoff result σ′(0) = (2/π)aX [see the first term in Eq. (2.71)]. At 1/X � φ� 1,

Eq. (2.74) agrees with Eq. (2.73) because the BA and the HEA are both valid at such

angles, predicting the dσ/dφ ∝ φ−3 decay.

In summary, scattering of quasiparticles by large disks, X � 1, can be described

by the ray series at all but very small deflection angles φ. At such small angles, there

is a competition between the rays and diffraction. Diffraction dominates for the strong

enough potential, ρ � 1. In the opposite case, the p = 1 rays nearly cancel the

diffraction, making it “anomalous.” As one can see from Fig. 2.11(a), the exact results

for the differential cross-section at sufficiently large X = 106 agree very well with our

schematic diagrams for all ρ pictured therein.

Based on the above results for the differential cross-sections, derivation of
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the transport cross-sections within the HEA and BA [Eqs. (2.18) and (2.21)] is

straightforward, and so we will not elaborate on it.

2.6 Near-field scattering

The previous Sections have been devoted to quantitative and qualitative dis-

cussion of far-field scattering amplitudes. In this Section, we turn our attention to

the behavior of the electron wavefunction Ψ(x, y) near the scatterer. As previously,

we assume that electrons propagate ballistically before and after they collide with

the disk. In such an idealized system, the incident plane wave can be created by

injecting a small electric current in a particular direction. One quantity we will discuss

is |Ψ(x, y)|2, which determines the current-induced change in the local charge density

(CCLCD). Additionally, having in mind Dirac fermions on a surface of a topological

insulator, we will consider 〈σz〉 ≡ 〈Ψ|σz|Ψ〉, which determines the current-induced

change of the z-component of the local spin density (CCLSD). In graphene, the same

expectation value defines pseudospin rather than spin density (and so it may be more

difficult to probe experimentally). Our goal is to see how the qualitative features of

the CCLCD and the CCLSD can be understood in terms of the concepts introduced

in the previous Sections, in particular, partial wave resonances and semiclassical ray

trajectories.

Figure 2.12 shows a suitably normalized CCLCD for six representative choices

of X and ρ. The false color scale in this Figure is effectively nonlinear because

we plot |Ψ|1/8 instead of |Ψ|2 to mitigate sharp contrast variations. The top left

panel of Figure 2.12 pertains to the smallest-ρ |j| = 3/2 resonance in the RS regime.

The resonance is seen to generate a dramatic enhancement of the CCLCD at the
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Figure 2.12: (Color online) Near-field features of the scattering wavefunction
Ψ(x, y) for several representative choices of X and ρ. In order to avoid drastic
contrast variation in these false color diagrams, we plot |Ψ|1/8 rather than |Ψ|2.
(a) A low angular momentum resonance occurring at X = 0.3, ρ = 3.363. The
partial waves with j = ±3/2 are resonant. (b) A high angular momentum
resonance (“whispering gallery mode”) at X = 100, ρ = 81.7762. The partial
waves with j = ±165/2 are resonant. (c) An example of negative refraction
in the VR regime, X = 100, ρ = −281 (n = −1.81). (d) An example of
caustic and lensing in the SR regime, X = 100, ρ = 81 (n = 1.81). (e), (f) FP
regime n � 1 on and off the resonance, {X ′/π} = 0 and 0.25, respectively
(cf. Fig. 2.5).
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Figure 2.13: (Color online) Local z-component spin density 〈σz〉 ≡ 〈Ψ|σz|Ψ〉
for the four resonances at X = 0.3 shown in Fig. 2.6. We plot sgn〈σz〉|〈σz〉|1/2
rather than 〈σz〉 to avoid too much contrast in these false color diagrams. (a)
ρ = 1.739, the j = 1/2, z = 1 resonance. (b) ρ = 3.363, the j = 3/2, z = 1
resonance. (c) ρ = 4.883, the j = 1/2, z = 2 resonance. (d) ρ = 6.555, the
j = 3/2, z = 2 resonance.

scatterer. It may be surprising that this enhancement is axisymmetric. This defies

naive expectations that interference of ±jr partial waves should produce an oscillatory

angular dependence of the CCLCD. In fact, the lack of angular oscillations is peculiar

to massless Dirac fermions. The states of angular momenta ±jr are characterized by

mutually orthogonal spinors; therefore, these states do not interfere with one another

yielding a nearly axisymmetric CCLCD.

Resonances can also occur in the WR and SR regimes for the partial waves of

high angular momenta |j| � 1, cf. Eq. (2.22). Such partial waves are analogous to the

“whispering gallery” modes in optics. They produce ring-shaped CCLCD enhancement

shown in Fig. 2.12(b). (Note that within the semiclassical picture the resonant states

correspond to particles trapped inside the disk and orbiting in either direction around
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its center.) In Figs. 2.12(c) and 2.12(d), we present examples of negative[CFA07] and

positive refraction, respectively. Figure 2.12(c) depicts the CCLCD for n = −1.81,

which is in the VR regime. The most notable features are the internal caustics that

can be explained using the ray picture.[CPP07] Figure 2.12(d) shows CCLCD for

n = 1.81. Here the refraction is positive and instead of the internal caustics, the rays

exhibit focusing outside the disk. The narrowness of the whispering-gallery resonance

can be appreciated by comparing Figs. 2.12(b) and 2.12(d). Although the refractive

indices in the two cases differ by little more than 1%, their CCLCD look dramatically

different. While in Fig. 2.12(d), the CCLCD is dominated by the focal point of the

rays, in Fig. 2.12(b) it is almost completely overshadowed by the resonant partial

waves. Thus, for the CCLCD a single pair of resonant partial waves can be more

prominent than all other waves combined. This is in contrast to the far-field scattering

quantities at X � 1, for which such a resonance typically gives only a small correction

to the ray formula result [Eqs. (2.12) and (2.24)].

The last two panels in Fig. 2.12 illustrate the role of ray interference in the

FP regime (n� 1), where the far-field cross-section exhibits periodic oscillations, see

Fig. 2.5 in Sec. 2.2. We see in Figs. 2.12(e) and 2.12(f) that the ray interference also

strongly influences the CCLCD, causing marked change in the CCLCD intensity along

the vertical diameter of the disk on and off the resonance.

Let us now turn to the features of the local spin density. We have found that

the CCLSD maps in the WR and SR regimes show qualitatively the same caustics and

focal spots as the maps of the CCLCD. Therefore, these CCLSD maps do not seem

to give much additional information and are not presented here. However, striking

differences between the CCLCD and CCLSD appear in the RS regime. Figure 2.13
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shows the CCLSD at the positions of the four resonances seen in Fig. 2.6. Unlike

the CCLCD maps, the CCLSD shows strong angular variations. This can be seen

from the comparison of Figs. 2.12(a) and 2.13(b), which have the same ρ and X. In

order to avoid too drastic contrast variations in the false color, we again use nonlinear

scaling and plot sgn〈σz〉|〈σz〉|1/2 instead of 〈σz〉 in Fig. 2.13. The oscillations of the

CCLSD are enabled by the discussed above interference of the ±jr waves owing to

the nonzero term 〈Ψ−jr |σz|Ψjr〉. This interference causes the CCLSD to change its

sign 2|jr| times in the angular direction and z times in the radial direction.

One may wonder how the predicted CCLCD or CCLSD can be measured in

experiments. We think it may be possible with modern scanned-probe techniques.

However, this task would require probing a current-carrying system with a nanoscale

spatial resolution. One somewhat indirect method is to utilize the scanned gate mi-

croscopy (SGM), in which the change of the conductance of the system is measured in

response to a local gating by the scanned tip. With further analysis, this type of mea-

surement can in principle reveal the CCLCD.[EBT+96, TLS+00, TLW+01, BBHW10,

SHP+11, ManKanS14] A more direct method is the scanned tunneling potentiometry

(STP) [MP86] recently implemented to study current-carrying graphene.[WMRB13]

By incorporating magnetized scanned probes into the SGM and STP, it may also

become possible to study the predicted patterns of the local spin density on a surface

of a topological insulator.

2.7 Discussion and conclusions

Several remarks are in order before we conclude. First, the transport properties

of graphene have provided a major motivation for this study. Since there have already
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been numerous previous theoretical investigations of this subject, it may be worthwhile

to draw attention to the points where we find qualitatively different results. Recall

that the two most common models of scatterers in graphene are random (uncorrelated)

charged impurities and random short-range defects. For the former, the theory predicts

the linear dependence of the conductivity on the electron density ne, for the latter

the conductivity is roughly density-independent.[Per10, DSAHR11] Introducing some

degree of correlations among the impurity positions into these basic models modifies the

conductivity dependence quantitatively [LHRDS11] but preserves this main dichotomy.

