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ABSTRACT OF THE DISSERTATION

An Adaptive Model of Self/Nonself Recognition by Innate Immune Cells

by

Yawei Qin

Doctor of Philosophy, Graduate Program in Physics
University of California, Riverside, September 2023

Dr. John Barton, Chairperson

The immune system plays a vital role in protecting our bodies from a wide range of

pathogens. As we continue to identify new diseases that challenge our immune system, im-

munotherapy has gained prominence as a potential medical solution. It utilizes or enhances

the body’s own immune system to detect and destroy cancer cells. Immunotherapy presents

advantages over traditional treatments, although its successful application demands a more

extensive understanding of the immune system. While progress has been made, our un-

derstanding of the immune system, specifically the innate immune component, is still not

comprehensive.

Some key questions that pique my curiosity include: How do innate immune cells

distinguish between self and non-self targets? When transplanted to a different host, how

do these cells adapt to their new surroundings? Can this process be elucidated through

equations or quantitative models? I have always been deeply interested in exploring these

questions. In this thesis, we apply statistical methods to tackle these issues. We develop a

quantitative model to elucidate the regulatory mechanisms governing the activity of one type
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of innate immune cell, namely natural killer cells. Furthermore, inspired by the behavior

of natural killer cells, this model holds potential for application to other types of innate

immune cells.

We develop a model to simulate the interactions between natural killer (NK) cells

and their target cells, illuminating how NK cells learn to identify unhealthy signals from

their environment. We apply our model across a range of experimental scenarios, showcasing

the algorithm that we have designed to mirror specific experimental settings and delving

into the relationship between model and experimental parameters.

Further, we provide evidence for the efficacy of our model by demonstrating that it

is possible to identify rational values for model parameters that yield accurate estimations

of the experimental data. This effectively validates our approach.

Progressing from this foundation, we present a high-dimensional extension of our

model, contributing insights into immune protection at a population level. A key part of

our discussion involves the distribution of receptor numbers on natural killer cells and the

benefits that this distribution bestows.

Finally, we put our model to the test in the arena of anomaly detection. Through

this exploration, we display the versatility and applicability of our mathematical framework,

proving its potential to address other complex, real-world problems.
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Chapter 1

Introduction

The interdisciplinary collaboration between physicists and biologists has made sig-

nificant progress in the new century, as evidenced by an increasing number of publications

in the field. This partnership leads to a more comprehensive understanding of complex

biological systems, as physicists contribute quantitative and computational approaches,

while biologists provide domain-specific knowledge and experimental data. And many bi-

ological phenomena remain poorly understood, offering physicists opportunities to apply

their analytical skills and mathematical models to help decipher these mysteries. Con-

cepts from physics, such as statistical mechanics, non-linear dynamics, and network theory,

have already found applications in biology, leading to new insights and research directions.

Studying biological systems can inspire the development of novel theoretical frameworks,

expanding the horizons of physics itself. Moreover, the development of new experimental

techniques and computational tools in both physics and biology has facilitated the study

of biological systems at unprecedented levels of detail and complexity. This progress rep-
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resents a significant breakthrough in the field. It has created new research opportunities,

particularly for physicists with an interest in exploring biological phenomena.

As a physicist, I find the study of immune cells to be an intriguing and rewarding

area of research. I am particularly fascinated by the complex interactions and behaviors of

these cells and their role in maintaining the delicate balance of our immune system. My

interest lies in applying quantitative and analytical skills to better understand the under-

lying principles governing their functions and responses to various challenges in biological

systems.

Exploring the diverse array of receptors expressed by immune cells, such as natural

killer cells, and their ability to detect and eliminate foreign or abnormal cells presents a

unique opportunity to investigate the adaptability and precision of the immune system. By

employing concepts from physics, such as statistical mechanics, non-linear dynamics, and

network theory, I aim to develop novel models and frameworks that can shed light on the

intricacies of immune cell regulation and communication.

1.1 Motivation

To gain a deeper understanding of the complex interactions and behaviors gov-

erning immune system dynamics, we examine natural killer (NK) cells as a representative

example. Natural killer cells are a type of lymphocyte, which is a type of white blood cell

that can be found in lymphatic fluid. Other examples of lymphocytes include B cells and

T cells. However, unlike B cells and T cells, which belong to the adaptive immune system,

NK cells are a part of the innate immune system. The innate and adaptive immune systems
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are two primary components of the body’s overall immune response. They work together to

defend the body against harmful pathogens, but they function in fundamentally different

ways. The innate immune system, as the name implies, is present at birth and provides

the first line of defense against pathogens. It responds in a generic way to all pathogens,

without specificity. Key elements of the innate immune system include physical barriers

such as the skin, chemical barriers such as stomach acid, and immune cells like neutrophils,

macrophages, and natural killer (NK) cells. This system responds rapidly to invaders, often

within minutes or hours, but it does not have the capacity to remember past infections.

The adaptive immune system, also known as the acquired immune system, is

highly specific and has the ability to remember past infections. This allows for a more

rapid and effective response upon re-exposure to the same pathogen, a feature known as

immunological memory. The adaptive immune system primarily involves T cells and B

cells, which can recognize and respond to specific antigens. This system takes longer to

respond than the innate immune system, often multiple days to weeks, but its response is

more targeted and effective. The innate immune system provides immediate but general

protection against pathogens. The adaptive immune system provides a delayed but highly

specific and long-lasting immune response. Both systems are crucial for maintaining the

body’s health and defense against disease. The primary focus of this dissertation centers

around the innate immune system’s comprehensive defense mechanism, utilizing NK cells

as a representative example to elucidate this intricate system.

NK cells, a key component of the innate immune system, are well-known for their

ability to eliminate virus-infected and tumor cells without prior exposure to them. NK

3



cells accomplish this by expressing a diverse array of activating and inhibitory receptors.

These receptors recognize and bind to ligands on the surface of target cells, regulating NK

cell activities through various mechanisms. The ability of a cell to identify abnormal cells

or microbes that it has never encountered before is remarkable. It is still not completely

understood how NK cells utilize the combined signals from various receptors to identify

unhealthy/non-self signals. NK cells are also able to adapt to new environments. Ex-

periments [45] show that NK cells will lose the killing ability when moved from a normal

environment to a new environment that lacks inhibitory signals and regain the killing abil-

ity against targets with less inhibitory ligands when moved back to a normal environment.

Generally speaking, NK cells learn and adapt to the environment. How NK cells learn the

environment and respond to environmental changes is a major topic of research.

1.2 Thesis overview

Our background in physics equips us with unique perspectives and analytical tools

that can be used to study the immune system from a different angle compared to tradi-

tional biological approaches. Rather than concentrating solely on the intracellular level, we

broaden our focus to include the intercellular and population levels.

To explain the adaption of NK cells, we developed a quantitative model to sim-

ulate NK cell processing of cellular signals and learning the environment. Since NK cells

kill tumor cells without previous activation, we have an idea that NK cells could “learn”

a healthy signal distribution from interacting with normal cells, and therefore identify ab-

normal signals as non-self/unhealthy ones. Here we build a Bayesian inference model to
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simulate the process of NK cells learning the normal signal distribution. For simplicity, we

assume the healthy signal received by receptors satisfies a Gaussian distribution. We use a

Bayesian inference approach to model how NK cells learn the normal signal distribution. In

particular, we model estimating the mean and variance of an unknown signal distribution.

Due to the stochastic nature of cell-cell interactions and receptor-ligand combinations, the

shift in estimated mean and variance can be described by stochastic differential equations.

From statistical mechanics, we applied the Fokker-Plank equation to get the time evolution

of the probability density functions of the parameters. We also built stochastic models to

simulate outcomes of experiments and predict collective behaviors, which can be compared

with experimental results. There are tens of immune-related receptors on the surface of

immune cells, making the space of receptor-ligand interactions high-dimensional. We use

statistical methods to simulate the receptor expression distributions and signal processing

to extend our model to high dimensions.

In our model, NK cells learn the typical distribution of ligands on healthy cells

through repeated encounters, allowing them to respond to significant deviations from typi-

cal ligand expression in rare, unhealthy targets. Our study complements mechanistic studies

of immunity and signaling [17, 71, 104, 37, 73] by focusing on the principles underlying im-

mune regulation. We show that our model is consistent with known NK cell behaviors

and provides a good quantitative fit to data from three separate experiments in NK cells.

Our results point to a tradeoff between the precision of immune responses and the abil-

ity to adapt to different environments. We also extend our model to consider multiple

pairs of receptors and ligands. Both NK cells and macrophages use a wide array of re-
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ceptors [55, 95]. Intriguingly, recent studies have revealed dramatic heterogeneity in the

complement of receptors that individual NK cells express [43, 90]. The biological function

of this heterogeneity, however, has remained unclear. Here we show that populations of

NK cells with ‘sparse’ patterns of receptor expression, like those observed in experiments,

are better able to respond to a variety of different targets than ones with ‘dense’ recep-

tor expression profiles. Sparse receptor expression is especially important for separating a

signal of aberrant ligand expression due to infection or transformation from noise due to

background fluctuations in ligand concentrations. This suggests that heterogeneity in the

NK cell repertoire may improve the immune system’s ability to respond to multiple threats.

This model can also be applied on other field like outlier detection. We will show

that this simple model have a comparable performance with some commercially used/open

source anomaly detection algorithms.

1.3 Connections to statistical physics

Statistical physics is a branch of physics that employs statistical methods and

mathematical tools to study the behavior of large ensembles of particles. It aims to de-

scribe the collective behavior of complex systems by connecting macroscopic properties,

such as temperature and pressure, to the underlying microscopic interactions between in-

dividual particles. Central to statistical physics is the concept of equilibrium and the use

of statistical mechanics, which allows the calculation of macroscopic quantities by averag-

ing over the microscopic states of a system. This field, with its far-reaching implications,

has successfully discovered applications in an array of disciplines, such as condensed mat-
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ter physics, materials science, and surprisingly, even biological systems. By facilitating a

more profound understanding of the emergent properties characteristic of complex systems,

it plays a pivotal role in the demystification and comprehensive portrayal of intricate con-

cepts. In doing so, it significantly contributes to the discourse within these scientific realms,

enhancing our overall understanding and mastery over these complex phenomena.

Here, statistical physics has been applied to describe collective behaviors of bio-

logical systems at multiple levels.

At the cellular level, we study the interactions between an NK cell and a target

cell, which involve random processes such as receptor-ligand binding. Instead of focusing

on individual receptor-ligand pairs or single NK cell-target cell interactions, we consider

the overall signal from all receptor-ligand connections and the behavior of NK cells in a

specific environment. To achieve this, we develop a quantitative model that emphasizes

statistical results, using probability distributions to describe the signal distribution for an

NK cell interacting with a particular type of target cells. Bayesian inference and stochastic

differential equations are employed to simulate the learning process and estimate parameter

changes.

At the population level, we treat each NK cell individually and examine their

collective behaviors. In our stochastic model, even NK cells with identical receptor distri-

butions may respond differently to the same target in the future due to varying interaction

paths. The focus is on the statistical results for the behavior of a group of NK cells, uti-

lizing the Fokker-Planck equation to describe the evolution of probability distributions of

parameters.

7



In high-dimensional systems, receptor expression exhibits randomness. We analyze

the receptor distribution on each NK cell rather than the expression of individual recep-

tors. Probability distributions are used to describe receptor distributions and compare the

behaviors of groups of NK cells with varying receptor distributions.

By comparing our results with experimental data, we can establish connections

between our model parameters and real biological information. Our statistical model allows

us to link the macroscopic properties of biological systems to their underlying microscopic

interactions, such as individual cell behavior or receptor-ligand binding, enhancing our

understanding of complex biological activities.
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Chapter 2

Mathematical & Statistical

Methods

In this chapter, we introduce several statistical models to analyze complex biolog-

ical systems. First, we discuss Bayesian inference, demonstrating how to estimate distribu-

tions of parameters based on data. Next, we explore stochastic differential equations, which

provide a continuous approximation for parameter updates. We will discuss the roles of

prior knowledge and new measurements in the drift and diffusion of parameter updates. Fi-

nally, we introduce the Fokker-Planck Equation, which describes the evolution of probability

distributions for parameters over time.

2.1 Bayesian Inference

The main idea of our model is that NK cells learn from normal environments,

knowing what are healthy cells and thus being able to identify the abnormal targets whose
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information is different from what NK cells learned. The first step is learning the normal

environment. Since it’s impossible for each NK cell to interact with every healthy cell to

learn the normal environment, there must be a process that NK cells are able to estimate

the normal environment from a finite number of interactions. This is the statistical infer-

ence where we assume the finite interactions are a sample from a population, and we use

statistical analysis results from the sample data to estimate the properties of the popula-

tion. This is how NK cells learn the normal environment. Here we use Bayesian inference

to simulate the learning process.

Bayesian inference is a statistical method that is used in estimating model pa-

rameters. It updates the probability of model parameters as more information becomes

available. For example, a (potentially) biased coin has an unknown probability p to be

heads and 1−p to be tails. If we throw the coin 10 times and we get 4 heads and 6 tails, we

may estimate p = 0.4. While if we throw the coin more times and we get 500 heads and 500

tails in total, we may update the estimation of p. We can use Bayesian inference to estimate

the probability distribution of parameter p as more and more data becomes available. One

advantage of Bayesian inference is that it gives a probability distribution of parameters that

need to be determined. The variance of the probability distribution, to some extent, can

provide some information about how uncertain the estimation of the parameter is. Another

advantage of Bayesian inference is that we do not need any evidence for the initial guess

of the probability distributions of parameters. As more and more data are available, the

probabilities of parameter settings that are more likely to generate the data will increase

automatically. However, if we have prior knowledge of the parameter distribution, we can
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apply previous research results on the prior distribution which might help to estimate the

parameters since more information is used, compared to using the new measured data only.

If the model has many parameters, the computation of the updated probability distribution

is usually complex. However, such problems can often be solved numerically, which has lead

to the broad application of Bayesian inference methods in many areas. Next, we will show

how to do calculations of Bayesian inference, from basic Bayes’ theorem to how NK cells

estimate the environment.

2.1.1 Introduction to Bayesian inference

Bayesian inference is based on Bayes’ theorem which was developed in the 18th

century. Before diving into Bayesian inference, here I will first give a short introduction to

Bayes’ theorem. Bayes’ theorem describes the relation between two conditional probabili-

ties. It is used to calculate the probability of one event occurring given the condition that

another event occurred.

The equation for Bayes’ theorem is simply

P (A|B) =
P (B|A)P (A)

P (B)

where A and B are events. P (A) and P (B) are probabilities of events A and B occurring.

P (A|B) is the conditional probability that event A occurs given that B has occurred.

P (B|A) is the conditional probability of event B occurring given that A has occurred.

Bayesian inference uses Bayes’ theorem to update the probability distribution of

model parameters. For example, B is the observation/new data and A is the model pa-

rameters, which are related to the data. P (A) is named as the prior probability, which
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is determined before new data is measured. P (B|A) is named as likelihood, which is the

probability that new data B is observed, assuming that it was generated from a model with

parameters A. P (B) is the marginal likelihood, which is usually unknown. Since it does

not affect the determination of the relative probabilities of parameters, we can rewrite the

above equation as

P (A|B) ∝ P (B|A)P (A)

Thus even P (B) is usually unknown, we can still get P (A|B) by normalizing P (B|A)P (A).

2.1.2 Bayesian inference for a Gaussian distribution with unknown mean

and precision

To simulate NK cells learning the environment, we need to firstly quantify what

is the environment and what is learned by NK cells. The learning process is done by

interacting with normal cells. During the interaction, activating receptors on NK cell bind

to their corresponding activating ligands on normal cells and inhibitory receptors on NK

cells bind to their corresponding inhibitory ligands on normal cells.

We use a parameter x to denote the signal from those receptors during binding.

To simplify, here we build a model which uses a real number to describe the signal from a

receptor-ligand binding. The value of the number describes how activating the signal is: the

larger the value is, the more activating the signal is. A positive number is activating signal

and negative value is inhibitory signal. The total signal is just the sum of signals from all

receptors that bound to ligands, which is a real number x. In this way, the ‘environment’

is the distribution of x when an NK cell interacts with all cells in a population. Since it’s
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impossible for NK cells to interact with all cells in the population, we assume NK cells

learn the probability distribution of total signal x with finite interactions with targets in a

sample. Since the ligands expressed on a cell should be similar to other cells in the same

population, signals from a population of cells should be concentrated. Here we use Gaussian

distribution to model the signal distribution of a population which is determined by two

parameters, mean and variance. We use Bayesian inference to simulate a NK cell learning

the two parameters.

In the Bayesian inference, we use the normal distribution as the likelihood since

we assume the signals of a population floow a Gaussian distribution. It can be written

as P (x|µ, λ) ∼ N(µ, λ), where x is the total signal observed during an interaction, µ is

the mean and λ is the precision which is the inverse of variance, λ = 1/σ2. For the prior

distribution, which is an initial guess of the probability distribution of parameters (µ, λ),

we use a prior function in the form of normal-gamma distribution since it is the conjugate

prior of a normal distribution with unknown mean and precision. Here conjugate prior

means that the prior distribution has the same functional form as the posterior. In other

words, the posterior will be a normal-gamma distribution as well, which will be shown in

the following calculation. Using conjugate prior greatly simplifies the calculation. Not only

can we write the posterior distribution analytically, but also in the future when new data

is available and we use it as the prior distribution for the new update, the calculation will

follow the same form. A normal-gamma function has the form of

P (µ, λ|m,β, α, κ) =
βα√κ

Γ (α)
√
2π

λα−1/2e
λ

[
−β−κ

(µ−m)2

2

]
,

where (m,β, α, κ) are four parameter that determine the distribution and β > 0, α > 0
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and κ > 0. For a given λ, the conditional distribution of µ is a normal distribution,

N(µ|λ) = N(m, 1
βκ). For a given µ, the conditional distribution of λ is a Gamma function,

Gamma(α, β). We will see m is the mean of µ, and the ratio of α and β, α
β , determines

the mean of precision, λ. In the subsequent calculations, we will demonstrate that the

estimated mean and variance (their mean values) are determined by m and β, respectively.

The other two parameters, κ and α, primarily influence the weight of the data in determining

the values of m and β. In our modified Bayesian inference model, we refer to κ and α as

memory parameters, as they determine the number of recent data points used in calculating

the estimated mean and variance. In other words, these parameters dictate how many past

encounters are retained in the memory of an NK cell.

Given a normal-gamma prior distribution for the Gaussian mean µ and precision

λ, the posterior distribution for µ and λ after taking a new measurement x is

Ppost (µ, λ|x) ∝ P (x|µ, λ) × Pprior (µ, λ|m,β, α, κ)

= λαe
λ

[
−β− 1

2
κ

κ+1
(x−m)2−(κ+1)

(µ−κm+x
κ+1 )

2

2

]
,

where

P (x|µ, λ) = 1√
2πσ

e−
(x−µ)2

2σ2 =

√
λ

2π
e−

λ(x−µ)2

2

is the likelihood function, where λ = 1/σ2 is the precision, and

Pprior (µ, λ|m,β, α, κ) =
βα√κ

Γ (α)
√
2π

λα−1/2e
λ

[
−β−κ

(µ−m)2

2

]

is the normal-gamma prior. The posterior thus also follows a normal-gamma distribution

with modified parameters m′, β′, α′, and κ′, which are related to those of the prior distri-
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bution by

m′ =
κm+ x

κ+ 1
κ′ = κ+ 1

β′ = β +
κ

κ+ 1

(x−m)2

2
α′ = α+

1

2
.

(2.1)

2.1.3 Estimating the signal mean and variance

Estimated mean µ̂ and variance σ̂2 are the expected values of µ and σ2 = 1
λ for

the distribution P (µ, λ). Prior to the measurement, µ̂ and σ̂2 are

µ̂ =

∫∫
dµ dλ µP (µ, λ|m,β, α, κ) = m,

σ̂2 =

〈
1

λ

〉
=

∫∫
dµ dλ

1

λ
P (µ, λ|m,β, α, κ) =

β

α− 1
.

