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Branched β-1,3-glucans and the eicosapolyenoic acids (EP) are among the best character-
ized oomycete elicitors that trigger innate immune responses in plants. These elicitors
were identified over three decades ago, and they were useful in the study of the
sequence of physiological, biochemical and molecular events that induce resistance in
plants. However, in spite of the cross-kingdom parallels where these molecules are well-
characterized as immune system modulators in animals, their perception and modes
of action in plants remains obscure. Oomycetes are among the most important plant
pathogens, responsible for diseases that devastate crops, ornamentals, and tree species
worldwide. With the recent interest and advances in our understanding of innate immunity
in plants, and the redefining of many of the classical elicitors as microbe-associated
molecular patterns (MAMPs), it seems timely and important to reexamine β-glucans and
EP using contemporary approaches. In this review, we highlight early studies of β-glucans
and EP, discuss their roles as evolutionarily conserved signals, and consider their action in
relation to current models of MAMP-triggered immunity.
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INTRODUCTION
Over 30 years ago branched β-1→3-glucans and the EP – AA and
EPA – were characterized as potent oomycete elicitors of innate
immune responses in plants. These and the Phytophthora elic-
itin proteins with activities in a somewhat narrower host range
(Tyler, 2002) figured prominently in the literature in subsequent
years, and were used to examine physiological, biochemical and
molecular events associated with the HR and induced resistance.
Intriguing is that β-glucans and EP are important in modulating
innate immunity and inflammation in animals, although these
cross-kingdom parallels are likely not fully appreciated by the plant
and animal research communities.

Oomycetes are among the most important plant pathogens,
responsible for devastating plant diseases worldwide. New Phy-
tophthora species, in particular, are continually being discov-
ered, with the number of species identified nearly double
that of only a decade ago (Hansen et al., 2012; Kroon et al.,

Abbreviations: AA, arachidonic acid (20:4 �5,8,11,14); ALA, α-Linolenic acid (18:3�

9,12,15); AOS, allene oxide synthase; CA, colneleic acid; a divinyl ether from per-
oxidized LA; CnA, colnelenic acid; a divinyl ether from peroxidized ALA; DES,
divinyl ether synthase; DHA, docosahexaenoic acid (22:6 �4,7,10,13,16,19); DP,
degree of polymerization; DPI, diphenyleneiodonium; EAS, epoxy alcohol syn-
thase; EP, eicosapolyenoic acids (arachidonic acid and/or eicosapentaenoic acid);
EPA, eicosapentaenoic acid (20:5 �5,8,11,14,17); ET, ethylene; HMGR, 3-Hydroxy-3-
methylglutaryl coenzyme A reductase; HPETE, Hydroperoxyeicosatetraenoic acid;
HPL, Hydroperoxide lyase; HPOD, Hydroperoxyoctadienoic acid (from LA); HPOT,
Hydroperoxyoctatrienoic acid (from ALA); HR, hypersensitive response; JA, jas-
monic acid; LA, linoleic acid (18:2�9,12); LOX, lipoxygenase; MAMP, microbe
associated molecular pattern; PCD, programmed cell death; POX or PXG, per-
oxygenase; PR, pathogenesis-related (proteins); PRR, pattern recognition receptor;
PTI, pattern triggered immunity; PUFA, polyunsaturated fatty acid; ROS, reactive
oxygen species; SA, salicylic acid; SAR, systemic acquired resistance; TG, triglyceride;
TMV, tobacco mosaic virus.

2012). Downy mildew pathogens and the diseases they cause
are also current threats to U.S. and world agriculture, with
two listed as Select Agents as serious threats to U.S. agriculture
(http://www.selectagents.gov). The Phytophthora research com-
munity is attuned to the need and urgency to develop novel control
strategies that are broadly applicable yet sustainable, with vigor-
ous research programs studying population genetics, genomics,
effector biology, host resistance, and disease epidemiology and
management. Within this research portfolio, determining how
β-glucans and EP are perceived and act in plants could be useful for
enhancing disease resistance against oomycetes and possibly other
attackers. In this review, we highlight early studies of β-1→3-
glucans and EP, discuss their roles as evolutionarily conserved
signals, and consider their action in relation to current models
of MAMP1-triggered immunity.

