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Abstract
Kawasaki disease (KD) is a paediatric vasculitis associated with coronary artery aneurysms (CAA). Genetic variants
influencing susceptibility to KD have been previously identified, but no risk alleles have been validated that influence CAA
formation. We conducted a genome-wide association study (GWAS) for CAA in KD patients of European descent with 200
cases and 276 controls. A second GWAS for susceptibility pooled KD cases with healthy paediatric controls from vaccine
trials in the UK (n= 1609). Logistic regression mixed models were used for both GWASs. The susceptibility GWAS was
meta-analysed with 400 KD cases and 6101 controls from a previous European GWAS, these results were further meta-
analysed with Japanese GWASs at two putative loci. The CAA GWAS identified an intergenic region of chromosome 20q13
with multiple SNVs showing genome-wide significance. The risk allele of the most associated SNV (rs6017006) was present
in 13% of cases and 4% of controls; in East Asian 1000 Genomes data, the allele was absent or rare. Susceptibility GWAS
with meta-analysis with previously published European data identified two previously associated loci (ITPKC and
FCGR2A). Further meta-analysis with Japanese GWAS summary data from the CASP3 and FAM167A genomic regions
validated these loci in Europeans showing consistent effects of the top SNVs in both populations. We identified a novel
locus for CAA in KD patients of European descent. The results suggest that different genes determine susceptibility to KD
and development of CAA and future work should focus on the function of the intergenic region on chromosome 20q13.

Introduction

Kawasaki disease (KD) is now the leading cause of
acquired heart disease in children in developed countries
[1]. Although introduction of effective treatment with
intravenous immunoglobulin (IVIG) reduces the incidence
of coronary artery aneurysm (CAA), aneurysm formation
continues to occur in a significant proportion of children.
Recent reports suggest that using recommended Z score
criteria for CAA, 10–30% of KD cases develop CAA [2–4].
The ongoing high rates of CAA, despite availability of
treatment, have a number of possible explanations, includ-
ing delayed diagnosis. However, most of the patients who
develop CAA, including those who are diagnosed in the
first 10 days of the illness, have evidence of coronary artery
(CA) dilatation or CAA at initial presentation [3]. Others
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who go on to develop CAA may have inadequate response
to IVIG and other agents and represent a group of patients
with “resistant KD” who have a severe inflammatory pro-
cess often poorly responsive to anti-inflammatory agents
[5].

Attempts to identify patients at risk of CAA among
patients presenting with KD have been only partially suc-
cessful. Patients who have recurrent fever after IVIG (IVIG
resistance) are known to have an increased risk of CAA [5].
However, clinical scoring systems that predict resistance to
IVIG in Japan have been poorly predictive in other popu-
lations [6, 7]. Attempts to identify unique biomarkers that
predict development of CAA have been largely unsuc-
cessful [8, 9].

Genetic factors are now well established as playing a role
in susceptibility to KD in both European descent and Asian
populations [10]. Genes with validated associations with
susceptibility to KD in multiple ethnic groups include
FCGR2A and ITPKC [11, 12]. A genetic contribution to
CAA seems likely as before effective therapy with IVIG
was introduced, only 25–30% of affected children devel-
oped CAA [13].

A number of small genome-wide association studies
(GWASs) and candidate gene studies have suggested a
genetic contribution to CAA formation in KD but have not
been validated [14–20]. Three GWASs for CAA have been
published, but each had fewer than 50 cases and therefore
very limited power [14–16]. In a GWAS comparing

subjects who develop CAA with those who do not, we
identified a new locus on chromosome 20 (Chr. 20) with
genome-wide significance.

We further constructed a new KD susceptibility GWAS
by pooling the newly genotyped KD cases and comparing
with healthy controls. This cohort was meta-analysed with a
previously reported European KD GWAS [11] and with
publicly available GWAS summary data from Japanese KD
susceptibility GWASs [12, 21].

Methods

Study design

The overall study design is shown in Fig. 1.

