
UCLA
UCLA Electronic Theses and Dissertations

Title
Exact Analysis of Inverse Problems in High Dimensions with Applications to Machine
Learning

Permalink
https://escholarship.org/uc/item/0sf229cp

Author
Pandit, Parthe

Publication Date
2021

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0sf229cp
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

Los Angeles

Exact Analysis of Inverse Problems in High Dimensions

with Applications to Machine Learning

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Electrical and Computer Engineering

by

Parthe Pandit

2021

© Copyright by

Parthe Pandit

2021

ABSTRACT OF THE DISSERTATION

Exact Analysis of Inverse Problems in High Dimensions

with Applications to Machine Learning

by

Parthe Pandit

Doctor of Philosophy in Electrical and Computer Engineering

University of California, Los Angeles, 2021

Professor Alyson K. Fletcher, Chair

Modern machine learning techniques rely heavily on iterative optimization algorithms

to solve high dimensional estimation problems involving non-convex landscapes. However,

in the absence of knowing the closed-form expression of the solution, analyzing statistical

properties of the estimators remains challenging in most cases. This dissertation provides

a framework, called Multi-layer Vector Approximate Message Passing (ML-VAMP), for

analyzing optimization-based estimators for a broad class of inverse problems. This framework

is based on new developments in random matrix theory. Importantly, it does not rely on

convex analysis and applies more broadly to non-convex optimization problems. The ML-

VAMP framework enables exact analysis in a certain high dimensional asymptotic regime

for several problems of interest in machine learning and signal processing. In particular, the

following problems have been explored in some detail,

1. Reconstruction of signals from noisy measurements using deep generative models,

2. Generalization error analysis of learned generalized linear models,

to demonstrate the analytical capabilities of the framework. Using this framework we can

analyze the effect of important design choices such as degree of overparameterization, loss

function, regularization, initialization, feature correlation, and a mismatch between train and

test data in several problems of interest in machine learning.

ii

The dissertation of Parthe Pandit is approved.

Sundeep Rangan

Arash A. Amini

Jonathan C. Kao

Abeer Alwan

Alyson K. Fletcher, Committee Chair

University of California, Los Angeles

2021

iii

To my parents

iv

Contents

Abstract ii

List of Figures vii

Acknowledgements viii

1 Introduction 1
1.1 Inverse Problems . 3
1.2 Analysis of Optimization in Machine Learning 6
1.3 Analysis Framework . 12
1.4 Organization of the dissertation . 14

2 Background and Preliminaries 15
2.1 Notation . 15
2.2 Useful results from Probability theory . 16
2.3 Approximate Bayesian Inference . 17
2.4 Denoising . 20
2.5 Probabilistic Graphical Models . 23
2.6 Large System Limit Analysis: Proportional Asymptotics 25
2.7 Belief propagation . 28
2.8 Review of Approximate Message Passing algorithms 30
2.9 Marchenko-Pastur distribution . 45

3 Inference with Deep Generative Models 48
3.1 Introduction . 49
3.2 Multi-layer Vector Approximate Message Passing 56
3.3 Fixed Points of ML-VAMP . 62
3.4 Analysis in the Large-System Limit . 66
3.5 Numerical Simulations . 72
3.6 Discussion . 76

4 Multi-Layer Inverse Problems over Matrices 79
4.1 Introduction . 80
4.2 Example Applications . 83
4.3 Multi-layer Matrix VAMP . 87
4.4 Analysis in the Large System Limit . 90

v

4.5 Numerical Experiments . 93
4.6 Discussion . 95

5 Generalization Error of Learning in Generalized Linear Models 97
5.1 Introduction . 98
5.2 Generalization Error: System Model . 101
5.3 Learning GLMs via ML-VAMP . 105
5.4 Main Result . 109
5.5 Experiments . 112
5.6 Discussion . 118

6 Conclusion 119

Appendices 122

A Proofs from Chapter 3 123
A.1 Empirical Convergence of Vector Sequences 123
A.2 ML-VAMP State Evolution Equations . 125
A.3 Proofs of ML-VAMP Fixed-Point Theorems 126
A.4 Proofs of Main Results: Theorems 9 and 8 129
A.5 General Multi-Layer Recursions . 131
A.6 Proof of Theorem 12 . 136

B Proofs from Chapter 4 146
B.1 State Evolution Equations . 146
B.2 Large System Limit Details . 148
B.3 Proof of Theorem 9 . 150
B.4 General Multi-Layer Recursions . 151
B.5 Proof of Theorem 12 . 156

C Proofs from Chapter 5 166
C.1 ML-VAMP Denoisers Details . 166
C.2 State Evolution Analysis of ML-VAMP . 168
C.3 Empirical Convergence of Fixed Points . 172
C.4 Proof of Theorem 10 . 176
C.5 Formula for M . 178
C.6 Special Cases . 179

vi

List of Figures

2.1 Factor graph for the loopy belief propagation derivation of the AMP 34
2.2 Factor graphs for Vector Approximate Message Passing 36
2.3 Factor Graphs for AMP and VAMP for estimating a generalized linear model 39
2.4 Signal flow graph of the State Evolution of VAMP 41

3.1 Motivating deep generative models for inference 50
3.2 Signal flow graph of Multi-layer Vector AMP 56
3.3 State Evolution Analysis of Multi-layer VAMP for MMSE inference 74
3.4 State Evolution Analysis of Multi-layer VAMP for MAP inference 74
3.5 Comparison of Multi-layer VAMP and its State Evolution with Adam 75
3.6 Comparing inference algorithms for inpainting of MNIST 77

4.1 Signal flow graph of Matrix Vector AMP . 81
4.2 Generalization error analysis of learning 2-layer Neural Networks 93

5.1 Formulating GLM learning as a multi-layer inference problem 106
5.2 Effect of overparameterization, feature correlation, and train-test mismatch on

ridgeless least squares regression . 114
5.3 Effect of overparameterization, feature correlation, and train-test mismatch on

logistic regression . 116
5.4 Effect of overparameterization, feature correlation, and train-test mismatch on

non-linear least squares regression . 117

A.1 Signal flow graph of the State Evolution of Multi-layer Vector AMP 132

B.1 Signal flow graph of the State Evolution of Multi-layer Matrix Vector AMP . 152

vii

Acknowledgements

This dissertation has been possible in large part due to the endless support from my
advisors, mentors, teachers, colleagues, family, and friends.

To start off, I would like to thank my advisor Professor Alyson Fletcher, who gave me the
opportunity to pursue graduate studies in machine learning at a vibrant place such as UCLA.
I enjoyed a lot of intellectual autonomy working as her student, and her advise always kept
me from getting stuck in local minimas. I thank her for this guidance throughout my PhD.

It was my utmost fortune to be guided by Professor Sundeep Rangan, whose technical
prowess never ceases to amaze me. I hope that one day I can start seeing patterns in seemingly
unrelated problems like him. His ability to make bold predictions and then prove them using
the most elementary mathematical tools makes research look so simple.

It is hard to overstate the influence Professor Arash Amini has had in my training as
a statistician. His acute attention to detail always provided me with clarity of thought.
Conversations with him have been the most intellectually engaging during my time at UCLA.

I would also like to thank Professors Abeer Alwan and Jonathan Kao for agreeing to be on
my committee and for providing his valuable input. I am also very grateful to have received
advice from Professors Raghu Meka and Alexander Sherstov who provided a sandbox for
learning advanced concepts in theoretical computer science. Professor Suhas Diggavi’s class
on Information Theory helped me overcome my fear of probability, which nudged me to take
up statistics and machine learning. I would also like to thank Professor Phillip Schniter for
being an amazing collaborator and for making NeurIPS 2018 a far less daunting experience.

I was lucky to have as mentors Professors Sam Coogan and Ankur Kulkarni who gave me
the confidence to take up problems that I found interesting and make them into a cohesive
and coherent story. The fundamental concepts and visualization techniques I learned from
them has made it so much easier to understand and interpret a broad range ideas I encounter.

UCLA has an amazing Mathematics department which I greatly benefited from. Math 275
and 273 series taught by Professors Jun Yin and Wotao Yin respectively were crucial in my
understanding of the landscape of problems considered in machine learning. Attending the
Level Set Collective meetings every Tuesday afternoon at IPAM was, in hindsight, the best
passive investment of my time, and introduced me to optimal control, optimal transport, and
operator splitting. The reading group run by Professors Liza Rebrova and Palina Salanevich
exposed me to Graph Signal Processing. I thank them all.

My internship experiences were amazing due to amazing mentors Sumeet Katariya, Nikhil
Rao, Sheng Zha, He He, and Hua Zheng. Their guidance enriched my training as a researcher.

I acknowledge the financial support from the National Science Foundation, Office of Naval
Research, Gurukrupa foundation, J. N. Tata endowment, and K. C. Mahindra foundation.

viii

My colleagues, coauthors, and compadres: Mojtaba Sahraee-Ardakan and Melikasadat
Emami have provided a great deal of support through what could have been a much lonelier
experience. I have learned a lot by being in their presence. It was also great to be among
PhD students like Michael, Amber, Sundar, Vijay, Srini, Tsang-Kai, Arsalan, and Vignesh,
to have long-drawn discussions over several trips to Kerchoff, Synapse, and Southern Lights.

I was lucky to have brilliant roommates like Pratik Sathe and Mihir Laghate, who provided
me the best home-away-from-home. My friends Navjot, Akshay, Shantanu, Janaki, and
Pratik Chaudhari made LA more like Mumbai. I am extremely fortunate to have kind friends
like Arpit, Niladri, Shantanu, Saurabh, and Vighnesh. I am greatly indebted to Chaphy and
Vidya-aaji, whose unbounded affection always made me feel secure in Southern California.
Rosie, who I inherited from Vidya-aaji, made life in LA far more enjoyable.

CAPS and the Ashe Center helped cope with the struggles of life as an international
graduate student. I shall always remember the impact that the staff, program volunteers,
and the group members I interacted with, had on my health and well being.

My partner Harini Alladi has been a constant source of inspiration and joy. I have grown
a lot personally and professionally because of her. I am grateful that she is a part of my life.

Finally, I would like to thank my parents, and my sister for their unwavering support.

ix

Vita

Education

Indian Institute of Technology, Bombay July 2010 - July 2015

Bachelor of Technology in Electrical Engineering

(minor in Computer Science and Engineering)

Master of Technology in Electrical Engineering

(Signal processing and Communication)

Internships

Junior research fellow, Systems and Controls group, IIT Bombay Aug 2015 - Aug 2016

Applied scientist II intern, Amazon Search Mar - May 2020

Applied scientist II intern, Amazon AWS June - Aug 2020

Quantitative research intern, Citadel LLC June - Aug 2021

Awards

J. N. Tata endowment fellowship 2016

K. C. Mahindra foundation fellowship 2016

J. N. Tata endowment award 2019

Gurukrupa foundation fellowship 2019

Jack K. Wolf student paper award, ISIT 2019

HDSI-Simons postdoctoral fellowship, UC San Diego 2021

x

Chapter 1

Introduction

Throughout history, data analysis has played an integral role in science, engineering, business,

and governance. In the past, collecting and analyzing data was extremely costly. However,

we are now able to collect, model, and analyze vast amounts of data, at a fraction of the cost.

Consequently, there is rising demand for sophisticated techniques to interpret and extract

information from complex datasets. It is no surprise that the techniques for data analysis

have changed drastically in its scale, and are evolving rapidly. Among these techniques,

Machine Learning has received a lot of attention recently from academia and industry.

A key feature of contemporary techniques in machine learning and signal processing is

their massive scale, both in terms of the number of model parameters as well as the size of

the datasets used for training them. Models in recent developments in deep learning [80],

for example, employ billions of parameters with hundreds of layers [143]. Signal processing

tasks have evolved into estimation problems over millions of variables (e.g. pixels in a high

resolution image or video). Using advances in convex and non-convex optimization techniques,

large-scale learning and inference algorithms have demonstrated super-human performance

on several perception tasks.

A general design principle practiced by machine learning engineers is, vaguely: general

purpose models (neural networks), trained with general purpose iterative optimization

1

algorithms (stochastic gradient descent), can work well-enough when trained on large-enough

datasets. Here, general-purpose usually means that application-specific knowledge is not

incorporated – at least not explicitly – during modelling or training. In coarse terms, this

practice is called deep learning. The past decade has seen a dramatic rise in the application

of deep learning to a variety of areas of science and engineering.

Yet, from a theoretical perspective, the properties of deep learning as well as many other

methods in machine learning are largely unresolved. Although designed as general-purpose

solutions, in reality, the performance of the learned models is often highly sensitive to the

training procedure and the numerous hyperparameters involved. Locating the sweet-spot in

the space of hyperparameters in which a method succeeds (or fails), and how this depends

to the properties of the data distribution remains a mystery. In order to make machine

learning truly general-purpose, it is important to build a principled understanding for such

dependencies.

Unconstrained, convex and non-convex optimization problems play an important role

in modelling in present-day machine learning methodology. Typical training procedures for

these models deploy iterative, large-scale optimization algorithms such as stochastic gradient

descent (SGD), Adam, and their variants.

With the goal to better understand the theoretical foundations and fundamental limits of

the methodology in machine learning and signal processing, in this dissertation we present a

statistical framework which enables an exact tractable analysis of optimization based estima-

tors in a certain high dimensions. We call this framework Multi-Layer Vector Approximate

Message Passing (ML-VAMP). It is based on a class of iterative estimation algorithms whose

iterations possess an equivalent scalar representation for large random problem instances.

The regime of statistical analysis that this dissertation will focus on is the proportional

asymptotic regime. In this regime, the number of known quantities (measurements/observations)

and the number of unknown (variables/parameters) grow to infinity but with a fixed ratio.

In the rest of this chapter, we introduce inverse problems and put in perspective the

2

roles of optimization and high dimensional statistics in modern machine learning and signal

processing.

1.1 Inverse Problems

Inverse problems are a set of well studied techniques in applied mathematics, with a rich

history. In essence, inverse problems enable us to specify phenomena without describing them

explicitly, but by providing a model for how the phenomenon manifests into an observation.

While there may be deeper philosophical, cognitive, and linguistic implications of inverse

problems to learning and intelligence, we restrict our focus to a subset of inverse problems

that have received a lot of attention in signal processing and machine learning over the past

few decades.

The class of inverse problems we focus on can be stated as:

Find the unknown signal x from measurements y = φ(Ax; ξ) (1.1)

where ξ is an unknown noise. The tuple (φ,A) is the model, where φ is a known nonlinear

operator and A is a known linear operator. We refer to the proposed solution as x̂.

1.1.1 Performance analysis: Accuracy and Efficiency

Suppose the unknown signal x ∈ X ⊆ RN and measurements y ∈ Y ⊆ RM . The performance

of a reconstruction technique can be measured in several ways. To do so, one often starts by

assuming that there exists a ground truth signal x∗, which led to the measurements y. One

popular metric for performance analysis is the mean-squared error (MSE) or the normalized

MSE:

MSE(x̂,x∗) :=
1

N
‖x̂− x∗‖2 NMSE(x̂,x∗) :=

‖x̂− x∗‖2

‖x∗‖2 , (1.2)

3

More generally, this metric could be arbitrary and specific to the application. For e.g. the

metric using in image denoising is often peak signal to noise ratio (PSNR).

The quantity M can be thought of as a measure of the cost of acquisition, whereas dim(X)

indicates the complexity of the signal. A desirable property of any solution procedure is

its ability to deal with high complexity X with low cost of acquisition. The above notion

of cost can be called statistical efficiency. Similarly, there is a notion of computational

efficiency which relates to the computational cost of achieving a desired level of performance.

Consequently, from the point of view of design, we are interested in the most computationally

efficient way of finding x given some constraints on the level of performance.

1.1.2 Optimization based solutions

There are several methodologies for solving inverse problems. One such technique is the level

set method. A realization of this approach is to formulate the proposal x̂ as the solution to

an optimization formulation, so that the proposed solution minimizes a data fitting term that

depends on the model (φ,A) and observations y.

For example, a common solution concept for the linear model φ(u, v) = u + v is the

ordinary least squares (OLS) solution:

minimize
x

‖y −Ax‖2 (OLS)

A common theme in the theory of inverse problems is that the problem is ill-posed or

under-determined, i.e., there is no unique solution to the observations. However, we are

interested in certain structured proposals x̂ which can best explain y. For example, if x ∈ RN

and y ∈ RM with N < M, and x∗ is a minimizer of (OLS), then x∗ + t∆ is also a minimizer

for any t ∈ R and any ∆ ∈ null(A), which is non-empty when N < M .

To solve ill-posed problems, a common approach is to add a penalty term to the objective

function of the minimization that penalizes large parameters. A popular solution is called

4

Tikhonov regularization, or ridge penalty:

minimize
x

1
2
‖y −Ax‖2 + λ ‖x‖2

2 . (1.3)

where λ is the strength of the penalty. The solution for the above problem can be written in

closed form as

x̂λ := (A>A+ λI)−1A>y (1.4)

For λ→ 0, the solution to the above problem converges to the A†y where A† is the pseudo-

inverse of A. We can then perform analysis of this solution since we know it in closed

form.

In imaging related problems, there are settings where the desired solution x̂ is sparse, i.e.,

has few non-zero elements compared to the dimension of the ambient space. Another popular

technique in imaging related problems is often called compressive sensing where the following

optimization problem is solved:

minimize
x

1
2
‖y −Ax‖2 + λ ‖x‖1 (LASSO)

This optimization problem is convex, but non-smooth, and is often referred to as the LASSO,

short for least absolute shrinkage and selection operator.

An immediate challenge with this formulation is that we do not know the solution to

(LASSO) in closed form in terms of (y,A). Consequently analysis is challenging. Our main

focus will be on understanding properties of the solutions to (1.1) for large random operators

A. Several problems in machine learning can be expressed in their simplest form in (1.1) as

described in the following section.

5

1.2 Analysis of Optimization in Machine Learning

We briefly introduce supervised machine learning and relate it to inverse problems. A typical

characteristic in modern data analysis methodology is access to large sample sizes (n) with

large number of covariates (p). In supervised machine learning, we are provided a sample of

response-covariate pairs {yi,xi}ni=1 and we wish to learn a function that predicts x 7→ y.

A simple way in which one can pose the learning problem as an inverse problem is to

propose that the responses and covariates satisfy:

y = φ(Xθ; ξ)

where y is a vector of responses yi and X is a matrix with covariates xi as rows. Thus the

learning problem is to find the unknown θ. Observe that the above equation resembles (1.1).

1.2.1 Classical statistical estimation and analysis

A classical method in statistical estimation is the maximum likelihood estimator (MLE),

which in an overwhelming number of scenarios can be expressed as:

θ̂mle = argmin
θ∈Rp

1

n

n∑
i=1

L(θ;xi, yi) (MLE)

where θ 7→ L(θ, xi) is a negative-log-likelihood function, and {xi, yi}ni=1 is a generic sam-

ple. This minimization is equivalent to maximizing θ 7→ Pθ({xi, yi}ni=1) – the likelihood of

observations.

Traditional statistical methods such as the MLE are, under mild regularity assumptions,

statistically consistent if p = O(log(n)) � n. Note we are using the “big-Oh” notation1.

Moreover, applying the central limit theorem shows that the deviations
√
n(θ̂mle − θ∗) weakly

converge to N (0, I(θ∗)−1) where I(θ∗) is called the Fisher information matrix. This weak

1see Section 2.1 for a recap

6

convergence essentially provides the characterization,

lim
n→∞

1

n

n∑
i=1

ψ(θ∗, θ̂mle) = Eψ(θ∗, θ∗ + Z) (1.5)

for a broad class of distortion metrics ψ (continuously bounded functions). Note Z ∼

N (0, I(θ∗)−1) and the right-hand side can be evaluated using simulation methods like the

Markov Chain Monte Carlo (MCMC), when p is small. The above result is often referred to

as the asymptotic noramlity property of the MLE.

The idea of MLE was generalized to M-estimators, short for “maximum-likelihood type”,

by Huber [66,67] leading to the rich area of Robust Statistics.

We would like to note that, in the context of machine learning, the function L is called a

Loss-function, and the objective function of (MLE) is seen as the plug-in for, or empirical

version of, the Risk function which is EPθL(θ, x). Consequently the estimator (MLE) is called

the Empirical Risk Minimization (ERM) problem.

1.2.2 High-dimensional statistics: M-estimation and Regularization

If we were to directly apply the MLE from equation (MLE) when p 6� n, then we need

n = Ω(ep) for statistical consistency, which is often referred to as the curse of dimensionality.

In what follows, we refer to p 6� n as the high-dimensional regime.

In several problems of interest however, even though the model parameter θ lies in a large

ambient space Rp, i.e., when p is large enough, θ may often lend itself to a parsimonious

representation. Some examples are θ is sparse, i.e., has very few non-zero entries, or is sparse

in a basis, i.e., θ = Du for a sparse u and dictionary D. In such scenarios, a modification of

problem (MLE) performs well:

θ̂r−mle = argmin
θ

1

n

n∑
i=1

L(θ;xi, yi) + λnR(θ) (1.6)

where R is a regularization function, which encourages a certain structure for the solution.

7

Some examples of R are:

(i) Hard sparsity ‖θ‖0 =
∑p

j=1 1{θj 6=0},

(ii) Ridge regularization 1
2
‖θ‖2 = 1

2

∑p
j=1 |θj|2,

(iii) LASSO ‖θ‖1 =
∑p

j=1 |θj|,

(iv) Elastic-Net (1− α) ‖θ‖1 + α
2
‖θ‖2,

(v) Smooth, convex penalties ‖θ‖qq =
∑p

j=1 |θj|q, for q > 1,

(vi) Non-smooth, Non-convex sparsity penalties ‖θ‖qq =
∑p

j=1 |θj|q, for q < 1,

(vii) R̃(Du) + δ{θ=Du} for representations in span(D).

1.2.3 Interpretations of problem (1.6):

Observe that when n → ∞, while keeping p fixed we have λn → 0, and we recover the

estimator (MLE). But for finite n, (1.6) serves as an approximation to (MLE). Often for

finite n, (MLE) may not be identifiable, while (1.6) always exists under mild conditions.

A Bayesian interpretation is that R(θ) is the negative-log prior distribution, whereby

the objective in (1.6) is negative-log posterior, i.e., − logP(θ|{xi, yi}ni=1) and θ̂r−mle is the

maximum a-posteriori estimator, which is the mode of the a-posteriori distribution of the

unknown random parameter θ. The hyperparameter λn is interpreted as the inverse of the

scale parameter of the prior distribution.

Another interpretation is that L is a data-fitting term that measures how well a proposed

parameter θ fits the data, and the regularization R is a penalty term to enforce a structure so

that the inverse problem is well-posed even when p < n. The hyperparameter λn is interpreted

as the inverse of the signal-to-noise-ratio (SNR).

In statistical physics, the objective of (1.6) is often termed the Gibbs Free energy, with the

first term referred to as the average potential energy of n particles, whereas the second term

R being the entropy of the configuration θ, and the hyperparameter λn as the temperature

of the system.

To contextualize in the vocabulary pertinent to machine learning theory, problems of the

8

form (1.6) are also called Structural Risk Minimization (SRM) and are a generalization of

ERM.

1.2.4 Appeal of M-estimators in high dimensions

Optimization as a numerical technique has advanced significantly over the past few decades.

Arguably the most important innovation in optimization has been the free and open access

to automatic differentiation libraries in high level programming languages, which has enabled

the development of a large class of first and second order optimization algorithms. Example

libraries in the Python programming language include Autograd, Caffe, Tensorflow, Pytorch,

JAX, MNNet among others. This has led to developments such as stochastic, distributed

algorithms for optimizing general non-convex differentiable/sub-differentiable functions. With

affordable access to graphical processing units (GPU) via cloud computing services, large-scale

optimization algorithms have also become efficient due to parallel computing.

There are two main advantages to regularized M-estimation, i.e., estimators specified as

solutions to optimization problems of the type (1.6). First is interpretability ; a solution of

the form (MLE) allows specifying a concept or an estimator as a variational formulation,

which makes the model extremely interpretable by choosing an appropriate loss function.

Second, in the Bayesian setup, under some mild regularity conditions in low dimensions,

we have that the mode of a distribution is close to the mean of the distribution, whereby

θ̂r−mle is somewhat close2 to the posterior mean or the Bayes estimator:

θ̂Bayes := E[θ|{xi, yi}ni=1] =
1

Z({xi, yi}ni=1)

∫
θ · Pθ({xi, yi}) dθ

2The closeness between the mode and mean may not always hold in high dimensions. However, computa-
tionally, finding the mode is much more tractable than numerically evaluating the integral, for which the
computational complexity can be exponential in p. See Section 2.3 for a more detailed discussion.

9

1.2.5 Consistency in high dimensions

A large body of work on high-dimensional statistical analysis is now well-established for non-

asymptotic error bounds on the mean-squared error when the regularizer R is decomposable,

i.e., it is a sum of functions of individual coordinates of the input. A generic consistency

result in this literature (see [105] for a detailed result, and its follow-up works) is of the

following nature:

∥∥∥θ̂r−mle − θ∗
∥∥∥2

. λ2
nΨ(θ∗) + λnΦ(θ∗) (1.7)

The first term Ψ(θ∗) is the estimation error. The second term Φ(θ∗) is an approximation

error, which is the error resulting from the regularization penalty R not accurately capturing

the structure of θ∗. This vanishes if the model does not suffer from mis-specification.

In general λn = Ω
(√

1
n

)
yields the parametric rate n−1 when there is no model mis-

specification. The optimal value of the quantity λn also depends on p, and is typically related

to square-root of some notion of the size of the set to which θ∗ belongs. For example if θ∗

belongs to the space of s− sparse vectors in Rp, then λn = Ω(
√
s log(p)/n).

1.2.6 Brief History of Non-convex M-estimation

During 2000-2010, much the modelling aspect of machine learning algorithm was based on

the dominant choice of the training procedure – convex optimization. This not only enabled

providing rigorous guarantees for the performance of the estimators, but also came with

off-the-shelf algorithms to solve the estimators.

Following the empirical success of non-convex optimization based estimators such as

deep neural networks however, the focus of modelling has shifted to models which may need

solving a non-convex optimization problem as its training procedure. This has also led to

significant advances in our understanding of non-convex optimization formulations such as

matrix factorization and matrix completion which were previously considered “hard” due to

10

the non-convexity. Results such as those by [49] showed that any local optima is a global

optimal for a large class of non-convex optimization problems of broad interest in machine

learning.

During 2010-2020, the increased comfort in working with non-convex optimization formula-

tions has led us back to faithful modelling, which incorporates application-specific information

into the design of the model, without requiring convexity of the optimization problem. While

this may make models more interpretable, unlike convex optimization however, the analysis

frameworks are specialized and problem-specific and hence may not apply from one class of

problems to another.

1.2.7 Challenges in analyzing high-dimensional M-estimators

While results of the type (1.7) have furthered our understanding of what type of models are

tractable statistically as well as computationally in the high dimensional setting, the analysis

framework has some limitations as described below.

First, the analysis framework in [105] relies heavily on the convex geometry of the objective

function. Hence there are immediate challenges for non-convex optimization formulations

even if the problems have unique solutions or no spurious local minima. The reliance on

the convex analysis precludes our ability to understand more complex structures such as

optimization problems involving deep neural networks.

Second, while the non-asymptotic results are extremely powerful, they are qualitative in

nature. The unknown universal constants hidden in the inequality . add a major barrier to

directly applying these results from theory to practice.

Third, these results also depend on the structure of the ‖·‖ for which the bound is provided.

Consequently, analyzing the distortion arbitrary metrics as in the low-dimensional case (1.5),

is in general hard. This poses serious challenges from the practicality of the results since the

distortion metrics often vary by not just the application but also often by business needs,

regulation constraints, etc.

11

Fourth, the optimization problems – even for convex formulations – are never solved

exactly till convergence, and often rely on an iterative algorithm. The analysis being purely

based on KKT conditions of the solution is agnostic to the dynamics of the optimization

algorithm used to find the solution. This precludes understanding the so-called implicit bias

of M-estimation arising out of algorithmic choices made during the iterative optimization.

Finally, results of the type (1.7) suggest that the generalization error of an estimator has

the classical U-shaped curve similar to the bias-variance tradeoff. However, recent empirical

results, such as the so called double-descent phenomenon, in the context of overparameterized

modelling suggests that the story behind the performance of M-estimators, even for convex

formulations, may not be as straightforward. While such behaviour isn’t contradictory to

results by [105], the framework certainly does not aid the discovery of such phenomena due

to the lack of precise characterizations of distortions.

1.3 Analysis Framework

Our analysis framework is based on a class of iterative decoding algorithms called Vector

Approximate Message Passing (VAMP). The key property that these algorithms possess is

a weak convergence of iterations to a scalar nonlinear dynamical system, called the State

Evolution. Such a weak convergence result is similar in spirit to the asymptotic normality of

the (MLE).

The weak convergence result enables exact analysis of the proposed solutions for a large

class of metrics. We can provide a formula for the distortion between a model for the ground

truth and the proposed solution. This formula is exact, i.e., without any large unknown

universal constants, or without any inequalities or bounds. Such an exact analysis enables a

more fine-grained analysis of estimators, with tight characterization of several phase-transition

phenomena related to the success or failure of the estimators.

12

1.3.1 Contributions to high dimensional statistics:

Our framework tries to bridge the gap between theory and practice by focusing on a smaller

regime, called the proportional asymptotic regime. In this regime we have

lim
n→∞

p

n
= β ∈ (0,∞) (1.8)

for some constant β. Using the ML-VAMP framework, we can make precise predictions

about a broad class of error metrics, similar to equation (1.7). A typical result using the

ML-VAMP framework will apply to a sequence of problems, with (x0(n), x̂t(n)) ∈ Rpn so

that (1.8) holds, we have

lim
n→∞

1

pn

pn∑
i=1

ψ(x0
i (n), x̂ti(n)) = Eψ(X0, X̂ t) (1.9)

where X0, X t are low-dimensional random variables with known probability distributions,

whereby the RHS can be calculated with relative ease. We also provide detailed assumptions

under which such a result would hold. Here t is the number of iterations for which the VAMP

iterative algorithm is run.

1.3.2 Relation to Replica Method from Statistical Physics

The replica method has a rich history in the field of statistical physics of spin glasses. However

these results are derived from a heuristic derivation called the replica trick, and lack rigorous

theoretical justifications. In several cases, the predictions made by the replica method match

our predictions; however the assumptions under which an exact equivalence holds between

the predictions made by these two methods, remains unclear. While the replica theoretic

framework typically assumes random matrices are entrywise i.i.d. random, the ML-VAMP

framework applies more broadly to the class of rotationally invariant random matrices. This

class of random matrices includes matrices which can have arbitrary laws of singular values

13

which enable modelling of more general problems in machine learning such as those considered

in Chapter 5.

1.4 Organization of the dissertation

The rest of this dissertation is organized as follows: Chapter 3 states a general multi-layer

inverse problem that the ML-VAMP framework is based on. Chapter 4 generalizes this

framework to a broader class of problems involving matrix variables. These two chapters

discuss the reconstruction of vector and matrix valued signals using deep generative models

from noisy nonlinear measurements. Chapter 5 provides an application of the framework

to analyzing some problems in machine learning, and provides a precise characterization of

generalization error in learned models. All proofs are deferred to the corresponding appendices,

and all chapters are self-contained. Results from Chapter 3 appeared in [43,112,115], those

from Chapter 4 appeared in [116,117] and were coauthored with Mojtaba Sahraee-Ardakan,

Sundeep Rangan, Philip Schniter and Alyson Fletcher. Contents of Chapter 5 were published

as [39] and were coauthored with Melikasadat Emami, Mojtaba Sahraee-Ardakan, Sundeep

Rangan and Alyson Fletcher.

14

Chapter 2

Background and Preliminaries

In this chapter we review some related concepts necessary to develop our framework.Let us

start by setting up notation for the rest

2.1 Notation

Matrices are denoted by boldfaced uppercase letters A. Ai∗ denotes the ith row and A∗j the

jth column. Vectors are denoted by boldfaced lowercase letters a and ai is the ith coordinate

of a, whereas a subvector of a indexed by β ⊆ {1, 2, . . . , dim(a)} is denoted as aβ. Norms

without subscripts are 2-norms for vectors and Frobenius norms for matrices.

We assume that densities exist for the probability distributions being discussed. In case

of discrete/hybrid distributions, with some abuse of notation, a point mass at points x∗ ∈ X ,

is represented by the term δx∗ . We omit the subscripts from probability densities pX(x),

pX|Y (x|y), pX,Y (x,y) and denote them as p(x), p(x|y) and p(x,y) respectively, unless

disambiguation is needed. Unless specified otherwise, for subsets of RN , the base measure is

the Lebesgue measure.

For a probability density function q : X → R, and a function f : X → R, we use the

15

notation

E[f |q] :=

∫
X
f(x)q(x)dx

to denote the expectation w.r.t. density q, while E[x|y] := E[x|pX|Y] =: E[x|p(x|y)]. Closely

related is the notation for beliefs, or unnormalized densities b, where we use the notation

E[x|b] ≡ E[x| b(x)∫
X b(x)dx

]. For the variance terms,

V {f |q} =

∫
X

(f(x)− E[f |q])2q(x)dx

denotes the variance calculated under the density q, while V {x|y} := V {x|pX|Y } =:

V {x|p(x|y)}. When using the notation for E and V , it is implicitly assumed that these

quantities are well defined or that the necessary moments exist and are finite.

We use the standard “big-Oh” notation. For some universal constants Ci, Ni below:

fn . gn ≡ fn = O(gn) ≡ fn ≤ C1gn for all n ≥ N1,

fn & gn ≡ fn = Ω(gn) ≡ fn ≥ C2gn for all n ≥ N2,

fn = o(gn) ≡ lim
n→∞

fn
gn

= 0,

fn = ω(gn) ≡ lim
n→∞

gn
fn

= 0

2.2 Useful results from Probability theory

We will review concepts such as convergence in probability, almost sure convergence, and

convergence in distribution, via the statements of the laws of large numbers. To that end, let

Si =
∑n

i=1 Xi.

Theorem 1 (Weak Law of Large Numbers). If {Xi} are centered i.i.d. random variables,

with a law satisfying the tail condition P(|Xi| > x) = o(1
x
), then

Sn/n→ 0, in probability.

16

which means limn→∞ P(|Sn/n| > ε) = 0 for all ε > 0.

Theorem 2 (Strong Law of Large Numbers). If {Xi} are centered pairwise independent

integrable random variables, i.e., E|Xi| <∞, then

Sn/n = 0, almost surely (a.s.)

which means that P(limn→ |Sn/n| > ε) = 0 for all ε > 0. Notice this is a stronger statement

than the weak law because of the order of the limit and the integral.

Theorem 3 (Central Limit Theorem). If {Xi} are centered i.i.d. random variables with

variance E|Xi|2 = σ2 <∞, then

Sn/
√
n =⇒ N (0, σ2)

where the above convergence is in distribution. This means that for any bounded

continuous function f , we have Ef(Sn/
√
n) → Ef(S), where S ∼ N (0, σ2). This is the

weakest form of convergence. However, it holds even when Sn/n is not a continuous random

variable, i.e., has a domain which is a strict subset of R. Other stronger forms of convergence

may not make sense under such a discrepancy in the domains of the random variables.

2.3 Approximate Bayesian Inference

Consider an unknown signal x ∈ X with prior distribution having density p(x), and let

x be observed in a representation y ∈ Y through a measurement channel which induces a

conditional density p(y|x), also referred to as the likelihood function of x. The density of the

posterior distribution over x is given by the Bayes rule

p(x|y) =
p(x)p(y|x)

Z(y)
,

17

Z(y) =
∫
p(x′)p(y|x′)dx′ is called the evidence, or model likelihood, or partition function. It

is a normalizing factor to make the quantity p(x|y) defined above a valid probability density

function.

Bayesian inference deals with decision making based on statistics of the posterior dis-

tribution. The statistic of choice could differ based on the application. For example, point

estimates such as the posterior mean (also called MMSE estimator) x̂mmse = E[x|y], or the

posterior mode (also called MAP estimator) x̂map = argmax
x

p(x|y), or other quantities such

as uncertainty reports in the form of conditional variance V {x|y}. These are often of interest

in signal processing and machine learning applications. On the the other hand, several

applications in computer science, could in general demand marginal densities {p(xα|y)}α of

the posterior distribution for some subvectors {xα}.

2.3.1 The need for approximate inference

Exact inference of quantities related to the p(x|y) is in general difficult or computationally

intractable, and several approximation strategies have been proposed in the last few decades.

When X ⊆ RN is high dimensional, ie, N & 102 which is typically the case in modern

signal processing problems, a major computational challenge in dealing with the posterior

distribution explicitly lies in the computation of the partition function Z(y). The high

dimensional integral is in general computationally intractable, and may require summing over

the support of X which could be exponential in N . This is often colloquially called the curse

of dimensionality. Hence estimators involving statistics of the posterior distribution often try

to circumvent having to evaluate the partition function explicitly.

2.3.2 Approaches to Approximate Inference

One line of attack to approximating inference is via stochastic simulation, also called the

Markov chain Monte Carlo (MCMC) methodology, which revolves around obtaining samples

{x̃i}Ni=1 drawn from a reliable proxy density π(x) ≈ p(x|y) so as to approximate E[g(x)|y] ≈

18

1

N

N∑
i=1

g(x̃i).

Other deterministic approaches revolve formulating an appropriate optimization problem

the exact solution to which is the quantity to be estimated. Approximating the optimization

problem by either approximating the objective function or the constraint set is strategy to

perform approximate inference. This circumvent having to sample from a distribution, by

approximating p(x|y) with an approximate density function.

Variational inference (VI) is an important framework of this type that encapsulates a

large body of deterministic strategies for approximate inference. For example, the methods

Variational Bayes, Mean Field Approximations, Free Energy minimization and Belief Propa-

gation, Expectation Propagation, and Expectation Consistent Approximate Inference can all

be understood as special instances of VI. We briefly review the setup for VI below.

2.3.3 Variational Inference

Much of what has been discussed here can be thought of a summarization of [158], [118]

and [15], which are themselves definitive resources on historical developments on this topic.

Variational inference is a deterministic approach which provides a complementary alterna-

tive to MCMC based approximation methods for inference in large-scale statistical models.

The key idea in variational inference is to generate an approximation to a target density

function by considering an optimization problem in the space of density functions, referencing

the paradigm of infinite dimensional optimization also called calculus of variations. Note that

the computation most often happens on a cogent finite dimensional representation of these

density spaces. Of particular interest in Bayessian inference is approximating the posterior

density p(x|y) as discussed in the preamble but the ideas discussed here are more generally

about approximating a target density function, say p∗(x) which is factorizable as
∏

α fα(x∂α),

as is often the case in probabilistic graphical models.

Let Q ⊆ {q : X → R+,
∫
q(x)dx = 1} be a subset of valid probability density functions.

19

Consider the optimization problem below for approximating a density function p∗,

q∗ ∈ argmin
q∈Q

DKL

(
q ‖ p∗

)
. (2.1)

Owing to the fact that the KL-divergence is a metric, it is always non-negative, and vanishes

only when both arguments are identical, (2.1) makes sense, and if p∗ ∈ Q we have q∗ = p∗.

Otherwise, we get an approximation of p∗, in fact, q∗ is a projection of p∗ into Q in the

KL-metric sense. We also remark that q∗(x) = 0 whenever p∗(x) = 0 due to the absolute

continuity requirement of the KL-divergence to be finite. We note that the name variational

inference would perhaps also hold if the metric of choice is one other than the KL-divergence,

for example, the Wasserstein family of distances, or even other f -divergences, as considered

in [3, 130]. However, the KL-divergence has perhaps received most of the attention from the

community, potentially due to the decomposability of the KL-metric for product-factorizable

densities, also known as the chain rule of relative entropy.

DKL

(
g1(x1)g2(x2)

∥∥∥f1(x1)f2(x2)
)

= DKL

(
g1(x1)

∥∥∥f1(x1)
)

+DKL

(
g2(x2)

∥∥∥f2(x2)
)

This decomposability is amicable for optimization, and can also for analytical purposes. We

refer the reader to [118] for a concise review of ideas in variational inference as applied to

signal processing applications.

2.4 Denoising

Denoising refers to the problem of recovering x from observations x+w, where w is some

noise with a distribution p(w).

20

2.4.1 The Proximal Denoiser

For a function f : RN → R, the proximal operator with parameter τ ∈ R+ is given by

proxf (y; τ) = argmin
x

f(x) +
1

2τ
‖x− y‖2 (2.2)

For a proper1 convex f , proxf(y; τ) is unique due to the strong convexity of the objective

function.

The probabilistic interpretation for this operator is that it corresponds to the MAP

estimator x̂map, i.e., the mode of the posterior distribution p(x|y) corresponding to a prior

p(x) ∝ e−f(x) and AWGN measurements y = x+w with w ∼ N (0, τI) is additive white

gaussian noise. Hence it is often called a denoiser. For general f , the uniqueness of f is

not guaranteed. However, the proxf(·) posses certain computational advantages such as

decomposability, for e.g.,

f(x) =
∑
α

fα(xα), =⇒ [proxf (y; τ)]α = proxfα(yα; τ).

for non-overlapping subvectors {xα} of x, which follows readily from the definition of prox(·)

above.

We also note generalizations of the proximal denoiser. For a function f : RK → R, and a

symmetric positive semidefinite matrix G ∈ RK×K
�0 , define

proxf (r;G) := argmin
x

f(x) + ‖x− r‖G (2.3)

where the norm ‖x− r‖G :=
√

(x− r)>G(x− r).

For more general choice of p(w), the proximal denoiser is often called the Bregman-

proximal operator.

1f(x) > −∞ for all x, and f has a non-empty effective domain, i.e., {x : f(x) <∞} 6= φ

21

2.4.2 The MMSE denoiser

Having considered the MAP denoising interpretation of the proximal operator, we look at the

MMSE denoiser as well. Consider the mean squared error (MSE) loss, `(x, x̂) = ‖x− x̂‖2 .

Let x̂mmse denote the bayes optimal estimator with respect to the MSE loss, i.e.,

x̂mmse = f ∗, where f ∗(y) = argmin
f(y):f∈F

∫
X
‖x− f(y)‖2 p(x|y)dx

where F is the set of all measurable functions Y → X . Under certain mild assumptions such

as existence of the second moment2, this estimator has another form given by,

x̂mmse(y) = E[x|y],

owing to the projection interpretation of the conditional expectation. Observe also that the

minimum mean squared error is thus the posterior variance, i.e.,

MMSE(y) = V {x|y} = E[(x− x̂mmse(y))2|y].

2.4.3 The LMMSE denoiser

Consider the same optimization problem as above with the constraint set of functions restricted

to FL, the set of linear operators from Y → X ,

x̂lmmse = f ∗, where f ∗(y) = argmin
f(y):f∈FL

∫
X
‖x− f(y)‖2 p(x|y)dx

x̂lmmse ≡W ∗, where W ∗ = argmin
W∈RN×M

∫
X
‖x−Wy‖2 p(x|y)dx,

2which are implicitly satisfied here since the MSE is meaningless otherwise

22

Setting the gradient of the above objective w.r.t. W to zero, we get the identity,

W ∗yy> = E[x|y]y>

2.4.4 Generalized Proximal Denoiser

For a matrix M ∈ S+
K and we define the generalized proximal

proxf (r;M) = argmin
x

f(x) + ‖x− r‖2
M (2.4)

For the special case of M = 1
τ
I we get the standard proximal operator in (2.2)

2.4.5 Mean divergence

For an almost everywhere differentiable operator g : RN → RN , the Jacobian is a matrix

valued function denoted Jg(x) ∈ RN×N and defined as [Jg(x)]ij = ∂gi
∂xj

∣∣∣
x
. We denote by

〈g′(x)〉 ∈ R the mean divergence given by

〈g′(x)〉 :=
1

N
trace (Jg(x)) =

1

N

N∑
i=1

∂gi
∂xi

∣∣∣
x

Two important mean divergences worth noting are those of the proxf and the E[x|y]

operators. Note that one can show that the mean divergence for the function g(y) := E[x|y]

is the average conditional covariance, 1
N
V {x|y}.

2.5 Probabilistic Graphical Models

Graphical models combine two powerful tools of graph theory and probability theory for

sophisticated statistical modeling in large-scale systems. The idea is to represent a probability

distribution on a graph, such that the structure of the graph captures the essence of the

structured randomness of the underlying variables. Let xs ∈ X for all s ∈ {1, 2, . . . , |V |} =: V.

23

2.5.1 Markov Random Fields (MRF) and Gibbs Fields

For an undirected graph G = (V,E), with vertices s ∈ V corresponding to variables xs, and

(s, t) /∈ E iff

xs ⊥⊥ xt | xV \{s,t}, (2.5)

i.e., xs and xt are conditionally independent given the other variables in the graph. Any

distribution that satisfies this conditional independence relationship is called a Markov random

field (MRF) of that graph.

Conversely, for a graph G, a way to define a structured probability distribution is a joint

density over the variables {xs} which can be written as

p(x1, . . . , x|V |) ∝
∏
C∈C

ψC(xC), (2.6)

where C is the set of all maximal cliques of the graph G. The resulting joint distribution is

called a Gibbs Field or Gibbs distribution. The question regarding whether the two concepts of

MRFs and Gibbs fields are equivalent was resolved by the Hammersley-Clifford theorem. They

showed that every Gibbs field for a given graph always satisfies the conditional independence

relationship (2.5); whereas, if an MRF exists with full support (all configurations on X |V | are

possible), then one can rewrite every MRF over this graph as the product of maximal clique

potentials as in (2.6) thus defining a Gibbs field.

2.5.2 Directed Acyclic Graphs (DAG)

DAGs are another form of graphical models where edges (s→ t) ∈ E are directed. Denote

by π(s) the parent set of vertex s, i.e., π(s) := {t | (t→ s) ∈ E}. A DAG corresponds to a

24

probability distribution given by

p(x1, . . . , x|V |) =
∏
s∈V

p(xs|{xt : t ∈ π(s)})

2.5.3 Factor Graph

For large graphs, the factorization of the joint probability distribution is not easy to visualize

from the usual depictions in MRFs or DAGs. Factor graph representations emphasize the

factorization of the Gibbs distribution. For a density p(x) =
∏

α ψα(x∂α), a factor graph

is a representation for q as a bipartite graph G = (V, F,E), with partition F consisting

of factor nodes fα, while the other partition V consists of variable nodes xi. These could

be a single variable or a cluster of variables based, and the choice of grouping variables

into clusters may result in simpler graphical structures for G, (see [63, Fig. 2]). Here

∂α = {i | fα depends on xi}. Similarly define ∂i = {α | fα depends on xi}.

2.6 Large System Limit Analysis: Proportional Asymp-

totics

We describe the setting for the high dimensional limit under which certain convergence

properties related to the AMP algorithms hold. In general for each N , a sequence of problems

y(N) = A(N)x(N) + ξ(N)

is considered, where y(N) ∈ RM and limN→∞
M
N
→ δ ∈ (0,∞). A(N) is drawn from an

ensemble of M ×N matrices. We skip the dependence on N wherever it is unambiguous.

For a p ≥ 1, a transform f : Rs → Rr is said to be pseudo-Lipschitz continuous of order p

if,

‖f(a)− f(b)‖ ≤ L ‖a− b‖
(
1 + ‖a‖p−1 + ‖b‖p−1) , for some L > 0

25

We say f is uniformly Lipschitz continuous in a at c if for some L1, L2, ε1, ε2 > 0 we have,

1. ‖f(a, c)− f(a′, c)‖ ≤ L1 ‖a− a′‖, for a,a′ ∈ dom(f) and |c− c| < ε1

2. ‖f(a, c1)− f(a, c2)‖ ≤ L2(1+‖a‖)|c1−c2|, for a ∈ dom(f) and max{|c1−c|, |c2−c|} <

ε2

A sequence of vectors {a(N)} with growing dimensions is said to converge empirically with

pth order moments to A, denoted in short as a
PL(p)→ A, if the following conditions hold:

1. E|A|p <∞

2. 1
N

N∑
i=1

f(ai) = E f(A) for all f ∈ Cb ∪ {(·)p},

where Cb denotes the set of bounded continuous functions. Note that due to the addition

of the function (·)p, the above condition is stronger than convergence in distribution, i.e., it

holds for a larger class of functions. A consequence of the above two conditions is that if

a
PL(p)→ A, then for any pseudo-Lipschitz function f of order p, we have 1

N

N∑
i=1

f(ai) = E f(A).

If the components of a(N) are random, then we need additionally that the last equality hold

almost surely, since the quantity on the left is random while the quantity on the right is

deterministic.

2.6.1 Empirical Convergence of Vector Sequences

Definition 1 (Pseudo-Lipschitz continuity). For a given p ≥ 1, a function f : Rd → Rm is

called Pseudo-Lipschitz of order p if

‖f(x1)− f(x2)‖

≤ C‖x1 − x2‖
(
1 + ‖x1‖p−1 + ‖x2‖p−1

)
(2.7)

for some constant C > 0.