EICOSAPOLYENOIC ACIDS
Arachidonic acid (AA; 20:4 �5,8,11,14) and eicosapentaenoic acid
(EPA; 20:5 �5,8,11,14,17) are 20-carbon, all-cis PUFAs containing
four and five double bonds, respectively (Figure 1). In mammals,
AA and EPA undergo enzymatic oxidation to oxylipins, referred
to as eicosanoids, which serve crucial signaling functions in stress
responses (Blee, 2002; Bostock et al., 2011). Examples of these
eicosanoids include prostaglandins and thromboxanes, formed
via the action of cyclooxygenases, and leukotrienes, formed
via the action of LOXs. Eicosanoid-mediated stress responses
include pain, inflammation and fever (prostaglandins), platelet
aggregation and vasoconstriction (thromboxanes), and allergic
responses and asthma (leukotrienes; De Caterina and Basta, 2001;

1Microbe-associated molecular pattern.
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FIGURE 1 | Chemical structures of the eicosapolyenoic acids,

arachidonic acid, and eicosapentaenoic acid.

Murakami, 2011). Although higher plants do not contain AA and
EPA, AA and EPA are found in oomycete pathogens and plants are
exposed to these fatty acids during infection (Walley et al., 2013).

Many molecules of microbial pathogens identified as elicitors
in earlier studies have been reclassified as MAMPS to conform
to terminology used in animal immunity. MAMPs are motifs
in essential molecules such as proteins, lipids, and polysaccha-
rides that are present in entire classes of microbes (pathogenic
or non-pathogenic). These molecular motifs are generally absent
from hosts and can be recognized by plants and animals, such
as in response to attempted infection or colonization. Defense
responses induced by MAMPS in plants are referred to as PTI
(Nurnberger et al., 2004; Boller and Felix, 2009; Zipfel and
Robatzek, 2010). Studies of PTI have focused on the bacterial pep-
tides flagellin and EF-Tu and their action in Arabidopsis. These
peptides are perceived by PRRs, receptor-like kinases that are
crucial for perception of flagellin/EF-Tu and activation of PTI.
However, unlike flagellin and EF-Tu, many of the historical elici-
tors that stimulate well-characterized defense responses in plants
have not been sufficiently investigated to resolve their modes of
action (Nurnberger et al., 2004; Boller and Felix, 2009; Nguyen
et al., 2010; Zipfel and Robatzek, 2010). The elicitors AA and
EPA conform to the definition of MAMPs: they are not present
in higher plants, are essential components in oomycete cells, are
largely absent from other classes of microbes, and elicit similar
defense responses in plant species where they have been studied
(Tyler, 2002; Bostock et al., 2011; Walley et al., 2013).

Eicosapolyenoic acid elicitor activity in plants was first dis-
covered in the interaction between Phytophthora infestans and
potato. Mycelial extracts of P. infestans induced sesquiterpenoid
phytoalexins, lignin deposition and cell death in potato tissue in
a reaction similar to a HR to incompatible races of the pathogen.
Purification and analysis of all active fractions in these extracts
identified AA and EPA, without exception, either free or esterified
to other molecules (Bostock et al., 1981, 1982). Elicitation was spe-
cific to AA and EPA. Treatment with 15 other fatty acids, including
LA (18:2�9,12) and ALA (18:3�9,12,15), the primary unsaturated
fatty acids found in higher plants (Kachroo and Kachroo, 2009),
as well as structurally similar eicosatrienoic acid (20:3�11,14,17)
and arachidonyl alcohol, did not elicit defense responses. Treat-
ment of tuber disks with AA also protected them from subsequent
P. infestans infection (Bostock et al., 1981, 1982).

EP-INDUCED RESISTANCE AGAINST PATHOGENS AND
PHYTOHORMONE DEFENSE SIGNALING
Eicosapolyenoic acids induce systemic resistance in potato as well
as in other plant species to various pathogens. Although the

mechanisms remain unresolved, EP have been shown to elicit SA,
JA, and ET in different experimental systems. Colonization of avo-
cado seedling roots by P. cinnamomi was reduced in roots treated
with AA prior to inoculation (Romero-Correa et al., 2014). Pearl
millet seedlings were protected to a greater degree against infection
by the downy mildew pathogen, Sclerospora graminicola, following
seed treatment with AA or EPA, in contrast to seedlings emerging
from seeds treated with LA, ALA, DHA or water (Amruthesh et al.,
2005).

