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Dynamic Overlap Concentration Scale of Active Colloids

Stewart A. Mallory,1, ∗ Ahmad K. Omar,2, † and John F. Brady1, ‡

1Division of Chemistry and Chemical Engineering,
California Institute of Technology, Pasadena, California, 91125, USA

2Department of Chemistry, University of California, Berkeley, California, 94720, USA

By introducing the notion of a dynamic overlap concentration scale, we identify universal and
previously unreported features of the mechanical properties of active colloids. These features are
codified by recognizing that the characteristic length scale of an active particle’s trajectory, the
run-length, introduces a new concentration scale φ∗. Large-scale simulations of repulsive active
Brownian particles (ABPs) confirm that this new run-length dependent concentration, which is
the trajectory-space analogue of the overlap concentration in polymer solutions, delineates distinct
concentration regimes in which interparticle collisions alter particle trajectories. Using φ∗ and
concentration scales associated with colloidal jamming, the mechanical equation-of-state for ABPs
can be collapsed onto a set of principal curves that contain a number of previously overlooked
features. The inclusion of these features qualitatively alters previous predictions of the behavior for
active colloids as we demonstrate by computing the spinodal for a suspension of purely-repulsive
ABPs. Our findings suggest that dynamic overlap concentration scales should be of great utility in
unraveling the behavior of active and driven systems.

Introduction.– Pressure continues to be a topic of fun-
damental interest in active matter [1–15]. An interest
motivated, in part, by the tantalizing prospect that me-
chanical equations-of-state (EoS) will play as important
of a role in active matter as they do in equilibrium the-
ory. In fact, pressure has already proven to be a salient
metric for rationalizing the often-complex behavior of ac-
tive suspensions ranging from instabilities exhibited by
expanding bacterial droplets [16], vesicles filled with ac-
tive particles [17–20], active depletion [21–23], and the
dynamics of colloidal gels [24–26], membranes [27], and
polymers [28–30] immersed in a bath of active colloids.
The burgeoning of research on the nature of pressure in
active systems has not only contributed to progress in
understanding the phenomenology of active systems, but
has also played a central role in assessing the validity of
new theoretical concepts for nonequilibrium systems [31–
41]. There is no better example than the intense focus
on the development of nonequilibrium theories for the
phase behavior of active particles [4, 42–51] – a crucial
ingredient for many is an EoS.

Pressure in active systems remains difficult to charac-
terize analytically in all but the simplest cases. These
challenges can be attributed to a unique nonlocal con-
tribution to the pressure referred to as the swim pres-
sure [1, 3]. This nontraditional source of stress is entirely
rooted in trajectory space and unraveling its concentra-
tion dependence necessitates the difficult task of under-
standing how particle trajectories are altered by many-
body correlations. The driving force for much of the novel
behaviors observed in active systems, including the phe-
nomena of motility-induced phase separation (MIPS), is
due to this inherently nonequilibrium contribution to the
pressure.

The swim pressure emerges from the persistent
and time-irreversible motion generated by the non-

conservative self-propelling force of active particles.
Within the context of the active Brownian particle
(ABP) model a popular minimal model for studying ac-
tive colloids particles self-propel at a constant speed U0

and undergo Brownian rotational diffusion with a char-
acteristic reorientation time τR. At long times, an ideal
ABP executes a random walk with a trajectory correla-
tion length `0 = U0τR, which we call the intrinsic run-
length. A dilute system of ABPs with number density n
exerts a swim pressure directly proportional to this in-
trinsic run-length, Πs ∼ n`0U0. For more concentrated
systems, interparticle interactions reduce the trajectory
correlation length, resulting in a density-dependent effec-
tive run-length ` < `0 and a swim pressure of Πs ∼ n`U0.
In the limit of maximal-packing, ABPs are prevented
from executing their athermal random walk resulting in
a vanishingly small effective run-length (and swim pres-
sure) that should be independent of `0 and depend only
on geometric packing constraints. This physical expec-
tation for the swim pressure is currently not reflected in
the literature.