Participant selection

Subjects meeting the AHA KD diagnostic criteria who
presented to paediatric centres in USA, UK, Holland, and
Finland between 2001 and 2018 were included. CAA were
identified by echocardiography at each participating centre.
Subjects were categorized by echocardiography using CA Z
scores (internal diameter of the right CA or left anterior
descending artery normalized for body surface area) as hav-
ing giant CAA (Z score ≥ 10 or absolute dimension ≥8mm).
For the US and Dutch cohorts, lesser CAA were defined as

European Cohort 2
Total n=204

CAA+: n=110
CAA-: n=76

Dilated: n=18

European Cohort 3
Total n=267
CAA+: n=80
CAA-: n=170

Unknown: n=17

Excluded
dilated

n=18

Excluded
unknown

n=17

Excluded
dilated
n=3

Severity analysis
European KD
Total n=476

CAA+: n=200
CAA-: n=276

Excluded
KD n=168

European 
vaccina�on 

control
n=1641

European 
suscep�bility analysis

KD: n=346
Control: n=1609

European KD 
suscep�bility GWAS

(Khor 2011)
KD n=400

Control n=6101

European KD 
Total n=514

Ethnicity  QC

Excluded
Control n=32

Suscep�bility
meta-analysis

European Cohort 1
Total n=43

CAA+: n=10
CAA-: n=30
Dilated: n=3

Severity analysis Suscep�bility meta-analysis

Fig. 1 Study design. Flow diagram describes cohorts used in the
study. Cohort 1: US subjects; Cohort 2: US and Finnish subjects;
Cohort 3: UK and Dutch subjects. We first performed a severity
analysis comparing KD subjects who developed CAA with those who
did not. We next performed a new susceptibility GWAS comparing
KD subjects and healthy controls and meta-analyzed this with GWAS
data from the previously reported KD GWAS of European descent

subjects [11]. Arrows leaving boxes denote subjects deleted from
cohorts following more stringent ethnicity quality control or deleted
because of missing information on CA status. Subjects who were
classified as having dilated CA were excluded from the severity ana-
lysis but included for the susceptibility analysis. CA coronary artery,
CAA coronary artery aneurysm.
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Z ≥ 2.5. Patients scored as dilated coronary arteries (Z score
2–2.5) were excluded from the CAA comparison but
included in the susceptibility GWAS. In the UK, Z scores
were not routinely used to assign aneurysm size prior to
2017. Therefore, CAA were described according to the
Japanese Ministry of Health criteria based on absolute
luminal diameters (Research Committee of the Japanese
Society of Pediatric, 2014). The majority of UK patients
were retrospectively recruited to the study either through
local hospitals or through the UK KD Support Group, a
family-based group.

Controls for the susceptibility analysis were 1609 healthy
infants undergoing routine vaccination in the UK [22]. For
validation and meta-analysis of the susceptibility GWAS,
we used the genotype data from 400 KD cases and 6101
European controls described in Khor et al. [11], and sum-
mary data from KD susceptibility GWASs of individuals of
Japanese ancestry [12, 21] at two putative loci.

Genotyping and statistical analysis

A detailed description of genotyping quality control (QC),
imputation, statistical analysis, heritability estimation and
Hi-C are in an Online Supplement Information. Briefly,
after QC, multidimensional scaling (MDS) was applied
(www.cog-genomics.org/plink/1.9/) to identify a genetically
homogeneous group of European descent subjects for both
severity and susceptibility GWAS. The genotype data were
merged with the 1000 Genomes (1000G) [23] data and
MDS was applied to determine the ancestry of the KD
subjects. All data were imputed using the Haplotype
Reference Consortium (HRC) reference panel (http://www.
haplotype-reference-consortium.org) [24, 25]. To account
for both ethnic diversity and cryptic relatedness, genome-
wide association testing used logistic regression mixed
models as implemented by the GMMAT software [26]. The
top ten MDS components and two indicator variables for
genotyping batch were included as fixed effects in both
the CAA GWAS and new susceptibility GWAS. GWAS of

the Khor KD susceptibility data used logistic regression in
Plink2 (www.cog-genomics.org/plink/2.0/) with the top
ten MDS components as covariates and was subsequently
meta-analysed with the new GWAS. Loci were defined by
±250 kb of the top SNV in the region. Allelic heterogeneity
was explored at each locus by conditional analyses in which
analyses were rerun for all SNVs in loci, conditioning in the
top SNV in the region.

