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ISOSPIN RELATIONS BY COUNTING 

Charles G. Wahl 
Lawrence Berkeley Laboratory 
University of California 
Berkeley, California 94720 

Abstract - A method is given for finding the 

relations between reaction cross sections or 

LBL-12858 

decay branching fractions that resul.t from iso­

spin conservation. The method was discovered 

long ago by Shmushkevich but is not widely 

known. It makes no call on the usual machinery 

of amplitude expansion~ and Clebsch-Gordan 

coefficients, but works instead by apportioning 

certain populations of particles according to 

a simple counting rule, the charge-uniformity 

rule. A number of examples, including several 

that require lengthy calculation to solve using 

Clebsch-Gordan coefficients, are here solved 

by inspection, usually without any equations 

at all. 

This work was supported by the Director, Office of Energy Research, 
Office of High Energy and Nuclear Physics, Division of High Energy 
Physics of the U.S. Department of Energy under Contract Number 
W-7405-ENG-48. 
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I. SHMUSHKEVICH' S METHOD (CHARGE UNIFORMITY) 

Most of the strongly interacting particles (hadrons) occur in 

sets of two or three or four having nearly the same mass and differ-

ing in charge by unit steps .of the electronic charge e. Examples 

are the nucleon doublet (proton p and neutron n) and the pion triplet 

+ 0 (n , n , and n ) • There are also a number of single particles such 

as the w meson. It is usual to consider the particles of a set to 

be the members of an isospin multiplet, the charge states being anal-

ogous to the m states (magnetic quantum number states) of a spin 
s 

angular momentum multiplet. The analogy is only formal but it is 

nonetheless far-reaching, for it is found that the strong interac-. 

tions, as opposed to the electromagnetic and weak interactions, con-

serve isospin. That is, in strong interactions the isospins of the 

particles making up a system combine according to the same vector 

coupling rules as do angular momenta; and the amplitudes for the 

various charge modes for a specific reaction or decay process (such 

as NN + NNn or w + nnn) may be written, using Clebsch-Gordan coeffi-

cients, as linear superpositions of a common set of pure isospin 

amplitudes, one such amplitude for each independent way the particles 

can, according ·to the rules, ·couple together and have the same iso-

spin in the initial state as in the final state. In all but trivial 

cases there are fewer isospin amplitudes than charge-mode amplitudes, 

and so the latter are not all independent. This leads to relations 

between the charge-mode cross sections or branching fractions, which 

are proportional to the squares of the magnitudes of the char_ge-mode 
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amplitudes. 1 

About 25 years ago, the Russian physicist Shmushkevich discovered 

a way to get the relations between cross sections or branching frac-

tions without having to use amplitude expansions or Clebsch-Gordan 

ff . . 2 coe ~c~ents. Although it is occasionally ~entioned·in the litera-

ture, Shmushkevich's method is known to few of even those physicists 

who have often to make isospin calculations. The starting point is a 

definition: a population of a particle multiplet is uniform if and 

only if it is made up of equal nUmbers of the members of the multi-

plet. Thus a uniform population of 100 nucleons is made up of 50 

p;rotons and 50 neutrons, and a uniform population of 300 pions is 

made up of 100 + 
1T 's, 100 

0 
"JT IS I and 100 1T 's. Any population of sin-

glets is automatically uniform. Shmushkevich's method then consists 

in applying the following rule: 

All particle populations involved in isospin-conserving 

reactions or decays of initially uniform populations are 

uniform at all times. 

This is here dubbed the charge-uniformity rule. It applies separately 

to each set of charge modes (the modes for a specific reaction or 

decay process). 

Examples take up nearly the whole of this paper, Sect. II on 

decays and Sect. III on reactions, and these will make the meaning of 

the above rule evident. The relation between charge uniformity and 

the usual isospin formalism is discussed in the Appendix, but ·until 

then any reference to this formalism is studiously avoided. Here it 

need only be noted that while charge uniformity is a consequence of 
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isospin conservation, it is not the whole thing. It has, for example, 

nothing to say about the phase relations between amplitudes, and in 

fact it deals not at all with amplitudes as such but only with rela­

tions between their squared magnitudes. And it sometimes needs help 

from the well-known charge-symmetry rule, which is introduced in 

Sect. II·B. For each set of reaction or decay modes, the relations 

between the cross sections or branching fractions come directly from 

arranging, in a manner specified by the rules, a kind of balanced or 

harmonious relation of the parts to the whole. Few equations are 

needed, for from the point of view advanced here a moment's thought 

usually suffices to make the relations obvious. 
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II. ISOSPIN-CONSERVING DECAYS 