This simple physical picture [see Fig. 1] suggests
the existence of a concentration scale that controls the
crossover between the dynamically distinct dilute and
jammed regimes of active suspensions. In this Letter,
using large-scale computer simulations, we identify this
new run-length dependent concentration φ∗, which ex-
hibits a number of compelling analogies to the power-
ful concept of the overlap concentration of equilibrium
polymer solutions [52–54]. Using φ∗ and concentration
scales associated with colloidal jamming, the mechanical
equation-of-state for ABPs can be collapsed onto a single
curve which contains a number of previously overlooked
features, the inclusion of which qualitatively alters pre-
vious predictions of the phase behavior of ABPs. More-
over, the use of a dynamic overlap concentration scale
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FIG. 1. The overlap concentration for polymer solutions and
the proposed trajectory-space analogue for active colloids.
Scaling of the equilibrium osmotic pressure of the polymer
solution with molecular weight N and the pressure of active
colloids with `0 are shown in different concentration regimes.
In the semidilute regime for both polymers and active col-
loids, the EoS can be collapsed onto a universal curve using
an appropriately defined φ∗.

may prove to be of great utility in the construction of
accurate nonequilibrium equations-of-state.

Simulation Model and the EoS.– In an effort to unpack
the concentration dependence of the pressure, we focus
on the simplest and most widely studied active system:
purely-repulsive active Brownian disks. By introducing a
small degree of polydispersity in disk size, we ensure the
system remains disordered for all concentrations. This is
in contrast to monodisperse active disks, which exhibit
a order-disorder phase transition with a complex depen-
dence on activity [55–57]. The small degree of polydis-
persity allows us to isolate the disordered branch of the
equations-of-state, which not only will serve as a useful
reference system for active fluids with more complicated
interactions, but allows for the quantitative study of the
interplay between activity and concentration.

We consider a two dimensional system of overdamped
disks at fixed number density n where each particle expe-
riences a drag force ζU , a conservative interparticle force
F c and an active self-propelling force F a = ζU0q. The
orientation of each particle q is independent and obeys
diffusive rotary dynamics with a characteristic reorienta-
tion time τR. The sum of the forces results in a simple
equation-of-motion for the particle velocity:

U = (F a + F c)/ζ. (1)

The interparticle force F c arises from a Weeks-Chandler-
Anderson (WCA) potential [58] characterized by a poten-
tial depth ε and an average Lennard-Jones diameter d.
Particle diameters are drawn from a normal distribution
with a standard deviation of 0.1d. Importantly, as our
active force is of finite amplitude, a sufficiently strong
choice for the repulsive force F c will mimic a true hard-

particle potential. A choice of ε/(ζU0d) = 100 is found
to result in hard disk statistics with an effective average
particle diameter of 21/6d. In this hard-disk limit, the
state of our system is independent of the amplitude of
the active force and is fully described by two geometric
parameters: the area fraction φ = nπ(21/6d)2/4 and the
dimensionless intrinsic run-length `0/d. Using the GPU-
enabled HOOMD-blue software package [59], all simula-
tions were conducted with 40,000 particles and run for a
minimum duration of 5,000 d/U0.

The total mechanical pressure Π has two contributions:
the collisional pressure Πc arising from conservative in-
terparticle interactions and the swim pressure Πs gener-
ated by the active force. The collisional pressure follows
from the standard micromechanical virial for conserva-
tive interactions Πc = n〈x · F c〉/2 where x is the par-
ticle position and 〈...〉 denotes an average over all parti-
cles. At steady-state, Πs can be written in the impulse
form [12, 13, 47]:

Πs = n
ζU0τR

2
〈q ·U〉. (2)

For an isotropic system of active particles free of align-
ing interaction, Eq. (2) is the pressure that the suspen-
sion would exert on a flat torque-free macroscopic bound-
ary. Under these conditions, the total pressure exerted
on the surroundings is simply the sum of the collisional
and swim pressure Π = Πc + Πs.