The MAGMA software [27] was used for gene tests.
Linkage disequilibrium (LD) score regression [28] and
GCTA [29, 30] were used for heritability analyses. The
functional impact of variants of interest were explored by
querying eQTL associations in relevant tissues: specifically,
whole blood, arteries and the heart using the GTEx database
(https://www.gtexportal.org/home/) and the online FUMA
tool (https://fuma.ctglab.nl/) [31] was used to query Reg-
ulomeDB and CADD scores.

Genome-wide summary statistics for the CAA GWAS
and KD susceptibility meta-analysis are available to
download from the EBI GWAS Catalog (https://www.ebi.
ac.uk/gwas/studies/GCST90013538 and https://www.ebi.
ac.uk/gwas/studies/GCST90013537).

Results

Characteristics of the study population

The cohorts of CAA+ and CAA− subjects after QC and
removal of non-European subjects are described in Table 1
and Fig. 1.

QC of the genomic data

Supplementary Fig. 1A shows the MDS plot of the selected
subjects by cohort and CAA status. Despite the relative
genetic heterogeneity, there was an even spread by CAA
status. The individuals clustered to the right of this figure
were recruited in Finland. Supplementary Fig. 1B shows the

Table 1 Description of KD cohorts with and without coronary artery aneurysms used in this analysis.

Cohort Source Platform CAA+: n (% male) CAA−: n
(% male)

Total: n
(% male)

Small–medium CAA Giant CAA CAA+
subtotal

1 US Illumina 1.2 million SNV array 10 (70) 0 10 (70) 30 (60) 40 (63)

2 US Illumina HumanCoreExome array
customized

63 (63) 35 (60) 98 (62) 40 (78) 138 (67)

Finland 8 (63) 4 (75) 12 (67) 36 (67) 48 (67)

3 UK Illumina HumanCoreExome array 46 (70) 1 (100) 47 (70) 122 (65) 169 (66)

Holland 21 (71) 12 (92) 33 (79) 48 (46) 81 (59)

Total 148 (67) 52 (69) 200 (68) 276 (63) 476 (65)
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MDS plot of KD subjects pooled with 1000G subjects and
indicates those KD subjects determined to be of European
ancestry who were used for the GWAS.

Severity GWAS

After QC, 4,873,589 genotyped and imputed SNVs
remained for the severity GWAS (CAA+ vs CAA−) and
the resultant Manhattan plot is shown in Fig. 2A. The
variance inflation factor (1.001) indicated that population
stratification had been adequately accounted for (Supple-
mentary Fig. 2). A single region on Chr. 20 spanning
41.9198–41.9449Mb was identified for which 15 SNVs
showed genome-wide significant differences between
KD subjects with and without CAA (p < 5 × 10−8) (Table 2
and Supplementary Table 1). The top associated SNV

rs6017006 had a p value of 2.3 × 10−8 and odds ratio for the
minor risk allele A (vs G) of 5.0 (95% CI 2.8–9.0). The
regional association plot for this association is shown in
Fig. 2B. The imputation quality score R2 for rs6017006 was
0.996, 0.923 and 0.954 in Cohorts 1, 2 and 3 (see Fig. 1 and
Supplementary Methods), respectively. The frequency of
the A allele of rs6017006 was 13 and 4% in subjects with
and without CAA, respectively (Table 2). Amongst East
Asian populations sampled by the 1000G project, the risk
allele A is only observed in the Dai population of western
China. In the other global populations covered by 1000G,
the risk allele frequency is 1% in Africans, 5% in European
descent, 3% in Americans and 3% in South Asians. The OR
for giant CAA (giant CAA vs CAA−) was 4.0 (95% CI
1.5–10.7) comparable to the whole CAA+ group (see
above). To ensure this association was not driven by
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Fig. 2 Severity and susceptibility GWAS results. A Manhattan plot
for CAA GWAS (severity GWAS) showing genome-wide significant
locus in intergenic region, Chr. 20 and five regions with association p
< 5 × 10−6 (UNC5B, MAN1B1 and DOCK2 and two in intergenic
regions). B Regional association plot of Chr. 20 intergenic SNV. C