EP elicit SAR or SAR-like responses in tobacco, potato, and
tomato. Treatment of lower leaves of tobacco plants with AA
induced local and SAR to TMV (Rozhnova et al., 2003). EP treat-
ment of the lower leaves of potato plants protected the upper
leaves from infection by P. infestans, a systemic resistance that
developed within 5 days of the inducing treatment (Cohen et al.,
1991). Plants treated with LA, ALA, or oleic acid displayed par-
tial protection but not to the level of EP-treated plants. AA also
induced resistance in potato leaves to the early blight pathogen,
Alternaria solani, with levels of SA and a PR1-like protein elevated
in the AA-treated leaves (Coquoz et al., 1995). AA-treatment of
tomato leaves induced localized accumulation of transcripts for
P4 (Fidantsef et al., 1999), a PR-1 family member and SAR marker
in tomato (Van Kan et al., 1992), but did not induce expression of
the proteinase inhibitor gene PI-2. The latter is strongly induced by
wounding and JA treatment and serves as a marker for JA-mediated
resistance in tomato (Fidantsef and Bostock, 1998; Fidantsef et al.,
1999).

Although the studies in tobacco, potato, and tomato indi-
cate that EP-induced resistance may operate through SA, recent
research suggests EP action is more complex (Savchenko et al.,
2010). Treatment of tomato and Arabidopsis leaves with AA
increased JA levels, reduced SA levels, and increased resistance to
Botrytis cinerea. Arabidopsis plants transformed to produce small
amounts of EPs (named EP plants) were less susceptible to P. cap-
sici, B. cinerea, and feeding by aphids. However, these plants were
more susceptible to Pseudomonas syringae pv. tomato (DC3000).
The EP plants had constitutively elevated levels of JA and JA-
marker gene expression and reduced levels of SA and SA-marker
gene expression relative to wild-type plants. The differential effect
of EP on disease and pest outcomes corresponds to EP’s impact on
SA and JA defense signaling, and this effect is dependent upon JA
as demonstrated with a JA-deficient aos mutant line (Savchenko
et al., 2010).

Salicylic acid and JA can be mutually antagonistic (Bostock,
2005), making it difficult to reconcile these different findings.
AA treatment elicits ET production in both pepper and potato
(Bostock et al., 1986; Garcia-Pineda and Lozoya-Gloria, 1999),
and ET can modulate SA- and JA-defense networks (Pieterse
et al., 2012). The different experimental outcomes may result
in part from differences in EP concentrations used in the vari-
ous studies. Higher concentrations of EP can induce an intense,
localized necrosis at the site of application, particularly in solana-
ceous plants. This strong phenotype could trigger or result from
phytohormone changes different from those induced by low con-
centrations. Also, it is possible that all three phytohormones (SA,
JA, and ET) are important in establishing EP-induced resistance
through a process of transitional signaling (Truman et al., 2010). A
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study in potato indicates that both SA and JA are important in PTI
responses (Halim et al., 2009), and a study of PTI in Arabidopsis
using signal allocation analysis of mutants deficient in ET, SA, and
JA signaling indicated that PTI depends on synergy among ET, SA,
and JA (Tsuda et al., 2009). Further research is needed to fully elu-
cidate the interactions among SA, JA, and ET in their involvement
in EP-induced resistance and defense responses.

PHYTOALEXIN INDUCTION
Eicosapolyenoic acids have been useful in dissecting aspects of
secondary metabolism in plants, with a focus on sesquiterpenoid
phytoalexins in solanaceous plants. However, EP elicits produc-
tion of defense metabolites in other plant families as well. The
isoflavanoid phytoalexins phaseollin and coumestrol accumulate
in leaves of French bean following infiltration with AA (Long-
land et al., 1987). Phenol-2,4-bis (1,1-dimethylethyl), a defense
compound in avocado, is induced in roots treated with AA as
well as with SA (Romero-Correa et al., 2014). Among solanaceous
plants EP elicit sesquiterpenoid phytoalexin synthesis in thorn-
apple, eggplant, chili pepper, green pepper, potato, and tomato
(Bloch et al., 1984; Whitehead et al., 1990; Hoshino et al., 1994;
Castoria et al., 1995; Garcia-Pineda and Lozoya-Gloria, 1999). In
potato tuber, AA elicits sesquiterpenoid phytoalexin biosynthesis
with strong expression of sesquiterpene cyclase, a committed step
in the pathway. Concurrent with this is a complete suppression
of wound-induced squalene synthase and steroid glycoalkaloid
accumulation (Tjamos and Kuć, 1982; Zook and Kuć, 1991).
HMGR catalyzes the first step in the synthesis of stress-induced
isoprenoids from mevalonate in potato. Three isoforms of HMGR
are differentially induced by wounding and AA treatment (Choi
et al., 1992), and a similar expression pattern of the corresponding
HMGR isoforms occurs in tomato (Rodriguez-Concepcion and
Gruissem, 1999).