26

Observe that for p = 1, the pseudo-Lipschitz is equivalent to the standard definition of

Lipschitz continuity.

Definition 2 (Uniform Lipschitz continuity). Let φ(x, θ) be a function on r ∈ Rd and

θ ∈ Rs. We say that φ(x, θ) is uniformly Lipschitz continuous in x at θ = θ if there exists

constants L1, L2 ≥ 0 and an open neighborhood U of θ such that

‖φ(x1, θ)− φ(x2, θ)‖ ≤ L1‖x1 − x2‖ (2.8)

for all x1,x2 ∈ Rd and θ ∈ U ; and

‖φ(x, θ1)− φ(x, θ2)‖ ≤ L2 (1 + ‖x‖) ‖θ1 − θ2‖, (2.9)

for all x ∈ Rd and θ1, θ2 ∈ U .

Definition 3 (Empirical convergence of a sequence). Consider a sequence of vectors x(N) =

{xn(N)}Nn=1 with xn(N) ∈ Rd. So, each x(N) is a block vector with a total of Nd components.

For a finite p ≥ 1, we say that the vector sequence x(N) converges empirically with p-th

order moments if there exists a random variable X ∈ Rd such that

(i) E‖X‖pp <∞; and

(ii) for any f : Rd → R that is pseudo-Lipschitz continuous of order p,

lim
N→∞

1
N

N∑
n=1

f(xn(N)) = E [f(X)] . (2.10)

In this case, with some abuse of notation, we will write

lim
N→∞

{xn}
PL(p)

= X, (2.11)

where we have omitted the dependence on N in xn(N). We note that the sequence {x(N)}

27

can be random or deterministic. If it is random, we will require that for every pseudo-Lipschitz

function f(·), the limit (A.2) holds almost surely. In particular, if xn ∼ X are i.i.d. and

E‖X‖pp <∞, then x empirically converges to X with pth order moments.

PL(p) convergence is equivalent to weak convergence plus convergence in p moment [10],

and hence PL(p) convergence is also equivalent to convergence in Wasserstein-p metric (See

Chapter 6. [157]). We use this fact later in proving Theorem 10.

2.7 Belief propagation

Belief propagation is an algorithm [Pearl, Galager] for obtaining marginal densities of q∗ for

subvectors xi without having to solve (2.1) directly. It proceeds by propagating messages on

a factor graph.

Sum Product Algorithm

In its standard form, belief propagation appears as the sum-product algorithm,

Mα→i(xi) =

∫
fα(x)

∏
j∈∂α\i

Mi→α(xj)dx∂α\i (algo: Sum-Product)

Mi→α(xi) =
∏

β∈∂i\α

Mβ→i(xi)

From these messages, beliefs (or unnormalized densities) are computed as

q(xi) =
∏
β∈∂i

Mβ→i(xi)

q(xα) = fα(x)
∏
j∈∂α

Mi→α(xj)

The sum product algorithm was shown to be exact [120] for computing marginal densities

for factor graphs which are forests, i.e., a disjoint union of trees, and converges in a single

round of message passing, whereby it is also called sometimes referred to as the forward-

28

backward algorithm. In fact, in the tree case, BP is closely related to a dynamic programming

algorithm.

More more general graphs, i.e., graph with loops, the BP algorithm can be applied for a

few iterations and has demonstrated remarkable success in communication [48], [30], [146].

However, in general the resulting solution is sub-optimal, see [158, Ex. 4.3], and [101].

Max-Product (or Min-Sum) Algorithm

We note that while belief propagation was introduced for finding marginal densities over a

factor graph, one can also consider finding the mode of a factorizable density using a similar

message passing approach. Factor graphs also appear in the literature on optimization and

distributed optimization. Where an objective function of the form

∑
α

Cα(x∂α) +
∑
i

Ci(xi)

is to be minimized. The same factor graph can now be used to cut down computation, which

again is interpretable as a form of variable elimination for forest graphs. In this case however,

the product in the aggregation of messages is replaced with a sum while the integral (or sum)

is replaced with a minimization step, which gives the min-sum algorithm.

Jα→i(xi) = min
x∂α\i

fα(x) +
∑
j∈∂α\i

Ji→α(xj)dx∂α\i (algo: Min-Sum)

Ji→α(xi) =
∑
β∈∂i\α

Jβ→i(xi)

29

From these messages, the costs are computed as

q(xi) =
∑
β∈∂i

Jβ→i(xi)

q(xα) = fα(x)
∑
j∈∂α

Ji→α(xj)

Belief propagation has also been applied to cases where the factor graph is not necessarily

tree structured. This was called generalized or loopy belief propagation (LBP). Originally the

LBP applications were restricted to sparse graphs which may have loops in them. [98] talks

in detail about the various approximations to understand LBP and the approximation gap.

Interestingly, for discrete distributions, max-sum LBP corresponds to an integer programming

problem.

LBP when applied to non-sparse, i.e., dense graphs is essentially the basis for the original

derivation of the Approximate Message Passing algorithm [33]. See 2.1 for the factor graph

used in deriving the AMP.

2.8 Review of Approximate Message Passing algorithms

We are interested in recovering an unknown signal x∗ ∈ X ⊆ RN to be reconstructed from

observations y ∈ Y ⊆ RM . The signal is assumed to be drawn from a prior density p(x), and

the measurement model y =M(x) induces a conditional distribution p(y|x), which is the

likelihood function of x. Consequently by the Bayes rule, the posterior p(x|y) ∝ p(x)p(y|x).

In many signal processing applications where Bayesian inference is applied, point estimates

are of interest rather than marginal probability densities. We focus on two point estimators,

namely, the “Bayes optimal estimator” or x̂mmse, which correspond to the posterior mean,

and the MAP estimator x̂map which is a mode of the posterior density.

In the generalized linear model (GLM) for measurements, we are interested in recon-

structing an unknown signal x∗ ∈ X ⊆ RN from observations or measurements y ∈ Y given

30

by

y = φ(h, ξ), h = Ax∗

where φ : RM → Y ⊆ RM is an elementwise function which could in general be non-linear,

i.e., [φ(x)]i = φ(xi) for i ∈ [n]; and the matrix operator A ∈ RM×N is called the measurement

matrix or design matrix; and h ∈ RM an intermediate variable. The quantity ξ is noise, but

is assumed to be coordinatewise drawn from the same distribution iid. We remark that one

can think of the GLM as a single layer neural network with bias vector 0, weight matrix A,

and activation φ. This can later be extended to multi-layer measurement models. The goal is

to estimate x when {y,A, φ} are known. We consider a unified treatment for the x̂map and

x̂mmse estimators.

The randomness in ξ induces a conditional density or likelihood function given by,

p(y|h) =
M∏
i=1

p(yi|hi).

For example, the randomness in φ could be due to some quantization noise, or finite numerical

precision errors. Here, we introduce methods for reconstruction of x with i.i.d. priors, or

equivalently separable penalty functions, whereby

p(x) =
N∏
i=1

p(xi), p(u) ∝ exp(−f(u)).

However, we later comment on the extensions to non-iid priors.

2.8.1 The Standard Linear Model

The GLM has a special case called the Standard Linear Model (SLM), where φ(h, ξ) = h+ ξ

where ξ is additive white gaussian noise. This is perhaps the simplest model that also captures

the effect of the mixing due toA in the presence of noise. For the SLM p(y|x) ∝ ν
2
‖y −Ax‖2,

31

where ν is the scalar precision of the noise ξ, i.e., ξ ∼ N (0, I/ν). This model is easier to

analyze due to its relation to least squares problems, a class of problems which has arguably

received most of the attention in the theory on vector space methods [85, Chap. 4]. The

SLM provides incredible insights into the success or failure of a general approximate inference

procedure.

In what follows, we consider the likelihood function and prior given by

p(y|x) ∝ exp(−ν
2
‖y −Ax‖2), p(x) ∝

N∏
i=1

exp(−f(xi)),

whereby the MAP estimator is the mode of the posterior, or the minimizer of the negative

log-posterior given by

x̂map = argmin
x

ν

2
‖y −Ax‖2 +

N∑
i=1

f(xi),

whereas the MMSE estimator does not have a closed-form variational expression in general,

but is given by

x̂mmse =
1

Z(y)

∫
RN
x exp

(
−ν

2
‖y −Ax‖2 −

N∑
i=1

f(xi)

)
dx

In the context of the SLM, the Approximate Message Passing (AMP) algorithm [33] was

introduced to improve the accuracy of fast iterative algorithms in compressive sensing. The

fast algorithms based on iterative thresholding offered worse sparsity-undersampling tradeoffs

than convex formulations, whereas the latter were computationally expensive. The AMP

algorithm demonstrated the ability to achieve the same accuracy in terms of achieving the

sparsity-undersampling tradeoff which is achievable by the convex formulations for large iid

random Gaussian matrices.

A remarkably fascinating property of the AMP algorithm is that in a certain high

dimensional limit, a scalar-valued recursion called the State Evolution (SE) given below, can

32

track bulk statistics such as the mean squared error of reconstruction of the iterates,

E(γk, τk) = E[g(X +N (0, τk); γk)]
2, X ∼ p(X) ∝ e−f(X) (2.12a)

τk+1 = ν−1 +
N

M
E(γk, τk), (2.12b)

and one can show rigourously that E(γk, τk) = limN→∞
1
N
‖x̂k − x∗‖2 a.s., for A drawn

from certain random matrix ensembles. The SE is an incredible tool, since it can provide

analytical expressions such as the formula [33, eqn. 5] for the boundary of sparse recovery, a

quantity of significant interest for which convex formuations do not provide cogent analytical

characterizations.

The AMP algorithm derives its name from a loopy belief propagation based derivation

over a dense factor graph. We state the AMP algorithm and its briefly describe its derivation.

Similar to AMP, based on belief propagation on another factor graph, albeit with vector-

valued nodes, the vector approximate message passing (VAMP) algorithm was proposed

by [126]. The VAMP algorithm also posses a SE of its own, which holds for a much larger

class of random matrices than the i.i.d. Gaussian ensemble. This makes the VAMP attractive

as an analytical tool just like the AMP, while being more robust to the failure modes of AMP.

The VAMP algorithm is almost equivalent to several other algorithms proposed recently, such

as Turbo-signal recovery [87,138], and expectation consistent (EC) inference [72,110] with

mild differences. We discuss the VAMP algorithm, and its state evolution while contrasting

it with the other algorithms similar to it.

2.8.2 Approximate Message Passing algorithm

The AMP algorithm was introduced in [33]. It can be summarized by the following sequence

of iterations given in Algorithm 1

It can be derived as loopy belief propagation on the bipartite factor graph shown in Fig.

2.1. For non-sparse matrices A, notice that the graph is dense. While performing loopy belief

33

Algorithm 1 Approximate Message Passing
Require: Data {y,A}, denoiser g(·), number of iterationsKit, denoiser parameter {γk}Kit

k=1 >
0

1: Initialize r0 = 0
2: for k = 0, 1, . . . , Kit − 1 do
3: x̂k = g(rk; γk)
4: αk = 〈g′(rk; γk)〉
5: vk = y −Ax̂k + N

M
αkvk−1

6: rk+1 = x̂k +A>vk
7: end for

(y1 −A1∗x)2 · · · (ya −Aa∗x)2 · · · (yM −AM∗x)2

x1 · · · xi · · · xN

f(x1) · · · f(xi) · · · f(xN)

Figure 2.1: Factor graph for the loopy belief propagation derivation of the AMP

propagation on this factor graph, the factor-to-variable messages Ma→i approximated as

Gaussian densities. Intuitively, one can think of the Gaussian approximation as the second

order Taylor expansion of the negative log density.

A detailed derivation is provided in [98, Sec 5.2] for MAP inference, which corresponds

to max-product (or min-sum) AMP, and in [35] for MMSE inference, which corresponds to

sum-product AMP. The only difference lies in the denoisers g for the two estimators. For

the MAP case, the denoiser is the proximal operator of f , whereas for the MMSE case, the

denoiser g is a componentwise extension of the scalar denoiser g given by

g(a, c) =
1

Z(a, c, f)

∫
R
x · exp

(
−f(x)− c

2
(x− a)2

)
dx,

where Z(c, a, f) =
∫
R exp

(
−f(x)− c

2
(x− a)2

)
dx is the normalizing factor.

The term N
M
αkvk−1 is called the Onsager correction term. The idea behind this term is

34

that it causes rk to be a noisy version of x∗, i.e.,

rk ≈ x∗ + τkw, (2.13)

where w ∼ N (0, I), (see [98, Fig. 6] for an empirical demonstration). This justifies naming

the elementwise operation g(·) to be a denoiser.

2.8.3 Relation to Iterative First Order Optimization methods

In the absence of the Onsager correction term, i.e., when αk = 0, the MAP version of the

AMP algorithm is exactly the proximal gradient descent algorithm. For example, for the `1

penalized MAP problem, also called the LASSO problem [56] the proximal operator is the

soft-thresholding operation [28], [21]. In this case, the AMP algorithm is exactly the iterative

shrinkage and thresholding algorithm (ISTA).

An alternative way to understand the Onsager correction term is as a momentum term,

often used to speed up first order optimization algorithms to achieve the fastest possible

rate O(k−2) for convex problems [106]. However, in understanding the AMP through this

lens, the stepsize in the momentum αk is adaptive and is strongly linked to the curvature of

denoiser at its input rk. This adaptation significantly speeds up the convergence, (see the

plot [98, Fig. 7]).

In fact, due to the regularized least squares interpretation of the MAP inference problem,

min
x

1
2
‖y −Ax‖2 + Φ(x),

the properties of the AMP algorithm in solving these problems have also been studied for

non-separable convex penalty functions Φ, see [90]

35

2.8.4 Limitations of AMP

The AMP algorithm is not robust to general measurement matrices A. For deviations from

the entrywise i.i.d. ensemble, the AMP iterations are known to diverge. We refer the reader

to [128] and [20] as well as comparative figures in [126]. The key failure modes of the AMP are

that the algorithm does not seem to converge for non-zero mean of Aij and ill-conditioning.

Some issues have been addressed by a technique in optimization called damping, see [156].

2.8.5 Vector Approximate Message Passing algorithm

The VAMP algorithm [126], considered a simpler factor graph shown below with vector valued

nodes, To describe the message passing derivation briefly, the approximate beliefs at variable

f(x1)

x1

δ(x1 − x2)

x2

‖y −Ax‖2

f(x)

x

δ(V >x− z)

z

‖ỹ − Sz‖2

Figure 2.2: (top) Factor graph used in the original derivation of VAMP given in Algorithm 2.
(bottom) Alternative factor graph for VAMP. The output-side denoiser for message passing
on this factor graph is G2, whereas it is g2 for the factor graph on top. This factor graph is
implicitly used in analysis in [126]. It is more conducive to extension to GLMs and multi-layer
models.

nodes xi are assumed to be Gaussian with mean and precision parameters (x̂i, ηiI) ; and the

factor-to-variable messagesMδ→xi(xi) are assumed to be Gaussian with means and precision

parameters (ri, γiI), where ηi, γi are scalars. When message passing proceeds, the updates

for the parameters for these Gaussian distributions are obtained by moment-matching. The

iterations are given in Algorithm 2.

36

The denoiser g2(r2; γ2) corresponds to the LMMSE denoising. For both the MAP and

MMSE case this denoiser is given by

g2(r2; γ2) := argmin
x

ν

2
‖y −Ax‖2 +

γ2

2
‖x− r2‖2 = (νA>A+ γ2I)−1(νA>y + γ2r2)

(2.14)

Using the “full” SVD of A = USV > with square matrices U and V , and a rectangular

matrix S, the denoiser g2 given in (2.15) can be rewritten as

g2(r2; γ2) = VG2(V >r2; γ2) (2.15a)

G2(a; c) := (νS2 + cI)−1(νSỹ + ca). (2.15b)

Observe that G2 is an elementwise operator. This fact is used in the State Evolution analysis

of the algorithm later. Since the AWGN is isotropic, we can rewrite y = Ax+ ξ as

ỹ = Sz + ξ̃,

where ỹ and ξ̃ are rotated vectors U>y and U>ξ respectively, and z := V >x. Notice that S

is an elementwise operator. The posterior for this problem can be given by the factor graph

in the bottom panel of Fig 2.2. The resulting approximate message passing on this factor

graph is used implicitly during the analysis of VAMP in [126].

2.8.6 Extensions to the Generalized Linear Model

Note that in general, the AWGN may be restrictive since the domain Y of the observed variable

is implicitly assumed to be RM , it may often not make sense due to the physical constraints of

the system, or the interpretation of the observed variables, for e.g., Y = {Yes, No} indicating

binary choice variables, or Y = [a, b], or Y = {0, 1, 2, . . .} such as in count data, and so

on. Fortunately, much of what applies for the AWGN channel can be extended to other

37

Algorithm 2 Vector Approximate Message Passing
Require: Denoiser g1(·), LMMSE denoiser g2(·) from (2.15), number of iterations Kit

1: Initialize r10 = 0, γ10 > 0
2: for t = 0, 1, . . . , Kit − 1 do
3: // Denoising
4: x̂1k = g1(r1k; γ1k)
5: α1k = 〈g′1(r1k; γ1k)〉
6: η1k = γ1k/α1k

7: γ2k = η1k − γ1k

8: r2k = (η1kx̂1k − γ1kr1k)/γ2k

9:
10: // LMMSE
11: x̂2k = g2(r2k; γ2k)
12: α2k = 〈g′2(r2k; γ2k)〉
13: η2k = γ2k/α2k
14: γ1,k+1 = η2k − γ2k

15: r1,k+1 = (η2kx̂2k − γ2kr2k)/γ1k

16: end for

exponential family distributions. Keeping in fashion with the nomenclature for the GLM, the

prefix generalized in this context is indicative of an extension of a signal recovery method to

other exponential family distributions. The generalized versions of the previously mentioned

iterative algorithms have been considered in GAMP [122], GVAMP [139], GTurbo [84] and

GEC [44,60].

The GAMP algorithm by [122] performs approximate message passing on the factor graph

with scalar valued variable nodes shown in the top panel of Fig. 2.3. Note that this is also a

bipartite graph. Similarly, the VAMP algorithm was extended to the GLM by [139]. One

can show that their algorithm can be derived from the factor graph over vector valued nodes

shown in the bottom panel of Fig 2.3. Although the algorithm stated in [139] is more compact,

the factor graph stated in the bottom panel of Fig. 2.3 is more conducive to extension to

multi-layer models.

38

(z1 −A1∗x)2 · · · (za −Aa∗x)2 · · · (zM −AM∗x)2

z1 · · · za · · · zM

g(z1) · · · g(za) · · · g(zN)

x1 · · · xi · · · xN

f(x1) · · · f(xi) · · · f(xN)

f(x)

x

δ(V >x− z1)

z1

‖Sz1 − z2‖2

z2

δ(Uz2 − z3)

z3

p(y|z3)

Figure 2.3: Factor graphs for deriving (top): the GAMP algorithm [122], and (bottom):
GVAMP [139] or the more general GEC algorithm [44], [60].

39

2.8.7 State Evolution of AMP Algorithms

One of the remarkable properties of the Approximate Message Passing algorithms is that

certain bulk statistics such as mean squared error of its iterates {x̂k} can be shown to

evolve according to a set of scalar iterations in a certain high dimensional asymptotic setting

described in Section 2.6. This scalar iteration is called the state evolution (SE) and is given

by equations (2.12).

Specifically, one can show rigorously, that for an average of a pseudo-lipschitz function ψ

of order p, the following convergence holds as the dimension N →∞,

ψ(x̂k,x
∗) =

1

N

N∑
i=1

ψ(x̂
(t)
ki , x

∗
i)→ Eψ(X̂k;X

∗) a.s.

For instance in the expression above, we could have ψ(x̂,x∗) = 1
N
‖x̂− x∗‖2, i.e., the mean

squared error or reconstruction, which is pseudo Lipschitz of order 2. Note here that the

quantity to which the average converges is the expectation of scalar random variable, where

X∗ ∼ p(X) ∝ e−f(X), X̂k = g(X∗ +
√
τkZ; γk), Z ∼ N (0, 1), Z ⊥⊥ X∗

and τk is given by the scalar recursive equation (2.12).

A very nice intuitive understanding for the state evolution is provided in [33]. In essence,

the effect of multiplication by a large i.i.d. Gaussian matrix A and A> cause the output to

be componentwise i.i.d. Gaussian. Note that this does not necessarily hold if the input to

the matrix is correlated with the matrix. The Onsager correction term however, decorrelates

the input and allows the Gaussianizing property in equation (2.13) to hold.

We consider the state evolution of the VAMP algorithm due to the ease in exposition.

The proof technique used in [126] generalizes the same idea of Bolthausen conditioning from

i.i.d. Gaussian matrices A to orthogonally invariant matrices A.

40

2.8.8 Sketch of the proof

u V p

Fp

tV >q

Fq

U N P

fp

TNQ

fqwq wp Wq Wp

αp =
〈
h′p(p,wp, γp)

〉
(2.16a)

γp = Γ(γq, αp) (2.16b)
Fp ≡ C(αp) (hp(p,wp, γp)− αpp)

(2.16c)
αq =

〈
h′q(q,wq, γq)

〉
(2.16d)

γq = Γ(γp, αp) (2.16e)
Fq ≡ C(αq) (hq(q,wq, γq)− αqq)

(2.16f)

αp = Eh′p(P,Wp, γp) (2.17a)
γp = Γ(γq, αq) (2.17b)
fp ≡ C(αp)

(
hp(P,Wp, γp)− αpP

)
(2.17c)

αq = Eh′q(Q,Wq, γq) (2.17d)
γq = Γ(γp, αp) (2.17e)
fq ≡ C(αq)

(
hq(Q,Wq, γq)− αqQ

)
(2.17f)

Figure 2.4: High dimensional error system in RN (left) with an equivalent univariate error
system (right). The blocks V ,V > are pre-multiplications, where V ∈ RN×N . The block N
outputs a sample from a Gaussian distribution with the same mean and variance as the input.
The functions Fp,Fq are componentwise functions based on hp and hq. fp and fq are defined
using hp and hq. hp,hq are componentwise extensions of hp, hq. The quantities wp,wq and
Wp,Wq are extrinsic inputs.

Consider a dynamical system system shown in the left panel of Fig. 2.4. We skip the

dependence on iteration number k, since it is unambiguous. One can show that the VAMP

in Algorithm 2 is a special case of these iterations, with p = r1 − x∗, t = r2 − x∗, q = V >t

and u = V >p, extrinsic quantities wp = x∗ and wq = {ξ̃,S}, where ξ̃ := U>ξ. Recall that

A = USV > is the full singular value decomposition of A, whereby the dynamical system is

41

in RN . The componentwise functions

hp(p, wp, γp) := g1(p+ wp, γp)− wp (2.18a)

hq(q, wq, γq) :=
νsξ̃ + γqq

νs2 + γq
(2.18b)

The parameters (α1, α2, γ1, γ2) correspond to (αp, αq, γp, γq). The following theorem shows

that the bulk statistics of the dynamical system in RN can be given by expectations of

random variables in the scalar dynamical system in the right panel of Fig. 2.4.

Theorem 4. Assume that

1. wp
PL(2)→ Wp, wq

PL(2)→ Wq and initialization satisfies u0
PL(2)→ U0

2. Update functions C,Γ1,Γ2 are continuous.

3. hp, hq, h′p, h′q are uniformly Lipschitz continuous at αp, αq, γp, γq

Then for any fixed k we have

1. (wp,p0,p1, . . . ,pk)
PL(2)→ (Wp, P0, P1, . . . , Pk), where (P0, P1, . . . , Pk) is a zero mean

Gaussian random vector independent of Wp.

2. (wq, q0, q1, . . . , qk)
PL(2)→ (Wq, Q0, Q1, . . . , Qk), where (Q0, Q1, . . . , Qk) is a zero mean

Gaussian random vector independent of Wq.

3. (αp, γp)→ (αp, γp) and (αq, γq)→ (αq, γq)

The full proof of Theorem 4 has been provided by [126] and [144]. The key idea in proving

this result is a trick called Bolthausen conditioning described below.

Bolthausen Conditioning A challenging part in the proof is to evaluate the distribution

of {pi} and {qi} in each iteration conditioned on values in preceding iterations which can be

expressed as affine equation of V , as K(V) = k. It can be shown that the linear, noiseless,

42

and compressed observation of V is equivalent to observing part of the columns in V . Since

any Haar matrix is unitarily invariant [64], the distribution of V is the same as the original

one. Thus, evaluating the conditional distribution of V reduces to analyzing the conditional

distribution of a Haar matrix given part of its columns.

Specifically, the effect of V on a vector after k iterations can be separated into two parts,

one random and one deterministic. The deterministic part can be calculated exactly in the

limit, and the random part can be simulated independently from another rotation matrix Ṽ

drawn uniformly from the set {V | K(V) = k}.

2.8.9 Fixed points of VAMP

In a remarkable works by [161] and [62], a variational principle was given to fixed points of

Loopy Belief Propagation algorithms, i.e., it was shown that the fixed points of these iterative

update rules correspond to stationary points of a certain constrained energy minimization

problem, where the objective function is called the Bethe Free Energy (BFE). See [128], [124]

and [20] for a discussion on the fixed points of AMP and GAMP and the discussion the Bethe

Free energy.

[110] considered the MMSE problem for the GLM. [44] extended this to the MAP inference

problem and gave several generalizations and convergence properties of EC approximate

inference. The VAMP algorithm can also be considered as a special case of expectation

consistent (EC) inference [110] and [44] with “uniform diagonalization”. To be concise, the

general EC algorithm allows for the precision matrices of the Gaussians to be arbitrary

symmetric positive semidefinite matrices, however VAMP uses only ηI parameterizations.

We briefly describe EC below.

Recall the variational optimization problem for exact recovery of the posterior density (2.1)

which recovers the posterior density. However, due to the factorization p(x|y) ∝ p(x)p(y|x),

43

the variational problem (2.1) is equivalent to

q∗i = argmin
qi∈Q

Dkl

(
q1 ‖p(x)

)
+Dkl

(
q2 ‖p(y|x)

)
+H(q3) s.t. q1 = q2 = q3,

using the chain rule for relative entropy. Relaxing the constraints of this optimization problem

gives a strategy to approximate inference

q∗i = argmin
qi∈Q

Dkl

(
q1 ‖p(x)

)
+Dkl

(
q2 ‖p(y|x)

)
+H(q3) (EC)

s.t. Eqix = x̂, Eqi‖x‖2 = τ

The solution corresponding to the above approximation is called Expectation Consistent (EC)

inference, since the density matching conditions are relaxed to moment-matching conditions.

Several other approximate inference algorithms [72], [60], [84] with different intuitions

for their derivation have been proposed in the last few years. However, they can all be

rewritten as special instances of the GEC algorithm. The derivation provides a variational

interpretation to the quantities in the algorithm. Specifically, it enables the interpretation of

the quantities {ri, γi} as scaled versions of Lagrange multipliers of an expectation consistent

optimization problem.

Assuming γ1r1 and γ2r2 are Lagrange multipliers for the constraints Eq1x = Eq3x and

Eq2x = Eq3x respectively, whereas γ1 and γ2 are multipliers for the constraints Eq1 ‖x‖
2 =

Eq3 ‖x‖
2 and Eq2 ‖x‖

2 = Eq3 ‖x‖
2 respectively, the KKT equations for the problem EC give

44

the following conditions

q∗1(x) ∝ p(x) exp(−γ1

2
‖x− r1‖2),

q∗2(x) ∝ p(y|x) exp(−γ2

2
‖x− r2‖2),

q∗3(x) ∝ exp(−η
2
‖x− x̂‖2),

Eq∗1x = Eq∗2x = x̂,

Eq∗1 ‖x‖
2 = Eq∗2 ‖x‖

2 = Nη−1.

One can easily show that these are satisfied for any fixed points of the VAMP algorithm

with x̂1 = x̂2 =: x̂ and η1 = η2 =: η. Thus the VAMP algorithm is a Lagrangian method

for reaching first order stationary points of the expectation consistent optimization problem

(EC).

2.9 Marchenko-Pastur distribution

The Marchenko-Pastur law appears often in the literature on Approximate Message Passing.

This is the distribution of the square of singular values of a random rectangular matrix with

i.i.d. entries. Let U = V1SV2 be such a random rectangular matrix with i.i.d. Gaussian

entries, and its singular value decomposition.

We describe the random variable Smp whereby S2
mp has a rescaled Marchenko-Pastur

distribution. Notice that the positive entries of smp are the positive eigenvalues of UTU (or

UUT).

Observe that Uij ∼ N(0, 1
p
), whereas, the standard scaling while studying the Marchenko-

Pastur distribution is for matrices H such that Hij ∼ N (0, 1
N

) (for e.g. see equation (1.10)

from [151] and the discussion preceding it). Also notice that
√
βU has the same distribution

as H. Thus the results from [151] apply directly to the distributions of eigenvalues of βUTU

and βUUT. We state their result below taking into account this disparity in scaling.

45

The positive eigenvalues of βUTU have an empirical distribution which converges to the

following density:

µβ(x) =

√
(bβ − x)+(x− aβ)+

2πβx
(2.19a)

aβ = (1−
√
β)2 bβ := (1 +

√
β)2. (2.19b)

Similarly the positive eigenvalues of βUUT have an empirical distribution converging to the

density βµβ. We note the following integral which is useful in our analysis:

G0 : = lim
z→0−

E
1

S2
mp − z

1{Smp>0}

= lim
z→0−

∫ bβ

aβ

1

x/β − z
µβ(x)dx =

β

|β − 1|
. (2.20)

More generally, the Stieltjes transform of the density is given by:

Gmp(z) = E
1

S2
mp − z

1{Smp>0} =

∫ bβ

aβ

1

x/β − z
µβ(x)dx (2.21)

2.9.1 Properties of Marchenko-Pastur Law

If A ∈ RM×N and aij ∼ N (0, 1
N

) i.i.d., and A = USV > with β = limN→∞
N
M
. If {si}Ni=1

converge in the PL(2) sense to S then β · S2 obeys the Marchenko pastur law with density

function:

PβS2(t) =

(
1− 1

β

)
+

δ0(t) +

√
(t− aβ)+(bβ − t)+

2πβt
(2.22a)

where aβ = (1−
√
β)2 and bβ = (1 +

√
β)2 (2.22b)

46

Lemma 1.

S(u) = E
u

S2 + u
= 1− 1

4β

(√
bβ + βu−

√
aβ + βu

)2

(2.23)

S ′(u) = E
S2

(S2 + u)2
=

1

4

(√
bβ + βu−

√
aβ + βu

)(1√
aβ + βu

− 1√
bβ + βu

)
(2.24)

Proof.

S(u) = E
1

1
βu
βS2 + 1

(a)
= 1−

F(1
βu
, β)

4β 1
βu

= 1− u
4
F(1

βu
, β) (2.25)

where the LHS of (a) is the η−transform (see [151, Sec. 2.2.2]). The RHS of (a) is given

in [155, pg. 303]:

F(x, z) :=

(√
x(1 +

√
z)2 + 1−

√
x(1−

√
z)2 + 1

)2

(2.26)

�

47

Chapter 3

Inference with Deep Generative Models

Deep generative priors offer powerful models for complex-structured data, such as images,

audio, and text. Using these priors in inverse problems typically requires estimating the input

and/or hidden signals in a multi-layer deep neural network from observation of its output.

While these approaches have been successful in practice, rigorous performance analysis is

complicated by the non-convex nature of the underlying optimization problems. This paper

presents a novel algorithm, Multi-Layer Vector Approximate Message Passing (ML-VAMP),

for inference in multi-layer stochastic neural networks. ML-VAMP can be configured to

compute maximum a priori (MAP) or approximate minimum mean-squared error (MMSE)

estimates for these networks. We show that the performance of ML-VAMP can be exactly

predicted in a certain high-dimensional random limit. Furthermore, under certain conditions,

ML-VAMP yields estimates that achieve the minimum (i.e., Bayes-optimal) MSE as predicted

by the replica method. In this way, ML-VAMP provides a computationally efficient method

for multi-layer inference with an exact performance characterization and testable conditions

for optimality in the large-system limit.

This work was published in [113, 115] and was coauthoer with Mojtaba Sahraee-Ardakan, Sundeep
Rangan, Philip Schniter, and Alyson K. Fletcher

48

3.1 Introduction

3.1.1 Inference with Deep Generative Priors

We consider inference in an L-layer stochastic neural network of the form

z0
` = W`z

0
−̀1 + b` + ξ`, ` = 1, 3, . . . , L−1, (3.1a)

z0
` = φ`(z

0
−̀1, ξ`), ` = 2, 4, . . . , L, (3.1b)

where z0
0 is the network input, {z0

`}L−1
`=1 are hidden-layer signals, and y := z0

L is the network

output. The odd-indexed layers (4.1a) are (fully connected) affine linear layers with weights

W`, biases b`, and additive noise vectors ξ`. The even-indexed layers (4.1b) involve separable

and possibly nonlinear functions φ` that are randomized1 by the noise vectors ξ`. By

“separable,” we mean that [φ`(z, ξ)]i = φ`(zi, ξi) ∀i, where φ` is some scalar-valued function,

such as a sigmoid or ReLU, and where zi and ξi represent the ith component of z and ξ. We

assume that the input z0
0 and noise vectors ξ` are mutually independent, that each contains

i.i.d. entries, and that the number of layers, L, is even. A block diagram of the network is

shown in the top panel of Fig. 3.2. The inference problem is to estimate the input and hidden

signals {z`}L−1
`=0 from an observation of the network output y. That is,

Estimate {z`}L−1
`=0 given y, {W2k−1,b2k−1, φ2k}L/2k=1. (3.2)

For inference, we will assume that network parameters (i.e., the weights W`, biases b`, and

activation functions φ`) are all known, as are the distributions of the input z0
0 and the noise

terms ξ`. Hence, we do not consider the network learning problem. The superscript “0” on

z0
` indicates that this is the “true" value of z`, to be distinguished from the estimates of z`

produced during inference denoted by ẑ`.

1The role of the noise ξ`,i in φ` is allowed to be generic (e.g., additive, multiplicative, etc.). The
relationship between z0`,i and z

0
−̀1,i will be modeled using the conditional density p(z0`,i|z0−̀1,i) =

∫
δ
(
z0`,i −

φ`(z
0
−̀1,i, ξ`,i)

)
p(ξ`,i) dξ`,i.

49

Inference
z0

0 z0
1 z0

2 z0
3 = x0 ẑ3 = x̂z0

4 = y

Noise

Original Occluded Estimate

Generative model layers

Measurement
layer

Figure 3.1: Motivating example: Inference for inpainting [16,163]. An image x0 is modeled
as the output of a generative model driven by white noise z0

0 , and an occluded measurement
y is generated by one additional layer. Inference is then used to recover the image x from
the measurement y.

The inference problem (3.2) arises in the following state-of-the-art approach to inverse

problems. In general, solving an “inverse problem" means recovering some signal x from

a measurement y that depends on x. For example, in compressed sensing (CS) [38], the

measurements are often modeled as y = Ax+ ξ with known A and additive white Gaussian

noise (AWGN) ξ, and the signal is often modeled as a sparse linear combination of elements

from a known dictionary, i.e., x = Ψz for some sparse coefficient vector z. To recover x, one

usually computes a sparse coefficient estimate ẑ using a LASSO-type convex optimization [148]

and then uses it to form a signal estimate x̂, as in

x̂ = Ψẑ for ẑ = argmin
z

1
2
‖y −AΨz‖2 + λ‖z‖1, (3.3)

where λ > 0 is a tunable parameter. The CS recovery approach (3.3) can be interpreted as

a two-layer version of the inference problem: the first layer implements signal generation

via x = Ψz, while the second layer implements the measurement process y = Az + ξ.

Equation (3.3) then performs maximum a posteriori inference (see the discussion around

equation (3.6)) to recover estimates of z and x.

Although CS has met with some success, it has a limited ability to exploit the complex

structure of natural signals, such as images, audio, and video. This is because the model

50

“x = Ψz with sparse z” is overly simplistic; it is a one-layer generative model. Much more

sophisticated modeling is possible with multi-layer priors, as demonstrated in recent works on

variational autoencoders (VAEs) [77, 133], generative adversarial networks (GANs) [121, 135],

and deep image priors (DIP) [153, 154]. These models have had tremendous success in

modeling richly structured data, such as images and text.

A typical application of solving an inverse problem using a deep generative model is shown

in Fig. 3.1. This figure considers the classic problem of inpainting [14], for which reconstruction

with DIP has been particularly successful [16,163]. Here, a noise-like innovation signal z0
0

drives a three-layer generative network to produce an image x0. The generative network

would have been trained on an ensemble of images similar to the one being estimated using,

e.g., VAE or GAN techniques. The measurement process, which manifests as occlusion in the

inpainting problem, is modeled using one additional layer of the network, which produces

the measurement y. Inference is then used to recover the image x0 (i.e., the hidden-layer

signal z0
3) from y. In addition to inpainting, this deep-reconstruction approach can be applied

to other linear inverse problems (e.g., CS, de-blurring, and super-resolution) as well as

generalized-linear [92] inverse problems (e.g., classification, phase retrieval, and estimation

from quantized outputs). We note that the inference approach provides an alternative to

designing and training a separate reconstruction network, such as in [17,95,100].

When using deterministic deep generative models, the unknown signal x0 can be modeled

as x0 = G(z0
0), where G is a trained deep neural network and z0

0 is a realization of an i.i.d.

random vector, typically with a Gaussian distribution. Consequently, to recover x0 from a

linear-AWGN measurement of the form y = Ax0 + ξ, the compressed-sensing approach in

(3.3) can be extended to a regularized least-squares problem [22] of the form

x̂ = G(ẑ0), ẑ0 := argmin
z

1
2
‖y −AG(z)‖2+λ ‖z‖2 . (3.4)

In practice, the optimization in (3.4) is solved using a gradient-based method. This approach

51

can be straightforwardly implemented with deep-learning software packages and has been

used, with excellent results, in [16,53,73,97,142,150,163]. The minimization (3.4) has also

been useful in interpreting the semantic meaning of hidden signals in deep networks [88, 165].

VAEs [77, 133] and certain GANs [37] can also produce decoding networks that sample from

the posterior density, and sampling methods such as Markov-chain Monte Carlo (MCMC)

algorithms and Langevin diffusion [23, 160] can also be employed. We note that while the

weight matrices in the motivating example in Fig. 3.1 are constant, during analysis we assume

that they are instances of random matrices drawn from a general distribution of random

matrices.

3.1.2 Analysis via Approximate Message Passing (AMP)

While reconstruction with deep generative priors has seen tremendous practical success, its

performance is not fully understood. Optimization approaches such as (3.4) are typically

non-convex and difficult to analyze. As we discuss below, most results available today only

provide bounds, and these bounds are often be overly conservative (see Section 3.1.4).

Given a network architecture and statistics on the unknown signals, fundamental information-

theoretic questions include: What are the precise limits on the accuracy of estimating the

hidden signals {z0
`}L−1
`=0 from the measurements y? How well do current estimation methods

perform relative to these limits? Is it possible to design computationally efficient yet optimal

methods?

To answer these questions, this paper considers deep inference via approximate message

passing (AMP), a powerful approach for analyzing estimation problems in certain high-

dimensional random settings. Since its origins in understanding linear inverse problems in

compressed sensing [31,32], AMP has been extended to an impressive range of estimation and

learning tasks, including generalized linear models [123], models with parametric uncertainty

[46], structured priors [40], and bilinear problems [137]. For these problems, AMP-based

methods have been able to provide computationally efficient algorithms with precise high-

52

dimensional analyses. Often, AMP approaches yield optimality guarantees in cases where all

other known approaches do not. See [8] for a detailed discussion on the optimality of AMP.

3.1.3 Main Contributions

In this work, we develop a multi-layer version of AMP for inference in deep networks. The

proposed approach builds on the recent vector AMP (VAMP) method of [127], which is itself

closely related to expectation propagation (EP) [96, 145], expectation-consistent approximate

inference (EC) [45, 111], S-AMP [19], and orthogonal AMP [86]. The proposed method is

called multi-layer VAMP, or ML-VAMP. As will be described in detail below, ML-VAMP

estimates the hidden signals in a deep network by cycling through a set of relatively simple

estimation functions {g±` }L`=0. The information flow in ML-VAMP is shown in the bottom

panel of Fig. 3.2. The ML-VAMP method is similar to the multi-layer AMP method of [89]

but can handle a more general class of matrices in the linear layers. In addition, as we will

describe below, the proposed ML-VAMP algorithm can be configured for either MAP or

MMSE estimation. We will call these approaches MAP-ML-VAMP and MMSE-ML-VAMP.

We establish several key results on the ML-VAMP algorithm:

• We show that, for both MAP and MMSE inference, the fixed points of the ML-VAMP

algorithm correspond to stationary points of variational formulations of these estimators.

This allows the interpretation of ML-VAMP as a Lagrangian algorithm with adaptive

step-sizes in both cases. These findings are given in Theorems 5 and 6 and are similar

to previous results for AMP [78,129]. Section 3.3 describes these results.

• We prove that, in a certain large system limit (LSL), the behavior of ML-VAMP is

exactly described by a deterministic recursion called the state evolution (SE). This SE

analysis is a multi-layer extension of similar results [10,70,127] for AMP and VAMP.

The SE equations enable asymptotically exact predictions of macroscopic behaviors of

the hidden-layer estimates for each iteration of the ML-VAMP algorithm. This allows

53

us to obtain error bounds even if the algorithm is run for a finite number of iterations.

The SE analysis, given in Theorem 9, is the main contribution of the paper, and is

discussed in Section 3.4.

• Since the original conference versions of this paper [42, 112], formulae for the minimum

mean-squared error (MMSE) for inference in deep networks have been conjectured

in [7, 47, 131]. As discussed in Section 3.4.3, these formulae are based on heuristic

techniques, such as the replica method from statistical physics, and have been rigorously

proven in special cases [6, 132]. Remarkably, we show that the mean-squared-error

(MSE) of ML-VAMP exactly matches the predicted MMSE in certain cases.

• Using numerical simulations, we verify the predictions of the main result from Theorem

9. In particular, we show that the SE accurately predicts the MSE even for networks

that are not considered large by today’s standards. We also perform experiments with

the MNIST handwritten digit dataset. Here we consider the inference problem using

learned networks, for which the weights do not satisfy the randomness assumptions

required in our analysis.

In summary, ML-VAMP provides a computationally efficient method for inference in deep

networks whose performance can be exactly predicted in certain high-dimensional random

settings. Moreover, in these settings, the MSE performance of ML-VAMP can match the

existing predictions of the MMSE.

3.1.4 Prior Work

There has been growing interest in studying learning and inference problems in high-

dimensional, random settings. One common model is the so-called wide network, where

the dimensions of the input, hidden layers, and output are assumed to grow with a fixed

linear scaling, and the weight matrices are modeled as realizations of random matrices.

This viewpoint has been taken in [24,51,54,103], in several works that explicitly use AMP

54

methods [47,82,89,131], and in several works that use closely related random-matrix tech-

niques [108,141].

The existing work most closely related to ours is that by Manoel et al. [89], which

developed a multi-layer version of the original AMP algorithm [31]. The work [89] provides a

state-evolution analysis of multi-layer inference in networks with entrywise i.i.d. Gaussian

weight matrices. In contrast, our results apply to the larger class of rotationally invariant

matrices (see Section 3.4 for details), which includes i.i.d. Gaussian matrices case as a special

case.

Several other recent works have also attempted to characterize the performance of

reconstruction using deep priors in random settings. For example, when z0
0 ∈ Rk and

A ∈ Rm×n is a realization of an i.i.d. Gaussian matrix with m = Ω(kL log n), Bora et

al. [16] showed that an L-layer network G with ReLU activations can provide provably

good reconstruction of x0 ∈ Range(G) from measurements y = Ax0 + ξ. For the same

problem, [53] and [65] show that, for W` ∈ RN`×N`−1 generated entrywise i.i.d. Gaussian and

N` = Ω(N`−1 logN`−1), one can derive bounds on reconstruction error that hold with high

probability under similar conditions on m. Furthermore, they also show that the cost function

of (3.4) has stationary points in only two disjoint regions of the z0 space, and both are closely

related to the true solution z0
0 . In [81], the authors use a layer-wise reconstruction scheme to

prove reconstruction error bounds when N` = Ω(N`−1), i.e., the network is expansive, but

with a constant factor as opposed to the logarithmic factor in [65].

Our results, in comparison, provide an asymptotically exact characterization of the

reconstruction error—not just bounds. Moreover, our results hold for arbitrary hidden-

dimension ratios N`/N`−1, which can be less than, equal to, or greater than one. On the

other hand, our results hold only in the large-system limit, whereas the other results above

hold in the finite-dimensional regime. Nevertheless, we think that it should be possible to

derive a finite-dimensional version of our analysis (in the spirit of [134]) that holds with high

probability. Also, our experimental results suggest that our large-system-limit analysis is a

55

W1,b1 φ2(·) W3,b3 φ4(·)
z0

0 z0
1 z0

2 z0
3 y

ξ1 ξ2 ξ3 ξ4

g±1 (·)g+
0 (·) g±2 (·) g±3 (·) g−4 (·)

y
ẑ+
k0 r+

k0

ẑ−k0r−k0

ẑ+
k1 r+

k1

ẑ−k1r−k1

ẑ+
k2 r+

k2

ẑ−k2r−k2

ẑ+
k3 r+

k3

ẑ−k3r−k3

Figure 3.2: Top panel: Feedfoward neural network mapping an input z0 to output y = z0
4 in

the case of L = 4 layers. Bottom panel: ML-VAMP estimation functions g±` (·) and estimation
quantities r±k` and ẑ

±
k` at iteration k.

good approximation of behavior at moderate dimensions.

Some of the material in this paper appeared in conference versions [42,112], Theorems

5 and 9 were stated in [112], whereas Theorem 8 was stated in [42]. The current paper

includes all the proofs, simulation details, and provides a unified treatment of both MAP

and MMSE estimation. Additionally, Theorem 6 and its proof are new results.

3.2 Multi-layer Vector Approximate Message Passing

3.2.1 Problem Formulation

We consider inference in a probabilistic setting where, in (4.1), z0
0 and {ξ`}L`=1 are modeled

as random vectors with known densities. Due to the Markovian structure of {z`} in (4.1),

the posterior distribution p(z|y), where z := {z0}L−1
`=0, factorizes as

p(z|y) ∝ p(z,y) = p(z, zL) = p(z0)
L∏
`=1

p(z`|z −̀1), (3.5)

where the form of p(z`|z −̀1) is determined by W`, b`, and the distribution of ξ` for odd `;

and by φ` and the distribution of ξ` for even `. We will assume that z` ∈ RN` , where N` can

vary across the layers `.

56

Similar to other graphical-model methods [159], we consider two forms of estimation:

MAP estimation and MMSE estimation. The maximum a priori, or MAP, estimate is

defined as

ẑmap := argmax
z

p(z|y). (3.6)

Although we will focus on MAP estimation, most of our results will apply to general M -

estimators [68] of the form,

ẑm-est := argmin
z

{
L0(z0) +

L∑
`=1

L`(z`, z −̀1)

}

for loss functions L`. The MAP estimator then corresponds to loss functions L` =

− ln p(z`|z −̀1) and L0 = − ln p(z0).

We will also consider the minimum mean-squared error, or MMSE, estimate, defined as

ẑmmse := E[z|y] =

∫
z p(z|y) dz. (3.7)

To compute the MMSE estimate, we first compute the posterior marginals p(z`|y). We

will also be interested in estimating the posterior marginals p(z`|y). From estimates of the

posterior marginals, one can also compute other estimates, such as the mininum mean-absolute

error (MMAE) estimate, i.e., the median of the posterior marginal.

3.2.2 The ML-VAMP Algorithm

Similar to the generalized EC (GEC) [45] and generalized VAMP [140] algorithms, the

ML-VAMP algorithm attempts to compute MAP or MMSE estimates using a sequence of

forward-pass and backward-pass updates. The updates of the algorithm are specified in

Algorithm 3. The quantities updated in the forward pass are denoted by superscript +, and

those updated in the backward pass are denoted by superscript −. The notation on lines

11 and 23 means 〈∂f(x∗)/∂x〉 := 1
n

∑n
i=1 ∂fi(xi)/∂xi evaluated at x = x∗, where x ∈ Rn

57

Algorithm 3 Multi-layer Vector Approximate Message Passing (ML-VAMP)
Require: Estimation functions g+

0 , g−L , and {g
±
` }

L−1
`=1.