In contrast, in our model the conductance has an approximately
√
ne dependence

[Eq. (2.26)] if the potential barrier is strong enough, ρ > 1. Let us give a specific

example. Suppose the potential scatterers of our model are formed by aggregation

of charged impurities with average density 1013 cm−2 into circular clusters inside of

which the distances between the impurities is about 1 nm. From the conservation of

the total impurity number one concludes that in this model there is an inverse relation

between the density nc of the clusters and their radius a:

nc ∼ 0.03a−2 . (2.75)

Substituting this formula into Eq. (2.26), we obtain an estimate of the conductivity

G ∼ 100
e2

h

√
nea , (2.76)

which exhibits the
√
ne-behavior. Since G is proportional to a, formation of clusters

greatly increases the conductivity[KGG09] in comparison to the case of random isolated

impurities. This conclusion is further strengthened by the large numerical factor in
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Eq. (2.76).

The lifetime ratio η [Eq. (2.1)] is another fundamental parameter characterizing

the transport properties of the system. Most of previous calculations of η have been

limited to the perturbation theory (the Born approximation), which predicts η ≥ 2 for

the charged and 1 ≤ η ≤ 2 for the short-ranged defects. As we point out in Sec. 2.2

and illustrate in Fig. 2.8(c), η can be less than 2 and even less than 1 for small-radius

scatterers because of the resonant tunneling, a non-perturbative effect. Conversely,

for large-radius scatterers, η can be very large, see Fig. 2.8(a). Note that the small

lifetime ratio η < 2 observed in some experiments[HZZ09, TAT+13] while large η ∼ 6

is found in some others. [Gor09]

Next, we wish to address the validity of our step-like model of the potential

barrier. If the potential is indeed created by a cluster of charged impurities, this

model is oversimplified. The actual potential has no discontinuity. Instead, it sharply

but continuously drops over a distance of the order of the screening length, which is

usually comparable to the Fermi wavelength.[CNGP+09] For such a smooth boundary,

the reflection and transmission coefficients that enter the ray formula Eq. (2.29b)

are modified, e.g., the reflection coefficient is enhanced.[CF06, ZF08] Therefore, the

transport and total cross-sections should be greater than what we calculated for a

sharp boundary. The correction is relatively small if both X and X ′ are large, so that

the radius of the cluster is much larger than the Fermi wavelength on both sides of

the boundary. However, if either exterior or interior of the cluster is doped weakly, a

more accurate calculation will be necessary. Another omission of the step-like model

is the long-range tail of the screened Coulomb potential induced by the cluster. For

high Fermi energy the screening is strong and the effect of such a tail can be treated
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perturbatively. A weak long-range potential tail would cause additional small-angle

scattering, which should make only a small correction to the transport cross-section.

The effect on the total cross-section could be more substantial. Within the HEA,

the contribution of the long-range potential tail to the total cross-section is given by

[LL77]

∆σ ' 8a

X

∞∫

0

[sin2(δj + ∆δj)− sin2 δj] dj , (2.77)

∆δj ' −
1

~vF

∞∫

max(a,b)

V (r)rdr√
r2 − b2

, b =
ja

X
. (2.78)

It is well known that an external charge screened by a gas of 2D electrons (either

massive or massless) produces the potential that behaves as V (r) ∝ r−3 at distances

much larger than the screening length. It is then easy to see that the integral in

Eq. (2.77) converges. Thus, there should be a range of parameters where neglecting

∆σ is legitimate. However, for massless Dirac fermions, large enough total charge

of the cluster, and low enough Fermi energy, the screened potential would exhibit a

slower decay V (r) ∝ r−3/2 over a range of intermediate distances.[FNS07] According

to Eq. (2.77), this may yield logarithmic corrections to the total cross-section. This

interesting problem warrants further study.

In conclusion, we studied in some depth scattering of massless Dirac fermions

by a step-like circular potential. We unified many possible scattering regimes into

a single global diagram (Fig. 2.3) and presented analytical and numerical results

for the scattering amplitude in each of the individual regimes. We verified that the

semiclassical ray formalism accounts for most of the scattering properties in the large-

X regimes and at the same time provides an intuitive physical description of both the
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far-field and near-field scattering. We showed that the ray picture applies even for

weak scattering potentials, which is the case where the semiclassical method is usually

eschewed in favor of quantum scattering theory. We also discussed phenomena beyond

the ray picture, such as the regularization of the divergence of the scattering amplitude

at the rainbow angle and the quantization of the whispering-gallery resonances. While

the perfect axial symmetry and the step-like discontinuity of the potential barrier

that enabled us to make progress in terms of analytical theory are not fully realistic,

some of our non-perturbative semiclassical techniques can be extended to barriers of

more general shapes and profiles. It will be intriguing to apply our non-perturbative

semiclassical techniques to other graphene systems, such as bilayer graphene and

graphene with mass barriers.[MP08, RMVP11, RMMP11, RMP13] We expect that

substantially different results for bilayer graphene and graphene with mass barriers

because their gapped band structures suppress the Klein tunneling. The approach and

the types of regimes will be the same. However, the positions of the regime boundaries

and the angular dependence of the differential cross-sections will change. Finally, we

hope that our results may stimulate future transport and scanned-probe experiments

with graphene and topological insulators.

2.8 Partial wave decompostion

In order to make the paper self-contained, in this Appendix we review the

partial wave series. Using the notations of Ref. [CPP07] we denote by h
(2)
j and h

(1)
j ,

respectively, the incoming and the outgoing waves of angular momentum j. At r > a,
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where V (r) = 0, such waves are given by

h
(d)
j (r, φ) =




H
(d)
j−1/2(kr)e

−iφ/2

iH
(d)
j+1/2(kr)e

iφ/2


 eijφ. (2.79)

The angular momenta j are half integers, so that h
(d)
j are single-valued. At 0 ≤ r < a,

the solutions that are well-behaved at the origin are

χj(r, φ) =




Jj−1/2(k
′r)e−iφ/2

iJj+1/2(k
′r)eiφ/2


 eijφ (2.80)

with k′ = (E − V0)/(~vF ) = X ′/a. Equation (2.80) can be used for both positive and

negative k′. In the latter case, a n-p junction forms at the boundary of the scatterer.

In the partial wave method, the scattering wavefunction Ψ is expanded as

follows. At r > a, it is given by

Ψ =
1√
2




1

1


 eikx +

e−
iπ
4

2
√

2

∑

j

ij
(
e2iδj − 1

)
h
(1)
j , (2.81)

where the coefficient in front of the sum is chosen to match the coefficient in a similar

expansion of the incident plane wave (the first term). At r < a, we have

Ψ =
e−

iπ
4

2
√

2

∑

j

i(j−1/2)Bjχj. (2.82)
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By imposing the continuity of the wavefunction at r = a, it is straightforward to find

e2iδj = −s
∗
j

sj
, (2.83)

sj = H
(1)
j+1/2(X)Jj−1/2(X

′)−H(1)
j−1/2(X)Jj+1/2(X

′) , (2.84)

Bj =
H

(1)
j+1/2(X)H

(2)
j−1/2(X)−H(1)

j−1/2(X)H
(2)
j+1/2(X)

sj
. (2.85)

Applying the asymptotic expansion for Hankel function [Eq. (2.92)] at large argument,

the second term of Eq. (2.81) yields the scattering amplitude f(φ) [Eq. (2.6)].

2.9 Debye and ray series

To derive the ray series, we first decompose e2iδj in Eq. (2.83) into the Debye

series[Gra00]

e2iδj = R22 +
∞∑

p=1

T21T12(R11)
p−1 , (2.86)

where

R22 =
H

(2)
j+1/2(X)H

(2)
j−1/2(X

′)−H(2)
j−1/2(X)H

(2)
j+1/2(X

′)

dj
, (2.87)

T21 =
H

(2)
j−1/2(X)H

(1)
j+1/2(X)−H(2)

j+1/2(X)H
(1)
j−1/2(X)

−dj
, (2.88)

dj ≡ H
(1)
j−1/2(X)H

(2)
j+1/2(X

′)−H(1)
j+1/2(X)H

(2)
j−1/2(X

′) . (2.89)

Coefficient R11 (T12) is obtained from R22 (T12) by interchanging 1 with 2 and X ′

with X. These R’s and T ’s should not be confused with the plane-wave reflection and
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transmission coefficients such as Rin and Tin in Sec. 2.3.