GENERATION OF REACTIVE OXYGEN SPECIES/
PROGRAMMED CELL DEATH
In addition to potato, EP have been shown to elicit PCD, character-
istic of the HR, in other plant species. Pearl millet seedlings treated
with AA displayed a HR similar to that induced by the oomycete,
S. graminicola, the causal agent of downy mildew. Following treat-
ment with AA, the HR developed more quickly in pearl millet
seedlings with genotypes rated as resistant versus susceptible to
S. graminicola (ratings were based on field studies; Geetha et al.,
1996). Tomato protoplasts treated with AA underwent PCD with
characteristic DNA fragmentation and laddering, while LA and
ALA treatment had no PCD-inducing effects (Knight et al., 2001).

In both potato and pepper, AA was found to induce ROS in
a similar manner. AA treatment of potato tuber disks elicited a
biphasic oxidative burst (generation of ROS) peaking at 1 and
6–9 h after treatment and increased expression of StRBOHB, a
homolog of gp91(phox), which encodes a subunit within the neu-
trophil NADPH oxidase complex (Yoshioka et al., 2001). As in
potato, treatment of pepper fruit with AA elicited an immediate,
rapid ROS burst. When DPI, an inhibitor of NADPH-dependent
oxidases, was applied to the fruit prior to application of AA, ROS
generation decreased as the concentration of DPI was increased
(Araceli et al., 2007).

HOW DO AA AND EPA ELICIT DEFENSE RESPONSES?
The mode of action of EP in PTI is unresolved, although the struc-
tural requirements of EP as elicitors are well characterized. These
include at least a 20 carbon backbone with all cis-1,4-pentadiene
unsaturation beginning at the �5 position and at least four dou-
ble bonds in the chain (Bostock et al., 1981, 1982; Preisig and Kuć,
1985; Savchenko et al., 2010). While this specificity could pro-
vide evidence for involvement of a receptor that recognizes these
structural features, previous studies of EP in potato indicate that
initial perception by plant cells may be quite different than other
MAMPs. Initial recognition of AA and EPA may occur by specific
disruption of host membrane integrity and/or perturbation of
oxylipin metabolism, with the possibility that plant cells produce
novel oxylipins from EP (Bostock et al., 1992; Ricker and Bostock,
1992,1994; Fidantsef and Bostock,1998). Studies in potato showed
that U-14C radiolabeled AA was quickly incorporated into neutral
lipids (mono-, di-, and tri-glycerides) and polar lipids (glycol-
ipids and phospholipids). A small fraction, ∼2–5% of the AA, was
oxidized (Preisig and Kuć, 1988; Ricker and Bostock, 1992). Also,
sporangia of P. infestans readily incorporated exogenous 14C-AA
into phospholipids (primarily), diglycerides and TGs. By 12–14 h
after inoculation, microautoradiographic studies revealed that the
radioactivity from sporangia was released into the epidermal and
palisade mesophyll cells adaxial to the inoculated leaf surface and
distant from fungal structures (Ricker and Bostock, 1992). Plant
phospholipases are activated following attack by pathogens or
treatment of plants with elicitors (Bostock, 1989; Canonne et al.,
2011). This could create an opportunity for any EP incorporated
into plant lipids during infection to be released and accessible to
plant oxylipin enzymes.

Research in potato and tomato indicates that the 9-LOX path-
way may play an important role in EP action. The first step in
the enzymatic formation of phyto-oxylipins involves the action of
LOX (Figure 2). Plant LOXs act on PUFA containing a cis-(1,4)-
pentadiene system, inserting an oxygen molecule (O2) to form
hydroperoxy fatty acids. These are further metabolized to various
oxylipin families by members of CYP74 cytochrome P450s: AOSs,
HPLs, and DESs, or by less well-characterized POX or PXG and
EASs (Blee, 2002; Feussner and Wasternack, 2002; La Camera et al.,
2004; Kachroo and Kachroo, 2009; Mosblech et al., 2009).

The importance of LOX, in particular a 9-LOX2, in EP elicitor
activity is supported by fatty acid structure-activity requirements
and studies of LOX expression. The carboxyl function of EP is crit-
ical, a feature consistent with the substrate requirement of plant
LOXs (Preisig and Kuć, 1985; Feussner and Wasternack, 2002).
A �5 double bond at the beginning of a methylene-interrupted
series with at least four double bonds provides the highest elic-
itor activity (Bostock et al., 1981, 1982; Preisig and Kuć, 1985;
Feussner and Wasternack, 2002). AA stimulates LOX expression
in potato and tomato (Bostock et al., 1992; Robinson et al., 2014),
with 5-HPETE (Figure 3) a principal LOX product formed after
treatment of tissue with AA (Ricker and Bostock, 1994; Robinson