1: Set r−0` = 0 and initialize θ−0` for ` = 0, 1, . . . , L−1.
2: for k = 0, 1, . . . , Nit − 1 do
3: // Forward Pass
4: ẑ+

k0 = g+
0 (r−k0, θ

+
k0)

5: α+
k0 =

〈
∂g+

0 (r−k0, θ
+
k0)/∂r−0

〉
6: r+

k0 = (ẑ+
k0 − α

+
k0r
−
k0)/(1− α+

k0)

7: for ` = 1, . . . , L−1 do
8: ẑ+

k` = g+
` (r−k`, r

+
k, −̀1, θ

+
k`)

9: α+
k` =

〈
∂g+

` (r−k`, r
+
k, −̀1, θ

+
k`)/∂r

−
`

〉
10: r+

k` = (ẑ+
k` − α

+
k`r
−
k`)/(1− α

+
k`)

11: end for
12:

13: // Backward Pass
14: ẑ−k,L−1 = g−L (r+

k,L−1, θ
−
kL)

15: α−k+1,L−1 =
〈
∂g−L (r+

k,L−1, θ
−
kL)/∂r+

k,L−1

〉
16: r−k+1,L−1 = (ẑ−k,L−1 − α

−
k,L−1r

+
k,L−1)/(1− α−k,L−1)

17: for ` = L−1, . . . , 1 do
18: ẑ−k,`−1 = g−` (r−k+1,`, r

+
k,`−1, θ

−
k`)

19: α−k+1,`−1 =
〈
∂g−` (r−k+1,`, r

+
k,`−1, θ

−
k`)/∂r

+
`−1

〉
20: r−k+1,`−1 = (ẑ−k,`−1 − α

−
k,`−1r

+
k,`−1)/(1− α−k,`−1)

21: end for
22: end for

and f : Rn → Rn acts componentwise. The update formulae can be derived similar to those

for the GEC algorithm [45], using expectation-consistent approximations of the Gibbs free

energy inspired by [111].

The ML-VAMP algorithm splits the estimation of z = {z`}L−1
`=0 into smaller problems

that are solved by the estimation functions {g±` }
L−1
`=1, g+

0 and g−L . (See Figure 3.2, bottom

panel.) As described below, the form of g±` depends on whether the goal is MAP or MMSE

estimation. During the forward pass, the estimators g+
` are invoked, whereas in the backward

pass, g−` are invoked. Similarly, the ML-VAMP algorithm maintains two copies, ẑ+ and ẑ−,

of the estimate of z. For ` = 1, 2, . . . , L−1, each pair of estimators (g+
` ,g

−
`) takes as input

r+
−̀1 and r−` to update the estimates ẑ+

` and ẑ−−̀1, respectively. Similarly, g+
0 and g−L take

58

inputs r−0 and r+
L−1 to update ẑ0 and ẑ−L−1, respectively. The estimation functions also take

parameters θ±` .

3.2.3 MAP and MMSE Estimation Functions: {g+
` }

The ML-VAMP algorithm is an iterative application of estimation functions g±` which take

as input (r−` , r
+
−̀1) and output (ẑ+

` , ẑ
−
−̀1). During the forward pass the output ẑ−−̀1 is dropped

whereas in the backward pass ẑ+
` is dropped. These estimation functions can take arbitrary

parametric forms.

The form of the estimation functions {g±` }
L−1
`=0 depends on whether the goal is to per-

form MAP or MMSE estimation. In either case, we restrict ourselves to the following

parameterization

θ+
k0 = γ−k0, θ+

k` = (γ−k`, γ
+
k, −̀1),

θ−kL = γ+
k,L−1 θ−k` = (γ−k+1,`, γ

+
k, −̀1),

(3.8)

where γ±k` and η
±
k` are scalars updated at iteration k ≥ 0 and all ` = 0, 1, . . . , L−1 as follows:

γ+
k` = η+

k` − γ
−
k`, γ−k+1,` = η−k+1,` − γ

+
k`,

η+
k` = γ−k`/α

+
k` η−k+1,` = γ+

k`/α
−
k+1,`,

(3.9)

while the updates of α±k` are explicitly given in lines 11 and 23 of Algorithm 3. The

parameters γ±k` and η
±
k` respectively, represent estimates for precision (inverse variance) of

the input r±k` and output ẑ±k` to the estimation functions g±` . They can also be interpreted as

surrogates for curvature information (or second-order information) of the loss function. The

quantities α±k` ∈ (0, 1) couple the forward and backward iterations via the so-called Onsager

correction terms in line 12 and 24.

Given these parameters, both the MAP and MMSE estimation functions are defined from

59

the belief function over (z`, z −̀1):

b`(z`, z −̀1|r−` , r
+
−̀1, γ

−
` , γ

+
−̀1) ∝ p(z`|z −̀1)×

exp
(
−γ−`

2

∥∥z` − r−` ∥∥2 − γ+−̀1
2

∥∥z −̀1 − r+
−̀1

∥∥2
)

(3.10)

for ` = 1, 2, . . . , L−1. Similarly, bL(zL, zL−1) ∝ p(y|zL−1) exp(−γ+L−1
2
‖zL−1 − r+

L−1‖2), and

b0(z0, z−1) ∝ p(z0) exp(−γ−0
2
‖z0 − r−0 ‖2). When performing MMSE inference, we use

(ẑ+
` , ẑ

−
−̀1)mmse = g±`,mmse(r

−
` , r

+
−̀1; γ−` , γ

+
−̀1)

= E[(z`, z −̀1)|b`], (3.11)

where E[·|b`] denotes expectation with respect to the (normalized) distribution b`. Similarly,

for MAP inference, we use

(ẑ+
` , ẑ

−
−̀1)map = g±`,map(r

−
` , r

+
−̀1; γ−` , γ

+
−̀1)

= argmax
z`,z −̀1

b`(z`, z −̀1). (3.12)

Notice that (3.12) corresponds to the proximal operator of − ln p(z`|z −̀1). We will use

“MMSE-ML-VAMP” to refer to ML-VAMP with the MMSE estimation functions (3.11), and

“MAP-ML-VAMP” to refer to ML-VAMP with the MAP estimation functions (3.12).

3.2.4 Computational Complexity

A key feature of the ML-VAMP algorithm is that, for the neural network (4.1), the MMSE

and MAP estimation functions (3.11) and (3.12) are computationally easy to compute. To

see why, first recall that, for the even layers ` = 2, 4, . . . L, the map φ` in (4.1b) is assumed

separable and the noise ξ` is assumed i.i.d. As a result, z` is conditionally independent given

z −̀1, i.e., p(z`|z −̀1) =
∏

i p(z`,i|z −̀1,i). Thus, for even `, the belief function b` in (4.12) also

factors into a product of the form b`(z`, z −̀1) =
∏

i b`(z`,i, z −̀1,i), implying that the MAP and

MMSE versions of g±` are both coordinate-wise separable. In other words, the MAP and

MMSE estimation functions can be computed using N` scalar MAP or MMSE estimators.

60

Next consider (4.1a) for ` = 1, 3, . . . , L−1, i.e., the linear layers. Assume that ξ` ∼

N (0, Iν−1
`) for some precision (i.e., inverse variance) ν` > 0. Then p(z`|z −̀1) ∝ ν`

2
‖z` −W`z −̀1 − b`‖2.

In this case, the MMSE and MAP estimation functions (3.11) and (3.12) are identical, and

both take the form of a standard least-squares problem. Similar to the VAMP algorithm [127],

the least-squares solution—which must be recomputed at each iteration k—is can be efficiently

computed using a single singular value decomposition (SVD) that is computed once, before

the iterations begin. In particular, we compute the SVD

W` = V` Diag(s`)V −̀1, (3.13)

where V` ∈ RN`×N` and V −̀1 ∈ RN −̀1×N −̀1 are orthogonal and Diag(s`) ∈ RN`×N −̀1 is a

diagonal matrix that contains the singular values of W`. Let b` := V >` b`. Then for odd `,

the updates (3.11) and (3.12) both correspond to quadratic problems, which can be simplified

by exploiting the rotational invariance of the `2 norm. Specifically, one can derive that

ẑ+
` = g+

` (r−` , r
+
−̀1, γ

−
` , γ

+
−̀1)

= V`G
+
` (V>` r

−
` ,V −̀1r

+
−̀1, s`,b`, γ

−
` , γ

+
−̀1), (3.14a)

ẑ−−̀1 = g−` (r−` , r
+
−̀1, γ

−
` , γ

+
−̀1)

= VT
−̀1G

−
` (V>` r

−
` ,V −̀1r

+
−̀1, s`,b`, γ

−
` , γ

+
−̀1), (3.14b)

where transformed denoising functions G±` (·) are componentwise extensions of G±` (·), defined

as G+
`

G−`

=

 −ν`s` γ−` +ν`

γ+
−̀1+ν`s

2
` −ν`s`


−1  γ−` u`+ν`b`

γ+
−̀1u −̀1−ν`s`b`

 (3.15)

Note that G+
` and G−` are functions which take inputs (u`, u −̀1, s`, b`, γ

−
` , γ

+
−̀1) and output

the expressions on the RHS. A detailed derivation of equations (3.14) and (3.15) is given

in [41, Appendix B]. Note that the argument s` in (3.14a) is N` dimensional, whereas in

(3.14b) it is N −̀1 dimensional, i.e., appropriate zero-padding is applied. Keeping this subtlety

in mind, we use s` to keep the notation simple.

61

From Algorithm 3, we see that each pass of the MAP-ML-VAMP or MMSE-ML-VAMP

algorithm requires solving (a) scalar MAP or MMSE estimation problems for the non-linear,

separable layers; and (b) least-squares problems for the linear layers. In particular, no

high-dimensional integrals or high-dimensional optimizations are involved.

3.3 Fixed Points of ML-VAMP

Our first goal is to characterize the fixed points of Algorithm 3. To this end, let r+
` , r

−
` , ẑ`

with parameters α+
` , α

−
` , γ

+
` , γ

−
` , η` be a fixed point of the ML-VAMP algorithm, where we

have dropped the iteration subscript k. At a fixed point, we do not need to distinguish

between ẑ+
` and ẑ−` , nor between η

+
` and η−` , since the updates in (3.9) imply that

η+
` = η−` = γ+

` + γ−` =: η`,

α+
` =

γ−`
η`
, α−` =

γ+`
η`
, and α+

` + α−` = 1.

(3.16)

Applying these relationships to lines 12 and 24 of Algorithm 3 gives

ẑ+
` = ẑ−` =

γ+
` r

+
` + γ−` r

−
`

γ+
` + γ−`

=: ẑ`. (3.17)

3.3.1 Fixed points of MAP-ML-VAMP and connections to ADMM

Our first results relates the MAP-ML-VAMP updates to an ADMM-type minimization of the

MAP objective (3.6). For this we use variable splitting, where we replace each variable z`

with two copies, z+
` and z−` . Then, we define the objective function

F (z+, z−) := − ln p(z+
0)−

L−1∑
`=1

ln p(z+
` |z
−
−̀1)−ln p(y|z−L−1)

over the variable groups z+ := {z+
` }

L−1
`=1 and z− := {z−` }

L−1
`=1 . The optimization (3.6) is then

equivalent to

min
z+,z−

F (z+, z−) s.t. z+
` = z−` , ∀ ` = 0, . . . , L−1. (3.18)

62

Corresponding to this constrained optimization, we define the augmented Lagrangian

L(z+, z−, s) = F (z+, z−)

+
L−1∑
`=0

η`s
T
` (z+

` − z−`) +
η`
2
‖z+

` − z−` ‖
2, (3.19)

where s := {s`} is a set of dual parameters, γ±` > 0 are weights, and η` = γ+
` + γ−` . Now, for

` = 1, . . . , L− 2, define

L`(z−−̀1, z
+
` ; z+

−̀1, z
−
` , s −̀1, s`) := − ln p(z+

` |z
−
−̀1) + η`s

T
` z+

`

− η −̀1s
T
−̀1z
−
−̀1 +

γ+−̀1
2
‖z−−̀1 − z+

−̀1‖
2 +

γ−`
2
‖z+

` − z−` ‖
2,

which represents the terms in the Lagrangian L(·) in (3.19) that contain z−−̀1 and z+
` . Similarly,

define L0(·) and LL−1(·) using p(z+
0) and p(y|z+

L−1), respectively. One can then verify that

L(z+, z−, s) =
L−1∑
`=0

L`(z−−̀1, z
+
` ; z+

−̀1, z
−
` , s −̀1, s`).

Theorem 5 (MAP-ML-VAMP). Consider the iterates of Algorithm 3 with MAP estimation

functions (3.12) for fixed γ±` > 0. Suppose lines 11 and 23 are replaced with fixed values

α±k` = α±` ∈ (0, 1) from (3.16). Let s−k` := α+
k`(ẑ

−
k−1,` − r−k`) and s+

k` := α−k`(r
+
k` − ẑ+

k`). Then,

for ` = 0, . . . , L−1, the forward pass iterations satisfy

, ẑ+
k` = argmin

(z−−̀1,z
+
`)

L`(z−−̀1, z
+
` ; ẑ+

k, −̀1, ẑ
−
k−1,`, s

+
k, −̀1, s

−
k`) (3.20a)

s+
k` = s−k` + α+

` (ẑ+
k` − ẑ−k−1,`), (3.20b)

whereas the backward pass iterations satisfy

ẑ−k, −̀1, = argmin
(z−−̀1,z

+
`)

L`(z−−̀1, z
+
` ; ẑ+

k, −̀1, ẑ
−
k`, s

+
k, −̀1, s

−
k+1,`) (3.21a)

s−k+1, −̀1 = s+
k, −̀1 + α−−̀1(ẑ+

k, −̀1 − ẑ−k, −̀1). (3.21b)

Further, any fixed point of Algorithm 1 corresponds to a critical point of the Lagrangian

(3.19).

Proof. See Appendix A.3 �

63

Theorem 5 shows that the fixed-{α±` } version of ML-VAMP is an ADMM-type algorithm

for solving the optimization problem (3.18). In the case that α+
` = α−` , this algorithm is

known as the Peaceman-Rachford Splitting variant of ADMM and its convergence has been

studied extensively; see [58, eqn. (3)] and [59], and the references therein. Different from

ADMM, the full ML-VAMP algorithm adaptively updates {α±k`} in a way that exploits the

local curvature of the objective in (3.12). Note that, in (3.20a) and (3.21a), the “ ” notation

means that we compute the joint minimizers over (z+
−̀1, z

+
`), but only use one of them at a

time for the update step.

3.3.2 Fixed Points of MMSE-ML-VAMP and Connections to Free-

Energy Minimization

Recall that z := {z`}L−1
`=0 and let B denote the set of density functions b(z) factorizable as

f0(z0)fL(zL−1)
∏L−1

`=1 f`(z`, z`−1). Notice that the true posterior p(z|y) from (3.5) belongs to

this set. Essentially, this B captures the chain structure of the factor graph visible in the top

panel of Fig. 3.2. For chain-structured (and, more generally, tree-structured) graphs, one can

express any b ∈ B as [162] (see also [119, Sec. III C] for a succinct description)

b(z) =

∏L−1
`=1 f`(z`, z`−1)∏L−2

`=1 q`(z`)
, (3.22)

where {f`(z`, z −̀1)} and {q`(z`)} are marginal density functions of b(z). As marginal densities,

they must satisfy the consistent-marginal equations

b(z`) =

∫
f`(z`, z −̀1) dz −̀1

= q`(z`) =

∫
f +̀1(z +̀1, z`) dz +̀1, ∀ ` = 1 . . . L−1.

(3.23)

Because p(z|y) ∈ B, we can express it using variational optimization as

p(z|y) = argmin
b∈B

DKL(b(z)‖p(z|y)), (3.24)

64

where DKL(b(z)‖p(z|y)) :=
∫
b(z) ln b(z)

p(z|y)
dz is the KL divergence. Plugging b(z) from (3.22)

into (3.24), we obtain

p(z|y) = argmin
b∈B

{
L∑
`=1

DKL(f`(z`, z`−1)‖p(z`|z`−1))

+
L−1∑
`=0

h(q`(z`))

}
subject to (3.23),

(3.25)

where h(q`(z`)) := −
∫
q`(z`) ln q`(z`) dz` is the differential entropy of q`. The cost function

in (3.25) is often called the Bethe free energy [162]. In summary, because B is tree-structured,

Bethe-free-energy minimization yields the exact posterior distribution [162].

The constrained minimization (3.25) is computationally intractable, because both the opti-

mization variables {f`, q`} and the pointwise linear constraints (3.23) are infinite dimensional.

Rather than solving for the exact posterior, we might instead settle for an approximation

obtained by relaxing the marginal constraints (3.23) to the following moment-matching

conditions, for all ` = 0, 1, . . . L−1:

E[z`|q`] = E[z`|f`], E[‖z`‖2 |q`] = E[‖z`‖2 |f`],

E[z`|q`] = E[z`|f +̀1], E[‖z`‖2 |q`] = E[‖z`‖2 |f +̀1].

(3.26)

This approach is known as expectation-consistent (EC) approximate inference [111]. Because

the constraints on f` and q` in (3.26) are finite dimensional, standard Lagrangian-dual

methods can be used to compute the optimal solution. Thus, the EC relaxation of the Bethe

free energy minimization problem (3.25), i.e.,

min
f`

max
q`

{
L−1∑
`=1

DKL(f`(z`, z`−1)‖p(z`|z`−1))

+
L−1∑
`=0

h(q`(z`))

}
subject to (3.26),

(3.27)

yields a tractable approximation to p(z|y).

We now establish an equivalence between the fixed points of the MMSE-ML-VAMP

algorithm and the first-order stationary points of (3.27). The statement of the theorem uses

65

the belief functions b` defined in (4.12).

Theorem 6 (MMSE-ML-VAMP). Consider a fixed point
(
{r±` }, {ẑ`}, {γ

±
` }
)
of Algorithm 3

with MMSE estimation functions (3.11). Then {γ+
` r

+
` ,

γ+`
2
, γ−` r

−
` ,

γ−`
2
}, are Lagrange multipli-

ers for (3.26) such that KKT conditions are satisfied for the problem (3.27) at primal solutions

{f ∗` , q∗`}. Furthermore, the marginal densities take the form f ∗` (·) ∝ b`(·|r−` , r
+
`−1, γ

−
` , γ

−
` , γ

+
`−1)

and q∗` = N (ẑ`, I/η`), with ẑ` and η` given in (3.16)-(3.17).

Proof. See Appendix A.3. �

The above result shows that MMSE-ML-VAMP is essentially an algorithm to iteratively

solve for the parameters
(
{r±` }, {ẑ`}, {γ

±
` }
)
that characterize the EC fixed points. Importantly,

q∗` (z`) and f ∗(z`, z`−1) serve as an approximate marginal posteriors for z` and (z`, z`−1). This

enables us to not only compute the MMSE estimate (i.e., posterior mean), but also other

estimates like the MMAE estimate (i.e., the posterior median), or quantiles of the marginal

posteriors. Remarkably, in certain cases, these approximate marginal-posterior statistics

become exact. This is one of the main contributions of the next section.

3.4 Analysis in the Large-System Limit

3.4.1 LSL model

In the previous section, we established that, for any set of deterministic matrices {W`},

MAP-ML-VAMP solves the MAP problem and MMSE-ML-VAMP solves the EC variational

inference problem as the iterations k →∞. In this section, we extend the analysis of [10,127]

to the rigorously study the behavior of ML-VAMP at any iteration k for classes of random

matrices {W`} in a certain large-system limit (LSL). The model is described in the following

set of assumptions.

66

System model We consider a sequence of systems indexed by N . For each N , let z` =

z0
` (N) ∈ RN`(N) be “true” vectors generated by neural network (4.1) for layers ` = 0, . . . , L,

such that layer widths satisfy limN→∞N`(N)/N = β` ∈ (0,∞). Also, let the weight matrices

W` in (4.1a) each have an SVD given by (3.13), where {V`} are drawn uniformly from the set

of orthogonal matrices in RN`×N` and independent across `. The distribution on the singular

values s` will be described below.

Similar to the VAMP analysis [127], the assumption here is that weight matrices W`

are rotationally invariant, meaning that VW` and W`V are distributed identically to W`.

Gaussian i.i.d. W` as considered in the original ML-AMP work of [89] satisfy this rotationally

invariant assumption, but the rotationally invariant model is more general. In particular, as

described in [127], the model can have arbitrary coniditoning which is known to be a major

failure mechanism of AMP methods.

ML-VAMP algorithm We assume that we generate estimates ẑ±k` from the ML-VAMP

algorithm, Algorithm 3. Our analysis will apply to general estimation functions, g`(·), not

necessarily the MAP or MMSE estimators. However, we require two technical conditions: For

the non-linear estimators, g±` for ` = 2, 4, . . . L− 2, and g+
0 , g−L act componentwise. Further,

these estimators and their derivatives ∂g+
`

∂z−`
, ∂g−`
∂z+−̀1

,∂g+
0

∂z−0
, ∂g−L
∂z+L−1

are uniformly Lipschitz continuous.

The technical definition of uniformly Lipschitz continuous is given in Appendix A.1. For the

linear layers, ` = 1, 3, . . . L−1, we assume we apply estimators g±` of the form (3.14) where G±`

act componentwise. Further, G±` along with its derivatives are uniformly Lipschitz continuous.

We also assume that the activation functions φ` in equation (4.1b) are componentwise

separable and Lipschitz continuous. To simplify the analysis, we will also assume the

estimation function parameters θ±k` converge to fixed limits,

lim
N→∞

θ±k`(N) = θ
±
k`, (3.28)

67

for values θ±k`. Importantly, in this assumption, we assume that the limiting parameter values

θ
±
k` are fixed and not data dependent. However, data dependent parameters can also be

modeled [127].

Distribution of the components We follow the framework of Bayati-Montanari and

describe the statistics on the unknown quantities via their empirical convergence – see

Appendix A.1. For ` = 1, 3, . . . L−1, define b` := VT
` b` and ξ` := VT

` ξ`. We assume that

the sequence of true vectors z0
0 , singular values s`, bias vectors b`, and noise realizations ξ`

empirically converge as

{
z0

0,n

} PL(2)
= Z0

0 , {ξ`,n}
PL(2)

= Ξ`, ∀ ` even, (3.29a){
(s`,n, b`,n, ξ`,n)

} PL(2)
= (S`, B`,Ξ`), ∀ ` odd, (3.29b)

to random variables Z0
0 ,Ξ`, S`, B`,Ξ`. We will also assume that the singular values are

bounded, i.e., s`,n < S`,max ∀n. Also, the initial vectors r−0` converge as,{
[r−0` − z

0
`]n
} PL(2)

= Q−0`, ` = 0, 2, . . . , L,{
[V >` (r−0` − z

0
`)]n
} PL(2)

= Q−0`, ` = 1, 3, . . . , L−1,

(3.30)

where (Q−0`, Q
−
1`, . . . Q

−
L−1,`) is jointly Gaussian independent of Z0

0 , {Ξ`}, {S`, B`,Ξ`}.

State Evolution Under the above assumptions, our main result is to show that the asymp-

totic distribution of the quantities from ML-VAMP algorithm converge to certain distributions.

The distributions are described by a set of deterministic parameters {K+
k`, τ

−
k`, α

±
k`, γ

±
k`, η

±
k`}.

The evolve according to a scalar recursion called the state evolution (SE), given in Algorithm

6 in Appendix A.2. We assume α±k` ∈ (0, 1) for all iterations k and ` = 0, 1, . . . L−1.

3.4.2 SE Analysis in the LSL

Under these assumptions, we can now state our main result. Let Sd denote the space of symmet-

ric positive definite matrices in Rd×d. The deterministic quantities {K+
k`, τ

−
k +̀1, α

±
k`, γ

±
k`, η

±
k`}

L−1
`=0

68

referenced in the theorem below are defined in an iteration called the State Evolution given

in Algorithm 6 (see Appendix A.2 of Supplementary materials).

Theorem 7. Consider the system under the above assumptions. There exist deterministic

parameters {K+
k`, τ

−
k +̀1, α

±
k`, γ

±
k`, η

±
k`}

L−1
`=0 with Kk` ∈ S2, τ−k` > 0, γ±k` > 0, η±k` > 0, αk` ∈ (0, 1)

such that the following convergence holds. For any componentwise pseudo-Lipschitz function

ψ of order 2, iteration index k, and layer index ` = 2, 4, . . . L− 2,

lim
N→∞

〈
ψ
(
z0
−̀1, ẑ

−
k, −̀1, ẑ

+
k`

) 〉 a.s.
=

E
[
ψ
(
A, g−` (C + φ`(A,Ξ`),B + A, γ−k`, γ

+
k, −̀1), (3.31)

g+
` (C + φ`(A,Ξ`),B + A, γ−k`, γ

+
k, −̀1)

)]
,

lim
N→∞

〈
ψ(z0

0 , ẑ
+
k0)
〉 a.s.

= E
[
ψ(Z0

0 , g
+
0 (F + Z0

0 , γ
−
0)
]
, (3.32)

lim
N→∞

〈
ψ(z0

L−1, ẑ
−
k,L−1)

〉 a.s.
= Eψ(D, g−L (E+D, γ+

L−1)), (3.33)

where (A,B) ∼ N (0,K+
k, −̀1) and C ∼ N (0, τ−k`) are mutually independent and independent of

Ξ`; (D,E) ∼ N (0,K+
k,L−1) is independent of ΞL and F ∼ N (0, τ−k0) is independent of Z0

0 .

Similarly for any layer index ` = 1, 3, . . . , L−1, we have

lim
N→∞

〈
ψ
(
V −̀1z

0
−̀1,V −̀1ẑ

−
k, −̀1,V

>
` ẑ

+
k`

)〉 a.s.
=

E
[
ψ
(
A, G−` (C + D,B + A, S`, B`, γ

−
k`, γ

+
k, −̀1),

G+
` (C + D,B + A, S`, B`, γ

−
k`, γ

+
k, −̀1)

)]
,

(3.34)

where (A,B) ∼ N (0,K+
k, −̀1) and C ∼ N (0, τ−k`) are mutually independent and independent of

(S`, B`,Ξ`), and D = S`A +B` + Ξ`.

Furthermore, if γ±k`, η
±
k`, are defined analogous to (3.9) using α±k`, then for all `,

lim
N→∞

(α±k,`, γ
±
k,`, η

±
k,`)

a.s.
= (α±k,`, γ

±
k,`, η

±
k,`). (3.35)

Proof. See Appendix A.4. �

The key value of Theorem 9 is that we can exactly characterize the asymptotic joint

69

distribution of the true vectors z0
` and the ML-VAMP estimates ẑ±k`. The asymptotic

joint distribution, can be used to compute various key quantities. For example, suppose

we wish to compute the mean squared error (MSE). Let ψ(z0, ẑ) = (z0 − ẑ)2, whereby〈
ψ(z0

` , ẑ
−
`)
〉

= 1
N

∥∥z0
` − ẑ−`

∥∥2. Observe that ψ is a pseudo-Lipschitz function of order 2,

whereby we can apply Theorem 9. Using (3.31), we get the asymptotic MSE on the kth-

iteration estimates for ` = 2, 4, . . . L−2:

lim
N −̀1→∞

1
N −̀1

∥∥ẑ−k, −̀1 − z
0
−̀1

∥∥2 a.s.
=

E
[(
g−` (C + φ`(A,Ξ`),B + A, γ−k`, γ

+
k, −̀1)− A

)2
]
,

lim
N`→∞

1
N`

∥∥ẑ+
k` − z

0
`

∥∥2 a.s.
=

E
[(
g+
` (C + φ`(A,Ξ`),B + A, γ−k`, γ

+
k, −̀1)− φ`(A,Ξ`)

)2
]
,

where we used the fact that φ` is pseudo-Lipschitz of order 2, and z0
` = φ`(z

0
−̀1, ξ`) from

(4.1b). Similarly, using (3.34), we get the kth-iteration MSE for ` = 1, 3, . . . L−1:

lim
N −̀1→∞

1
N −̀1

∥∥ẑ−k, −̀1 − z
0
−̀1

∥∥2
= 1

N −̀1

∥∥V −̀1(ẑ−k, −̀1 − z
0
−̀1)
∥∥2

a.s.
= E

[(
G−` (C + D,B + A, S`, B`, γ

+
k,l, γ

−
k, −̀1)− A

)2
]
.

lim
N`→∞

1
N`

∥∥ẑ+
k` − z

0
`

∥∥2
= 1

N`

∥∥V >` (ẑ+
k` − z

0
`)
∥∥2

a.s.
= E

[(
G+
` (C + D,B + A, S`, B`, γ

+
kl, γ

−
k, −̀1)− D

)2
]
,

where D = S`A + B` + Ξ`. Here we used the rotational invariance of the `2 norm, and the

fact that equation (4.1a) is equivalent to V >` z0
` = Diag(s`)V −̀1z

0
−̀1 + b` using the SVD (3.13)

of the weight matrices W`.

At the heart of the proof lies a key insight: Due to the randomness of the unitary matrices

V`, the quantities (z0
` , r

−
k` − z0

` , r
+
k, −̀1 − z0

−̀1) are asymptotically jointly Gaussian for even

`, with the asymptotic covariance matrix of {(z0
−̀1,n, r

+
k, −̀1,n − z0

−̀1,n, r
−
k`,n − z0

`,n)} given by[
K+
k` 0

0 τ−k`

]
, where Kk` ∈ R2×2 and τ−k` is a scalar. After establishing the asymptotic Gaussianity

of (z0
` , r

−
k` − z0

` , r
+
k, −̀1 − z0

−̀1), since ẑ` and ẑ −̀1 are componentwise functions of this triplet,

70

we have the PL(2) convergence result in (3.31). Similarly, for odd `, we can show that(
V −̀1z

0
−̀1,V −̀1r

+
k, −̀1,V

>
` r
−
k`

)
is asymptotically Gaussian. For these `, V −̀1ẑ

−
k, −̀1 and V >` ẑ

+
k` are

functions of the triplet, which gives the result in (3.34).

Due to the asymptotic normality mentioned above, the inputs (r−` , r
+
−̀1) to the estimators

g±` are the true signals (z0
−̀1, z

0
`) plus additive white Gaussian noise (AWGN). Hence, the

estimators g±` act as denoisers, and ML-VAMP effectively reduces the inference problem 3.2

into a sequence of linear transformations and denoising problems. The denoising problems

are solved by g±` for even `, and by G±` for odd `.

3.4.3 MMSE Estimation and Connections to the Replica Predic-

tions

We next consider the special case of using MMSE estimators corresponding to the true

distributions. In this case, the SE equations simplify considerably using the following MSE

functions : let ẑ−−̀1, ẑ+
` be the MMSE estimates of z0

−̀1 and z0
` from the variables r+

−̀1, r
−
` under

the joint density (4.12). Let E±(·) be the corresponding mean squared errors,

E+
` (γ+

−̀1, γ
−
`) := lim

N→∞

1

N
E
∥∥z0

` − ẑ+
`

∥∥2
,

E−−̀1(γ+
−̀1, γ

−
`) := lim

N→∞

1

N
E
∥∥z0
−̀1 − ẑ−−̀1

∥∥2
.

(3.36)

Theorem 8 (MSE of MMSE-ML-VAMP). Consider the system under the assumptions of

Theorem 9, with MMSE estimation functions g±` ,g
+
0 ,g

−
L from (3.11) for the belief estimates in

(4.12) with γ+
k` = γ±k` from the state-evolution equations. Then, the state evolution equations

reduce to
γ+
k` =

1

E+
` (γ−k`, γ

+
k, −̀1)

− γ−k`,

γ−k+1,` =
1

E−` (γ−k+1,`+1, γ
+
k`)
− γ+

k`,

(3.37)

where 1/η+
k` = E+

` (γ−k`, γ
+
k, −̀1) is the MSE of the estimate ẑ+

k`.

Proof. See Appendix A.4. �

71

Since the estimation functions in Theorem 8 are the MSE optimal functions for true

densities, we will call this selection of estimation functions the MMSE matched estimators.

Under the assumption of MMSE matched estimators, the theorem shows that the MSE error

has a simple set of recursive expressions.

It is useful to compare the predicted MSE with the predicted optimal values. The

works [47, 131] postulate the optimal MSE for inference in deep networks under the LSL

model described above using the replica method from statistical physics. Interestingly, it

is shown in [131, Thm.2] that the predicted minimum MSE satisfies equations that exactly

agree with the fixed points of the updates (3.37). Thus, when the fixed points of (3.37) are

unique, ML-VAMP with matched MMSE estimators provably achieves the Bayes optimal

MSE predicted by the replica method. Although the replica method is not rigorous, this

MSE predictions have been indepedently proven for the Gaussian case in [131] and certain

two layer networks in [47]. This situation is similar to several other works relating the MSE

of AMP with replica predictions [6,79,132]. The consequence is that, if the replica method is

correct, ML-VAMP provides a computationally efficient method for inference with testable

conditions under which it achieves the Bayes optimal MSE.

3.5 Numerical Simulations

We now numerically investigate the MAP-ML-VAMP and MMSE-ML-VAMP algorithms

using two sets of experiments, where in each case the goal was to solve an estimation problem

of the form in (3.2) using a neural network of the form in (4.1). We used the Python 3.7

implementation of the ML-VAMP algorithm available on GitHub.2

The first set of experiments uses random draws of a synthetic network to validate the

claims made about the ML-VAMP state-evolution (SE) in Theorem 9. In addition, it

compares MAP-ML-VAMP and MMSE-ML-VAMP to the MAP approach (3.4) using a

standard gradient-based solver, ADAM [76]. The second set of experiments applies ML-
2See https://github.com/GAMPTeam/vampyre.

72

https://github.com/GAMPTeam/vampyre

VAMP to image inpainting, using images of handwritten digits from the widely used MNIST

dataset. Here, MAP-ML-VAMP and MMSE-ML-VAMP are respectively compared to the

optimization approach (3.4) using the ADAM solver, and Stochastic Gradient Langevin

Dynamics (SGLD) [160], an MCMC-based sampling method that approximates E[z|y].

3.5.1 Performance on a Synthetic Network

We first considered a 7-layer neural network of the form in (4.1). The first six layers,

with dimensions N0 = 20, N1 = N2 = 100, N3 = N4 = 500, N5 = N6 = 784, formed a

(deterministic) deep generative prior driven by i.i.d. Gaussian z0
0 . The matrices W1,W3,W5

and biases b1,b3,b5 were drawn i.i.d. Gaussian, and the activation functions φ2, φ4, φ6

were ReLU. The mean of the bias vectors b` was chosen so that a fixed fraction, ρ, of

the linear outputs were positive, so that only the fraction ρ of the ReLU outputs were

non-zero. Because this generative network is random rather than trained, we refer to it as

“synthetic.” The final layer, which takes the form y = Az0
6 + ξ6, generates noisy, compressed

measurements of z0
6 . Similar to [125], the matrix A ∈ RM×N6 was constructed from the

SVD A = U Diag(s)V T, where the singular-vector matrices U and V were drawn uniformly

from the set of orthogonal matrices, and the singular values were geometrically spaced

(i.e., si/si−1 = κ ∀i) to achieve a condition number of s1/sM = 10. It is known that such

matrices cause standard AMP algorithms to fail [125], but not VAMP algorithms [127].

The number of compressed measurements, M , was varied from 10 to 300, and the noise

vector ξ was drawn i.i.d. Gaussian with a variance set to achieve a signal-to-noise ratio of

10 log10(E‖Az0
6‖2/E‖ξ‖2) = 30 dB.

To quantify the performance of ML-VAMP, we repeated the following 1000 times. First,

we drew a random neural network as described above. Then we ran the ML-VAMP algorithm

for 100 iterations, recording the normalized MSE (in dB) of the iteration-k estimate of the

network input, ẑ±k0:

NMSE(ẑ±k0) := 10 log10

[
‖z0

0 − ẑ±k0‖2

‖z0
0‖2

]
.

73

Figure 3.3: NMSE of MMSE-ML-VAMP and its SE prediction when estimating the input to
a randomly generated 7-layer neural network (see text of Section 3.5.1). Left panel: Average
NMSE versus half-iteration with M = 100 measurements. Right panel: Average NMSE verus
measurements M after 50 iterations.

Figure 3.4: Simulation with randomly generated neural network with MAP estimators from
equation (3.12). Left panel: Normalized mean squared error (NMSE) for ML-VAMP and the
predicted MSE as a function of the iteration with M = 100 measurements. Right panel: Final
NMSE (50 iterations) for ML-VAMP and the predicted MSE as a function of the number of
measurements, M . ρ = 0.9

Since ML-VAMP computes two estimates of z0
0 at each iteration, we consider each estimate

as corresponding to a “half iteration.”

Validation of SE Prediction For MMSE-ML-VAMP, the left panel of Fig. 3.3 shows

the NMSE versus half-iteration for M = 100 compressed measurements. The value shown

is the average over 1000 random realizations. Also shown is the MSE predicted by the

ML-VAMP state evolution. Comparing the two traces, we see that the SE predicts the actual

behavior of MMSE-ML-VAMP remarkably well, within approximately 1 dB. The right panel

74

Figure 3.5: Simulation with randomly generated neural network with MAP estimators from
equation (3.12). Final NMSE for (a) MAP inference computed by Adam optimizer; (b) MAP
inference from ML-VAMP; (c) State evolution prediction.

shows the NMSE after k = 50 iterations (i.e., 100 half-iterations) for several number of

measurements M . Again we see an excellent agreement between the actual MSE and the SE

prediction. In both cases we used the positive fraction ρ = 0.4. Analogous results are shown

for MAP-ML-VAMP in Fig. 3.4. There we see an excellent agreement between the actual

MSE and the SE prediction for iterations k ≥ 15 and all values of M .

Comparison to ADAM We now compare the MSE of MAP-ML-VAMP and its SE

to that of the MAP approach (3.4) using the ADAM optimizer [76], as implemented in

Tensorflow. As before, the goal was to recover the input z0
0 to the 7-layer synthetic network

from a measurement of its output. Fig. 3.5 shows the median NMSE over 40 random

network realizations for several values of M , the number of measurements. We see that,

for M ≥ 100, the performance of MAP-ML-VAMP closely matches its SE prediction, as

well as the performance of the ADAM-based MAP approach (3.4). For M < 100, there is a

discrepancy between the MSE performance of MAP-ML-VAMP and its SE prediction, which

is likely due to the relatively small dimensions involved. Also, for small M , MAP-ML-VAMP

appears to achieve slightly better MSE performance than the ADAMP-based MAP approach

(3.4). Since both are attempting to solve the same problem, the difference is likely due to

ML-VAMP finding better local minima.

75

3.5.2 Image Inpainting: MNIST dataset

To demonstrate that ML-VAMP can also work on a real-world dataset, we perform inpainting

on the MNIST dataset. The MNIST dataset consists of 28 × 28 = 784 pixel images of

handwritten digits, as shown in the first column of Fig. 3.6.

To start, we trained a 4-layer (deterministic) deep generative prior model from 50 000

digits using a variational autoencoder (VAE) [77]. The VAE “decoder” network was designed

to accept 20-dimensional i.i.d. Gaussian random inputs z0 with zero mean and unit variance,

and to produce MNIST-like images x. In particular, this network began with a linear layer

with 400 outputs, followed by a ReLU activations, followed by a linear layer with 784 units,

followed by sigmoid activations that forced the final pixel values to between 0 and 1.

Given an image, x, our measurement process produced y by erasing rows 10-20 of x, as

shown in the second column of Fig. 3.6. This process is known as “occlusion.” By appending

the occlusion layer onto our deep generative prior, we got a 5-layer network that generates an

occluded MNIST image y from a random input z0. The “inpainting problem” is to recover

the image x = z4 from the occluded image y.

For this inpainting problem, we compared MAP-ML-VAMP and MMSE-ML-VAMP to the

MAP estimation approach (3.4) using the ADAM solver, and to Metropolis-Adjusted Langevin

Algorithm (MALA) [104,160], an MCMC-based sampling method that approximates E[z|y]

by using discrete Langevin dynamics to generate proposal samples for Metropolis-Hastings

algorithm [57]. Example image reconstructions are shown in Fig. 3.6. There we see that the

qualitative performance of ML-VAMP is comparable to the baseline solvers.

3.6 Discussion

Inference using deep generative prior models provides a powerful tool for complex inverse

problems. Rigorous theoretical analysis of these methods has been difficult due to the

non-convex nature of the models. The ML-VAMP methodology for MMSE as well as MAP

76

Figure 3.6: MNIST inpainting: Original 28×28 images of handwritten digits (Col 1), with
rows 10-20 are erased (Col 2). Comparison of reconstructions using MAP estimation with
ADAM solver (Col 3), MAP estimation with ML-VAMP algorithm (Col 4), MMSE estimation
with the Metropolis Adjusted Langevin Algorithm (Col 5), and MMSE estimation with
ML-VAMP algorithm (Col 6).

77

estimation provides a principled and computationally tractable method for performing the

inference whose performance can be rigorously and precisely characterized in a certain

large system limit. The approach thus offers a new and potentially powerful approach for

understanding and improving deep neural network based models for inference.

78

Chapter 4

Multi-Layer Inverse Problems over

Matrices

In this chapter we generalize the setup of Chapter 3 to the case where each of Z` are

matrix valued.

We consider the problem of estimating the input and hidden variables of a stochastic

multi-layer neural network from an observation of the output. The hidden variables in each

layer are represented as matrices with statistical interactions along both rows as well as

columns. This problem applies to matrix imputation, signal recovery via deep generative

prior models, multi-task and mixed regression, and learning certain classes of two-layer neural

networks. We extend a recently-developed algorithm – Multi-Layer Vector Approximate

Message Passing (ML-VAMP), for this matrix-valued inference problem. It is shown that the

performance of the proposed Multi-Layer Matrix VAMP (ML-Mat-VAMP) algorithm can be

exactly predicted in a certain random large-system limit, where the dimensions N × d of the

unknown quantities grow as N →∞ with d fixed. In the two-layer neural-network learning

problem, this scaling corresponds to the case where the number of input features as well as

This work was published in [116] and was coauthoer with Mojtaba Sahraee-Ardakan, Sundeep Rangan,
Philip Schniter, and Alyson K. Fletcher

79

training samples grow to infinity but the number of hidden nodes stays fixed. The analysis

enables a precise prediction of the parameter and test error of the learning.

4.1 Introduction

Consider an L-layer stochastic neural network given by

Z0
` = W`Z

0
−̀1 + B` + Ξ0

` , ` = 1, 3, . . . , L−1, (4.1a)

Z0
` = φ`(Z

0
−̀1,Ξ

0
`), ` = 2, 4, . . . , L, (4.1b)

where, for ` = 0, 1, . . . , L, we have true activations Z0
` ∈ Rn`×d, weights W` ∈ Rn`×n −̀1 , bias

matrices B` ∈ Rn`×d, and true noise realizations Ξ0
` . The activation functions φ` : Rn −̀1×d →

Rn`×d are known non-linear functions acting row-wise on their inputs. See Fig. 4.1 (TOP).

We use the superscript 0 in Z0
` to indicate the true values of the variables, in contrast to

estimated values denoted by Ẑ` discussed later. We model the true values Z0
0 as a realization

of random Z0, where the rows zT
0,i: of Z0 are i.i.d. with distribution p0: p(Z0) =

∏n0

i=1 p0(z0,i:).

Similarly, we also assume that Ξ0
` are realizations of random Ξ` with i.i.d. rows ξT

`,i:. For odd

`, the rows ξ`,i: are zero-mean multivariate Gaussian with covariance matrix N−1
` ∈ Rd×d,

whereas for even `, the rows ξ`,i: can be arbitrarily distributed but i.i.d.

Denoting by Y := Z0
L ∈ RnL×d the output of the network, we consider the following

matrix inference problem:

Estimate Z := {Z`}L−1
`=0 given Y := Z0

L and {W2k−1,B2k−1, φ2k}L/2k=1. (4.2)

A key feature of the problem we consider here is that the unknowns, Z`, are matrix-valued with

d columns with statistical dependencies between the columns. As we will see in Section 4.2,

the matrix-valued case applies to several problems of broad interest such as matrix imputation,

multi-task and mixed regression problems, sketched clustering. We also show that via this

formulation we can analyze the learning in two layer neural networks under some architectural

assumptions.

80

W1,B1 φ2(·) W3,B3 φ4(·)
Z0

0 Z0
1 Z0

2 Z0
3 Y

Ξ1 Ξ2 Ξ3 Ξ4

G+
0 (·) G±1 (·) G±2 (·) G±3 (·) G−4 (·) Y

Ẑ+
k0 R+

k0

Ẑ−k0
R−k0

Ẑ+
k1 R+

k1

Ẑ−k1
R−k1

Ẑ+
k2 R+

k2

Ẑ−k2
R−k2

Ẑ+
k3 R+

k3

Ẑ−k3
R−k3

Figure 4.1: (TOP) The signal flow graph for true values of matrix variables {Z0
`}3
`=0, given in

eqn. (4.1) where Z0
` ∈ Rn`×d. (BOTTOM) Signal flow graph of the ML-MVAMP procedure

in Algo. 4. The variables with superscript + and - are updated in the forward and backward
pass respectively. ML-MVAMP (Algorithm 4) solves (4.2) by solving a sequence of simpler
estimation problems over consecutive pairs (Z`,Z −̀1).

In many applications, the inference problem can be performed via minimization of an

appropriate cost function. For example, suppose the network (4.1) has no noise Ξ` for all

layers except the final measurement layer, ` = L. In this case, the Z0
L−1 = g(Z0

0) for some

deterministic function g(·) representing the action of the first L−1 layers. Inference can then

be conducted via a minimization of the form,

ẐL−1 := g

(
argmin

Z0

HL(Y,ZL−1) +H0(Z0), subject to ZL−1 = g(Z0)

)
(4.3)

where the term HL(Y,ZL−1) penalizes the prediction error and H0(Z0) is an (optional)

regularizer on the network input. For maximum a posteriori (MAP) estimation one takes,

HL(Y,ZL−1) = − log p(Y|ZL−1), and H0(Z0) = − log p(Z0), where the output probability

p(Y|ZL−1) is defined from the last layer of model (4.1b): Y = ZL = φL(ZL−1,ΞL). The

minimization (4.3) can then be solved using a gradient-based method. Encouraging results

in image reconstruction have been demonstrated in [16,53,73,97,142,150,163]. Markov-chain

Monte Carlo (MCMC) algorithms and Langevin diffusion [23,160] could also be employed for

more complex inference tasks.

However, rigorous analysis of these methods is difficult due to the non-convex nature of

the optimization problem. To address this issue, recent works [42, 89, 115] have extended

81

Approximate Message Passing (AMP) methods to provide inference algorithms for the multi-

layer networks. AMP was originally developed in [10, 31, 32, 71] for compressed sensing.

Similar to other AMP-type results, the performance of multi-layer AMP-based inference can

be precisely characterized in certain high-dimensional random instances. In addition, the

mean-squared error for inference of the algorithms match predictions for the Bayes-optimal

inference predicted by various techniques from statistical physics [7,47,131]. Thus, AMP-based

multi-layer inference provides a computationally tractable estimation framework with precise

performance guarantees and testable conditions for optimality in certain high-dimensional

random settings.

Prior multi-layer AMP works [42,61,91,115] have considered the case of vector-valued

quantities with d = 1. The main contribution of this paper is to consider the matrix-valued

case when d > 1. To handle the case when d > 1, we extend the Multi-Layer Vector

Approximate Message Passing (ML-VAMP) algorithm of [42,115] to the matrix case. The

ML-VAMP method is based on VAMP method of [127], which is closely related to expectation

propagation (EP) [96,145], expectation-consistent approximate inference (EC) [45,111], S-

AMP [19], and orthogonal AMP [86]. We will use “ML-Mat-VAMP” when referring to the

matrix extension of ML-VAMP.

Contributions: First, similar to the case of ML-VAMP, we analyze ML-Mat-VAMP in a

large system limit, where n` →∞ and d is fixed, under rotationally invariant random weight

matrices W`. In this large system limit, we prove that the mean-squared error (MSE) of the

estimates of ML-Mat-VAMP can be exactly predicted by a deterministic set of equations called

the state evolution (SE). The SE describes how the distribution of the true activations and

pre-activations of the network as well as the estimated values generated by ML-Mat-VAMP

evolve jointly from one iteration of the algorithm to the other. This extension of the SE

equations to the matrix case is not trivial and requires considering correlation across multiple

vectors. Indeed, in the case of ML-VAMP, the SE equations involve scalar quantities and

82

2× 2 matrices. For ML-Mat-VAMP, the SE equations involve d× d and 2d× 2d matrices.

Second, we show that the method can offer precise predictions in important estimation

problems that are difficult to analyze via other means. The ML-VAMP was focused on deep

reconstruction problems [16, 163]. The matrix version here can be applied to other classes of

problems such as multi-task regression, matrix completion and learning the input layer of a

neural network. Even though these networks are typically shallow (just L = 2 layers), there

are no existing methods that can provide the same types of precise results. For example, in

the case of learning the input layer of a neural network, our results can exactly predict the

test error as a function of the noise statistics, activations, number of training sample and

other key modeling parameters.

Notation: Boldface uppercase letters X denote matrices. Xn: refers to the nth row of X.