A. First examples 

The w meson, a neutral isospin singlet, decays mainly into three 

pions. As far as conservation of charge is concerned, the possible 

3-pion charge modes are 

0 + 0 -w -+ 1T 1T 1T 

0 0 0 
-+ 1T 1T 1T 

suppose 100 w mesons decay this way, producing 300 pions. The w popu-

lation is uniform because the w is a singlet. If all 100 w mesons 

+ 0 -decay into rr rr rr , then afterwards there are 100 of each pion charge 

state, and the pion population is uniform too. If, however, even one 

. 0 0 0 . w decays ~nto 1T rr 1T , then after all the decays there are too many 

0 + 0 0 0 0 rr 'sand not enough rr 's or rr 's (count them). Therefore w -+ 1T rr 1T 

decay is forbidden by isospin conservation. 

The f meson, another neutral singlet, decays mainly into two 

pions: 

+ -
1T 1T 

0 0 
-+ 1T 1T 

Suppose 150 f mesons decay this way, producing 300 pions. The f popu-

lation is uniform, and the only way to get 100 of each pion charge 

state, thereby making the pion population uniform too, is for 100 of 

+ - 0 0 the f mesons to decay into 1T 1T and the other 50 to decay into 1T 1T 

+ - 0 0 Therefore, if isospin is conserved in the decay, the rr rr and rr 1T 

branching fractions, normalized so that their sum is unity, are 2/3 
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and 1/3. 3 

The mass of the f meson is large enough for f + w~ decay to occur, 

but the only way to conserve charge is 

0 0 w ~ 

And this mode is then forbidden by isospin conservation since there 

0 
are no charged pions available to match the ~ 's the decays would pro-

duce. 

The p meson like the f meson decays into two pions, but the p is 

an isospin triplet. The possible charge modes are 

+ + 0 p + ~ ~ 

0 + -
P· + ~ ~ 

0 0 
+ ~ ~ 

p + - 0 
~ ~ 

Suppose a p population made up of 50 of each of the three p charge 

states decays this way, producing altogether 300 pions. The p popu­

lation is uniform by construction. + The 50 p and 50 p decays to-

gether produce the required 100 0 
~ 's, 

0 
and all 50 p 'shave to decay 

. + - 0 0 0 
1nto ~ ~ to get enough charged pions. Therefore p + ~· ~ decay is 

forbidden by isospin conservation. 

The ~ baryon resonances, which are isospin quartets, decay partly 

into a nucleon and a pion: 

~++ 

~+ 

+ 
p~ 

+ 
n~ 

0 
+ p~ 



b.o 0 
-+ n'!T 

-7-

Suppose a b. population made up of 75 of each of the four b. charge 

states decays this way, producing altogether 300 nucleons and 300 

pions. The 75 b.++ decays produce 75 '!T+'s, and the only way to get 

the required total of 100 '!T+'s is for 25 of the b.+'s to decay into 

+ n'!T • Similarly, to get 100 'IT-'s, 25 of the b.
0
's have to decay into 

p'!T ·• Thus, going down the list, the numbers of decays are 75, 25, 

50, 50, 25, and 75, and this distribution makes the nucleon popula-

tion uniform too. The branching fractions, normalized so that their 

sum for each of the b. charge states is unity, are 1, 1/3, 2/3, 2/3, 

4 1/3, and 1. 

B •. Charge symmetry 

Let the members of an isospin multiplet be listed in order of 

+ 0 - ++ + 0 - 0 
decreasing charge; for example, pn, or 'IT 'IT 'IT , or b. b. b. b. , or w . 

The charge-symmetry transformation replaces a particle so many steps 

from one end of such a list with the particle that is the same nurn-

+ 0 0 
ber of steps from the other end: p -+ n, n -+ p, 'IT -+ 'IT , 'IT -+ 'IT , 

Ao + o o 
u -+ b. , w -+ w , etc. The transforrn.of a reaction or decay mode 

is obtained by transforming each of the particles of the mode in 

this way. ++ + -Thus the b. -+ p'!T mode turns into the b. -+ n'!T mode, 

0 + -and conversely, while the f -+ 'IT 'IT mode is its own transform. An-

other consequence besides charge uniformity of isospin conservation 
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is the charge-symmetry rule: 

Cross sections or branching fractions are equal for 

modes that transform into one another under charge 

. symmetry •. 