(2.2)

After receiving a signal x, the new estimated mean and variance are

µ̂′ = m′ =
κm+ x

κ+ 1
=

κµ̂+ x

κ+ 1
,

(
σ̂2
)′
=

β′

α′ − 1
=

β + 1
2
κ(x−m)2

(κ+1)

α− 1
2

=
σ̂2 (α− 1) + 1

2
κ(x−m)2

(κ+1)

α− 1
2

.

(2.3)

2.2 Stochastic differential equations

The update of the parameters in our model can be described as a Markov process,

which means that the future state of the process depends only on the present state and not

on its past history. The value of a parameter at a given time depends solely on its value

at the immediately preceding time step. Additionally, we assume that the measured signal

during an interaction between an NK cell and a target cell follows a fixed distribution, which

implies that the signals are independent of one another in different steps. This assumption

simplifies the analysis and makes it easier to develop and apply mathematical models, such

as stochastic differential equations and Fokker-Planck equations, to describe the evolution
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of the parameters and their joint probability distributions. In the following sections, we will

provide an introduction to these equations.

2.2.1 Brownian motion

A stochastic differential equation (SDE) is a differential equation that includes

terms associated with random processes. It was first developed in the context of Brownian

motion, a physical phenomenon characterized by the random movement of particles sus-

pended in a fluid. Albert Einstein and Marian Smoluchowski were pioneers in this field,

utilizing linear stochastic differential equations to describe the motion of an object subjected

to random forces.

The Wiener process is a mathematical model of Brownian motion, representing the

random movement of particles suspended in a fluid. Suppose we have a particle suspended

in a fluid. If the mass of the small particle is comparable to the mass of the molecules, the

particle will be bombarded from all sides by the fluid molecules, and these bombardments

will cause the particle to move in a random manner. We say there is a random force on

the small particle that determines the movement. In an ideal scenario, we would solve

the interconnected motion equations for all the fluid molecules and the small particle, in

which case, no stochastic force would manifest. However, considering the astronomical

number of molecules in the fluid — on the order of 1023 — we are usually unable to

solve these intertwined equations. Additionally, given our lack of knowledge about the

initial states of all the fluid molecules, we cannot precisely compute the small particle’s

motion in the fluid. If we were to use another identical system (particle and fluid), but

with different initial conditions for the fluid, the motion of the small particle would vary.
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Following standard thermodynamic practice, we consider a collection of such systems, known

as a Gibbs ensemble [36]. In this context, the force would vary across systems, and our

best recourse would be to consider ensemble averages of this force [87]. And the force is

characterized as a stochastic or random force, the properties of which are discernible only

through averaging.

The equation of particle motion is:

v̇ = Γ(t) ,

where v is the velocity of particle, and Γ(t) is the stochastic force. The stochastic force

exhibits certain properties. Firstly, we posit that its ensemble average equals zero, denoted

as ⟨Γ(t)⟩ = 0. This implies that there’s no systematic bias in the force; it’s equally likely

to push in any direction. Moreover, when we consider the product of two stochastic forces

at different times, we assume that their average value equals zero for time differences t′ − t

exceeding the collision duration time τ0,

〈
Γ(t′)Γ(t)

〉
= 0 for |t′ − t| > τ0 .

In other words, the effects of individual collisions are assumed to be uncorrelated if they

are separated by more than the characteristic collision time. This reflects the memoryless

nature of the stochastic force.

2.2.2 Langevin equation

The Wiener process serves as a cornerstone for exploring more intricate stochastic

processes. Among these is the Langevin equation, developed to characterize the movement
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of a particle subjected to both deterministic and random forces in a viscous medium. The

Langevin equation expands upon the Wiener process by incorporating deterministic as-

pects such as friction and external impetus, alongside the random forces. This endows the

Langevin equation with a broader scope and flexibility, making it an instrumental tool for

simulating various physical and biological systems that exhibit stochastic dynamics.

A typical instance of a one-dimensional stochastic differential equation is the simple

Langevin equation. This equation effectively encapsulates the behavior of a system under

the dual influence of deterministic and random forces, as outlined in Gardiner’s “Stochastic

Methods” [32]. The general form of the Langevin equation is:

dx

dt
= a(x, t) + b(x, t)ξ(t) ,

where x is the parameter that changing with time, in the example of particle’s Brownian

motion, x can be the velocity of particle. a(x, t) and b(x, t) are two functions. ξ(t) is the

random term. The random term plays an important role in the calculation of SDE. Usually

we assume it is a simple stochastic process, where for t ̸= t′, ξ(t) and ξ(t′) are independent

with each other. Also we can set ⟨ξ(t)⟩ = 0, where if it is not, we can move the non zero

term to a(x, t). Thus we have ⟨ξ(t)ξ(t′)⟩ = δ(t− t′).

The integrated variable W (t):

W (t) =

∫ t

0
dt′ ξ(t′) ,

is a smooth function. The derivation of this equation can be found in Gardiner’s “Stochastic

Methods” [32]. Thus, we have ξ(t)dt = dW (t). Since ξ(t) and ξ(t′) are independent, thus

W (t) is a Markov process and W (t) and W (t′) − W (t) are independent for t′ > t. It has
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been shown that dW (t) possesses some unique properties. Two key properties are

dW (t)2 = dt , dW (t)2+N = 0 .

For a detailed explanation, please see Gardiner’s “Stochastic Methods” [32].

Thus the corresponding stochastic integral equation is

x(t)− x(t0) =

∫ t

t0

dt′ a[x(t′), t′] +

∫ t

t0

dW (t′) b[x(t′), t′] .

And we can get a discretised version of the SDE by taking discrete time point, the equation

can be written as

xi+1 = xi + a[xi, ti]∆ti + b[xi, ti]∆Wi .

2.2.3 Change of function of x(t)

For an arbitrary function of x(t), the stochastic differential equation can be calcu-

late using Taylor expansion, we expand df [x(t)] to second order in dW (t):

df [x(t)] = f [x(t) + dx(t)]− f [x(t)]

= f ′[x(t)]dx(t) +
1

2
f ′′[x(t)]dx(t)2 + ...

= f ′[x(t)] {a[x(t), t]dt+ b[x(t), t]dW (t)}+ 1

2
f ′′[x(t)]b[x(t), t]2[dW (t)]2 + ... .

Ignoring higher order terms, the equation can be simplified as

df [x(t)] = {a[x(t), t]f ′[x(t)] +
1

2
b[x(t), t]2f ′′[x(t)]}dt+ b[x(t), t]f ′[x(t)]dW (t) , (2.4)

where dW (t)2 = dt from above is used.
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2.2.4 The evolution of probability distribution of x(t)

From Eq. 2.4, we have the time evolution of an arbitrary f(x(t)):

⟨df [x(t)]⟩
dt

=

〈
df [x(t)]

dt

〉
=

d

dt
⟨f [x(t)]⟩

=

〈
a[x(t), t]∂xf +

1

2
b[x(t), t]2∂2

xf

〉
.

Since x(t) has a probability distribution p(x, t), thus we have

d

dt
⟨f [x(t)]⟩ =

∫
dx f(x)∂tp(x, t)

=

∫
dx a[x(t), t]∂xf +

1

2
b[x(t), t]2∂2

xfp(x, t) .

After applying the integration by parts method and disregarding the boundary terms, we

obtain the following:∫
dx f(x)∂tp(x, t) =

∫
dx f(x){−∂x[a(x, t)p] +

1

2
∂2
x[b(x, t)

2p]} .

Since f(x) is arbitrary, we have

∂tp(x, t) = −∂x[a(x, t)p(x, t)] +
1

2
∂2
x[b(x, t)

2p(x, t)] .

This equation is recognizably in the form of the Fokker-Planck equation, which is used to

describe the time evolution of a probability distribution under the influence of deterministic

and random forces.

2.2.5 Multivariable system

In general, stochastic differential equations for a n variables system can be defined

by

dx = A(x, t)dt+B(x, t)dW(t) ,

20



where x is the n variables, dW(t) is an n variable Wiener process. The probability density

p(x, t) satisfies:

∂tp(x, t) = −
∑
i

∂i[Ai(x, t)p] +
1

2

∑
i,j

∂i∂j{[B(x, t)BT (x, t)]ijp} .

2.3 Fokker-Planck Equation

The Fokker-Planck equation plays a pivotal role in the investigation of stochastic

processes, as it delineates the temporal progression of a probability distribution. This equa-

tion serves as a robust mechanism for acquiring distribution functions. After the resolution

of these functions, the averages of macroscopic variables can be deduced via integration. No-

tably, the Fokker-Planck equation’s utility transcends systems in close proximity to thermal

equilibrium; it is equally valuable in the analysis of systems that are significantly removed

from thermal equilibrium.

2.3.1 Fokker-Planck equation for one variable

For a one-dimensional variable x with a distribution function W (x, t), the general

form of the Fokker-Planck equation is given as[86]:

∂W

∂t
= [− ∂

∂x
D(1)(x) +

∂2

∂ x2
D2(x)]W . (2.5)

Here, D2(x) > 0 is referred to as the diffusion coefficient and D(1)(x) is known as the drift

coefficient. Both coefficients may depend on time. The Fokker-Planck equation is mathe-

matically a linear second-order partial differential equation of parabolic type. Essentially,

it is a diffusion equation with an additional first-order derivative term with respect to x. In
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the mathematical literature, equation 2.5 is also often referred to as a forward Kolmogorov

equation.

2.3.2 Fokker-Planck equation for N variables

The Fokker-Planck equation can be generalized to accommodate multiple variables.

Specifically, for N variables x1, ..., xN , the equation can be extended as follows:

∂W

∂t
= [−

N∑
i=1

∂

∂xi
D

(1)
i (x) +

N∑
i,j=1

∂2

∂ xixj
D2

ij(x)]W . (2.6)

The drift vector D
(1)
i and the diffusion tensor D2

ij generally depend on the N variables

x = (x1, . . . , xN ). The Fokker-Planck equation, equation 2.6, describes the time evolution

of the distribution function W (x, t) for N macroscopic variables x.

2.3.3 Solution of Fokker-Planck equation

The Fokker-Planck equation, a cornerstone in the field of stochastic processes,

can be analytically solved in certain specific scenarios. These special cases often involve

conditions such as a linear drift vector and a constant diffusion tensor. Another scenario

where solutions are attainable is when the drift vector and the diffusion matrix conform to

distinct potential conditions. These conditions allow for the simplification of the equation,

making an analytical solution feasible. However, these situations are limited and don’t

encompass all the complexities that can be encountered in the study of stochastic processes.

In the general case, obtaining solutions for the Fokker-Planck equation can be

quite challenging. One of the factors that can contribute to this complexity is the inability

to separate variables, a common technique used to simplify multi-variable differential equa-
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tions. In addition, problems can arise when the number of variables in the equation is large.

These conditions often necessitate the use of more advanced mathematical techniques or

computational methods.

To overcome these complexities, researchers use a variety of solution strategies.

Simulation methods, for instance, provide an effective means of estimating solutions. These

methods typically involve creating a computational model of the system described by the

equation, and then running simulations to observe the evolution of the system over time.

This can provide valuable insights into the behavior of the system and can help generate

approximate solutions to the equation.

A more theoretical approach involves transforming the Fokker-Planck equation into

a Schrödinger equation, a key equation in quantum mechanics. This transformation, often

referred to as the “Feynman-Kac formula”, allows for the use of techniques developed in

quantum mechanics to solve the Fokker-Planck equation. This method can be particularly

useful when dealing with potential energy landscapes, which are common in many physical

and chemical systems.

Lastly, numerical integration methods serve as a powerful tool in deriving solu-

tions to the Fokker-Planck equation. These methods, which include techniques like finite-

difference methods and finite-element methods, involve discretizing the equation and then

solving the resulting system of equations. Even though these methodologies may require

substantial computational power and can be resource-intensive, their importance cannot be

underestimated. In many situations, especially those where traditional analytic solutions

are out of reach or simply do not exist, they often emerge as the only feasible, and in-
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deed indispensable, approach to successfully obtaining the needed solutions. Thus, despite

their computational demands, these methods hold the key to unlocking answers in complex

scenarios.

To sum up, deriving analytic solutions for the Fokker-Planck equation is feasible

under specific conditions. However, the equation’s complexity frequently calls for the ap-

plication of sophisticated mathematical strategies or computational methodologies. In this

dissertation, we’ve chosen to employ numerical integration methods to solve the Fokker-

Planck equation. For a detailed explanation of our process and findings, kindly refer to the

subsequent chapter.
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Chapter 3

Modified Bayesian inference model

for simulating cell-cell interactions

3.1 Biology background

The human immune system consists of both the adaptive and innate immune

systems. The adaptive immune system, comprised of T and B cells, binds specifically to

antigens. These antigens either originate from pathogens or, in the context of cancer, are

altered versions of self proteins [44]. There’s a selective process in place for T cells and

B cells, which eliminates those that respond to self cells, preventing them from maturing.

This process ensures that these immune cells specifically recognize and respond to signals

that aren’t derived from normal, healthy host cells.

The immune system also employs defense mechanisms that don’t rely on the spe-

cific identification of foreign substances. Immune cells like Natural Killer (NK) cells and
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macrophages discern their targets through a vast array of activating and inhibitory recep-

tors, many of which bind to self-ligands. NK cells’ activating receptors mainly bind to

surface ligands, which are triggered during infection, transformation, or stress [34]. On the

other hand, their inhibitory receptors largely bind to ligands expressed by healthy cells,

thereby preventing the inadvertent destruction of healthy self cells. There are numerous

types of inhibitory ligands, with major histocompatibility complex (MHC) class I molecules

being a prominent example [55]. Macrophages function similarly. Many of their activat-

ing receptors respond to self-ligands indicative of cellular damage. However, the activity of

macrophages is inhibited by ubiquitously expressed surface proteins such as CD47 [95]. This

strategic array of receptors allows these immune cells to effectively respond to abnormal or

potentially harmful conditions, while also avoiding unnecessary damage to healthy cells.

For both NK cells and macrophages, the integration of activating and inhibitory

signals is a complex, context-dependent process. NK cells were originally noted for their

ability to kill target cells that express low or undetectable levels of MHC class I [47].

However, subsequent studies showed that NK cells from mice and humans that express low

levels of MHC class I are self-tolerant, though they also respond less vigorously to typical

target cells [58, 42, 7, 19, 113]. Patients with defects in the transporter associated to antigen

processing (TAP) protein provide one such example. In these individuals, the ability of

TAP to load MHC class I proteins with peptides is reduced, causing little MHC class I

to reach the cell surface [19]. Macrophages from CD47-deficient hosts are also tolerant of

cells with low levels of CD47 expression, which would usually be phagocytosed [103]. These

observations point towards an adaptive process through which the threshold for activation
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is controlled by the local environment, which in NK cells is referred to as ‘education’ [50, 4].

This process must be extremely robust, as autoimmunity due to direct attack by NK cells

and macrophages on healthy tissues is essentially unknown [75, 64].

How do these immune cells achieve self-tolerance while retaining the ability to

respond to unhealthy targets? Qualitative models of education have been developed to

explain NK cell behaviors [112, 84, 10], but no overarching quantitative framework currently

exists. Most prior quantitative work on self/nonself recognition has focused primarily on

adaptive immunity and the specific recognition of nonself [77, 78, 21, 88, 51], rather than the

nonspecific recognition of ‘missing’ or ‘altered’ self detected by the innate immune system.

3.2 Modified Bayesian inference model

Innate immune cells combine the signals from activating and inhibitory receptors

to make a decision whether the target signal is healthy or not. The combination process of

signals from many receptors might be complex. Here we represent the net signal that an

individual immune cell receives from a target cell with a single variable x. Larger values of

x represent more activating signals, while smaller values represent more inhibitory signals.

To prevent autoimmunity, immune cell responses must be tuned to avoid activa-

tion against normal, healthy cells. We propose that this can be achieved by the immune

cell through the construction of an internal representation Pr(x) of the signal distribution

(Fig. 3.1). Under normal conditions, the great majority of targets that an immune cell en-

counters should be healthy. Signals that are substantially more activating than those from

typical cells, such that Pr(x) is very small, are likely to originate from outlier cells that may
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Figure 3.1: Model overview. Immune cells receive both activating and inhibitory signals
from target cells that they encounter. Net signals are used to update an internal estimate
of the signal distribution, reflecting the balance of activating and inhibitory ligands on
target cell surfaces in the current environment. Signals from target cells that are far more
activating than typical ones stimulate an immune response.

be infected, stressed, or transformed. Biologically, information needed to represent the sig-

nal distribution could be encoded by the level of intracellular proteins involved in signaling

cascades, or by adjusting the distribution or spatial organization of surface receptors on the

immune cell membrane. Here, we characterize the signal distribution that an immune cell

receives from targets in its local environment with a Gaussian function, P (x|µ, λ). The true

mean µt and precision λt = 1/σ2
t are unknown, and must be estimated through multiple

encounters with target cells. Estimating the variance σ2
t in signal values, as well as the

mean, is crucial to differentiate true outlier target cells from ones with normal variation in

surface ligand expression.

In Bayesian inference, one begins a prior distribution Pprior(µ, λ) which constitutes

an initial guess for the unknown parameters. This distribution is then updated each time

data (i.e., a signal) is received following Bayes’ rule,

P (µ, λ|x) = P (x|µ, λ)Pprior(µ, λ)∫
dµ′
∫
dλ′ P (x|µ′, λ′)Pprior(µ′, λ′)

. (3.1)
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In general, the true signal mean and variance may be nonstationary. For example,

the distribution of ligands expressed on target cells may vary as an immune cell migrates

from one tissue to another. To accommodate time-varying signals, we employ a modified

Bayesian update rule where the strength of the prior distribution is fixed. We begin with a

normal-gamma prior for the signal mean µ and precision λ,

P (µ, λ|m,κ, α, β) =
βα√κ

Γ(α)
√
2π

λα−1/2e−βλ−κλ
(µ−m)2

2 , (3.2)

which is the conjugate prior for a Gaussian distribution with unknown mean and variance.

This is a choice of mathematical convenience that allows us to easily write down analytical

expressions for how parameters are updated as new signals are received. Here Γ(α) rep-

resents the gamma distribution. The parameters κ and α in our modified version of the

Bayesian inference are proportional to the number of measurements used for estimating the

mean and variance. Unlike in standard Bayesian inference, we consider these parameters to

be fixed. This constitutes our key modification to the standard method. Following equa-

tion 3.2, the mean value of µ is m, and the mean value of λ is α/β. When the immune cell

binds to a new target cell and receives a signal x, the internal representation of the signal

distribution is updated with new parameters

m → κm+ x

κ+ 1
, β → α− 1

α− 1
2

[
β +

κ

κ+ 1

(x−m)2

2

]
. (3.3)

This expression differs from the standard Bayesian update in that the parameters κ and

α are held fixed, and the updated value of β is shrunk by a factor of (α − 1)/
(
α− 1

2

)
to

compensate.
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3.2.1 Derivation of equation 3.3

Given a normal-gamma prior distribution for the Gaussian mean µ and precision

λ, see equation 3.2, the posterior distribution for µ and λ after taking a new measurement

x also follows a normal-gamma distribution with modified parameters m′, β′, α′, and κ′:

Ppost(µ, λ|m′, β′, α′, κ′) = P (x|µ, λ)Pprior(µ, λ|m,β, α, κ) .

The parameters of the posterior distribution are related to those of the prior distribution

by

m′ =
κm+ x

κ+ 1
κ′ = κ+ 1

β′ = β +
κ

κ+ 1

(x−m)2

2
α′ = α+

1

2
.