The scattering amplitude Eq. (2.6) can be now written as

f(φ) = − i√
2πk

∞∑

p=0

∑

j

Dpe
i(j−1/2)φ , (2.90)

with D0 = R22, D1 = T12T21 − 1 and Dp = T12T21R
p−1
11 for p > 1. Using the Poisson

summation formula, we obtain

∑

j

Dpe
i(j−1/2)φ =

∞∑

m=−∞

∫ ∞

−∞
dλDpe

iλ(φ+2mπ) , (2.91)

with λ = j − 1/2. For |λ−X| > X1/3, we can use the Debye expansion of the Hankel

function,

H
(1,2)
λ (X) '

(
2

π

)1/2

(X2 − λ2)−1/4

× exp
{
±i
[√

X2 − λ2 − λ cos−1(λ/X)− π/4
]}

, (2.92)

valid for |λ| < x, to approximate Dp. After some tedious algebra, we find

Dp '





C1(α)e2iδ1 − 1, p = 1 ,

Cp(α)e2iδp , p 6= 1 ,

(2.93)

where Cp(α) is defined in Eq. (2.34) and δp is given by

δp = −
[
X cosα− λ

(π
2

+ α
)
− π

4

]

+ p
[
X ′ cos β − λ

(π
2

+ β
)
− π

4

]
, (2.94)
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with

α = − sin−1
(
λ

X

)
, β = − sin−1

(
λ

X ′

)
. (2.95)

It can be shown that Dp becomes very small at λ > X for all p. (For p = 1, having

−1 term in D1 is essential for this property.) Thus, the infinite integration limits in

Eq. (2.91) can be replaced by ±X. The integrand has a saddle-point determined by

the condition

2
dδp
dλ

+ φ+ 2mπ = 0 . (2.96)

Applying the saddle-point approximation, we obtain Eq. (2.29b).
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Chapter 3

Topological insulators are tunable

waveguides for hyperbolic phonon

polaritons

3.1 Introduction

Bismuth-based topological insulators (TIs) have attracted much interest for

their unusual electron surface states (SSs), which behave as Dirac fermions. [HK10,

QZ11] However, bulk optical response of these compounds [RKB77, LFP+10, CR11,

ATU+12, DPVN+12, DOL+13, WBVA+13, PCH+13, CPR+14, RTS+14, AED+15,

ADDG+15, PCL+15] is also remarkable. The quintuple-layered structure of these

materials causes a strong anisotropy of their phonon modes. The Eu phonons that

involve atomic displacements in the plane parallel to the basal plane (henceforth,

x–y or ⊥–plane) have lower frequencies than A2u, the c-axis (henceforth, z-axis)

56
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vibrations.[CR11] For Bi2Se3, the dominant ⊥- and z-axis phonon frequencies,

ω⊥1,to = 64 cm−1 = 1.9 THz ,

ωz1,to = 135 cm−1 = 4.1 THz ,

(3.1)

differ more than twice. As a result, this and similar TIs can exhibit a giant anisotropy

of the dielectric permittivity. There is a range of ω where the permittivity tensor is

indefinite: the real part of εz(ω) is positive, while that of ε⊥(ω) is negative. Media

with such characteristics are referred to as hyperbolic [GNJ12, PIBK13, SLZ14]

because the isofrequency surfaces of their extraordinary rays in the momentum space

k = (kx, ky, kz) are shaped as hyperboloids [Fig. 3.1(a)]. In the THz domain, the

widest band of frequencies where Bi2Se3 behaves as a hyperbolic medium (HM) is

between the aforementioned dominant frequencies, ω⊥to,1 < ω < ωzto,1; however, other

hyperbolic bands also exist in this TI (both at THz frequencies, see Sec. 3.2, and at

visible frequencies, see Ref. [EVT+14]). It is important that the approximate equation

for the extraordinary isofrequency surfaces,

(kx)2 + (ky)2

εz(ω)
+

(kz)2

ε⊥(ω)
=
ω2

c2
, (3.2)

is valid up to |k| of the order of the inverse lattice constant. Accordingly, rays of

momenta |k| greatly exceeding the free-space photon momentum ω/c can propagate

through hyperbolic materials without evanescent decay. At such k the hyperboloids

can be further approximated by cones, which means that the group velocity v = ∂ω/∂k
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Figure 3.1: (Color online) (a) Hyperboloidal isofrequency surfaces of HP2s
for two frequencies ω1 and ω2 (ω2 > ω1). The asymptote angle θ with respect
to the kx–ky plane is shown; the group velocity v makes the same angle
with respect to the kz-axis. (b) Model geometry: a TI slab of thickness
d sandwiched between a substrate of permittivity εs and a superstrate of
permittivity ε0. The two thin (orange) layers represent the top and the bottom
surfaces states.

of the rays makes a fixed angle θ (or −θ) with respect to the z-axis, with

tan θ(ω) = i
[ε⊥(ω)]1/2

[εz(ω)]1/2
, (3.3)

see Fig. 3.1(a). We refer to these deeply subdiffractional, highly directional modes as

the hyperbolic phonon polaritons (HPP or HP2, for short).

Our interest to HP2 of TIs is stimulated by recent discovery [DFM+14, Jac14]

and further exploration of similar collective modes in other systems such as hexagonal

boron nitride [CKC+14, DMA+15, LLK+15, SBB+15] (hBN) and hBN covered by

graphene [BJS+13, DML+15, NWW+15] (hBN/G). There is a close analogy between

these systems. In fact, except for the difference in the number of Dirac cones (N = 1
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vs. N = 4) and the frequency range where the hyperbolic response occurs (THz vs.

mid-infrared), the electrodynamics of longitudinal collective modes of Bi2Se3 and

hBN/G structures is qualitatively the same. (The analogy is the most faithful when

graphene and hBN are rotationally misaligned; otherwise, their collective modes are

modified by the moiré superlattice effects. [TGP14, NWW+15])

The main goal of this paper is to investigate the interaction of HP2 with the

Dirac plasmons of the topological SS. The latter dominate the charge (and current)

density response of the system at frequencies outside the hyperbolic band where

HP2 are absent. Dirac plasmons have been extensively studied in previous litera-

ture [CNGP+09, HDS09, RCQZ10, FAB+11, FRA+12, CBAG+12, GPN12, PAPM12,

GdA14, BFL+14b, DOL+13, SGSB13, SETH13, QLX14, LDC+14, Sta14, AED+15,

ADDG+15] on both TI and graphene. The basic properties of the Dirac plasmons

can be introduced on the example of a hypothetical TI material with a frequency-

independent permittivity εz > 0 and the permittivity ε⊥(ω) dominated by a single

phonon mode. Such an idealized material is hyperbolic in a single frequency interval

ωto < ω < ωlo where ε⊥(ω) < 0. Its Dirac plasmons exist at ω < ωto and ω > ωlo

where ε⊥(ω) > 0. In the setup shown in Fig. 3.1(b), where the TI slab borders

media of constant permittivities ε0 > 0 and εs > 0, there are two plasmon modes. At

large enough in-plane momenta q ≡ [(kx)2 + (ky)2]1/2 these modes are confined to

the opposite interfaces and electromagnetically decoupled. In the relevant range of

momenta q < q∗, the dispersion of the plasmon bound to the top interface is given by

q(ω) ' 4

N

ε0 + ε1
e2|µ| (~ω)2 , ~ω � |µ| , (3.4)
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where

ε1(ω) = [ε⊥(ω)]1/2 [εz(ω)]1/2, (3.5)

is the effective permittivity of the TI and µ is the chemical potential of the SSs

measured from the Dirac point. At frequencies far below ωto or far above ωlo, function

ε1(ω) can be approximated by a real constant, which yields ω ∝ √q. This typical

two-dimensional (2D) plasmon dispersion describes the low-frequency part of the full

curve sketched in Fig. 3.2(a). The plasmon dispersion for the bottom interface is

obtained by replacing ε0 with εs (unless εs � ε0, in which case the range q > q∗ is

relevant where the dispersion is approximately linear, see Sec. 3.3.2).

Equation (3.4) implies that the nature of the plasmon modes should change

drastically when ω enters the hyperbolic frequency band where ε1(ω) [Eq. (3.5)] is

imaginary and strongly ω-dependent. This equation predicts a complex q, which

suggests that the Dirac plasmons become leaky modes that rapidly decay into the HP2

bulk continuum. However, this is not quite correct. We will show that nonleaky, i.e.,

propagating modes can survive in thin enough TI slabs where the HP2 continuum is

broken into discrete subbands of waveguide modes. The latter hybridize with plasmons

to form hyperbolic plasmon phonon polaritons (HPPP or HP3, for short), the primary

target of our investigation, see Figs. 3.2(b) and (c). We explore the following properties

and manifestations of the collective charge modes of the TIs: i) the mode dispersion in

the momentum-frequency space, ii) the dependence of such dispersions on the surface

doping and the thickness of the slab, iii) the unusual real-space dynamics of the HP3

rays, including a polaritonic analog of the Goos-Hänchen (GH) effect. [GH47, BA13]

The remainder of the paper is organized as follows. In Sec. 3.2 we specify the

model and the basic equations. In Sec. 3.3 we present our results for the dispersion of
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Figure 3.2: (Color online) Schematic illustrations of the collective mode
spectra in idealized model systems. (a) The plasmon dispersion of Dirac
fermions confined to the interface of two bulk media of constant positive
permittivity ε0 and εs. The dispersion crosses over from ω ' v