Random vectors are row-vectors. For a function f : R1×m → R1×k, its row-wise extension is

represented by f : RN×m → RN×k, i.e., [f(X)]n: = f(Xn:). We denote the Jacobian matrix of

f by ∂f
∂x

(x) ∈ Rm×k, so that [∂f
∂x

(x)]ij = ∂fi
∂xj

(x). For its row-wise extension f , we denote by〈
∂f
∂X

(X)
〉
the average Jacobian, i.e., 1

N

∑N
n=1

∂f
∂Xn:

(Xn:) ∈ Rm×k

4.2 Example Applications

As we describe next, the matrix estimation problem 4.2 is of broad interest and several

interesting applications can be formulated under this framework. We share a few examples

below.

4.2.1 Multi-task and Mixed Regression Problems

A simple application of the matrix-valued multi-layer inference problem (4.2) is for multi-task

regression [109]. Consider a generalized linear model of the form,

Y = φ(XF; Ξ), (4.4)

83

where Y ∈ RN×d is a matrix of measured responses, X ∈ RN×p is a known design matrix,

F ∈ Rp×d are a set regression coefficients to be estimated, and Ξ is noise. The problem can

be considered as d separate regression problems – one for each column. However, in some

applications, these design “tasks” are related in such a way that it benefits to jointly estimate

the predictors. To do this, it is common to solve an optimization problem of the form

argmin
F

{
d∑
j=1

N∑
i=1

L(yij, [XF]ij) + λ

p∑
k=1

ρ(Fk:)

}
, (4.5)

where L(·) is a loss function, and ρ(·) is a regularizer that acts on the rows Fk: of F to couple

the prediction coefficients across tasks. For example, the multi-task LASSO [109] uses loss

L(y, z) = (y − z)2 and regularization ρ(Fk:) = ‖Fk:‖2 to enforce row-sparsity in F. In the

compressive-sensing context, multi-task regression is known as the “multiple measurement

vector” (MMV) problem, with applications in MEG reconstruction [25], DoA estimation [152],

and parallel MRI [83]. An AMP approach to the MMV problem was developed in [167].

The multi-task model (4.4) can be immediately written as a multi-layer network (4.1) by

setting: Z0 := F,W0 := X,Z1 := W0Z0 = XF,Y = Z2 := φ(Z1,Ξ). Also, by appropriately

setting the prior p(Z0), the multi-layer matrix MAP inference (4.3) will match the multi-task

optimization (4.5).

In (4.5), the regularization couples the columns of F but the loss term couples its rows.

In mixed regression problems, the loss couples the columns of F. For example, consider

designing predictors F = [f1, f2] for mixed linear regression [164], i.e.,

yi = qix
T
i f1 + (1− qi)xT

i f2 + vi, qi ∈ {0, 1}, (4.6)

where i = 1, . . . , N and the ith response comes from one of two linear models, but which

model is not known. This setting can be modeled by a different output mapping: As before,

set Z0 := F, Z1 = XF and let the noise in the output layer be Ξ1 = [q,v] which includes the

additive noise vi in (4.6) and the random selection variable qi. Then, we can write (4.6) via

an appropriate function, y = φ1(Z1,Ξ1).

84

4.2.2 Sketched Clustering

A related problem arises in sketched clustering [74], where a massive dataset is nonlinearly

compressed down to a short vector y ∈ Rn, from which cluster centroids fk ∈ Rp, for

k = 1, . . . , d, are then extracted. This problem can be approached via the optimization [75]

min
α≥0

min
F

∑n
i=1

∣∣∣∣yi −∑d
j=1 αje

√
−1xT

i fj

∣∣∣∣2 where xi ∈ Rp are known i.i.d. Gaussian vectors. An

AMP approach to sketched clustering was developed in [18]. For known α, the minimization

corresponds to MAP estimation with the multi-layer matrix model with Z0 = F, W1 = X

Z1 = XF and using the output mapping, φ1(Z1,Ξ) :=
∑d

j=1 αje
√
−1Z1,:j + Ξ, where the

exponential is applied elementwise and Ξ is i.i.d. Gaussian. The mapping φ1 operates

row-wise on Z1 and Ξ.

4.2.3 Learning the Input Layer of a Two-Layer Neural Network

The matrix inference problem (4.2) can also be applied to learning the input layer weights

in a two-layer neural network (NN). Let X ∈ RN×Nin and Y ∈ RN×Nout be training data

corresponding to N data samples. Consider the two-layer NN model,

Y = σ(XF1)F2 + Ξ, (4.7)

with weight matrices (F1,F2), componentwise activation function σ(·), and noise Ξ. In (4.7),

the bias terms are omitted for simplicity. We used the notation “F`” for the weights, instead

of the standard notation “W`,” to avoid confusion when (4.7) is mapped to the multi-layer

inference network (4.2). Now, our critical assumption is that the weights in the second layer,

F2, are known. The goal is to learn only the weights of the first layer, F1 ∈ RNin×Nhid , from a

dataset of N samples (X,Y).

If the activation is ReLU, i.e., σ(H) = max
{
H , 0} and Y has a single column (i.e. scalar

output per sample), and F2 has all positive entries, we can, without loss of generality, treat

the weights F2 as fixed, since they can always be absorbed into the weights F1. In this case,

85

y and F2 are vectors and we can write the ith entry of y as

yi =
d∑
j=1

F2jσ([XF1]ij) + ξi =
d∑
j=1

σ([XF1]ijF2j) + ξi (4.8)

Thus, we can assume, without loss of generality, that F2 is all ones. The parameterization

(4.8) is sometimes referred to as the committee machine [149]. The committee machine

has been recently studied by AMP methods [5] and mean-field methods [94] as a way to

understand the dynamics of learning.

To pose the two-layer learning problem as multi-layer inference, define Z0 := F1, W1 :=

X, Z1 := XF1 Ξ2 := Ξ, then Y = Z2, where Z2 is the output of a 2-layer inference

network of the form in (4.1):

Y = Z2 = φ2(Z1,Ξ2) := σ(Z1)F2 + Ξ2. (4.9)

Note that W1 is known. Also, since we have assumed that F2 is known, the function φ2 is

known. Finally, the function φ2 is row-wise separable on both inputs. Thus, the problem of

learning the input weights F1 is equivalent to learning the input Z0 of the network (4.9).

4.2.4 Model-Based Matrix completion

Consider an observed matrix Y = ZL ∈ RNL×d with missing entries Ωc ∈ [NL] × [d]. The

problem is to impute the missing entries of Y. This is an important problem in several

applications ranging from recommendation systems, genomics, bioinformatics and more

broadly analysis of tabular data. There have been several approaches to solving this data

imputation problem, right from 0 imputation and mean imputation to more sophisticated

techniques based on generative models.

Consider a generative model based on a multi-layer perceptron as in (4.1) such that the

output ZL−1 models the uncorrupted data matrix. Then the imputation problem can be

posed as the solution of the MAP optimization problem:

86

minimize
{Z`}L`=0

‖Y − ZL−1‖2
Ω − logP(ZL−1,ZL−2, . . . ,Z0) (4.10)

where ‖Y − ZL−1‖2
Ω =

∑
(i,j)∈Ω((Y)ij − (ZL−1)ij)

2. One can also similarly construct Bayes

estimators such as E[ZL−1|ZL].

Traditional approaches to matrix completion have looked at regularized convex minimiza-

tion schemes just like (4.10) where − logP(ZL−1) = ‖ZL−1‖∗, which is the nuclear norm, or

some other structure inducing convex norms. While the term − logP(. . .) in (4.10) can be

thought of as a more general regularization term, this formulation allows for more general

application problems with heterogeneous variables.

For example, in imputation of tabular data, it is often the case that some columns

correspond to continuous valued variables, whereas other variables are discrete valued modeling

Yes/No answers or count data. In such scenarios the − logP(ZL−1, . . .) allows more flexibility

towards modeling using GLMs and other exponential family distributions for every column

separately. One simple instance of (4.10) would be a generative model − logP(ZL−1, . . . ,Z0)

which is trained on some fully observed data ZL−1 using unsupervised learning methods such

as Variational Autoencoders (VAE) and Generative Adversarial Networks (GAN).

4.3 Multi-layer Matrix VAMP

4.3.1 MAP and MMSE inference

Observe that the equations (4.1) define a Markov chain over these signals and thus the

posterior p(Z|ZL) factorizes as p(Z|ZL) ∝ p(Z0)
L−1∏
`=1

p(Z`|Z −̀1) p(Y|ZL−1). where recall the

notation Z from (4.2). The transition probabilities p(Z`|Z −̀1) above are implicitly defined in

equation (4.1) and depend on the statistics of noise terms Ξ`. We consider both maximum a

87

posteriori (MAP) and minimum mean squared error (MMSE) estimation for this posterior:

Ẑmap = argmax
Z

p(Z|ZL) Ẑmmse = E[Z|ZL] =

∫
Z p(Z|ZL) dZ (4.11)

4.3.2 Algorithm Details

The ML-Mat-VAMP for approximately computing the MAP and MMSE estimates is similar

to the ML-VAMP method in [42,112]. The specific iterations of ML-Mat-VAMP algorithm

are shown in Algorithm 4. The algorithm produces estimates by a sequence of forward and

backward pass updates denoted by superscripts + and − respectively. The estimates Ẑ±` are

constructed by solving sequential problems Z = {Z`}L−1
`=0 into a sequence of smaller problems

each involving estimation of a single activation or preactivation Z` via estimation functions

{G±` (·)}L−1
`=1 which are selected depending on whether one is interested in MAP or MMSE

estimation.

To describe the estimation functions, we use the notation that, for a positive definite

matrix Γ, define the inner product 〈A,B〉Γ := Tr(ATBΓ) and let ‖A‖Γ denote the norm

induced by this inner product. For ` = 1, . . . , L− 1 define the approximate belief functions

b`(Z`,Z −̀1|R−` ,R
+
−̀1,Γ

−
` ,Γ

+
−̀1) ∝ p(Z`|Z −̀1)e

− 1
2‖Z`−R−` ‖

2

Γ−
`

− 1
2‖Z −̀1−R+

−̀1‖
2

Γ+
−̀1 , (4.12)

where Z`,R
±
` ∈ Rn`×d and Γ±` ∈ Rd×d for all ` = 0, 1, . . . L. Define b0(Z0|R−0 ,Γ−0) and

bL(ZL−1|R+
L−1,Γ

+
L−1) similarly. The MAP and MMSE estimation functions are then given by

the MAP and MMSE estimates for these belief densities,

G±`,map =(Ẑ+
` , Ẑ

−
−̀1) = argmax b`(Z`,Z −̀1) G±`,mmse =(Ẑ+

` , Ẑ
−
−̀1) = E[(Z`,Z −̀1)|b`] (4.13)

where the expectation is with respect to the normalized density proportional to b`. Thus,

the ML-Mat-VAMP algorithm reduces the joint estimation of the vectors (Z0, . . . ,ZL−1) to

a sequence of simpler estimations on sub-problems with terms (Z −̀1,Z`). We refer to these

subproblems as denoisers and denote their solutions by G±` , so that Ẑ+
` = G+

` and Ẑ−−̀1 = G−`

corresponding to lines 9 and 21 of Algorithm 4. The denoisers G+
0 and G−L , which provide

88

updates to Ẑ+
0 and Ẑ−L−1, are defined in a similar manner via b0 and bL respectively.

The estimation functions (4.13) can be easily computed for the multi-layer matrix network.

An important characteristic of these estimators is that they can be computed using maps

which are row-wise separable over their inputs and hence are easily parallelizable. To simplify

notation, we denote the precision parameters for denoisers G±` in the kth iteration by

Θ+
k` := (Γ−k`,Γ

+
k, −̀1), Θ−k` := (Γ−k+1,`,Γ

+
k, −̀1), Θ+

k0 := Γ−k0, Θ−kL := Γ+
k,L−1. (4.14)

Non-linear layers: For ` even, since the rows of Ξ` are i.i.d., the belief density b`(Z`,Z −̀1|·)

from (4.12) factors as a product across rows, b`(Z`,Z −̀1) =
∏

n b`([Z`]n:, [Z −̀1]n:). Thus, the

MAP and MMSE estimates (4.13) can be performed over d-dimensional variables where d is

the number of entries in each row. There is no joint estimation across the different n` rows.

Linear layers: When ` is odd, the density b`(Z`,Z −̀1|·) in (4.12) is a Gaussian. Hence,

the MAP and MMSE estimates agree and can be computed via least squares. Although

for linear layers [G+
` ,G

−
`](R−` ,R

+
−̀1,Θ`) is not row-wise separable over (R−` ,R −̀1), it can

be computed using another row-wise denoiser [G̃+
` , G̃

−
`] via the SVD of the weight matrix

W` = V` Diag(S`)V −̀1 as follows. Note that the SVD is only needed to be performed once.:

[G+
` ,G

−
`](R`,R −̀1,Θ`) = argmax

Z`,Z −̀1

‖Z` −W`Z −̀1 −B`‖2
N`

+
∥∥Z` −R−`

∥∥2

Γ−`
+
∥∥Z −̀1 −R+

−̀1

∥∥2

Γ+
−̀1

(a)
= argmax

Z`,Z −̀1

∥∥VT
` Z` −Diag(S`)V −̀1Z −̀1 −VT

` B`

∥∥2

N`
+
∥∥VT

` Z` −VT
` R−`

∥∥2

Γ−`
+
∥∥V −̀1Z −̀1 −V −̀1R

+
−̀1

∥∥2

Γ+
−̀1

(b)
= [VT

` G̃+
` ,V −̀1G̃

−
`](V T

` R`,V −̀1R −̀1,Θ`)

where (a) follows from the rotational invariance of the norm, and (b) follows from the

definition of denoiser [G̃+
` , G̃

−
`](R̃−` , R̃

+
−̀1,Θ`) given below

[G̃+
` , G̃

−
`] := argmax

Z̃`,Z̃ −̀1

∥∥∥Z̃` −Diag(S`)Z̃ −̀1 − B̃`

∥∥∥2

N`

∥∥∥Z̃` − R̃−`

∥∥∥2

Γ−`

+
∥∥∥Z̃ −̀1 − R̃+

−̀1

∥∥∥2

Γ+
−̀1

(4.15)

Note that the optimization problem in (4.15), is decomposable accross the rows of variables

Z̃` and Z̃ −̀1, and hence [G̃+
` , G̃

−
`] operates row-wise on its inputs.

89

Fixed Points: We note that the fixed points of the ML-Mat-VAMP algorithm can be

shown to be KKT points of the variational formulations of (4.11), omitted here due to lack of

space. This is a direct extention of results from Section 3 of [115]. In particular, we can show

that the ML-Mat-VAMP in the MAP inference case is a preconditioned Peaceman-Rachford

splitting ADMM type algorithm [147].

4.4 Analysis in the Large System Limit

We follow the analysis framework of the ML-VAMP work [42,112], which is itself based on the

original AMP analysis in [10]. This analysis is based on considering the asymptotics of certain

large random problem instances. We essentially show that under certain assumptions, as the

dimension goes to infinity the behavior of the ML-Mat-VAMP algorithm can be characterized

by a set of equations that describe how the distribution of rows of hidden matrices evolve

at each iteration of the algorithm for all the layers. Specifically, we consider a sequence of

problems (4.1) indexed by N such that for each problem the dimensions n`(N) are growing

so that limN→∞
n`
N

= β` ∈ (0,∞) are scalar constants. Note that d is finite and does not

grow with N .

Distributions of weight matrices: For ` = 1, 3, . . . , L − 1, we assume that the weight

matrices W` are generated via the singular value decomposition, W` = V` Diag(S`)V −̀1 where

V` ∈ Rn`×n` are Haar distributed over orthonormal matrices and S` = (s`,1, . . . , s`,min{n`,n −̀1}).

We will describe the distribution of the components S` momentarily.

Assumption on Denoisers: We assume that the non-linear denoisers G±2k act row-

wise on their inputs (R−2k,R
+
2k−1). Further these operators and their Jacobian matrices

∂G+
2k

∂R−2k
,
∂G−2k
∂R+

2k−1

,
∂G+

0

∂R−0
,
∂G−L
∂R+

L−1

are uniformly Lipschitz continuous, the definition of which is pro-

vided in B.2.

90

Assumption on initialization, true variables: The distribution of the remaining vari-

ables is described by a weak limit: For a matrix sequence X := X(N) ∈ RN×d, by the

notation X 2
=⇒ X we mean that there exists a random variable X in Rd with E‖X‖2 <∞

such that lim
N→∞

1
N

∑N
i=1 ψ(Xi:) = Eψ(X) almost surely, for any bounded continuous function

ψ : Rd → R, as well as for quadratic functions x>Px for any P ∈ Rd×d
�0 . This is also referred

to as Wasserstein-2 convergence [99]. For e.g., this property is satisfied for a random X with

i.i.d. rows with bounded second moments, but is more general, since it applies to deterministic

matrix sequences as well. More details on this weak limit are given in B.2.

Let B` := VT
` B`, and S` ∈ Rn` be the zero-padded vector of singular values of W`, and let

τ−0` ∈ Rd×d
�0 . Then we assume that the following empirical convergences hold.(Ξ`,R

−
0`−Z0

`)
2
=⇒

(Ξ`, Q
−
0`) for even ` and (S`,B`,Ξ`,V

>
` (R−0` − Z0

`))
2
=⇒ (S`, B`,Ξ`, Q

−
0`), for odd `. Here

S` ∈ R≥0 is bounded, B` ∈ Rd is bounded, Ξ2 −̀1 ∼ N (0,N−1
2 −̀1), and Q−0` ∼ N (0,Γ

−
0`), for

` = 0, 1, . . . , L− 1 are all pairwise independent random variables. Additionally, we assume

that Z0
0

2
=⇒ Z0 and that the sequence of initial matrices {Γ−0`} satisfies the following pointwise

convergence

Γ−0`(N)→ Γ
−
0`, ` = 0, 1, . . . , L− 1 (4.16)

4.4.1 Main Result

The main result of this paper concerns the empirical distribution of the rows [Ẑ±`]n:, [R
±
`]n:

of the iterates of Algorithm 4. It characterizes the asymptotic behaviour of these empirical

distributions in terms of d-dimensional random vectors which are either Gaussians or functions

of Gaussians. Let G±` denote maps R1×d → R1×d, such that (4.13), i.e., [G±` (R−` ,R
+
−̀1,Θ)]n: =

G±` ([R−`]n:, [R
+
−̀1]n:,Θ). Having stated the requisite definitions and assumptions, we can now

state our main result.

Theorem 9. For a fixed iteration index k ≥ 0, there exist deterministic matrices K+
k` ∈

91

R2d×2d
�0 , and τ−k`,Γ

+

k` and Γ
−
k`,∈ Rd×d

�0 such that for even `:(
Z0
−̀1,Z

0
` , Ẑ

−
k, −̀1, Ẑ

+
k`

)
2
=⇒
(
A, Ã, G−` (C + Ã,B + A,Γ

−
k`,Γ

+

k, −̀1), G+
` (C + Ã,B + A,Γ

−
k`,Γ

+

k, −̀1)

)
where (A,B) ∼ N (0,K+

k, −̀1), C ∼ N (0, τ−k`), Ã = φ`(A,Ξ`) and (A,B),C are independent.

For ` = 0, the same result holds where the 1st and 3rd terms are dropped, whereas for ` = L,

the 2nd and 4th terms are dropped. Similarly, for odd `:(
VT
−̀1Z

0
−̀1, VT

−̀1Z
0
` , V`Ẑ

−
k, −̀1, V`Ẑ

+
k`

)
2
=⇒(

A, Ã, G−` (C + Ã,B + A,Γ
−
k`,Γ

+

k, −̀1), G+
` (C + Ã,B + A,Γ

−
k`,Γ

+

k, −̀1)

)
where (A,B) ∼ N (0,K+

k, −̀1), C ∼ N (0, τ−k`), Ã = S` A+B`+Ξ` and (A,B),C are independent.

Furthermore for ` = 0, 1, . . . L− 1, we have

(Γ±k`,Λ
±
k`)

a.s.−−→ (Γ
±
k`,Λ

±
k`).

The parameters in the distribution, {K+
k`, τ

−
k`,Γ

±
k`,Λ

±
k`} are deterministic and can be

computed via a set of recursive equations called the state evolution or SE. The SE equations

are provided in B.1 The result is similar to those for ML-VAMP in [42,115] except that the

SE equations for ML-Mat-VAMP involve d× d and 2d× 2d matrix terms; the ML-VAMP SE

only requires scalar and 2× 2 matrix terms. The result holds for both MAP inference and

MMSE inference, the only difference is implicit, i.e., the choice of denoiser G`(·) from eqn.

(4.13).

The importance of Theorem 9 is that the rows of the iterates of the ML-Mat-VAMP

Algorithm (Ẑ−k, −̀1, Ẑ
+
k` in Algorithm 4) and the rows of the corresponding true values, Z0

−̀1,Z
0
` ,

have a simple, asymptotic random vector description of a typical row. We will call this

the “row-wise" model. According to this model, for even `, the rows of Z0
−̀1 converge to a

Gaussian A ∈ Rd and the rows of Z0
` converge to the output of the Gaussian through the

row-wise function φ`, Ã = φ`(A,Ξ`). Then the rows of the estimates Ẑ−k, −̀1, Ẑ
+
k` asymptotically

approach the outputs of row-wise estimation function G−(·) and G+(·) supplied by A and Ã

92

Figure 4.2: Test error in learning the first layer of a 2 layer neural network using ADAM-based
gradient descent, ML-Mat-VAMP and its state evolution prediction.

corrupted with Gaussian noise. A similar convergence holds for odd `.

This “row-wise" model enables exact an analysis of the performance of the estimates at

each iteration. For example, to compute a weighted mean squared error (MSE) metric at

iteration k, the convergence shows that,

1
n`

∥∥∥Ẑ+
k` − Z0

`

∥∥∥2

H

a.s.−−→ E‖G+
` (C + Ã,B + A,Θk`)− Ã‖2

H,

for even ` and any positive semi-definite matrix H ∈ Rd×d. The norm on the left-hand

above acts row-wise, ‖Z‖2
H :=

∑
i ‖Zi:‖2

H. Hence, this asymptotic MSE can be evaluated via

expectations of d-dimensional variables from the SE. Similarly, one can obtain exact answers

for any other row-wise performance metric of {(Ẑ±k`,Z0
`)}` for any k.

4.5 Numerical Experiments

We consider the problem of learning the input layer of a two layer neural network as described

in Section 4.2.3. We learn the weights F1 of the first layer of a two-layer network by solving

problem (4.9). The large system limit analysis in this case corresponds to the input size nin

and number of samples N going to infinity with the number of hidden units being fixed. Our

experiment take d = 4 hidden units, Nin = 100 input units, Nout = 1 output unit, sigmoid

activations and variable number of samples N . The weight vectors F1 and F2 are generated

as i.i.d. Gaussians with zero mean and unit variance. The input X is also i.i.d. Gaussians

93

with variance 1/Nin so that the average pre-activation has unit variance. Output noise is

added at two levels of 10 and 15 dB relative to the mean. We generate 1000 test samples

and a variable number of training samples that ranges from 200 to 4000. For each trial and

number of training samples, we compare three methods: (i) MAP estimation where the MAP

loss function is minimized by the ADAM optimizer [76] in the Keras package of Tensorflow;

(ii) Algorithm 4 run for 20 iterations and (iii) the state evolution prediction. The ADAM

algorithm is run for 100 epochs with a learning rate = 0.01. The expectations in the SE are

estimated via Monte-Carlo sampling (hence there is some variation).

Given an estimate F̂1 and true value F0
1, we can compute the test error as follows: Given

a new sample x, the true and predicted pre-activations will be z1 = (F0
1)

Tx and ẑ1 = F̂T
1 x.

Thus, if the new sample x ∼ N (0, 1
Nin

I), the true and predicted pre-activations, (z1, ẑ1), will

be jointly Gaussian with covariance equal to the empirical 2d× 2d covariance matrix of the

rows of F0
1 and F̂1:

K := 1
Nin

∑Nin

k=1 uT
kuk, uk =

[
F1,k: F̂1,k:

]
(4.17)

From this covariance matrix, we can estimate the test error, E|y− ŷ|2 = E|FT
2 (σ(z1)−σ(ẑ1)|2,

where the expectation is taken over the Gaussian (z1, ẑ1) with covariance K. Also, since

(4.17) is a row-wise operation, it can be predicted from the ML-Mat-VAMP SE. Thus, the

SE can also predict the asymptotic test error. The normalized test error for ADAM-MAP,

ML-Mat-VAMP and the ML-Mat-VAMP SE are plotted in Fig. 4.2. The normalized test

error is defined as the ratio of the MSE on the test samples to the optimal MSE. Hence, a

normalized MSE of one is the minimum value.

Note that since ADAM and ML-Mat-VAMP are solving the same optimization problem,

they perform similarly as expected. The main message of this paper is not to develop an

algorithm that outperforms ADAM, but rather an algorithm that has theoretical guarantees.

The key property of ML-Mat-VAMP is that its asymptotic behavior at all the iterations

can be exactly predicted by the state evolution equations. In this example, Fig. 4.2 shows

94

that the normalized test MSE predicted via state evolution (plotted in green) matches the

normalized MSE of ML-Mat-VAMP estimates (plotted in orange).

4.6 Discussion

We have developed a general framework for analyzing inference in multi-layer networks with

matrix valued quantities in certain high-dimensional random settings. For learning the input

layer of a two layer network, the methods enables precise predictions of the expected test

error as a function of the parameter statistics, numbers of samples and noise level. This

analysis can be valuable in understanding key properties such as generalization error, for

example using ML-VAMP, Emami et al. [39] characterizes the generalization error of GLMs

under a variety of feature distributions and train-test mismatch. Future work will look to

extend these to more complex networks.

95

Algorithm 4 Multilayer Matrix VAMP (ML-Mat-VAMP)
Require: Estimators G+

0 , G−L , {G
±
` }

L−1
`=1 .

1: Set R−0` = 0 ∈ Rn`×d and initialize {Γ−0`}
L−1
`=0 ∈ Rd×d

�0 .
2: for k = 0, 1, . . . , Nit − 1
3: // Forward Pass
4: Ẑ+

k0 = G+
0 (R−k0,Γ

−
k0)

5: Λ+
k0 =

〈
∂G+

0

∂R−0
(R−k0,Γ

−
k0)
〉−1

Γ−k,0,

6: Γ+
k,0 = Λ+

k,0 − Γ−k,0
7: R+

k,0 = (Ẑ+
k,0Λ

+
k,0 −R−k,0Γ

−
k,0)(Γ+

k,0)−1

8: for ` = 1, . . . , L−1 do
9: Ẑ+

k` = G+
` (R−k`,R

+
k, −̀1,Γ

−
k`,Γ

+
k, −̀1)

10: Λ+
k` =

〈
∂G+

`

∂R−`
(. . .)

〉−1

Γ−k`,

11: Γ+
k` = Λ+

k` − Γ−k`
12: R+

k` = (Ẑ+
k`Λ

+
k` −R−k`Γ

−
k`)(Γ

+
k`)
−1

13: end for
14:
15: // Backward Pass
16: Ẑ−k,L−1 = G−L(R+

k,L−1,Γ
+
k,L−1)

17: Λ−k,L−1 =
〈

∂G−L
∂R+

L−1
(R+

k,L−1,Γ
+
k,L−1)

〉−1

Γ+
k,L−1,

18: Γ−k,L−1 = Λ−k,L−1 − Γ+
k,L−1

19: R−k+1,L−1 = (Ẑ−k,L−1Λ
−
k,L−1 −R+

k,0Γ
+
k,0)(Γ−k,0)−1

20: for ` = L−1, . . . , 1 do
21: Ẑ−k+1, −̀1 =G−` (R−k+1,`,R

+
k, −̀1,Γ

−
k+1,`,Γ

+
k, −̀1)

22: Λ−k+1, −̀1 =
〈
∂G−`
∂R+
−̀1

(· · ·)
〉−1

Γ+
k, −̀1,

23: Γ−k+1,` = Λ−k` − Γ+
k`

24: R−k+1, −̀1 = (Ẑ−k`Λ
−
k` −R+

k`Γ
+
k`)(Γ

−
k+1,`)

−1

25: end for
26: end for

96

Chapter 5

Generalization Error of Learning in

Generalized Linear Models

At the heart of machine learning lies the question of generalizability of learned rules over

previously unseen data. While over-parameterized models based on neural networks are

now ubiquitous in machine learning applications, our understanding of their generalization

capabilities is incomplete and this task is made harder by the non-convexity of the underlying

learning problems. We provide a general framework to characterize the asymptotic general-

ization error for single-layer neural networks (i.e., generalized linear models) with arbitrary

non-linearities, making it applicable to regression as well as classification problems. This

framework enables analyzing the effect of (i) over-parameterization and non-linearity during

modeling; (ii) choices of loss function, initialization, and regularizer during learning; and (iii)

mismatch between training and test distributions. As examples, we analyze a few special

cases, namely linear regression and logistic regression. We are also able to rigorously and

analytically explain the double descent phenomenon in generalized linear models.

This chapter is based on the work [39] coauthored with Melikasadat Emami, Mojtaba Sahraee-Ardakan,
Sundeep Rangan and Alyson K. Fletcher, and was published at ICML 2020.

97

5.1 Introduction

A fundamental goal of machine learning is generalization: the ability to draw inferences about

unseen data from finite training examples. Methods to quantify the generalization error are

therefore critical in assessing the performance of any machine learning approach.

This paper seeks to characterize the generalization error for a class of generalized linear

models (GLMs) of the form

y = φout(
〈
x,w0

〉
, d), (5.1)

where x ∈ Rp is a vector of input features, y is a scalar output, w0 ∈ Rp are weights to

be learned, φout(·) is a known link function, and d is random noise. The notation 〈x,w0〉

denotes an inner product. We use the superscript “0" to denote the “true" values in contrast

to estimated or postulated quantities. The output may be continuous or discrete to model

either regression or classification problems.

We measure the generalization error in a standard manner: we are given training data

(xi, yi), i = 1, . . . , N from which we learn some parameter estimate ŵ via a regularized

empirical risk minimization of the form

ŵ = argmin
w

Fout(y,Xw) + Fin(w), (5.2)

where X = [x1 x2 . . . xN]T, is the data matrix, Fout is some output loss function, and Fin is

some regularizer on the weights. We are then given a new test sample, xts, for which the true

and predicted values are given by

yts = φout(
〈
xts,w

0
〉
, dts), ŷts = φ(〈xts, ŵ〉), (5.3)

where dts is the noise in the test sample, and φ(·) is a postulated inverse link function that

may be different from the true function φout(·). The generalization error is then defined as

the expectation of some expected loss between yts and ŷts of the form

E fts(yts, ŷts), (5.4)

for some test loss function fts(·) such as squared error or prediction error.

98

Even for this relatively simple GLM model, the behavior of the generalization error is not

fully understood. Recent works [29,93,99,136] have characterized the generalization error

of various linear models for classification and regression in certain large random problem

instances. Specifically, the number of samples N and number of features p both grow without

bound with their ratio satisfying p/N → β ∈ (0,∞), and the samples in the training data xi

are drawn randomly. In this limit, the generalization error can be exactly computed. The

analysis can explain the so-called double descent phenomena [11]: in highly under-regularized

settings, the test error may initially increase with the number of data samples N before

decreasing. See the prior work section below for more details.

Summary of Contributions. Our main result (Theorem 10) provides a procedure for

exactly computing the asymptotic value of the generalization error (5.4) for GLM models

in a certain random high-dimensional regime called the Large System Limit (LSL). The

procedure enables the generalization error to be related to key problem parameters including

the sampling ratio β = p/N , the regularizer, the output function, and the distributions of the

true weights and noise. Importantly, our result holds under very general settings including:

(i) arbitrary test metrics fts;

(ii) arbitrary training loss functions Fout as well as decomposable regularizers Fin;

(iii) arbitrary link functions φout;

(iv) correlated covariates x;

(v) underparameterized (β < 1) and overparameterized regimes (β > 1); and

(vi) distributional mismatch in training and test data.

Section 5.4 discusses in detail the general assumptions on the quantities fts, Fout, Fin, and

φout under which Theorem 10 holds.

99

Prior Work. Many recent works characterize generalization error of various machine

learning models, including special cases of the GLM model considered here. For example, the

precise characterization for asymptotics of prediction error for least squares regression has

been provided in [12, 55, 102]. The former confirmed the double descent curve of [11] under a

Fourier series model and a noisy Gaussian model for data in the over-parameterized regime.

The latter also obtained this scenario under both linear and non-linear feature models for

ridge regression and min-norm least squares using random matrix theory. Also, [1] studied

the same setting for deep linear and shallow non-linear networks.

The analysis of the the generalization for max-margin linear classifiers in the high

dimensional regime has been done in [99]. The exact expression for asymptotic prediction

error is derived and in a specific case for two-layer neural network with random first-layer

weights, the double descent curve was obtained. A similar double descent curve for logistic

regression as well as linear discriminant analysis has been reported by [29]. Random feature

learning in the same setting has also been studied for ridge regression in [93]. The authors

have, in particular, shown that highly over-parametrized estimators with zero training error

are statistically optimal at high signal-to-noise ratio (SNR). The asymptotic performance

of regularized logistic regression in high dimensions is studied in [136] using the Convex

Gaussian Min-max Theorem in the under-parametrized regime. The results in the current

paper can consider all these models as special cases. Bounds on the generalization error of

over-parametrized linear models are also given in [9, 107].

Although this paper and several other recent works consider only simple linear models

and GLMs, much of the motivation is to understand generalization in deep neural networks

where classical intuition may not hold [13, 107, 166]. In particular, a number of recent papers

have shown the connection between neural networks in the over-parametrized regime and

kernel methods. The works [26,27] showed that gradient descent on over-parametrized neural

networks learns a function in the RKHS corresponding to the random feature kernel. Training

dynamics of overparametrized neural networks has been studied by [2, 4, 36, 69], and it is

100

shown that the function learned is in an RKHS corresponding to the neural tangent kernel.

Approximate Message Passing. Our key tool to study the generalization error is ap-

proximate message passing (AMP), a class of inference algorithms originally developed

in [10,32,34] for compressed sensing. We show that the learning problem for the GLM can

be formulated as an inference problem on a certain multi-layer network. Multi-layer AMP

methods [42, 61, 91, 114] can then be applied to perform the inference. The specific algorithm

we use in this work is the multi-layer vector AMP (ML-VAMP) algorithm of [42,114] which

itself builds on several works [19,45,86,111,127]. The ML-VAMP algorithm is not necessarily

the most computationally efficient procedure for the minimization (5.2). For our purposes,

the key property is that ML-VAMP enables exact predictions of its performance in the

large system limit. Specifically, the error of the algorithm estimates in each iteration can be

predicted by a set of deterministic recursive equations called the state evolution or SE. The

fixed points of these equations provide a way of computing the asymptotic performance of

the algorithm. In certain cases, the algorithm can be proven to be Bayes optimal [7, 47, 131].

This approach of using AMP methods to characterize the generalization error of GLMs

was also explored in [7] for i.i.d. distributions on the data. The explicit formulae for the

asymptotic mean squared error for the regularized linear regression with rotationally invarient

data matrices is proved in [50]. The ML-VAMP method in this work enables extensions to

correlated features and to mismatch between training and test distributions.

5.2 Generalization Error: System Model

We consider the problem of estimating the weights w in the GLM model (5.1). As stated in the

Introduction, we suppose we have training data {(xi, yi)}Ni=1 arranged as X := [x1 x2 . . .xN]T ∈

RN×p, y := [y1 y2 . . . yN]T ∈ RN . Then we can write

y = φout(Xw0,d), (5.5)

101

where φout(z,d) is the vector-valued function such that [φout(z,d)]n = φout(zn, dn) and {dn}Nn=1

are general noise.

Given the training data (X,y), we consider estimates of w0 given by a regularized

empirical risk minimization of the form (5.2). We assume that the loss function Fout and

regularizer Fin are separable functions, i.e., one can write

Fout(y, z) =
N∑
n=1

fout(yn, zn), Fin(w) =

p∑
j=1

fin(wj), (5.6)

for some functions fout : R2 → R and fin : R→ R. Many standard optimization problems in

machine learning can be written in this form: logistic regression, support vector machines,

linear regression, Poisson regression.

Large System Limit: We follow the LSL analysis of [10] commonly used for analyzing

AMP-based methods. Specifically, we consider a sequence of problems indexed by the number

of training samples N . For each N , we suppose that the number of features p = p(N) grows

linearly with N , i.e.,

lim
N→∞

p(N)

N
→ β (5.7)

for some constant β ∈ (0,∞). Note that β > 1 corresponds to the over-parameterized regime

and β < 1 corresponds to the under-parameterized regime.

True parameter: We assume the true weight vector w0 has components whose empirical

distribution converges as

lim
N→∞

{w0
n}

PL(2)
= W 0, (5.8)

for some limiting random variable W 0. The precise definition of empirical convergence is

given in Appendix 2.6.1. It means that the empirical distribution 1
p

∑p
i=1 δwi converges, in the

Wasserstein-2 metric (see Chap. 6 [157]), to the distribution of the finite-variance random

variable W 0. Importantly, the limit (5.8) will hold if the components {w0
i }
p
i=1 are drawn i.i.d.

from the distribution of W 0 with E(W 0)2 < ∞. However, as discussed in Appendix 2.6.1,

the convergence can also be satisfied by correlated sequences and deterministic sequences.

102

Training data input: For each N , we assume that the training input data samples,

xi ∈ Rp, i = 1, . . . , N , are i.i.d. and drawn from a p-dimensional Gaussian distribution with

zero mean and covariance Σtr ∈ Rp×p. The covariance can capture the effect of features

being correlated. We assume the covariance matrix has an eigenvalue decomposition,

Σtr = 1
p
VT

0 diag(s2
tr)V0, (5.9)

where s2
tr are the eigenvalues of Σtr and V0 ∈ Rp×p is the orthogonal matrix of eigenvectors.

The scaling 1
p
ensures that the total variance of the samples, E‖xi‖2, does not grow with N .

We will place a certain random model on str and V0 momentarily.

Using the covariance (5.9), we can write the data matrix as

X = U diag(str)V0, (5.10)

where U ∈ RN×p has entries drawn i.i.d. from N (0, 1
p
). For the purpose of analysis, it is

useful to express the matrix U in terms of its SVD:

U = V2SmpV1, Smp :=

 diag(smp) 0

0 ∗

 (5.11)

where V1 ∈ RN×N and V2 ∈ Rp×p are orthogonal and Smp ∈ RN×p with non-zero entries

smp ∈ R
min
{
N,p}

only along the principal diagonal. smp are the singular values of U. A

standard result of random matrix theory is that, since U is i.i.d. Gaussian with entries

N (0, 1
p
), the matrices V1 and V2 are Haar-distributed on the group of orthogonal matrices

and smp is such that

lim
N→∞

{smp,i}
PL(2)

= Smp, (5.12)

where Smp ≥ 0 is a non-negative random variable such that S2
mp satisfies the Marcencko-Pastur

distribution. Details on this distribution are in Appendix 2.9.

Training data output: Given the input data X, we assume that the training outputs

y are generated from (5.5), where the noise d is independent of X and has an empirical

103

distribution which converges as

lim
N→∞

{di}
PL(2)

= D. (5.13)

Again, the limit (5.13) will be satisfied if {di}Ni=1 are i.i.d. draws of random variable D with

bounded second moments.

Test data: To measure the generalization error, we assume now that we are given a test

point xts, and we obtain the true output yts and predicted output ŷts given by (5.3). We

assume that the test data inputs are also Gaussian, i.e.,

xT
ts = uTdiag(sts)V0, (5.14)

where u ∈ Rp has i.i.d. Gaussian components, N (0, 1
p
), and sts and V0 are the eigenvalues

and eigenvectors of the test data covariance matrix. That is, the test data sample has a

covariance matrix

Σts = 1
p
VT

0 diag(s2
ts)V0. (5.15)

In comparison to (5.9), we see that we are assuming that the eigenvectors of the training and

test data are the same, but the eigenvalues may be different. In this way, we can capture

distributional mismatch between the training and test data. For example, we will be able to

measure the generalization error when the test sample is outside a subspace explored by the

training data.

To capture the relation between the training and test distributions, we assume that

components of str and sts converge as

lim
N→∞

{(str,i, sts,i)}
PL(2)

= (Str, Sts), (5.16)

to some non-negative, bounded random vector (Str, Sts). The joint distribution on (Str, Sts)

captures the relation between the training and test data.

When Str = Sts, our model corresponds to the case when the training and test distribution

are matched. Isotropic Gaussian features in both training and test data correspond to

covariance matrices Σtr = 1
p
σ2

trI, Σts = 1
p
σ2

tsI, which can be modeled as Str = σtr, Sts = σts.

104

We also require that the matrix V0 is uniformly distributed on the set of p× p orthogonal

matrices.

Generalization error: From the training data, we obtain an estimate ŵ via a regularized

empirical risk minimization (5.2). Given a test sample xts and parameter estimate ŵ, the true

output yts and predicted output ŷtr are given by equation (5.3). We assume the test noise is

distributed as dts ∼ D, following the same distribution as the training data. The postulated

inverse-link function φ(·) in (5.3) may be different from the true inverse-link function φout(·).

The generalization error is defined as the asymptotic expected loss,

Ets := lim
N→∞

Efts(ŷts, yts), (5.17)

where fts(·) is some loss function relevant for the test error (which may be different from the

training loss). The expectation in (5.17) is with respect to the randomness in the training as

well as test data, and the noise. Our main result provides a formula for the generalization

error (5.17).

5.3 Learning GLMs via ML-VAMP

There are many methods for solving the minimization problem (5.2). We apply the ML-

VAMP algorithm of [42, 112]. This algorithm is not necessarily the most computationally

efficient method. For our purposes, however, the algorithm serves as a constructive proof

technique, i.e., it enables exact predictions for generalization error in the LSL as described

above. Moreover, in the case when loss function (5.2) is strictly convex, the problem has a

unique global minimum, whereby the generalization error of this minimum is agnostic to the

choice of algorithm used to find this minimum. To that end, we start by reformulating (5.2)

in a form that is amicable to the application of ML-VAMP, Algorithm 5.

Multi-Layer Representation. The first step in applying ML-VAMP to the GLM learning

problem is to represent the mapping from the true parameters w0 to the output y as a certain

105

V0 φ1(·) V1 φ2(·) V2 φ3(·)
z0

3 = yz0
0 = w0

p0
0 z0

1 p0
1 z0

2 p0
2 = Xw0

ξ1 ξ2 ξ3

Figure 5.1: Sequence flow representing the mapping from the unknown parameter values w0

to the vector of responses y on the training data.

multi-layer network. We combine (5.5), (5.10) and (5.11), so that the mapping w0 7→ y can

be written as the following sequence of operations (as illustrated in Fig. 5.1):

z0
0 := w0, p0

0 := V0z
0
0,

z0
1 := φ1(p0

0, ξ1), p0
1 := V1z

0
1,

z0
2 := φ2(p0

1, ξ2), p0
2 := V2z

0
2,

z0
3 := φ3(p0

2, ξ3) = y,

(5.18)

where ξ` are the following vectors:

ξ1 := str, ξ2 := smp, ξ3 := d, (5.19)

and the functions φ`(·) are given by

φ1(p0, str) := diag(str)p0,

φ2(p1, smp) := Smpp1,

φ3(p2,d) := φout(p2,d).

(5.20)

We see from Fig. 5.1 that the mapping of true parameters w0 = z0
0 to the observed response

vector y = z0
3 is described by a multi-layer network of alternating orthogonal operators V`

and non-linear functions φ`(·). Let L = 3 denote the number of layers in this multi-layer

network.

The minimization (5.2) can also be represented using a similar signal flow graph. Given a

106

parameter candidate w, the mapping w 7→ Xw can be written using the sequence of vectors

z0 := w, p0 := V0z0,

z1 := Strp0, p1 := V1z1,

z2 := Smpp1, p2 := V2z2 = Xw.

(5.21)

There are L = 3 steps in this sequence, and we let

z = {z0, z1, z2}, p = {p0,p1,p2}

denote the sets of vectors across the steps. The minimization in (5.2) can then be written in

the following equivalent form:

min
z,p

F0(z0) + F1(p0, z1) + F2(p1, z1) + F3(p2)

subject to p` = V`z`, ` = 0, 1, 2,

(5.22)

where the penalty functions F` are defined as

F0(·) = Fin(·), F1(·, ·) =δ{z1=Strp0}(·, ·),

F2(·, ·) = δ{z2=Smpp1}(·, ·), F3(·) =Fout(y, ·),
(5.23)

where δA(·) is 0 on the set A, and +∞ on Ac.

ML-VAMP for GLM Learning. Using this multi-layer representation, we can now apply

the ML-VAMP algorithm from [42, 112] to solve the optimization (5.22). The steps are

shown in Algorithm 5. These steps are a special case of the “MAP version" of ML-VAMP

in [112], but with a slightly different set-up for the GLM problem. We will call these steps

the ML-VAMP GLM Learning Algorithm.

The algorithm operates in a set of iterations indexed by k. In each iteration, a “forward

pass" through the layers generates estimates ẑk` for the hidden variables z0
` , while a “backward

pass" generates estimates p̂k` for the variables p0
` . In each step, the estimates ẑk` and p̂k`

are produced by functions g+
` (·) and g−` (·) called estimators or denoisers.

For the MAP version of ML-VAMP algorithm in [112], the denoisers are essentially

107

Algorithm 5 ML-VAMP GLM Learning Algorithm
1: Initialize γ−0` > 0, r−0` = 0 for ` = 0, . . . , L−1
2:
3: for k = 0, 1, . . . do
4: // Forward Pass
5: for ` = 0, . . . , L− 1 do
6: if ` = 0 then
7: ẑk0 = g+

0 (r−k0, γ
−
k0)

8: else
9: ẑk` = g+

` (r+
k, −̀1, r

−
k`, γ

+
k, −̀1, γ

−
k`)

10: end if
11: α+

k` =
〈
∂ẑk`/∂r−k`

〉
12: r+

k` =
V`(ẑk` − α+

k`r
−
k`)

1− α+
k`

13: γ+
k` = (1/α+

k` − 1)γ−k`
14: end for
15:
16: // Backward Pass
17: for ` = L, . . . , 1 do
18: if ` = L then
19: p̂k,L−1 = g−L (r+

k,L−1, γ
+
k,L−1)

20: else
21: p̂k, −̀1 = g−` (r+

k, −̀1, r
−
k+1,`, γ

+
k, −̀1, γ

−
k+1,`)

22: end if
23: α−k, −̀1 =

〈
∂p̂k, −̀1/∂r+

k, −̀1

〉
24: r−k+1, −̀1 =

VT
−̀1(p̂k, −̀1 − α−k, −̀1r

+
k, −̀1)

1− α−k, −̀1

25: γ−k+1, −̀1 = (1/α−k, −̀1 − 1)γ+
k, −̀1

26: end for
27: end for

proximal-type operators defined as

proxF/γ(u) := argmin
x

F (x) + γ
2
‖x− u‖2 . (5.24)

An important property of the proximal operator is that for separable functions F of the form

(5.6), we have [proxF/γ(u)]i = proxf/γ(ui).

In the case of the GLM model, for ` = 0 and L, on lines 7 and 19, the denoisers are

108

proximal operators given by

g+
0 (r−0 , γ

−
0) = proxFin/γ

−
0

(r−0), (5.25a)

g−3 (r+
2 ,y, γ

+
2) = proxFout/γ

+
2

(r+
2). (5.25b)

Note that in (5.25b), there is a dependence on y through the term Fout(y, ·). For the middle

terms, ` = 1, 2, i.e., lines 9 and 21, the denoisers are given by

g+
` (r+

−̀1, r
−
` , γ

+
−̀1, γ

−
`) := ẑ`, (5.26a)

g−` (r+
−̀1, r

−
` , γ

+
−̀1, γ

−
`) := p̂ −̀1, (5.26b)

where (p̂ −̀1, ẑ`) are the solutions to the minimization

(p̂ −̀1, ẑ`) := argmin
(p −̀1,z`)

F`(p −̀1, z`) +
γ−`
2
‖z` − r−` ‖

2

+
γ+
−̀1

2
‖p −̀1 − r+

−̀1‖
2. (5.27)

The quantity 〈∂v/∂u〉 on lines 11 and 23 denotes the empirical mean 1
N

∑N
n=1 ∂vn/∂un.

Thus, the ML-VAMP algorithm in Algorithm 5 reduces the joint constrained minimization

(5.22) over variables (z0, z1, z2) and (p0,p1,p2) to a set of proximal operations on pairs of

variables (p −̀1, z`). As discussed in [112], this type of minimization is similar to ADMM with

adaptive step-sizes. Details of the denoisers g±` and other aspects of the algorithm are given

in Appendix C.1.

5.4 Main Result

We make two assumptions. The first assumption imposes certain regularity conditions on

the functions fts, φ, φout, and maps g±` appearing in Algorithm 5. The precise definitions of

pseudo-Lipschitz continuity and uniform Lipschitz continuity are given in Appendix 2.6.1 of

the supplementary material.