While this standard Bayesian approach described above works well for static signal

distributions, it is not suitable for a signal distribution that changes over time. This is

because the parameters κ and α are incremented after every measurement in equation 2.1,

thereby minimizing the contribution of recent data after many measurements have been

collected.

To enable adaptation to dynamic environments, we modify the update rules by

fixing κ and α. These parameters count the effective number of samples used to estimate

the mean and precision, respectively (see equation 2.1 and equation 2.3). Fixing α creates a

potential problem because β and (x−m)2 are nonnegative, which means that β will increase

with each update (see equation 2.1) and thus σ̂2 will grow without bound. β′ must therefore

be shrunk by an α-dependent factor δα to keep estimates of the standard deviation finite.

We can determine this factor by requiring that the update of the standard deviation follow
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the same form as in the original case (equation 2.3), where now α′ = α,

(
σ̂2
)′
=

β′

α′ − 1
=

β + 1
2
κ(x−m)2

(κ+1)

α− 1
2

= δα
β + 1

2
κ(x−m)2

(κ+1)

α− 1
, (3.4)

which yields δα = (α− 1) / (α− 1/2).

Rescaling β′ in this way while keeping κ and α fixed,

β′ =
α− 1

α− 1
2

[
β +

κ

κ+ 1

(x−m)2

2

]
,

not only ensures that β is finite, it also gives the same expression for updating the estimated

variance as previously,

(
σ̂2
)′
=

β′

α′ − 1
=

α− 1

α− 1
2

σ̂2 +
1
2

α− 1
2

κ

κ+ 1
(x−m)2 .

In summary, the adaptive update rules are given by

m′ =
κm+ x

κ+ 1
κ′ = κ

β′ =
α− 1

α− 1
2

[
β +

κ

κ+ 1

(x−m)2

2

]
α′ = α .

(3.5)

3.2.2 Modified inference as exponential weight decay

In standard Bayesian inference, all measurements contribute equally to parameter

estimation. Let {x1, x2, . . . , xn} represent a set of n signals, where the subscript indicates

the order in which each signal was measured. Assuming starting prior parameter values of

m0, β0, α0 and κ0, and following the standard update rules given in equation 2.1, after n

signal measurements we have

mn =
κ0

κ0 + n
m0 +

1

κ0 + n

n∑
i=1

xi ,

βn = β0 +
1

2

κ0n

κ0 + n

(
1

n

n∑
i=1

xi −m0

)2

+
1

2

n∑
i=1

xi −
1

n

n∑
j=1

xj

2

.
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If we instead follow the adaptive update rules given in equation 3.5, the parameter estimates

become

mn =
κ

κ+ 1
mn−1 +

1

κ+ 1
xn

=

(
κ

κ+ 1

)2

mn−2 +
κ

κ+ 1

1

κ+ 1
xn−1 +

1

κ+ 1
xn

= δnκm0 +
1

κ+ 1

n∑
i=1

δn−i
κ xi ,

where δκ = κ/ (κ+ 1), and

βn =
α− 1

α− 1
2

[
βn−1 +

1

2

κ

κ+ 1
(xn −mn−1)

2

]
= δnαβ0 +

1

2
δκ

n∑
i=1

δn−i+1
α (xi −mi−1)

2 ,

where δα = (α− 1) / (α− 1/2). Here, each of the n measurements no longer contributes

equally to the estimated parameters. New measurements are emphasized more strongly

than old ones. With each successive measurement, the effective weight of older signal

measurements decreases by a factor of δκ for m, and by a factor of δα for β.

The argument above facilitates the interpretation of κ and α as parameters control-

ling the memory length for estimating the signal distribution. Though it would be natural

to take κ ∼ 2α, in principle the memory length for m and β can be separately controlled by

adjusting κ and α, respectively. Larger values of κ and α result in longer memory lengths

and slower adaptation.

Thus our modified Bayesian inference framework introduces a memory length for

adaptation, encoded by the parameters κ and α. The larger κ and α are, the less the

estimated mean and variance will shift when a new signal is received. The update rule

described in equation 3.3 is exactly equivalent to placing a weight on measurements of the
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signal distribution that decays exponentially as new measurements are taken, emphasizing

more recent signals over older ones. Larger values of κ and α result in a slower decay, and

thus the memory of the signal distribution becomes longer. We emphasize that this notion

of memory is distinct from the concept of memory in adaptive immunity. In this context,

memory introduces a tradeoff between precision and adaptability. When the memory is

long, it is possible to adapt to a specific distribution precisely, but adaptation to new

environments is slow.

3.2.3 Internal representaton Pr(x)

Integrating over the unknown mean and precision in equation 3.2, the internal rep-

resentation of the signal distribution Pr(x) takes the form of a shifted, scaled t-distribution.

In our model, the internal representation of the signal distribution Pr(x) is calculated by

integrating over Gaussian distributions with different means µ and precisions λ, weighted

by the normal-gamma prior distribution P (µ, λ|m,κ, α, β):

Pr(x) =

∫ ∞

−∞
dµ

∫ ∞

0
dλ

√
λ

2π
e−

λ
2
(x−µ)2P (µ, λ|m,κ, α, β)

= βα

√
κ

2π(κ+ 1)

Γ(α+ 1
2)

Γ(α)
[β +

1

2

κ

κ+ 1
(x−m)2]−α− 1

2

This is a scaled, shifted t-distribution

P (t) =
Γ(ν+1

2 )
√
πν Γ(ν/2)

(
1 +

t2

ν

)− ν+1
2

,

where t =
√

ακ
β(κ+1)(x−m) and ν = 2α.
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3.2.4 Activation threshold

During each target cell encounter, we the immune cell activates if it receives a signal

x that is substantially more activating than typical signals from the estimated distribution.

Specifically, we assume that activation occurs when

Pr(y > x) =

∫ ∞

x
dy

∫ ∞

−∞
dµ

∫ ∞

0
dλ

√
λ

2π
e−

λ
2
(y−µ)2P (µ, λ)

< θ ,

(3.6)

for some threshold value θ. The threshold θ must be small to avoid autoimmunity. If an

immune cell were to learn the exact signal distribution in an environment where all target

cells are healthy, then θ would be the probability that the immune cell activates against

a healthy cell. Here we will treat θ as constant, but in principle θ could be modulated

adaptively by the immune system, for example to provide heightened surveillance during

infection.

We propose that some behaviors of immune cells like as NK cells and macrophages

can be understood by considering how they adapt to typical levels of stimulation from target

cells in the local environment. As we show in Results, this perspective is consistent with

experiments.
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Figure 3.2: Immune cells adapt to a static environment. The mean µ̂ and standard
deviation σ̂ of the internal representation of the signal distribution converge toward the true
mean (µt = 0) and standard deviation (σt = 2) of the signal distribution in the environment.
A, Convergence to µt from various initial values of m. The initial value of β = (α−1) is the
same in all cases. B, Convergence to σt from various initial values of β. The initial value
of m = 0 is the same in all cases. For both sections, the memory length is set by κ = 20
and α = 10.

3.3 Model results for simulated data

3.3.1 Immune cells adapt to the signal distribution in a static environ-

ment

We first tested the ability of our model to recover the true parameters of a test

signal distribution. We compared the estimated values of µ and σ (µ̂ = ⟨µ⟩ = m, σ̂ =√
⟨1/λ⟩ =

√
β/(α− 1), where ⟨·⟩ denotes an average over equation 3.2) to those of the true

signal distribution. Figure 3.2 shows that immune cells adapt to the distribution of signals

in the environment, even when the initial parameters of the prior are far from the true ones.

The number of target cell encounters required to approach the true parameters depends on
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the initial distance from them, and on the memory length. The shorter the memory length,

the faster the convergence (Fig. 3.3). Adaptation to the true signal mean and variance is
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Figure 3.3: Immune cells with shorter memory lengths exhibit faster but noisier
adaptation. The estimated mean µ̂ and standard deviation σ̂ approach the true mean
(µt = 0) and true standard deviation (σt = 2) in a finite number of encounters, regardless
of the initial value and memory length. When the memory length is shorter (κ = 10
and α = 5, panels A and B), estimated values approach the true ones faster than for
immune cells with longer memory lengths (κ = 40 and α = 20, panels C and D). However,
adaptation is less precise when the memory length is shorter. A, Convergence to true mean
(µt = 0) from various initial values of m. The initial value of β = (α− 1) is the same in all
cases. B, Convergence to the true standard deviation (σt = 2) from various initial values
of β. The initial value of m = 0 is the same in all cases. The memory length for both A
and B is set by κ = 10 and α = 5. (C, D) Display convergence toward the true mean and
standard deviation as in (A, B). Initial parameters are the same as those in (A, B), except
for longer memory lengths κ = 40 and α = 20.

not perfect, however. This is because the memory length is finite. Shorter memory lengths

result in greater ‘noise’ in the inferred parameters of the signal distribution.
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3.3.2 Immune cells adapt to the signal distribution in dynamic environ-

ments

NK cells show a remarkable ability to adapt to changing environments. As noted

above, MHC class I is a powerful inhibitory ligand for NK cells. NK cells in hosts that nat-

urally express low levels of MHC class I are self-tolerant. Yet, they are also hyporesponsive

to MHC class I-deficient target cells that would usually be killed by NK cells from hosts

with normal levels of MHC class I expression [7, 58]. A pair of experiments showed that

these behaviors are dynamic, rather than being fixed during development. When mature

NK cells were transferred from MHC class I-deficient mice into mice with normal MHC class

I expression, they regained their ability to kill MHC-deficient targets [45, 24]. Conversely,

NK cells from normal mice that were transferred into the MHC class I-deficient environment

became hyposensitive [45]. Importantly, this shift in behavior occurs without the need for

cell division or changes in the composition of receptors on the NK cell surface [45]. Addi-

tional experiments have confirmed that the manipulation of MHC class I expression in mice

leads to analogous results [23, 6].

Adaptation also occurs when NK cells or macrophages undergo prolonged exposure

to activating stimuli. For macrophages, extended exposure to lipopolysaccharide (LPS)

results in blunted responses to additional stimulation by LPS, a phenomenon known as

endotoxin tolerance [106, 30]. When LPS is withdrawn, macrophages gradually recover

normal function [106]. In NK cells, a similar phenomenon has been observed with prolonged

exposure to ligands for the activating receptor NKG2D, resulting in hyposensitivity [74, 16,

11]. NK cells desensitized through long-duration exposure to NKG2D ligands were also
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Figure 3.4: Immune cells adapt to changing environments, mimicking experi-
mentally observed development of hyposensitivity and recovery. Adaptation of
the estimated signal mean µ̂, standard deviation σ̂, and probability of activation against
an aberrant target as an immune cell is transferred between different environments. In
the initial, ‘normal’ environment, the level of activating stimulus is low and the immune
cell is primed to respond to aberrant targets. After transfer to a new, more stimulating
environment (shaded region), the immune cell adapts to the new signal distribution and
progressively loses the ability to respond to aberrant targets. When the immune cell is re-
turned to the ‘normal’ environment, responsiveness is gradually restored. To compute the
probability of activation, we used a Gaussian signal distribution from aberrant targets with
mean 5 and standard deviation 2, which matches the environment in the shaded region.
Initial parameters of the estimated signal distribution are m = 0 and β = 9 (leading to
µ̂ = 0, σ̂ = 1), with memory parameters κ = 20 and α = 10.

hyposensitive to other activating stimuli [16]. Similar results have also been observed for

prolonged exposure to ligands for other activating receptors [35, 92, 97].

We ran a series to simulations to mimic the transient exposure of immune cells to

different environments or levels of stimulus. In our simulations, immune cells began in a

‘normal’ environment with µt = 0 and σt = 1. To quantify their ability to activate against
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targets that express high levels of activating ligands and/or low levels of inhibitory ligands,

we computed the probability that an individual immune cell activates in response to an

aberrant target cell with a signal drawn from a Gaussian distribution with mean µa = 5

and standard deviation σa = 2, using a threshold θ = 0.01. Because µa is substantially

higher than µt, due to the presence (lack) of activating (inhibitory) ligands on the target

cell surface, the probability of activation is initially high (Fig. 3.4). To simulate a change in

environment, after 50 encounters with normal targets we switched the distribution of signals

to match the signal distribution from ‘aberrant’ targets described above. As the immune

cell adapts to this new environment, its probability of activation by aberrant target cells

decreases. The probability of activation settles near zero once the immune cell fully adapts to

the environment. However, this hyposensitivity is not permanent. After a total of 150 target

cell encounters, we return the immune cell to the normal environment (µt = 0, σt = 1). As

the immune cell encounters more healthy cells, it regains its capacity to activate against

aberrant targets. This trajectory mimics the development of hyposensitivity and restoration

of normal function described in experiments [45, 24, 106, 30, 74, 16, 11, 35, 92, 97], and is

observed consistently in our simulations (Fig. 3.5).

The number of encounters required to develop hyposensitivity in Fig. 3.4, and

to recover it after the immune cell returns to the normal environment, depends on the

memory parameters κ and α. This behavior also depends on the difference between the

normal and aberrant environments. Nevertheless, one of the robust predictions of our

model, that stands independent of the exact parameter selection, is the development and

subsequent loss of hyposensitivity. From a biological standpoint, this memory length could
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be adaptively modulated by the immune system, potentially through mechanisms such as

cytokine signaling. This process serves as a critical protective measure, enhancing the

system’s ability to defend against infectious agents more effectively, thereby optimizing the

body’s immune response.

3.3.3 Finite memory results in heterogeneous immune cell responses

As shown in Fig. 3.2, immune cells in our model do not adapt perfectly to the true

signal distribution in the environment due to finite memory. Together with the stochastic

nature of target cell encounters, this implies that there will be a range of immune cell

responses, even among immune cells with identical receptors. Figure 3.5 shows an example

of this behavior in a population of immune cells transferred between different environments,

as shown for a single cell in Fig. 3.4.

To systematically explore this heterogeneity, we sought to characterize the distri-

bution of estimated signal parameters m and β for a population of identical immune cells

with finite memory, which inhabit the same environment. As an analytical approach, we

developed a continuous approximation of the discrete modified Bayesian update dynamics

described in equation 3.3. Assuming that parameter updates with each target cell encounter

are small, equation 3.3 is described by a set of stochastic differential equations(See follow-

ing sections). We then derived a Fokker-Planck equation that describes the evolution of

the distribution of learned m and β values for a population of immune cells with identical

receptors in the same environment(See following sections).
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Figure 3.5: Finite memory of past interactions with target cells results in het-
erogeneous immune cell behaviors. A, Adaptation of 500 immune cells to changing
environments, following the same conventions as in Fig. 3. Even though all immune cells
start with the same initial values (m = 0 and β = 9, with memory parameters κ = 20 and
α = 10), the learned distribution for each immune cell evolves differently over time. This
is due to the stochastic nature of signals from target cells, and the finite memory length of
past target encounters. B, The heterogeneity of learned signal distributions also leads to
heterogeneous immune cell responses, characterized by the probability of activation against
an aberrant target cell. The signal distribution for aberrant targets is the same as in Fig. 3.

Derivation of the stochastic differential equations

Here, our aim is to characterize the evolution of the estimated signal distribution

parameters across a vast population of cells, all equipped with identical receptors. To

accomplish this, we initiate the process by applying the parameter update rules, as provided

in equation 3.5. This enables us to calculate the difference between the updated parameters

and their previous values.

∆m = m′ −m =
1

κ+ 1
(x−m) ,

∆β = β′ − β =
1

2

[
δαδκ (x−m)2 − β

α− 1
2

]
.
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For an immune cell that is well-adapted to the environment, ∆m and ∆β should be

small, especially when the memory parameters κ and α are large. Writing the time interval

∆t as a single encounter, we can develop stochastic differential equations that describe the

evolution of m and β,

∆m

∆t
=

1

κ+ 1
(x−m) =

1

κ+ 1
(µt −m+ σtξ) ,

∆β

∆t
=

1

2

[
δαδκ (x−m)2 − β

α− 1
2

]

=
1

2

{
δαδκ

[
(µt −m)2 + 2 (µt −m)σtξ + σ2

t ξ
2
]
− β

α− 1
2

}
.

Here we assume a constant environment, where the signal distribution is Gaussian with

mean µt and standard deviation σt. We thus write x = µt + σtξ, where ξ is a Gaussian

white noise.

Collectively, the evolution of θ = (m,β) follows

dθ = A (θ, t) dt+
√

D (θ, t)dW , (3.7)

where A and D are referred to as the drift vector and the diffusion matrix, respectively.

The drift vector describes the expected change in θ parameters, and the diffusion matrix

describes the covariance of changes in θ,

A =
⟨∆θ⟩
∆t

, D =

〈
(∆θ)2

〉
− ⟨∆θ⟩2

∆t
.

The components of A and D can thus be computed by finding the first and second moments

of ∆θ, which are
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⟨∆m⟩
∆t

=
1

κ+ 1
(µt −m) ,

⟨∆β⟩
∆t

=
1

2

{
δαδκ

[
(µt −m)2 + σ2

t

]
− β

α− 1
2

}
,〈

(∆m)2
〉

∆t
=

1

(κ+ 1)2

[
(µt −m)2 + σ2

t

]
,〈

(∆β)2
〉

∆t
=

1

4


[
δαδκ

[
(µt −m)2 + σ2

t

]
− β

α− 1
2

]2
+ 2δ2αδ

2
κσ

2
t

[
2 (µt −m)2 + σ2

t

] ,

⟨∆m∆β⟩
∆t

=
1

κ+ 1
(µt −m)× 1

2

{
δαδκ

[
(µt −m)2 + 3σ2

t

]
− β

α− 1
2

}
.

This allows us to write down the cumulants〈
(∆m)2

〉
− ⟨∆m⟩2

∆t
=

1

(κ+ 1)2
σ2
t ,〈

(∆β)2
〉
− ⟨∆β⟩2

∆t
=

1

2
δ2αδ

2
κσ

2
t

[
2 (µt −m)2 + σ2

t

]
,

⟨∆m∆β⟩ − ⟨∆m⟩ ⟨∆β⟩
∆t

=
1

κ+ 1
(µt −m)× δαδκσ

2
t .

Finally we obtain expressions for the vector A and matrix D,

A =

 1
κ+1 (µt −m)

1
2

{
δαδκ

[
(µt −m)2 + σ2

t

]
− β

α− 1
2

}
 ,

D =

 1
(κ+1)2

σ2
t

µt−m
κ+1 × δαδκσ

2
t

µt−m
κ+1 × δαδκσ

2
t

1
2δ

2
αδ

2
κσ

2
t

[
2 (µt −m)2 + σ2

t

]
 .

Fokker-Planck equation

Equation 3.7 is a stochastic differential equation that describes the evolution of θ =

(m,β) for a single immune cell. To understand the distribution ofm and β at the population
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level, we derive the Fokker-Planck equation corresponding to equation 3.7. Fokker-Planck

equation gives the evolution of the probability distribution of the parameter θ. Following

standard methods[86], the form of the Fokker-Planck equation is

∂P (θ, t)

∂t
= −

(
∂

∂m
+

∂

∂β

)
A (θ, t)P (θ, t) +

(
1

2

∂2

∂m2
+

1

2

∂2

∂β2
+

∂2

∂m∂β

)
D (θ, t)P (θ, t) .

Substituting in the expressions for A and D derived above, we obtain

∂P (m,β, t)

∂t
=

(
1

κ+ 1
+

1

2α− 1

)
P − µt −m

κ+ 1

∂P

∂m

−

{
1

2

[
δαδκ

[
(µt −m)2 + σ2

t

]
− β

α− 1
2

]
+

δαδκ
κ+ 1

σ2
t

}
∂P

∂β

+
1

2

1

(κ+ 1)2
σ2
t

∂2P

∂2m
+

µt −m

κ+ 1
× δαδκσ

2
t

∂2P

∂m∂β

+
1

4
δ2αδ

2
κσ

2
t

[
2 (µt −m)2 + σ2

t

] ∂2P

∂2β
.