Sometimes the requirements of charge symmetry ge~ satisfied 

just by making all the populations uniform. This was the case in 

the ~ + N~ example, where the six modes divide into three pairs of 

charge-symmetric modes, and the branching fractions of the paired 

modes, determined above without any reference to charge symmetry, 

are indeed equal. In general, however, charge symmetry and charge 

uniformity give independent constraints. For example, the A
2 

meson, 

another isospin triplet, decays mainly into a p meson and a pion: 

+ + 0 
A2 + p ~ 

0 + + p ~ 

Ao + -+ p ~ 2 
0 0 

+ p ~ 

- + + P-~ 

- 0 -
A2 + p ~ 

- 0 
+ p ~ 

One way to make all the populations uniform is to have 100 of each 

of the first, fifth, and sixth decays in the list, and no others; 

but then there are no decays in the modes charge symmetric to these 

given three. There are many other ways to make all the populations 

uniform, but there is only one way to at the same time satisfy the 

charge-symmetry rule. It is easy to show that A~ + p 0~0 decay is 

.• 
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forbidden (otherwise there are too many neutral particles) and that 

all the other branching fractions are 1/2. 

The next example illustrates an approach that is useful in a 

large class of problems. The N* baryon resonances, which like the 

nucleon are isospin doublets, decay partly into a nucleon and a pion: 

N*+ + 
+ n~ 

0 
+ p~ 

N*o 0 
+ n~ 

+ p~ 

Each N*+ mode is paired off by charge symmetry with an N* 0 mode, and 

the equality of branching fractions for paired modes ensures that an 

initially uniform N* population will produce as many protons as neu-

+ -trons and as many ~ 's as ~ 's. The only remaining requirement is 

+ 0 
that there be as many~ 's or~ 's as ~ 's, or, equivalently, twice 

0 as many charged pions as ~ 's. But since a charged pion in one half 

of the full set of modes is mirrored by a charged pion in the other 

0 0 half, and a~. is mirrored by a~ , this 2-to-1 ratio holds not only 

for the full set, but also for either half. It follows at once that 

the N*+ and N* 0 each branch 2 to 1 in favor of the available mode 

with a charged pion, so that, going down the list, the branching 

fractions are 2/3, 1/3, 1/3, and 2/3 • 

The utility of the approach used above - the N* + N~ branching 

fractions could have been found using just charge uniformity - is 

that it applies to any set of modes that are all paired off by 

charge symmetry: the equality of rates for charge-symmetric modes 
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makes equal the numbers of charge-symmetric particles, and what re-

mains to be done can be put in a "folded" form that applies to either 

half of the full set of modes. (Thus there is no reason to even 

write down more than half the modes if those of the other half are 

not of immediate interest.) For.pions (or p mesons, or A
2 

mesons), 

this folded form is, as was shown above, twice as many charged as 

neutral. For D. resonances, it is, as is easy to show, as many D.++' s 

+ Ao, plus D. 's as D. 's plus u s. These results will be often used below. 

C. A more complicated example 

The N* resonances also sometimes decay .tnto a nucleon and two 

pions, the modes of an N*+ being 

N*+ + -
-+ pn 1T 

+ 0 
-+ n1T 1T 

0 0 
-+ p1T 1T 

+ Suppose some number n of N* -+ N1T1T decays to occur, and let n , 
tot cc 

n , and n , where the subscripts tell whether the pions produced 
co 00 

are charged or neutral, be how ntot is divided up among the three 

modes. Then the total number of charged pions produced by the 

decays is 2n + n , the number of neutral pions produced is cc co . . 

n + 2n , and equating the first of these to twice the second gives 
co 00 

2n = n + 4.n (1) 
cc co 00 

Dividing through by n 
tot 

(n + n + n ) 
cc co 00 

gives 

2 f = f ·+ 4 f 
cc co 00 

(2) 

\.i 
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. + 
where f = n /n t' etc., are theN* + N~~ branching fractions cc cc to 

normalized so that (f + f + f ) = 1. By charge symmetry, Eq. (2) 
cc co 00 

0 . 
also applies to the N* + N~~ branching fractions. For a particular 

one of the many N* resonances,. the values of f , f , and f are 
cc co 00 

+ 0 the same for the N* and N* • 

This is the first example in which isospin conservation does 

not fully determine the branching fractions; any three nonnegative 

numbers that satisfy Eq. (2) and add up to unity are allowed. The 

reason for this lack of definiteness is that this is the first set 

of modes in which the decay products can couple together in more 

than one way to form the decaying particle. For example, the two 

pions can form either a singlet (f-like) or a triplet (p-like) ob­

ject, either of which with the nucleon can form a doublet, the N*.
5 

Or the nucleon and one pion can form either a doublet (N*-like) or 

a quartet (6-like) object, either of which with the second pion can 

form the N*. The branching fractions in these special ''pure" cases 

are easily found by considering the N* + N~~ decay to be a 2-step 

process; for example, N* + Nf + N~~. 
6 

The results.are 

f f f 2/3: 0: 1/3 for Nf 
cc co 00 

= 1/3: 2/3: 0 II Np 

4/9: 4/9: 1/9 II N*~ 

= 5/9: 2/9: 2/9 II 6~ 

Each set of branching fractions here of course satisfies Eq. (2). 