Assumption 1. The denoisers and link functions satisfy the following continuity conditions:

109

(a) The proximal operators in (5.25),

g+
0 (r−0 , γ

−
0), g−3 (r+

2 ,y, γ
+
2),

are uniformly Lipschitz continuous in r−0 and (r+
2 ,y) over parameters γ−0 and γ+

2 .

(b) The link function φout(p, d) is Lipschitz continuous in (p, d). The test error function

fts(φ(ẑ), φout(z, d)) is pseduo-Lipschitz continuous in (ẑ, z, d) of order 2.

Our second assumption is that the ML-VAMP algorithm converges. Specifically, let

xk = xk(N) be any set of outputs of Algorithm 5, at some iteration k and dimension N . For

example, xk(N) could be ẑk`(N) or p̂k`(N) for some `, or a concatenation of signals such as[
z0
`(N) ẑk`(N)

]
.

Assumption 2. Let xk(N) be any finite set of outputs of the ML-VAMP algorithm as above.

Then there exist limits

x(N) = lim
k→∞

xk(N) (5.28)

satisfying

lim
k→∞

lim
N→∞

1

N
‖xk(N)− x(N)‖2 = 0. (5.29)

We are now ready to state our main result.

Theorem 10. Consider the GLM learning problem (5.2) solved by applying Algorithm 5 to

the equivalent problem (5.22) under the assumptions of Section 5.2 along with Assumptions 1

and 2. Then, there exist constants τ−0 , γ
+
0 > 0 and M ∈ R2×2

�0 such that the following hold:

(a) The fixed points {ẑ`, p̂`}, ` = 0, 1, 2 of Algorithm 5 satisfy the KKT conditions for the

constrained optimization problem (5.22). Equivalently ŵ := ẑ0 is a stationary point of

(5.2).

(b) The true parameter w0 and its estimate ŵ empirically converge as

lim
N→∞

{(w0
i , ŵi)}

PL(2)
= (W 0, Ŵ), (5.30)

110

where W 0 is the random variable from (5.8) and

Ŵ = proxfin/γ+0 (W 0 +Q−0), (5.31)

with Q−0 = N (0, τ−0) independent of W 0.

(c) The asymptotic generalization error (5.17) with (yts, ŷts) defined as (5.3) is given by

Ets = E fts

(
φout(Zts, D), φ(Ẑts)

)
, (5.32)

where (Zts, Ẑts) ∼ N (02,M) and independent of D.

Part (a) shows that, similar to gradient descent, Algorithm 5 finds the stationary points

of problem (5.2). These stationary points will be unique in strictly convex problems such

as linear and logistic regression. Thus, in such cases, the same results will be true for any

algorithm that finds such stationary points. Hence, the fact that we are using ML-VAMP is

immaterial – our results apply to any solver for (5.2). Note that the convergence to the fixed

points {ẑ`, p̂`} is assumed from Assumption 2.

Part (b) provides an exact description of the asymptotic statistical relation between the

true parameter w0 and its estimate ŵ. The parameters τ−0 , γ
+
0 > 0 and M can be explicitly

computed using a set of recursive equations called the state evolution or SE described in

Appendix C.2 in the supplementary material.

We can use the expressions to compute a variety of relevant metrics. For example, the

PL(2) convergence shows that the MSE on the parameter estimate is

lim
N→∞

1

N

N∑
n=1

(w0
n − ŵn)2 = E(W 0 − Ŵ)2. (5.33)

The expectation on the right hand side of (5.33) can then be computed via integration over

the joint density of (W 0, Ŵ) from part (b). In this way, we have a simple and exact method

to compute the parameter error. Other metrics such as parameter bias or variance, cosine

angle or sparsity detection can also be computed.

Part (c) of Theorem 10 similarly exactly characterizes the asymptotic generalization error.

In this case, we would compute the expectation over the three variables (Z, Ẑ,D). In this

111

way, we have provided a methodology for exactly predicting the generalization error from

the key parameters of the problems such as the sampling ratio β = p/N , the regularizer, the

output function, and the distributions of the true weights and noise. We provide several

examples such as linear regression, logistic regression and SVM in the Appendix C.6. We

also recover the result by [55] in Appendix C.6.

Remarks on Assumptions. Note that Assumption 1 is satisfied in many practical cases.

For example, it can be verified that it is satisfied in the case when fin(·) and fout(·) are convex.

Assumption 2 is somewhat more restrictive in that it requires that the ML-VAMP algorithm

converges. The convergence properties of ML-VAMP are discussed in [45]. The ML-VAMP

algorithm may not always converge, and characterizing conditions under which convergence

is possible is an open question. However, experiments in [127] show that the algorithm does

indeed often converge, and in these cases, our analysis applies. In any case, we will see below

that the predictions from Theorem 10 agree closely with numerical experiments in several

relevant cases.

In some special cases equation (5.32) simplifies to yield quantitative insights for interesting

modeling artifacts. We discuss these in Appendix C.6 in the supplementary material.

5.5 Experiments

Training and Test Distributions. We validate our theoretical results on a number of

synthetic data experiments. For all the experiments, the training and test data is generated

following the model in Section 5.2. We generate the training and test eigenvalues as i.i.d.

with lognormal distributions,

S2
tr = A(10)0.1utr , S2

ts = A(10)0.1uts ,

112

where (utr, uts) are bivariate zero-mean Gaussian with

cov(utr, uts) = σ2
u

1 ρ

ρ 1

 .
In the case when σ2

u = 0, we obtain eigenvalues that are equal, corresponding to the i.i.d.

case. With σ2
u > 0 we can model correlated features. Also, when the correlation coefficient

ρ = 1, Str = Sts, so there is no training and test mismatch. However, we can also select ρ < 1

to experiment with cases when the training and test distributions differ. In the examples

below, we consider the following three cases:

(1) i.i.d. features (σu = 0);

(2) correlated features with matching training and test distributions (σu = 3 dB, ρ = 1);

and

(3) correlated features with train-test mismatch (σu = 3 dB, ρ = 0.5).

For all experiments below, the true model coefficients are generated as i.i.d. Gaussian

w0
j ∼ N (0, 1) and we use standard L2-regularization, fin(w) = λw2/2 for some λ > 0. Our

framework can incorporate arbitrary i.i.d. distributions on wj and regularizers, but we will

illustrate just the Gaussian case with L2-regularization here.

Under-regularized linear regression. We first consider the case of under-regularized

linear regression where the output channel is φout(p, d) = p+ d with d ∼ N (0, σ2
d). The noise

variance σ2
d is set for an SNR level of 10 dB. We use a standard mean-square error (MSE) output

loss, fout(y, p) = (y − p)2/(2σ2
d). Since we are using the L2-regularizer, fin(w) = λw2/2, the

minimization (5.2) is standard ridge regression. Moreover, if we were to select λ = 1/E(w0
j)

2,

then the ridge regression estimate would correspond to the minimum mean-squared error

(MMSE) estimate of the coefficients w0. However, to study the under-regularized regime, we

take λ = (10)−4/E(w0
j)

2.

Fig. 5.2 plots the test MSE for the three cases described above for the linear model.

In the figure, we take p = 1000 features and vary the number of samples n from 0.2p

113

Figure 5.2: Test error for under-regularized linear regression under various train and test
distributions

(over-parametrized) to 3p (under-paramertrized). For each value of n, we take 100 random

instances of the model and compute the ridge regression estimate using the sklearn package

and measure the test MSE on the 1000 independent test samples. The simulated values in

Fig. 5.2 are the median test error over the 100 random trials. The test MSE is plotted in a

normalized dB scale,

Test MSE (dB) = 10 log10

(
E(ŷts − yts)

2

Ey2
ts

)
.

Also plotted is the state evolution (SE) theoretical test MSE from Theorem 10.

In all three cases in Fig. 5.2, the SE theory exactly matches the simulated values for the

test MSE. Note that the case of match training and test distributions for this problem was

114

studied in [55, 93, 99] and we see the double descent phenomenon described in their work.

Specifically, with highly under-regularized linear regression, the test MSE actually increases

with more samples n in the over-parametrized regime (n/p < 1) and then decreases again in

the under-parametrized regime (n/p > 1).

Our SE theory can also provide predictions for the correlated feature case. In this

particular setting, we see that in the correlated case the test error is slightly lower in the

over-parametrized regime since the energy of data is concentrated in a smaller sub-space.

Interestingly, there is minimal difference between the correlated and i.i.d. cases for the

under-parametrized regime when the training and test data match. When the training and

test data are not matched, the test error increases. In all cases, the SE theory can accurately

predict these effects.

Logistic Regression. Fig. 5.3 shows a similar plot as Fig. 5.2 for a logistic model. Specifi-

cally, we use a logistic output P (y = 1) = 1/(1 + e−p), a binary cross entropy output loss

fout(y, p), and `2-regularization level λ so that the output corresponds to the MAP estimate

(we do not perform ridgeless regression in this case). The mean of the training and test

eigenvalues ES2
tr = ES2

ts are selected such that, if the true coefficients w0 were known, we

could obtain a 5% prediction error. As in the linear case, we generate random instances of the

model, use the sklearn package to perform the logistic regression, and evaluate the estimates

on 1000 new test samples. We compute the median error rate (1− accuracy) and compare

the simulated values with the SE theoretical estimates. The i.i.d. case was considered in [136].

Fig. 5.3 shows that our SE theory is able to predict the test error rate exactly in i.i.d. cases

along with a correlated case and a case with training and test mismatch.

Nonlinear Regression. The SE framework can also consider non-convex problems. As

an example, we consider a non-linear regression problem where the output function is

φout(p, d) = tanh(p) + d, d ∼ N (0, σ2
d). (5.34)

115

Figure 5.3: Classification error rate with logistic regression under various train and test
distributions

The tanh(p) models saturation in the output. Corresponding to this output, we use a

non-linear MSE output loss

fout(y − p) =
1

2σ2
d

(y − tanh(p))2. (5.35)

This output loss is non-convex. We scale the data matrix so that the input E(p2) = 9 so that

the tanh(p) is driven well into the non-linear regime. We also take σ2
d = 0.01.

For the simulation, the non-convex loss is minimized using Tensorflow where the non-linear

model is described as a two-layer model. We use the ADAM optimizer [76] with 200 epochs

to approach a local minimum of the objective (5.2). Fig. 5.4 plots the median test MSE for

the estimate along with the SE theoretical test MSE. We again see that the SE theory is

116

Figure 5.4: Test MSE under a non-linear least square estimation.

117

able to predict the test MSE in all cases even for this non-convex problem.

5.6 Discussion

In this paper we provide a procedure for exactly computing the asymptotic generalization

error of a solution in a generalized linear model (GLM). This procedure is based on scalar

quantities which are fixed points of a recursive iteration. The formula holds for a large class

of generalization metrics, loss functions, and regularization schemes. Our formula allows

analysis of important modeling effects such as

(i) overparameterization,

(ii) dependence between covariates, and

(iii) mismatch between train and test distributions,

which play a significant role in the analysis and design of machine learning systems. We

experimentally validate our theoretical results for linear as well as non-linear regression and

logistic regression, where a strong agreement is seen between our formula and simulated

results.

118

Chapter 6

Conclusion

In this dissertation we have developed a general framework for analyzing multi layer inverse

problems. Such problem are ubiquitous in signal processing and machine learning. A new set

of algorithms based on Vector Approximate Message Passing are proposed which are equipped

to solve the multi layer versions of linear inverse problems. We name these algorithms

Multi-Layer Vector Approximate Message Passing (ML-VAMP). Several important properties

of these algorithms have been explored in detail, with rigorous proofs for the mathematical

claims.

These algorithms can be configured to solve the optimization based MAP estimation as

well as the approximate Bayes estimation. We also present a matrix version of ML-VAMP

called ML-Mat-VAMP which can solve generalizations of the multi-layer inverse problem

involving matrix-valued unknown variables.

The fixed points of these iterative algorithms have been characterized even for non-convex

problems, which ensures that they are accurate at convergence. Several important connections

are drawn to contemporary literature on iterative optimization methods such as the Peaceman-

Rachford Splitting ADMM algorithm. This interpretation of the algorithm provides a new

line of attack for the exact analysis of proximal algorithms for non-convex problems.

Just like Vector Approximate Message Passing, these algorithms also possess a large

119

system limit analysis in the proportional asymptotic regime. In this high dimensional space,

the iterations of our iterative algorithms can be exactly tracked via an equivalent scalar

model: the so-called State Evolution.

This enables understanding the statistical properties of the solutions to multi layer inverse

problems. Moreover, this analysis is exact and has been verified to empirically hold for large

random instances of the problems.

Our numerical experiments further illustrate that these algorithms are not just good for

analysis but are also computationally efficient and can provide solutions which are perceptually

comparable to off-the-shelf optimization solvers such as Adam as well as MCMC based solvers

such as MALA.

To demonstrate the analytical power of the ML-VAMP framework, we have applied

the ML-VAMP algorithm to solve some important practical problems in machine learning.

This class of problems include learning generalized linear models, 1-layer and 2-layer neural

networks. The key idea here is to pose these learning problems as equivalent multi-layer

inverse problems. The resulting analysis allows machine learning researchers to understand

the effects of several key training and modelling hyperparameters such as

1. Degree of overparameterization,

2. Covariance of features,

3. Mismatch between training and test distributions,

4. Choice of loss function,

5. Choice of regularization function, and

6. Choice of regularization strength.

Another noteworthy feature of this analysis is that it does not rely on convex analysis and

hence is suitable for understanding non-convex optimization and its impact on learning and

generalization.

120

Our framework thus provides a new set of tools to rigorously understand the behaviour of

elementary models, their training procedures, and the several intermediate design choices, in

contemporary machine learning and signal processing applications.

121

Appendices

122

Appendix A

Proofs from Chapter 3

Organization Appendix A.1 describes the definitions needed to define the State Evolution

and introduces the framework for LSL analysis introduced by [10]. Appendix A.2 provides

the State Evolution equations for the ML-VAMP algorithm. Appendix A.3 provides proofs

for the fixed point results – Theorems 5 and 6. Appendix A.4 provides proofs for the large

system limit of the ML-VAMP algorithm as stated in Theorems 9 and 8; these results are

the consequence of a more general result – Theorem 12 – stated in Appendix B.4 and proved

in Appendix B.5.

A.1 Empirical Convergence of Vector Sequences

We follow the framework of Bayati and Montanari [10], which models various sequences as

deterministic, but with components converging empirically to a distribution. We start with a

brief review of useful definitions. Let x(N) = (x1, . . . ,xN) be a block vector with components

xn ∈ Rr for some r. Thus, the vector x(N) is a vector with dimension rN . Given any

function g : Rr → Rs, we define the componentwise extension of g(·) as the function,

g(x) := (g(x1), . . . , g(xN)) ∈ RNs. (A.1)

123

That is, g(·) applies the function g(·) on each r-dimensional component. Similarly, we say

g(x) acts componentwise on x whenever it is of the form (A.1) for some function g(·).

Next consider a sequence of block vectors of growing dimension,

x(N) = (x1(N), . . . ,xN(N)), N = 1, 2, . . . ,

where each component xn(N) ∈ Rr. In this case, we will say that x(N) is a block vector

sequence that scales with N under blocks xn(N) ∈ Rr. When r = 1, so that the blocks

are scalar, we will simply say that x(N) is a vector sequence that scales with N . Such

vector sequences can be deterministic or random. In most cases, we will omit the notational

dependence on N and simply write x.

Now, given p ≥ 1, a function f : Rr → Rs is called pseudo-Lipschitz continuous of order

p, if there exists a constant C > 0 such that for all x1,x2 ∈ Rr,

‖f(x1)− f(x2)‖ ≤ C‖x1 − x2‖
[
1 + ‖x1‖p−1 + ‖x2‖p−1

]
.

Observe that in the case p = 1, pseudo-Lipschitz continuity reduces to usual Lipschitz

continuity. Given p ≥ 1, we will say that the block vector sequence x = x(N) converges

empirically with p-th order moments if there exists a random variable X ∈ Rr such that

(i) E‖X‖pp <∞; and

(ii) for any f : Rr → R that is pseudo-Lipschitz continuous of order p,

lim
N→∞

1
N

N∑
n=1

f(xn(N)) = E [f(X)] . (A.2)

In (A.2), we have the empirical mean of the components f(xn(N)) of the componentwise

extension f(x(N)) converging to the expectation E[f(X)]. In this case, with some abuse of

notation, we will write

lim
N→∞

{xn}
PL(p)

= X, (A.3)

where, as usual, we have omitted the dependence on N in xn(N). Importantly, empirical

convergence can be defined on deterministic vector sequences, with no need for a probability

124

space. If x = x(N) is a random vector sequence, we will often require that the limit (A.3)

holds almost surely.

Finally, we introduce the concept of uniform pseduo-Lipschitz continuity. Let φ(r, γ) be a

function on r ∈ Rr and θ ∈ Rs. We say that φ(r, θ) is uniformly Lipschitz continuous in r at

θ = θ if there exists constants L1, L2 ≥ 0 and an open neighborhood U of θ such that

‖φ(r1, θ)− φ(r2, θ)‖ ≤ L1‖r1 − r2‖, ∀r1, r2 ∈ Rr, θ ∈ U (A.4a)

‖φ(r, θ1)− φ(r, θ2)‖ ≤ L2 (1 + ‖r‖) ‖θ1 − θ2‖, ∀r ∈ Rr, θ1, θ2 ∈ U. (A.4b)

A.2 ML-VAMP State Evolution Equations

The state evolution (SE) recursively defines a set of scalar random variables that describe the

typical components of the vector quantities produced from the ML-VAMP algorithm. The

definition of the random variables are given in Algorithm 6. The algorithm steps mimic those

in the ML-VAMP algorithm, Algorithm 3, but with each update producing scalar random

variables instead of vectors. The updates use several functions:

f 0
0 (w0) = w0, f 0

` (p0
−̀1, w`) := f 0

` (p0
−̀1, ξ`) := φ`(p

0
−̀1, ξ`), ` = 2, 4, . . . , L, (A.5a)

f 0
` (p0

−̀1, w`) := f 0
` (p0

−̀1, (s̄`, b̄`, ξ̄`)) = s̄`p
0
`−1 + b̄` + ξ̄`, ` = 1, 3, . . . , L−1, (A.5b)

h±` (p0
`−1, p

+
`−1, q

−
` , w`, θ

±
k`) = g±` (q−` + q0

` , p
+
`−1 + p0

`−1, θ
±
k`), ` = 2, 4, . . . L− 2, (A.5c)

h±` (p0
`−1, p

+
`−1, q

−
` , w`, θ

±
k`) = G±` (q−` + q0

` , p
+
`−1 + p0

`−1, θ
±
k`), ` = 1, 3, . . . L− 1, (A.5d)

h+
0 (q−0 , w0θ

+
k0) = g+

0 (q−0 + w0, θ
+
k0), h−L(p0

L−1, p
+
L−1, wL, θ

−
kL) = g−L (p+

L−1 + p0
L−1, θ

−
kL), (A.5e)

f+
0 (q−0 , w0,Λ

+
k0) := 1

1−α+
k`

[
h+

0 (q−0 , w0, θ
+
k0)− w0 − α+

k0q
−
0

]
, (A.5f)

f+
` (p0

−̀1, p
+
−̀1, q

−
` , w`,Λ

+
k`) := 1

1−α+
k`

[
h+
` (p0

−̀1, p
+
−̀1, q

−
` , w`, θ

+
k`)− q

0
` − α+

k`q
−
`

]
, (A.5g)

f−L (p0
L−1, p

+
L−1, wL,Λ

−
kL) := 1

1−α−k`

[
h−L(p0

L−1, p
+
L−1, wL, θ

−
kL)− p0

L−1 − α−k,L−1p
+
L−1

]
, (A.5h)

f−` (p0
−̀1, p

+
−̀1, q

−
` , w`,Λ

−
k`) := 1

1−α−k, −̀1

[
h−` (p0

−̀1, p
+
−̀1, q

−
` , w`, θ

−
k`)− p

0
−̀1 − α−k, −̀1p

+
−̀1

]
. (A.5i)

125

In addition define the perturbation random variables W` (recall from (3.29)) as

W0 = Z0
0 , W` = Ξ`, ` = 2, 4, . . . , L− 2, (A.6a)

W` = (S`, B`,Ξ`), ` = 1, 3, . . . , L− 1. (A.6b)

A.3 Proofs of ML-VAMP Fixed-Point Theorems

A.3.1 Proof of Theorem 5

The linear equalities in defining s±k` can be rewritten as,

r+
k` = ẑ+

k` +
1

α−k`
s+
k`, r−k+1,` = ẑ−k` −

1

α+
k`

s−k+1,` (A.7)

Substituting (A.7) in lines 12 and 24 of Algorithm 3 give the updates (3.20b) and (3.21b)

in Theorem 5. It remains to show that the optimization problem in updates (3.20a) and

(3.21a) is equivalent to (3.12). It suffices to show that the terms dependent on (z−`−1, z
+
`) in

b` from (3.12), and L` from (3.20a) and (3.21a) are identical. This follows immediately on

substituting (A.7) in (4.12). Thus there exists a bijective mapping between the fixed points

{ẑ, r+, r−} (of Algorithm 3) and {ẑ, s} (of Theorem 5).

It now remains to be shown that any fixed point of Algorithm 3 is a critical point of

the augmented Lagrangian in (3.19). To that end, we need to show that there exists dual

parameters s` such that for all ` = 0, . . . , L−1,

ẑ+
` = ẑ−` , ∂z+L(ẑ+, ẑ−, s) 3 0, ∂z−L(ẑ+, ẑ−, s) 3 0, (A.8)

where L(·) is the Lagrangian in (3.19). Primal feasibility or ẑ+
` = ẑ−` was already shown in

(3.17). As a consequence of the primal feasibility ẑ+
` = ẑ−` , observe that

s+
` − s−` = (α+

` + α−`)ẑ` − α+
` r−` − α

−
` r+

` = 0, (A.9)

where we have used (3.16). Define s := s+ = s−. To show the stationarity in (A.8) it suffices

126

Algorithm 6 State Evolution for ML-VAMP
Require: f 0

` (·), f±` (·) and h±` (·) from eqn. (A.5) and initial random variables: Z0
0 , {W`, Q

−
0`}

from Section 3.4 and (A.6)
1: // Initial pass
2: Q0

0 = Z0
0 , τ 0

0 = E(Q0
0)2 and P 0

0 ∼ N (0, τ 0
0)

3: for ` = 1, . . . , L−1 do
4: Q0

` = f 0
` (P 0

−̀1,W`)

5: P 0
` ∼ N (0, τ 0

`), τ 0
` = E(Q0

`)
2

6: end for
7:

8: for k = 0, 1, . . . do
9: // Forward Pass
10: Q̂+

k0 = h+
0 (Q−k0,W0, θ

+

k0))

11: α+
k0 = E(

∂h+0
∂Q−k0

(Q−k0,W0, θ
+

k0)), Λ
+

k0 = (α+
k0, θ

+

k0)

12: Q+
k0 = f+

0 (Q−0 ,W0,Λ
+

k0)

13: (P 0
0 , P

+
k0) ∼ N (0,K+

k0), K+
k0 := Cov(Q0

0, Q
+
k0)

14: for ` = 1, . . . , L− 1 do
15: Q̂+

k` = h+
` (P 0

−̀1, P
+
k, −̀1, Q

−
k`,W`, θ

+

k`))

16: α+
k` = E(

∂h+`
∂Q−k`

(P 0
−̀1, P

+
k, −̀1, Q

−
k`,W`, θ

+

k`)), Λ
+

k` = (α+
k`, θ

+

k`)

17: Q+
k` = f+

` (P 0
−̀1, P

+
k, −̀1, Q

−
k`,W`,Λ

+

k`)

18: (P 0
` , P

+
k`) ∼ N (0,K+

k`), K+
k` := Cov(Q0

` , Q
+
k`)

19: end for

20: // Backward Pass
21: P̂−k+1,L−1 = h−L(P 0

L−1, P
+
k,L−1,WL, θ

−
k+1,L)

22: α−k+1,L = E(
∂h−L

∂P+
k,L−1

(P 0
L−1, P

+
k,L−1,WL, θ

−
k+1,L)), Λ

−
k+1,L = (α−k+1,L, θ

−
k+1,L)

23: P−k+1,L−1 = f−L (P 0
L−1, P

+
k,L−1,WL,Λ

−
k+1,L)

24: Q−k+1,L−1 ∼ N (0, τ−k+1,L−1), τ−k+1,L−1 := E(P−k+1,L−1)2

25: for ` = L−1, . . . , 1 do
26: P̂−k+1, −̀1 = h−` (P 0

−̀1, P
+
k, −̀1,W`, θ

−
k+1,`)

27: α−k+1,` = E(
∂h−`

∂P+
k,L−1

(P 0
−̀1, P

+
k, −̀1,W`, θ

−
k+1,`)), Λ

−
k+1,` = (α−k+1,`, θ

−
k+1,`)

28: P−k+1, −̀1 = f−` (P 0
−̀1, P

+
k, −̀1, Q

−
k+1,`,W`,Λ

−
k`)

29: Q−k+1, −̀1 ∼ N (0, τ−k+1, −̀1), τ−k+1, −̀1 := E(P−k+1, −̀1)2

30: end for
31: end for

127

to show that s` is a valid dual parameter for which the following stationarity conditions hold,

∂z−`−1
L`(ẑ−`−1, ẑ

+
` ; ẑ+

`−1, ẑ
−
` , s`−1, s`) 3 0, ∂z+`

L`(ẑ−`−1, ẑ
+
` ; ẑ+

`−1, ẑ
−
` , s`−1, s`) 3 0, (A.10)

Indeed the above conditions are the stationarity conditions of the optimization problem in

(3.20a) and (3.21a). Hence (A.8) holds.

A.3.2 Proof of Theorem 6

Observe that the Lagrangian function for the constrained optimization problem (3.27) for

this specific choice of Lagrange multipliers is given by

L({b`}, {q`}, {r+
` }, {r

−
` }, {γ

+
` }, {γ

−
` }) =

L∑
`=0

DKL(f`(z`, z`−1)||p(z`|z`−1)) +
L−1∑
`=0

H(q`)

+
L−1∑
`=0

γ−` r
−>
` (E[z`|f`]− E[z`|q`]) + γ+

` r
+>
` (E[z`|f`+1]− E[z`−1|q`])

+
L−1∑
`=0

γ−`
2

(E[‖z`‖2 |f`]− E[‖z`‖2 |q`]) +
γ+`
2

(E[‖z`‖2 |f`+1]− E[‖z`‖2 |q`])

Notice that the stationarity KKT conditions ∇f`L = 0 and ∇q`L = 0 give us the relation

f ∗` (z`, z`−1) ∝ p(z`|z`−1)exp
(
−γ−`

2

∥∥z` − r−` ∥∥2 − γ+`−1

2

∥∥z`−1 − r+
`−1

∥∥2
)

(A.11a)

q∗` (z`) ∝ exp

(
−γ−` +γ+`

2

∥∥∥z` − γ−` r
−
` +γ+` r

+
`

γ−` +γ+`

∥∥∥2
)

(A.11b)

where notice that f ∗` = b` from (4.12). The primal feasibility KKT conditions (3.26) result in

E [z`|f ∗`] = E [z`|b`] =
γ−` r

−
` + γ+

` r
+
`

γ−` + γ+
`

E
[
‖z`‖2 |f ∗`

]
= E

[
‖z`‖2 |b`

]
= (γ−` + γ+

`)−1

where we have used the Gaussianity of q` from (A.11b) and relation of f ∗` = b` from (A.11a)

and (4.12). The quantity on the right is exactly ẑ` for any fixed point of MMSE-ML-VAMP

as evident from (3.17). The claim follows from the update (3.11).

128

A.4 Proofs of Main Results: Theorems 9 and 8

Recall that the main result in Theorem 9 claims the empirical convergence of PL(2) statistics of

iterates of the ML-VAMP algorithm 3 to the expectations corresponding statistics of random

variables given in Algorithm 6. We prove this result by applying the general convergence

result stated in Theorem 12 which shows that under Assumptions 5 and 6, the PL(2) statistics

of iterates of Algorithm 10 empirically converge to expectations of corresponding statistics of

appropriately defined scalar random variables defined in Algorithm 11.

The proof of Theorem 9 proceeds in two steps. First, we show that the ML-VAMP

iterations are a special case of the iterations of Algorithm 10, and similarly Algorithm 6 is

a special case of Algorithm 11, for specific choices of vector update functions, parameter

statistic functions and parameter update functions, and their componentwise counterparts.

The second step is to show that all assumptions required in Theorem 12 are satisfied, and

hence the conclusions of Theorem 12 hold.

A.4.1 Proof of Theorem 9

We start by showing that the ML-VAMP iterations from Algorithm 3 are a special case

of the Gen-ML recursions from Algorithm 10. Consider the singular value decompositions

W` = V` Diag(s`)V`−1 from equation (3.13). Then the true signals z0
` in equation (4.1) and

the iterates {r±` , ẑ
±
` } of Algorithm 3 can then be expressed via the transformed true signals

defined below,

q0
` := z0

` , p0
` := V`z

0
` ` = 0, 2, . . . , L

q0
` := VT

` z0
` , p0

` := z0
` ` = 1, 3, . . . , L−1.

(A.12)

129

These signals can be see in the (TOP) of Fig. A.1. Next, for ` = 0, 2, . . . , L− 2, define:

q̂±k` := ẑ±k`, q±k` := r±k` − z0
` , q̂±k, +̀1 := VT

+̀1ẑ
±
k, +̀1, q±k, +̀1 := VT

+̀1(r±k, +̀1 − z0
+̀1)

(A.13a)

p̂±k` := V`ẑ
±
k`, p±k` := V`(r

±
k` − z0

`), p̂±k, +̀1 := ẑ±k, +̀1, p±k, +̀1 := r±k, +̀1 − z0
+̀1, (A.13b)

The vectors q̂±k` and p̂±k` represent the estimates of q0
` and p0

` defined in (A.12). These are

outputs of the estimators g±` and G±` . Similarly, the vectors q±k` and p±k` are the differences

r±k` − z0
` or their transforms. These represent errors on the inputs r±k` to the estimators g±` (·)

(even `) and G±` (odd `). These vectors can be seen in the (MIDDLE) panel of Fig. A.1

Lemma 2 (ML-VAMP as a special case of Gen-ML). Consider Algorithms 10 and 11 with

1. Initial functions f0
` and vector update functions f±` given by componentwise extensions

of f 0
` and f±` respectively from equation (A.5). Parameter statistic functions ϕ+

` and

ϕ−` be given by componentwise extensions of ∂f+`
∂q−`

and ∂f+`
∂p+`−1

respectively. Parameter

updates T±k`(·) applied so that µ±k` = α±k` and Λ±k` = θ±k`, with θ
±
k` given in equation (3.8).

2. Perturbation vectors w` given by w0 = z0
0, w2` = ξ2` and w2`−1 = (s2`−1,b2`−1, ξ2`−1)

for ` = 1, 2, . . . L
2
. Perturbation random variables W` given by (A.6).

Then we have that

1. Lines 2-6 of Algorithm 10 are equivalent to equation (4.1) with definitions of p0
` , q

0
`

given in equation (A.12). Lines 8-35 of Algorithm 10 are equivalent to the ML-VAMP

iterations in Algorithm 3 with definitions of p±` , p̂
±
` , q

±
` , q̂

±
` , given in equation (A.13).

2. Algorithm 11 is equivalent to Algorithm 6.

Lemma 3. Assumptions 5 and 6 are satisfied by the conditions in Theorem 9.

The lemmas follow from the direct substitution of the quantities keeping in mind (3.13).

As a consequence of the lemmas, we can apply the result of Theorem 12 under the conditions

given in Theorem 9. The convergence of (α±k`, γ
±
k`, η

±
k`) follows from the convergence of Λ±k`.

130

Theorem 12 leads to the conclusion that the following triplets are asymptotically normal

(z0
`−1, r

+
`−1 − z

0
`−1, r

−
` − z

0
`) ≡ (p0

`−1,p
+
`−1, q

−
`), ∀ ` even,(

V`−1z
0
`−1,V`−1(r+

`−1 − z
0
`−1),V >` (r−` − z

0
`)
)
≡ (p0

`−1,p
+
`−1, q

−
`), ∀ ` odd.

The results in Theorem 9 follows from the argument definition of PL(2) convergence defined

in Appendix A.1

A.4.2 Proof of Theorem 8

Recall the update equations for (α±k`, γ
±
k`, η

±
k`) analogous to (3.9). Fix the iteration index k

and let ` be even. We showed earlier after stating Theorem 9 that

1
N`

∥∥ẑ+
k` − z

0
`

∥∥ a.s.−−→ E
(
g+
` (C + φ`(A,Ξ`),B + A, γ−k`, γ

+
k,`−1)− φ`(A,Ξ`)

)2
=: E+

` (γ−k`, γ
+
k,`−1)

We also know that η+
k`

a.s.−−→ η+
k` =

γ−k`
α+
k`

. We need to show that the two limits coincide or

equivalently α+
k`

γ−k`
= E+

` (γ−k`, γ
+
k,`−1). In case of MMSE estimation, where g±`,mmse from (3.7) is

applied, we can simplify α±k`. From line 11 of Algorithm 6, then we have

α+
k` = E

∂h+
`

∂Q−`
(P 0
−̀1, P

+
k, −̀1, Q

−
k`,W`, θ

+

k`) = E
∂g+

`

∂Q−`
(Q−k` +Q0

` , P
+
k,`−1 + P 0

`−1, θ
±
k`)

= E
∂

∂Q−`

∫
p(z`|z`−1)

Z
exp

(
− γ−k`

2
(z` −Q−` −Q

0
`)

2 −
γ+
k,`−1

2
(z`−1 − P+

k,`−1 − P
0
`−1)2

)
z`dz`dz`−1,

for a normalizing factor Z. The last expectation above is with respect to the density of

(P 0
`−1, P

+
k,`−1, Q

−
k`) which are Gaussian and Q0

` = φ`(P`−1,Ξ`). Exchanging the order of the

integration and the partial derivative, gives the desired expression for E+
` .

A.5 General Multi-Layer Recursions

To analyze Algorithm 3, we consider a more general class of recursions as given in Algorithm 10

and depicted in Fig. A.1. The Gen-ML recursions generates (i) a set of true vectors q0
` and

p0
` and (ii) iterated vectors q±k` and p±k`. The true vectors are generated by a single forward

pass, whereas the iterated vectors are generated via a sequence of forward and backward

131

q+
0 V0

V0 p0
0 f0

1q0
0

p+
0

f−1

p−0V >0

N P+
0

P 0
0

f−1

P−0NQ−0

f+
0

Q+
0

Q0
0

q−0

f+
0

q+
1 V1

V1 p0
1 f0

2q0
1

p+
1

f−2

p−1V >1

N P+
1

P 0
1

f−2

P−1NQ−1

f+
1

Q+
1

Q0
1

q−1

f+
1

q+
2 V2

V2 p0
2 f0

3q0
2

p+
2

f−3

p−2V >2

N P+
2

P 0
2

f−3

P−2NQ−2

f+
2

Q+
2

Q0
2

q−2

f+
2

q+
3 V3

V3 p0
3q0

3

p+
3

f−4

p−3V >3

N P+
3

P 0
3

f−4

P−3NQ−3

f+
3

Q+
3

Q0
3

q−3

f+
3

Figure A.1: (TOP) The equations (4.1) with equivalent quantities defined in (A.12). f0
`

defined using (A.5a) and (A.5b).
(MIDDLE) The GEN-ML recursions in Algorithm 10. These are also equivalent to ML-VAMP
recursions from Algorithm 3 (See Lemma 7) if p±, q± are as defined in equations (A.13) and
f±` given by equations (A.5f-A.5i).
(BOTTOM) Quantities in the GEN-ML-SE recursions. These are also equivalent to ML-
VAMP SE recursions from Algorithm 6 (See Lemma 7)

passes through a multi-layer system. In proving the State Evolution for the ML-VAMP

algorithm, one would then associate the terms q±k` and p±k` with certain error quantities in the

ML-VAMP recursions. To account for the effect of the parameters γ±k` and α
±
k` in ML-VAMP,

the Gen-ML algorithm describes the parameter update through a sequence of parameter lists

Λ±k`. The parameter lists are ordered lists of parameters that accumulate as the algorithm

progresses. The true and iterated vectors from Algorithm 10 are depicted in the signal flow

graphs on the (TOP) and (MIDDLE) panel of Fig. A.1 respectively. The iteration index k

for the iterated vectors qk`,pk` has been dropped for simplifying notation.

The functions f0
` (·) that produce the true vectors q0

` ,p
0
` are called initial vector functions

and use the initial parameter list Λ−01. The functions f±k`(·) that produce the vectors q±k` and

132

p±k` are called the vector update functions and use parameter lists Λ±kl. The parameter lists are

initialized with Λ−01 in line 2. As the algorithm progresses, new parameters λ±k` are computed

and then added to the lists in lines 12, 18, 25 and 31. The vector update functions f±k`(·)

may depend on any sets of parameters accumulated in the parameter list. In lines 11, 17,

24 and 30, the new parameters λ±k` are computed by: (1) computing average values µ±k` of

componentwise functions ϕ±k`(·); and (2) taking functions T±k`(·) of the average values µ±k`.

Since the average values µ±k` represent statistics on the components of ϕ±k`(·), we will call

ϕ±k`(·) the parameter statistic functions. We will call the T±k`(·) the parameter update functions.

The functions f0
` , f
±
k`,ϕ

±
` also take as input some perturbation vectors w`.

Similar to our analysis of the ML-VAMP Algorithm, we consider the following large-system

limit (LSL) analysis of Gen-ML. Specifically, we consider a sequence of runs of the recursions

indexed by N . For each N , let N` = N`(N) be the dimension of the signals p±` and q±` as we

assume that lim
N→∞

N`
N

= β` ∈ (0,∞) is a constant so that N` scales linearly with N . We then

make the following assumptions. See Appendix A.1 for an overview of empirical convergence

of sequences which we use in the assumptions.

Assumption 3. For vectors in the Gen-ML Algorithm (Algorithm 10), we assume:

(a) The matrices V` are Haar distributed on the set of N` ×N` orthogonal matrices and

are independent from one another and from the vectors q0
0, q−0`, perturbation vectors

w`.

(b) The components of the initial conditions q−0`, and perturbation vectors w` converge

jointly empirically with limits,

lim
N→∞

{q−0`,n}
PL(2)

= Q−0`, lim
N→∞

{w`,n}
PL(2)

= W`, (A.14)

where Q−0` andW` are random variables such that (Q−00, · · · , Q−0,L−1) is a jointly Gaussian

random vector. Also, for ` = 0, . . . , L−1, the random variables W`, P
0
`−1 and Q−0` are

independent. We also assume that the initial parameter list converges as

lim
N→∞

Λ−01(N)
a.s.−−→ Λ

−
01, (A.15)

133

to some list Λ
−
01. The limit (B.11) means that every element in the list λ(N) ∈ Λ−01(N)

converges to a limit λ(N)→ λ as N →∞ almost surely.

(c) The vector update functions f±k`(·) and parameter update functions ϕ±k`(·) act compo-

nentwise. For e.g., in the kth forward pass, at stage `, we assume that for each output

component n,[
f+
k`(p

0
−̀1,p

+
k, −̀1,q

−
k`,w`,Λ

+
k`)
]
n

= f+
k`(p

0
−̀1,n, p

+
k, −̀1,n, q

−
k`,n, w`,n,Λ

+
k`)[

ϕ+
k`(p

0
−̀1,p

+
k, −̀1,q

−
k`,w`,Λ

+
k`)
]
n

= ϕ+
k`(p

0
−̀1,n, p

+
k, −̀1,n, q

−
k`,n, w`,n,Λ

+
k`),

for some scalar-valued functions f+
k`(·) and ϕ+

k`(·). Similar definitions apply in the

reverse directions and for the initial vector functions f0
` (·). We will call f±k`(·) the vector

update component functions and ϕ±k`(·) the parameter update component functions.

Next we define a set of deterministic constants {K+
k`, τ

−
k`, µ

±
k`,Λ

±
kl, τ

0
` } and scalar random

variables {Q0
` , P

0
` , Q

±
k`, P

±
` } which are recursively defined through Algorithm 11, which we call

the Gen-ML State Evolution (SE). These recursions in Algorithm closely mirror those in the

Gen-ML algorithm (Algorithm 10). The vectors q±k` and p±k` are replaced by random variables

Q±k` and P
±
k`; the vector and parameter update functions f±k`(·) and ϕ±k`(·) are replaced by

their component functions f±k`(·) and ϕ±k`(·); and the parameters λ±k` are replaced by their

limits λ±k`. We refer to {Q0
` , P

0
` } as true random variables and {Q±k`, P

±
kl} as iterated random

variables. The signal flow graph for the true and iterated random variables in Algorithm 11

is given in the (BOTTOM) panel of Fig. A.1. The iteration index k for the iterated random

variables {Q±k`, P
±
kl} to simplify notation.

We also assume the following about the behaviour of component functions around the

quantities defined in Algorithm 11. The iteration index k has been dropped for simplifying

notation.

Assumption 4. For component functions f, ϕ and parameter update functions T we assume:

(a) T±k`(µ
±
k`, ·) are continuous at µ±k` = µ±k`

134

(b) f+
k`(p

0
`−1, p

+
k, −̀1, q

−
k`, w`,Λ

+
k`),

∂f+k`
∂q−k`

(p0
`−1, p

+
k, −̀1, q

−
k`, w`,Λ

+
k`) and ϕ

+
k`(p

0
`−1, p

+
k, −̀1, q

−
k`, w`,Λ

+
k, −̀1)

are uniformly Lipschitz continuous in (p0
`−1, p

+
k, −̀1, q

−
k`, w`) at Λ+

k` = Λ
+

k`, Λ+
k, −̀1 = Λ

+

k, −̀1.

Similarly, f−k+1,`(p
0
`−1, p

+
k, −̀1, q

−
k+1,`, w`,Λ

−
k`),

∂f−k`
∂p+k,`−1

(p0
`−1, p

+
k, −̀1, q

−
k+1,`, w`,Λ

−
k`), and

ϕ−k`(p
0
`−1, p

+
k, −̀1, q

−
k+1,`, w`,Λ

−
k+1,`+1) are uniformly Lipschitz continuous in

(p0
`−1, p

+
k, −̀1, q

−
k+1,`, w`) at Λ−k` = Λ

−
k`, Λ−k+1,`+1 = Λ

−
k+1,`+1.

(c) f 0
` (p0

−̀1, w`,Λ
−
01) are uniformly Lipschitz continuous in (p0

k, −̀1, w`) at Λ−k+1,` = Λ
−
k+1,`.

(d) Vector update functions f±k` are asymptotically divergence free meaning

lim
N→∞

〈
∂f+k`
∂q−k`

(p+
k, −̀1,q

−
k`,w`,Λ

+

k`)
〉

= 0, lim
N→∞

〈
∂f−k`

∂p+
k, −̀1

(p+
k, −̀1,q

−
k+1,`,w`,Λ

−
k`)

〉
= 0

(A.16)

We are now ready to state the general result regarding the empirical convergence of

the true and iterated vectors from Algorithm 10 in terms of random variables defined in

Algorithm 11.

Theorem 11. Consider the iterates of the Gen-ML recursion (Algorithm 10) and the corre-

sponding random variables and parameter limits defined by the SE recursions (Algorithm 11)

under Assumptions 5 and 6. Then,

(a) For any fixed k ≥ 0 and fixed ` = 1, . . . , L−1, the parameter list Λ+
k` converges as

lim
N→∞

Λ+
k` = Λ

+

k` (A.17)

almost surely. Also, the components of w`, p0
−̀1, q0

` , p+
0, −̀1, . . . ,p

+
k, −̀1 and q±0`, . . . ,q

±
k`

almost surely jointly converge empirically with limits,

lim
N→∞

{
(p0
−̀1,n, p

+
i, −̀1,n, q

−
j`,n, q

0
`,n, q

+
j`,n)

} PL(2)
= (P 0

−̀1, P
+
i, −̀1, Q

−
j`, Q

0
` , Q

+
j`), (A.18)

for all 0 ≤ i, j ≤ k, where the variables P 0
−̀1, P

+
i, −̀1 and Q−j` are zero-mean jointly

Gaussian random variables independent of W` and with covariance matrix given by

Cov(P 0
−̀1, P

+
i, −̀1) = K+

i, −̀1, E(Q−j`)
2 = τ−j` , E(P+

i, −̀1Q
−
j`) = 0, E(P 0

−̀1Q
−
j`) = 0,

(A.19)

135

and Q0
` and Q+

j` are the random variable in line 19:

Q0
` = f 0

` (P 0
−̀1,W`), Q+

j` = f+
` (P 0

−̀1, P
+
j, −̀1, Q

−
j`,W`,Λ

+

j`). (A.20)

An identical result holds for ` = 0 with all the variables p+
i, −̀1 and P+

i, −̀1 removed.

(b) For any fixed k ≥ 1 and fixed ` = 1, . . . , L−1, the parameter lists Λ−k` converge as

lim
N→∞

Λ−k` = Λ
−
k` (A.21)

almost surely. Also, the components of w`, p0
−̀1, p±0, −̀1, . . . ,p

±
k−1, −̀1, and q−0`, . . . ,q

−
k`

almost surely jointly converge empirically with limits,

lim
N→∞

{
(p0
−̀1,n, p

+
i, −̀1,n, q

−
j`,n, p

−
j,`−1,n)

} PL(2)
= (P 0

−̀1, P
+
i, −̀1, Q

−
j`, P

−
j,`−1), (A.22)

for all 0 ≤ i ≤ k−1 and 0 ≤ j ≤ k, where the variables P 0
−̀1, P

+
i, −̀1 and Q−j` are

zero-mean jointly Gaussian random variables independent of W` and with covariance

matrix given by equation (B.15) and P−j` is the random variable in line 32:

P−j` = f−` (P 0
−̀1, P

+
j−1, −̀1, Q

−
j`,W`,Λ

−
j`). (A.23)

An identical result holds for ` = L with all the variables q−j` and Q
−
j` removed.

For k = 0, Λ−01 → Λ
−
01 almost surely, and {(w`,n, p0

`−1,n, q
−
j`,n)} empirically converge to

independent random variables (W`, P
0
`−1, Q

−
0`).

Proof. Appendix B.5 in the supplementary materials is dedicated to proving this result. �

A.6 Proof of Theorem 12

A.6.1 Overview of the Induction Sequence

The proof is similar to that of [127, Theorem 4], which provides a SE analysis for VAMP

on a single-layer network. The critical challenge here is to extend that proof to multi-layer

recursions. Many of the ideas in the two proofs are similar, so we highlight only the key

differences between the two.

136

Similar to the SE analysis of VAMP in [127], we use an induction argument. However, for

the multi-layer proof, we must index over both the iteration index k and layer index `. To

this end, let H+
k` and H

−
k` be the hypotheses:

• H+
k`: The hypothesis that Theorem 12(a) is true for a given k and `, where 0 ≤ ` ≤ L−1.

• H−k`: The hypothesis that Theorem 12(b) is true for a given k and `, where 1 ≤ ` ≤ L.

We prove these hypotheses by induction via a sequence of implications,

{H−0`}
L
`=1 · · · ⇒ H−k1 ⇒ H

+
k0 ⇒ · · · ⇒ H

+
k,L−1 ⇒ H

−
k+1,L ⇒ · · · ⇒ H

−
k+1,1 ⇒ · · · , (A.24)

beginning with the hypotheses {H−0`} for all ` = 1, . . . , L−1.

A.6.2 Base Case: Proof of {H−0`}L`=1

The base case corresponds to the Hypotheses {H−0`}L`=1. Note that Theorem 12(b) states that

for k = 0, we need Λ−01 → Λ
−
01 almost surely, and {(w`,n, p0

`−1,n, q
−
j`,n)} empirically converge to

independent random variables (W`, P
0
`−1, Q

−
0`). These follow directly from equations (B.10)

and (B.11) in Assumption 1 (a).

A.6.3 Inductive Step: Proof of H+
k,`+1

Fix a layer index ` = 1, . . . , L−1 and an iteration index k = 0, 1, We show the implication

· · · =⇒ H+
k,`+1 in (B.20). All other implications can be proven similarly using symmetry

arguments.

Definition 4 (Induction hypothesis). The hypotheses prior to H+
k, +̀1 in the sequence (B.20),

but not including H+
k, +̀1, are true.

The inductive step then corresponds to the following result.

Lemma 4. Under the induction hypothesis, H+
k,`+1 holds

137

Before proving the inductive step in Lemma 9, we prove two intermediate lemmas. Let us

start by defining some notation. Define P+
k` :=

[
p+

0` · · ·p
+
k`

]
∈ RN`×(k+1), be a matrix whose

columns are the first k+1 values of the vector p+
` . We define the matrices P−k`, Q+

k` and Q−k`

in a similar manner with values of p−` ,q
+
` and q−` respectively.