√
qq∗/2

to ω ' vq at a characteristic momentum q∗ [Eq. (3.26)]. The shaded areas
indicate the electron-hole continua where the plasmons (and any other charged
collective modes) are damped. (b) The dispersion of hybrid HP3 modes for a
slab of a hypothetical TI material that has a single in-plane phonon mode
at ωto and constant εz > 0. Permittivity ε⊥ is negative at ωto < ω < ωlo and
positive at other ω. The dotted boundary corresponds to the dotted line in
(a). Outside the band ωto < ω < ωlo, only plasmonic modes 0 and 1 exist.
In the degenerate case ε0 = εs they correspond to the symmetric (s) and
antisymmetric (a) combinations of the top and bottom interface plasmons.
Inside that band, multiple branches of HP3 are formed due to hybridization
of the plasmons with the HP2 waveguide modes. The frequencies of all the
branches other than 0 and 1 tend to ωlo at large momenta. (c) Schematic
in-plane electric field profiles of the first few HP3 modes (thick curves). The
number of nodes in each profile (the points where they cross with the vertical
lines Ex = 0) is equal to the modal index.
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the three different types of collective modes (plasmons, HP2s, and HP3s). In Sec. 3.4,

which is the centerpiece of this work, we discuss waveguiding and launching of the

HP2 modes and also their tunable GH shifts. We explain how these phenomena

can be probed experimentally using the imaging capabilities of the scattering-type

scanning near-field optical microscopy (s-SNOM). [KH04, ABJR12] In Sec. 3.5 we give

concluding remarks and an outlook for the future. Finally, in Appendix we discuss

signatures of the phonon-plasmon coupling measurable by the s-SNOM operating in

the spectroscopic mode.

3.2 Model

Our model for the bulk permittivities of the TI is

εα(ω) = εα∞ +
∑

j=1,2

ωα 2
p,j

ωα 2
to,j − ω2 − iγαj ω

, α = ⊥, z . (3.6)

In the case of Bi2Se3, we choose the parameters based on available experimen-

tal [RKB77, LFP+10, DPVN+12] and theoretical [CR11] literature as follows: ε⊥∞ = 29,

εz∞ = 17.4, ω⊥to,1 = 64 cm−1, ω⊥p,1 = 704 cm−1, ω⊥to,2 = 125 cm−1, ω⊥p,2 = 55 cm−1, ωzto,1 =

135 cm−1, ωzp,1 = 283 cm−1, ωzto,2 = 154 cm−1, ωzp,2 = 156 cm−1, and γαj = 3.5 cm−1.

[Note that ω⊥to,1 and ωzto,1 were already listed in Eq. (3.1).] The real parts of functions

ε⊥(ω) and εz(ω) are plotted in Fig. 3.3. The regions where at least one of them is

negative are shaded. They include region A, ω⊥to,1 < ω < ωzto,1, where Bi2Se3 is a HM

of type II (<e εz > 0, <e ε⊥ < 0); region C, ωzto,2 < ω < 163 cm−1 where it is a HM of

type I (<e εz < 0, <e ε⊥ > 0), and region B, ωzto,1 < ω < 146 cm−1, where it exhibits

the Reststrahlen behavior (<e εz < 0, <e ε⊥ < 0). Since regions B and C are narrow,
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in our discussion of HP2 and HP3 modes we focus on region A. In this discussion we

often refer to hBN as an example of a simpler material. The type II hyperbolic band

of hBN is bounded by the frequencies [DFM+14, CKC+14]

ωto = 1376 cm−1, ωlo = 1614 cm−1. (3.7)

In this band ε⊥(ω) of hBN can be modelled similar to Eq. (3.6) but using a single

Lorentzian oscillator while εz can be considered ω-independent and positive.

In the case of Bi2Se3, we also have to specify our assumptions about the

electronic response. We consider only frequencies smaller than the bulk gap 0.3 eV of

Bi2Se3 at which the electronic contribution to the permittivities [included in Eq. (3.6)

via εα∞] is purely real. Additionally, we assume that the valence bulk band is completely

filled, the conduction one is empty, with no free carriers present in the bulk. However,

such carriers populate the gapless SS described by the massless 2D Dirac equation. The

chemical potential µ, which is located inside the bulk band gap, determines the doping

of these SS. For simplicity, we ignore any virtual or real electronic transitions between

the surface and the bulk states, which should not change the result qualitatively,

except perhaps for the additional damping from these transitions.

The fundamental current/density response functions of the SS are the sheet

conductivity σ and polarizability P , which are related in the standard way:

σ(q, ω) =
iω

q2
e2P (q, ω) . (3.8)

Within the random-phase approximation for Dirac fermions, P (q, ω) can be com-
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Figure 3.3: (Color online) The real parts of the tangential and axial permit-
tivities of Bi2Se3. The sign changes of the permittivities are due to the Eu
and A2u phonons. Surface- and bulk-confined collective modes exist inside the
spectral regions where at least one of the permittivitties is negative. They in-
clude type II hyperbolic region A (<e ε⊥ < 0, <e εz > 0), Reststrahlen region
B (<e ε⊥,<e εz < 0), and type I hyperbolic region C (<e ε⊥ > 0, <e εz < 0).

puted [WSSG06, HDS07] analytically:

P (q, ω) = −NkF
2π~v

− iN

16π~v
q2√
q2 − k2ω

×
[
G

(
kω + 2kF

q

)
−G

(
kω − 2kF

q

)
− iπ

]
,

G(x) = ix
√

1− x2 − i arccosx .

(3.9)

Here the branch cut for the square root and logarithm functions is the negative real

semi-axis, kω is defined by kω = (ω + iγe)/v, phenomenological parameter γe > 0 is

the electron scattering rate, v is the Fermi velocity, and kF = |µ|/(~v) is the Fermi

momentum. Equation (3.9) is a good approximation at small µ. At large doping,

trigonal warping [LC14] and other details of realistic band-structure [LDC+14] should

be included. Since the above formula is a bit cumbersome, it may be helpful to
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mention some properties of σ(q, ω). For example, if γe = +0, the real part of σ(q, ω)

is nonvanishing only inside the two shaded areas in Fig. 3.2(a), which together form

the so-called electron-hole continuum. [CNGP+09, BFL+14b] (This real part is a

measure of dissipation, i.e., Landau damping.) For doped system at small momenta

and frequencies, q, kω � kF , the expression for the conductivity can be reduced to

σ(q, ω) ' Ne2

2π~
kF√
q2 − k2ω

ikω

ikω −
√
q2 − k2ω

. (3.10)

At q � ω/v, it further simplifies to the Drude formula

σ ' Ne2

4π~2
|µ|

γe − iω
, µ 6= 0 . (3.11)

For an undoped system, one finds instead

σ(q, ω) =
N

16

e2

~
ikω√
q2 − k2ω

(3.12)

' N

16

e2

~
, q � ω

v
. (3.13)

In order to find the dispersion of the collective modes of the TI slab we use two

computational methods. One method, which is advantageous for deriving analytical

results, is to look for the poles of the response function rP (q, ω). This function is the

total P - (also known as the TM-) polarization reflectivity of the system measured

when an external field is incident from the medium labeled “ε0” in Fig. 3.1(b). It must

be immediately clarified that rP (q, ω) has no poles at simultaneously real q and ω if

the dissipation parameters γ and γe are nonzero. At least one of these arguments must

be complex. Whenever one refers to the dispersion relation of a mode, one means
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Figure 3.4: (Color online) Collective mode dispersions of graphene-hBN-
graphene (G/hBN/G) and Bi2Se3 slabs rendered using the false color maps of
=m rP . The parameters of the calculation for G/hBN/G are: (a) d = 60 nm,
µ = 0, (b) d = 60 nm, µ = 0.29 eV, (c) d = 30 nm, µ = 0.29 eV. The other
parameters are v = 1.00 × 108 cm/s, γe = 1.00 THz, ε0 = 1, and εs = 1.5.
The parameters of the calculation for Bi2Se3 are: (d) d = 120 nm, µ = 0,
(e) d = 120 nm, µ = 0.29 eV, (f) d = 60 nm, µ = 0.29 eV. In these three
plots v = 0.623× 108 cm/s, γe = 1 THz, ε0 = 1, and εs = 10. Equal doping
of the top and bottom SS is assumed. The vertical dashed lines indicate a
characteristic momentum probed by the s-SNOM experiments simulated in
Fig. 3.7 below.

the relation between the real parts of q and ω. The other method, which is especially

convenient for numerical simulations, is to identify the sought dispersion curves with

the maxima of =m rP (q, ω) at real arguments. As long as the imaginary parts of q

and ω (which give information about the propagation length and lifetime of the mode)

are small, both methods give the same dispersions. An extra benefit of working with

real q and ω is that the corresponding rP (q, ω) is the input for further calculations we

discuss in Appendix 3.6 where we model s-SNOM experiments for the system in hand.