Equation (2) allows us to directly probe via simulation
the effective run-length of the particles, ` ≡ τR〈q · U〉,
which is the true correlation length of a particle’s trajec-
tory and a measure of the correlation between the orien-
tation of a particle and the forces (both active and inter-
particle) acting upon it. Analytical expressions for the ef-
fective run-length ` require solving a many-body dynam-
ics problem in both position and orientation space [60–
62], and have been derived in only a few asymptotic lim-
its. Additionally, the nature of ` is further obfuscated
as direct measurement is limited to a narrow region of
(`0, φ)-state-space where motility-induced phase separa-
tion is absent (i.e., outside of the MIPS phase envelope).
Paradoxically, the prediction of both the spinodal and
binodal requires knowledge of ` in regions where it can-
not be directly measured. Extrapolation of ` into these
mechanically forbidden regions requires a complete un-
derstanding of the trends in ` as the system approaches
the critical `0 for MIPS (`0/d ≈ 13). Figure 2(a) presents
the complete φ dependence of ` in regions of (`0, φ)-state-
space where the system is homogeneous.

Our approach for isolating these trends is motivated
by two simple observations. First, ` becomes increasingly
independent of the intrinsic run-length `0 with increas-
ing concentration. In the dilute limit, ` = `0 = U0τR,
while in the limit of maximal-packing ` ≈ 0. Second,
deviations from the dilute scaling prediction of ` occur
at lower concentrations as `0 is increased. Microrheology



3

FIG. 2. Concentration dependence of the normalized effective run-length (a) and collisional pressure (e). The first order
corrections to the normalized run-length (b) and collisional pressure (f) in the dilute limit and the asymptotic scaling near
maximal-packing. Collapse of the dilute and semidilute regions for the effective run-length (c) and collisional pressure (g)
using the dynamic overlap concentration φ∗. Lines represent our theoretical equations-of-state in the active jamming region.
Scaling-informed predicted (d) swim (normalized by the ideal swim energy scale ζDs = ζU0`0/2) and (h) collisional pressures
in the region of instability. The previously assumed forms of the swim pressure used by Takatori and Brady [42] and Solon et
al. [47] are shown for comparison. For each activity curve, the identically colored star represents the location of φ∗.

calculations for hard-disks show the first-order correction
to the effective run-length is given by ` ≈ `0(1 − φ) in
the limit of large `0 [3, 63]. As shown in Fig. 2(b), this
expression is in excellent agreement with our data for
persistent ABPs (`0 > 3d), and note the previously men-
tioned trend in the deviation from this dilute scaling as
`0 increases.

Dynamic Overlap Concentration.– The dependence of
the swim pressure on a single-particle length scale at low
concentrations – the intrinsic run-length `0 – and its in-
dependence from that length scale at high concentrations
suggests a connection to equilibrium polymer solutions.
There exist distinct concentration regimes for polymer
solutions, corresponding to isolated (dilute) and overlap-
ping chains (semidilute) [52–54]. The thermodynamic
equations-of-state in each regime have distinct dependen-
cies on single-chain properties. For example, the osmotic
pressure of a dilute polymer solution is inversely propor-
tional to the degree of polymerization N [see Fig. 1]. In
the semidilute regime where chains strongly overlap, the
individuality of each chain is lost resulting in an osmotic
pressure that is independent of the single-chain property
N . The overlap concentration φ∗ delineates the dilute
and semidilute regimes and is the concentration at which
polymer coils begin to overlap. The density of chains at
φ∗ is inversely proportional to the effective volume occu-
pied by a single polymer chain V chain.

For ABPs, we seek the characteristic single-particle
volume (area in 2D) V ABP that plays the analogous

role to the single-chain volume V chain for polymer so-
lutions. In 2D, a natural starting point is to consider
the area swept out by an ideal ABP in a single reorien-
tation time τR: V ABP ∼ `0d. For concentrations beyond
φ∗ ∼ 1/V ABP particle trajectories overlap and collisions
prevent ABPs from executing their intrinsic random walk
of length `0 [see Fig. 1]. The single-particle volume given
by V ABP ∼ `0d is likely an overestimate of the overlap
probability. More realistically, we anticipate a weaker
dependence on `0 and introduce the more general defini-
tion V ABP ∼ `λ0d2−λ where 0 < λ < 1 is a constant to be
determined. The resulting overlap concentration φ∗ can
be written as:

φ∗ ∼
(
d

`0

)λ
. (3)