Note that except the initial vectors {w`,q
−
0`}L`=1, all later iterates in Algorithm 10 are

random due to the randomness of V`. Let G±k` denote the collection of random variables

associated with the hypotheses, H±k`. That is, for ` = 1, . . . , L−1,

G+
k` :=

{
w`,p

0
−̀1,P

+
k, −̀1,q

0
` ,Q

−
k`,Q

+
k`

}
, G−k` :=

{
w`,p

0
−̀1,P

+
k−1, −̀1,q

0
` ,Q

−
k`,P

−
k, −̀1

}
. (A.25)

For ` = 0 and ` = L we set, G+
k0 :=

{
w0,Q

−
k0,Q

+
k0

}
, G−kL :=

{
wL,p

0
L−1,P

+
k−1,L−1,P

−
k,L−1

}
.

Let G+

k` be the sigma algebra generated by the union of all the sets G±k′`′ as they have

appeared in the sequence (B.20) up to and including the final set G+
k`. Thus, the sigma

algebra G
+

k` contains all information produced by Algorithm 10 immediately before line 20

in layer ` of iteration k. Note also that the random variables in Algorithm 11 immediately

before defining P+
k,` in line 20 are all G+

k` measurable.

Observe that the matrix V` in Algorithm 10 appears only during matrix-vector multi-

plications in lines 20 and 32. If we define the matrices, Ak` :=
[
p0
` ,P

+
k−1,` P−k`

]
, Bk` :=[

q0
` ,Q

+
k−1,` Q−k`

]
, all the vectors in the set G+

k` will be unchanged for all matrices V` satisfying

the linear constraints

Ak` = V`Bk`. (A.26)

Hence, the conditional distribution of V` given G
+

k` is precisely the uniform distribution on

the set of orthogonal matrices satisfying (B.21). The matrices Ak` and Bk` are of dimensions

N` × 2k + 2. From [127, Lemmas 3,4], this conditional distribution is given by

V`|G+
k`

d
= Ak`(A

T
k`Ak`)

−1BT
k` + UA⊥k`

Ṽ`U
T
B⊥k`
, (A.27)

where UA⊥k`
and UB⊥k`

are N` × (N` − (2k + 2)) matrices whose columns are an orthonormal

basis for Range(Ak`)
⊥ and Range(Bk`)

⊥. The matrix Ṽ` is Haar distributed on the set of

(N` − (2k + 2))× (N` − (2k + 2)) orthogonal matrices and is independent of G+

k`.

138

Next, similar to the proof of [127, Thm. 4], we can use (B.22) to write the conditional

distribution of p+
k` (from line 20 of Algorithm 10) given G

+

k` as a sum of two terms

p+
k`|G+

k`
= V`|G+

k`
q+
k`

d
= p+det

k` + p+ran
k` , (A.28a)

p+det
k` := Ak`(B

T
k`Bk`)

−1BT
k`q

+
k` (A.28b)

p+ran
k` := UB⊥k

ṼT
` UT

A⊥k
q+
k`. (A.28c)

where we call p+det
k` the deterministic term and p+ran

k` the random term. The next two lemmas

characterize the limiting distributions of the deterministic and random terms.

Lemma 5. Under the induction hypothesis, the components of the “deterministic" term p+det
k`

along with the components of the vectors in G
+

k` converge empirically. In addition, there exists

constants β+
0`, . . . , β

+
k−1,` such that

lim
N→∞

{p+det
k`,n }

PL(2)
= P+det

k` := β0
`P

0
` +

k−1∑
i=0

βi`P
+
i` , (A.29)

where P+det
k` is the limiting random variable for the components of pdet

k` .

Proof. The proof is similar that of [127, Lem. 6], but we go over the details as there are

some important differences in the multi-layer case. Define P̃+
k−1,` =

[
p0
` , P+

k−1,`

]
, Q̃+

k−1,` =[
q0
` , Q+

k−1,`

]
, which are the matrices in RN`×(k+1). We can then write Ak` and Bk` from

(B.21) as

Ak` :=
[
P̃+
k−1,` P−k`

]
, Bk` :=

[
Q̃+
k−1,` Q−k`

]
, (A.30)

We first evaluate the asymptotic values of various terms in (B.23b). By definition of Bk` in

(B.25),

BT
k`Bk` =

(Q̃+
k−1,`)

TQ̃+
k−1,` (Q̃+

k−1,`)
TQ−k`

(Q−k`)
TQ̃+

k−1,` (Q−k`)
TQ−k`


We can then evaluate the asymptotic values of these terms as follows: For 0 ≤ i, j ≤ k − 1

the asymptotic value of the (i+ 2, j + 2)nd entry of the matrix (Q̃+
k−1,`)

TQ̃+
k−1,` is given by

lim
N→∞

1
N`

[
(Q̃+

k−1,`)
TQ̃+

k−1,`

]
i+2,j+2

(a)
= lim

N→∞

1

N`

(q+
i`)

Tq+
j` = lim

N→∞
1
N`

N∑̀
n=1

q+
i`,nq

+
j`,n

(b)
= E

[
Q+
i`Q

+
j`

]
139

where (a) follows since the (i+2)th column of Q̃+
k−1,` is q+

i`, and (b) follows due to the empirical

convergence assumption in (B.14). Also, since the first column of Q̃+
k−1,` is q0

` , we obtain that

lim
N`→∞

1
N`

(Q̃+
k−1,`)

TQ̃+
k−1,` = R+

k−1,` and lim
N`→∞

1
N`

(Q−k`)
TQ−k` = R−k`,

where R+
k−1,` is the covariance matrix of (Q0

` , Q
+
0`, . . . , Q

+
k−1,`), and R−k` is the covariance

matrix of the vector (Q−0`, . . . , Q
−
k`). For the matrix (Q̃+

k−1,`)
TQ−k`, first observe that the limit

of the divergence free condition (B.12) implies

E

[
∂f+

i` (P+
i, −̀1, Q

−
i`,W`,Λi`)

∂q−i`

]
= lim

N`→∞

〈
∂f+
i` (p

+
i, −̀1,q

−
i`,w`,Λ

+

i`)

∂q−i`

〉
= 0, (A.31)

for any i. Also, by the induction hypothesis H+
k`,

E(P+
i, −̀1Q

−
j`) = 0, E(P 0

−̀1Q
−
j`) = 0, (A.32)

for all 0 ≤ i, j ≤ k. Therefore using (B.16), the cross-terms E(Q+
i`Q
−
j`) are given by

E(f+
i` (P 0

−̀1, P
+
i, −̀1, Q

−
i`,W`,Λi`)Q

−
j`)

(a)
= E

[
∂f+i` (P 0

−̀1,P
+
i, −̀1,Q

−
i`,W`,Λ

+
i`)

∂P 0
−̀1

]
E(P 0

−̀1Q
−
j`)

+ E
[
∂f+i` (P 0

−̀1,P
+
i, −̀1,Q

−
i`,W`,Λ

+
i`)

∂P+
i, −̀1

]
E(P+

i, −̀1Q
−
j`) + E

[
∂f+i` (P 0

−̀1,P
+
i, −̀1,Q

−
i`,W`,Λ

+
i`)

∂Q−i`

]
E(Q−i`Q

−
j`)

(b)
= 0,

(A.33)

(a) follows from Stein’s Lemma; and (b) follows from (B.27), and (B.28). Consequently,

lim
N`→∞

1
N`

BT
k`Bk` =

R+
k−1,` 0

0 R−k`

 , and lim
N`→∞

1
N`

BT
k`q

+
k` =

b+
k`

0

 , (A.34)

where b+
k` :=

[
E(Q+

0`Q
+
k`), E(Q+

1`Q
+
k`), · · · ,E(Q+

k−1,`Q
+
k`)
]T
, is the vector of correlations. We

again have 0 in the second term because E[Q+
i`Qj`−] = 0 for all 0 ≤ i, j ≤ k. Hence we have

lim
N`→∞

(BT
k`Bk`)

−1BT
k`q

+
k` =

β+
k`

0

 , β+
k` :=

[
R+
k−1,`

]−1

b+
k`. (A.35)

Therefore, p+det
k` equals

Ak`(B
T
k`Bk`)

−1BT
k`q

+
k` =

[
P̃+
k−1,` P−k,`

]β+
k`

0

+O
(

1
N`

)
= β0

`p
0
` +

k−1∑
i=0

β+
i`p

+
i` +O

(
1
N`

)
,

where β0
` and β+

i` are the components of β+
k` and the term O(1

N`
) means a vector sequence,

140

ξ(N) ∈ RN` such that limN→∞
1
N
‖ξ(N)‖2 = 0. A continuity argument then shows the

empirical convergence (B.24). �

Lemma 6. Under the induction hypothesis, the components of the “random" term p+ran
k`

along with the components of the vectors in G
+

k` almost surely converge empirically. The

components of p+ran
k` converge as

lim
N→∞

{p+ran
k`,n }

PL(2)
= Uk`, (A.36)

where Uk` is a zero mean Gaussian random variable independent of the limiting random

variables corresponding to the variables in G
+

k`.

Proof. The proof is very similar to that of [127, Lemmas 7,8]. �

We are now ready to prove Lemma 9.

Proof of Lemma 9. Using the partition (B.23a) and Lemmas 10 and 11, we see that the

components of the vector sequences in G
+

k` along with p+
k` almost surely converge jointly

empirically, where the components of p+
k` have the limit

lim
N`→∞

{
p+
k`,n

}
= lim

N`→∞

{
pdet
k`,n + pran

k`,n

} PL(2)
= β0

`P
0
` +

k−1∑
i=0

β+
i`P

+
i` + Uk` =: P+

k`. (A.37)

Note that the above PL(2) convergence can be shown using the same arguments involved

in showing that if XN |F
d

=⇒ X|F , and YN |F
d

=⇒ c, then (XN , YN)|F d
=⇒ (X, c)|F for

some constant c and sigma-algebra F .

We first establish the Gaussianity of P+
k`. Observe that by the induction hypothesis, H−k, +̀1

holds whereby (P 0
` , P

+
0` , . . . , P

+
k−1,`, Q

−
0, +̀1, . . . , Q

−
k, +̀1), is jointly Gaussian. Since Uk is Gaussian

and independent of (P 0
` , P

+
0` , . . . , P

+
k−1,`, Q

−
0, +̀1, . . . , Q

−
k, +̀1), we can conclude from (B.34) that

(P 0
` , P

+
0` , . . . , P

+
k−1,`, P

+
k`, Q

−
0, +̀1, . . . , Q

−
k, +̀1) is jointly Gaussian. (A.38)

We now need to prove the correlations of this jointly Gaussian random vector as claimed by

H+
k,`+1. Since H

−
k, +̀1 is true, we know that (B.15) is true for all i = 0, . . . , k−1 and j = 0, . . . , k

and ` = ` + 1. Hence, we need only to prove the additional identity for i = k, namely the

141

equations: Cov(P 0
` , P

+
k`)

2 = K+
k` and E(P+

k`Q
−
j, +̀1) = 0. First observe that

E(P+
k`)

2 (a)
= lim

N`→∞

1

N`

‖p+
k`‖

2 (b)
= lim

N`→∞

1

N`

‖q+
k`‖

2 (c)
= E

(
Q+
k`

)2

where (a) follows from the fact that the components of p+
k` converge empirically to P+

k`; (b)

follows from line 20 in Algorithm 10 and the fact that V` is orthogonal; and (c) follows from

the fact that the components of q+
k` converge empirically to Q+

k` from hypothesis H+
k,`. Since

p0
` = V`q

0, we similarly obtain that E(P 0
` P

+
k`) = E(Q0

`Q
+
k`), E(P 0

`)2 = E(Q0
`)

2, from which

we conclude

Cov(P 0
` , P

+
k`) = Cov(Q0

` , Q
+
k`) =: K+

k`, (A.39)

where the last step follows from the definition of K+
k` in line 20 of Algorithm 11. Finally, we

observe that for 0 ≤ j ≤ k

E(P+
k`Q

−
j, +̀1)

(a)
= β0

`E(P 0
` Q
−
j, +̀1) +

k−1∑
i=0

β+
i`E(P+

i`Q
−
j, +̀1) + E(Uk`Q

−
j, +̀1)

(a)
= 0, (A.40)

where (a) follows from (B.34) and, in (b), we used the fact that E(P 0
` Q
−
j, +̀1) = 0 and

E(P+
i`Q

−
j, +̀1) = 0 since (B.15) is true for i ≤ k−1 corresponding to H−k,`+1 and E(Uk`Q

−
j, +̀1) = 0

since Uk` is independent of G
+

k`, and Q
−
j, +̀1 is G+

k` measurable. Thus, with (B.35) and (B.36),

we have proven all the correlations in (B.15) corresponding to H+
k,`+1.

Next, we prove the convergence of the parameter lists Λ+
k,`+1 to Λ

+

k,`+1. Since Λ+
k` → Λ

+

k` due

to hypothesis H+
k`, and ϕ

+
k, +̀1(·) is uniformly Lipschitz continuous, we have that limN→∞ µ

+
k, +̀1

from line 17 in Algorithm 10 converges almost surely as

lim
N→∞

〈
ϕ+
k, +̀1(p0

` ,p
+
k`,q

−
k, +̀1,w +̀1,Λ

+

k`)
〉

= E
[
ϕ+
k, +̀1(P 0

` , P
+
k`, Q

−
k, +̀1,W +̀1,Λ

+

k`)
]

= µ+
k, +̀1,

(A.41)

where µ+
k, +̀1 is the value in line 17 in Algorithm 11. Since T+

k, +̀1(·) is continuous, we have

that λ+
k, +̀1 in line 18 in Algorithm 10 converges as limN→∞ λ

+
k, +̀1 = T+

k, +̀1(µ+
k, +̀1,Λ

+

k`) =: λ
+

k, +̀1,

from line 18 in Algorithm 11. Therefore, we have the limit

lim
N→∞

Λ+
k, +̀1 = lim

N→∞
(Λ+

k,`, λ
+
k, +̀1) = (Λ

+

k,`, λ
+

k, +̀1) = Λ
+

k, +̀1, (A.42)

which proves the convergence of the parameter lists stated in H+
k,`+1. Finally, using (B.38),

142

the empirical convergence of the vector sequences p0
` , p+

k` and q−k, +̀1 and the uniform Lipschitz

continuity of the update function f+
k, +̀1(·) we obtain that limN→∞

{
q+
k, +̀1,n

}
equals{

f+
k, +̀1(p0

`,n, p
−
k`,n, q

−
k, +̀1,n, w +̀1,n,Λ

+
k, +̀1)

}
= f+

k, +̀1(P 0
` , P

−
k`, Q

−
k, +̀1,W +̀1,Λ

+

k, +̀1) =: Q+
k, +̀1,

which proves the claim (B.16) for H+
k,`+1. This completes the proof. �

143

Algorithm 7 General Multi-Layer (Gen-ML) Recursion
Require: Initial vector functions f0

` , vector update functions f±k`(·), parameter statistic
functions ϕ±k`(·), parameter update functions T±k`(·), orthogonal matrices V`, disturbance
vectors w±` .

1: // Initialization
2: Initialize parameter list Λ−01 and vectors p0

0 and q−0` for ` = 0, . . . , L−1

3: q0
0 = f0

0 (w0), p0
0 = V0q

0
0

4: for ` = 1, . . . , L−1 do
5: q0

` = f0
` (p0

−̀1,w`,Λ
−
01)

6: p0
` = V`q

0
`

7: end for
8:

9: for k = 0, 1, . . . do
10: // Forward Pass
11: λ+

k0 = T+
k0(µ+

k0,Λ
−
0k), µ+

k0 =
〈
ϕ+
k0(q−k0,w0,Λ

−
0k)
〉

12: Λ+
k0 = (Λ−k1, λ

+
k0)

13: q+
k0 = f+

k0(q−k0,w0,Λ
+
k0)

14: p+
k0 = V0q

+
k0

15: for ` = 1, . . . , L− 1 do
16: λ+

k` = T+
k`(µ

+
k`,Λ

+
k, −̀1), µ+

k` =
〈
ϕ+
k`(p

0
−̀1,p

+
k, −̀1,q

−
k`,w`,Λ

+
k, −̀1)

〉
17: Λ+

k` = (Λ+
k, −̀1, λ

+
k`)

18: q+
k` = f+

k`(p
0
−̀1,p

+
k, −̀1,q

−
k`,w`,Λ

+
k`)

19: p+
k` = V`q

+
k`

20: end for
21:

22: // Backward Pass
23: λ−k+1,L = T−kL(µ−kL,Λ

+
k,L−1), µ−kL =

〈
ϕ−kL(p+

k,L−1,wL,Λ
+
k,L−1)

〉
24: Λ−k+1,L = (Λ+

k,L−1, λ
+
k+1,L)

25: p−k+1,L−1 = f−kL(p0
L−1,p

+
k,L−1,wL,Λ

−
k+1,L)

26: q−k+1,L−1 = VT
L−1pk+1,L−1

27: for ` = L−1, . . . , 1 do
28: λ−k+1,` = T−k`(µ

−
k`,Λ

−
k+1, +̀1), µ−k` =

〈
ϕ−k`(p

0
−̀1,p

+
k, −̀1,q

−
k+1,`,w`,Λ

−
k+1, +̀1)

〉
29: Λ−k+1,` = (Λ−k+1, +̀1, λ

−
k+1,`)

30: p−k+1, −̀1 = f−k`(p
0
−̀1,p

+
k, −̀1,q

−
k+1,`,w`,Λ

−
k+1,`)

31: q−k+1, −̀1 = VT
−̀1p

−
k+1, −̀1

32: end for
33: end for

144

Algorithm 8 Gen-ML State Evolution (SE)
Require: Vector update component functions f 0

` (·) and f±k`(·), parameter statistic component
functions ϕ±k`(·), parameter update functions T±k`(·), initial parameter list limit: Λ

−
01, initial

random variables W`, Q−0`, ` = 0, . . . , L−1.
1: // Initial pass
2: Q0

0 = f 0
0 (W0,Λ

−
01), P 0

0 ∼ N (0, τ 0
0), τ 0

0 = E(Q0
0)2

3: for ` = 1, . . . , L−1 do
4: Q0

` = f 0
` (P 0

−̀1,W`,Λ
−
01), P 0

` ∼ N (0, τ 0
`), τ 0

` = E(Q0
`)

2

5: end for
6:

7: for k = 0, 1, . . . do
8: // Forward Pass
9: λ

+

k0 = T+
k0(µ+

k0,Λ
−
0k), µ+

k0 = E(ϕ+
k0(Q−k0,W0,Λ

−
0k))

10: Λ
+

k0 = (Λ
−
k1, λ

+

k0)

11: Q+
k0 = f+

k0(Q−k0,W0,Λ
+

k0)

12: (P 0
0 , P

+
k0) ∼ N (0,K+

k0), K+
k0 = Cov(Q0

0, Q
+
k0)

13: for ` = 1, . . . , L− 1 do
14: λ

+

k` = T+
k`(µ

+
k`,Λ

+

k, −̀1), µ+
k` = E(ϕ+

k`(P
0
−̀1, P

+
k, −̀1, Q

−
k`,W`,Λ

+

k, −̀1))

15: Λ
+

k` = (Λ
+

k, −̀1, λ
+

k`)

16: Q+
k` = f+

k`(P
0
−̀1, P

+
k, −̀1, Q

−
k`,W`,Λ

+

k`)

17: (P 0
` , P

+
k`) ∼ N (0,K+

k`), K+
k` = Cov(Q0

` , Q
+
k`)

18: end for
19:

20: // Backward Pass
21: λ

−
k+1,L = T−kL(µ−kL,Λ

+

k,L−1), µ−kL = E(ϕ−kL(P 0
L−1, P

+
k,L−1,WL,Λ

+

k,L−1))

22: Λ
−
k+1,L = (Λ

+

k,L−1, λ
+

k+1,L)

23: P−k+1,L−1 = f−kL(P 0
L−1, P

+
k,L−1,WL,Λ

−
k+1,L)

24: Q−k+1,L−1 ∼ N (0, τ−k+1,L−1), τ−k+1,L−1 = E(P−k+1,L−1)2

25: for ` = L−1, . . . , 1 do
26: λ

−
k+1,` = T−k`(µ

−
k`,Λ

−
k+1, +̀1), µ−k` = E(ϕ−k`(P

0
−̀1, P

+
k, −̀1, Q

−
k+1,`,W`,Λ

−
k+1, +̀1))

27: Λ
−
k+1,` = (Λ

−
k+1, +̀1, λ

−
k+1,`)

28: P−k+1, −̀1 = f−k`(P
0
−̀1, P

+
k, −̀1, Q

−
k+1,`,W`,Λ

−
k+1,`)

29: Q−k+1, −̀1 ∼ N (0, τ−k+1, −̀1), τ−k+1, −̀1 = E(P−k+1, −̀1)2

30: end for
31: end for

145

Appendix B

Proofs from Chapter 4

B.1 State Evolution Equations

The state evolution equations given in Algo. 9 define an iteration indexed by k of constant

matrices {K+
k`, τ

−
kl,Γ

±
kl}L`=0. These constants appear in the statement of the main result in

Theorem 9. The iterations in Algo. 9 also iteratively define a few R1×d valued random

vectors {Q0
` , P

0
` , Q

±
k`, P

±
k`} which are either multivariate Gaussian or functions of Multivariate

Gaussians. In order to state Algorithm 9, we need to define certain random variables and

functions appearing therein which are described below. Let Lodd = {1, 3, . . . , L − 1} and

Leven = {2, 4, . . . , L− 2}.

Define {Θ±k`} similar to Θ±k` from equation (4.14) using {Γ±k`}. Further, for ` = 1, 2, . . . , L−

1 define

Ω
+

k` := (Λ
+

k`,Γ
+

k`,Γ
−
k`), Ω

−
k` := (Λ

+

k,`−1,Γ
−
k,`−1,Γ

−
k,`−1),

and Ω
+

k0 and Ω
−
kL. Now define random variables W` as

W0 = Z0
0 , WL = (Y,ΞL), W` = Ξ`, ∀ ` ∈ Leven,

W` = (S`, B`,Ξ`), ∀ ` ∈ Lodd.

(B.1)

146

Algorithm 9 State Evolution for ML-Mat-VAMP (Algo. 4)
Require: Functions {f 0

` } from (B.2), {h±` } from (B.3), and {f±` } from (B.4). Perturbation
random variables {W`} from (B.1). Initial random vectors {Q−0`}

L−1
`=0 with Initial covariance

matrices {τ−0`}
L−1
`=0 from Section 4. Initial matrices {Γ−0`}L`=0 from (4.16).

1: // Initial Pass
2: Q0

0 = W0, τ 0
0 = Cov(Q0

0) and P 0
0 ∼ N (0, τ 0

0)

3: for ` = 1, . . . , L−1 do
4: Q0

` = f 0
` (P 0

−̀1,W`)

5: P 0
` ∼ N (0, τ 0

`), τ 0
` = Cov(Q0

`)

6: end for

7: for k = 0, 1, . . . do
8: // Forward Pass
9: Q̂+

k0 = h+
0 (Q−k0,W0,Θ

+

k0)

10: Λ
+

k0 = (E∂Q̂+
k0

∂Q−0
)−1Γ

−
k,0

11: Γ
+

k0 = Λ
+

k0 − Γ
−
k0

12: Q+
k0 = f+

0 (Q−k0,W0,Ω
+

k0)

13: (P 0
0 , P

+
k0) ∼ N (0,K+

k0), K+
k0 := Cov(Q0

0, Q
+
k0)

14: for ` = 1, . . . , L− 1 do
15: Q̂+

k` = h+
` (P 0

−̀1, P
+
k, −̀1, Q

−
k`,W`,Θ

+

k`)

16: Λ
+

k` = (E∂Q̂+
k`

∂Q−k`
)−1Γ

−
k`

17: Γ
+

k` = Λ
+

k` − Γ
−
k`

18: Q+
k` = f+

` (P 0
−̀1, P

+
k, −̀1, Q

−
k`,W`,Ω

+

k`)

19: (P 0
` , P

+
k`) ∼ N (0,K+

k`), K+
k` := Cov(Q0

` , Q
+
k`)

20: end for

21: // Backward Pass
22: P̂−k+1,L−1 = h−L(P 0

L−1, P
+
k,L−1,WL,Θ

−
k+1,L)

23: Λ
−
k+1,L = (E∂P̂−k+1,L−1

∂P+
L−1

)−1Γ
+

kL

24: Γ
−
k+1,L−1 = Λ

−
k+1,L−1 − Γ

+

k,L−1,

25: P−k+1,L−1 = f−L (P 0
L−1, P

+
k,L−1,WL,Ω

−
k+1,L)

26: Q−k+1,L−1 ∼ N (0, τ−k+1,L−1), τ−k+1,L−1 := Cov(P−k+1,L−1)

27: for ` = L−2, . . . , 0 do
28: P̂−k+1,` = h−` (P 0

` , P
+
k`, Q

−
k+1,`+1,W`,Θ

−
k+1,`)

29: Λ
−
k+1,` = (E∂P̂−k+1,`

∂P+
k,`

)−1Γ
+

k,`

30: Γ
−
k+1,` = Λ

−
k+1,` − Γ

+

k,`,

31: P−k+1,` = f−` (P 0
` , P

+
k`, Q

−
k+1,`+1,W`,Ω

−
k+1,`)

32: Q−k+1,` ∼ N (0, τ−k+1,`), τ−k+1,` := Cov(P−k+1,`)

33: end for
34: end for

147

Define functions {f 0
` }L`=1 as

f 0
` (P 0

−̀1,W`) := S`P
0
`−1 +B` + Ξ`, ∀ ` ∈ Lodd,

f 0
` (P 0

−̀1,W`) := φ`(P
0
−̀1,Ξ`), ∀ ` ∈ Leven ∪ {L}.

(B.2)

and using (4.14) define functions {h±` , }L`=1, h
+
0 and h−L as

h±` (P 0
`−1, P

+
`−1, Q

−
` ,W`,Θ

±
k`) = G±` (Q−` +Q0

` , P
+
`−1 + P 0

`−1,Θ
±
k`), ∀ ` ∈ Leven,

h±` (P 0
`−1, P

+
`−1, Q

−
` ,W`,Θ

±
k`) = G̃±` (Q−` +Q0

` , P
+
`−1 + P 0

`−1,Θ
±
k`), ∀ ` ∈ Lodd

h+
0 (Q−0 ,W0,Θ

+
k0) = G+

0 (Q−0 +W0,Θ
+
k0),

h−
L

(P 0
L−1
, P+

L−1
,WL,Θ

−
kL

) = G−
L

(P+
L−1 + P 0

L−1,Θ
−
kL

).

(B.3)

Note that [G+
` , G

−
`] and [G̃+

` , G̃
−
`] are maps from R1×d → R1×d such that their row-wise

extensions are the denoisers [G+
` ,G

−
`] and [G̃+

` , G̃
−
`] respectively. Using (B.3) define functions

{f±` }
L−1
`=1 , f

+
0 and f−L as

f+
` (P 0

−̀1, P
+
−̀1, Q

−
` ,W`,Ω

+
k`) =

[(
h+
` −Q

0
`

)
Λ+
k` −Q

−
` Γ−k`

]
(Γ+

k`)
−1,

f−` (P 0
−̀1, P

+
−̀1, Q

−
` ,W`,Ω

−
k`) =

[(
h−` − P

0
−̀1

)
Λ−k, −̀1 − P

+
−̀1Γ

+
k, −̀1

]
(Γ−k, −̀1)−1.

f+
0 (Q−0 ,W0,Ω

+
k0) =

[(
h+

0 −W0

)
Λ+
k0 −Q

−
0 Γ−k0

]
(Γ+

k0)−1,

f−L (P 0
L−1, P

+
L−1,WL,Ω

−
kL) =

[(
h−L − P

0
L−1

)
Λ−k,L−1 − P

+
L−1Γ

+
k,L−1

]
(Γ−k,L−1)−1.

(B.4)

B.2 Large System Limit Details

The analysis of Algorithm 4 in the large system limit is based on [10] and is by now standard

in the theory of AMP-based algorithms. The goal is to characterize ensemble row-wise

averages of iterates of the algorithm using simpler finite-dimensional random variables which

are either Gaussians or functions of Gaussians. To that end, we start by defining some key

terms needed in this analysis.

Definition 5 (Pseudo-Lipschitz continuity). For a given p ≥ 1, a map g : R1×d → R1×r is

called pseudo-Lipschitz of order p if for any r1, r2 ∈ Rd we have,

‖g(r1)− g(r2)‖ ≤ C‖r1 − r2‖
(
1 + ‖r1‖p−1 + ‖r2‖p−1

)
148

Definition 6 (Empirical convergence of rows of a matrix sequence). Consider a matrix-

sequence {X(N)}∞N=1 with X(N) ∈ RN×d. For a finite p ≥ 1, let X ∈ (Rd,Rd) be a Rd-

measurable random variable with bounded moment E‖X‖pp <∞. We say the rows of matrix

sequence {X(N)} converge empirically to X with pth order moments if for all pseudo-Lipschitz

continuous functions f(·) of order p,

lim
N→∞

1

N

N∑
n=1

f(X(N)
n:) = E[f(X)] a.s. (B.5)

Note that the sequence {X(N)} could be random or deterministic. If it is random, however,

then the quantities on the left hand side are random sums and the almost sure convergence

must take this randomness into account as well.

The above convergence is equivalent to requiring weak convergence as well as convergence

of the pth moment, of the empirical distribution 1
N

∑N
n=1 δX(N)

n:
of the rows of X(N) to X. This

is also referred to convergence in the Wasserstein-p metric [157, Chap. 6].

In the case of p = 2, the condition is equivalent to requiring (B.5) to hold for all

continuously bounded functions f as well as for all fq(x) = xTQx for all positive definite

matrices Q.

Definition 7 (Uniform Lipschitz continuity). For a positive definite matrix M , the map

φ(r;M) : Rd → Rd is said to be uniformly Lipschitz continuous in r at M = M if there

exist non-negative constants L1, L2 and L3 such that for all r ∈ Rd

‖φ(r1;M0)− φ(r2;M0)‖ ≤ L1‖r1 − r2‖

‖φ(r;M1)− φ(r;M2)‖ ≤ L2(1 + ‖r‖)ρ(M1,M2)

for all Mi such that ρ(Mi,M) < L3 where ρ is a metric on the cone of positive semidefinite

matrices.

We are now ready to prove Theorem 9.

149

B.3 Proof of Theorem 9

The proof of Theorem 9 is a special case of a more general result on multi-layer recursions

given in Theorem 12. This result is stated in B.4, and proved in B.5. The rest of this section

identifies certain relevant quantities from Theorem 9 in order to apply Theorem 12.

Consider the SVD given of weight matrices W` of the network given by,

W` = V`diag(S`)V` − 1

as explained in Section 4 of the main paper. We analyze Algo. 4 using transformed versions

of the true signals Z0
` and input errors R±` − Z0

` to the denoisers G±` . For ` = 0, 2, . . . L− 2,

define

q0
` = Z0

` q0
`+1 = V>`+1Z

0
`+1 (B.6a)

p0
` = V`Z

0
` p0

`+1 = Z0
`+1 (B.6b)

which are depicted in Fig. B.1 (TOP). Similarly, define the following transformed versions of

errors in the inputs R±` to the denoisers G±`

q−` = R−` − Z0
` q−`+1 = V>`+1(R−`+1 − Z0

`+1) (B.7a)

p+
` = V`(R

+
` − Z0

`) p+
`+1 = R+

`+1 − Z0
`+1 (B.7b)

These quantities are depicted as inputs to function blocks f±` in Fig. B.1 (MIDDLE). Define

perturbation variables w` as

w0 = Z0
0, wL = (Y,ΞL), w` = Ξ`, ∀ ` ∈ Leven (B.8a)

w` = (S`,B`,Ξ`), ∀ ` ∈ Lodd (B.8b)

Finally, we define q+
` and p−` for ` = 1, 2, . . . , L− 1 as

q+
` = f+

` (p0
`−1,p

+
`−1,q

−
` ,w`,Ω`) (B.9a)

p−−̀1 = f−` (p0
`−1,p

+
`−1,q

−
` ,w`,Ω`), (B.9b)

which are outputs of function blocks in Fig. B.1 (MIDDLE). Similarly, define the quantities

q+
0 = f+

0 (q−0 ,Z0,Ω0) and p−L−1 = f+
L (p0

L−1,p
+
L−1,Y,ΩL).

150

Lemma 7. Algorithm 4 is a special case of Algorithm 10 with the definitions {q0
` ,p

0
` ,q

±
` ,p

±
` }

L−1
`=0

given in equations (B.6),(B.7), and (B.9), functions f±` are row-wise extensions of f±` defined

using equations (B.4) and (B.3).

Lemma 8. Assumptions 5 and 6 required for applying Theorem 12 are satisfied by the

conditions in Theorem 9.

Proof. The proofs of the above lemmas are identical to the case of d = 1, which was shown

in [114]. For details see [114, Appendix F]. �

B.4 General Multi-Layer Recursions

To analyze Algorithm 4, we consider a more general class of recursions as given in Algorithm 10

and depicted in Fig. B.1. The Gen-ML recursions generates (i) a set of true matrices q0
` and

p0
` and (ii) iterated matrices q±k` and p±k`. Each of these matrices have the same number of

columns, denoted by d.

The true matrices are generated by a single forward pass, whereas the iterated matrices

are generated via a sequence of forward and backward passes through a multi-layer system.

In proving the State Evolution for the ML-Mat-VAMP algorithm (Algo. 4, one would then

associate the terms q±k` and p±k` with certain error quantities in the ML-Mat-VAMP recursions.

To account for the effect of the parameters Γ±k` and Λ±k` in ML-Mat-VAMP, the Gen-ML

algorithm describes the parameter updates through a sequence of parameter lists Υ±k`. The

parameter lists are ordered lists of parameters that accumulate as the algorithm progresses.

The true and iterated matrices from Algorithm 10 are depicted in the signal flow graphs

on the (TOP) and (MIDDLE) panel of Fig. B.1 respectively. The iteration index k for the

iterated vectors qk`,pk` has been dropped for simplifying notation.

The functions f0
` (·) that produce the true matrices q0

` ,p
0
` are called initial matrix functions

and use the initial parameter list Υ−01. The functions f±k`(·) that produce the matrices q+
k` and

151

q+
0 V0

V0 p0
0 f0

1q0
0

p+
0

f−1

p−0V >0

N P+
0

P 0
0

f−1

P−0NQ−0

f+
0

Q+
0

Q0
0

q−0

f+
0

q+
1 V1

V1 p0
1 f0

2q0
1

p+
1

f−2

p−1V >1

N P+
1

P 0
1

f−2

P−1NQ−1

f+
1

Q+
1

Q0
1

q−1

f+
1

q+
2 V2

V2 p0
2 f0

3q0
2

p+
2

f−3

p−2V >2

N P+
2

P 0
2

f−3

P−2NQ−2

f+
2

Q+
2

Q0
2

q−2

f+
2

q+
3 V3

V3 p0
3q0

3

p+
3

f−4

p−3V >3

N P+
3

P 0
3

f−4

P−3NQ−3

f+
3

Q+
3

Q0
3

q−3

f+
3

Figure B.1: (TOP) The equations (4.1) with equivalent quantities defined in (B.6), and f0
`

defined using (B.2).
(MIDDLE) The Gen-ML-Mat recursions in Algorithm 10. These are also equivalent to
ML-Mat-VAMP recursions from Algorithm 4 (See Lemma 7) if q±,p± are as defined as in
equations (B.7) and (B.9), and f±` given by equations (B.4) and (B.3).
(BOTTOM) Quantities in the GEN-ML-SE recursions. These are also equivalent to ML-Mat-
VAMP SE recursions from Algorithm 9 (See Lemma 7)
The iteration indices k have been dropped for notational simplicity.

p−k` are called the matrix update functions and use parameter lists Υ±kl. The initial parameter

lists Υ−01 are assumed to be provided. As the algorithm progresses, new parameters λ±k` are

computed and then added to the lists in lines 12, 18, 25 and 31. The matrix update functions

f±k`(·) may depend on any sets of parameters accumulated in the parameter list. In lines 11,

17, 24 and 30, the new parameters λ±k` are computed by: (1) computing average values µ±k` of

row-wise functions ϕ±k`(·); and (2) taking functions T±k`(·) of the average values µ±k`. Since the

average values µ±k` represent statistics on the rows of ϕ±k`(·), we will call ϕ±k`(·) the parameter

statistic functions. We will call the T±k`(·) the parameter update functions. The functions

f0
` , f
±
k`,ϕ

±
` also take as input some perturbation vectors w`.

Similar to the analysis of the ML-Mat-VAMP Algorithm, we consider the following large-

152

system limit (LSL) analysis of Gen-ML. Specifically, we consider a sequence of runs of the

recursions indexed by N . For each N , let N` = N`(N) be the dimension of the matrix signals

p±` and q±` as we assume that lim
N→∞

N`
N

= β` ∈ (0,∞) is a constant so that N` scales linearly

with N . Note however that the number of columns of each of the matrices {q0
` ,p

0
` ,q

±
k`,p

±
k`}

is equal to a finite integer d > 0, which remains fixed for all N . We then make the following

assumptions. See B.2 for an overview of empirical convergence of sequences which we use in

the assumptions described below.

Assumption 5. For vectors in the Gen-ML Algorithm (Algorithm 10), we assume:

(a) The matrices V` are Haar distributed on the set of N` ×N` orthogonal matrices and

are independent from one another and from the matrices q0
0, q−0`, perturbation variables

w`.

(b) The rows of the initial matrices q−0`, and perturbation variables w` converge jointly

empirically with limits,

q−0`
2
=⇒ Q−0`, w`

2
=⇒ W`, (B.10)

where Q−0` are random vectors in R1×d such that (Q−00, · · · , Q−0,L−1) is jointly Gaussian.

For ` = 0, . . . , L−1, the random variables W`, P
0
`−1 and Q−0` are all independent. We

also assume that the initial parameter list converges as

lim
N→∞

Υ−01(N)
a.s.−−→ Υ

−
01, (B.11)

to some list Υ
−
01. The limit (B.11) means that every element in the list λ(N) ∈ Υ−01(N)

converges to a limit λ(N)→ λ ∈ Υ
−
01 as N →∞ almost surely.

(c) The matrix update functions f±k`(·) and parameter update functions ϕ±k`(·) act row-wise.

For e.g., in the kth forward pass, at stage `, we assume that for each output row n,[
f+
k`(p

0
−̀1,p

+
k, −̀1,q

−
k`,w`,Υ

+
k`)
]
n:

= f+
k`(p

0
−̀1,n:,p

+
k, −̀1,n:,q

−
k`,n:,w`,n:,Υ

+
k`)[

ϕ+
k`(p

0
−̀1,p

+
k, −̀1,q

−
k`,w`,Υ

+
k`)
]
n:

= ϕ+
k`(p

0
−̀1,n:,p

+
k, −̀1,n:,q

−
k`,n:,w`,n:,Υ

+
k`),

153

for some R1×d-valued functions f+
k`(·) and ϕ

+
k`(·). Similar definitions apply in the reverse

directions and for the initial vector functions f0
` (·). We will call f±k`(·) the matrix update

row-wise functions and ϕ±k`(·) the parameter update row-wise functions.

Next we define a set of deterministic constants {K+
k`, τ

−
k`, µ

±
k`,Υ

±
kl, τ

0
`} and R1×d-valued

random vectors {Q0
` , P

0
` , Q

±
k`, P

±
` } which are recursively defined through Algorithm 11, which

we call the Gen-ML-Mat State Evolution (SE). These recursions in Algorithm closely mirror

those in the Gen-ML-Mat algorithm (Algorithm 10). The matrices q±k` and p±k` are replaced

by random vectors Q±k` and P
±
k`; the matrix and parameter update functions f±k`(·) and ϕ±k`(·)

are replaced by their row-wise functions f±k`(·) and ϕ
±
k`(·); and the parameters λ±k` are replaced

by their limits λ±k`. We refer to {Q0
` , P

0
` } as true random vectors and {Q±k`, P

±
kl} as iterated

random vectors. The signal flow graph for the true and iterated random variables in Algorithm

11 is given in the (BOTTOM) panel of Fig. B.1. The iteration index k for the iterated

random variables {Q±k`, P
±
kl} to simplify notation.

We also assume the following about the behaviour of row-wise functions around the

quantities defined in Algorithm 11. The iteration index k has been dropped for simplifying

notation.

Assumption 6. For row-wise functions f, ϕ and parameter update functions T we assume:

(a) T±k`(µ
±
k`, ·) are continuous at µ±k` = µ±k`

(b) f+
k`(p

0
`−1, p

+
k, −̀1, q

−
k`, w`,Υ

+
k`),

∂f+k`
∂q−k`

(p0
`−1, p

+
k, −̀1, q

−
k`, w`,Υ

+
k`) and ϕ

+
k`(p

0
`−1, p

+
k, −̀1, q

−
k`, w`,Υ

+
k, −̀1)

are uniformly Lipschitz continuous in (p0
`−1, p

+
k, −̀1, q

−
k`, w`) at Υ+

k` = Υ
+

k`, Υ+
k, −̀1 = Υ

+

k, −̀1.

Similarly, f−k+1,`(p
0
`−1, p

+
k, −̀1, q

−
k+1,`, w`,Υ

−
k`),

∂f−k`
∂p+k,`−1

(p0
`−1, p

+
k, −̀1, q

−
k+1,`, w`,Υ

−
k`), and

ϕ−k`(p
0
`−1, p

+
k, −̀1, q

−
k+1,`, w`,Υ

−
k+1,`+1) are uniformly Lipschitz continuous in

(p0
`−1, p

+
k, −̀1, q

−
k+1,`, w`) at Υ−k` = Υ

−
k`, Υ−k+1,`+1 = Υ

−
k+1,`+1.

(c) f 0
` (p0

−̀1, w`,Υ
−
01) are uniformly Lipschitz continuous in (p0

k, −̀1, w`) at Υ−k+1,` = Υ
−
k+1,`.

154

(d) Matrix update functions f±k` are asymptotically divergence free meaning

lim
N→∞

〈
∂f+k`
∂q−k`

(p+
k, −̀1,q

−
k`,w`,Υ

+

k`)
〉

= 0, lim
N→∞

〈
∂f−k`

∂p+
k, −̀1

(p+
k, −̀1,q

−
k+1,`,w`,Υ

−
k`)

〉
= 0

(B.12)

We are now ready to state the general result regarding the empirical convergence of

the true and iterated vectors from Algorithm 10 in terms of random variables defined in

Algorithm 11.

Theorem 12. Consider the iterates of the Gen-ML recursion (Algorithm 10) and the corre-

sponding random variables and parameter limits defined by the SE recursions (Algorithm 11)

under Assumptions 5 and 6. Then,

(a) For any fixed k ≥ 0 and fixed ` = 1, . . . , L−1, the parameter list Υ+
k` converges as

lim
N→∞

Υ+
k` = Υ

+

k` (B.13)

almost surely. Also, the rows of w`, p0
−̀1, q0

` , p+
0, −̀1, . . . ,p

+
k, −̀1 and q±0`, . . . ,q

±
k` almost

surely jointly converge empirically with limits,

(p0
−̀1,p

+
i, −̀1, q

−
j`, q

0
` , q

+
j`)

2
=⇒ (P 0

−̀1, P
+
i, −̀1, Q

−
j`, Q

0
` , Q

+
j`), (B.14)

for all 0 ≤ i, j ≤ k, where the variables P 0
−̀1, P

+
i, −̀1 and Q−j` are zero-mean jointly

Gaussian random variables independent of W` and with covariance matrix given by

Cov(P 0
−̀1, P

+
i, −̀1) = K+

i, −̀1, E(Q−j`)
2 = τ−j`, E(P+T

i, −̀1Q
−
j`) = 0, E(P 0T

−̀1Q
−
j`) = 0,

(B.15)

and Q0
` , Q

+
j` are the random variable in lines 4, 19,i.e.,

Q0
` = f 0

` (P 0
−̀1,W`), Q+

j` = f+
j`(P

0
−̀1, P

+
j, −̀1, Q

−
j`,W`,Υ

+

j`). (B.16)

An identical result holds for ` = 0 with all the variables p+
i, −̀1 and P+

i, −̀1 removed.

(b) For any fixed k ≥ 1 and fixed ` = 1, . . . , L−1, the parameter lists Υ−k` converge as

lim
N→∞

Υ−k` = Υ
−
k` (B.17)

155

almost surely. Also, the rows of w`, p0
−̀1, p±0, −̀1, . . . ,p

±
k−1, −̀1, and q−0`, . . . ,q

−
k` almost

surely jointly converge empirically with limits,

(p0
−̀1,p

+
i, −̀1,q

−
j`,p

−
j,`−1)

2
=⇒ (P 0

−̀1, P
+
i, −̀1, Q

−
j`, P

−
j,`−1), (B.18)

for all 0 ≤ i ≤ k−1 and 0 ≤ j ≤ k, where the variables P 0
−̀1, P

+
i, −̀1 and Q−j` are zero-mean

jointly Gaussian random variables independent of W` and with covariance matrix given

by equation (B.15) and P−j` is the random variable in line 32:

P−j` = f−j`(P
0
−̀1, P

+
j−1, −̀1, Q

−
j`,W`,Υ

−
j`). (B.19)

An identical result holds for ` = L with all the variables q−j` and Q
−
j` removed.

For k = 0, Υ−01 → Υ
−
01 almost surely, and the rows {(w`,n:,p

0
`−1,n:,q

−
j`,n:)}Nn=1 empirically

converge to independent random variables (W`, P
0
`−1, Q

−
0`).

Proof. B.5 is dedicated to proving this result. �

B.5 Proof of Theorem 12

The proof proceeds using mathematical induction. It largely mimics the proof for the case of

d = 1 which were the convergence results in [114, Thm. 5]. However, in the case of d > 1, we

observe that several quantities which were scalars in proving [114, Thm. 5] are now matrices.

Due to the non-commutativity of these matrix quantities, we re-state the whole prove, while

modifying the requisite matrix terms appropriately.

B.5.1 Overview of the Induction Sequence

The proof is similar to that of [127, Theorem 4], which provides a SE analysis for VAMP

on a single-layer network. The critical challenge here is to extend that proof to multi-layer

recursions. Many of the ideas in the two proofs are similar, so we highlight only the key

differences between the two.

156

Similar to the SE analysis of VAMP in [127], we use an induction argument. However, for

the multi-layer proof, we must index over both the iteration index k and layer index `. To

this end, let H+
k` and H

−
k` be the hypotheses:

• H+
k`: The hypothesis that Theorem 12(a) is true for a given k and `, where 0 ≤ ` ≤ L−1.

• H−k`: The hypothesis that Theorem 12(b) is true for a given k and `, where 1 ≤ ` ≤ L.

We prove these hypotheses by induction via a sequence of implications,

{H−0`}
L
`=1 · · · ⇒ H−k1 ⇒ H

+
k0 ⇒ · · · ⇒ H

+
k,L−1 ⇒ H

−
k+1,L ⇒ · · · ⇒ H

−
k+1,1 ⇒ · · · , (B.20)

beginning with the hypotheses {H−0`} for all ` = 1, . . . , L−1.

B.5.2 Base Case: Proof of {H−0`}L`=1

The base case corresponds to the hypotheses {H−0`}L`=1. Note that Theorem 12(b) states that for

k = 0, we need Υ−01 → Υ
−
01 almost surely, and {(w`,n:,p

0
`−1,n:,q

−
j`,n:)}Nn=1 empirically converge

to independent random variables (W`, P
0
`−1, Q

−
0`). These follow directly from equations (B.10)

and (B.11) in Assumption 1 (a).

B.5.3 Inductive Step: Proof of H+
k,`+1

Fix a layer index ` = 1, . . . , L−1 and an iteration index k = 0, 1, We show the implication

· · · =⇒ H+
k,`+1 in (B.20). All other implications can be proven similarly using symmetry

arguments.

Definition 8 (Induction hypothesis). The hypotheses prior to H+
k, +̀1 in the sequence (B.20),

but not including H+
k, +̀1, are true.

The inductive step then corresponds to the following result.

Lemma 9. Under the induction hypothesis, H+
k,`+1 holds

157

Before proving the inductive step in Lemma 9, we prove two intermediate lemmas. Let us

start by defining some notation. Define P+
k` :=

[
p+

0` · · ·p
+
k`

]
∈ RN`×(k+1)d, be a matrix whose

column blocks are the first k+1 values of the matrix p+
` . We define the matrices P−k`, Q+

k`

and Q−k` in a similar manner with values of p−` ,q
+
` and q−` respectively.

Note that except the initial matrices {w`,q
−
0`}L`=1, all later iterates in Algorithm 10 are

random due to the randomness of V`. Let G±k` denote the collection of random variables

associated with the hypotheses, H±k`. That is, for ` = 1, . . . , L−1,

G+
k` :=

{
w`,p

0
−̀1,P

+
k, −̀1,q

0
` ,Q

−
k`,Q

+
k`

}
, G−k` :=

{
w`,p

0
−̀1,P

+
k−1, −̀1,q

0
` ,Q

−
k`,P

−
k, −̀1

}
.