Our procedure for calculating function rP (q, ω) can be explained as follows.
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Taking a more general view for a moment, we regard the entire system including

the substrate and superstrate as a stack of layers j = 0, 1, . . . ,M of thickness dj,

tangential permittivity ε⊥j , and axial permittivity εzj . (In the present case, M = 2,

the TI slab is layer j = 1 and d1 = d.) Additionally, we assume that the interface

of the layers j and j + 1 possesses the sheet conductivity σj,j+1. We observe that

the P -polarization reflectivity rj,j+1 of j, j + 1 interface in isolation is given by the

formula (see, e.g., Ref. [DML+15])

rj,j+1 =
Qj+1 −Qj +

4π

ω
σj,j+1

Qj+1 +Qj +
4π

ω
σj,j+1

, (3.14)

Qj =
ε⊥j
kzj
, kzj =

√
ε⊥j

√
ω2

c2
− q2

εzj
, (3.15)

where kzj and q are, respectively, the axial and the tangential momenta inside layer

j. Let rj be the reflectivity of a subsystem composed of layers j, . . . ,M . By this

definition, rM−1 = rM−1,M . The crucial point is that the desired rP ≡ r0 can be found

by the backward recursion

rj = rj,j+1 −
(1− rj,j+1)(1− rj+1,j)rj+1

rj+1,jrj+1 − exp(−2ikj+1dj+1)
, (3.16)

where rj+1,j is the right-hand hand of Eq. (3.14) with Qj and Qj+1 interchanged. For

M = 2, one recursion step suffices, which gives us, after some algebra, [DML+15]

rP =
r12(r01 + r10 − 1)− r01 exp(−2ik1d1)

r10r12 − exp(−2ik1d1)
. (3.17)
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Hence, function rP (q, ω) has poles whenever

r10(q, ω)r12(q, ω) = exp (−2ikz1d) . (3.18)

For large in-plane momenta q � (ω/c) max |εzj |1/2, we can use the approximations

kz1 ' q tan θ and

r10 '
ε0 − ε1 − 2q

qtop

ε0 + ε1 − 2q
qtop

, qtop ≡
iω

2πσtop
, (3.19)

where σtop = σtop(q, ω) is the sheet conductivity of the SS at the top interface. Let

us also define the “phase shifts” φtop and φbot for inner reflections from the top and

bottom interfaces, respectively: r10 = − exp(2iφtop), r12 = − exp(2iφbot). Note that

in general φtop and φbot are complex numbers. Specifically, we take

φtop = arctan

[
i
ε0
ε1

(
1− 2

ε0

q

qtop

)]
, (3.20)

φbot = arctan

[
i
εs
ε1

(
1− 2

εs

q

qbot

)]
. (3.21)

where the standard definition of arctan z is assumed, with the branch cuts (−i∞,−i),

(i, i∞) in the complex-z plane; qbot is defined analogously to qtop but with the sheet

conductivity σbot of the bottom SS instead of σtop. Equation (3.18) can now be

transformed to

qn = −2

δ
(nπ + φtop + φbot) , δ ≡ 2d tan θ , (3.22)

where the integer subscript n labels possible multiple solutions. Admissible n must

satisfy the condition =m rP (qn, ω) > 0. Our numerical results for rP computed from

Eq. (3.17) and analytic approximations for the solutions of Eq. (3.22) are presented
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in Sec. 3.3.

3.3 Collective mode dispersions

The false color maps of function =m rP (q, ω) provide a convenient visualization

of the collective mode spectra. Examples of such maps computed for Bi2Se3 slabs are

presented in the bottom row of Fig. 3.4. Their counterparts for graphene-hBN-graphene

(G/hBN/G) structures are shown in the top row to facilitate the interpretation. The

bright lines in Fig. 3.4 are the dispersion curves of the collective modes. The apparent

widths of those lines give an idea how damped the modes are. Below we discuss these

results in more detail.

3.3.1 Hyperbolic waveguide modes

Figures 3.4(a) and 3.4(d) depict the =m rP maps for, respectively, G/hBN/G

and Bi2Se3 slabs, when they are undoped, µ = 0. No Dirac plasmons exist in such

systems, so that the collective modes are limited to HP2s. In Fig. 3.4(a) we see a

single family of such modes whereas in 3.4(d) one can actually distinguish three of

them. Let us start with the former, simpler case. The key to understanding the nature

of these modes is that inside the hyperbolic band ωto < ω < ωlo the z-axis momentum

kz1 ' q tan θ of the modes is nearly real. Hence, the HP2s form standing waves inside

the slab. The integer n in Eq. (3.22) corresponds to the number of nodes of these waves,

see Fig. 3.2(c). For G/hBN/G the requisite condition =m rP > 0 is satisfied by all

nonegative integers n due to the fact that =m tan θ > 0. This inequality also ensures

that =m q > 0. An analytical approximation for the dispersion curves of an undoped

slab is obtained by neglecting the fractions q/qtop, q/qbot in Eqs. (3.20), (3.21), in
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which case Eq. (3.22) yields q(ω) directly. Within this approximation, momenta qn at

given ω are equidistant:

qn+1 − qn ' −
2π

δ
= −π

d

1

tan θ(ω)
. (3.23)

The dispersion of the HP2 waveguide modes is dominated by the factor 1/ tan θ(ω) in

Eqs. (3.22), (3.23), which, if all damping is neglected, changes from zero to infinity

as ω increases from ωto to ωlo. This is precisely what we see in Fig. 3.4(a): all the

dispersion curves start at ωto at q = 0 and increase toward ωlo at large q.

Equation (3.23) is general and it applies to Bi2Se3 as well. The three families

of collective modes seen in Fig. 3.4(d), belong to the spectral regions A, B, and C of

Fig. 3.3. In region A, which is the widest of the three, we see a set of HP2 modes very

similar to those in Fig. 3.4(a). They start at ωto,1 = 64 cm−1 at q = 0 and monotonically

increase toward ωto,2 = 135 cm−1 at large q. In region C, 154 < ω (cm−1) < 163, we

again find a family of HP2 modes but this time with a negative dispersion. This

behavior is typical of type I HM (<e ε⊥ > 0, <e εz < 0). The shape of the dispersion

can be understood noticing that the real part of 1/ tan θ(ω) is positive, varying from

∞ to 0 (if the phonon damping γαj is neglected) while admissible n are now n ≤ 0.

[In hBN, this type I behavior is also realized [CKC+14, DML+15, LLK+15] but the

corresponding frequency range is below the axis cutoff in Fig. 3.4(a).] Lastly, in region

B, 135 < ω (cm−1) < 146, function tan θ(ω) is almost purely imaginary, which implies

that the collective modes do not form standing waves but are exponentially confined

to the interfaces. Also, there are only two such modes, n = 0 and n = 1. In this

respect these surface-bound HP2 modes are similar to the Dirac plasmons, see Sec. 3.1

above and Sec. 3.3.2 below. However, their dispersion is completely different from
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those of the plasmons, e.g., the dispersion of the upper (n = 1) mode has a negative

slope, see Fig. 3.4(d). Similar collective excitations have been studied in literature

devoted to other systems, e.g., anisotropic superconductors, [SWJ+14] which can be

consulted for details and references. Due to narrowness of regions B and C, some of

the described features may be difficult to see in Fig. 3.4(a) and probably challenging

to observe in experiments. For this reasons, we will mostly refrain from discussing

regions B and C further.

One implication of Eq. (3.23) is that the HP2 dispersion is widely tunable: the

scaling law qn ∝ d−1 provides a practical way to engineer a desired wavelength of

the waveguide modes simply by tailoring the slab thickness d, as has been previously

demonstrated using hBN slabs. [DFM+14]

3.3.2 Surface plasmons

Examples of the collective mode spectra at finite doping are shown in Fig. 3.4(b,

c) for G/hBN/G and 3.4(e, f) for Bi2Se3. The spectra are dramatically different inside

and outside the hyperbolic frequency bands. A key to understanding this difference is

again the value of the momentum kz1 ' q tan θ(ω). Outside the hyperbolic bands, it is

almost purely imaginary, and so the collective excitations are exponentially confined

to the surfaces of the slab. These surface modes are the Dirac plasmons introduced in

Sec. 3.1. Having in mind applications to near-field experiments, we are particularly

interested in momenta q of the order of a few times 105 cm−1, i.e., the region nearby

the dashed lines q = 0.0025 nm−1 in Fig. 3.4. If ε1 is real, there are at most two

solutions of Eq. (3.22), one for n = 0 and the other for n = 1. However, the distinct

n = 1 dispersion curves are visible only in Fig. 3.4(b, c) for G/hBN/G and none of
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them is close enough to the range of q we are interested in. Therefore, we focus on

the n = 0 branch.