Manhattan plot for susceptibility GWAS showing confirmation of
genome-wide significant SNVs in IPTKC and FCGR2A. D Regional
association plots for previously published variants (FAM167A-BLK).
E Regional plot of the CASP3 region associated with susceptibility.
CAA coronary artery aneurysm.
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population stratification arising from the cluster of Finnish
samples, the analysis was rerun with these samples removed
(11 cases, 35 controls), this gave a p value for rs6017006 of
3.5 × 10−9, OR= 6.1 (95% CI 3.2–11.6).

In addition to this region on Chr. 20, we identified
five other loci (top SNV) showing suggestive significance
(p < 5 × 10−6). (Table 2 and Supplementary Fig. 3A–E).
These included a Chr. 9 region containing MANB1, a Chr.
5 region containing DOCK2, a Chr. 10 region containing
UNC5B and intergenic regions on Chr. 3 and 8. The
regional association plots for the six loci indicated that
allelic heterogeneity is unlikely, this was confirmed by
conditional analyses, which resulted in no SNVs reaching
suggestive significance.

Supplementary Table 2 shows the top 50 genes from the
MAGMA test, the most significant gene was CDH3 with
p= 8.3 × 10−6. The only SNV to show significant eQTL
association (p < 5 × 10−5) was rs7871579 in MAN1B1,
which is significantly associated with the expression of
MAN1B1-AS1 in arteries (aorta, tibial), heart (coronary, left
ventricle and atrial appendage) and whole blood. UAP1L1,
SAPCD2, DPP7 and NPDC1 also had significant eQTL
associations with rs7871579 (Supplementary Table 3).
None of the other variants had an eQTL association at p <
5 × 10−5. Two intergenic SNVs on Chr. 20 and one intronic
SNV on DOCK2, which were in LD with rs6017006 on
Chr. 20 and rs2449565 on DOCK2, respectively, had high
CADD deleterious scores. However, the RegulomeDB
score and chromatin state for biological evidence to be
a regulatory element were not strong for these SNVs
(Supplementary Table 4).

Exploring the function of the Chr. 20 lead SNV

To explore how an intergenic region might affect the
expression of genes involved in CAA formation, we

analysed published data using chromosomal conformational
capture (3C) methodology on a genome-wide scale (Hi-C
analysis) [32]. Conformational capture methods identify
genomic regions that interact with each other in three-
dimensional space and that might affect gene function or
expression of genes that are not in linear proximity with the
region of interest. Hi-C did not identify any interactions
within 1Mb of the identified SNV. However, there were
interactions identified at greater distance (Supplementary
Table 5). While long range interactions are less likely to
be reproducible, PLCB1, the most significant interaction,
was implicated as a risk locus for CAA in a Taiwanese
study [33].

Susceptibility GWAS

There were 5,784,964 genotyped and imputed SNVs pas-
sing QC in the new and Khor cohorts. The Manhattan plot
for the KD susceptibility meta-analysis of these GWAS
cohorts is shown in (Fig. 2C) and quantile–quantile plots for
the individual GWASs and meta-analyses are shown in
Supplementary Fig. 4A–C. The analysis identified two loci
(top SNV ±250 kb) meeting genome-wide significance and
two new loci with suggestive significance (p < 5 × 10−6).
Table 3 shows results for the top SNV at each locus.
Regional association plots for the loci in Table 3 are shown
in Supplementary Fig. 5. Conditional analyses resulted in
no SNVs reaching suggestive significance suggesting allelic
heterogeneity was unlikely.

The most significant association in ITPKC (p= 1.1 × 10−9

for rs3745213) is in high LD with the previously reported
variant, rs28493229, replicating findings from previous
European and Asian genetic studies [11, 34, 35] (Supple-
mentary Fig. 5A). The associated region in FCGR2A
(p= 2.5 × 10−9 for rs6671847) is also in LD with rs1801274
(R2= 0.89, D′= 1) that has been associated with KD

Table 2 Top variants in loci associated with CAA formation with p < 5 × 10−6.