For ` = 0 and ` = L we set, G+
k0 :=

{
w0,Q

−
k0,Q

+
k0

}
, G−kL :=

{
wL,p

0
L−1,P

+
k−1,L−1,P

−
k,L−1

}
.

Let G+

k` be the sigma algebra generated by the union of all the sets G±k′`′ as they have

appeared in the sequence (B.20) up to and including the final set G+
k`. Thus, the sigma

algebra G
+

k` contains all information produced by Algorithm 10 immediately before line 20

in layer ` of iteration k. Note also that the random variables in Algorithm 11 immediately

before defining P+
k,` in line 20 are all G+

k` measurable.

Observe that the matrix V` in Algorithm 10 appears only during matrix-vector multi-

plications in lines 20 and 32. If we define the matrices, Ak` :=
[
p0
` ,P

+
k−1,` P−k`

]
, Bk` :=[

q0
` ,Q

+
k−1,` Q−k`

]
, all the matrices in the set G+

k` will be unchanged for all matrices V` satisfying

the linear constraints

Ak` = V`Bk`. (B.21)

Hence, the conditional distribution of V` given G
+

k` is precisely the uniform distribution on

the set of orthogonal matrices satisfying (B.21). The matrices Ak` and Bk` are of dimensions

N` × (2k + 2)d. From [127, Lemmas 3,4], this conditional distribution is given by

V`|G+
k`

d
= Ak`(A

T
k`Ak`)

−1BT
k` + UA⊥k`

Ṽ`U
T
B⊥k`
, (B.22)

where UA⊥k`
and UB⊥k`

are N` × (N` − (2k + 2)d) matrices whose columns are an orthonormal

basis for Range(Ak`)
⊥ and Range(Bk`)

⊥. The matrix Ṽ` is Haar distributed on the set of

(N` − (2k + 2)d)× (N` − (2k + 2)d) orthogonal matrices and is independent of G+

k`.

158

Next, similar to the proof of [127, Thm. 4], we can use (B.22) to write the conditional

distribution of p+
k` (from line 20 of Algorithm 10) given G

+

k` as a sum of two terms

p+
k`|G+

k`
= V`|G+

k`
q+
k`

d
= p+det

k` + p+ran
k` , (B.23a)

p+det
k` := Ak`(B

T
k`Bk`)

−1BT
k`q

+
k` (B.23b)

p+ran
k` := UB⊥k

ṼT
` UT

A⊥k
q+
k`. (B.23c)

where we call p+det
k` the deterministic term and p+ran

k` the random term. The next two lemmas

characterize the limiting distributions of the deterministic and random terms.

Lemma 10. Under the induction hypothesis, the rows of the “deterministic" term p+det
k` along

with the rows of the matrices in G
+

k` converge empirically. In addition, there exists constant

d× d matrices β+
0`, . . . , β

+
k−1,` such that

p+det
k`

2
=⇒ P+det

k` := P 0
` β

0
` +

k−1∑
i=0

P+
i` βi`, (B.24)

where P+det
k` ∈ R1×d is the limiting random vector for the rows of pdet

k` .

Proof. The proof is similar that of [127, Lem. 6], but we go over the details as there are some

important differences in the multi-layer matrix case. Define P̃+
k−1,` =

[
p0
` , P+

k−1,`

]
, Q̃+

k−1,` =[
q0
` , Q+

k−1,`

]
, which are the matrices in RN`×(k+1)d. We can then write Ak` and Bk` from

(B.21) as

Ak` :=
[
P̃+
k−1,` P−k`

]
, Bk` :=

[
Q̃+
k−1,` Q−k`

]
, (B.25)

We first evaluate the asymptotic values of various terms in (B.23b). By definition of Bk` in

(B.25),

BT
k`Bk` =

(Q̃+
k−1,`)

TQ̃+
k−1,` (Q̃+

k−1,`)
TQ−k`

(Q−k`)
TQ̃+

k−1,` (Q−k`)
TQ−k`


We can then evaluate the asymptotic values of these terms as follows: For 0 ≤ i, j ≤ k − 1

159

the asymptotic value of the (i+ 2, j + 2)nd d× d block of the matrix (Q̃+
k−1,`)

TQ̃+
k−1,` is

lim
N→∞

1
N`

[
(Q̃+

k−1,`)
TQ̃+

k−1,`

]
i+2,j+2

(a)
= lim

N→∞

1

N`

(q+
i`)

Tq+
j`

= lim
N→∞

1
N`

N∑̀
n=1

[q+
i`]n:[q

+
j`]

T
n:

(b)
= E

[
Q+T
i` Q

+
j`

]
where (a) follows since the (i+ 2)th column block of Q̃+

k−1,` is q+
i`, and (b) follows due to the

empirical convergence assumption in (B.14). Also, since the first column block of Q̃+
k−1,` is q0

` ,

we obtain that
lim
N`→∞

1
N`

(Q̃+
k−1,`)

TQ̃+
k−1,` = R+

k−1,` and

lim
N`→∞

1
N`

(Q−k`)
TQ−k` = R−k`,

(B.26)

where R+
k−1,` ∈ R(k+1)d×(k+1)d is the covariance matrix of

[
Q0
` Q

+
0` . . . Q

+
k−1,`

]
, and R−k` ∈

R(k+1)d×(k+1)d is the covariance matrix of
[
Q−0` Q

−
1` . . . Q

−
k`

]
. For the matrix (Q̃+

k−1,`)
TQ−k`,

first observe that the limit of the divergence free condition (B.12) implies

E

[
∂f+

i` (P+
i, −̀1, Q

−
i`,W`,Υi`)

∂Q−i`

]
= lim

N`→∞

〈
∂f+
i` (p

+
i, −̀1,q

−
i`,w`,Υ

+

i`)

∂q−i`

〉
= 0, (B.27)

for any i. Also, by the induction hypothesis H+
k`,

E(P+T
i, −̀1Q

−
j`) = 0, E(P 0T

−̀1Q
−
j`) = 0, (B.28)

for all 0 ≤ i, j ≤ k. Therefore using (B.16), the cross-terms E(Q+T
i` Q

−
j`) are given by

E(f+
i` (P 0

−̀1, P
+
i, −̀1, Q

−
i`,W`,Υi`)

TQ−j`)
(a)
= E

[
∂f+i` (P 0

−̀1,P
+
i, −̀1,Q

−
i`,W`,Υ

+
i`)

∂P 0
−̀1

]
E(P 0T

−̀1Q
−
j`)

+ E
[
∂f+i` (P 0

−̀1,P
+
i, −̀1,Q

−
i`,W`,Υ

+
i`)

∂P+
i, −̀1

]
E(P+T

i, −̀1Q
−
j`)

+ E
[
∂f+i` (P 0

−̀1,P
+
i, −̀1,Q

−
i`,W`,Υ

+
i`)

∂Q−i`

]
E(Q−Ti` Q

−
j`)

(b)
= 0,

(B.29)

(a) follows from a multivariate version of Stein’s Lemma [?, eqn.(2)]; and (b) follows from

(B.27), and (B.28). Consequently,

lim
N`→∞

1
N`

BT
k`Bk` =

R+
k−1,` 0

0 R−k`

 , and lim
N`→∞

1
N`

BT
k`q

+
k` =

b+
k`

0

 , (B.30)

where b+
k` :=

[
E(Q+T

0` Q
+
k`) E(Q+T

1` Q
+
k`) · · · E(Q+T

k−1,`Q
+
k`)
]T
, is the matrix of correlations. We

160

again have 0 in the second term because E[Q+T
i` Q

−
j`] = 0 for all 0 ≤ i, j ≤ k. Hence we have

lim
N`→∞

(BT
k`Bk`)

−1BT
k`q

+
k` =

β+
k`

0

 , β+
k` :=

[
R+
k−1,`

]−1

b+
k`. (B.31)

Therefore, p+det
k` equals

Ak`(B
T
k`Bk`)

−1BT
k`q

+
k` =

[
P̃+
k−1,` P−k,`

]β+
k`

0

+O
(

1
N`

)

= p0
`β

0
` +

k−1∑
i=0

p+
i`β

+
i` +O

(
1
N`

)
,

(B.32)

where β0
` and β+

i` are d×d block matrices of β+
k` and the term O(1

N`
) means a matrix sequence,

ϕ(N) ∈ RN` such that limN→∞
1
N
‖ϕ(N)‖2 = 0. A continuity argument then shows the

empirical convergence (B.24). �

Lemma 11. Under the induction hypothesis, the components of the “random" term p+ran
k`

along with the components of the vectors in G
+

k` almost surely converge empirically. The

components of p+ran
k` converge as

p+ran
k`

2
=⇒ Uk`, (B.33)

where Uk` is a zero mean Gaussian random vector in R1×d independent of the limiting random

variables corresponding to the variables in G
+

k`.

Proof. The proof is identical to that of [127, Lemmas 7,8]. �

We are now ready to prove Lemma 9.

Proof of Lemma 9. Using the partition (B.23a) and Lemmas 10 and 11, we see that the

components of the vector sequences in G
+

k` along with p+
k` almost surely converge jointly

empirically, where the components of p+
k` have the limit

p+
k` = pdet

k` + pran
k`

2
=⇒ P 0

` β
0
` +

k−1∑
i=0

P+
i` β

+
i` + Uk` =: P+

k`. (B.34)

Note that the above Wasserstein-2 convergence can be shown using the same arguments

involved in showing that if XN |F
d

=⇒ X|F , and YN |F
d

=⇒ c, then (XN , YN)|F d
=⇒

161

(X, c)|F for some constant c and sigma-algebra F .

We first establish the Gaussianity of P+
k`. Observe that by the induction hypothesis, H−k, +̀1

holds whereby (P 0
` , P

+
0` , . . . , P

+
k−1,`, Q

−
0, +̀1, . . . , Q

−
k, +̀1), is jointly Gaussian. Since Uk is Gaussian

and independent of (P 0
` , P

+
0` , . . . , P

+
k−1,`, Q

−
0, +̀1, . . . , Q

−
k, +̀1), we can conclude from (B.34) that

(P 0
` , P

+
0` , . . . , P

+
k−1,`, P

+
k`, Q

−
0, +̀1, . . . , Q

−
k, +̀1) is jointly Gaussian.

We now need to prove the correlations of this jointly Gaussian random vector are as

claimed by H+
k,`+1. Since H−k, +̀1 is true, we know that (B.15) is true for all i = 0, . . . , k−1

and j = 0, . . . , k and ` = ` + 1. Hence, we need only to prove the additional identity for

i = k, namely the equations: Cov(P 0
` , P

+
k`)

2 = K+
k` and E(P+

k`Q
−
j, +̀1) = 0. First observe that

E(P+T
k` P

+
k`)

2 (a)
= lim

N`→∞
1
N`

p+T
k` p+

k`

(b)
= lim

N`→∞
1
N`

q+T
k` q+

k`

(c)
= E

(
Q+T
k` Q

+
k`

)2

where (a) follows from the fact that the rows of p+
k` converge empirically to P+

k`; (b) follows

from line 20 in Algorithm 10 and the fact that V` is orthogonal; and (c) follows from the

fact that the rows of q+
k` converge empirically to Q+

k` from hypothesis H+
k,`. Since p0

` = V`q
0,

we similarly obtain that E(P 0T
` P+

k`) = E(Q0T
` Q

+
k`), E(P 0T

` P 0
`) = E(Q0T

` Q
0
`), from which we

conclude

Cov(P 0
` , P

+
k`) = Cov(Q0

` , Q
+
k`) =: K+

k`, (B.35)

where the last step follows from the definition of K+
k` in line 20 of Algorithm 11. Finally, we

observe that for 0 ≤ j ≤ k

E(P+T
k` Q

−
j, +̀1)

(a)
= β0T

` E(P 0T
` Q−j, +̀1) +

k−1∑
i=0

β+T
i` E(P+T

i` Q−j, +̀1) + E(UT
k`Q

−
j, +̀1)

(b)
= 0, (B.36)

where (a) follows from (B.34) and, in (b), we used the fact that E(P 0T
` Q−j, +̀1) = 0 and

E(P+T
i` Q−j, +̀1) = 0 since (B.15) is true for i ≤ k−1 corresponding toH−k,`+1 and E(UT

k`Q
−
j, +̀1) = 0

since Uk` is independent of G
+

k`, and Q
−
j, +̀1 is G+

k` measurable. Thus, with (B.35) and (B.36),

we have proven all the correlations in (B.15) corresponding to H+
k,`+1.

Next, we prove the convergence of the parameter lists Υ+
k,`+1 to Υ

+

k,`+1. Since Υ+
k` →

Υ
+

k` due to hypothesis H+
k`, and ϕ+

k, +̀1(·) is uniformly Lipschitz continuous, we have that

162

limN→∞ µ
+
k, +̀1 from line 17 in Algorithm 10 converges almost surely as

lim
N→∞

〈
ϕ+
k, +̀1(p0

` ,p
+
k`,q

−
k, +̀1,w +̀1,Υ

+

k`)
〉

= E
[
ϕ+
k, +̀1(P 0

` , P
+
k`, Q

−
k, +̀1,W +̀1,Υ

+

k`)
]

= µ+
k, +̀1,

(B.37)

where µ+
k, +̀1 is the value in line 17 in Algorithm 11. Since T+

k, +̀1(·) is continuous, we have

that λ+
k, +̀1 in line 18 in Algorithm 10 converges as limN→∞ λ

+
k, +̀1 = T+

k, +̀1(µ+
k, +̀1,Υ

+

k`) =: λ
+

k, +̀1,

from line 18 in Algorithm 11. Therefore, we have the limit

lim
N→∞

Υ+
k, +̀1 = lim

N→∞
(Υ+

k,`, λ
+
k, +̀1) = (Υ

+

k,`, λ
+

k, +̀1) = Υ
+

k, +̀1, (B.38)

which proves the convergence of the parameter lists stated in H+
k,`+1. Finally, using (B.38),

the empirical convergence of the matrix sequences p0
` , p+

k` and q−k, +̀1 and the uniform Lipschitz

continuity of the update function f+
k, +̀1(·) we obtain that q+

k, +̀1 equals

f+
k, +̀1(p0

` ,p
−
k`,q

−
k, +̀1,w +̀1,Υ

+
k, +̀1)

2
=⇒ f+

k, +̀1(P 0
` , P

−
k`, Q

−
k, +̀1,W +̀1,Υ

+

k, +̀1) =: Q+
k, +̀1,

which proves the claim (B.16) for H+
k,`+1. This completes the proof. �

An overview of the iterates in Algorithm 10 is depicted in (TOP) and (MIDDLE) of Figure

B.1. Theorem 12 shows that the rows of the iterates of Algorithm 10 converge empirically

with 2nd order moments to random variables defined in Algorithm 11. The random variables

defined in Algo. 11 are depicted in Figure B.1 (BOTTOM).

163

Algorithm 10 General Multi-Layer Matrix (Gen-ML-Mat) Recursion
Require: Initial matrix functions {f0

` }. Matrix update functions {f±k`(·)}. Parameter statistic
functions {ϕ±k`(·)}. Parameter update functions {T±k`(·)}. Orthogonal matrices {V`}.
Perturbation variables {w±` }. Initial matrices {q−0`}. Initial parameter list Υ−01.

1: // Initial Pass
2: q0

0 = f0
0 (w0), p0

0 = V0q
0
0

3: for ` = 1, . . . , L−1 do
4: q0

` = f0
` (p0

−̀1,w`,Υ
−
01)

5: p0
` = V`q

0
`

6: end for
7:

8: for k = 0, 1, . . . do
9: // Forward Pass
10: λ+

k0 = T+
k0(µ+

k0,Υ
−
0k)

11: µ+
k0 =

〈
ϕ+
k0(q−k0,w0,Υ

−
0k)
〉

12: Υ+
k0 = (Υ−k1, λ

+
k0)

13: q+
k0 = f+

k0(q−k0,w0,Υ
+
k0)

14: p+
k0 = V0q

+
k0

15: for ` = 1, . . . , L− 1 do
16: λ+

k` = T+
k`(µ

+
k`,Υ

+
k, −̀1)

17: µ+
k` =

〈
ϕ+
k`(p

0
−̀1,p

+
k, −̀1,q

−
k`,w`,Υ

+
k, −̀1)

〉
18: Υ+

k` = (Υ+
k, −̀1, λ

+
k`)

19: q+
k` = f+

k`(p
0
−̀1,p

+
k, −̀1,q

−
k`,w`,Υ

+
k`)

20: p+
k` = V`q

+
k`

21: end for

22: // Backward Pass
23: λ−k+1,L = T−kL(µ−kL,Υ

+
k,L−1)

24: µ−kL =
〈
ϕ−kL(p+

k,L−1,wL,Υ
+
k,L−1)

〉
25: Υ−k+1,L = (Υ+

k,L−1, λ
+
k+1,L)

26: p−k+1,L−1 = f−kL(p0
L−1,p

+
k,L−1,wL,Υ

−
k+1,L)

27: q−k+1,L−1 = VT
L−1pk+1,L−1

28: for ` = L−1, . . . , 1 do
29: λ−k+1,` = T−k`(µ

−
k`,Υ

−
k+1, +̀1)

30: µ−k` =
〈
ϕ−k`(p

0
−̀1,p

+
k, −̀1,q

−
k+1,`,w`,Υ

−
k+1, +̀1)

〉
31: Υ−k+1,` = (Υ−k+1, +̀1, λ

−
k+1,`)

32: p−k+1, −̀1 = f−k`(p
0
−̀1,p

+
k, −̀1,q

−
k+1,`,w`,Υ

−
k+1,`)

33: q−k+1, −̀1 = VT
−̀1p

−
k+1, −̀1

34: end for
35: end for

164

Algorithm 11 Gen-ML-Mat State Evolution (SE)
Require: Matrix update row-wise functions f 0

` (·) and f±k`(·), parameter statistic row-wise
functions ϕ±k`(·), parameter update functions T±k`(·), initial parameter list limit: Υ

−
01,

initial random variables W`, Q−0`, ` = 0, . . . , L−1.
1: // Initial pass
2: Q0

0 = f 0
0 (W0,Υ

−
01), P 0

0 ∼ N (0, τ 0
0), τ 0

0 = E(Q0
0)2

3: for ` = 1, . . . , L−1 do
4: Q0

` = f 0
` (P 0

−̀1,W`,Υ
−
01)

5: P 0
` ∼ N (0, τ 0

`), τ 0
` = Cov(Q0

`)

6: end for
7:

8: for k = 0, 1, . . . do
9: // Forward Pass
10: λ

+

k0 = T+
k0(µ+

k0,Υ
−
0k)

11: µ+
k0 = E(ϕ+

k0(Q−k0,W0,Υ
−
0k))

12: Υ
+

k0 = (Υ
−
k1, λ

+

k0)

13: Q+
k0 = f+

k0(Q−k0,W0,Υ
+

k0)

14: (P 0
0 , P

+
k0) ∼ N (0,K+

k0), K+
k0 = Cov(Q0

0, Q
+
k0)

15: for ` = 1, . . . , L− 1 do
16: λ

+

k` = T+
k`(µ

+
k`,Υ

+

k, −̀1)

17: µ+
k` = E(ϕ+

k`(P
0
−̀1, P

+
k, −̀1, Q

−
k`,W`,Υ

+

k, −̀1))

18: Υ
+

k` = (Υ
+

k, −̀1, λ
+

k`)

19: Q+
k` = f+

k`(P
0
−̀1, P

+
k, −̀1, Q

−
k`,W`,Υ

+

k`)

20: (P 0
` , P

+
k`) ∼ N (0,K+

k`), K+
k` = Cov(Q0

` , Q
+
k`)

21: end for

22: // Backward Pass
23: λ

−
k+1,L = T−kL(µ−kL,Υ

+

k,L−1)

24: µ−kL = E(ϕ−kL(P 0
L−1, P

+
k,L−1,WL,Υ

+

k,L−1))

25: Υ
−
k+1,L = (Υ

+

k,L−1, λ
+

k+1,L)

26: P−k+1,L−1 = f−kL(P 0
L−1, P

+
k,L−1,WL,Υ

−
k+1,L)

27: Q−k+1,L−1 ∼ N (0, τ−k+1,L−1), τ−k+1,L−1 = Cov(P−k+1,L−1)

28: for ` = L−1, . . . , 1 do
29: λ

−
k+1,` = T−k`(µ

−
k`,Υ

−
k+1, +̀1)

30: µ−k` = E(ϕ−k`(P
0
−̀1, P

+
k, −̀1, Q

−
k+1,`,W`,Υ

−
k+1, +̀1))

31: Υ
−
k+1,` = (Υ

−
k+1, +̀1, λ

−
k+1,`)

32: P−k+1, −̀1 = f−k`(P
0
−̀1, P

+
k, −̀1, Q

−
k+1,`,W`,Υ

−
k+1,`)

33: Q−k+1, −̀1 ∼ N (0, τ−k+1, −̀1), τ−k+1, −̀1 = Cov(P−k+1, −̀1)

34: end for
35: end for

165

Appendix C

Proofs from Chapter 5

C.1 ML-VAMP Denoisers Details

Related to Smp and smp from equation (5.11), we need to define two quantities s+
mp ∈ RN and

s−mp ∈ Rp that are zero-padded versions of the singular values smp, so that for n > min
{
N, p},

we set s±mp,n = 0. Observe that (s+
mp)2 are eigenvalues of UUT whereas (s−mp)2 are eigenvalues

of UTU. Since smp empirically converges to Smp as given in (5.12), the vector s+
mp empirically

converges to random variable S+
mp whereas the vector s−mp empirically converges to random

variable S−mp, where a mass is placed at 0 appropriately. Specifically, S+
mp has a point mass

of (1− β)+δ{0} when β < 1, whereas S−mp has a point mass of (1− 1
β
)+δ{0}, when β > 1. In

Appendix 2.9 (eqn. (2.19)), we provide the densities over positive parts of S+
mp and S−mp.

A key property of our analysis will be that the non-linear functions (5.20) and the denoisers

g±` (·) have simple forms.

Non-linear functions φ`(·): The non-linear functions all act componentwise. For example, for

φ1(·) in (5.20), we have

z1 = φ1(p0, str) = diag(str)p0 ⇐⇒ z1,n = φ1(p0,n, str,n),

166

where φ1(·) is the scalar-valued function,

φ1(p0, s) = sp0. (C.1)

Similarly, for φ2(·),

z2 = φ2(p1, s
+
mp)⇐⇒ z2,n = φ2(p1,n, s

+
mp,n), n < N

where p1 ∈ RN is the zero-padded version of p1, and

φ2(p1, s) = s p1. (C.2)

Finally, the function φ3(·) in (5.20) acts componentwise with

φ3(p2, d) = φout(p2, d). (C.3)

Input denoiser g+
0 (·): Since F0(z0) = Fin(z0), and Fin(·) given in (5.6), the denoiser (5.25a)

acts componentwise in that,

ẑ0 = g+
0 (r−0 , γ

−
0)⇐⇒ ẑ0,n = g+

0 (r−0,n, γ
−
0),

where g+
0 (·) is the scalar-valued function,

g+
0 (r−0 , γ

−
0) := argmin

z0

fin(z0) +
γ−0
2

(z0 − r−0)2. (C.4)

Thus, the vector optimization in (5.25a) reduces to a set of scalar optimizations (C.4) on

each component.

Output denoiser g−3 (·): The output penalty F3(p2,y) = Fout(p2,y) where Fout(p2,y) has the

separable form (5.6). Thus, similar to the case of g0(·), the denoiser g3(·) in (5.25b) also acts

componentwise with the function,

g−3 (r+
2 , γ

+
2 , y) := argmin

p2

fout(p2, y) +
γ+2
2

(p2 − r+
2)2. (C.5)

Linear denoiser g±1 (·): The expressions for both denoisers g±1 and g±2 are very similar and can

be explained together. The penalty F1(·) restricts z1 = Strp0, where Strace is a square matrix.

Hence, for ` = 1, the minimization in (5.27) is given by,

p̂0 := argmin
p0

γ+0
2
‖p0 − r+

0 ‖2 +
γ−1
2
‖Strp0 − r−1 ‖2, (C.6)

and ẑ1 = Strp̂0. This is a simple quadratic minimization and the components of p̂0 and ẑ1

167

are given by

p̂0,n = g−1 (r+
0,n, r

−
1,n, γ

+
0 , γ

−
1 , str,n)

ẑ1,n = g+
1 (r+

0,n, r
−
1,n, γ

+
0 , γ

−
1 , str,n),

where

g−1 (r+
0 , r

−
1 , γ

+
0 , γ

−
1 , s) :=

γ+
0 r

+
0 + sγ−1 r

−
1

γ+
0 + s2γ−1

(C.7a)

g+
1 (r+

0 , r
−
1 , γ

+
0 , γ

−
1 , s) :=

s(γ+
0 r

+
0 + sγ−1 r

−
1)

γ+
0 + s2γ−1

(C.7b)

Linear denoiser g±2 (·): This denoiser is identical to the case g±1 (·) in that we need to

impose the linear constraint z2 = Smpp1. However Smp is in general a rectangular matrix

and the two resulting cases of β ≶ 1 needs to be treated separately.

Recall the definitions of vectors s+
mp and s−mp at the beginning of this section. Then, for

` = 2, with the penalty F2(p1, z2) = δ{z2=Smpp1}, the solution to (5.27) has components,

p̂1,n = g−2 (r+
1,n, r

−
2,n, γ

+
1 , γ

+
2 , s

−
mp,n) (C.8a)

ẑ2,n = g+
2 (r+

1,n, r
−
2,n, γ

+
1 , γ

+
2 , s

+
mp,n), (C.8b)

with the identical functions g−2 = g−1 and g+
2 = g+

1 as given by (C.7a) and (C.7b). Note that

in (C.8a), n = 1, . . . , p and in (C.8b), n = 1, . . . , N .

C.2 State Evolution Analysis of ML-VAMP

A key property of the ML-VAMP algorithm is that its performance in the LSL can be exactly

described by a scalar equivalent system. In the scalar equivalent system, the vector-valued

outputs of the algorithm are replaced by scalar random variables representing the typical

behavior of the components of the vectors in the large-scale-limit (LSL). Each of the random

variables are described by a set of parameters, where the parameters are given by a set of

deterministic equations called the state evolution or SE.

The SE for the general ML-VAMP algorithm are derived in [112] and the special case

168

Algorithm 12 SE for ML-VAMP for GLM Learning
1: // Initial
2: Initialize γ−0` = γ−0` from Algorithm 5.
3: Q−0` ∼ N (0, τ−0`) for some τ−0` > 0 for ` = 0, 1, 2
4: Z0

0 = W 0

5: for ` = 0, . . . , L−1 do
6: P 0

` = N (0, τ 0
`), τ 0

` = var(Z0
`)

7: Z0
+̀1 = φ +̀1(P 0

` ,Ξ +̀1)
8: end for
9:
10: for k = 0, 1, . . . do
11: // Forward Pass
12: for ` = 0, . . . , L− 1 do
13: if ` = 0 then
14: R−k0 = Z0

` +Q−k0

15: Ẑk0 = g+
0 (R−k0, γ

−
k0)

16: else
17: R+

k, −̀1 = P 0
−̀1 + P+

k, −̀1, R
−
k` = Z0

` +Q−k`
18: Ẑk` = g+

` (R+
k, −̀1, R

−
k`, γ

+
k, −̀1, γ

−
k`,Ξ`)

19: end if
20: α+

k` = E∂Ẑk`/∂Q−k`

21: Q+
k` =

Ẑk` − Z0
` − α+

k`Q
−
k`

1− α+
k`

22: γ+
k` = (1

α+
k`

− 1)γ−k`

23: (P 0
` , P

+
k`) ∼ N (0,K+

k`), K+
k` = cov(Z0

` , Q
+
k`)

24: end for
25:
26: // Backward Pass
27: for ` = L, . . . , 1 do
28: if ` = L then
29: R+

k,L−1 = P 0
L−1 + P+

k,L−1

30: P̂k,L−1 = g−L (R+
k,L−1, γ

+
k,L−1, Z

0
L)

31: else
32: R+

k, −̀1 = P 0
−̀1 + P+

k, −̀1, R
−
k+1,` = Z0

` +Q−k+1,`

33: P̂k, −̀1 = g−` (R+
k, −̀1, R

−
k+1,`, γ

+
k, −̀1, γ

−
k+1,`,Ξ`)

34: end if
35: α−k, −̀1 = E∂P̂k, −̀1/∂P

+
k, −̀1

36: P−k+1, −̀1 =
P̂k, −̀1 − P 0

−̀1 − α−k, −̀1P
+
k, −̀1

1− α−k, −̀1

37: γ−k+1, −̀1 = (1
α−k, −̀1

− 1)γ+
k, −̀1

38: Q−k+1, −̀1 ∼ N (0, τ−k+1, −̀1), τ−k, −̀1 = E(P−k+1, −̀1)2

39: end for
40: end for

169

of the updates for ML-VAMP for GLM learning are shown in Algorithm 12 with details of

functions g±` in Appendix C.1. We see that the SE updates in Algorithm 12 parallel those

in the ML-VAMP algorithm Algo. 5, except that vector quantities such as ẑk`, p̂k`, r+
k` and

r−k` are replaced by scalar random variables such as Ẑk`, P̂k`, R+
k` and R−k`. Each of these

random variables are described by the deterministic parameters such as Kk` ∈ R2×2
�0 , and τ 0

` ,

τ−k` ∈ R+.

The updates in the section labeled as “Initial”, provide the scalar equivalent model for the

true system (5.18). In these updates, Ξ` represent the limits of the vectors ξ` in (5.19). That

is,

Ξ1 := Str, Ξ2 := S+
mp, Ξ3 := D. (C.9)

Due to assumptions in Section 5.2, we have that the components of ξ` converge empirically

as,

lim
N→∞

{ξ`,i}
PL(2)

= Ξ`, (C.10)

So, the Ξ` represent the asymptotic distribution of the components of the vectors ξ`.

The updates in sections labeled “Forward pass" and “Backward pass" in the SE equations

in Algorithm 12 parallel those in Algorithm 5. The key quantities in these SE equations are

the error variables,

p+
k` := r+

k` − p0
` , q−k` := r−k` − z0

` ,

which represent the errors of the estimates to the inputs of the denoisers. We will also be

interested in their transforms,

q+
k` = VT

` p+
k, +̀1, p−k` = V`q

−
k`.

The following Theorem is an adapted version of the main result from [112] to the iterates of

Algorithms 5 and 12.

Theorem 13. Consider the outputs of the ML-VAMP for GLM Learning Algorithm under

the assumptions of Section 5.2. Assume the denoisers satisfy the continuity conditions in

170

Assumption 1. Also, assume that the outputs of the SE satisfy

α±k` ∈ (0, 1),

for all k and `. Suppose Algo. 5 is initialized so that the following convergence holds

lim
N→∞

{r−0` − z0
`}

PL(2)
= Q−0`

where (Q−00, Q
−
01, Q

−
02) are independent zero-mean Gaussians, independent of {Ξ`}. Then,

(a) For any fixed iteration k ≥ 0 in the forward direction and layer ` = 1, . . . , L−1, we

have that, almost surely,

lim
N→∞

(γ+
k, −̀1, γ

−
k`) = (γ+

k, −̀1, γ
−
k`), and, (C.11)

lim
N→∞

{(ẑ+
k`, z

0
` ,p

0
−̀1, r

+
k, −̀1, r

−
`)}

PL(2)
= (Ẑ+

k`, Z
0
` , P

0
−̀1, R

+
k, −̀1, R

−
`) (C.12)

where the variables on the right-hand side are from the SE equations (C.11) and (C.12)

are the outputs of the SE equations in Algorithm 12. Similar equations hold for ` = 0

with the appropriate variables removed.

(b) Similarly, in the reverse direction, For any fixed iteration k ≥ 0 and layer ` = 1, . . . , L−

2, we have that, almost surely,

lim
N→∞

(γ+
k, −̀1, γ

−
k+1,`) = (γ+

k, −̀1, γ
−
k+1,`), and (C.13)

lim
N→∞

{(p̂+
k+1, −̀1, z

0
` ,p

0
−̀1, r

+
k, −̀1, r

−
k+1,`)}

PL(2)
= (P̂+

k+1, −̀1, Z
0
` , P

0
−̀1, R

+
k, −̀1, R

−
k+1,`). (C.14)

Furthermore, (P 0
−̀1, P

+
k −̀1) and Q−k` are independent.

Proof. This is a direct application of Theorem 3 from [114] to the iterations of Algorithm

5. The convergence result in [114] requires the uniform Lipschitz continuity of functions

g±` (·). Assumption 1 provides the required uniform Lipschitz continuity assumption on g+
0 (·)

and g−3 (·). For the ”middle" layers, ` = 1, 2, the denoisers g±` (·) are linear and the uniform

continuity assumption is valid since we have made the additional assumption that the terms

171

str and smp are bounded almost surely. �

A key use of the Theorem is to compute asymptotic empirical limits. Specifically, for

a componentwise function ψ(·), let 〈ψ(x)〉 denotes the average 1
N

∑N
n=1 ψ(xn) The above

theorem then states that for any componentwise pseudo-Lipschitz function ψ(·) of order 2, as

N →∞, we have the following two properties

lim
N→∞

〈
ψ(ẑ+

k`, z
0
` ,p

0
−̀1, r

+
k, −̀1, r

−
`)
〉

= Eψ(Ẑ+
k`, Z

0
` , P

0
−̀1, R

+
k, −̀1, R

−
`)

lim
N→∞

〈
ψ(p̂+

k+1, −̀1, z
0
` ,p

0
−̀1, r

+
k, −̀1, r

−
k+1,`)

〉
= Eψ(P̂+

k+1, −̀1, Z
0
` , P

0
−̀1, R

+
k, −̀1, R

−
k+1,`).

That is, we can compute the empirical average over components with the expected value of

the random variable limit. This convergence is key to proving Theorem 10.

C.3 Empirical Convergence of Fixed Points

A consequence of Assumption 2 is that we can take the limit k →∞ of the random variables

in the SE algorithm. Specifically, let xk = xk(N) be any set of d outputs from the ML-VAMP

for GLM Learning Algorithm under the assumptions of Theorem 13. Under Assumption 2,

for each N , there exists a vector

x(N) = lim
k→∞

xk(N), (C.15)

representing the limit over k. For each k, Theorem 13 shows there also exists a random vector

limit,

lim
N→∞

{xk,i(N)} PL(2)
= Xk, (C.16)

representing the limit over N . The following proposition shows that we can take the limits of

the random variables Xk.

Proposition 1. Consider the outputs of the ML-VAMP for GLM Learning Algorithm under

172

the assumptions of Theorem 13 and Assumption 2. Let xk = xk(N) be any set of d outputs

from the algorithm and let x(N) be its limit from (C.15) and let Xk be the random variable

limit (C.16). Then, there exists a random variable X ∈ Rd such that, for any pseudo-Lipschitz

continuous f : Rd → R,

lim
k→∞

Ef(Xk) = Ef(X) = lim
N→∞

1

N

N∑
i=1

f(xi(N)). (C.17)

In addition, the SE parameter limits α±k` and γ
±
k` converge to limits,

lim
k→∞

α±k` = α±` , lim
k→∞

γ±k` = γ±` . (C.18)

The proposition shows that, under the convergence assumption, Assumption 2, we can

take the limits as k →∞ of the random variables from the SE. To prove the proposition we

first need the following simple lemma.

Lemma 12. If αN and βk ∈ R are sequences such that

lim
k→∞

lim
N→∞

|αN − βk| = 0, (C.19)

then, there exists a constant C such that,

lim
N→∞

αN = lim
k→∞

βk = C. (C.20)

In particular, the two limits in (C.20) exist.

Proof. For any ε > 0, the limit (C.19) implies that there exists a kε(↑ ∞ as ε ↓ 0) such that

for all k > kε,

lim
N→∞

|αN − βk| < ε,

from which we can conclude,

lim inf
N→∞

αN > βk − ε

for all k > kε. Therefore,

lim inf
N→∞

αN ≥ sup
k≥kε

βk − ε.

173

Since this is true for all ε > 0, it follows that

lim inf
N→∞

αN ≥ lim sup
k→∞

βk. (C.21)

Similarly, lim supN→∞ αN ≤ infk>kε βk + ε, whereby

lim sup
N→∞

αN ≤ lim inf
k→∞

βk. (C.22)

Equations (C.21) and (C.22) together show that the limits in (C.20) exists and are equal. �

Proof of Proposition 1 Let f : Rd → R be any pseudo-Lipschitz function of order 2,

and define,

αN =
1

N

N∑
i=1

f(xi(N)), βk = Ef(Xk). (C.23)

Their difference can be written as,

αN − βk = AN,k +BN,k, (C.24)

where

AN,k :=
1

N

N∑
i=1

f(xi(N))− f(xk,i(N)), (C.25)

BN,k :=
1

N

N∑
i=1

f(xk,i(N))− Ef(Xk). (C.26)

Since {xk,i(N)} converges PL(2) to Xk, we have,

lim
N→∞

BN,k = 0. (C.27)

For the term AN,k,

|AN,k|
(a)

≤ lim
N→∞

1

N

N∑
i=1

|f(xi(N))− f(xk,i(N))|

(b)

≤ lim
N→∞

C

N

N∑
i=1

aki(N)(1 + aki(N))

(c)

≤ C lim
N→∞

√√√√ 1

N

N∑
i=1

a2
ki(N) +

1

N

N∑
i=1

a2
ki(N)

= C lim
N→∞

εk(N)(1 + εk(N)), (C.28)

174

where (a) follows from applying the triangle inequality to the definition of AN,k in (C.25);

(b) follows from the definition of pseudo-Lipschitz continuity in Definition 1, C > 0 is the

Lipschitz contant and

aki(N) := ‖xk,i(N)− xi(N)‖2,

and (c) follows from the RMS-AM inequality:(
1

N

N∑
i=1

aki(N)

)2

≤ 1

N

N∑
i=1

a2
ki(N) =: ε2k(N).

By (5.29), we have that,

lim
k→∞

lim
N→∞

εk(N) = 0.

Hence, from (C.28), it follows that,

lim
k→∞

lim
N→∞

AN,k = 0. (C.29)

Substituting (C.27) and (C.29) into (C.24) show that αN and βk satisfy (C.19). Therefore,

applying Lemma 12 we have that for any pseudo-Lipschitz function f(·), there exists a limit

Φ(f) such that,

lim
N→∞

1

N

N∑
i=1

f(xi(N)) = lim
k→∞

Ef(Xk) = Φ(f). (C.30)

In particular, the two limits in (C.30) exists. When restricted to the continuous, bounded

functions with the ‖f‖∞ norm, it is easy verified that Φ(f) is a positive, linear, bounded

function of f , with Φ(1) = 1. Therefore, by the Riesz representation theorem, there exists a

random variable X such that Φ(f) = Ef(X). This fact in combination with (C.30) shows

(C.17).

It remains to prove the parameter limits in (C.18). We prove the result for the parameter

α+
k`. The proof for the other parameters are similar. Using Stein’s lemma, it is shown in [112]

that

α+
k` =

E(Ẑk`Q
−
k`)

E(Q−`)2
. (C.31)

175

Since the numerator and denominator of (C.31) are PL(2) functions we have that the limit,

α+
` := lim

k→∞
α+
k` = lim

k→∞

E(Ẑk`Q
−
k`)

E(Q−k`)
2

=
E(Ẑ`Q

−
`)

E(Q−`)2
, (C.32)

where Ẑ` and Q−` are the limits of Ẑk` and Q−k`. This completes the proof.

C.4 Proof of Theorem 10

From Assumption 2, we know that for every N , every group of vectors xk converge to limits,

x := limk→∞ xk. The parameters, γ±k`, also converge to limits γ±` := limk→∞ γ
±
k` for all `. By

the continuity assumptions on the functions g±` (·), the limits x and γ±` are fixed points of

the algorithms.

A proof similar to that in [114] shows that the fixed points ẑ` and p̂` satisfy the KKT

condition of the constrained optimization (5.22). This proves part (a).

The estimate ŵ is the limit,

ŵ = ẑ0 = lim
k→∞

ẑk0.

Also, the true parameter is z0
0 = w0. By Proposition 1, we have that the PL(2) limits of

these variables are

lim
N→∞

{(ŵ,w0)} PL(2)
= (Ŵ ,W0) := (Ẑ0, Z

0
0).

From line 15 of the SE Algorithm 12, we have

Ŵ = Ẑ0 = g+
0 (R−0 , γ

−
0) = proxfin/γ−0 (W 0 +Q−0).

This proves part (b).

To prove part (c), we use the limit

lim
N→∞

{p0
0,n, p̂0,n}

PL(2)
= (P 0

0 , P̂0). (C.33)

Since the fixed points are critical points of the constrained optimization (5.22), p̂0 = V0ŵ.

176

We also have p0
0 = V0w

0. Therefore,[
z

(N)
ts ẑ

(N)
ts

]
:= uT Diag(sts)V0[w0 ŵ]

= uT Diag(sts)[p
0
0 p̂0]. (C.34)

Here, (N) in the subscript denotes the dependence on N. Since u ∼ N (0, 1
p
I), [z

(N)
ts ẑ

(N)
ts] is a

zero-mean bivariate Gaussian with covariance matrix

M(N) = 1
p

p∑
n=1

s2
ts,np

0
0,np

0
0,n s2

ts,np
0
0,np̂0,n

s2
ts,np

0
0,np̂0,n s2

ts,np̂0,np̂0,n


The empirical convergence (C.33) yields the following limit,

lim
N→∞

M(N) = M := ES2
ts

P 0
0P

0
0 P 0

0 P̂0

P 0
0 P̂0 P̂0P̂0

 . (C.35)

It suffices to show that the distribution of [z
(N)
ts ẑ

(N)
ts] converges to the distribution of

[Zts Ẑts] in the Wasserstein-2 metric as N →∞. (See the discussion in Appendix 2.6.1 on the

equivalence of convergence in Wasserstein-2 metric and PL(2) convergence.)

Now, Wassestein-2 distance between between two probability measures ν1 and ν2 is defined

as

W2(ν1, ν2) =

(
inf
γ∈Γ

Eγ ‖X1 −X2‖2

)1/2

, (C.36)

where Γ is the set of probability distributions on the product space with marginals consistent

with ν1 and ν2. For Gaussian measures ν1 = N (0,Σ1) and ν2 = N (0,Σ2) we have [52]

W 2
2 (ν1, ν2) = trace(Σ1 − 2(Σ

1/2
1 Σ2Σ

1/2
1)1/2 + Σ2).

Therefore, for Gaussian distributions ν(N)
1 = N (0,M(N)), and ν2 = N (0,M), the convergence

(C.35) implies W2(ν
(N)
1 , ν2)→ 0, i.e., convergence in Wasserstein-2 distance. Hence,

(z
(N)
ts , ẑ

(N)
ts)

W2−→ (Zts, Ẑts) ∼ N (0,M),

where M is the covariance matrix in (C.35). Hence the convergence holds in the PL(2)

sense (see discussion in Appendix 2.6.1 on the equivalence of convergence in W2 and PL(2)

convergence).

177

Hence the asymptotic generalization error (5.17) is

Ets := lim
N→∞

Efts(ŷts, yts)

(a)
= lim

N→∞
Efts(φout(z

(N)
ts , D), φ(ẑ

(N)
ts))

(b)
= Efts(φout(Zts, D), φ(Ẑts)), (C.37)

where (a) follows from (5.3); and step (b) follows from continuity assumption in Assump-

tion 1(b) along with the definition of PL(2) convergence in Def. 3. This proves part (c).

C.5 Formula for M

For the special cases in the next Appendix, it is useful to derive expressions for the entries

the covariance matrix M in (C.35). For the term m11,

m11 = ES2
ts(P

0
0)2 = ES2

tsE(P 0
0)2 = ES2

ts · k11, (C.38)

where we have used the fact that P 0
0 ⊥⊥ (Sts, Strace). Next, m12 = ES2

ts P
0
0 P̂0. where,

P̂0 = g−1 (P 0
0 + P+

0 , Z
0
1 +Q−1 , γ

+
0 , γ

−
1 , S

−
tr)

=
γ+

0 P
+
0 + Strγ

−
1 Q
−
1

γ+
0 + S2

trγ
−
1

+ P 0
0 , (C.39)

where (P 0
0 , P

+
0 , Q

−
0) are independent of (Strace, Sts). Hence,

m12 = ES2
ts · E(P 0

0)2 + E
S2

tsγ
+
0

γ+
0 + S2

trγ
−
1

E[P 0
0P

+
0]

= m11 + E
(

S2
tsγ

+
0

γ+
0 + S2

traceγ
−
1

)
· k12, (C.40)

since E[P 0
0Q
−
1] = 0 and K+

0 is the covariance matrix of (P 0
0 , P

+
0) from line 23.

178

Finally for m22 we have,

m22 = ES2
tsP̂0P̂0

= E
(

Stsγ
+
0

γ+
0 + S2

trγ
−
1

)2

E(P+
0)2

+ E
(
StsStraceγ

−
1

γ+
0 + S2

trγ
−
1

)2

E(Q−1)2

+ ES2
tsE(P 0

0)2 + 2E
γ+

0 S
2
ts

γ+
0 + γ−1 S

2
trace

· EP 0
0P

+
0

= k22E
(

Stsγ
+
0

γ+
0 + S2

trγ
−
1

)2

+ τ−1 E
(
StsStraceγ

−
1

γ+
0 + S2

trγ
−
1

)2

−m11 + 2m12. (C.41)

C.6 Special Cases

C.6.1 Linear Output with Square Error

In this section we examine a few special cases of the GLM problem (5.2). We first consider

a linear output with additive Gaussian noise and a squared error training and test loss.

Specifically, consider the model,

y = Xw0 + d (C.42)

We consider estimates of w0 such that:

ŵ = argmin
w

1
2
‖y −Xw‖2 + λ

2β
‖w‖2 (C.43)

The factor β is added above since the two terms scale with a ratio of β. It does not change

analysis. Consider the ML-VAMP GLM learning algorithm applied to this problem. The

following corollary follows from the Main result in Theorem 10.

Corollary 1 (Squared error). For linear regression, i.e., φ(t) = t, φout(t, d) = t+d, fts(y, ŷ) =

(yts − ŷts)
2, Fout(p2) = 1

N
‖y − p2‖2, we have

ELRts =E
(

γ+0 Sts

γ+0 +S2
traceγ

−
1

)2

k22 + E
(

γ−1 StraceSts

γ+0 +S2
traceγ

−
1

)2

τ−1 + σ2
d.

179

The quantities k22, τ−1 , γ
+
0 , γ

−
1 depend on the choice of regularizer λ and the covariance

between features.

Proof. This follows directly from the following observation:

ESLRts = E(Zts +D − Ẑts)
2 = E(Zts − Ẑts)

2 + ED2

= m11 +m22 − 2m12 + σ2
d.

Substituting equation (C.41) proves the claim. �

C.6.2 Ridge Regression with i.i.d. Covariates

We next the special case when the input features are independent, i.e., (C.43) where rows of

X corresponding to the training data has i.i.d Gaussian features with covariance Ptrain =
σ2
tr

p
I

and Str = σtr.

Although the solution to (C.43) exists in closed form (XTX + λI)−1XTy, we can study

the effect of the regularization parameter λ on the generalization error Ets as detailed in the

result below.

Corollary 2. Consider the ridge regression problem (C.43) with regularization parameter

λ > 0. For the squared loss i.e., fts(y, ŷ) = (y − ŷ)2, i.i.d Gaussian features without train-test

mismatch, i.e., Strace = Sts = σtrace, the generalization error ERRts is given by Corollary 1, with

constants

k22 = V (W 0), γ+
0 = λ/β,

γ−1 =


1
G
− λ

σ2
trace

β < 1
λ

σ2
traceβ

(
1
G
− λ
σ2
traceβ

)

β−1
G

+
λ

σ2
traceβ

β > 1

where G = Gmp(− λ
σ2
trβ

), with Gmp given in Appendix 2.9, and τ−1 = E(P−1)2 where P−1 is

given in equation (C.55) in the proof.

Proof of Corollary 2. We are interested in identifying the following constants appearing in

180

Corollary 1:

K+
0 , τ

−
1 , γ

+
0 , γ

−
1 .

These quantities are obtained as fixed points of the State Evolution Equations in Algo. 12.

We explain below how to obtain expressions for these constants. Since these are fixed points

we ignore the subscript k corresponding to the iteration number in Algo. 12.

In the case of problem (C.43), the maps proxfin and proxfout , i.e., g
+
0 and g−3 respectively,

can be expressed as closed-form formulae. This leads to simplification of the SE equations as

explained below.

We start by looking at the forward pass (finding quantities with superscript ’+’) of Algo-

rithm 12 for different layers and then the backward pass (finding quantities with superscript

’-’) to get the parameters {K+
` , τ

−
` , α

±
` , γ

±
` } for ` = 0, 1, 2.