The dynamic overlap concentration φ∗ proposed in
Eq. (3) should delineate dilute and semidilute concen-
tration regimes for all values of `0. Using this criterion
as a guide (see Supplemental Material [64]), we identify
a significant dependence of the dynamic overlap concen-
tration on the intrinsic run-length with λ ≈ 0.353 for our
polydisperse system of active Brownian disks. As shown
in Fig. 2(c), rescaling φ with φ∗ allows for a collapse of
` in the dilute (φ/φ∗ < 1) and semidilute (φ/φ∗ ≥ 1)
regimes. Notably, for each `0 deviations from the col-
lapse begin to occur at a φ∗-independent area fraction
φ ≈ 0.72, indicative of an upper-bound for our semidi-
lute regime and the emergence of what we term as the
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FIG. 3. (a) φ∗-EoS in both the regions of stability and insta-
bility (metastable points are outlined in black) and (b) the
predicted spinodal. The φ∗-EoS and resulting spinodal are
compared to those of Takatori et al. [42] and Solon et al. [47].
Phase separation kinetics (c) confirm that our predicted spin-
odal indeed delineates regions of the phase diagram in which
large wavelength density homogeneity is unstable from regions
in which homogeneity is metastable.

active jamming regime.
As the system transitions to the active jamming

regime, the run-length tends to zero as the maximal-
packing φm ≈ 0.845 is approached. Furthermore, the
run-length becomes increasingly independent of `0 as ge-
ometric packing constraints set the scale for particle mo-
tion. We find ` in the active jamming regime is well-
described by:

`/`0 = D(1− e−E/`0)(1− φ/φm), (4)

where D, E > 0 are constant empirical fitting parame-
ters [64]. As shown by the family of curves in Fig. 2(c),
Eq. (4) accurately captures the deviation of ` from the
semidilute regime as a function of `0 while also captur-
ing our physical asymptotic expectations. With increas-
ing `0, the effective run-length approaches a constant
value set by the packing geometry i.e., lim`0→∞ ` =
DE(1 − φ/φm). Previous EoS [42, 47] which expressed
` = `0f(φ) (for large `0) fail to capture this physical
expectation and, in fact, find the unphysical result of
lim`0→∞ ` =∞ for all φ unless f(φ) is identically zero.

By identifying φ∗ and the scaling behavior in the ac-
tive jamming regime, the `0 dependence of the three re-
gions of the swim pressure (dilute, semidilute and active
jamming) can be described quantitatively. From this in-
formation, it is straight-forward to construct a functional

form that captures the full φ and `0 dependencies of the
swim pressure [64]. In Fig. 2(d), representative curves for
the φ∗-informed swim pressure are provided for a range
of `0 above the critical intrinsic run-length for MIPS. For
comparison, we include expressions for the swim pressure
put forward in previous works [42, 47]. Importantly and
in contrast to Refs. [42, 47], the swim pressure derived us-
ing φ∗ does not asymptote to a characteristic functional
form at large `0. In fact, the dependence on `0 is quite
striking but not unexpected given our newly identified
concentration regimes.

The concentration regimes defined above not only de-
scribe the swim pressure, but also reveal the `0 and φ
dependencies of the collisional pressure Πc, as shown in
Figures 2(e)-(h) (see [64] for further discussion). While
existing works [42, 47] have proposed that Πc is inde-
pendent of `0, a clear dependence can be observed in
Fig. 2(f) and collapsed using φ∗ [see Fig. 2(g)]. Devia-
tions from the collapse again occur in the active jamming
region, where Πc is entirely independent of `0 and is well-
described by an EoS for passive polydisperse disks [65]
(with ζU0 replacing the thermal force scale kBT/d).

Phase Behavior Implications.– In Fig. 3(a), we com-
pare the total pressure predicted by our dynamic overlap
equation of state (φ∗-EoS) with those derived in previous
work. We consider two values of `0, one near the critical
intrinsic run-length `0/d = 12 and one deep within the
MIPS coexistence region `0/d = 40. At `0/d = 12, the
three expressions are found to be in relatively good agree-
ment, while for `0/d = 40 there is a substantial disagree-
ment between the φ∗-EoS and those proposed in previous
works, most notably in the range of concentrations where
the equation of state becomes unphysical (manifested as
a van der Waals loop) and exhibits a mechanical instabil-
ity (i.e. (∂Π/∂φ)`0 < 0). The bounds (the stability limit)
of this mechanically unstable region denote the spinodal,
shown in full in Fig. 3(b).