SNV Chr Positiona Gene region Allele Alt. allele frequencies

Ref Alt CAA (+) CAA (−) OR (95% CI) p

rs6017006 20 41934620 Intergenic G A 0.13 0.04 5.0 (2.8–9.0) 2.3 × 10−8

rs7871579 9 139990530 MAN1B1 intron T C 0.26 0.15 2.8 (1.8–4.2) 4.6 × 10−7

rs2449565 5 169135662 DOCK2 intron A G 0.75 0.61 2.3 (1.6–3.3) 1.9 × 10−6

rs10762437 10 73058469 UNC5B intron A G 0.25 0.16 2.5 (1.7–3.8) 3.5 × 10−6

rs35932034 3 106262305 Intergenic T C 0.03 0.11 0.2 (0.09–0.4) 3.7 × 10−6

rs1989051 8 129294118 Intergenic T C 0.69 0.57 2.2 (1.6–3.1) 4.0 × 10−6

ORs were calculated using a Wald test, and p values were calculated using a Score test. All effects are relative to the alternate allele, ref/alt alleles
are defined by the HRC reference panel.

Chr. chromosome, CAA coronary artery aneurysm, OR odds ratio.
aGRCh37/hg19 position.

1738 C. Hoggart et al.



susceptibility in previous studies [11, 36] (Supplementary
Fig. 5B).

The two additional SNVs showing suggestive evidence
for association with KD susceptibility in our European
meta-analysis were an intronic variant in TPD52 (p=
8.2 × 10−8, rs111487401) on Chr. 8 and an intronic variant
in SARNP on Chr.12. (p= 3.4 × 10−6, rs1681087)
(Supplementary Fig. 5C, D). Additional three SNVs
showed suggestive evidence in the primary GWAS (score
test followed by weighted z meta-analysis). However,
these SNVs had p > 5 × 10−6 with Wald test and inverse-
variance meta-analysis (Supplementary Table 6).

Supplementary Table 7 shows the top 50 genes asso-
ciated with KD susceptibility from the MAGMA test using
the meta-analysis results, the most significant gene was
CACNA2D3 with p= 2.4 × 10−6.

There were no significant eQTL associations for
the SNVs in the two novel loci: rs111487401 in
TPD52 on Chr. 8 and rs1681087 in SARNP on Chr.12
(Supplementary Table 3). However, these two SNVs were
in LD with SNVs that had RegulomeDB score and chro-
matin state with biological evidence to be a regulatory
element but their CADD scores were low (Supplementary
Table 4).

Analyses of previously associated loci

Querying of the NHGRI EBI GWAS Catalog for KD
susceptibility associations identified eight SNVs (with
non-ambiguous alleles) with a p value of <5 × 10−8 loca-
ted in six loci (Supplementary Table 8). In addition to
ITPKC and FCGR2A, two other loci showed nominal
levels of significance in our European meta-analysis:
rs2736340 in the BLK-FAM167A locus on Chr. 8 [37]
(European meta p value= 3.3 × 10−3, GWAS of Chinese
subjects p= 9 × 10−10) and rs2130392 in CASP3-CENPU
locus on Chr. 4 [12] (European meta p value= 0.011,
GWAS of Japanese subjects p= 3 × 10−8). The loci that
did not replicate were CD40 on Chr. 20 (rs1569723 [37])
and HLA-DQB2, HLA-DOB on Chr. 6 (rs2857151 [12]).
Supplementary Table 9 shows our meta-analysis results-
for the other SNVs from the EBI GWAS Catalog
with suggestive evidence for association with KD
susceptibility.