The shape of the plasmon dispersion curves in TI slabs and double-layer

graphene systems was a subject of many previous theoretical studies [HDS09, PAPM12,

SGSB13, Sta14, LDC+14] whose basic conclusions are reproduced by the following

analysis. To the right of the dashed lines in Fig. 3.4(b, e) and for d ∼ 100 nm, the

dimensionless product 2kz1d = qδ is typically large by absolute value and almost purely

imaginary. This implies that the plasmons of the two interfaces are decoupled. Taking

into account that ε0 < εs and qtop = qbot in Fig. 3.4, one can show that the dispersion

of the n = 0 mode is controlled by the properties of the top interface. In the first

approximation this dispersion can be obtained setting φtop → −i∞, which yields

q0 ≈
ε0 + ε1

2
qtop , q0 � |δ|−1. (3.24)

For µ = 0, momentum qtop = qtop(q0, ω) is imaginary, cf. Eqs. (3.13) and (3.19). Hence,

for real ε1, Eq. (3.24) has no real solutions: as already mentioned, undoped SSs do

not support plasmons. Indeed, Figs. 3.4(a) and (d) contain no bright lines outside the

hyperbolic bands. On the other hand, if µ 6= 0, we can use Eq. (3.11) to transform

Eq. (3.24) to Eq. (3.4), which predicts a parabolic dispersion curve ω ∝ √q if ε1 is

constant. Such parabolas are seen in the upper halves of Figs. 3.4(b, c) and (e, f)

although they appear rectilinear because of the restricted range of q.

As smaller momenta Eq. (3.24) no longer holds. The correct approximation for

the n = 0 mode is obtained by setting the left-hand side of Eq. (3.22) to zero. This



73

yields φtop = −φbot and

q0 '
ε0 + εs

2

1

q−1top + q−1bot

' 2

N

ε0 + εs
e2|µ| (~ω)2 . (3.25)

Thus, both the low-q and high-q parts of the n = 0 dispersion curve are parabolic but

with different curvatures. The crossover between these two parabolas occurs via a

rapid increase of ε⊥(ω), and so, ε1(ω) at frequencies immediately above the hyperbolic

bands. It takes place at ω > 1614 cm−1 for G/hBN/G and ω > 163 cm−1 for Bi2Se3,

which generates the inflection points seen on the curves in, respectively, Fig. 3.4(b, c)

and (e, f).

As indicated schematically in Fig. 3.2(a), at very large q the plasmon dispersion

should have another inflection point. Using the more accurate Eq. (3.10) instead of

Eq. (3.11), we find the following analytical result for the frequency of the n = 0 mode

as a function of q:

ω(q) ' v
q + q∗√

1 + (2q∗/q)
, q∗ =

2e2

~v
NkF
ε0 + ε1

. (3.26)

This equation predicts a crossover from the parabolic to the linear dispersion ω ' vq

above q = q∗. However, this occurs far outside the plot range of Fig. 3.4.

Returning to Eq. (3.25), we notice that it does not contain the bulk permittivi-

ties. Hence, it should continue to hold for a range of ω inside the hyperbolic bands.

A physical picture of this mode [“0(s)” in Fig. 3.2(c)] is in-phase oscillations of the

charges of both Dirac fermion layers, i.e., the system behaving as a single 2D layer

with the combined oscillator strength. As ω decreases further into the hyperbolic

bands, the length scale |δ| increases. The strength of the inequality q0|δ| � 1 and so
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the accuracy of Eq. (3.25) becomes progressively lower [in fact, Eq. (3.27) below gives

a better approximation]. At ω = ωto for G/hBN/G and similarly, at ω = ω⊥to,1 for

Bi2Se3, this inequality is violated completely, which is consistent with the termination

of these branches at q = 0 in Figs. 3.4(b) and (e). Similar analysis can be applied to

Figs. 3.4(c) and (f) where d is twice smaller than in, respectively, Figs. 3.4(b) and (e).

Because of that, the plasmon dispersion in the region q|δ| < 1 is shifted to smaller

q. The dispersions in the large-q regions are virtually unaffected since the stronger

surface confinement of the plasmons makes them insensitive to d.

One qualitative difference between G/hBN/G and Bi2Se3 is the richer phonon

spectrum of the latter. This leads to the avoided crossings of the plasmon branch with

the dispersion lines of the HP2 modes in regions B and C of Bi2Se3, cf. Fig. 3.4(b, c)

and 3.4(e, f). The small shifts caused by those crossings are somewhat masked by the

considerable linewidth of the n = 0 line due to relatively stronger phonon damping.

In turn, higher electronic damping rate γe ∼ ω⊥to,1 due to disorder scattering in Bi2Se3

effectively eliminates the plasmon excitations in the lower spectral region ω < ω⊥to,1,

see Fig. 3.4(e, f). Therefore, we do not discuss it here.

3.3.3 Hybrid modes

From now on we turn to the subject of our primary interest, the hyperbolic

collective modes of a doped TI. In this short section we address their dispersion law.

Comparing Fig. 3.4(d) for µ = 0 with Fig. 3.4(e, f) for µ > 0, we observe significant

shifts in the dispersion of the n = 0 mode in the upper half of the hyperbolic band

ω⊥to,1 < ω < ωzto,1 of Bi2Se3. Similar shifts are seen in hBN near ωlo, cf. Fig. 3.4(a)

with Fig. 3.4(b, c). These shifts result from hybridization of HP2 and Dirac plasmons
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into combined HP3 waveguide modes. In general, calculation of these shifts requires

solving Eq. (3.22) numerically. However, near the bottom of the hyperbolic band

where these shifts become small, they can be also found analytically. Thus, Eq. (3.25)

gets replaced by

q0 '
ε0 + εs

ε⊥d+ 2q−1top + 2q−1bot

, |ε1| � ε0, εs , (3.27)

which shows explicitly that q0 goes to zero as ω approaches ω⊥to,1 where ε⊥ sharply

increases.

Unlike in Fig. 3.4(a, d), in 3.4(b, c, e, f) the higher-order n > 1 modes are

more difficult to see because of their lower relative intensity compared to those of the

plasmon n = 0 (and n = 1) modes. Nevertheless, these modes remain well defined

(underdamped). Near the bottoms of the respective hyperbolic bands their momenta

qn still form an equidistant sequence except with a spacing

qn+1 − qn '
2π

l − δ , (3.28)

which is modified compared to Eq. (3.23). This result can be obtained from Eq. (3.22)

by approximating the finite differences such as φtop(qn+1)− φtop(qn) by means of the

derivative. Parameter l is defined by

l = −2
∂φtop

∂q
− 2

∂φbot

∂q
. (3.29)

The physical meaning of this quantity is clarified in the next Section.
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Figure 3.5: (Color online) Polaritonic GH effect in TI slabs. (a) Schematics
of the HP2 ray reflection in the absence of the SS. (b) The same with the SS.
The wavy lines symbolize virtual Dirac plasmons. The GH shift l is indicated.
(c) The electric field distribution inside and/or at the upper surfaces of two
slabs with equal δ = −2.2d but different doping. The lower (“doped”) and
the upper (“undoped”) parts of the image are computed for λp = a and 0,
respectively. The split gate — a pair of metallic half-planes separated by a
distance 2a — launches highly directional HP2 rays that bounce inside the
slabs creating periodic “hot stripes” at their upper surfaces. The period is
larger in the “doped” slab. The two small circles, one in the undoped and one
in doped part, are the representative locations of the HP2 reflections. Their
enlarged views are shown in, respectively, (a) and (b).
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3.4 Goos-Hänchen effect

In this Section we consider the problem of the plasmon-polariton mixing from

the point of view of real-space trajectories of the HP2 excitations. The question we

consider is how polariton wavepackets propagate inside the slab and, in particular, how

they reflect off its interfaces. As mentioned in Sec. 3.1, for a given ω, the angle θ between

the z-axis and the group velocity v vector of HP2s is nearly independent of q. Therefore,

monochromatic HP2 wavepackets propagate as highly directional rays. Naively, one

would then expect that the polariton rays should zigzag inside the slab returning to

each interface periodically with the repeat distance of 2d |tan θ| = |δ|. Although such

geometrical optics picture is adequate for insulating hyperbolic materials, [SGRBF15]

it is not quite correct for TI with gapless doped SS. The geometrical optics neglects a

lateral shift or displacement of the rays after each reflection [compare Figs. 3.5(a) and

(b)], which is analogous to the GH effect of light. The GH effect was first discussed

in the context of the total internal reflection of light. As explained below, it can be

understood from two complementary points of view. In the wave picture, it originates

from the momentum dependence of the reflection phase shift. In the particle picture,

the GH effect is due to the quasi-classical tunneling (excitation of evanescent waves)

along the interface. To define such a displacement one usually considers a wavepacket

with a smooth envelope (for example, a Gaussian), in which case the displacement is

the shift in the position of its maximum.