(3.8)

Numerical integration of the Fokker-Planck equation

We used the central difference method to solve equation 3.8 numerically. Here

we simulated adaptation to a true signal distribution with mean µt = 2 and standard

deviation σt = 1, using the memory parameters κ = 20 and α = 10. We anticipated that

the learned signal parameters should be centered around m = 2 and β = 9, which would

give µ̂ = m = 2 = µt and σ̂2 = β
α−1 = 1 = σ2

t . Thus we selected a rectangular domain

[1.5, 2.5] × [5, 15] in the (m,β) space to numerically evaluate the equations (Fig. 4). We

set h = w = 0.01 as the spatial discretization size of m and β, respectively, dividing the

domain into a 100× 1000 grid. The discrete first and second derivatives at each grid point
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can be expressed as

∂P

∂m
(m,β) =

P (m+ h, β)− P (m− h, β)

2h
,

∂P

∂β
(m,β) =

P (m,β + w)− P (m,β − w)

2w
,

∂2P

∂2m
(m,β) =

P (m+ h, β) + P (m− h, β)− 2P (m,β)

h2
,

∂2P

∂2β
(m,β) =

P (m,β + w) + P (m,β − w)− 2P (m,β)

w2
,

∂2P

∂m∂β
(m,β) = [P (m+ h, β + w) + P (m− h, β − w)−

P (m+ h, β − w)− P (m− h, β + w)] / (4hw) .

After applying the spatial discretization to the right hand side, equation 3.8 can

be simplified to

∂P

∂t
= MP (3.9)

where the discrete probability distribution P is a 105 dimensional vector representing values

of the function at all grid points. M is a 105×105 matrix with entries determined by equation

3.8, using the discrete derivative formulas above. M does not change over time.

We used the Crank–Nicolson method[25] to solve equation 3.9. The Crank–Nicolson

discretization is

Pn+1 −Pn

dt
= M

Pn+1 +Pn

2

where n is the discrete time index, proportional to the number of interactions between

immune cells and target cells. This is a linear equation with variables Pn+1 and Pn. It can

be written in the form of
(
I− M

2 dt
)
Pn+1 =

(
I+ M

2 dt
)
Pn, where Pn+1 is solved for and

normalized to 1 at each step. The initial values of the probability distribution P (m,β, 0)
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were set to be uniform among the internal grid points and zero at the boundaries. The time

step was set as dt = 0.001.

Numerical result of Fokker-Planck equation

Figure 3.6A shows one example of the learned distribution of m and β param-

eters, derived from numerical integration of the Fokker-Planck equation. As expected, the

distribution of learned parameters is centered around the true ones. Due to finite memory,

some immune cells that have recently interacted with targets that provide unusually low

levels of stimulus underestimate the true signal mean in this environment, for example.

Heterogeneous adaptation to the environment results in heterogeneous responses

to target cells. Figure 3.6B shows the probability that an immune cell with particular

values of m and β responds to a set of aberrant target cells. Lower values of m and β result

in estimated signal distributions Pr(x) that are more concentrated around smaller values of

the signal x, making these immune cells more sensitive to aberrant targets (see equation 3.6).

Thus, even for immune cells that express identical sets of receptors, stochastic encounters

lead to a range in responsiveness to targets (Fig. 3.6C). This is a broad distribution of

probability of activation, instead of a peak distribution of probability of activating. The

main reason is that the antigen signal distribution N(4.5, 1) here is close to the signal

distribution NK cells adapt to, N(2, 1), responses of NK cells are more ‘stochastic’ than

that in Fig. 3.5, where the antigen signal distribution is N(5, 2) and the healthy signal

distribution is N(0, 1). The distribution of probability of activating is determined by the

difference between healthy signal distribution and unhealthy signal distribution, and the
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Figure 3.6: Steady state distribution of immune cell adaptation and responsive-
ness due to finite memory. A, Steady state joint probability distribution of learned
(m,β) parameters, estimated by numerical solution of the Fokker-Planck equation. Here
the true signal mean is µt = 2, and the true standard deviation is σt = 1. Here we used
memory values κ = 20 and α = 10. We observe that the learned parameters are indeed
concentrated around the true ones (µ̂ = m ≈ 2, σ̂2 = β/(α − 1) ≈ 1). B, Probability
of activation against aberrant targets with signal distribution µa = 4.5 and σa = 1 as a
function of (m,β). Immune cells that happen to have lower values of both m and β have
higher confidence that target cell signals should be more inhibitory, and thus they are more
sensitive to stimulus from aberrant targets. C, Net distribution of probabilities of activa-
tion against aberrant targets, obtained by combining the distributions in A and B. A wide
range of responses exist: some immune cells have a high probability of recognizing aberrant
targets, while others are relatively unlikely to respond.
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Figure 3.7: The heterogeneous responses of NK cell population hold in all indi-
viduals. Even for the same phenotype of NK cells and same target signal distribution, NK
cells can react heterogeneously due to the finite memory and randomness of signal. This
does not depend on the mean of healthy signal distribution. When we choose a different
healthy signal mean, µt = 0 instead of µt = 2 (Fig. 3.6), there still would be some target
signal distributions that NK cells response heterogeneously after training. Here we used
µa = 2.5 as the mean of target signal distribution.

absolute value of the healthy signal mean does not matter. Figure 3.7 shows the similar

result if we use the true mean of healthy signal to µt = 0 and calculate the responses of NK

cell to targets with mean µa = 2.5.
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Figure 3.8: Immune cell responses are diverse, but follow predictable trends
depending on the level of stimulation received from target cells. Distribution
of probabilities of activation for populations of immune cells with short (κ = 10, α = 5,
top) and long (κ = 100, α = 50, bottom) memory lengths. Each immune cell population
consisted of 105 cells with random initial values of m and β uniformly distributed between
[0, 5] and [0, 40], respectively. Immune populations were evolved through 103 target cell
encounters with signal distributions µt = 2 and σt = 1. Immune cells were then tested for
their probability to activate against aberrant targets that provide different levels of stimulus
(µa = (3, 4, 5, 6)). Here σa = 1 in all cases. For both shorter and longer memory lengths,
the probability of activation is low when µa is close to µt and high when µa ≫ µt. However,
the spread in activation probabilities is significantly larger for immune cell populations with
short memories.

Memory length controls the degree of heterogeneity in immune cell adaptation to

the environment, and consequently, the degree of heterogeneity in immune cell responses

to targets. Figure 3.8 shows responses of a panel of immune cell populations with dif-

ferent values of the memory parameters κ and α. Shorter memory values result in more

heterogeneous responses. Responses against aberrant targets are more reliable for cells with

longer memories. But importantly, even fairly short memory lengths result in behavior that

is qualitatively similar to immune cells with longer memories and greater precision. Short

memory lengths do not necessarily lead to pathological responses such as increased activa-
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tion against healthy targets or hyposensitivity to strongly activating target cells. And as

noted previously, long memories result in slow adaptation to different environments.

Our results on immune cell heterogeneity are consistent with experimental studies.

Investigations of the patterns of target cell killing have observed widely varying responses

for individual NK cells: some kill many targets efficiently, while others are inactive [98, 15,

40, 13, 111, 41]. This finding holds not only for diverse primary cells [98, 15, 40], but also

for NK cell lines [13, 111, 41], where cells in the population would be predicted to have

homogeneous expression and density of receptors.

3.4 Quantitative comparisons with experiments

To test the ability of our model to recapitulate experimentally-observed immune

cell behaviors, we analyzed three data sets involving both in vitro and in vivo experiments.

3.4.1 Comparisons with experimental data of exposing to two different

types of target cells

First, we considered a recent experiment in which primary human NK cells were

exposed to two different types of target cells [89]. The target cells were Daudi (a malignant

B cell line) cells that were either opsonized with rituximab, an antibody that can acti-

vate NK cells through CD16, or transfected to express MICA, a ligand for the activating

NKG2D receptor. In this experiment, NK cells were presented with two targets in differ-

ent orders (i.e., Daudi-rituximab/Daudi-rituximab, Daudi-rituximab/Daudi-MICA, Daudi-

MICA/Daudi-rituximab, and Daudi-MICA/Daudi-MICA) and it was recorded whether the
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NK cells killed neither target, the first target only, the second target only, or both target

cells. The authors observed that the MICA-expressing target cells appeared to be more

strongly activating and that the frequency of NK cell activation depended on past encoun-

ters.

To compare our model with the data of [89], we inferred parameters for the signal

distribution for each type of target cell (healthy cells, which NK cells encountered prior to

exposure to the unhealthy targets, Daudi-rituximab, and Daudi-MICA). For simplicity, we

assumed that the means of these signal distributions differed, but that they all had unit

standard deviations. We also set the mean of the healthy signal distribution to zero without

loss of generality. We then fit the parameters α (the memory length, with κ set to 2α), µR

(signal mean for Daudi-rituximab), and µM (signal mean for Daudi-MICA) only to data

where NK cells encountered two Daudi-rituximab or two Daudi-MICA targets in a row.

This would then allow us to predict how NK cells would respond to encounters with mixed

targets, Daudi-rituximab/Daudi-MICA or Daudi-MICA/Daudi-rituximab.

Because the expression for the probability of activation in our model is compli-

cated, we used approximate Bayesian computation (ABC) to fit the model parameters to

data. This method draws parameter values from a prior distribution and uses them to

generate simulated data that is compared with the real data, iteratively moving toward sets

of parameters that produce results that are most consistent with the real data. We used a

Python implementation of this method called Engine for Likelihood-Free Inference (ELFI)

[60]. We chose a uniform prior distribution between 1 and 50 for α, and Gamma prior dis-

tributions with shape and scale parameters k = 2 and θ = 2 for µR and µM . We used the
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sum of the squared differences between the simulated and experimental response frequen-

cies as our metric for assessing model fit to data. The best fit parameters were α = 21.5,

µR = 2.2, µM = 3.2. Although we only used data from NK cell encounters with two

Daudi-rituximab or two Daudi-MICA targets, the model accurately predicts the outcome

of Daudi-rituximab/Daudi-MICA and Daudi-MICA/Daudi-rituximab interactions. The to-

tal squared error of the best-fit model is 0.08 (Fig. 3.9).

As a reference, we also fit a simple ‘null’ model that includes constant probabilities

that an NK cell responds to Daudi-rituximab or Daudi-MICA, pR or pM , respectively. When

fit against all the data, we find pR = 0.33 and pM = 0.77. The null model fits the data

with a total mean squared error of 0.15. Thus, this null model has a higher error than for

our model, even though our model was only fit to a subset of the data.

3.4.2 Comparisons with series killing experiments

Second, we analyzed data from an experiment in which IL-2-activated primary NK

cells were presented with HeLa-CD48 targets [80]. HeLa-CD48 cells are HeLa cells trans-

fected to express CD48, a ligand for the activating receptor 2B4. In this experiment, NK

cells encountered up to six HeLa-CD48 targets sequentially, and the fraction of encounters

in which NK cells killed their targets was recorded. The authors observed that the fraction

of targets killed declined with subsequent encounters.

Our model is able to simulate the regulation of immune cells activation as NK cell

interact with same type of targets for multiple times. Next we are going to build a con-

nection between parameters and the experimental variables. The simulation is determined
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Figure 3.9: Our model could reproduce the changes in killing ability of NK cells
when interacting with targets in different orders. The first row is the simulation
result of our modified Bayesian model. The second row is result from ”null” model where
the probabilities of killing R and M are constant. The third row is the experimental result
presented in the paper [89]. We simulated 8000 NK cells interacting with two types of
targets, M and R, twice. It’s 2000 NK cells for each of [ RR, MM, RM, MR ]. RR means NK
cell encounters another R type target after encountering R; RM means NK cell encounters
an M type target after encountering R. Then we group NK cells by [ ’No kill’, ’kill the 1st
target’, ’kill the 2nd target’ and ’kill both targets’ ]. We assume the healthy signals satisfy
N(0, 12). We used data from RR and MM interactions for the parameter fitting. Since
signals of R and M are more activating than healthy signals, the means must be positive
and comparable to variance. We set the prior for mean as gamma function P (µa,d) ∼ x

4e
−x

2 .
We set prior for α as uniform distribution with domain (1, 50] since α must be larger than
1 and should be comparable with 2, the number of interaction in the experiment. We got
α = 21.5, µR = 2.2, µM = 3.2. For the ”null” model, we fitted pR and pM using all the
data and got pR = 0.33, pM = 0.77. It shows that our model could provide a more similar
result to experiments than the ”null” model. The squared error of our model is 0.08 and
the squared error of ”null” model is 0.15.
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by parameters (α, κ, µt, σt, µa, σa). α and κ are the memory parameters which determine

the number of interactions required to adapt to a new environment, or in other word, time

spent to adapt to a new environment. We assume that κ = 2α before, which ensures m and

β have nearly the same exponential decay factor. µ and σt determine the healthy (true)

signal distribution which is a normal distribution. µt is the mean and σt is the standard

deviation of the healthy signal distribution. µa and σa determine the antigen signal distri-

bution which is also a normal distribution. µa is the mean and σa is the standard deviation

of the antigen signal distribution. Because the scale of the normal distributions is arbitrary,

we can choose the scale that the healthy signal distribution is standard normal distribution

N(0, 1). Thus we only need to determine three parameters in total, α, µa, σa, to determine

the activation of immune cells against targets which has signal distribution N(µa, σa).
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Figure 3.10: Our model could provide a similar serial killing result as experiment. The
killing ratio decreases as expected in a serial killing event. The blue bar is the result
from this model and the red bar is the result from the experiment. In this simulation,
the number of immune cells is 1000. The error bar is calculated from experimental data
wbar =

√
p(1− p)/n, p is the probability of killing and n is the number of cells. The fitted

parameters are α = 24.82, µ = 6.85, σ = 2.18.

To test our ability to recover these results, we fit the memory length α and the

mean of the signal distribution for the HeLa-CD48 cells, µH , to the experimental data. As

above, we assumed that the healthy signal distribution was normal with zero mean and

unit variance, and we also fixed the variance of the distribution for HeLa-CD48 cells to

one. We used the same prior distributions for α and µ as above. Our metric for assessing

model fit was the squared difference between the simulated and experimental response

frequencies, normalized by the uncertainty in the experimental response frequencies due

to finite sampling. We used
√
p(1− p)/n as the experimental uncertainty in response

frequencies, where p is the empirical response frequency and n is the number of individual

cells from which this frequency was determined. We found a set of best-fit parameters α =
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25.3 and µH = 4.7, which lead to an excellent fit with the experimental data. Remarkably,

we infer almost exactly the same value of the memory length α as we inferred for the first

experiment. Here, a ‘null’ model with a constant probability of response will of course be

unable to reproduce the observed decline in response frequency as an individual NK cell

encounters more target cells.

Thus in our model, immune cells will gradually reduce the reaction against one

type of targets if they keep interacting with those targets since they are changing their

internal representation of the environmental signal distribution and are adapting to the

new environment. This agrees with the experimental result that the killing rate decreases

in a serial killing event [80]. According to the experimental data, we can get a set of

parameters, which could provide a similar serial killing result (Figure 3.10).

3.4.3 Comparisons with experiments that NK cells transferred fromMHC

I deficient mice to normal mice

Finally, we analyzed data from an experiment in which NK cells were transferred

between between MHC-deficient mice and normal mice [24]. After transferred to the new

host, transferred NK cells were then measured for the production of IFNγ in response to

anti-NK1.1 stimulation. The authors observed that NK cell responses on the host mouse:

MHC-deficient mice were hyporesponsive compared to normal mice. Mature NK cells trans-

ferred from one type of mouse to another adapted over the course of several days to respond

like those that had originally developed in the mouse to which they were transferred, demon-

strating the plasticity of NK cell responses.
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To compare our model with this data, we fit the mean of the signal distribution in the

MHC-deficient mice µD and the anti-NK1.1 stimulus µA, assuming that the signal distri-

bution in normal mice follows a normal distribution with mean zero. As in the previous

cases, we fixed the standard deviations of the signals in each environment to one. Here,

we fit these parameters simply based on the typical probability of response to anti-NK1.1

stimulation for NK cells from normal or MHC-deficient environments, yielding µA = 1.5

and µD = 0.6. For consistency with with the inferred memory parameters in the past two

experiments, we set α = 20. Assuming roughly one NK-target cell interaction per hour,

these parameters fit very well with the experimental data (Figure 3.11).

3.5 Comparison with explicitly time-dependent inference meth-

ods

The model that we have described above is able to capture signals in changing

environments through the use of finite, fixed memory parameters α and κ. However, this

approach does not explicitly model a time-varying signal distribution (for example, one

characterized by a time-dependent mean µt and standard deviation σt). One may consider

how the approach that we have used would compare with inference methods that attempt

to estimate parameters for a time-varying distribution.

3.5.1 Dynamic Bayesian network estimation

To develop such a model, we used a dynamic Bayesian network (DBN) to estimate

time-dependent signal means and precisions from data. In this framework, we assume that
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Figure 3.11: Our model could predict the changes of killing ability when NK
cells from MHC-I deficient mice are transferred to wild type mice. A is the
simulation result, which shows the changes of the probability of activating(POA) when NK
cells encounter more and more targets in a new environment. B is the experimental result,
which shows the changes in the proportion of NK cells that responded to stimuli. The blue
line corresponds to transferring NK cells from wild-type mice to wild-type mice. The green
line corresponds to transferring NK cells from MHC-I deficient mice to MHC-I deficient
mice. The black line corresponds to transferring NK cells from MHC-I deficient mice to
wild type mice. Here we assume signals from wild type mice satisfy the standard normal
distribution,N(0, 12), and memory α = 20. We assume signals from MHC-I deficient mice
and testing stimulus signals satisfy normal distributions as well but with different means.
We use the ELFI for the parameters fitting. Since signals from MHC-I deficient mice and
stimuli signals are more activating than healthy signals, the means must be positive and
comparable to variance. We set the prior function for the mean as P (µa,d) ∼ x

4e
−x

2 , whose
domain is (0,∞). And we got N(0.59, 12) for MHC-I deficient environment and N(1.49, 12)
for stimulus signals. Then we simulated the response of NK cells in these two environments
and the response of NK cells after being transferred from MHC-I deficient environment to
wild type environment. It shows that our model could capture the recovery of killing ability
when NK cells are transferred from MHC-I deficient environment to a wild environment.

data is drawn from a normal distribution with mean µt and precision λt. For mathematical

convenience, we will use a change of variables to work with the natural logarithm of the
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precision θt = ln(λt) instead of λt directly. The posterior probability for the parameters µt,

θt conditioned on all past data x1:t = {x1, x2, . . . , xt} is then

P (µt, θt|x1:t) = P (xt|µt, θt)

∫ ∫
dµt−1 dθt−1

P (µt, θt|µt−1, θt−1)P (µt−1, θt−1|x1:t−1)

Z
,

where Z is a normalization factor. ...

We also need to define how the (unobserved) signal mean and log-precision vary

over time. Here for simplicity we will assume that both variables are related to each other

by independent normal distributions, that is,

P (µt, θt|µt−1, θt−1) ∝ e−
κD
2

(µt−µt−1)
2

e−
κD
2

(θt−θt−1)
2

.

Here κDBN is a parameter that describes how closely-related signal means and precisions

from adjacent time points are to one another. In other words, this parameter describes a

natural ‘memory length’ for signals in the environment.

Figure 3.12: Inference in Dynamic Bayesian Networks. This shows the structure of
the network. The value of observation in time point i, xi, is determined by the hidden
parameters µi, λi, which change over time. We have to estimate the changing hidden pa-
rameters according to what we have observed.

3.5.2 Derivative of posterior derivation

To model the time-varying signal distribution, we used dynamic Bayesian network

(DBN) to estimate the mean µ1:t and precision λ1:t sequences from observed signals sequence
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x1:t. Given the network described in Fig. 3.12 that signal at time t, xt, depends on (µt, λt)

and (µt, λt) depends on previous values (µt−1, λt−1), the joint probability would be

P (µ0:t, λ0:t, x1:t) = P (µ0, λ0)
t∏

k=1

P (µk, λk|µk−1, λk−1)
t∏

k=1

P (xk|µk, λk) .