Summary level data of CASP3 and BLK/FAM167A
susceptibility loci were available from two GWASs of
Japanese subjects [12, 21] and were meta-analysed with
our European meta-analysis results. Results from meta-
analysing with Japanese summary data from the CASP3

Table 3 Variants associated with susceptibility to KD in order of descending significance.

rs number 

(ref./alt. alleles) Chr. (position) Gene region 

Alt allele 

frequencies 
Meta OR 

(95%CI) 
Cohort Case Control OR P Meta p 

rs3745213 (C/T) 19 (41248009) 

1.2Kb 3' from ITPKC

(LD with rs28493229) 

Khor 2012 0.204 0.132 1.69 4.1 × 10-8

1.6 (1.4-1.9) 1.1 × 10-9

New 0.166 0.122 1.45 4.6 × 10-3

rs6671847 (G/A) 1 (161478810) 

FCGR2A intron      

(LD with rs1801274) 

Khor 2012 0.407 0.508 0.72 1.9 × 10-5

0.7 (0.6-0.8) 2.5 × 10-9

New 0.388 0.488 0.66 2.7 × 10-5

rs111487401 (C/T) 8 (80994294) TPD52 intron 

rs1681087 (G/A) 12 (56180764) SARNP intron 

2.4 (1.7-3.3) 8.2 × 10-8

1.7 (1.4-2.1) 3.4 × 10-6

Khor 2012 0.048 0.019 2.43 5.3 × 10-6

New 0.032 0.017 2.30 4.5 × 10-3

Khor 2012 0.080 0.053 1.43 1.3 × 10-2

New 0.078 0.045 2.29 1.1 × 10-5

rs12547167 (C/T) 8 (11330112) 5.8Kb 5' of FAM167A
Khor 2012 0.588 0.531 1.26 4.0 × 10-3

1.3 (1.1-1.5) 4.4 × 10-5

New 0.601 0.516 1.35 3.2 × 10-3

rs56317458 (C/T) 4 (185541437) 7.4Kb 3' from CASP3
Khor 2012 0.183 0.221 0.78 1.3 × 10-2

0.8 (0.7-0.9) 2.0 × 10-4

New 0.179 0.214 0.70 4.4 × 10-3

All effects are relative to the alternate allele, ref/alt alleles are defined by the HRC reference panel. Shaded genes: previously reported in other
ethnic groups. Highlighted variants validate previously published variants influencing susceptibility to KD in Asian and European descent cohorts.

New newly analysed European descent cohort in this paper, Chr. chromosome, position: GRCh37/hg19, Meta meta-analysis, OR odds ratio.
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locus [12, 21] are shown in Supplementary Table 10. The
most significantly associated SNV in the region was
rs2720378 (European meta p= 2.5 × 10−3, Japanese p=
3.5 × 10−9, global meta p= 1.2 × 10−10, global meta OR=
0.741 (95% CI: 0.676, 0.812)). A test for heterogeneity of
effects between studies showed no differences in effects
between populations (p= 0.2). Regional association plots
for the Japanese GWAS and the meta-analysis are shown in
Supplementary Fig. 6A, B. The top SNV in the region in
our study (rs56317458, Table 3 and Supplementary Fig. 5E)
was not included in the Japanese study.

The results from meta-analysing with Japanese summary
data from the FAM167A-BLK locus [12] are shown in Sup-
plementary Table 11. The most significant SNV in the meta-
analysis was rs35393613 (European meta p= 6.9 × 10−4,
OR= 1.3, Japanese p= 3.6 × 10−12, OR= 1.8, global meta
p= 5.2 × 10−13, global meta OR= 1.51 (95% CI: (1.35,
1.688)) [12]. There was evidence for a difference in effect
sizes between populations (p= 0.02), this could be explained
by differences in LD between rs35393613 and the causal
variant in the European and Japanese populations. Regional
association plots for the Japanese GWAS and the meta-
analysis are shown in Supplementary Fig. 7A, B. The top
SNV in our analysis was not included in the Japanese data
(rs12547167, see Table 3 and Supplementary Fig. 5F).

Finally, in Supplementary Table 12, we report results
from our study of SNVs reported in the first European
GWAS for KD susceptibility [38]. None of the 37 over-
lapping SNPs were significant at p < 0.05.

Cross-phenotype associations

Supplementary Table 13 shows comparison between studies
of SNVs associated in the susceptibility and severity
GWASs. Only rs10762437 (UNC5B intron) shows nominal
cross-phenotype association. The top SNV rs12547167 at
the FAM167A locus did not pass QC in the CAA GWAS,
the SNV reported has R2= 0.6 with it. Results are not
shown for the MAN1B or TPD52 as neither passed QC in
the Khor GWAS.