Compared to previous works, the φ∗-EoS predicts a
much broader unstable region – a prediction that can be
directly tested via simulation. In Fig. 3(c), we show a
series of snapshots that illustrate the phase separation
kinetics for different points in the stability diagram. For
the (`0/d, φ)-state-space point (40, 0.35), all simulations,
independent of the initial configuration, rapidly phase
separate [see bottom row of Fig. 3(c)] – an indication that
this state-space point is unstable (within the spinodal).
While, for the (`0/d, φ)-state-space point (40, 0.25), it
is possible to stabilize both a homogeneous and phase-
separated configuration depending on the choice of ini-
tial configuration [see top two rows of Fig. 3(c)]. The
metastability at this state-space point demonstrates that
it is outside of the spinodal but still within the binodal for
MIPS. That these two state points of contrasting stability
straddle our predicted spinodal provides an independent
verification of the accuracy of φ∗-EoS well-beyond the
critical point. In addition, the φ∗-EoS captures features
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that are central for correctly predicting the binodal for
MIPS, which will be detailed in a future publication.

Conclusions.– We close by emphasizing that the unique
features of the EoS identified in this work were revealed
through the recognition of the existence of a dynamic
overlap concentration scale. It is our hope and expec-
tation that the use of trajectory-space length scales to
define concentration scales will prove to be of utility in
the study of non-equilibrium systems. In future work, it
will be interesting to unravel the dependencies of the dy-
namic overlap concentration on the nature of the particle
interactions and dynamics as well as the system dimen-
sionality.

Acknowledgments.– S.A.M. acknowledges financial
support from the Arnold and Mabel Beckman Founda-
tion. A.K.O. acknowledges support from the Schmidt
Science Fellowship in partnership with the Rhodes Trust.
J.F.B. acknowledges support by the National Science
Foundation under Grant No. CBET-1803662. We grate-
fully acknowledge the support of the NVIDIA Corpora-
tion for the donation of the Titan V GPU used to carry
out this work.

∗ smallory@caltech.edu
† aomar@berkeley.edu
‡ jfbrady@caltech.edu

[1] Y. Fily, S. Henkes, and M. C. Marchetti, Soft Matter 10,
2132 (2014).
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Phys. Rev. E 96, 062603 (2017).



Supplemental Material:

Dynamic Overlap Concentration Scale of Active Colloids

Stewart A. Mallory,1, ∗ Ahmad K. Omar,2, † and John F. Brady1, ‡

1Division of Chemistry and Chemical Engineering,

California Institute of Technology, Pasadena, California, 91125, USA

2Department of Chemistry, University of California, Berkeley, California, 94720, USA

∗ smallory@caltech.edu
† aomar@berkeley.edu
‡ jfbrady@caltech.edu

1

ar
X

iv
:2

00
9.

06
09

2v
1 

 [
co

nd
-m

at
.s

of
t]

  1
3 

Se
p 

20
20



I. IDENTIFYING THE DYNAMIC OVERLAP CONCENTRATION

FIG. S1. (a) Normalized run-length rescaled by the first-order correction due to particle interac-

tions. The dilute regime is demarcated by the black horizontal line and the family of curves in

the active jamming regime have the functional form described in the text. (b) Minimization of the

average standard error in the fitting parameters to determine the optimal value of λ for the over-

lap concentration φ∗ = (d/`0)
λ. (c) Collapse of the dilute and semidilute regions for the effective

run-length using the determined dynamic overlap concentration φ∗. The colored lines represent

our theoretical equations-of-state in the active jamming region, while the black lines characterize

the dilute and semidilute regimes.

In this section, we provide the technical details for identifying the dynamic overlap con-

centration φ∗ for the polydisperse suspension of active Brownian particles (ABPs) considered

in this study. This procedure collapses the normalized run-length data shown in Fig. S1(a)

onto the set of principal curves shown in Fig. S1(c), corresponding to Figs. 2(b) and 2(c),

respectively, in the main text.