P (µ0, λ0) would be the prior distribution which is the initial guess of parameters distribution

and does not depend on observations. P (xk|µk, λk) describes the how likely xk is observed

given µk, λk which is a normal distribution xk ∼ N(µk, λk). P (µk, λk|µk−1, λk−1) describes

the relation between parameters in the previous step (k − 1) and step k.

Without further information, a reasonable restriction is that values of one pa-

rameter in adjacent steps should be close to each other. For simplicity, we used normal

distributions that the present value satisfy a normal distribution which is centered around

the previous value. For the mean and precision, we assume µk ∼ N(µk−1, 1/κD) and

λk ∼ N(λk−1, 1/κD), where κD is the parameter determines the ”closeness” between values

in adjacent steps. The full posterior is

P (µ0:t, λ0:t|x1:t) = P (µ0, λ0)
t∏

k=1

P (µk, λk|µk−1, λk−1, x1:k) .

The posterior at time t(t ≥ 1) is

P (µt, λt|x1:t) =
∫ ∫

dµt−1 dλt−1P (µt−1, λt−1|x1:t−1)P (µt, λt|µt−1, λt−1, x1:t)

=

∫ ∫
dµt−1 dλt−1P (µt−1, λt−1|x1:t−1)P (µt, λt|µt−1, λt−1, x1:t−1)P (xt|µt, λt)

= P (xt|µt, λt)

∫ ∫
dµt−1 dλt−1P (µt−1, λt−1|x1:t−1)P (µt, λt|µt−1, λt−1) .

(3.10)

For a given prior P (µ0, λ0) and observations x1:t, we can numerically solving equation 3.10

to calculate the posterior distribution for each step. We use the location of the peak point as
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the estimated mean and logarithm of precision. For instance, we generated observations x1:t

from normal distributions N(µt, 1/λt) where µt = 4 sin 2πt
T , λt = 1 + 1

2 sin
2πt
T , and T = 100

is the period. We used normal distributions for prior distribution, P (µ0) = N(0, 1), P (λ0) =

N(2.5, 1). We solved the equation 3.10 in the domain of µ × λ = [−10, 10] × (0, 5]. The

results for different κD are shown in Fig. 3.13 where for smaller κD (κD is much smaller

than the period of true mean and precision), the estimation captures the change of true

values. For larger κD, the estimation is more stable which is reasonable since this agrees

with the definition of κD. The step length dx = 0.1 whcih divided the domain to a 200×50

grid. This step length is small enough to give good result. Using a smaller step length

dx = 0.05 increases the computational cost a lot but does not increase accuracy much.

Our model has similar performance as the DBN model (shown in next section.)

Now we are curious what is the update mechanism of estimated mean and precision in DBN

model. How is it comparing with our model? Could we build a connection between the

memory parameter κ in our model and κD in the DBN model? Next we are going to make

a comparison of these two models. We will see that the update of parameters of two models

are kind of similar to each other and we can establish a rough connection between κ and

κD by using variational Bayesian approximation.

3.5.3 Comparison of the update mechanism of our model and the DBN

model

For DBN model, the posterior at time t is given by equation 3.10. The integral

is difficult to calculate after the first step (t ≥ 2), which results in the posterior cannot be
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Figure 3.13: DBN gives a good estimation of the mean and precision. For sinusoidal
mean and precision, small κD gives good adaption. Large κD gives more stable estimation.
To some extent, κD is similar to the memory parameters, α and κ. Here we run the
simulation for 200 steps. At each step, one data point is drawn from normal distribution
with true mean µ and true precision λ. The dash lines are the curves for true values. We
use 4 sin 2πt

100 as the dynamic true µ and 1 + 1
2 sin

2πt
100 as the true λ.

solved analytically. However, since the distribution is convex, proved in numerical result, we

can calculate the posterior peak point, see how it is connected to the previous distribution,

and use this as an indicator of the DBN model update mechanism. The posterior at time t

is

P (µt, λt|xt) = PL(xt|µt, λt)

∫ ∫
dµt−1 dλt−1P0(µt−1, λt−1)PT (µt, λt|µt−1, λt−1) ,

where

PL(xt|µt, λt) =

√
λt

2π
e−

1
2
λt(xt−µt)2
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and

PT (µt, λt|µt−1, λt−1) =

√
κD
2π

e−
κD
2

(µt−µt−1)2
√

κD
2π

e−
κD
2

(λt−λt−1)2 .

At the peak point, ∂P (µt,λt|xt)
∂µt

= 0, ∂P (µt,λt|xt)
∂λt

= 0. Substituting the posterior into the

equation, we will get the result:

µt =
λt

λt + κD
xt +

κD
λt + κD

∫∫
µt−1P0PTdµt−1 dλt−1∫∫
P0PTdµt−1 dλt−1

.

λt =
1

2

⟨λt−1⟩ −
(xt − µt)

2

2κD
+

√
2

κD
+

[
⟨λt−1⟩ −

(xt − µt)2

2κD

]2 ,

where ⟨λt−1⟩ =
∫∫

λt−1P0PT dµt−1 dλt−1∫∫
P0PT dµt−1 dλt−1

. Calculation details are attached at the end of this

section. For the update of µ, the peak of posterior is determined by the linear combination

of the new observation and some transition of historical learned distribution. The update

of precision is a little bit complicated, while for large κD, the last term under the square

root can be simplified as:√
2

κD
+

[
⟨λt−1⟩ −

(xt − µt)2

2κD

]2
=

√
⟨λt−1⟩2 − 2⟨λt−1⟩

(xt − µt)2

2κD
+ (

(xt − µt)2

2κD
)2 +

2

κD

≈ ⟨λt−1⟩+
1

2⟨λt−1⟩

[
−2⟨λt−1⟩

(xt − µt)
2

2κD
+ (

(xt − µt)
2

2κD
)2 +

2

κD

]
≈ ⟨λt−1⟩ −

(xt − µt)
2

2κD
+

1

κD⟨λt−1⟩

The second step used Taylor expansion,
√
x+ d ≈

√
x + 1

2
√
x
d, d ≪ 1. Thus the update of

precision can be approximated as

λt = ⟨λt−1⟩+
1

2κD

[
1

⟨λt−1⟩
− (xt − µt)

2

]
.
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In summary, the update of the DBN model is

µt =
λt

λt + κD
xt +

κD
λt + κD

∫∫
µt−1P0PTdµt−1 dλt−1∫∫
P0PTdµt−1 dλt−1

.

λt = ⟨λt−1⟩+
1

2κD

[
1

⟨λt−1⟩
− (xt − µt)

2

] (3.11)

In our model, we used the mean value of µ and λ as the estimated mean and precision

equation 2.2, which is µ̂ = m, σ̂2 = β
α−1 . Since the normal-gamma function (distribution

of posterior in our model) is convex, we can show that the peak point is close to the mean

point. The peak point of our model is calculated by ∂P (µ,λ|m,β,α,κ)
∂µ = 0, ∂P (µ,λ|m,β,α,κ)

∂λ = 0,

which gives µ = m,λ =
α− 1

2
β . The update of the peak is µ′ = m′ = κµ+x

κ+1 and λ′ =
α− 1

2
β′ ,

substituting β′ from equation 3.5 into it we will get 1
λ′ =

α−1
α− 1

2

1
λ +

1
2

α− 1
2

κ
κ+1(x −m)2 which

is the same as the update of estimated mean and precision since σ2 = 1
λ . The update of

precision can be approximated by

1

λ′ =
α− 1

α− 0.5

1

λ
+

0.5

α− 0.5

κ

κ+ 1
(x−m)2

λ′ =
1

α−1
α−0.5

1
λ + 0.5

α−0.5
κ

κ+1(x−m)2

=
α− 0.5

α− 1
λ

1

1 + 0.5
α−1

κ
κ+1(x−m)2λ

≈ α− 0.5

α− 1
λ

[
1− 0.5

α− 1

κ

κ+ 1
(x−m)2λ

]
= λ+

0.5

α− 1
λ2

[
1

λ
− α− 0.5

α− 1

κ

κ+ 1
(x−m)2

]
.

In summary, the update of our model is

µ′ =
κµ+ x

κ+ 1

λ′ = λ+
0.5

α− 1
λ2

[
1

λ
− α− 0.5

α− 1

κ

κ+ 1
(x−m)2

]
.

(3.12)

The formats of update of our model and DBN model, equation 3.11 and equation 3.12,

are similar to each other. The main difference is that the change in DBN model is mainly
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determined by κD while in our model, it mainly determined by α, κ. In the next section,

we are trying to build a connection between them.

Following is the calculation details for the peak point of posterior distribution. For

the partial difference over µt, we have

0 =
∂P (µt, λt|xt)

∂µt

0 =

∫ ∫
dµt−1 dλt−1P0(µt−1, λt−1)

∂

∂µt
[PL(xt|µt, λt)PT (µt, λt|µt−1, λt−1)]

0 =

∫ ∫
dµt−1 dλt−1P0[(

∂

∂µt
PL)PT + PL(

∂

∂µt
PT )]

0 =

∫ ∫
dµt−1 dλt−1P0[−λt(µt − xt)PLPT − κD(µt − µt−1)PLPT ]

This gives :

(λt + κD)µt

∫ ∫
dµt−1 dλt−1P0PLPT

= λtxt

∫ ∫
dµt−1 dλt−1P0PLPT + κD

∫ ∫
dµt−1 dλt−1µt−1P0PLPT

µt =
λt

λt + κD
xt +

κD
λt + κD

∫∫
µt−1P0PTdµt−1 dλt−1∫∫
P0PTdµt−1 dλt−1

.

For the partial difference over λt, we have

0 =
∂P (µt, λt|xt)

∂λt

0 =

∫ ∫
dµt−1 dλt−1P0(µt−1, λt−1)

∂

∂λt
[PL(xt|µt, λt)PT (µt, λt|µt−1, λt−1)]

0 =

∫ ∫
dµt−1 dλt−1P0[(

∂

∂λt
PL)PT + PL(

∂

∂λt
PT )]

0 =

∫ ∫
dµt−1 dλt−1P0[

1

2
λ−1
t − 1

2
(µt − xt)

2PLPT − κD(λt − λt−1)PLPT ]

This gives

1

2
λ−1
t − 1

2
(µt − xt)

2 − κD(λt −
∫∫

λt−1P0PTdµt−1 dλt−1∫∫
P0PTdµt−1 dλt−1

) = 0 .
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Considering λt > 0, the solution is

λt =
1

2

⟨λt−1⟩ −
(xt − µt)

2

2κD
+

√
2

κD
+

[
⟨λt−1⟩ −

(xt − µt)2

2κD

]2 , (3.13)

where ⟨λt−1⟩ =
∫∫

λt−1P0PT dµt−1 dλt−1∫∫
P0PT dµt−1 dλt−1

.

3.5.4 Connection between memory parameters in Modified Bayesian in-

ference and transition factor in Dynamic Bayesian Network

Since the update mechanisms are similar to each other, we wondered if we could

build a connection between the memory parameter κ and the transition factor κD, i.e. for

given κD to find the equivalent κ, then run the simulation and compare the result which

gives the comparison of performance between our model and the DBN model.

Since the posterior of DBN model is difficult to calculate, here we used variational

Bayesian approximation to approximate the posterior. Variational Bayesian methods is

often used in dealing with complicated posterior in Bayesian inference. Instead of calculat-

ing the true posterior, it finds a approximate distribution Q to approximate the posterior

P (µt, θt|x1:t). The Kullback–Leibler(KL) divergence, DKL =
∫
Q ln Q

P , describes the ’close-

ness’ of P and Q. We used the mean-field form of variational Bayesian in which Q is fac-

torized into single-variable factors, Q(Z) =
∏

i q(zi) where Z = {z1, ..., zi} are the unknown

variables and for every q(zi), it is normalized function
∫
dziq(zi) = 1. It has been proved

that the KL divergence gets the minimum value when q(zi) = 1
Z exp ⟨E(zi, z̄i, D)⟩Q(z̄i)

for

all the variables[31], where D is the observed data, z̄i means all other variables except zi,

E(zi, z̄i, D) = lnP (Z,D) and ⟨E(zi, z̄i, D)⟩Q(z̄i)
means integrating E(zi, z̄i, D) and Q(z̄i)

over z̄i.
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In our case, the factorization can be written as Q(µt, θt) = q(µt)q(θt). The

optimal Q is achieved when ln q(µt) =
∫
q(θt) lnP (µt, θt, xt) dθt + lnZµt and ln q(θt) =∫

q(µt) lnP (µt, θt, xt) dµt + lnZθt . The Zµt and Zθt are for normalisation. We are going

to prove that if we use a normal distribution for q(µt−1), the optimal q(µt) would be a

normal distribution as well. Thus if we use a normal distribution as the prior for P0(µ0) in

P0(µ0, λ0) = P0(µ0)P0(λ0), we will get normal distributed qt=1,..,T (µt).

We assume that q(µt−1) ∼ N(mt−1, 1/rt−1), thus P (µt−1, λt−1) is replaced with

q(µt−1)q(λt−1). The posterior P (µt, λt|xt) can be written as :

P (µt, λt|xt) = P (xt|µt, λt)

∫ ∫
dµt−1 dλt−1P (µt−1, λt−1)P (µt, λt|µt−1, λt−1)

∝
√
λte

− 1
2
λt(xt−µt)2

∫ ∫
dµt−1 dλt−1 {e−

1
2
[rt−1(µt−1−mt−1)2+κD(µt−µt−1)2]

× e−
κD
2

(λt−λt−1)2q(λt−1)}

∝
√
λte

− 1
2
λt(xt−µt)2 × e

− 1
2

κDrt−1
κD+rt−1

(µt−mt−1)2 ×
∫

dλt−1 e
−κD

2
(λt−λt−1)2q(λt−1) .

Since lnP (µt, λt, xt) = lnP (µt, λt|xt)− lnP (xt) we first calculate the log-posterior

ln (P (µt, λt|xt)) ∝
1

2
ln(λt)−

1

2
λt(xt − µt)

2 − 1

2

κDrt−1

κD + rt−1
(µt −mt−1)

2

+ ln(

∫
dλt−1 e

−κD
2

(λt−λt−1)2q(λt−1)) .

For q(µt),

ln(q(µt)) =

∫
q(λt) lnP (µ(t), λ(t), x(t)) dλt + lnZµt

∝ −1

2
⟨λt⟩(xt − µt)

2 − 1

2

κDrt−1

κD + rt−1
(µt −mt−1)

2

(3.14)

where ⟨λt⟩ =
∫
λtq(λt) dλt. It is obvious that q(µt) is a normal distribution, we can calculate

the location of peak value(mean) mt and precision rt by calculating the first and second

order derivative of equation 3.14, d ln q(µt)
dµt

= 0(µt = mt) and
d2 ln(q(µt))

d2µt
= −rt. Substituting
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ln q(µt) into these two equations, we will get

mt =
⟨λt⟩xt + κDrt−1

κD+rt−1
mt−1

⟨λt⟩+ κDrt−1

κD+rt−1

rt = ⟨λt⟩+
κDrt−1

κD + rt−1
.

The update of mean is similar to our model, where the update is

⟨µ⟩ = m, m
′
=

κm+ x

κ+ 1

which means if κ is equivalent to

k =
κDrt

κD + rt

1

⟨λt⟩
, (3.15)

they should give similar results. We calculated rt as the inverse of variance of the mean

rt =
1

var(
∫
P (µt,λt|xt) dλ)

, and ⟨λt⟩ as the mean of precision, ⟨λt⟩ =
∫∫

dµt dλt λtP (µt, λt|xt).

Here if we using the mean of sequence k defined by equation 3.15 as κ,

κ =
1

T

T∑
t=1

k =
1

T

T∑
t=1

κDrt
κD + rt

1

⟨λt⟩
,

our modified Bayesian inference and Dynamic Bayesian Network would have similar per-

formance in estimating signal distribution of a changing environment(Fig. 3.14). In other

word, we can always find a κ in our model which is equivalent to the κD in DBN and they

have similar performance in estimating dynamic signal environments. Both models work

well for a slow-varying distribution.

3.6 Inference with signal saturation

In the analysis above, the range of the signal x is in principle unbounded. How-

ever, immune cells have a finite number of receptors, limiting the magnitude of activating
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Figure 3.14: Our model gives similar results if proper κ is chosen. Using the mean
value of sequence k defined by equation 3.15 as κ, our model has similar performance to
DBN whether it is short memory or long memory. Here we use same parameters setting as
Fig. 3.13. We run the simulation for 200 steps. Each step, one signal is generated from the
normal distribution, N(4 sin( 2πt100), 1/[1 +

1
2 sin(

2πt
100)]). We first run DBN and calculate the

equivalent κ. Using the equivalent κ and interact with the same signal sequence, our model
performs as well as DBN in general. Thus we can always find a κ which is equivalent to κD
in DBN. Our model is as good as DBN when estimating dynamic signal environments.

or inhibitory stimulus that they can receive. To mimic this saturation effect, we consid-

ered sigmoidally transforming signals x relative to the current estimated signal mean m.

Specifically, we considered a transformed signal x′ given by

x′ = m+ r

[
2

1 + e−(x−m)
− 1

]
,

where r sets the range of signals that can be received, which lies in [m− r,m+ r]. Because

strong activating and inhibitory signals are clipped to a finite range, adaptation to environ-

ments that differ substantially from the current one is slower (Figs. 3.15, 3.16). In this

model, the estimated mean ultimately converges to the true signal mean but the standard

deviation converges to a different, smaller value (which we call the transformed standard

deviation, σtf ) because the sigmoidal transformation reduces the signal variance.
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Figure 3.15: Immune cell adaptation is more gradual with signal saturation. The
estimated mean (A) and standard deviation (B) converge toward the true mean and trans-
formed standard deviation in a model with signal saturation. Parameters and initial con-
ditions are the same as those in Fig. 2. Signal saturation changes the expected standard
deviation of the signal when the model is perfectly adapted because large deviations are
suppressed. We have thus replaced the true standard deviation σt with the transformed
standard deviation σtf in B.

3.7 Conclusion

Theoretical analyses of immunity have often focused on the adaptive immune sys-

tem and antigen-specific recognition of foreign material to distinguish self from nonself

[26, 29, 78, 69]. Here, we described an ‘algorithm’ for self/nonself discrimination that oper-

ates in a very different way. Rather than learning to detect specific pathogens, our model

immune cells learn the properties of healthy cells in their current environment, which allows

them to respond to aberrant cells that may be infected, stressed, or transformed. Learning

in our model is ‘unsupervised’ in the sense that immune cells do not have external infor-

mation about whether the targets that they encounter are healthy or not. Nonetheless, it

operates reliably following the simple assumption that the great majority of targets that
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Figure 3.16: Immune cell adaptation is more gradual with signal saturation. As
in Fig. 3.4, an immune cells adapts to different signal distributions in ‘normal’ and ‘stimu-
latory’ environments in a model with signal saturation. Adaptation is more gradual due to
signal saturation, so we have extended the number of encounters in the stimulatory environ-
ment to allow for complete adaptation. As in Fig. 3.4, the immune cell is able to reliably
activate against aberrant targets when it is adapted to a normal environment, but it loses
this ability after long times in a stimulatory environment. Compared to a model without
signal saturation, adaptation is more gradual and less noisy. In addition, the immune cell
retains the ability to activate against aberrant targets for a longer time after being placed
in the stimulatory environment.

immune cells encounter are likely to be normal, healthy cells. Our model captures multiple

experimentally observed behaviors of innate immune cells. These include adapting responses

to different environments, the development of hyposensitivity after prolonged exposure to

stimulus, and the eventual recovery of normal function after the stimulus is withdrawn. At

present, however, little data exists to quantitatively test predictions for how past encounters

with target cells affect future responses. Future measurements of the kinetics of adaptation

would be of great interest.
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Recent work has also applied ideas Bayesian inference to immunity, focusing in

particular on rules for optimizing the adaptive immune repertoire [68, 69]. There, models

were constructed to optimally allocate immune cells with different antigen specificities to

combat a shifting environment of pathogens. Our work is similar in that we also consider

adaptation to varying environments. However, our model concerns the adaptation of single

immune cells, and do not make detailed about how the local environment will vary over

time. The parameters κ and α, however, do set a natural time scale over which memory

of the environment is retained. Other intriguing studies have developed analogies between

machine learning and immunity [83, 109], including a model of negative selection in T

cells, where encounters with self peptides are central [109]. More generally, the problem

of estimating time-varying signal distributions has some similarities with estimation using

Kalman filters [105, 46]. An important difference in the present case is that the signal

variance must also be estimated, and the way that the signal mean and variance change is

unknown.