2In plants, 9-LOXs insert oxygen at the 9-carbon of LA and ALA, which is carbon
1 in the (1Z,4Z)-pentadiene system closest to the carboxyl end of the molecule.
The �5-carbon of AA is in the carbon 1 position of the (1Z,4Z)-pentadiene system
closest to the carboxyl group.
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FIGURE 2 | Enzymatic mechanisms leading to the synthesis of

oxylipins in plants from PUFA. Enzymes involved in oxylipin metabolism
are boxed. AOS, allene oxide synthase; αDOX, α-dioxygenase; DES, divinyl
ether synthase; EAS, epoxy alcohol synthase; FA, fatty acid; HPL,
hydroperoxide lyase; HPR, hydroperoxide reductase; JA, jasmonic acid;
LOX, lipoxygenase; POX, peroxygenase [modified from (Shah, 2005)].

FIGURE 3 | Formation of 5-HPETE from AA via plant 9-LOX action.

et al., 2014). Expression of pLOX1, a potato LOX gene now identi-
fied as a 9-LOX type 1 (Andreou et al., 2009), was strongly induced
in AA-treated and P. infestans-inoculated potato tuber disks and
leaves (Fidantsef and Bostock, 1998), as was a tomato LOX in
AA-treated tomato leaves (Fidantsef et al., 1999). LA-treatment
did not induce pLOX1 expression or LOX activity. Heat treatment
of tuber disks inactivates enzyme activity and abolishes HPETE
formation following AA treatment (Ricker and Bostock, 1994),
and EP-induced responses are strongly diminished when LOX
activity is inhibited or absent (Preisig and Kuć, 1987; Vaughn
and Lulai, 1992). Nonetheless, definitive experiments with LOX
knock-out/knock-down or overexpression lines to critically test
specific LOX isoforms in EP action have not been reported. While
it has been proposed and is quite likely that the 9-oxylipin pathway
metabolites of AA may directly act as signal molecules to activate
defense responses (Regdel et al., 1994), AA and/or its metabo-
lites may also induce expression and activity of oxylipin pathway
enzymes to form biologically active metabolites from the plant LA
and ALA pools.

Studies during the past 15 years in solanaceous plants point to
the importance of 9-LOX and the 9-oxylipin pathway in defense,
and have demonstrated that the 9-LOXs from potato, tobacco,
and pepper can utilize AA as a substrate. Many of these studies
have investigated defense responses against oomycete pathogens
or used elicitor preparations from oomycetes likely contain-
ing EP (Fournier et al., 1993; Veronesi et al., 1996; Gobel et al.,
2001, 2002; Andreou et al., 2009; Hwang and Hwang, 2010).
9-hydroperoxy fatty acids can be utilized by downstream oxylipin
pathway enzymes to form other compounds that have been found
to function in defense. In particular, DESs are induced in response
to elicitors and pathogen attack in several solanaceous species
including potato, tobacco, and pepper (Weber et al., 1999; Stumpe
et al., 2001; Fammartino et al., 2007; Gullner et al., 2010). DESs are
CYP74D P450s that produce the divinyl ethers CA from 9-HPOD
and CnA from 9-HPOT.

Recent experiments indicate that treatment of tomato roots
with EP induces resistance against P. capsici. Hydroponically
grown tomato plants whose roots were treated with EP and subse-
quently inoculated with P. capsici experience significantly less rot
and collapse at the crowns than plants whose roots were treated
with H2O, LA, or ALA, indicating that exposure of tomato roots
to EP prior to inoculation with P. capsici reduces susceptibility of
the plants to P. capsici (Roberts et al., 2013). Further experiments
demonstrate that roots and crowns display significantly increased
lignification responses following root treatment with AA and EPA
and subsequent inoculation with P. capsici compared to roots
treated with H2O, LA, and ALA. AA-treatment of tomato roots
elicits increased expression of 9-LOX and 9-DES genes in tomato
roots compared to control treatments (LA and H2O). Expression
of 9-DES is also increased following inoculation of roots with P.
capsici (Robinson et al., 2014).

In conclusion, although EP action in plants is complicated, evi-
dence supports an important role for LOX and likely a 9-oxylipin
pathway in the initiation of plant responses. Furthermore, in
Arabidopsis an intact JA pathway is required for AA activity, impli-
cating a 13-LOX. Whether DES and divinyl ethers participate in
the plant response to EP observed in solanaceous plants is unre-
solved, although ongoing research in our laboratory will address
this issue. The search for a traditional PRR for EP in plant cells
analogous to those for other MAMPs, although intriguing, may
not be productive given other mechanisms for rapid uptake of
PUFA by plant cells and their entry into oxylipin metabolism.