As discussed in the main text, the first-order correction to the effective run-length due

to interparticle collisions is given by `/`0 = Πs/Πs
0 = (1− φ). This expression captures the

behavior of the effective run-length (which is directly proportional to the swim pressure)

at low concentrations as shown in Fig. S1(a) (black horizontal line), while in the active

jamming regime, we find ` is well-described by, `/`0 = Πs/Πs
0 = D(1 − e−E/`0)(1 − φ/φm),

where D, E > 0 are constant fitting parameters. As shown by the family of curves in

Fig. S1(c), values of D = 0.55 and E = 16.5 accurately capture the `0 dependence of the

normalized run-length in the active jamming regime.

The semidilute regime for each curve exhibits a linear decay with increasing concentration
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and the width of this region gradually broadens as the intrinsic run-length is increased. The

linear scaling in the semidilute regime suggest that all points in the region can be collapsed

onto a single line by rescaling the φ-axis by the overlap concentration φ∗ = (d/`0)
λ. To

determine the optimal value of λ, we use an iterative procedure where all points in the

intermediate region are fit using a simple linear regression for different values of λ and identify

the value of λ that minimizes the average standard error of the two fitting parameters [see

Fig. S1(b)]. The optimal value is found to be λ ≈ 0.353 and the resulting linear function,

which is shown in Fig. S1(c), is B(φ/φ∗) + C where B = −0.414 and C = 1.296.

II. CONSTRUCTION OF SWIM PRESSURE

The procedure outlined in Section I quantitatively characterizes the three regions of the

swim pressure (dilute, semidilute and active jamming) and admits the construction of the

piecewise expression:

Πs

Πs
0

=
`

`0
=





(1− φ)A, φ ≤ φ12 − δ

(1− φ)(B(φ/φ∗) + C), φ12 + δ < φ ≤ φ23 − δ̃

D(1− e−E/`0)(1− φ/φm), φ23 + δ < φ ≤ φm

(S1)

where A = 1.012 is a small empirical correction factor for the low-density region and B, C,
D, and E are the parameters determined in Section I. A comparison between this piecewise

expression and swim pressure measurements from simulation are presented in Fig. S2(a) for

3 ≤ `0 ≤ 12. The transition concentrations between regimes were estimated by comput-

ing the point of intersection between the two functions describing consecutive regimes [see

Fig. S2(b)]. The dilute to semidilute transition concentration is φ12 ≈ 0.686φ∗, while the

transition concentration from the semidilute to the active jamming regime is nearly con-

stant (independent of φ∗) at φ23 ≈ 0.72. The piecewise expression for the swim pressure

describes points unambiguously belonging to the three concentration regimes. To exclude

the ambiguous points between concentration regimes, concentrations within a factor δ = 0.1

[see Eq. (S1)] of a transition concentration are not described by Eq. (S1) [see Fig. S2(a)].

Additionally, a region between the semidilute and active jamming region is excluded in the

piecewise function to ensure that the swim pressure is a monotonically decreasing func-

tion in these two regions for all `0 values considered. The excluded region is determined
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such that the minimum value of the swim pressure in the semidilute regime is equal to

Πs/Πs
0 = `/`0 = (D(1 − e−E/`0)(1 − (φ23)/φm)) + ∆ where ∆ = 0.2 – a condition that is

straightforward to enforce numerically and results in a dynamic shift-factor δ̃ [see Eq. (S1)].

The results are insensitive to the choice of ∆. The primary function of ∆ is to ensure that for

large values of `0 the fitting procedure to produce a continuous function doesn’t introducing

spurious artifacts.

FIG. S2. (a) The piecewise expression of the swim pressure in both regions of homogeneity and

inhomogeneity in comparison with simulation data. (b) Transition concentrations from the dilute to

semidilute regime (φ12) and semidilute to active jamming regime (φ23). (c) Continuous expression

for the swim pressure which is fit to the points obtained from the piecewise expression.