Similarly, our model can be compared with the discontinuity theory of immunity

[79], which posits that immune cells in general respond to sharp changes in the environ-

ment. One of the main differences between our model and the discontinuity theory is that

we explicitly consider the variance of signals in the environment. Though additional exper-

iments will be needed to explore these models in quantitative detail, there is some evidence

that variance in ligand expression is important. A recent experiment showed that MHC

class I-deficient hematopoietic cells are spared in mice that also have hematopoietic cells

with normal levels of MHC class I expression, but only if the MHC class I-deficient cells
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comprise a substantial fraction of all cells [6]. Our model can be extended to incorporate

additional features of immune-target interactions. One important extension of the model

would be to explicitly consider signaling through multiple pairs of receptors and ligands.

NK cells and macrophages use a wide array of receptors [55, 95]. Intriguingly, recent studies

have revealed dramatic heterogeneity in the complement of receptors that individual NK

cells express [43, 90]. Quantifying the ability of populations of immune cells with differ-

ent patterns of receptor expression to collectively recognize target cells could shed light on

principles governing the innate immune repertoire. Though we have focused on cells of

the innate immune system, inspired especially by NK cells and macrophages, the model

we developed may also apply more broadly to other cell types. There are some conceptual

similarities between our model and the ‘tunable threshold’ model, originally applied to T

cell signaling [38, 39]. Recent work demonstrated that T cells adapt to basal levels of T cell

receptor (TCR) signaling, and that cells with stronger basal signaling were less responsive

[114]. Importantly, this work also demonstrated that even T cells with identical TCRs ex-

hibit heterogeneous responses to stimulus [114], which is one of the main predictions of our

model.

3.8 Data and code

Data and code used in our analysis is available at the GitHub repository https:

//github.com/bartonlab/paper-innate-immune-adaptation. This repository also con-

tains Jupyter notebooks that can be run to reproduce the results presented here.
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Chapter 4

Extend the model to high

dimensional signal processing

We have talked about our one-dimensional model, which we assumed the signal is

a real number and did not take the signal generation process into consideration. However,

we know that there are dozens of known receptors that play a role in activating or inhibiting

NK cells. Next we would like to talk about the signal generation process. We studied the

distribution of receptors in single NK cell and the receptor distributions in NK populations,

which gives interesting results. From experimental single cell sequencing, we know that the

number of expressed receptor(types) on each NK cell is small. We compared this sparse

distribution with other types distribution like express all and uniform distribution, we found

that sparse expression has some advantages, such as increasing the signal to noise ratio when

reacting to unhealthy signals, increasing diversity and costing less energy.
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4.1 Introduction to receptors distribution of NK cells

Researchers in the field have identified numerous types of activating and inhibitory

receptors. However, the expression of these receptors on natural killer (NK) cells is not yet

fully understood. Typically, in a single experiment, only a subset of NK cells expressing

specific receptors is investigated. As more and more studies reveal the large number of NK

cell phenotypes, this diversity has sparked considerable interest among researchers.

It’s important to clarify that NK cells do not express all these receptors simultane-

ously. Rather, each individual NK cell expresses a limited fraction of the available receptors.

When considered at the population level, this results in a complex assemblage of NK cells,

each expressing a different set of receptors and forming a diverse, multifaceted population.

Collectively, these varied NK cells provide robust protection for the host, with each subset

of NK cells targeting specific types of threats.

The distribution of receptors on NK cells is likely a complex and dynamic process.

For the purpose of simplicity in our discussion, we’ll set aside the specifics of which receptors

are expressed by individual NK cells. Instead, we’ll focus on the fact that NK cells do not

express all activating and inhibitory receptors. We’ll consider the diversity in receptor

expression across NK cells, and in conjunction with the adaptive ability of these cells, we

aim to explore why this is the case and what advantages this setup may confer.

4.2 Sparse receptors distribution

In the paper, ”Genetic and environmental determinants of human NK cell diversity

revealed by mass cytometry” by Horowitz et al. [43], they used mass cytometry to research
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on the diversity of receptor expression of NK cells. Given the 28 receptors expression on

12 healthy and independent donors and 5 pairs of monozygotic twins, the results showed

that the expression of NK cell receptors was super diverse. No phenotype accounts for more

than 7% of total NK cells. In the top 50 most frequent phenotypes, only 14 out of the 28

receptors were expressed. The top 50 most frequent phenotypes account for only 15% of

total cells. Not only the activating receptors, the expression of inhibitory receptors is also

low[43].

As mentioned before, instead of focusing on the specific receptor expressed by a NK

cells, we focused more on the distribution of receptors. First, we looked at the distribution

of number of receptors expressed by each NK cell. Thanks to Amir Horowitz, we got the

experimental data used in the paper[43]. The data comes from mass cytometry technique.

Next I will first given an introduction to the data and mass cytometry, then I will show the

result of distribution of receptors.

4.2.1 Introduction to mass cytometry

Mass cytometry represents a novel technology employed in the examination of

receptors and small molecules in individual cells. It operates on the principle of using

antibodies that bind to distinct elements. As these elements possess different mass, the

measurement of this mass via mass spectrometry can reveal the quantity of antibodies

binding to a particular element.

This innovative technology stands in contrast to traditional flow cytometry, which

uses fluorescent dyes to detect the presence of specific substances. Instead, mass cytometry

utilizes elements or metal tags for detection, providing several benefits. For one, the over-
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lap between different colors, a common issue in traditional flow cytometry, is no longer a

concern with mass cytometry. Additionally, metal tags are typically more stable compared

to fluorescent dyes, enhancing the reliability of detection.

Another significant advantage of mass cytometry is the sheer range of different

masses it can detect. The number of elements with distinct masses greatly outnumbers the

variety of fluorescent dyes available. Consequently, mass cytometry is capable of providing

a high-dimensional perspective of receptor expression. It enables the simultaneous mea-

surement of many receptor expressions on a single cell, offering a more comprehensive view

of cellular function and composition.

Here we are going to use the data from mass cytometry to find the receptor distri-

bution of NK cells. The high-dimensional data generated through this technology will allow

us to gain a deeper understanding of the diversity and specificity of receptor expression

within the NK cell population. By harnessing the power of mass cytometry, we aim to

unlock new insights into the complex world of cellular interactions and functions.

4.2.2 Introduction to the experimental data

The provided data set comprises 22 “*.fcs” files, each of which corresponds to data

from a unique individual. These files encompass data from 12 independent subjects and five

sets of twins. With the use of RStudio, we’re able to import this data and transform it into

a more manageable dataframe format. In the dataframe, rows represent individual cells and

columns correspond to measured parameters. These parameters include the 28 receptors

under investigation. Each row provides the receptor readout for a single cell, offering a

detailed view into the individual cellular responses within the larger dataset.
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4.2.3 Data analysis

The first thing to do with the data is identifying NK cells. Because the cells are

from donors, not cell lines, thus we need to first select NK cells out of all the cells. In

the paper, they mainly used a sequential gating to identify NK cells. Here we use the

same method to define NK cells. Please look at the work flow demonstrated in Figure S2

in the paper[43] for details. First by selecting rows that satisfy 2000 > DNA1.Ir191 >

100, 2000 > DNA2.Ir193 > 100, we select all intact cells. Here Ir191, Ir193 are two

particles attached to DNA in this experiment, and thus wrote as DNA1.Ir191. In the

following, A.B format means particle B is attached to A and in experiment, we detect

the particle to show the abundant of parameter A. Second, we select cells with short cell

length celllength < 65 and smaller In115 < 200 to select those live singlet cell since live

cells will exclude DOTA-maleimide and in the experiment DOTA-maleimide is attached

with particle In115. Third, we select those CD3.Cd112 < 100 to exclude T cells. Fourth,

we select cells with smaller CD33 to avoid macrophages, CD33.T b159 < 100. Fifth, we

select cells with low expression of CD19 to exclude B cells, CD19.Nd142 < 5. Finally,

NK cells are defined as expressing either CD56 or CD16, excluding those CD56 negative

cells expressing (HLA − DR, HLA.DR.Y b172 < 150|CD56.Y b174 > 20) and (2500 >

CD56.Y b174 > 5|1000 > CD16.Sm149 > 15).

For each donor, we used the same conditions to select NK cells. Finally, we got

the number of NK cells identified from donors ranged from 4000 to 28000. The number

of NK cells from different donors are shown in tables below. Table 4.1 shows the number

of NK cells from the 12 independent donors.Table 4.2 shows the number of NK cells from
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Figure 4.1: Our research findings displayed a phenotype distribution closely resembling that
outlined in the referenced paper by Horowitz et al.[43]. This similarity suggests that the
NK cells chosen for our study align closely with those used in the previous investigation.
An intriguing observation from our study was that amongst the six inhibitory receptors
considered, most NK cells expressed only one or two, rather than all of them.

the 5 sets of twins. In total we got the receptor distributions of 295270 NK cells. Next,

to determine if one receptor is expressed or not, we need to set a threshold value of each

receptor expressed to do the Boolean analysis. Here we used the same threshold used in the
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paper [43]. Comparing with the result in the paper, our selection is good, we got similar

phenotypes distributions to the result in the paper, Fig. 4.1. It proves that we successfully

selected NK cells and the phenotype distribution of NK cells agrees with the result from

the author.

Table 4.1: Number of NK cells from 12 independent donors

Donors donor1 donor2 donor3 donor4 donor5 donor6

Number of NK cells 6829 6736 10082 14031 10722 9807

Donors donor7 donor8 donor9 donor10 donor11 donor12

Number of NK cells 21045 19926 18658 22100 9779 28388

Table 4.2: Number of NK cells from 5 sets of twins donors

Donors donor1 donor2 donor3 donor4 donor5

Number of NK cells 20124 15953 7084 12229 16729

Donors donor6 donor7 donor8 donor9 donor10

Number of NK cells 8250 10194 14519 7784 4301

4.2.4 Distribution of number of receptor expressed by each NK cell

After successfully got the receptors expressed by NK cells. We know that NK cells

do not express all receptors, then one interesting topoic is how many receptors expressed by

one NK cell. Here we plot the histogram of distributions of the total number of receptors

expressed on each NK cell for 12 independent donors (Fig. 4.2). We will see the distribu-

tions for different donors are similar to each other. The distribution is close to a Gaussian

distribution or binomial distribution. If we use the data to fit binomial probability distri-

bution, it fits very well. The optimal value for p in the binomial distribution is around 0.3

if we use n = 28 which is the total number of receptors, Figure 4.3. This is an interesting
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result. Considering the meaning of binomial distribution, it seems that a simple model to

explain this is each receptor is independently expressed and the probability of one receptor

being expressed is around 0.3.

To verify if this is a good idea, we first need to check if all receptors are inde-

pendent correlated. We calculated the connected correlation between the receptors. The

connected correlation is defined as Corrij = pij −pipj , where pij is the probability of recep-

tor i and receptor j are expressed at the same time, pi, pj denote the probability of receptor

i and receptor j are expressed, respectively. In the calculation, we used the fraction of

total number of NK cells that express a receptor as the probability of that receptor being

expressed. We went through all the pairs of two receptors, and found the connected correla-

tion between receptors are relatively small. In Table 4.3, connected correlations of different

pairs of receptors are listed in descending order. The highest one is CD94 and NKG2A,

having a connected correlation equals 0.1. It agrees with the experiment result that CD94

is a type of transmembrane protein expressed on the surface of NK cells, and NKG2A is a

most common subunit it paired to form a complex. NKG2A is an inhibitory receptor which

binds to non-classical major histocompatibility complex (MHC) class I molecule HLA-E.

Also CD94 binds to many other activating/inhibitory receptors.
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Figure 4.2: The distribution of the number of receptors expressed by a single NK cell
was examined across all 12 donors. We found that this distribution was similar and highly
concentrated across the donors. Most NK cells were observed to express a specific number of
receptors, with only a small fraction of NK cells expressing an extreme number of receptors,
either very few or many. Given the total count of 28 receptors, the mean and median values
of expressed receptors were approximately around 8, demonstrating a typical expression
level well below the maximum potential.
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Figure 4.3: We fitted the distribution of the number of receptors expressed by a single NK
cell to a binomial distribution, depicted by the green line in our results. Upon analysis,
it was observed that the p values for different donors exhibited a high degree of similarity,
with an approximate value of 0.3.
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Table 4.3: Connected correlation between receptors

receptori receptorj pi,j pi pj connected correlation

CD94 NKG2A 0.433 0.700 0.463 0.10871

NKp30 NKp46 0.338 0.581 0.483 0.05736

NKG2A NKp46 0.261 0.463 0.483 0.03759

NKG2D NKp46 0.279 0.503 0.483 0.03600

CD94 NKp46 0.372 0.700 0.483 0.03358

CD94 NKp30 0.439 0.700 0.581 0.03220

CD94 NKG2D 0.384 0.700 0.503 0.03194

NKG2A NKp30 0.300 0.463 0.581 0.03143

NKG2D NKp30 0.322 0.503 0.581 0.02970

NKG2A NKG2D 0.255 0.463 0.503 0.02236

2B4 NKp46 0.306 0.589 0.483 0.02133

2B4 NKp30 0.363 0.589 0.581 0.02048

2B4 NKG2D 0.316 0.589 0.503 0.01999

KIR2DL2L3S2 NKp30 0.203 0.321 0.581 0.01641

CD94 NKG2C 0.058 0.700 0.060 0.01637

KIR3DL1 NKp44 0.021 0.152 0.032 0.01627

2B4 KIR2DL2L3S2 0.205 0.589 0.321 0.01537

KIR2DL2L3S2 NKp46 0.168 0.321 0.483 0.01325

KIR2DL2L3S2 NKG2C 0.032 0.321 0.060 0.01293
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receptori receptorj pi,j pi pj connected correlation

KIR2DL1 KIR2DL2L3S2 0.053 0.126 0.321 0.01237

KIR2DS4 KIR3DL1 0.032 0.139 0.152 0.01124

2B4 CD94 0.424 0.589 0.700 0.01116

NKG2C NKG2D 0.040 0.060 0.503 0.00993

2B4 NKG2C 0.045 0.589 0.060 0.00976

KIR2DL1 NKp30 0.082 0.126 0.581 0.00828

KIR2DL2L3S2 NKG2D 0.169 0.321 0.503 0.00808

KIR2DS4 NKG2D 0.078 0.139 0.503 0.00798

2B4 KIR2DL1 0.082 0.589 0.126 0.00768

KIR3DL1 NKG2D 0.084 0.152 0.503 0.00756

KIR3DL1 NKp30 0.095 0.152 0.581 0.00640

KIR2DL1 KIR3DL1 0.026 0.126 0.152 0.00633

KIR2DL2L3S2 KIR3DL1 0.055 0.321 0.152 0.00626

KIR2DL1 NKp46 0.067 0.126 0.483 0.00610

CD94 KIR2DS4 0.103 0.700 0.139 0.00597

KIR2DS4 NKp30 0.087 0.139 0.581 0.00587

KIR2DL1 KIR2DS4 0.023 0.126 0.139 0.00505

2B4 KIR3DL1 0.094 0.589 0.152 0.00440

KIR2DL2L3S2 KIR2DS4 0.049 0.321 0.139 0.00414

KIR2DL1 NKG2D 0.067 0.126 0.503 0.00390
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receptori receptorj pi,j pi pj connected correlation

KIR2DL2L3S2 NKp44 0.013 0.321 0.032 0.00296

NKp30 NKp44 0.021 0.581 0.032 0.00278

KIR2DS4 NKp44 0.007 0.139 0.032 0.00262

KIR2DS4 NKG2A 0.067 0.139 0.463 0.00254

KIR2DL5 NKp46 0.010 0.017 0.483 0.00246

KIR2DL2L3S2 KIR2DL5 0.008 0.321 0.017 0.00238

KIR2DL2L3S2 LILRB1 0.014 0.321 0.036 0.00237

NKp44 NKp46 0.018 0.032 0.483 0.00226

NKG2D NKp44 0.018 0.503 0.032 0.00218

KIR2DL1 KIR2DL5 0.004 0.126 0.017 0.00215

2B4 LILRB1 0.023 0.589 0.036 0.00188

KIR2DL1 NKG2C 0.009 0.126 0.060 0.00133

2B4 NKp44 0.020 0.589 0.032 0.00121

KIR2DL1 NKp44 0.005 0.126 0.032 0.00117

KIR2DL4 NKG2A 0.005 0.008 0.463 0.00117

KIR2DL4 LILRB1 0.001 0.008 0.036 0.00112

KIR2DL5 NKp30 0.011 0.017 0.581 0.00094

LILRB1 NKG2C 0.003 0.036 0.060 0.00087

NKG2C NKp30 0.035 0.060 0.581 0.00085

KIR2DL4 NKp46 0.005 0.008 0.483 0.00068
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receptori receptorj pi,j pi pj connected correlation

KIR2DL4 NKG2C 0.001 0.008 0.060 0.00063

KIR2DL4 NKG2D 0.005 0.008 0.503 0.00060

2B4 KIR2DL4 0.005 0.589 0.008 0.00052

CD94 KIR2DL4 0.006 0.700 0.008 0.00042

2B4 KIR2DL5 0.010 0.589 0.017 0.00027

KIR2DL4 NKp30 0.005 0.008 0.581 0.00012

KIR2DL2L3S2 KIR2DL4 0.003 0.321 0.008 0.00009

KIR2DL5 LILRB1 0.001 0.017 0.036 0.00009

KIR2DL4 NKp44 0.000 0.008 0.032 0.00006

KIR2DL4 KIR2DS4 0.001 0.008 0.139 0.00003

CD94 NKp44 0.022 0.700 0.032 0.00001

KIR2DL4 KIR2DL5 0.000 0.008 0.017 0.00000

KIR2DL5 NKG2D 0.008 0.017 0.503 -0.00001

KIR2DL1 KIR2DL4 0.001 0.126 0.008 -0.00005

KIR2DL5 NKp44 0.000 0.017 0.032 -0.00011

KIR2DL4 KIR3DL1 0.001 0.008 0.152 -0.00017

LILRB1 NKp44 0.001 0.036 0.032 -0.00017

NKG2C NKp44 0.002 0.060 0.032 -0.00018

KIR2DL5 NKG2C 0.001 0.017 0.060 -0.00044

KIR2DL1 LILRB1 0.004 0.126 0.036 -0.00049
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receptori receptorj pi,j pi pj connected correlation

2B4 NKG2A 0.272 0.589 0.463 -0.00058

KIR2DS4 NKG2C 0.007 0.139 0.060 -0.00092

KIR2DS4 LILRB1 0.004 0.139 0.036 -0.00097

CD94 KIR2DL2L3S2 0.224 0.700 0.321 -0.00125

KIR3DL1 LILRB1 0.004 0.152 0.036 -0.00128

KIR2DL5 KIR3DL1 0.001 0.017 0.152 -0.00129

2B4 KIR2DS4 0.081 0.589 0.139 -0.00132

NKG2A NKp44 0.013 0.463 0.032 -0.00146

KIR2DL5 KIR2DS4 0.001 0.017 0.139 -0.00157

CD94 KIR2DL5 0.010 0.700 0.017 -0.00158

LILRB1 NKG2A 0.014 0.036 0.463 -0.00268

LILRB1 NKp46 0.015 0.036 0.483 -0.00306

KIR3DL1 NKp46 0.070 0.152 0.483 -0.00309

KIR2DL5 NKG2A 0.005 0.017 0.463 -0.00315

LILRB1 NKG2D 0.015 0.036 0.503 -0.00320

KIR2DS4 NKp46 0.064 0.139 0.483 -0.00337

NKG2C NKp46 0.025 0.060 0.483 -0.00338

KIR3DL1 NKG2C 0.006 0.152 0.060 -0.00347

CD94 LILRB1 0.022 0.700 0.036 -0.00375

LILRB1 NKp30 0.017 0.036 0.581 -0.00411
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receptori receptorj pi,j pi pj connected correlation

CD94 KIR2DL1 0.084 0.700 0.126 -0.00437

CD94 KIR3DL1 0.097 0.700 0.152 -0.00947

NKG2A NKG2C 0.014 0.463 0.060 -0.01355

KIR3DL1 NKG2A 0.055 0.152 0.463 -0.01578

KIR2DL1 NKG2A 0.036 0.126 0.463 -0.02185

KIR2DL2L3S2 NKG2A 0.121 0.321 0.463 -0.02767
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Since our study mainly focused on the regulation of activating of NK cells. Here

we may only consider those activating and inhibitory receptors. The connected correlation

among those receptors are small, no greater than 0.05, which receptors are independent

expressed might be an acceptable assumption. The probability of each receptor being

expressed is smaller than 0.5. It means NK cells prefer not expressing all receptors. And

not all phenotypes have the same probability being expressed since all phenotypes have the

same probability being expressed is corresponding to p = 0.5. Instead, NK cells prefer a

small number of receptors, we named it as sparse receptor expression.