β-GLUCANS AND RELATED OLIGOSACCHARINS IN PLANT
IMMUNITY
β-linked glucose polysaccharides are the most abundant compo-
nent of Phytophthora cell walls, comprising more than 80% of the
wall dry weight (Bartnicki-Garcia and Wang, 1983). These include
insoluble β-1→4-linked (cellulosic) and β-1→3, β-1→6-linked
glucans, with the latter by far the more abundant of these poly-
mers. In addition to the abundance of glucose, compositional
analyses of cell walls also reveal minor amounts of mannose and
glucosamine, as well as protein and lipid similar to levels found
in cell walls of fungi. In addition to the insoluble glucans, solu-
ble β-1→3-linked glucans are present at various developmental
stages in the oomycete life cycle. For example these can be found
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in the germination fluids of cystospores as well as other stages,
and during synthesis and remodeling of the wall during growth,
thus making them potentially available at the host–pathogen
interface during infection (Doke et al., 1980; Waldmuller et al.,
1992). Laminarans are linear β-1→3-linked glucans that provide
the dominant storage carbohydrate in Phytophthora and other
oomycetes, as well as other stramenopiles (Bartnicki-Garcia and
Wang, 1983).

The β-1→3, β-1→6-linked glucans present a very complex
array of possible structures, some with well-established activity in
modulating plant innate immunity. The most prominent exam-
ple is the elicitor activity associated with glucans isolated from
cultures and cell walls of the soybean pathogen P. sojae (formerly
P. megasperma f. sp. glycinea). Albersheim et al. (1983) showed
that these were potent inducers of the flavonoid phytoalexin,
glyceollin, and related defense reactions in soybean cotyledons. β-
glucan oligosaccharide fractions of varying complexity had elicitor
activity suggesting a model whereby cell wall fragments released
during infection provide the physiological triggers of the plant
defense response. The smallest active fragment following partial
acid hydrolysis of P. sojae cell walls was purified and shown to be
a hexa (β-D-glucopyranosyl)-D-glucitol. This oligosaccharide and
its corresponding unreduced hepta-β-glucoside elicited at concen-
trations between 10−7 to 10−9 M (Sharp et al., 1984; Figure 4).
Subsequent work by Michael Hahn and coworkers further defined
the branched β-1→3, β-1→6 structural motif essential to max-
imally induce phytoalexin accumulation (Cheong et al., 1991)
and found that the hepta-β-glucoside specifically bound to soy-
bean membranes with high affinity (Cheong and Hahn, 1991).
These investigators provided strong evidence that the binding
activity was associated with a membrane protein or glycoprotein.
Subsequent efforts by other laboratories identified hydrophobic
membrane proteins that bind β-glucans with high affinity from
soybean (Cosio et al., 1992; Umemoto et al., 1997; Mithofer and
Ebel, 1999) and other legumes (Mithofer et al., 1999). Reconsti-
tution of the soybean homolog in lipid vesicles strongly bound
the hepta-β-glucoside (Kd = 6–7 nM, with even higher affinities
reported in other studies), which could be displaced by glucans
with different degrees of polymerization in competitive binding
assays.

The elicitor activity and high affinity binding of the hepta-β-
glucoside and related β-glucans are limited to members of the
Fabaceae (Ebel, 1998; Fliegmann et al., 2004). Biochemical purifi-
cation and additional studies indicate the binding proteins from
legumes constitute a family of proteins of different sizes (75–
150 kDa; Ebel, 1998), with different carbohydrate active domains,
one that binds β-glucans and another with glucanase activity capa-
ble of releasing elicitor-active fragments from Phytophthora cell
walls (Fliegmann et al., 2004). What would further strengthen
the case for these as physiological receptors for β-glucan-triggered
immune responses in soybean is evidence that the binding speci-
ficity for diverse oligoglucosides matches their bioactivity as
elicitors. To our knowledge corresponding knock-out or knock-
down genetic experiments within legumes to corroborate receptor
function have not been reported, although the soybean protein
expressed in tomato confers binding of the hepta-β-glucoside
(Mithofer et al., 2000).

FIGURE 4 |The β-1→3, 1→6-linked hepta-β-glucoside from

Phytophthora sojae, with potent elicitor activity in members of the

Fabaceae (from Cheong et al., 1991). Other β-1→3, 1→6-glucans with
higher degrees of polymerization have immunomodulatory functions in
plant-microbe interactions as discussed in the text.