Heritability

Estimates of the heritability of CAA risk gave inconclusive
results with very wide confidence intervals using both
GCTA and LD score. This is likely because of the relatively
small sample size of this GWAS. Assuming the prevalence
of KD in individuals of European descent to be 2 in 10,000
[3], LD score estimated heritability on the liability scale in
our population of European descent to be 0.119 (95% CI:
0.046, 0.191). The heritability in other ethnic groups
could be quite different because of differences in genetic
and/or environmental contributions to KD susceptibility.

Assuming the odds ratios and minor allele frequencies
shown in Table 3, the explained heritability on the liability
scale for the top SNVs in ITPKC, FCGR2A, FAM167A and
CASP3 were 0.0026. 0.0033, 0.0019 and 0.0009, respec-
tively, yielding a total of 0.008. These results suggest that
there are many other causative variants contributing to risk
of KD and that risk is likely the result of combined effect of
multiple variants in each individual.

Discussion

Our new GWAS pooling cases from UK, Holland, USA and
Finland identified a region of Chr. 20 significantly asso-
ciated with CAA. Previous GWAS and candidate gene
studies have implicated a number of genes or gene regions
in CAA development but these reports have been in cohorts
with relatively small numbers of CAA cases and therefore
limited power to identify significant associations [14–20].

We have identified a novel association between CAA
formation and a SNV rs6017006 located in an intergenic
region of chromosome 20 which is in LD with rs6030760
(19 kb 5′ upstream of rs6017006, R2= 1) that alters the
binding motif for CCCTC-binding factors (CTCF). CTCF
and cohesin generate the unknotted loop of DNA where
enhancer–promoter interactions occur during cellular dif-
ferentiation [39]. To understand the functional significance
of this variant in the context of the 3D genome, we per-
formed Hi-C analysis using published data in human
B‐lymphoblastoid cell lines as they provide the deepest
coverage [32]. This analysis identified an association with
PLCB1, which has been implicated in CAA formation in a
Taiwanese GWAS [17]. However, as the association is 35
Mb distant from the identified SNV, there is less confidence
in the robustness of this association [40–42]. Further studies
are needed to evaluate the biological mechanisms by which
the associated region influences development of CAA. It is
noteworthy that the Chr. 20 variant does not influence
susceptibility to KD, only CAA. Furthermore, comparison
of SNVs associated with CAA and those associated with
susceptibility showed no cross-phenotype associations,
suggesting that children who develop CAA are a genetic
subset of those who are susceptible.

Suggestive association was found between risk of CAA
and five other loci (p < 5 × 10−6). One of these, UNC5B, is
expressed on endothelial progenitor cells and is a receptor
for netrin 4 with potential biological relevance to KD and
CAA. Expression of UNC5B was shown to be essential for
netrin 4-mediated neovascularization following ischaemic
injury [43]. Another variant at rs7871579 is located in an
intron of MAN1B1 (mannosidase alpha class 1B member 1),
9 Kb 5′ of MAN1B1-AS1 and 11.5 Kb 3′ of UAP1L1. This
locus is reported as a quantitative trait locus (eQTL) with
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MAN1B1-AS1 in multiple tissues/cells including blood,
heart, CA and fibroblasts (p= 2.3 × 10−6–5.3 × 10−21) and
with UAP1L1 in blood (p= 5.1 × 10−17) (Supplementary
Table 3). MAN1B1-AS1 is a long non-coding gene that may
regulate expression of MAN1B1, which is the enzyme that
removes the terminal mannose residue from the middle
branch of N-glycans [44]. MAN1B1 also has a non-
enzymatic function to prevent secretion of abnormally fol-
ded proteins [45]. Therefore, patients with MAN1B1 defi-
ciency have accumulation of hybrid-type glycans and some
high mannose structures in serum IgG and other glycopro-
teins [46]. Previous data indicate that endogenous IgG
molecules from KD patients have more fucose, galactose
and sialylated N-glycans, compared to healthy children
[47]. UAP1L1 is also a glycosylation enzyme [48] and may
influence T-cell development [49]. The variant on Chr. 5
(rs2449565) is located in an intron of DOCK2 that influ-
ences activation, migration and proliferation of T cells, B
cells, NK cells, dendritic cells and neutrophils [50]. A
PheWAS using the GWAS Atlas (https://atlas.ctglab.nl) of
the SNVs associated with CAA development and suscept-
ibility (Tables 2 and 3) revealed no cross-phenotype asso-
ciations at p < 5 × 10−5 except rs6671847 in FCGR2A,
which was in LD with the previously reported exonic non-
synonymous SNV rs1801274 (Supplementary Table 15).