As swim pressure is continuous and differentiable for all values of φ, we fit the above

piecewise expression to the function:

Πs

Πs
0

=
`

`0
= (1− φ/φm)(1 + a1φ+ a2φ

2 + a3φ
3 + a4φ

4 + a5φ
5). (S2)

This functional form captures all three regimes of the swim pressure described in Eq. (S1)

while ensuring a smooth transition between them. The coefficients are determined by using

a simple linear regression where the expression above is fit to the piecewise data for the swim

pressure. The resulting continuous functions for the swim pressure are given in Fig. S2(c)

and the associated fitting parameters for different values of `0 are provided in Table I. This

is the procedure used to generate the swim pressure curves shown in Fig. 2(d) of the main

text.
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FIG. S3. (a) Dimensionless collisional pressure rescaled by the first order correction due to inter-

particle interactions (φ2/2). The points in the dilute regime can be described by a line and the

active jamming region near maximal-packing diverges as Πc ∼ 1/(1− φ/φm)
1
2 . (b) Collapse of the

dilute and semidilute regions for the collisonal pressure using the dynamic overlap concentration

φ∗. The colored lines represent our theoretical equations-of-state in the active jamming region,

while the black lines characterize the dilute and semidilute regimes.

III. VERIFYING OVERLAP CONCENTRATION

The dynamic overlap concentration computed in Section I also collapses the collisional

pressure onto a set of principal curves [see Fig. S3]. These are the details of the intermediate

steps needed to collapse the curves in Fig. 2(f) into those of Fig. 2(g) of the main text.

As shown in Fig. S3(a), the first order correction to the collisional pressure scales as

Πc ∼ (φ2/2). The rescaling of the collisional pressure Πc by (φ2/2) collapses the dilute

regime onto a line Fφ + G where F = 0.711 and G = 0.822. We find the asymptotic

behavior of the collisional pressure in the active jamming regime is given by the functional

form Πc ∼ 1/(1 − φ/φm)
1
2 . This expression is similar to a recent EoS proposed by Santos

et al. [1] for equilibrium polydisperse hard disks providing further evidence that at high

concentrations system behavior becomes independent of `0. Similar to the swim pressure,

we observe a linear dependence of the rescaled collisional pressure on concentration in the

semidilute regime (implying Πc ∼ φ3). Using the value of λ determined in Section I for

the overlap concentration φ∗ = (d/`0)
λ it is possible to rescale the φ-axis such that the

5



intermediate region collapse onto the single line H(φ/φ∗) + I where H = 2.077 and I =

−0.163 [see Fig. S3(b)].

IV. CONSTRUCTION OF COLLISIONAL PRESSURE

The piecewise expression for the collisional pressure is:

Πc

(φ2/2)
=





Fφ+ G, φ ≤ φ′12

H(φ/φ∗) + I, φ′12 < φ ≤ φ′23

1/(1− φ/φm)
1
2 , φ′23 + δ′ < φ ≤ φm

(S3)

where F , G, H, and I are the parameters determined in Section III. A comparison between

this piecewise expression and collisional pressure measurements from simulation is presented

in Fig. S4(a) for 3 ≤ `0 ≤ 12. For the collisional pressure, the transition concentration

between the dilute and semidilute regime φ′12 was estimated by computing the point of

intersection between the two functions describing these regions and determined to be φ′12 ≈
0.722φ∗. A transition concentration value of φ′23 = 0.6 gives good agreement with simulation

data when fitting to a continuous function. We select a value of δ′ = 0.24 to capture values

near maximal-packing [see Eq. (S3)].

FIG. S4. (a) The piecewise expression of the collisional pressure in both regions of homogeneity and

inhomogeneity in comparison with simulation data. (b) Continuous expression for the collisional

pressure which is fit to the points obtained from the piecewise expression.
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The continuous and differentiable functional form for the collisional pressure is given by:

Πc =
b2φ

2 + b3φ
3 + b4φ

4

(1− φ/φm)
1
2

(S4)

The coefficients are determined by using a simple linear regression where the expression is fit

to the piecewise expression for the collisional pressure. The resulting continuous functions

for the collisional pressure are given in Fig. S4(b) and the associated fitting parameters for

different values of `0 are provided in Table II. This is the procedure used to generate the

collisional pressure curves shown in Fig. 2(h) of the main text.