While the GH effect [GH47] was discovered measuring the reflection of light

off an air-metal interface, the displacement l of the reflected ray is a general wave

phenomenon [BA13] that arises due to the dependence of the reflection phase shift φ

on the lateral momentum q = (kx, ky). For example, the GH effect should also occur
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for surface plasmons. [HLMB11] The expression for l has the form [Art48]

l = −<e
∂φ

∂q
. (3.30)

It seems to be another general rule that the momentum dependence of φ is significant

only if the interface supports electromagnetic modes with either a large propagation

length or a long decay length if such modes are evanescent. In the original photonic

GH effect this is the case under the conditions of the total internal reflection. The

magnitude |l| of the GH displacement can be interpreted as the decay length of

the evanescent transmitted wave. Alternatively, a large GH shift can occur if the

interface supports surface plasmons or polaritons. [TO63, TB71, Chu86] Experimental

demonstration of the GH effect enhanced by surface plasmons of the air-metal interface

has been reported. [YHL+04]

Comparing Eqs. (3.29) and (3.30), we recognize the length scale l in the former

as the sum of the GH shifts due to the top and the bottom interfaces. Therefore,

we conclude that the Dirac plasmons must act as the transient interface modes for

the HP2 rays bouncing inside the TI slab. Using Eqs. (3.20), (3.30), and taking into

account that <e ε1 � =m ε1, we find the GH shift at the top interface to be

ltop =
4

qtop

=m ε1(
ε0 − 2q

qtop

)2
+ |ε1|2

. (3.31)

A few comments on this result can be made. First, the GH shift is positive in our

case, which means the displacement is in the same direction as the in-plane group

velocity of the ray. Second, ltop depends on the permittivity of the environment. For

example, at fixed q, it vanishes if ε0 is very large. Conversely, for fixed ε0, the GH
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shift reaches its maximum

lmax =
2

π

λpε0=m ε1

(<e ε1)
2 + (=m ε1)

2 , λp ≡
2π

ε0qtop
, (3.32)

at q = π/λp. Finally, lmax depends linearly on the characteristic size λp of the Dirac

plasmon wavelength and inversely on the absolute value |ε1| ≈ =m ε1 of the effective

permittivity of the hyperbolic medium.

In Fig. 3.6, we show lmax for Bi2Se3 and G/hBN/G systems as a function of

ω spanning their respective hyperbolic bands. The relative shift, lmax/λp, is greater

in G/hBN/G because |ε1| is smaller. Yet the absolute lmax at the same µ = 0.3 eV is

greater in Bi2Se3 (where it is ∼ 200 nm) because it is hyperbolic at lower frequencies

and λp is larger at smaller ω.

One possible setup for experimental detection of the GH effect in TI is shown

in Fig. 3.5(c). It differs from Fig. 3.1(b) in the addition of a split gate between the TI

slab and the substrate. If this gate is made of a good conductor with large permittivity,

it would suppress the GH shift at the bottom surface. However, it would serve another

useful purpose. Previously, it has been demonstrated [DMA+15] that in the presence

of an external oscillating field, thin metallic disks or stripes can launch HP2 in hBN.

The split gate is to perform the same function here. The HP2s are preferentially

emitted from the regions of highly concentrated field near the sharp metallic edges.

We expect the rays to zigzag away from their launching points returning to the top

surface with the period l − δ, which is the sum of −δ ≈ |δ| due to the roundtrip

inside the slab and l = ltop due to the GH shift at the top surface. Since l depends

qtop, which is controlled by doping, the GH effect can be detected by measuring the

positions of the electric field maxima [“hot stripes” in Fig. 3.5(c)] as a function of
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Figure 3.6: (Color online) Maximum GH shift lmax (in absolute units and as
a fraction of λp) for (a) TI slab and (b) G/hBN/G structure with the same
chemical potential µ = 0.3 eV.
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µ in the experiment. Although l is quite small, the shifts accumulate after multiple

reflections, which can facilitate their detection, as in the original work of Goos and

Hänchen. [GH47]

To model the response of the system shown in Fig. 3.5(c) quantitatively we

proceed as follows. We approximate the half-planes of the split gate by perfect

conductors in the z = 0 plane with the edges at x = ±a. Let V (x, 0) be the scalar

potential at z = 0 due to the external uniform field and all the charges induced on the

gate. (Here and below the common factor e−iωt is omitted.) Let Ṽ (kx) be the Fourier

transform of V (x, 0). Using the notations for the reflection coefficients introduced in

Sec. 3.2, we express the potential V (x, z) inside the slab 0 ≤ z ≤ d by the integral

V (x, z) =

∫
dkx

2π
Ṽ (kx)t(kx, z)eik

xx, (3.33)

t(kx, z) =
ei|k

x|z tan θ − r10(kx)ei|kx| tan θ(2d−z)
1− r10(kx)r12(kx)ei|kx|δ

. (3.34)

For a consistency check we can consider the large-x behavior of this inverse Fourier

transform, which should be dictated by the poles of the integrand. These poles can

be recognized as the HP3 momenta qn [Eq. (3.22)]. Since qn form the equidistant

sequence [Eq. (3.28)], their superposition should indeed create beats of period l − δ,

in agreement with our ray trajectories picture, Fig. 3.5(b).

Explicit calculation of V (x, 0) requires a self-consistent solution of the Maxwell

equations for our complicated multilayer system, which is computationally inten-

sive. Fortunately, very similar results for V (x, z) are obtained with little effort by

approximating the true V (x, 0) with the “bare” potential that would exist in the TI

is removed, that is, if d = λp = 0. At distances less than c/ω from the gap in the gate,
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this bare potential has the simple analytical form,

V (x, 0) =
V0
2
×





+1 , x ≤ −a ,

− 2

π
arcsin(x/a), |x| < a ,

−1 , x ≥ a ,

(3.35)

familiar from classical electrostatics. Its Fourier transform is given by

Ṽ (kx) =
iV0
kx

J0(k
xa) , (3.36)

where J0(x) is the Bessel function of the first kind and V0 is potential difference

between the two parts of the gate. The tangential electric field corresponding to this

potential,

Ex =
V0

π
√
a2 − x2

, (3.37)

exhibits an inverse square-root divergence at the edges, which enables the localized

HP2 emission.

Carrying out the quadrature in Eq. (3.33) numerically, we have calculated

the components and also the amplitude of the electric field E =
√
E2
x + E2

z over an

interval of x a few |δ| in length and z varying from 0 to d. Our results for E = E(x, z)

for two doping levels, corresponding to λp = 0 (undoped SS) and λp = a (doped SS)

are illustrated by the false color plots in Fig. 3.5(c). These plots are superimposed

on perspective projections of the two slabs (doped and undoped), which are placed

next to each other for easy comparison. The remaining parameters of the calculations

are δ = −2.2d and a = 0.1d. We see that a finite shift of the “hot stripes” at the

top surface z = d exists in the doped case. This seems to vindicate our intuition
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but actually the situation is a bit more subtle. The problem is that the momentum

distribution of our source [Eq. (3.36)] is very different from what we assumed it to be

in the beginning of our discussion of the GH effect. This distribution is not narrow

and not centered at some finite kx. Instead, it has positive and negative kx harmonics

of equal strength and a long power-law tail at |kx| � 1/a. The reason why the GH

shift persists in our case is the spatial separation of the kx harmonics: due to the

directionality of the HP2 propagation, the stripes to the left (right) of the launching

points are created predominantly by negative (positive) kx. Since l has the same

direction as q = (kx, 0), the stripes shift away from the origin on both sides of the

y-axis. A formal derivation of this result can be done by splitting the integral in

Eq. (3.33) into the kx > 0 and the kx < 0 parts and identifying the relevant poles

kx = qn using contour integration methods.

From numerical experiments with different a, we found that the largest shift of

the stripes is obtained for a ∼ λp. This can be explained by arguing that the shift is

maximized when the characteristic kx ∼ π/a contributing to the integral in Eq. (3.33)

is close to the momentum π/λp at which l = lmax in Eq. (3.31).

Experimental detection of the “hot stripes” and their doping-dependent GH

shift is possible via the s-SNOM imaging. This technique involves measuring the

light scattered by the tip of an atomic force microscope brought to the sample and

scanned along its surface. [KH04, ABJR12] Using clever signal processing methods, it

is possible to isolate the genuine near-field component of this scattered light, which

originates from conversion of evanescent electromagnetic waves emanating from the

sample into free-space photons. In the proposed experiment, the evanescent waves are

due to the HP2 modes launched by the split gate. The spatial resolution of the s-SNOM
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imaging is set by the tip curvature radius R. For typical R = 20–40 nm, it is barely

sufficient to observe the predicted GH shifts in hBN/G, Fig. 3.6(b). Nevertheless,

detecting the cumulative shift after several stripe periods should be feasible. The

prior success of s-SNOM imaging experiments of surface plasmons and polaritons

in graphene and hBN structures [FAB+11, CBAG+12, DFM+14, DMA+15, LLK+15,

DML+15, SBB+15, NWW+15] gives us a firm confidence in this approach. Note that

if a doped graphene layer only partially covers the top surface of hBN, one literally

gets the situation depicted in Fig. 3.5(c), where the doped and undoped regions are

positioned side by side.