Our new KD susceptibility GWAS and meta-analysis
with published GWASs have confirmed associations with
ITPKC and FCGR2A variants with KD susceptibility
[11, 12]. Nominal association was also observed for pre-
viously published variants in regions near FAM167A-BLK
(p= 4.4 × 10−5) and CASP3 (p= 2.0 × 10−4). Meta-
analysis with published data from Japan at these loci
showed significance for the same SNVs across European
and Japanese populations with consistent effects observed
in both populations. The multi-ethnic meta-analyses of the
CASP3 and FAM167A-BLK loci of Asian and European
populations narrowed the association peaks and hence have
better localized the causal variants in these regions. For both
loci, the top SNV in the analysis of the European data was
not included in the Japanese data. However, the data sup-
port the hypothesis that the same causal variants at these
loci are acting in both populations. In contrast, we could not
replicate the genome-wide significant associations observed
at the CD40 and HLA-DQB2-HLA-DOB loci in East Asian
populations in our European data.

Two new susceptibility loci with p < 5 × 10−6 were
identified in our meta-analysis. The first, rs111487401, is in
TPD52, which is highly expressed in mature B cells and
binds to annexin V1 in a calcium-dependent manner [51].
This gene may be involved in the secretory functions of
mature plasma cells. Polyclonal B cell activation is a pro-
minent feature of KD and secretion of immunoglobulin
molecules may be influenced by this protein. The second

nominally associated variant, SARNP, is expressed in the
heart and is involved in mRNA splicing and export. It is
induced by thrombopoietin [52], which is highly expressed
in acute KD [53]. These variants will require further
replication.

The finding of an intergenic region on Chr. 20 that is
significantly associated with development of CAA, but has
no apparent influence on susceptibility, supports the
hypothesis that different genes determine susceptibility to
KD and development of CAA. There are likely other var-
iants that contribute to CAA that can only be studied by
comparing KD subjects with and without CAA. The func-
tional significance of the intergenic locus on Chr. 20 should
be a focus of future studies.

Limitations to our study include the lack of coverage of the
X and Y chromosomes. The fact that males develop aneur-
ysms more often than females suggests that risk alleles may
reside on the sex chromosomes and should be investigated in
future studies. This study focused only on risk alleles for
CAA in a European descent cohort and future studies should
address other ethnic groups. Although this is the largest
GWAS focused on risk of CAA, the sample size was smaller
than that in many GWAS. Given that only 14% of the sub-
jects with CAA carry the risk allele on Chr. 20, it is clear that
other loci that influence CAA remain to be discovered.

Finally, our findings may have relevance for the newly
emerged childhood inflammatory multisystem syndrome
temporally associated with exposure to SARS-CoV-2
(PIMS-TS, also called MIS-C) [54]. In countries experien-
cing large numbers of patients with COVID-19, there has
been an increase in children meeting diagnostic criteria for
KD, of whom 10–20% develop CAA [55, 56]. The genes
and regions identified in our study as conferring risk of KD
and CAA warrant exploration in the patients with PIMS-TS.

In summary, we identified a novel locus for CAA in KD
patients using a robust dataset of European descent subjects.
Comparing our pooled KD subjects with healthy controls
confirmed several previously identified loci that contribute
to KD susceptibility, but demonstrated that the CAA locus
was not implicated in host susceptibility. These results
suggest that different genes determine susceptibility to KD
and development of CAA and future work should focus on
the function of the intergenic region on chromosome 20q13.
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