4.3 Project high-dimensional signals to low-dimensional

Base on the experimental data, to be simple, we assume each type of receptor has

the same probability that expressed on an NK cell surface. We assume the total signal

from all receptors depends on the number of types of receptors binding to ligands. Here

we ignore the effect of number of receptors for the same type since the effect of number of

the same type of receptors can be included in the strength of signal received by the type of

receptors.

In 1-D case, we used a Gaussian distribution as the the signal distribution, the

distance from the mean to zero determined how activating/inhibitory those signals are

for this type of target cells. We focused on the total signal instead of signals from each

receptor. Now, in high dimensional case, we need to determine how is the signal from

one receptor like. First, for activating and inhibitory receptors, the signal should have

different signs. Same as before, we say positive signals are activating and negative signals
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are inhibitory. Next, we need think about the ligand distribution. To test the killing ability

of NK cells, we may assume target cells express all ligands, and the performance of NK

cells are only determined by the receptor expression on them. Also, we can generate the

ligand distribution for different types of targets. For healthy cells, we may generate more

inhibitory ligands and for unhealthy cells we may generate more activating signals.

The total signal is the combine of signals from all receptors. Using the formula,

xtotal =

nr∑
i=1

aieixi

where xtotal is the total signal, i is ith type of receptors, nr is the total number of types

of receptors, ai denote either it’s an activating receptor or inhibitory receptor, ai can be

[1,−1], ei denotes the expression of this type of receptor, ei can be [0, 1], and xi is the signal

from this type of receptor, it is proportional to the density of ligands.

4.4 Comparing the protection of different distributions of

receptors

Since we are able to project the signals from all receptors to one dimensional

combined signal, then we can use the one dimensional modified Bayesian inference model to

process the combined signal and learn the environment. Here we compare the performance

of different receptor distributions to explore the protection they could provided. First,

we start comparing the sparse receptor distribution with other two distributions, one is

expression all receptors which we name it as identical distribution, the other is uniform

distribution where each phenotype has equal probability being expressed.
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4.4.1 Receptor expression models

In the context of a sparse receptor distribution, we operate under the assumption

that each receptor has an equal probability, denoted as p, of being expressed. This means

that, on the surface of an NK cell, receptor 1 has a p probability of expression, as does

receptor 2, with their expressions being independent of each other. Given the sparse nature

of this distribution, p is a relatively small number, falling within the range of [0, 0.5]. Typical

values for p might be 0.1, 0.22, 0.3. The number of receptors expressed on an NK cell follows

a binomial distribution, closely aligning with experimental results.

For identical distribution, all receptors are being expressed, which means every

NK cell express all receptors.

For uniform distribution, all phenotypes have the same probability being ex-

pressed, which equivalent to each receptor has a probability, p = 0.5, being expressed

independently.

In our simulations, we construct a 2D array to act as the expression matrix for

generating the receptor expression across a number of NK cells. The number of rows in this

array corresponds to the number of NK cells, while the number of columns represents the

total possible receptors (or dimensions). Each NK cell (represented by each row) is required

to express at least one receptor. The elements within this matrix hold a value of either 1

or 0, where 1 signifies that a specific receptor is expressed by the cell, and 0 indicates the

opposite. In this context, we don’t distinguish between activating and inhibitory receptors.

However, if needed, we could represent an inhibitory receptor with a −1 value to reflect its

opposite effect on the signal value.
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A distinguishing feature among these distributions is the number of receptors

expressed. The uniform distribution tends to express more receptors on each NK cell, with

the identical model expressing the highest number of receptors. Figure 4.4 illustrates the

differing distribution of the number of receptors expressed by each NK cell across various

dimensions. If we denote the number of dimensions we are considering as d, this would imply

that we assume there are d receptors in total. To investigate the performance changes of

these receptor distributions, we start from a low dimensionality of d = 2 and gradually

increase it up to d = 32.
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Figure 4.4: Receptor expression of binomial distribution and uniform distribution. The
number d is the total number of receptors. For binomial distribution, most NK cells express
less receptors than uniform distribution.

In the following sections, we will explore how these differing receptor distributions

can impact the learning and killing abilities of NK cells.
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4.4.2 Test on healthy signals

To evaluate the performance of NK cells possessing multiple receptors, we first

need to establish the training and testing environments. As in the one-dimensional case, we

set both the healthy (training) environmental signal distribution and the target (testing)

environmental signal distribution as Gaussian distributions, but with differing means and

variances. For instance, we could set the healthy signal for each receptor-ligand binding to

satisfy N(0, 1), while the unhealthy signal for a receptor-ligand binding satisfies N(4, 1).

This implies that unhealthy signals have a higher mean (i.e., are more activating) but

maintain the same variance. After training the NK cells on the healthy environment, we

can test the probability distribution of their activation.

First, we test the activation probability against healthy signals. It’s crucial to

ensure that NK cells do not eliminate a substantial number of healthy cells. For this test,

we maintain the same settings as before. As for the memory parameters, we set κ = 2α

and vary the memory length. We set the activation threshold at θ = 0.01. For a trained

NK cell, an activation threshold signal is established. Using this threshold and the target

signal distribution, we can calculate the probability of activation (POA) for this NK cell

relative to a particular target signal distribution. For instance, consider an NK cell with

two receptors binding to a healthy cell. Each receptor binds to its corresponding ligand,

generating a signal that follows the distribution N(0, 1). As a result, the combined signal

follows the distribution N(0, 2). The probability of activation for this NK cell, given the

target, is computed by integrating this combined signal distribution from the threshold to
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Figure 4.5: Distribution of the probability of activating when each NK cell express all
receptors. The probability of activating is small and nearly zero. While for smaller α, the
memory length is short, NK cells might kill some healthy cells since the fluctuation of the
signal.
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Figure 4.6: Distribution of the probability of activating when all phenotypes of receptor
expression have equal probability being expressed. The probability of activating is small
and nearly zero. While for smaller α, the memory length is short, NK cells might kill some
healthy cells since the fluctuation of the signal.
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Figure 4.7: Distribution of the probability of activating when receptors on NK cells are
sparsely expressed. The probability of activating is small and nearly zero. While for smaller
α, the memory length is short, NK cells might kill some healthy cells since the fluctuation
of the signal.

infinity. This integral represents the probability of this type of target being eliminated by

this NK cell.

Ideally, after training within a healthy signal environment, the POA against healthy

cells should approach zero as the NK cell adapts to the healthy signal environment and thus

avoids eliminating healthy cells. The POA may not be precisely zero because we’ve em-

ployed a threshold, implying that a small proportion of encountered targets are always

deemed untrustworthy. This is determined by the value of θ. Our results corroborate our

expectation that for all three receptor distribution models, the POA against healthy cells

is relatively low(Fig. 4.5, 4.6, 4.7).
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4.4.3 Test on unhealthy signals

When dealing with an unhealthy signal distribution, we presume that in one ”di-

rection,” the signal is more activating, signifying that it adheres to a Gaussian distribution

with a higher mean. In our simulation, we stipulate that if an NK cell expresses a receptor

in this direction, it will receive a signal from a N(8, 1) distribution. This represents the

scenario where an unhealthy cell tends to express a particular ligand that can bind with

some activating receptor on an NK cell, leading to the NK cell receiving an activating signal.

We conducted this performance testing by simulating the performance of a group of 3000

NK cells.

In the model where each NK cell expresses all receptors, known as the identical

receptor expression model, we notice that as the number of dimensions decreases, the prob-

ability of activation also decreases, as illustrated in Fig. 4.8. This pattern is logical because

as the number of dimensions decreases, so does the signal-to-noise ratio. For instance, an

NK cell with two receptors might receive an activating signal from N(8, 1) for one recep-

tor, while the other receives a typical signal from N(0, 1), resulting in a combined signal

satisfying N(8, 2). Conversely, if an NK cell has eight receptors, one might receive an acti-

vating signal from N(8, 1), while the other seven get a typical signal from N(0, 1), leading

to a combined signal satisfying N(8, 8). When the noise level (represented by the standard

deviation) is comparable to the detected signal (the mean), distinguishing the signal from

the noise becomes challenging.

Moreover, the performance varies depending on the memory length. NK cells with

a shorter memory length, represented by a smaller α, demonstrate a broader distribution.
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As the memory is brief, these NK cells are more likely to behave differently based on

their unique encounter paths. Conversely, NK cells with a longer memory tend to behave

similarly as they hold more information about the standard environment and thus have a

similar comprehension of it.
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Figure 4.8: Distribution of the probability of activating against unhealthy signals when
each NK cells express all receptors. As dimention d increases, the probability of activating
decreases.

In the cases of uniform and binomial receptor distributions, not all receptors are

expressed by the NK cells, thus maintaining a relatively high signal-to-noise ratio. This leads

to a higher probability of activation against unhealthy signals, even when the dimensionality

is high.

In our simulation, the binomial distribution model displays a smaller mean, im-

plying that each NK cell expresses fewer receptors than in the uniform distribution model.

Consequently, if they express the corresponding receptor, they will exhibit a higher signal-
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to-noise ratio. Although many NK cells may not express the corresponding receptor, col-

lectively, all the NK cells provide effective protection against unhealthy targets. This is due

to the fact that for every type of unhealthy target, there will always be a subset of NK cells

equipped to respond.
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Figure 4.9: Distribution of the probability of activating against unhealthy signals when
receptors on NK cells are uniformly distributed. Generally speaking, most NK cells still
have a relatively high POA when the number of dimension is high comparing with the
identical distribution model.

4.4.4 Sparse receptor expression’s performance on different types of per-

turbation

Next, we will discuss the performance of our model under various perturbations.

We initiated our simulations by allowing every immune cell to interact with 200 healthy

targets. To generate the expression levels for each ligand of a healthy target, we drew them

independently from a Gaussian distribution with a mean of 3 and a standard deviation of
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Figure 4.10: Distribution of the probability of activating against unhealthy signals when
receptors on NK cells are sparsely expressed. At high dimension, there is still some fraction
of NK cells have a high killing ability to the targets.

1. However, this approach sometimes resulted in a few rare cells having negative values

for ligand expression. To address this issue, we repeated our simulations by setting the

expression values to zero for any negative values, and we observed no variations in the

outcomes presented below.

After training the immune cell population, we explored various models for aber-

rant target cells by introducing different perturbations to their surface ligand expression.

Specifically, we considered two types of changes in ligand expression: sparse and dense. In

sparse perturbations, changes were focused on a single ligand, leaving the expression of all

other ligands normal. In contrast, dense perturbations involved modifying the expression

of all ligands, with the magnitude of the change determined by generating a random nr-

dimensional vector with Gaussian entries and calculating the relative magnitude of each

entry.
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Moreover, we examined two types of perturbations: “pure” and “hidden”. Pure

perturbations resulted in changes that either increased the expression of activating ligands

or decreased the expression of inhibitory ligands. On the other hand, hidden perturbations

aimed to achieve a net change in activating - inhibitory ligand expression of zero. For

sparse hidden perturbations, we randomly selected another ligand and adjusted its aver-

age expression to counterbalance the perturbation, while for dense hidden perturbations,

we partitioned the group of all ligands randomly into two equally sized sets and favored

activation for one set and inhibition for the other.

The magnitude for perturbation is set to be 5 after testing variety of values for

magnitude. This is the best to show the difference between NK cells with sparse and dense

receptor expression. If the perturbations are too small, aberrant cells may be very similar

to healthy ones, making them difficult to distinguish. Conversely, if the perturbations are

too large, aberrant cells may be so different from healthy cells that immune cells with

the appropriate receptor(s) can easily recognize them. We generated 104 aberrant target

cells. The performance of each group of NK cells is measured by the alignment distribution

of NK cells. We considered the perturbations in ligand expression of aberrant cells and

receptor expression patterns of immune cells as vectors, and calculated their normalized

inner product. The threshold of recognizing a abnormal cells is set to θ = 0.01 the same

as we did in 1-D case. We plot the performance of population of NK cells with sparse and

dense receptor expression on different types of perturbation in Fig. 4.11.

We will see that sparse receptor expression has a better performance to recognize

diversity aberrant targets because they usually have a higher ratio of signal to noise. To
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Figure 4.11: Immune cells best recognize aberrant targets when they express
the specific combination of receptors that recognize ligands with perturbed
expression. Immune cells with sparse receptor expression are more likely to align with
changes in ligand expression for a variety of aberrant target cells, allowing them to kill
these targets more efficiently. To quantify the alignment between immune cell receptors
and perturbations, we treated the perturbations in ligand expression in aberrant cells and
receptor expression patterns in immune cells as vectors and computed their normalized
inner product.
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tolerate to healthy cells, NK cells will express some inhibitory receptors. To be able to

recognize aberrant targets, NK cells express some activating receptors. When receptor is

sparsely expressed, one NK cell is able to respond to some aberrant targets expressing

corresponding ligands precisely. If the receptors are dense expressed, it might received too

many signals that are irrelevant for target detection.
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Chapter 5

Performance of the model in

anomaly detection

5.1 Introduction

As technology continues to advance, an increasing amount of time series data is

being generated. This data spans various areas, from the number of website visits and

real-time machine temperatures to bank card transaction records and personal heart rate

performance curves. Such data plays a pivotal role in shaping the development of indi-

viduals, businesses, and even nations. Monitoring these time series data and identifying

potential outliers is crucial for maintaining stability and minimizing potential losses. For

instance, detecting outliers in bank consumption records can assist in identifying credit

card fraud, allowing for immediate account freezing to curb losses for both consumers and

banks. Similarly, monitoring machine temperatures in real-time and pinpointing abnormal
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readings can ensure a safe production environment, thus preventing any production mishaps

linked to extreme temperatures. In the medical field, timely detection of anomalies in heart

rate performance curves can be lifesaving for patients with heart-related conditions, en-

abling them to receive prompt treatment. Therefore, the importance of outlier detection is

growing and becoming more apparent in our increasingly data-driven world.

To detect outliers, firstly we have to define what is an outlier, which is also a key

problem in building an outlier detection model. Generally speaking, outliers can be divided

into two types, point outliers and subsequence/collective outliers [9]. While more specifi-

cally, the standard for outliers varies by data. For example, a high temperature detected in

a running machine indicates dangers and must be reported as outliers immediately. While

in the heart rate performance curve, a decrease in frequency must be an outlier and get

noticed. On the other hand, the data changes over time, and the definition of outliers may

also change over time. Outliers in one period may be normal in another period, in other

words, outliers may become the new normal. Thus the model should be adaptable.

Now many techniques have been developed to detect outliers. Based on the input

data type, they can be classified as univariate and multivariate types. Based on the outliers

they focus on, they can be classified as point outlier detection methods and subsequence

outlier detection methods. Based on the method they used, they can be classified as su-

pervised and unsupervised methods. Here we introduce a new method, modified Bayesian

inference. It’s an unsupervised method and focuses on point outliers. It has been applied

to biological models, and it helps to explain some experimental results [82]. Here we are

going to prove that this simple model can be applied to general outlier detection tasks and

105



it gains good performance on the two popular benchmarks, Yahoo S5 [56] and Numenta

Benchmarks [57].

The structure of this chapter is as follows. In section II, we introduce the algorithm

of our model. In section III, two widely used Benchmark data sets, Yahoo website traffic

data, and Numenta outlier Benchmark, are introduced. In section IV, we will describe

the evolution method used in this paper. In section V, we evaluate the performance of

our model on the benchmark data sets and compare our results with other algorithms. In

section VI, a conclusion of advantages and disadvantages and how to further develop this

model is discussed.

x

student's 
 t-distribution

Anomaly score S

Figure 5.1: Definition of anomaly score. The black curve is the estimated student’s
t-distribution. The area of orange region is defined as anomaly score, S. Larger S is, x
is more unlikely satisfying this estimated distribution, which means more likely to be an
anomaly.
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5.2 Model

In the paper [82], to understand the regulation of innate immune activation, we

introduced a method that uses modified Bayesian inference to simulate the process that

innate immune cells use to identify unhealthy cells. It estimated the environment signal

distribution and made some changes to the parameters to make it adaptable. We refer to

this model as Modified Bayesian Inference (MBI). The main idea is how a single immune cell

knows which target cell is unhealthy and adapts to the new environment when interacting

with the same type of unhealthy cells many times. For a single immune cell, it keeps

interacting with surrounding cells, receiving signals from them, which can be treated as

time series data. This time series data helps it learn the environmental signal distribution

and identify unhealthy signals according to this estimated distribution. This is similar to

what the outlier detection does, identifying outliers in time series data. Thus, we further

developed this method and applied it to outlier detection. Following, we will introduce the

modified Bayesian inference model.

5.2.1 Modified Bayesian inference

For the simplest, a one-dimensional time series that satisfies a static distribution,

such as data that satisfies a certain Gaussian distribution, any data far from the mean

is likely to be an outlier. Here we can use Bayesian inference to estimate the mean and

variance of this static distribution, the estimated mean and variance can be used to assess

how close the new signal is to the mean, or in other words, the probability of being an

outlier. For example, for a sequence whose data points satisfy a fixed Gaussian distribution
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N(µTrue, 1/λTrue), where µTrue is the mean and λTrue is the precision, which is the inverse

variance, λTrue = 1/σ2
True, where σ2

True is the variance. We would like to estimate the

mean and precision. It is known from Bayesian theory that if we have a hypothesis of

the probability distribution of mean and precision, P (µ, λ), and evidence x which is an

observation related to the parameters mean and precision, then the updated probability

distribution of mean and precision is

P (µ, λ|x) = P (x|µ, λ)P (µ, λ)

P (x)
, (5.1)

where P (µ, λ) is named as the prior distribution which describes the probability distribution

of mean and precision before signal x is detected, P (x|µ, λ) is the likelihood function which

is a normal function, P (x) is the total probability of x being observed and can be treated as

a normalized factor which is P (x) =
∫
P (x|µ, λ)P (µ, λ) dµ dλ, and P (µ, λ|x) is the posterior

probability distribution which describes the probability distribution of mean and precision

after detection of signal x. If we use the conjugate prior for the prior distribution, the

posterior distribution will be in the same probability distribution family which makes life

easier. The conjugate prior used for a normal distribution with unknown mean and precision

is a normal-gamma function,

P (µ, λ|m,κ, α, β)

=
βα√κ

Γ(α)
√
2π

λα− 1
2 e−βλ−κλ

(µ−m)2

2 ,

where Γ(∗) is a gamma function. The normal-gamma function is uniquely determined by

its four parameters, namely (m,κ, α, β). When the normal-gamma distribution is chosen

as the prior distribution in Bayesian analysis, interestingly, the posterior distribution also

assumes a normal-gamma distribution. This posterior distribution can be expressed as
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P (µ, λ|m′, κ′, α′, β′). Consequently, this implies that the process of updating the probability

distribution, in essence, becomes a straightforward task of updating these four distinct

parameters (m,κ, α, β).