In the case of Bi2Se3 where the GH shift ∼ 200 nm [Fig. 3.6(a)] is much larger,

the spatial resolution of the s-SNOM is even less of an issue. The main obstacle is the

scant availability of suitable THz sources. We are optimistic that in a near future this

problem can be overcome as well.

3.5 Summary and outlook

Recent experiments [DOL+13, ADDG+15] have shown that coupling between

Dirac plasmons and bulk phonons of bismuth-based TIs should be strong. In this paper

we have studied this interaction taking into account the anisotropic phonon spectrum

of such TIs. We have predicted that a TI slab can act as a tunable waveguide for

phonon polaritons, with the doping of the surface states being the tuning parameter.

In additional to the change in dispersion, the phonon-plasmon coupling can cause

measurable real-space shifts of the polariton rays. Similar phenomena have been

recently studied in artificial structures made by stacking graphene layers on top of

hBN. The present work indicates that the TIs are a promising alternative platform for
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realizing highly tunable, strongly confined, low-loss electromagnetic modes in a natural

material. Additionally, while hBN/G waveguides operate in mid-infrared frequencies,

Bi2Se3 and similar compounds extend the same functionality to the technologically

important THz domain.

We envision several directions for further work in this field. One is to attempt

a multi-source coherent control of polariton emission and propagation using ultrafast

laser pulses. A variety of such techniques has been developed [FSW+07] in the

context of THz polaritonics of LiNbO3 and LiTiO3. (Incidentally, a theoretical

proposal [JKHF+13] of integrating graphene into such materials would lead to polariton

waveguides similar in functionality and perhaps also tunability to those studied

in the present work.) Another intriguing direction is to explore oscillating spin

currents which were predicted to accompany charge density currents produced by

Dirac plasmons. [RCQZ10] It may be also interesting to study the effect of optical

hyperbolicity [EVT+14] on the high-energy bulk plasmons of the TIs. [CKH+13,

OSA+14] Finally, it may be worthwhile to investigate new applications that can

be enabled by tunable hyperbolic polaritons. Harnessing such types of modes for

hyperlensing [JAN06, SE06, LLX+07] or focusing [DMA+15, LLK+15] has been widely

discussed. The present work shows that the GH effect and its dependence on doping

and dielectric environment of the TI can be another avenue for applications, for

example, THz chemical sensing or characterization of spatially inhomogeneous TI

samples. We hope our work can stimulate these and other future studies.
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3.6 Near-field spectra

A fully realistic modeling of the s-SNOM imaging experiments proposed in

Sec. 3.4 is an unwieldy task requiring a repeated solution of the Maxwell equations

for a system with complicated material properties, a hierarchy of widely different

length scales, and no special symmetries. In this Appendix we present some results of

less ambitious calculations that simulate a simpler structure depicted in Fig. 3.1(b).

Although no split gate is present in this structure, the measured signal is still expected

to reveal characteristics of the collective modes. In this case these modes are excited by

the sharp tip itself. Hence, the tip plays the role of both the launcher and the detector

of the HP3 modes. Unfortunately, this implies that only the local response can be

measured, which is a superposition of responses due to a distribution of momenta up

to qt ∼ 1/R rather than one specific q.

We assume that the TI slab and the substrate are infinite and uniform in

x and y coordinates, so that the imaging capability of the s-SNOM is irrelevant.

Instead, the quantity of interest is the frequency dependence of the measured near-

field signal s(ω). A few more explanations about our calculational scheme are in

order. We model the tip as a metallic spheroid with the curvature radius R = 40 nm

and total length 720 nm. We use the quasistatic approximation but include the

radiative corrections included perturbatively. This model [ZAF+12, JZCN+] has been

successful for simulating many recent s-SNOM experiments, and should be especially

suitable in the THz domain where no antenna resonances or other strong retardation

effects [MKG+14] should appear. Our calculations incorporate the so-called far-field

factors, [ZAF+12, JZCN+, MKG+14] which are expressed in terms of rP (q, ω) at

q ∼ ω/c. This factors account for the fact that the incident wave is originally created
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by a far-field source and the scattered wave is ultimately measured by a far-field

detector. Finally, what we compute is not the full scattering amplitude s but its third

harmonic s3, which is what experimentalists typically report. The idea is that in the

experiment the tip is made to oscillate at some low frequency Ω, so that s is periodic

with this fundamental tapping frequency. The third Fourier harmonic of s, which is

s3, gives a good representation of the genuine near-field signal.

Naively, one can think of s3(ω) as a weighted average of the surface reflectivity

rP (q, ω) over q. The weighting function has a broad maximum near q = qt, which

in this case is equal to qt = 0.025 nm−1 [the dashed lines in Fig. 3.4]. The presence

of strong maxima of =m rP due to collective modes with momenta q . qt tends to

enhance s3(ω). In a more rigorous picture, [JZCN+] the maxima of s3(ω) correspond

not to the resonances of the sample alone but to those of the coupled tip-sample

system. The coupling can decrease the resonance frequencies by as much as [ZAF+12,

JZCN+, MKG+14] 10–20 cm−1 compared to those seen in =m rP maps.

Our results for Bi2Se3 slabs of various thickness d and chemical potential µ

are shown in Fig. 3.7. Pairs of distinct peaks as well as smaller additional features

are readily seen. In each trace, the stronger and sharper peak is located close to

ω⊥to,1 = 64 cm−1. The height of this peak decreases as d decreases [Fig. 3.7(a)]. However,

its position is independent of d [Fig. 3.7(a)] or µ [Fig. 3.7(b)], which suggests that

it is not related to the dispersive HP3 modes. Indeed, we have verified that this

prominent peak is almost entirely due to the far-field factor |1 + rP |2, which has a

narrow maximum at ω⊥to,1 where rP ≈ 1.

Each of the doped samples also produces smaller peaks in s3(ω), of which the

most prominent ones are those located near ω = 146 cm−1 and ω = 163 cm−1, the
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upper boundaries of regions B and C of Fig. 3.3. The position and especially the

strength of the peaks is µ-dependent. As µ increases, the peaks grow in height and

gradually shift to higher frequencies, see Fig. 3.7(b). These peaks are due to the surface

modes: the n = 1 mode of region B and the n = 0 mode just above region C, see

Fig. 3.4(d, e). The increase of the peak heights with µ can be qualitatively explained

by the increase of the absolute value of rP . The shift in position is unfortunately more

difficult to interpret without a better understanding of the effective weighting function

that relates =m rP (q, ω) to s3(ω).

While µ > 0 traces are due to combined action of plasmons and phonon-

polaritons, the µ = 0 one is expected to reveal the phonon-polariton response. Inter-

estingly, that trace exhibits a sharp dip at ω = 163 cm−1, see Fig. 3.7(b). We have

checked that this dip is not caused by the far-field factor. However, its relation to the

HP2 modes of Fig. 3.4(d) is not obvious to us.

The thickness dependence of s3 is illustrated in Fig. 3.7(a). As one can see, the

near-field peak at ω = 163 cm−1 has a broad high-frequency side, which systematically

expands as d decreases. This trend reflects the blue shift of the n = 0 mode dispersion

in thinner slabs, compare Fig. 3.4(e) and (f).

Overall, our simulations predict that the near-field response of Bi2Se3 slabs

should exhibit systematic spectral changes with doping and thickness that are mea-

surable by the s-SNOM. Such experiments may provide insights into properties of

tunable HP3 modes of these novel systems.



90

3.7 Acknowledgement

This chapter, in full, is a reprint of the material as it appears in Physical Re-

view B: Wu, Jhih-Sheng; Basov, Dimitri; Fogler, Michael,“Topological insulators are

tunable waveguides for hyperbolic polaritons”, Phys. Rev. B 92, 205430 (2015). The

dissertation author was the primary investigator and author of this paper.



References

[ABJR12] Joanna M. Atkin, Samuel Berweger, Andrew C. Jones, and Markus B.
Raschke. Nano-optical imaging and spectroscopy of order, phases, and
domains in complex solids. Adv. Phys., 61(6):745–842, 2012.

[ADDG+15] Marta Autore, Fausto D’Apuzzo, Alessandra Di Gaspare, Valeria Gilib-
erti, Odeta Limaj, Pascale Roy, Matthew Brahlek, Nikesh Koirala,
Seongshik Oh, Francisco Javier Garćıa de Abajo, and S. Lupi. Plasmon-
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