To begin with, notice that fin(w) = λ
2
w2, and therefore the denoiser g+

0 (·) in (C.4) is

simply,

g+
0 (r−0 , γ

−
0) =

γ−0
γ−0 +λ/β

r−0 , and
∂g+0
∂r−0

=
γ−0

γ−0 +λ/β

Using the random variable R−0 and substituting in the expression of the denoiser to get Ẑ0,

we can now calculate α+
0 using lines 20 and 22,

α+
0 =

γ−0
γ−0 +λ/β

, γ+
0 = λ/β. (C.44)

Similarly, we have fout(p2) = 1
2
(p2 − y)2, whereby the output denoiser g−3 (·) in the last

layer for ridge regression is given by,

g−3 (r+
2 , γ

+
2 , y) =

γ+
2 r

+
2 + y

γ+
2 + 1

. (C.45)

By substituting this denoiser in line 30 of the algorithm we get P̂−2 and thus, following the

lines 35-38 of the algorithm we have

α−2 =
γ+2
γ+2 +1

, whereby γ−2 = 1. (C.46)

Having identified these constants α+
0 , γ

+
0 , α

−
2 , γ

−
2 , we will now sequentially identify the

181

quantities

(α+
0 , γ

+
0)→ K+

0 → (α+
1 , γ

+
1)→ K+

1 → (α+
2 , γ

+
2)→ K+

2

in the forward pass, and then the quantities

τ−0 ← (α−0 , γ
−
0)← τ−1 ← (α−1 , γ

−
1)← τ−2 ← (α−2 , γ

−
2)

in the backward pass.

We also note that we have

α+
` + α−` = 1 (C.47)

Forward Pass: Observe that K+
0 = Cov(Z0, Q

+
0). Now, from line 21, on simplification we

get Q+
0 = −W 0

0 whereby,

K+
0 = var(W 0)

 1 −1

−1 1

 . (C.48)

Notice that from line 23, the pair (P 0
0 , P

+
0) is jointly Gaussian with covariance matrix K+

0 .

But the above equation means that P+
0 = −P 0

0 , whereby R
+
0 = 0 from line 17.

Now, the linear denoiser g+
1 (·) is defined as in (C.7a). Note that since we are considering

i.i.d Gaussian features for this problem, the random variable Strace in this layer is a constant

σtrace. Therefore, similar to layer ` = 0 by evaluating lines 17-23 of the algorithm we get

Q+
1 = −Z0

1 , whereby

α+
1 =

σ2
traceγ

−
1

γ+0 +σ2
traceγ

−
1

, γ+
1 =

γ+0
σ2
trace

= λ
σ2
traceβ

, K+
1 = σ2

traceK
+
0 . (C.49)

Observe that this means

P+
1 = −P 0

1 . (C.50)

Backward Pass: Since Y = φout(P
0
2 , D) = P 0

2 +D, line 36 of algorithm on simplification

yields P−2 = D, whereby we can get τ−2 ,

τ−2 = E(P−2)2 = E[D2] = σ2
d. (C.51)

182

Next, to calculate the terms (α−1 , γ
−
1), we use the decoiser g−2 defined in (C.7a) for line 33

of the algorithm to get P̂1.

P̂1 =
γ+1 R

+
1 +S−mpγ

−
2 R
−
2

γ+1 +(S−mp)2γ−2
=

S−mp(S+
mpP

0
1 +Q−2)

γ+1 +(S−mp)2
, (C.52)

where we have used γ−2 = 1, R+
1 = P 0

1 + P+
1 = 0 due to (C.50), and R−2 = Z0

2 + Q−2 =

S+
mpP

0
1 +Q−2 from lines 17, 32 and 4 respectively.

Then, we calculate α−1 and γ−1 as α−1 = E ∂g−2
∂P+

1

= E γ+1
γ+1 +(S−mp)2

. This gives,

α−1 =


λ

σ2
traceβ

G β < 1

(1− 1
β
) + 1

β
λ

σ2
traceβ

G β ≥ 1

(C.53)

Here, in the overparameterized case (β > 1), the denoiser g−2 outputs R+
1 with probability

1− 1
β
and λ

σ2
traceβ

G with probability 1
β
.

Next, from line 37 we get,

γ−1 = (1
α−1
− 1)γ+

1 =


1
G
− λ

σ2
traceβ

β < 1
λ

σ2
traceβ

(
1
G
− λ
σ2
traceβ

)

β−1
G

+
λ

σ2
traceβ

β > 1
(C.54)

Now from line 36 and equation (C.47) we get,

α+
1 P
−
1 = P̂1 − P 0

1 − α−1 P+
1

(a)
= P̂1 − α+

1 P
0
1

(b)
=

(
S−mpS

+
mp

λ
σ2
traceβ

+(S−mp)2
− α+

1

)
︸ ︷︷ ︸

A

P 0
1 +

S−mp

λ
σ2
traceβ

+(S−mp)2︸ ︷︷ ︸
B

Q−2 (C.55)

where (a) follows from (C.50) and (C.47), and (b) follows from (C.52). From this one

can obtain τ−1 = E(P−1)2 which can be calculated using the knowledge that P 0
1 , Q

−
2 are

independent Gaussian with covariances E(P 0
1)2 = σ2

traceV (W 0), E(Q−2)2 = σ2
d. Further,

P 0
1 , Q

−
2 are independent of (S+

mp, S
−
mp).

Observe that by (C.55) we have

τ−1 =
1

(α+
1)2

(
E(A2)σ2

traceV (W 0) + E(B2)σ2
d

)
. (C.56)

183

with some simplification we get

E(A2) = (
λ

σ2
trβ

)2G′ − (
λ

σ2
trβ

G)2, (C.57a)

E(B2) = G− λ

σ2
trβ

G′, (C.57b)

where G = Gmp(− λ
σ2
trβ

), with Gmp given in Appendix 2.9, and G′ is the derivative of Gmp

calculated at − λ
σ2
trβ

.

Now consider the under-parametrized case (β < 1):

Let u = − λ
σ2
trβ

and z = Gmp(u). In this case we have

α+
1 = 1− λ

σ2
trβ

G = 1 + uz. (C.58)

Note that,

G−1
mp(z) = u

(a)⇒ Rmp(z) +
1

z
= u

(b)⇒ 1

1− βz
+

1

z
= u, (C.59a)

where Rmp(.) is the R-transform defined in [151] and (a) follows from the relationship between

the R- and Stieltjes-transform and (b) follows from the fact that for Marchenko-Pastur

distribution we have Rmp(z) = 1
1−zβ . Therefore,

Gmp(
1

1− βz
+

1

z
) = z

⇒ G′mp(
1

1− βz
+

1

z
) = G′ =

1
β

(1−βz)2 −
1
z2

. (C.60)

For the over-parametrized case (β > 1) we have:

α+
1 = 1

β
(1 + λ

σ2
traceβ

G) =
1− uz
β

. (C.61)

In this case, as mentioned in Appendix 2.9 and following the results from [151], the measure

µβ scales with β and thus Rmp(z) = β
1−z . Therefore, similar to (C.59a), z satisfies

β

1− z
+

1

z
= u ⇒ G′ =

1
β

(1−z)2 −
1
z2

. (C.62)

Now τ−1 can be calculated as follows:

τ−1 = η2

(
u2z2σ2

trvar(W
0)(κ− 1) + σ2

dz(uzκ+ 1)

)
(C.63)

184

where

η =


1

(1+uz)
β < 1

β
(1−uz) β ≥ 1

, κ =


(1−βz)2

βz2−(1−βz)2 β < 1

(1−z)2
βz2−(1−z)2 β ≥ 1

(C.64)

and z is the solution to the fixed points
1

1−βz + 1
z

= u β < 1

β
1−z + 1

z
= u β ≥ 1

. (C.65)

�

C.6.3 Ridgeless Linear Regression

Here we consider the case of Ridge regression (C.43) when λ→ 0+. Note that the solution to

the problem (C.43) is (XTX + λI)−1XTy remains unique since λ > 0. The following result

was stated in [55], and can be recovered using our methodology. Note however, that we

calculate the generalization error whereas they have calculated the squared error, whereby we

obtain an additional additive factor of σ2
d. The result explains the double-descent phenomenon

for Ridgeless linear regression.

Corollary 3. For ridgeless linear regression, we have

lim
λ→0+

ERRts =


1

1−βσ
2
d β < 1

β
β−1

σ2
d + (1− 1

β
)σ2

traceV (W 0) β ≥ 1

Proof of Corollary 3. We calculate the parameters γ+
0 , γ

−
1 , k22 and τ−1 when λ→ 0+. Before

starting off, we note that

G0 := lim
z→0+

Gmp(−z) =


β

1−β β < 1

β
β−1

β > 1

, (C.66)

as described in Appendix 2.9. Following the derivations in Corollary 2, we have

γ+
0 = λ/β, k22 = V (W 0) (C.67)

185

Now for λ→ 0+, we have

1− α−1 =


1 β < 1

1
β

β ≥ 1

, γ−1 =


1
G0

= 1−β
β

β < 1

λ
(β−1)σ2

traceβ
β > 1

, (C.68)

Using this in simplifying (C.55) for λ→ 0+, we get

τ−1 = E(P−1)2 =


σ2
dG0 β < 1

βσ2
dG0 + σ2

traceV (W 0)(β − 1) β ≥ 1

where during the evaluation of E
(

S−mp

γ+1 +(S−mp)2

)2

, for the case of β > 1, we need to account for

the point mass at 0 for S−mp with weight 1− 1
β
.

Next, notice that

a :=
γ+

0 σtrace

γ+
0 + γ−1 σ

2
trace

=


0 β < 1

(1− 1
β
)σtrace β ≥ 1

,

and,

b :=
γ−1 σ

2
trace

γ+
0 + γ−1 σ

2
trace

=


1 β < 1

1
β

β ≥ 1

,

Thus applying Corollary 1, we get

ERRts = a2k22 + b2τ−1 + σ2
d

=


1

1−βσ
2
d β < 1

β
β−1

σ2
d + (1− 1

β
)σ2

traceV (W 0) β ≥ 1

This proves the claim. �

C.6.4 Train-Test Mismatch

Observe that our formulation allows for analyzing the effect of mismatch in the training

and test distribution. One can consider arbitrary joint distributions over (Strace, Sts) that

model the mismatch between training and test features. Here we give a simple example which

186

highlights the effect of this mismatch.

Definition 9 (Bernoulli ε-mismatch). (Sts, Strace) has a bivariate Bernoulli distribution with

• Pr{Strace =Sts =0} = P{Strace =Sts =1} = (1− ε)/2

• Pr{Strace =0, Sts =1} = P{Strace =1, Sts =0} = ε/2

Notice that the marginal distribution of the Strace in the Bernoulli ε−mismatch model

is such that P(Strace 6= 0) = 1
2
. Hence half of the features extracted by the matrix V0 are

relevant during training. Similarly, P(Sts 6= 0) = 1
2
. However the features spanned by the test

data do not exactly overlap with the features captured in the training data, and the fraction

of features common to both the training and test data is 1− ε. Hence for ε = 0, there is no

training-test mismatch, whereas for ε = 1 there is a complete mismatch.

The following result shows that the generalization error increases linearly with the

mismatch parameter ε.

Corollary 4 (Mismatch). Consider the problem of Linear Regression (C.43) under the

conditions of Corollary 1. Additionally suppose we have Bernoulli ε-mismatch between the

training and test distributions. Then

Ets = k22
2

((1− ε)γ∗2 + ε) +
τ−1
2

(1− γ∗)(1− ε) + σ2
d,

where γ∗ :=
γ+0

γ+0 +γ−1
. The terms k22, τ

−
1 , γ

∗ are independent of ε.

Proof. This follows directly by calculating the expectations of the terms in Corollary 1, with

the joint distribution of (Strace, Sts) given in Definition 9. �

The quantities k22 and τ−1 in the result above can be calculated similar to the derivation

in the proof of Corollary 2 and can in general depend on the regularization parameter λ and

overparameterization parameter β.

187

C.6.5 Logistic Regression

The precise analysis for the special case of regularized logistic regression estimator with i.i.d

Gaussian features is provided in [136]. Consider the logistic regression model,

P(yi = 1|xi) := ρ(xT
i w) for i = 1, · · · , N

where ρ(x) = 1
1+e−x

is the standard logistic function.

In this problem we consider estimates of w0 such that

ŵ := argmin
w

1T log(1 + eXw)− yTXw + Fin(w).

where Fin is the regularization function. This is a special case of optimization problem (5.2)

where

Fout(y,Xw) = 1T log(1 + eXw)− yTXw. (C.69)

Similar to the linear regression model, using the ML-VAMP GLM learning algorithm, we

can characterize the generalization error for this model with quantities K+
0 , τ

−
1 , γ

+
0 , γ

−
1 given

by algorithm 12. We note that in this case, the output non-linearity is

φout(p2, d) = 1{ρ(p2)>d} (C.70)

where d ∼ Unif(0, 1). Also, the denoisers g+
0 , and g

−
3 can be derived as the proximal operators

of Fin, and Fout defined in (5.25).

C.6.6 Support Vector Machines

The asymptotic generalization error for support vector machine (SVM) is provided in [29].

Our model can also handle SVMs. Similar to logistic regression, SVM finds a linear classifier

using the hinge loss instead of logistic loss. Assuming the class labels are y = ±1 the hinge

loss is

`hinge(y, ŷ) = max(0, 1− yŷ). (C.71)

188

Therefore, if we take

Fout(y,Xw) =
∑
i

max(0, 1− yiXiw), (C.72)

where Xi is the ith row of the data matrix, the ML-VAMP algorithm for GLMs finds the SVM

classifier. The algorithm would have proximal map of hinge loss and our theory provides

exact predictions for the estimation and prediction error of SVM.

As with all other models considered in this work, the true underlying data generating

model could be anything that can be represented by the graphical model in Figure 5.1, e.g.

logistic or probit model, and our theory is able to exactly predict the error when SVM is

applied to learn such linear classifiers in the large system limit.

189

Bibliography

[1] Madhu S Advani and Andrew M Saxe. High-dimensional dynamics of generalization

error in neural networks. arXiv preprint arXiv:1710.03667, 2017.

[2] Zeyuan Allen-Zhu, Yuanzhi Li, and Yingyu Liang. Learning and generalization in

overparameterized neural networks, going beyond two layers. In Advances in Neural

Information Processing Systems, pages 6155–6166, 2019.

[3] Luca Ambrogioni, Umut Gu clu, Ya gmur Gu cluturk, Max Hinne, Eric Maris, and

Marcel A. J. van Gerven. Wasserstein Variational Inference. arXiv:1805.11284 [cs,

stat], May 2018.

[4] Sanjeev Arora, Simon S Du, Wei Hu, Zhiyuan Li, and Ruosong Wang. Fine-grained

analysis of optimization and generalization for overparameterized two-layer neural

networks. arXiv preprint arXiv:1901.08584, 2019.

[5] Benjamin Aubin, Antoine Maillard, Florent Krzakala, Nicolas Macris, Lenka Zdeborová,

et al. The committee machine: Computational to statistical gaps in learning a two-

layers neural network. In Advances in Neural Information Processing Systems, pages

3223–3234, 2018.

[6] Jean Barbier, Mohamad Dia, Nicolas Macris, and Florent Krzakala. The mutual

information in random linear estimation. In 2016 54th Annual Allerton Conference on

Communication, Control, and Computing (Allerton), pages 625–632. IEEE, 2016.

190

[7] Jean Barbier, Florent Krzakala, Nicolas Macris, Léo Miolane, and Lenka Zdeborová.

Optimal errors and phase transitions in high-dimensional generalized linear models.

Proc. Nat. Acad. Sci., 116(12):5451–5460, 2019.

[8] Jean Barbier, Nicolas Macris, Mohamad Dia, and Florent Krzakala. Mutual information

and optimality of approximate message-passing in random linear estimation. arXiv

preprint arXiv:1701.05823, 2017.

[9] Peter L Bartlett, Philip M Long, Gábor Lugosi, and Alexander Tsigler. Benign

overfitting in linear regression. arXiv preprint arXiv:1906.11300, 2019.

[10] M. Bayati and A. Montanari. The dynamics of message passing on dense graphs,

with applications to compressed sensing. IEEE Trans. Inform. Theory, 57(2):764–785,

February 2011.

[11] Mikhail Belkin, Daniel Hsu, Siyuan Ma, and Soumik Mandal. Reconciling modern

machine-learning practice and the classical bias–variance trade-off. Proc. National

Academy of Sciences, 116(32):15849–15854, 2019.

[12] Mikhail Belkin, Daniel Hsu, and Ji Xu. Two models of double descent for weak features.

arXiv preprint arXiv:1903.07571, 2019.

[13] Mikhail Belkin, Siyuan Ma, and Soumik Mandal. To understand deep learning we need

to understand kernel learning. arXiv preprint arXiv:1802.01396, 2018.

[14] Marcelo Bertalmio, Guillermo Sapiro, Vincent Caselles, and Coloma Ballester. Image

inpainting. In Proc. ACM Conf. Computer Graphics and Interactive Techniques, pages

417–424, 2000.

[15] David M. Blei, Alp Kucukelbir, and Jon D. McAuliffe. Variational Inference: A Review

for Statisticians. Journal of the American Statistical Association, 112(518):859–877,

April 2017.

191

[16] Ashish Bora, Ajil Jalal, Eric Price, and Alexandros G Dimakis. Compressed sensing

using generative models. Proc. ICML, 2017.

[17] Mark Borgerding, Philip Schniter, and Sundeep Rangan. AMP-inspired deep networks

for sparse linear inverse problems. IEEE Trans. Signal Processing, 65(16):4293–4308,

2017.

[18] Evan Byrne, Antoine Chatalic, Rémi Gribonval, and Philip Schniter. Sketched clustering

via hybrid approximate message passing. IEEE Transactions on Signal Processing,

67(17):4556–4569, 2019.

[19] Burak Cakmak, Ole Winther, and Bernard H Fleury. S-AMP: Approximate message

passing for general matrix ensembles. In Proc. IEEE ITW, 2014.

[20] Francesco Caltagirone, Florent Krzakala, and Lenka Zdeborová. On Convergence of

Approximate Message Passing. 2014 IEEE International Symposium on Information

Theory, pages 1812–1816, June 2014.

[21] A. Chambolle, R. A. De Vore, Nam-Yong Lee, and B. J. Lucier. Nonlinear wavelet image

processing: Variational problems, compression, and noise removal through wavelet

shrinkage. IEEE Transactions on Image Processing, 7(3):319–335, March 1998.

[22] J. H. Rick Chang, Chun-Liang Li, Barnabas Poczos, B. V. K. Vijaya Kumar, and

Aswin C. Sankaranarayanan. One network to solve them all—solving linear inverse

problems using deep projection models. In IEEE Int. Conf. Computer Vision, pages

5889–5898. IEEE, 2017.

[23] Xiang Cheng, Niladri S Chatterji, Yasin Abbasi-Yadkori, Peter L Bartlett, and Michael I

Jordan. Sharp convergence rates for langevin dynamics in the nonconvex setting. arXiv

preprint arXiv:1805.01648, 2018.

192

[24] Anna Choromanska, Mikael Henaff, Michael Mathieu, Gérard Ben Arous, and Yann

LeCun. The loss surfaces of multilayer networks. In Artificial Intelligence and Statistics,

pages 192–204, 2015.

[25] Shane F Cotter, Bhaskar D Rao, Kjersti Engan, and Kenneth Kreutz-Delgado. Sparse

solutions to linear inverse problems with multiple measurement vectors. IEEE Transac-

tions on Signal Processing, 53(7):2477–2488, 2005.

[26] Amit Daniely. Sgd learns the conjugate kernel class of the network. In Advances in

Neural Information Processing Systems, pages 2422–2430, 2017.

[27] Amit Daniely, Roy Frostig, and Yoram Singer. Toward deeper understanding of neural

networks: The power of initialization and a dual view on expressivity. In Advances In

Neural Information Processing Systems, pages 2253–2261, 2016.

[28] I. Daubechies, M. Defrise, and C. De Mol. An iterative thresholding algorithm for linear

inverse problems with a sparsity constraint. Communications on Pure and Applied

Mathematics, 57(11):1413–1457, 2004.

[29] Zeyu Deng, Abla Kammoun, and Christos Thrampoulidis. A model of double descent

for high-dimensional binary linear classification. arXiv preprint arXiv:1911.05822, 2019.

[30] Dongning Guo and S. Verdu. Randomly spread CDMA: Asymptotics via statistical

physics. IEEE Transactions on Information Theory, 51(6):1983–2010, June 2005.

[31] D. L. Donoho, A. Maleki, and A. Montanari. Message-passing algorithms for compressed

sensing. Proc. Nat. Acad. Sci., 106(45):18914–18919, Nov. 2009.

[32] D. L. Donoho, A. Maleki, and A. Montanari. Message passing algorithms for compressed

sensing. In Proc. Inform. Theory Workshop, pages 1–5, 2010.

193

[33] David L. Donoho, Arian Maleki, and Andrea Montanari. Message Passing Algorithms for

Compressed Sensing. Proceedings of the National Academy of Sciences, 106(45):18914–

18919, November 2009.

[34] David L Donoho, Arian Maleki, and Andrea Montanari. Message-passing algorithms for

compressed sensing. Proc. National Academy of Sciences, 106(45):18914–18919, 2009.

[35] David L. Donoho, Arian Maleki, and Andrea Montanari. Message Passing Algorithms

for Compressed Sensing: I. Motivation and Construction. arXiv:0911.4219 [cs, math],

November 2009.

[36] Simon S Du, Xiyu Zhai, Barnabas Poczos, and Aarti Singh. Gradient descent provably

optimizes over-parameterized neural networks. arXiv preprint arXiv:1810.02054, 2018.

[37] Vincent Dumoulin, Ishmael Belghazi, Ben Poole, Olivier Mastropietro, Alex Lamb,

Martin Arjovsky, and Aaron Courville. Adversarially learned inference. arXiv preprint

arXiv:1606.00704, 2016.

[38] Yonina C. Eldar and Gitta Kutyniok. Compressed Sensing: Theory and Applications.

Cambridge Univ. Press, June 2012.

[39] Melikasadat Emami, Mojtaba Sahraee-Ardakan, Parthe Pandit, Sundeep Rangan, and

Alyson Fletcher. Generalization error of generalized linear models in high dimensions.

In International Conference on Machine Learning, pages 2892–2901. PMLR, 2020.

[40] Alyson K Fletcher, Parthe Pandit, Sundeep Rangan, Subrata Sarkar, and Philip Schniter.

Plug-in estimation in high-dimensional linear inverse problems: A rigorous analysis. In

Advances in Neural Information Processing Systems, pages 7440–7449, 2018.

[41] Alyson K Fletcher, Sundeep Rangan, and P. Schniter. Inference in deep networks in

high dimensions. arXiv:1706.06549, 2017.

194

[42] Alyson K Fletcher, Sundeep Rangan, and P. Schniter. Inference in deep networks in

high dimensions. Proc. IEEE Int. Symp. Information Theory, 2018.

[43] Alyson K. Fletcher, Sundeep Rangan, and Philip Schniter. Inference in Deep Networks

in High Dimensions. In 2018 IEEE International Symposium on Information Theory

(ISIT), pages 1884–1888, Vail, CO, June 2018. IEEE.

[44] Alyson K. Fletcher, Mojtaba Sahraee-Ardakan, Sundeep Rangan, and Philip Schniter.

Expectation Consistent Approximate Inference: Generalizations and Convergence.

arXiv:1602.07795 [cs, math, stat], February 2016.

[45] Alyson K. Fletcher, Mojtaba Sahraee-Ardakan, Sundeep Rangan, and Philip Schniter.

Expectation consistent approximate inference: Generalizations and convergence. In

Proc. IEEE Int. Symp. Information Theory, pages 190–194, 2016.

[46] Alyson K Fletcher and Philip Schniter. Learning and free energies for vector approximate

message passing. In IEEE Int. Conf. Acoustics, Speech and Signal Processing, pages

4247–4251, 2017.

[47] Marylou Gabrié, Andre Manoel, Clément Luneau, Jean Barbier, Nicolas Macris, Florent

Krzakala, and Lenka Zdeborová. Entropy and mutual information in models of deep

neural networks. In Proc. NIPS, 2018.

[48] R. Gallager. Low-density parity-check codes. IRE Transactions on Information Theory,

8(1):21–28, January 1962.

[49] Rong Ge, Chi Jin, and Yi Zheng. No spurious local minima in nonconvex low rank

problems: A unified geometric analysis. In International Conference on Machine

Learning, pages 1233–1242. PMLR, 2017.

195

[50] Cédric Gerbelot, Alia Abbara, and Florent Krzakala. Asymptotic errors for convex

penalized linear regression beyond gaussian matrices. arXiv preprint arXiv:2002.04372,

2020.

[51] Raja Giryes, Guillermo Sapiro, and Alex M Bronstein. Deep neural networks with

random Gaussian weights: A universal classification strategy? IEEE Trans. Signal

Processing, 64(13):3444–3457, 2016.

[52] Clark R Givens, Rae Michael Shortt, et al. A class of wasserstein metrics for probability

distributions. The Michigan Mathematical Journal, 31(2):231–240, 1984.

[53] Paul Hand and Vladislav Voroninski. Global guarantees for enforcing deep generative

priors by empirical risk. arXiv:1705.07576, 2017.

[54] Boris Hanin and David Rolnick. How to start training: The effect of initialization and

architecture. In Advances in Neural Information Processing Systems, pages 571–581,

2018.

[55] Trevor Hastie, Andrea Montanari, Saharon Rosset, and Ryan J Tibshirani. Surprises in

high-dimensional ridgeless least squares interpolation. arXiv preprint arXiv:1903.08560,

2019.

[56] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statistical

Learning. 2017.

[57] W Keith Hastings. Monte carlo sampling methods using markov chains and their

applications. 1970.

[58] Bingsheng He, Han Liu, Juwei Lu, and Xiaoming Yuan. Application of the strictly

contractive peaceman-rachford splitting method to multi-block separable convex pro-

gramming. In Splitting Methods in Communication, Imaging, Science, and Eng. Springer,

2016.

196

[59] Bingsheng He, Han Liu, Zhaoran Wang, and Xiaoming Yuan. A strictly contractive

peaceman–rachford splitting method for convex programming. SIAM Journal on

Optimization, 24(3):1011–1040, 2014.

[60] Hengtao He, Chao-Kai Wen, and Shi Jin. Generalized Expectation Consistent Signal

Recovery for Nonlinear Measurements. arXiv:1701.04301 [cs, math], January 2017.

[61] Hengtao He, Chao-Kai Wen, and Shi Jin. Generalized expectation consistent signal

recovery for nonlinear measurements. In 2017 IEEE International Symposium on

Information Theory (ISIT), pages 2333–2337. IEEE, 2017.

[62] Tom Heskes. Stable Fixed Points of Loopy Belief Propagation Are Local Minima of

the Bethe Free Energy. In S. Becker, S. Thrun, and K. Obermayer, editors, Advances

in Neural Information Processing Systems 15, pages 359–366. MIT Press, 2003.

[63] Tom Heskes, Manfred Opper, Wim Wiegerinck, Ole Winther, and Onno Zoeter. Ap-

proximate inference techniques with expectation constraints. Journal of Statistical

Mechanics: Theory and Experiment, 2005(11):P11015–P11015, November 2005.

[64] Fumio Hiai and Denes Petz. The Semicircle Law, Free Random Variables and Entropy

(Mathematical Surveys & Monographs). American Mathematical Society, Boston, MA,

USA, 2006.

[65] Wen Huang, Paul Hand, Reinhard Heckel, and Vladislav Voroninski. A provably

convergent scheme for compressive sensing under random generative priors. arXiv

preprint arXiv:1812.04176, 2018.

[66] Peter J Huber. A robust version of the probability ratio test. The Annals of Mathematical

Statistics, pages 1753–1758, 1965.

[67] Peter J Huber. Robust statistical procedures. SIAM, 1996.

[68] Peter J Huber. Robust Statistics. Springer, 2011.

197

[69] Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence

and generalization in neural networks. In Advances in neural information processing

systems, pages 8571–8580, 2018.

[70] Adel Javanmard and Andrea Montanari. State evolution for general approximate

message passing algorithms, with applications to spatial coupling. Information and

Inference, 2(2):115–144, 2013.

[71] Yoshiyuki Kabashima. A cdma multiuser detection algorithm on the basis of belief

propagation. Journal of Physics A: Mathematical and General, 36(43):11111, 2003.

[72] Yoshiyuki Kabashima and Mikko Vehkapera. Signal recovery using expectation con-

sistent approximation for linear observations. arXiv:1401.5151 [cond-mat], January

2014.

[73] Maya Kabkab, Pouya Samangouei, and Rama Chellappa. Task-aware compressed

sensing with generative adversarial networks. In Thirty-Second AAAI Conference on

Artificial Intelligence, 2018.

[74] Nicolas Keriven, Anthony Bourrier, Rémi Gribonval, and Patrick Pérez. Sketching for

large-scale learning of mixture models. Information and Inference: A Journal of the

IMA, 7(3):447–508, 2017.

[75] Nicolas Keriven, Nicolas Tremblay, Yann Traonmilin, and Rémi Gribonval. Compressive

k-means. In IEEE International Conference on Acoustics, Speech and Signal Processing

(ICASSP), pages 6369–6373. IEEE, 2017.

[76] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.

arXiv preprint arXiv:1412.6980, 2014.

[77] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv:1312.6114,

2013.

198

[78] Florent Krzakala, Andre Manoel, Eric W Tramel, and Lenka Zdeborová. Variational

free energies for compressed sensing. In Proc. IEEE Int. Symp. Information Theory,

pages 1499–1503, 2014.

[79] Florent Krzakala, Marc Mézard, François Sausset, YF Sun, and Lenka Zdeborová.

Statistical-physics-based reconstruction in compressed sensing. Physical Review X,

2(2):021005, 2012.

[80] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature, 521(7553):436–

444, 2015.

[81] Qi Lei, Ajil Jalal, Inderjit S Dhillon, and Alexandros G Dimakis. Inverting deep

generative models, one layer at a time. arXiv:1906.07437, 2019.

[82] Ping Li and Phan-Minh Nguyen. On random deep weight-tied autoencoders: Exact

asymptotic analysis, phase transitions, and implications to training. In Proc. Int. Conf.

Learning Research, 2019.

[83] Dong Liang, Leslie Ying, and Feng Liang. Parallel MRI Acceleration Using M-FOCUSS.

In Proc. International Conference on Bioinformatics and Biomedical Engineering, pages

1–4. IEEE, 2009.

[84] Ting Liu, Chao-Kai Wen, Shi Jin, and Xiaohu You. Generalized Turbo Signal Recovery

for Nonlinear Measurements and Orthogonal Sensing Matrices. 2016 IEEE International

Symposium on Information Theory (ISIT), pages 2883–2887, July 2016.

[85] David Luenberger. Optimization by Vector Space Methods. Wiley Professional Paperback

Series. 1969.

[86] Junjie Ma and Li Ping. Orthogonal AMP. IEEE Access, 5:2020–2033, 2017.

[87] Junjie Ma, Xiaojun Yuan, and Li Ping. Turbo Compressed Sensing with Partial DFT

Sensing Matrix. IEEE Signal Processing Letters, 22(2):158–161, February 2015.

199

[88] Aravindh Mahendran and Andrea Vedaldi. Understanding deep image representations

by inverting them. In Proc. IEEE Conf. Computer Vision and Pattern Recognition,

pages 5188–5196, 2015.

[89] Andre Manoel, Florent Krzakala, Marc Mézard, and Lenka Zdeborová. Multi-layer

generalized linear estimation. In Proc. IEEE Int. Symp. Information Theory, pages

2098–2102, 2017.

[90] Andre Manoel, Florent Krzakala, Gaël Varoquaux, Bertrand Thirion, and Lenka

Zdeborová. Approximate message-passing for convex optimization with non-separable

penalties. arXiv:1809.06304 [cs, math, stat], September 2018.

[91] Andre Manoel, Florent Krzakala, Gaël Varoquaux, Bertrand Thirion, and Lenka

Zdeborová. Approximate message-passing for convex optimization with non-separable

penalties. arXiv preprint arXiv:1809.06304, 2018.

[92] P. McCullagh and J. A. Nelder. Generalized Linear Models. Chapman & Hall, 2nd

edition, 1989.

[93] Song Mei and Andrea Montanari. The generalization error of random features regression:

Precise asymptotics and double descent curve. arXiv preprint arXiv:1908.05355, 2019.

[94] Song Mei, Andrea Montanari, and Phan-Minh Nguyen. A mean field view of the

landscape of two-layer neural networks. Proceedings of the National Academy of

Sciences, 115(33):E7665–E7671, 2018.

[95] Chris Metzler, Ali Mousavi, and Richard Baraniuk. Learned D-amp: Principled neural

network based compressive image recovery. In Proc. NIPS, pages 1772–1783, 2017.

[96] Thomas P Minka. Expectation propagation for approximate bayesian inference. In

Proc. UAI, pages 362–369, 2001.

200

[97] Dustin G Mixon and Soledad Villar. Sunlayer: Stable denoising with generative

networks. arXiv preprint arXiv:1803.09319, 2018.

[98] Andrea Montanari. Graphical Models Concepts in Compressed Sensing. arXiv:1011.4328

[cs, math], November 2010.

[99] Andrea Montanari, Feng Ruan, Youngtak Sohn, and Jun Yan. The generalization error

of max-margin linear classifiers: High-dimensional asymptotics in the overparametrized

regime. arXiv preprint arXiv:1911.01544, 2019.

[100] Ali Mousavi, Ankit B Patel, and Richard G Baraniuk. A deep learning approach to

structured signal recovery. In Proc. Allerton Conf. Comm. Control & Comput., pages

1336–1343, 2015.

[101] Kevin Murphy, Yair Weiss, and Michael I. Jordan. Loopy Belief Propagation for

Approximate Inference: An Empirical Study. arXiv:1301.6725 [cs], January 2013.

[102] Vidya Muthukumar, Kailas Vodrahalli, and Anant Sahai. Harmless interpolation of

noisy data in regression. In 2019 IEEE International Symposium on Information Theory

(ISIT), pages 2299–2303. IEEE, 2019.

[103] Radford M Neal. Bayesian learning for neural networks, volume 118. Springer Science

& Business Media, 2012.

[104] Radford M Neal et al. Mcmc using hamiltonian dynamics. Handbook of markov chain

monte carlo, 2(11):2, 2011.

[105] Sahand N Negahban, Pradeep Ravikumar, Martin J Wainwright, and Bin Yu. A

unified framework for high-dimensional analysis of m-estimators with decomposable

regularizers. Statistical Science, pages 538–557, 2012.

[106] Y. E. Nesterov. A method for solving the convex programming problem with convergence

rate O(1/k2̂). Dokl. Akad. Nauk SSSR, 269:543–547, 1983.

201

[107] Behnam Neyshabur, Zhiyuan Li, Srinadh Bhojanapalli, Yann LeCun, and Nathan

Srebro. Towards understanding the role of over-parametrization in generalization of

neural networks. arXiv preprint arXiv:1805.12076, 2018.

[108] Roman Novak, Lechao Xiao, Yasaman Bahri, Jaehoon Lee, Greg Yang, Jiri Hron,

Daniel A Abolafia, Jeffrey Pennington, and Jascha Sohl-Dickstein. Bayesian deep

convolutional networks with many channels are Gaussian processes. arXiv preprint

arXiv:1810.05148, 2018.

[109] Guillaume Obozinski, Ben Taskar, and Michael Jordan. Multi-task feature selection.

Statistics Department, UC Berkeley, Tech. Rep, 2(2.2), 2006.

[110] Manfred Opper and Ole Winther. Expectation Consistent Approximate Inference.

page 28, 2005.

[111] Manfred Opper and Ole Winther. Expectation consistent approximate inference. J.

Machine Learning Res., 6:2177–2204, December 2005.

[112] P. Pandit, M. Sahraee, S. Rangan, and A. K. Fletcher. Asymptotics of MAP inference

in deep networks. In Proc. IEEE Int. Symp. Information Theory, pages 842–846, 2019.

[113] Parthe Pandit, Mojtaba Sahraee, Sundeep Rangan, and Alyson K. Fletcher. Asymptotics

of MAP Inference in Deep Networks. arXiv:1903.01293 [cs, math, stat], March 2019.

[114] Parthe Pandit, Mojtaba Sahraee-Ardakan, Sundeep Rangan, Philip Schniter, and

Alyson K Fletcher. Inference with deep generative priors in high dimensions. arXiv

preprint arXiv:1911.03409, 2019.

[115] Parthe Pandit, Mojtaba Sahraee-Ardakan, Sundeep Rangan, Philip Schniter, and

Alyson K Fletcher. Inference with deep generative priors in high dimensions. IEEE

Journal on Selected Areas in Information Theory, 1(1):336–347, 2020.

202

[116] Parthe Pandit, Mojtaba Sahraee Ardakan, Sundeep Rangan, Philip Schniter, and

Alyson K Fletcher. Matrix inference and estimation in multi-layer models. Advances in

Neural Information Processing Systems, 33, 2020.

[117] Parthe Pandit, Mojtaba Sahraee Ardakan, Sundeep Rangan, Philip Schniter, and

Alyson K Fletcher. Matrix inference and estimation in multi-layer models. Journal of

Statistical Mechanics: Theory and Experiment, 2022, 2022.

[118] Marcelo Pereyra, Philip Schniter, Emilie Chouzenoux, Jean-Christophe Pesquet, Jean-

Yves Tourneret, Alfred Hero, and Steve McLaughlin. A Survey of Stochastic Simulation

and Optimization Methods in Signal Processing. IEEE Journal of Selected Topics in

Signal Processing, 10(2):224–241, March 2016.

[119] Marcelo Pereyra, Philip Schniter, Emilie Chouzenoux, Jean-Christophe Pesquet, Jean-

Yves Tourneret, Alfred O Hero, and Steve McLaughlin. A survey of stochastic simulation

and optimization methods in signal processing. IEEE J. Sel. Top. Signal Process.,

10(2):224–241, 2015.

[120] L. R. Rabiner. A tutorial on hidden Markov models and selected applications in speech

recognition. Proceedings of the IEEE, 77(2):257–286, February 1989.

[121] Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation

learning with deep convolutional generative adversarial networks. arXiv preprint

arXiv:1511.06434, 2015.

[122] Sundeep Rangan. Generalized Approximate Message Passing for Estimation with

Random Linear Mixing. arXiv:1010.5141 [cs, math], October 2010.

[123] Sundeep Rangan. Generalized approximate message passing for estimation with random

linear mixing. In Proc. IEEE Int. Symp. Information Theory, pages 2168–2172, 2011.

203

[124] Sundeep Rangan, Alyson K. Fletcher, and Vivek K. Goyal. Asymptotic Analysis of

MAP Estimation via the Replica Method and Applications to Compressed Sensing.

IEEE Transactions on Information Theory, 58(3):1902–1923, March 2012.

[125] Sundeep Rangan, Philip Schniter, and Alyson K. Fletcher. On the convergence of

approximate message passing with arbitrary matrices. In Proc. IEEE Int. Symp.

Information Theory, pages 236–240, July 2014.

[126] Sundeep Rangan, Philip Schniter, and Alyson K. Fletcher. Vector Approximate Message

Passing. arXiv:1610.03082 [cs, math], October 2016.

[127] Sundeep Rangan, Philip Schniter, and Alyson K Fletcher. Vector approximate message

passing. IEEE Trans. Information Theory, 65(10):6664–6684, 2019.

[128] Sundeep Rangan, Philip Schniter, Alyson K. Fletcher, and Subrata Sarkar. On the

Convergence of Approximate Message Passing with Arbitrary Matrices. arXiv:1402.3210

[cs, math], February 2014.

[129] Sundeep Rangan, Philip Schniter, Erwin Riegler, Alyson K Fletcher, and Volkan Cevher.

Fixed points of generalized approximate message passing with arbitrary matrices. IEEE

Trans. Information Theory, 62(12):7464–7474, 2016.

[130] Rajesh Ranganath, Jaan Altosaar, Dustin Tran, and David M Blei. Operator Variational

Inference. page 11, 2016.

[131] G. Reeves. Additivity of information in multilayer networks via additive Gaussian noise

transforms. In Proc. Allerton Conf. Comm. Control & Comput., pages 1064–1070, 2017.

[132] Galen Reeves and Henry D Pfister. The replica-symmetric prediction for compressed

sensing with Gaussian matrices is exact. In Proc. IEEE Int. Symp. Information Theory,

pages 665–669, 2016.

204

[133] Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropa-

gation and approximate inference in deep generative models. In Proc. ICML, pages

1278–1286, 2014.

[134] Cynthia Rush and Ramji Venkataramanan. Finite-sample analysis of approximate

message passing algorithms. IEEE Trans. Inform. Theory, 64(11):7264–7286, 2018.

[135] Ruslan Salakhutdinov. Learning deep generative models. Annual Review of Statistics

and Its Application, 2, 2015.

[136] Fariborz Salehi, Ehsan Abbasi, and Babak Hassibi. The impact of regularization on

high-dimensional logistic regression. arXiv preprint arXiv:1906.03761, 2019.

[137] Subrata Sarkar, Alyson K Fletcher, Sundeep Rangan, and Philip Schniter. Bilinear

recovery using adaptive vector-amp. IEEE Tran. Signal Processing, 67(13):3383–3396,

2019.

[138] P. Schniter. Turbo reconstruction of structured sparse signals. In 2010 44th Annual

Conference on Information Sciences and Systems (CISS), pages 1–6, March 2010.

[139] Philip Schniter, Sundeep Rangan, and Alyson K. Fletcher. Vector approximate message

passing for the generalized linear model. In 2016 50th Asilomar Conference on Signals,

Systems and Computers, pages 1525–1529, Pacific Grove, CA, USA, November 2016.

IEEE.

[140] Philip Schniter, Sundeep Rangan, and Alyson K Fletcher. Vector approximate message

passing for the generalized linear model. In Proc. Asilomar Conf. Signals, Syst. &

Computers, pages 1525–1529, 2016.

[141] Samuel S Schoenholz, Justin Gilmer, Surya Ganguli, and Jascha Sohl-Dickstein. Deep

information propagation. arXiv preprint arXiv:1611.01232, 2016.

205

[142] Viraj Shah and Chinmay Hegde. Solving linear inverse problems using GAN priors: An

algorithm with provable guarantees. In IEEE Int. Conf. Acoustics, Speech and Signal

Processing, pages 4609–4613, 2018.

[143] Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper,

and Bryan Catanzaro. Megatron-lm: Training multi-billion parameter language models

using model parallelism. arXiv preprint arXiv:1909.08053, 2019.

[144] Keigo Takeuchi. Rigorous Dynamics of Expectation-Propagation-Based Signal Recovery

from Unitarily Invariant Measurements. arXiv:1701.05284 [cs, math], January 2017.

[145] Keigo Takeuchi. Rigorous dynamics of expectation-propagation-based signal recovery

from unitarily invariant measurements. In Proc. IEEE Int. Symp. Information Theory,

pages 501–505, 2017.

[146] T. Tanaka. A statistical-mechanics approach to large-system analysis of CDMA mul-

tiuser detectors. IEEE Transactions on Information Theory, 48(11):2888–2910, Novem-

ber 2002.

[147] Andreas Themelis and Panagiotis Patrinos. Douglas–rachford splitting and admm for

nonconvex optimization: Tight convergence results. SIAM Journal on Optimization,

30(1):149–181, 2020.

[148] Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the

Royal Statistical Society: Series B (Methodological), 58(1):267–288, 1996.

[149] Volker Tresp. A bayesian committee machine. Neural computation, 12(11):2719–2741,

2000.

[150] Subarna Tripathi, Zachary C Lipton, and Truong Q Nguyen. Correction by projection:

Denoising images with generative adversarial networks. arXiv preprint arXiv:1803.04477,

2018.

206

[151] Antonia M Tulino, Sergio Verdú, et al. Random matrix theory and wireless commu-

nications. Foundations and Trends® in Communications and Information Theory,

1(1):1–182, 2004.

[152] George Tzagkarakis, Dimitris Milioris, and Panagiotis Tsakalides. Multiple-measurement

Bayesian compressed sensing using GSM priors for DOA estimation. In Proc. IEEE

International Conference on Acoustics, Speech and Signal Processing, pages 2610–2613.

IEEE, 2010.

[153] Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. Deep image prior. In Proc.

IEEE Conf. Computer Vision and Pattern Recognition, pages 9446–9454, 2018.

[154] Dave Van Veen, Ajil Jalal, Mahdi Soltanolkotabi, Eric Price, Sriram Vishwanath,

and Alexandros G Dimakis. Compressed sensing with deep image prior and learned

regularization. arXiv preprint arXiv:1806.06438, 2018.

[155] Sergio Verdu et al. Multiuser detection. Cambridge university press, 1998.

[156] J. Vila, P. Schniter, S. Rangan, F. Krzakala, and L. Zdeborová. Adaptive damping

and mean removal for the generalized approximate message passing algorithm. In 2015

IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),

pages 2021–2025, April 2015.

[157] Cédric Villani. Optimal transport: old and new, volume 338. Springer Science &

Business Media, 2008.

[158] Martin J. Wainwright and Michael I. Jordan. Graphical Models, Exponential Families,

and Variational Inference, volume 1 of Foundations and Trends R in Machine Learning.

2008.

207

[159] Martin J Wainwright and Michael I Jordan. Graphical models, exponential families,

and variational inference. Foundations and Trends in Machine Learning, 1(1–2):1–305,

2008.

[160] Max Welling and Yee W Teh. Bayesian learning via stochastic gradient Langevin

dynamics. In Proc. 28th Int. Conf. Machine Learning, pages 681–688, 2011.

[161] Jonathan S Yedidia, William T. Freeman, and Yair Weiss. Generalized Belief Prop-

agation. In T. K. Leen, T. G. Dietterich, and V. Tresp, editors, Advances in Neural

Information Processing Systems 13, pages 689–695. MIT Press, 2001.

[162] Jonathan S Yedidia, William T Freeman, and Yair Weiss. Constructing free-energy

approximations and generalized belief propagation algorithms. IEEE Trans. Information

Theory, 51(7):2282–2312, 2005.

[163] Raymond Yeh, Chen Chen, Teck Yian Lim, Mark Hasegawa-Johnson, and Minh N Do.

Semantic image inpainting with perceptual and contextual losses. arXiv:1607.07539,

2016.

[164] Xinyang Yi, Constantine Caramanis, and Sujay Sanghavi. Alternating minimization

for mixed linear regression. In International Conference on Machine Learning, pages

613–621, 2014.

[165] Jason Yosinski, Jeff Clune, Anh Nguyen, Thomas Fuchs, and Hod Lipson. Understanding

neural networks through deep visualization. arXiv preprint arXiv:1506.06579, 2015.

[166] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals.

Understanding deep learning requires rethinking generalization. arXiv preprint

arXiv:1611.03530, 2016.

208

[167] Justin Ziniel and Philip Schniter. Efficient high-dimensional inference in the multiple

measurement vector problem. IEEE Transactions on Signal Processing, 61(2):340–354,

2012.

209

	Abstract
	Contents
	List of Figures
	Acknowledgements
	Introduction
	Inverse Problems
	Analysis of Optimization in Machine Learning
	Analysis Framework
	Organization of the dissertation

	Background and Preliminaries
	Notation
	Useful results from Probability theory
	Approximate Bayesian Inference
	Denoising
	Probabilistic Graphical Models
	Large System Limit Analysis: Proportional Asymptotics
	Belief propagation
	Review of Approximate Message Passing algorithms
	Marchenko-Pastur distribution

	Inference with Deep Generative Models
	Introduction
	Multi-layer Vector Approximate Message Passing
	Fixed Points of ML-VAMP
	Analysis in the Large-System Limit
	Numerical Simulations
	Discussion

	Multi-Layer Inverse Problems over Matrices
	Introduction
	Example Applications
	Multi-layer Matrix VAMP
	Analysis in the Large System Limit
	Numerical Experiments
	Discussion

	Generalization Error of Learning in Generalized Linear Models
	Introduction
	Generalization Error: System Model
	Learning GLMs via ML-VAMP
	Main Result
	Experiments
	Discussion

	Conclusion
	Appendices
	Proofs from Chapter 3
	Empirical Convergence of Vector Sequences
	ML-VAMP State Evolution Equations
	Proofs of ML-VAMP Fixed-Point Theorems
	Proofs of Main Results: Theorems 9 and 8
	General Multi-Layer Recursions
	Proof of Theorem 12

	Proofs from Chapter 4
	State Evolution Equations
	Large System Limit Details
	Proof of Theorem 9
	General Multi-Layer Recursions
	Proof of Theorem 12

	Proofs from Chapter 5
	ML-VAMP Denoisers Details
	State Evolution Analysis of ML-VAMP
	Empirical Convergence of Fixed Points
	Proof of Theorem 10
	Formula for M
	Special Cases