β-GLUCANS IN IMMUNE SUPPRESSION AND ACTIVATION IN
THE SOLANACEAE
β-1→3-glucans also figure prominently as immune modulators
in the potato – P. infestans interaction, although the story here
is complicated by their reported action as both enhancers and
suppressors of elicitor activity. However, this differential activity
has not been reconciled with the degree of biochemical resolu-
tion as was done with P. sojae glucans to unambiguously assign
enhancer or suppressor activity to the various oligoglucosides
within the active fractions. Doke and Tomiyama (1980) using a
potato protoplast assay showed that water soluble, anionic and
non-anionic β-glucans suppressed the elicitor activity of a crude
hyphal wall fraction from P. infestans. They suggested a degree
of race-specificity in that glucans from compatible races of the
pathogen were more active than those of incompatible races in
suppressing the HR and ROS induced by the hyphal wall elicitor.
The suppressive glucans were partially characterized and shown to
have a DP of 17–23 glucose units with β-1→3 and β-1→6 link-
ages, and were present in the fluids of germinating cystospores
(Doke et al., 1979). The purified hepta-β-glucoside from P. sojae
was neither active as an elicitor nor as a suppressor in potato. A
subsequent study showed that water soluble glucans from spore
germination fluids of P. capsici have similar effect in suppressing
elicitor-induced cell death in pepper and tomato cell suspensions
(Sanchez et al., 1994). Race specificity attributed to the glucans
in the context of HR suppression is difficult to reconcile with
the contemporary paradigm of effector-triggered immunity and
resistance (R)-gene action (Chisholm et al., 2006).

The model for β-glucans as suppressors is further compli-
cated by their enhancement of EP elicitor activity. β-glucans,
although lacking inherent elicitor activity in potato, can strongly
enhance the activity of EP. Several lines of evidence suggest the
combined action of eliciting (EP) and non-eliciting (β-glucans)
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components provide a maximal defense response. Initial evi-
dence came from reconstitution experiments whereby highly
elicitor-active, solubilized cell wall fractions were hydrolyzed in
base-borohydride, leaving polysaccharides intact but hydrolyzing
any esterified fatty acids, which were then removed by solvent
extraction. This resulted in complete loss of elicitor activity,
which was restored by addition of AA and EPA to the base-
hydrolyzed wall fractions at their levels initially present (Bostock
et al., 1982). Subsequent fractionation, partial purification and
analysis showed that the enhancers were indeed β-1→3-glucans
(Maniara et al., 1984). Preisig and Kuć (1985) further demon-
strated that the glucans provide a 10–100 fold enhancement of the
activity of AA concentrations that alone are below the thresh-
old for induction of phytoalexins and related responses. The
glucans also revealed elicitor activity of other EPs, particularly
�5-eicosatrienoic acids. The most active β-glucan fractions had
similar DP as the suppressor glucans, and were then found to
suppress the HR induced by incompatible races of P. infestans,

suggesting that the enhancers and suppressors could be the
same.

These classic experiments indicate that members of the
Solanaceae have an intriguing system for perceiving specific β-
glucans and EP to coordinate a strong resistance response. The
activity of these glucans in modulating immunity in potato, in
particular, suggests a receptor-mediated process subject to attenu-
ation by competing ligands as observed in legumes. For example,
the suppressive action of the β-glucans against the HR induced
by pathogen inoculum or the crude hyphal wall elicitor may have
resulted from similarities in oligosaccharin motifs that compete
for a putative MAMP receptor. Algal polysaccharides, such as
the storage β-glucans laminarin and carrageenan, activate defense
responses in some plants, although sulfated carrageenans appear
to be far more active than laminarins as elicitors (Klarzynski
et al., 2000; Mercier et al., 2001). However, in potato, laminarin
neither elicits nor suppresses, providing a negative control treat-
ment in the studies of the more complex β-1→3-linked glucans

FIGURE 5 | Model illustrating release of EP from phospholipids and

TG-rich lipid bodies and β-glucans during early stages of plant–oomycete

interactions as suggested by experimental studies. Implicit in this model
are the fusion of lipid bodies with the haustorial membrane and activation of

appropriate lipases and glucanases at the host–parasite interface to release
these MAMPs. Minor amounts of EP also can be detected in cell wall
fractions. How pathogenic oomycetes suppress these processes for
successful infection and colonization is unresolved.
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(Bostock et al., 1982; Maniara et al., 1984; Preisig and Kuć, 1985).
Although considerably less active than the β-glucans, N, N’-
diacetyl-D-chitobiose, the hapten for the potato lectin, inhibited
the HR induced by incompatible races of P. infestans in potato
(Nozue et al., 1980) and modestly enhanced the elicitor activ-
ity of AA (Maniara et al., 1984). Although other carbohydrates
may modulate the plant immune response to some degree, the
exceptionally strong biological activity of the oomycete oligosac-
charins indicates considerable structural specificity in their
action.