V. DETAILS OF EQUATIONS-OF-STATE FROM PREVIOUS WORKS

The equations-of-state adapted from the work of Solon et al. [2] have the following func-

tional form:

Πs = Πs
0(1 + a1φ+ a2φ

2)(1− tanh (a3(φ− a4))),

Πc = b0(e
b1φ − 1) + b2(e

b3φ − 1),

where the fitting parameters to our swim pressure data are a1 = −1.011, a2 = −0.1972,

a3 = 0.4476, a4 = 0.2333 and the fitting parameters to our collisonal pressure data are

b0 = 0.0, b1 = 88.84, b2 = 0.03582, b3 = 4.68

The equations-of-state adapted from the work of Takatori et al. [3] has the following

functional form:

Πs = Πs
0(1− φ+ a2φ

2),

Πc = b0/(1− φ/φm)b1 ,

where the fitting parameter to our swim pressure data is a2 = −0.2537 and the fitting

parameters to our collisional pressure data are b0 = 0.4387 and b1 = 0.5563.

The fitting parameters for both equations-of-state were determined by fitting the ap-

propriate function to the simulation data near the critical point for MIPS (`0 = 12) - an

analogous procedure to that implemented in each of these works.
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`0 a1 a2 a3 a4 a5

3.0 0.183432 2.845697 −15.147852 29.725037 −18.192493

4.0 0.183432 2.891293 −14.835777 26.893139 −15.248972

5.0 0.183432 2.702787 −13.178302 21.966445 −11.382876

6.0 0.183432 2.438215 −11.141770 16.631632 −7.536175

7.0 0.183432 2.499049 −11.390424 16.064329 −6.699915

8.0 0.183432 2.683782 −12.597868 17.664652 −7.321000

9.0 0.183432 2.907041 −14.169293 20.196494 −8.615149

10.0 0.183432 3.129855 −15.821185 23.046509 −10.179068

11.0 0.183432 3.334186 −17.415974 25.905089 −11.802772

12.0 0.183432 3.510066 −18.875512 28.591585 −13.361462

15.0 0.183432 3.848343 −22.225547 35.012108 −17.184935

20.0 0.183432 3.918075 −24.893074 40.622870 −20.650856

25.0 0.183432 3.690035 −25.640354 42.716735 −22.007869

30.0 0.183432 3.380314 −25.740661 43.591748 −22.603205

35.0 0.183432 3.071195 −25.717216 44.237095 −23.045548

40.0 0.183432 2.789162 −25.760161 45.029119 −23.578574

45.0 0.183432 2.534460 −25.894524 46.027805 −24.250557

50.0 0.183432 2.302974 −26.109042 47.214032 −25.055000

TABLE I. Fitting parameters for the swim pressure [see Eq. (S2)] for various values of `0. Note that

a1 is fixed at the appropriate value to reproduce the correct low density result Πs/Πs
0 = (1 − φ).

The remaining coefficients are determined by using a simple linear regression where the expression

is fit to the piecewise expression for swim pressure.
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`0 b2 b3 b4

3.0 0.516712 −0.326021 0.362842

4.0 0.345719 0.449888 −0.316453

5.0 0.219327 1.061960 −0.864242

6.0 0.122881 1.558342 −1.316998

7.0 0.046163 1.974989 −1.702971

8.0 −0.017101 2.334871 −2.040573

9.0 −0.070816 2.652788 −2.341859

10.0 −0.117500 2.938596 −2.614970

11.0 −0.158844 3.199109 −2.865605

12.0 −0.196018 3.439187 −3.097882

15.0 −0.289852 4.068476 −3.711784

20.0 −0.410507 4.920119 −4.551497

25.0 −0.506271 5.622290 −5.249047

30.0 −0.587207 6.228834 −5.854106

35.0 −0.658161 6.767830 −6.393142

40.0 −0.721849 7.255988 −6.882142

45.0 −0.779960 7.704183 −7.331619

50.0 −0.833623 8.119935 −7.748900

TABLE II. Fitting parameters for the collisional pressure [see Eq. (S4)] for various values of `0.

The coefficients are determined by using a simple linear regression where the expression is fit to

the piecewise expression for collisional pressure.
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