The Bayesian inference method mentioned above has a good performance in es-

timating the mean and precision of a static distribution while it is not for dynamic signal

distribution(see SI). However, we found that a small modification on the update rule will

enable it to estimate dynamic mean and precision. The modified update rules are

m′ =
κm+ x

κ+ 1
κ′ = κ

β′ =
α− 1

α− 1
2

[
β +

κ

κ+ 1

(x−m)2

2

]
α′ = α ,

(5.2)

where κ and α are fixed and they can be named as “memory length” since they are related

with the number of data points took into account in determining the probability distribution

of the mean and precision. We can show that using the modified update rule, the estimated

mean and precision will always approach the true mean and precision within a period which

is determined by the memory parameters κ and α(see SI). Now we have a good estimation

of the signal distribution, the next step would be determining how likely a data point being

an outlier which is named as anomaly score.

5.2.2 Anomaly score

With a good estimation of the distribution of the parameters, we will be able to

calculate the estimation of the data distribution. Here we calculate the estimated data

distribution, Pest (x), by integrating over all possible µ and λ,

Pest (x) =

∫∫
P (x|µ, λ)P (µ, λ) dµdλ ,

109



0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
ln(1 S)

10
1

10
3

C
ou

nt

Threshold

2 0 2 4 6 8 10
values

10
1

10
2

10
3

C
ou

nt Anomalies

Figure 5.2: Distribution of S2. The top figure shows the data distribution. Here we
randomly generated 3000 data points satisfying normal distribution N(0, 1) and 20 of them
are modified as a fixed value 10. Those 20 anomalies are far from normal data distribution.
The bottom figure shows the distribution of −ln(1 − S). That is how the threshold being
determined.

where the P (µ, λ) is normal-gamma distribution determined by (m,κ, α, β) and P (x|µ, λ)

is normal distribution. The integral gives a student’s t-distribution,

Pest (t|ν) =
Γ
(
ν+1
2

)
√
πνΓ

(
ν
2

) (1 + t2

ν

)−(ν+1)/2

,

where t =
√

ακ
β(κ+1) (x−m) and ν = 2α.

With the estimated data distribution, we define the anomaly score as how far

away a data point is from the majority of the distribution. For example, the cumulative

distribution function describes the percentage of data points from a distribution smaller

than a given value. If the percentage is super small or large, it means the given value is far

from the majority, in other words, it is less likely a data point selected from this distribution
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which means it might be an outlier. Thus here we can define the anomaly score, S, as:

S = 2 ∗ |t.cdf (x)− 0.5| ,

where t.cdf(x) means cumulative distribution function of data x, which is calculated by

∫ x

−∞
Pest (t(z)|ν) dz .

The range of the anomaly score is [0, 1]. The higher the anomaly score is, the more likely

it is for a data point to be an outlier(see Fig. 5.1). Then it would be possible to choose

a threshold of the anomaly score, larger than which the data points would be classified as

outliers.

5.2.3 Threshold determination

The simplest way to set a threshold is choosing a value which is large enough. For

example, we can set threshold as 0.995, which means if the anomaly score of a data point

is larger than 0.995, we can say it is far from the majority and it can be classified as an

outlier. This method has the lowest complexity which makes it suit for real time detection.

However, it introduces some false positive rate and there will always be some outliers no

matter it is true or not. Also it does not take the data into account and the same fixed

threshold for all types of data which lower the overall performance.

Another way is to consider the anomaly score distribution. If all the data points

comes from the same normal distribution, then the probability distribution of S should

be uniform. If there are some outliers whose values at the ends of normal distribution,

there would be a peak in the distribution of S around S ∼ 1, because those outliers tend
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to have larger S values. Our goal is to find the position of the peak if it exists. For

mathematical convenient, we define “rarity” as R = 1−S. Then we plot the distribution of

parameter S2 = − logR. We can show that for a normal distribution, this is a monotonically

decreasing function(see SI). Whenever there are some outliers with extreme values, there

will be a peak in the tail of the probability distribution of S2 because they tend to have

smaller R, thus larger S2 values.(see Fig. 5.2). Thus the problem becomes to find where

is the local minimum at the tail of S2 distribution. In this way, each data type has its own

threshold which improves the performance.

Next, we can test the performance of this model. First we will test on some simu-

lated data and show the performance is as expected. Then we will apply this model on two

popular benchmark, Yahoo S5 website traffic data and Numenta Outlier Benchmark(NAB).

We will show that this simple, low complex model has acceptable performance when com-

paring other models on the same benchmark. The code is in python and available in github1.

5.3 Results

5.3.1 Adaptation of Modified Bayesian Inference

One key feature of the Modified Bayesian Inference model is adaptation. The

estimated data distribution varies according to the observations of new data. Thus it has

the ability to adapt to a new normal and detect local outliers at the same time. When

adapting to a new normal, the changing points should be detected as outliers however

1https://github.com/ywqin/MBI-Anomaly-Detection
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Figure 5.3: Detection of changing point. Here we generate 200 data points, the first
100 from normal distribution N(0, 1) and the second 100 from N(10, 2). We will see MBI
model can detect the changing point. The red dot in the figure is the changing point and
it is labeled as outlier by MBI.

the following data points should not be classified as outliers. For example, if the data

distribution changes from a normal distributionN(0, 1) to a new normal distributionN(5, 4)

at time point t = 100, the estimated mean and variance will adapt to the new values and

it will not ‘overreact’. (see Fig. 5.3). This has some important application in some fields

which requires no overreaction to reduce the loss, just like the immune system detecting

pathogens.

When the data changes over time, the Modified Bayesian Inference is able to detect

outliers in local environments. For example, for periodic time series data, like the weather

temperature in some places, there might be some missing data or some extreme data points

due to some errors. While it’s not a global extreme value, like a low temperature in summer

while not as low as that in winter, the Modified Bayesian Inference still can find it out. (see
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Fig. 5.4) Estimated the local data distribution make it “smarter” that those methods that

only detect global outliers. Next, to standardize the performance, precision, recall and F1

score are introduced.
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Figure 5.4: Detect local anomalies. Here we use the temperature data collected in
Beijing. We inserted two anomalies which are red dots in the top figure. Using MBI, 5
anomalies are found. Two inserted anomalies are correctly labeled, and the other three
labeled points correspond to temperature drop, which are shown in the bottom three sub-
figures.
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5.3.2 Definition of Precision, Recall and F1 score

In order to assess and compare the performance of different algorithms, various

metrics have been established. Among these, precision, recall, and the F1 score are fre-

quently used. Precision is defined as Precision = TP
TP+FP , where ‘TP’ stands for true

positives and ‘FP’ stands for false positives. In this context, ‘positive’ and ‘negative’ refer

to whether a data point is predicted as an outlier or not, while ‘true’ and ‘false’ indicate

if the predictions align with actual observations. Precision, ranging from 0 to 1, represents

the proportion of accurate predictions among all positive predictions. On the other hand,

recall is given by Recall = TP
TP+FN , where ‘FN’ denotes false negatives. Like precision,

recall also ranges from 0 to 1. However, it measures the fraction of correct predictions

among all actual positive points. These two metrics provide a comprehensive view of an

algorithm’s performance, considering both its precision and its ability to correctly identify

positive instances. Then we can calculate the F1 score,

F1 = 2× Precision ∗Recall

Precision+Recall
,

which is a combination of precision and recall. The range of F1 is [0, 1]. The value of F1

is high only when both precision and recall are high. F1 reaches maximum value 1 only

if both precision and recall equal 1. F1 reaches minimum value 0 when either precision or

recall equals 0. F1 score is widely used in measuring classification performance.

Since there are many different types of time series data and outliers, researchers

have established some benchmarks to make it possible to compare the performance of dif-

ferent algorithms in detecting outliers.
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5.3.3 Performance on Yahoo S5 Benchmark

Yahoo S5 Benchmark is provided by Yahoo [56]. It has 367 labeled time series

containing many different types of outliers. The time series are classified into 4 groups,

A1-A4. The A1 dataset includes some real time series that are based on the traffic to

some Yahoo properties. The anomalies are labeled by humans. A2, A3, and A4 have some

synthetic time series with randomly inserted anomalies. The number of outliers in each

group is listed in Table 5.1. The types of outliers are single anomaly points, changing

points, trend changes, etc. Here we mainly focus on single anomaly point detection. Thus

we treat subsequence anomaly as one single anomaly, and if any of the data points within

the subsequence are identified as an anomaly point, this anomaly is correctly identified.

Table 5.1: Yahoo S5 dataset info

Group # time se-
ries

Type # out-
liers

A1 67 real data 1669
A2 100 Synthetic

data
466

A3 100 Synthetic
data

943

A4 100 Synthetic
data

1044

Applying MBI model on the Yahoo S5 dataset, the performance which described

by precision, recall and F1 scores, on the four groups is shown in Table 5.2. The parameters

used here are α = 4, κ = 4. Generally speaking, the precision is high and the recall

is sometimes low, which is reasonable since MBI model is designed for identifying point

anomalies only and is not good at identifying other types of outliers, like temporal outliers,
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trend change, etc. The precision on real data, A1 group, is relatively small comparing with

precisions on other groups.

However, this result is comparable to the result of other algorithms. For example,

Twitter’s Anomaly Detection(ADVec) and Windowed Gaussian [57]. ADVec is an algo-

rithms provided by Twitter and applied on many benchmarks. It is a R package which

is used for detecting outliers from a statistical standpoint or with seasonality. The perfor-

mance of ADVec on Yahoo S5 dataset is shown in Table 5.3. The two parameters, alpha and

period are set to 0.05 and 150 respectively. Windowed Gaussian is an algorithm provided

by Numenta, which calculates the fraction from the data to the tail of the Gaussian prob-

ability distribution as anomaly score, where the mean and standard deviation of Gaussian

distribution is determined by the data in a moving window. The performance of Windowed

Gaussian on Yahoo S5 data is shown in Table 5.4. Compared with Twitter’s ADVec al-

gorithms and Windowed Gaussian, MBI model has higher recall and F1 score. While the

precision on group A1 is smaller than that of ADVec, the recall is almost ten times larger.

On A2 and A3, the precisions are similar, while MBI have higher recalls. On A4, both

precision and recall of MBI are higher than those of ADVec and Windowed Gaussian. Gen-

erally speaking, MBI model has a relatively good performance on Yahoo S5 dataset. Next,

we’ll dig into the data and figure out what types of anomalies MBI can identify.

Table 5.2: Performance of MBI on Yahooo S5 dataset

Precision Recall F1

A1 0.47 0.42 0.44
A2 0.94 0.94 0.94
A3 0.94 0.32 0.48
A4 0.81 0.19 0.31
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Table 5.3: Performance of ADVec on Yahooo S5 dataset

Precision Recall F1

A1 0.72 0.29 0.42
A2 0.97 0.17 0.28
A3 1.00 0.015 0.029
A4 0.56 0.038 0.070
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Figure 5.5: Best performance of MBI. There is only one data point labeled as outlier
which is in red color. MBI finds this outlier correctly and no false positive prediction.

Table 5.4: Performance of Windowed Gaussian on Yahoo S5 dataset

Precision Recall F1

A1 0.22 0.59 0.32
A2 1.00 0.62 0.76
A3 1.00 0.02 0.04
A4 0.16 0.05 0.08

In group A1, MBI model has good performance on file ′real 45.csv′. There is only

one anomaly in this time series data and its value is much larger than others(Fig. 5.5).

MBI model is able to find this type of point anomalies. Within the total 367 files, MBI
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detect 112 files perfectly, of which all anomalies are identified and no false positive. MBI

model does not have a good performance on file ′real 17.csv′, where there are 227 points

are labeled as outliers which are in three subsequences and MBI model identified one out

of them(Fig. 5.6). The one is identified because its value is much larger than precious

ones. Since MBI model is able to adapt to new environment, points following that point

are not identified. The other two subsequence are not identified because the values of their

start points are comparable to previous normal points. MBI model is good at identifying

sudden changes in value, not gradual changes. Also, in some files, all models have low

performances because not all outliers are labeled [110](Fig.5.7). Some points around step

200 should be considered outliers because they are far away from normal points while only

some points with extremely large values are labeled as outliers. This happens because there

is no common definition of an outlier. Also the data provider mentioned that the labeling

might not be consistent since they are labeled by humans. That is why we should focus on

the performance of a model on each file, not just the overall performance on a benchmark.

Next we will show that MBI has the advantage of low complexity and runs fast, which is an

advantage for processing real-time data. For the time complexity, the average computation

time for some models on each group [96] is shown in Table 5.5. The computation time

is much shorter than The Numenta Platform for Intelligent Computing (NuPIC) which is

a well known software for anomaly detection developed by numenta2. Also most of other

algorithms take more time on A4 than A3 while ours is shorter. The difference between A3

and A4 is that A4 contains some fraction of change-points where the distribution changes

2https://www.numenta.com/
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Figure 5.6: Pattern anomalies. There are three groups of data points are labeled as
outliers which are in red color. MBI identified one of them (vertical green line) and no false
positive prediction.

to a new normal. What’s more, MBI also has a relatively higher F1 score in A4 than other

algorithms. It seems our model is good at dealing with change-points than others.
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Figure 5.7: Labeling might not be consistent. MBI model identified all the labeled
outliers. MBI model is also be able to identify the beginning of the noisy part, which should
also be an outlier.

Table 5.5: Computation Time(s)

MBI NuPic(HTM) ADVec

A1 11.6 368 3.3
A2 16.6 693 4.8
A3 20.0 813 5.6
A4 19.1 828 6.0

5.3.4 Performance on NAB benchmark

Another popular used benchmark is Numenta Anomaly Benchmark (NAB) which

contains 57 labeled time series. It includes some real data like cpu utilization, the clicking

rates of advertisement, room temperature, etc. It also has some artificial data with or

without anomalies. Compared with Yahoo S5, NAB has more outlier types and longer time

series, but fewer total time series. Besides, NAB provides a scoreboard to compare different

algorithms using NAB score. By changing the weights of false positive and false negative,
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the overall NAB score will be able to reward low false positive or low false negative which

might be important for application in some fields[2].

Table 5.6: NAB score

Detector Standard Reward
low FP

Reward
low FN

HTM 64.7 56.5 69.3
ADVec 47.1 33.6 53.5
MBI 37.0 22.0 45.6
Skyline 35.7 27.1 44.5
Random 16.8 5.8 25.9

The performances of MBI and some other algorithms are shown in Table 5.6. The

parameter settings of MBI model are α = 60, κ = 60. Comparing with HTM(NumPic)

and ADVec, performance of MBI on NAB is not that good. The main reason is many of

the outliers in NAB are temporal outliers, not point outliers. MBI model is not good at

dealing with subsequence outlier detection. For example, the performance of MBI on time

series of ‘realAWSCloudwatch/grok asg anomaly.csv’ is good(Fig. 5.8), all three anomalies

are identified (predictions are within the detection windows). The anomalies include one

changing point and two extreme values. MBI is good at this. However, performance of MBI

on ’realKnownCause/nyc taxi.csv’ data set is bad since all the outliers in the time series

are either temporal outliers or values of anoomalies are comparable to normal points(Fig.

5.9). Even though NAB has only 57 datasets, it has many different kinds of outliers.

Although MBI can only detect point outliers, the overall NAB score of MBI is similar to

the commercially used algorithm Skyline. Some other reasons could be that the threshold

is fixed for all time series data because of which it might miss some outliers with relatively

small anomaly score, and some data are not close to normal distribution which the estimated
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data distribution would be far away from the true data distribution and it might result in

a large number of false positive.
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Figure 5.8: NAB performance on AWS server metrics. All three anomaly points (red
dots) in the AWS server metrics collected by AmazonCloudwatch service, are identified.

Althought the score is similar to Skyline and smaller than HTM, the time cost of

MBI is much smaller. It take less than one minutes for MBI to complete all the procedures

including detection and scoring. While HTM takes around 20-30 minutes on a 2-4 cores

laptop and Skyline takes much longer, several hours, Table 5.7. Generally speaking, MBI

model runs fast and have a good performance for single point anomaly detection.

Table 5.7: Computation Time(s) on NAB

Time(s)

MBI within one minutes
HTM 20-30 minutes
Skyline hours
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Figure 5.9: NAB performance on New York taxi data set. These are two anomaly
points (red dots) in the number of NYC taxi passengers data set which are caused by NYC
marathon and Christmas holidays. The score -5 means there are 5 anomalies in total and
all of them are not identified. Here we just plot two of them.

5.4 Conclusion

We introduce a novel method for anomaly detection, the MBI model, which is

based on Bayesian inference. By utilizing past data to construct an internal representation
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of the normal environment, the MBI model can effectively distinguish between normal data

and anomalies. With the application of weight decay for past data, the model can adapt to

new environments within a few steps. This straightforward model demonstrates impressive

performance for single anomaly detection. Although it is limited to detecting anomaly

points, it exhibits comparable performance on benchmark tests such as Yahoo S5 and NAB

benchmark. Most importantly, its fast execution allows for real-time anomaly detection

tasks, making it suitable for our pathogen recognition immunity model. The parameters

(α, κ) are representative of memory for past data; however, their optimal selection has not

been extensively explored. Future research could focus on determining memory parameters

based on the distribution of past data.
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Chapter 6

Conclusions

In this dissertation, we introduced a new model describing the NK cells identifying

unhealthy signals and adapting to a ‘new normal’. Instead of specifically recognizing targets,

we developed a new idea that innate immune cells can learn from normal signals and build

an internal representation of the signal distribution of healthy cells. Thus, it is able to gain

the ability to identify unhealthy cells and is able to adapt to new signal environments at

the same time. This simple quantitative model can explain some behaviors of NK cells well.

After comparing with some experimental data, we proved that our model can

generate similar results as the experimental data. Our model helps to explain the adaptation

of NK cells in new environments and the behavior of “serial killing.”

Also, we extended our model to high dimensional by taking into account the recep-

tor expression of NK cells. We noticed that individual NK cells do not express all receptors.

Instead, each NK cell expresses a small fraction of receptors. In this way, the receptor

expression distribution of NK cells is diverse. Collectively, they provide better protection
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than expressing a lot of receptors for each NK cell. This is because the signal to noise ratio

of sparsely expressed receptors is higher than densely expressed receptors. This finding

agrees with the experimental data, that each NK cell expresses a small number of activat-

ing/inhibitory receptors, rather than all of them, and instead, the number of phenotypes of

NK cells is extremely large.

We then showed that this modified Bayesian inference model can also be used in

anomaly detection in other fields. We applied this model to other types of time series data,

like weather data, and we got a good performance.

In the future, this model can be further developed by considering the relationship

between receptors. There are some experimental data that reveals the relation between

receptors which considering the chemical mechanics behind them will give more precise

predictions. Also, this model has the potential to simulate single NK cell behaviors, which

could be compared with future experiments.
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cell imaging in a micro-array of acoustic traps facilitates quantification of natural
killer cell heterogeneity. Integrative Biology, 5(4):712–719, 2013.
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