β-GLUCAN RECOGNITION IN ANTIFUNGAL IMMUNITY IN
VERTEBRATES
Protection against fungi in vertebrates involves both innate and
adaptive immunity (Brown, 2011). Innate antifungal immunity
is primarily mediated by diverse pattern-recognition receptors
associated with phagocytes, which upon activation ingest and
kill or degrade the invading microbe. Carbohydrates associated
with the fungal cell wall, in particular, are well positioned to be
recognized by these receptors. The adaptive and highly specific
immune response to the invader is then engaged following gener-
ation of cytokines and chemokines along with the presentation of
microbial antigens to lymphocytes.

There are multiple pattern-recognition receptors for β-glucans
in phagocytes and the molecular details for some of these inter-
actions have been characterized (Brown and Gordon, 2005).
These include the transmembrane dectin-1, a natural killer-
cell-receptor-like C-type lectin (calcium dependent) found on
macrophages, neutrophils and dendritic cells, which specifically
recognizes β-1→3- and β-1→6-linked glucans as well as intact
yeast cells (Brown, 2006; Schorey and Lawrence, 2008). Zymosan,
a complex cell wall preparation from Saccharomyces cerevisiea
used to promote inflammation in experimental models, also
stimulates dectin-1 and macrophage activation. Of particular
interest in relation to the topic of this review is that zymosan
induces cytosolic phospholipase A2 in macrophages that releases
AA for conversion into pro-inflammatory prostaglandins and
leukotrienes (Suram et al., 2006; Olsson and Sundler, 2007).
Intriguing here is the apparent cross-kingdom conservation
whereby β-glucans operate in concert with AA metabolites and
other signals to orchestrate an innate immune response. The
extent to which this analogy and underlying mechanisms trans-
late to plant–oomycete interactions remains to be determined.
Arabidopsis and Solanum species have proteins with C-type
lectin motifs with some homology to dectin-1. However, they
appear to be rare in plants and their functions are unresolved
(Singh and Zimmerli, 2013).

PERSPECTIVES
The “renaissance of elicitors” heralded in the excellent review by
Boller and Felix (2009) reflects a raised awareness and renewed
interest in some of the classic elicitors. Recasting these as MAMPs
has provided a framework that can inform and guide research
into their perception and action in plant cells. The extent that
different MAMPs collaborate in vivo during infection to syner-
gize a strong defense response is unclear, although the cellular
machinery seems to be present to do so. The oligomerization of

receptors upon MAMP stimulation – the ligand-induced FLS2-
BAK1 interaction and coordination with brassinosteroid signaling
being a canonical example (Wang, 2012) – should encourage
research in other systems for similar examples. It appears that the
well-studied receptor-like kinases provide one of several strategies
plants use to perceive elicitors to trigger innate immunity (Boller
and Felix, 2009; Greeff et al., 2012). A challenge with different
MAMPs apparently operating within the same infection inter-
face is that mixed and potentially conflicting messages emanate
from phytohormone-regulated response networks, leading to
unwanted tradeoffs in the resistance phenotype (Bostock, 2005).
How the plant negotiates these trade-offs will be an important
consideration.

An implicit feature of innate immunity is that MAMPs be
presented in their most biologically active form. The β-1→3-
glucanase activity of the soybean binding proteins seems to be
ideally positioned to release active β-glucan oligomers from invad-
ing hyphal walls (Fliegmann et al., 2004), and immunomodulatory
glucans from Phytophthora spp. can be found in spore germina-
tion fluids (Doke et al., 1979; Waldmuller et al., 1992; Sanchez
et al., 1994). The overwhelming evidence indicates that EP must
be released from esterified forms for them to be perceived to
trigger cellular responses (Bostock, 1989; Ricker and Bostock,
1992). A better understanding of how, when and where EP and
β-glucans are deployed during the infection and whether they con-
verge to coordinate immune responses will help to fully realize the
potential of MAMP-triggered immunity in plant–oomycete inter-
actions (Figure 5). With sequenced genomes, technical advances
in transcriptomics, proteomics and metabolic profiling, and high-
throughput functional assays, now is an opportune time to
re-examine these elicitors in crop models.
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Bostock, R. M., Kuć, J. A., and Laine, R. A. (1981). Eicosapentaenoic and arachidonic
acids from Phytophthora infestans elicit fungitoxic sesquiterpenes in the potato.
Science 212, 67–69. doi: 10.1126/science.212.4490.67
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