·+ 
If, in observing· the N~~ decays of an N* , any two of nee' nco' 
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and n are determined, then the third can be found from Eq. (1) , 
00 

and the sum of the three equals n t' the total number of N~~ decays 
to 

there were. Or one can use Eq. (1) to write ntot directly in terms 

of any two of its components:~ 

3 (n - n ) 
cc 00 

( 3a) 

3 (n + 2n )/2 
co 00 

(3b) 

= 3(n + 2n )/4 
co cc 

(3c) 

+ + -Experimentally, it is much easier to see N* ~ p~ ~ decays, where 

+ + 0 + 0 0 
all the decay products are charged, than N* ~ n~ rr or N* ~ p~ ~ 

decays. From Eqs. (3a) and (3c) and the fact that the components 

of ntot are nonnegative, it follows that 

3 -n 
2 cc 

3n 
cc 

(4) 

Thus upper and lower bounds can be placed on the total number of 

+ + + -N* ~ Nrrrr decays that occurred even wheri only the N* ~ prr rr decays 

are observed. Bounds such as these are sometimes quite useful. 
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III. ISOSPIN-CONSERVING REACTIONS 

A. Analogies and extensions 

The deuteron, the bound state of a proton and a neutron, is an 

isospin singlet. Consider collisions of deuterons with deuterons in 

which one or two or three pions are produced and the deuterons remain 

intact. As far as conservation of charge is concerned, the possible 

charge modes for the three reaction sets are 

dd + -
-+ dd1T 1T 

-+ dd1To1To 

dd -+ + 0 -ddlT 1T 1T 

-+ dd 0 0 0 1T 1T 1T 

Since deuteron populati~ns are automatically uniform, it remains only 

to choose, separately for each reaction set, some number of reactions 

and balance the pion populations. However, the pion charge combina-

tions here are exactly those that occurred in the f-+ WlT, f -+ 1T1T, and 

w-+ 1T1T1T examples (why?), and arguments along the same lines as in those 

examples must lead to analogous conclusions: the first reaction is 

forbidden, the second and third occur in the ratio 2 to 1 (the cross 

sections are in this ratio), and the fifth reaction is forbidden. 

Production of a single pion becomes possible if one (at least) of 

the deuterons breaks up. The charge modes then are 

dd -+ + dnnlT 

. 0 
dpnlT 

dpplT 
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and all the populations are uniform if and only if the three reactions 

occur at the same rate (have equal cross sections) . 

Clearly, no matter what the reaction set, be it dd + dd~~ or 

dd + dNNp~~ or dd + NNN*~pw~~~~, in deuteron-deuteron collisions each 

of the final-state populations will be uniform. In particular, the 

pion population will be uniform, and this is true not only for the 

pions that are produced directly, but also, provided that the decays 

conserve isospin, for those that come from the decays of resonances 

- because the populations of resonances are themselves born uniform. 

And since for each reaction set all the populations are uniform, they 

are uniform fo~ any sum over reaction sets, and thus also overall. 

Next, consider collisions of protons with deuterons in which one 

or two pions are produced and the deuterons remain intact: 

+ pd + nd~ 

0 
+ pd~ 

+ -pd + pd~ ~ 

+ 0 
+ nd~ ~ 

0 0 
+ pd~ ~ 

For each of these reactions there is a charge symmetric neutron-

deuteron reaction, so it remains only to find the relations between 

0 
cross sections that yield twice as many charged pions as ~ 's; and 

the pion charge combinations here are just those that occurred in 

+ + the N* + N~ and N* + N~~ examples. By analogy, therefore, the 

cross sections cr and cr for the first two reactions are related by 
c 0 

crc = 2cr
0

, and the cross sections crcc' crco' and cr
00 

for the last three 

-,, 
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are related by 2cr = cr + 4cr , where the subscripts tell whether cc co 00 . 

the pions produced by the reactions are charged or neutral. When the 

deuteron breaks up, the one-pion modes are 

pd + + pnmr 

0 
+ ppmr 

+ PPP1T 

and the relation between the cross sections may still be written as 

cr = 2cr , if now cr is the sum of the cross sections for the first 
c 0 c 

and third of the reactions •. 

In, say, the reaction half set pd + NNt.pw1T1T1T1T, there will be pro-

duced twice as many chargeq as neutral pions, twice as many qharged 

as neutral p mesons, and as many t.++,s plus t.-'s as t.+'s plus t.0 •s. 

It is easy to show that decays of p and t. populations constrained in 

this way also produce twice as many charged as neutral pions, so that 

the 2-to-1 pionproduction ratio holds not only for the pions that 

are produced directly, but also for those that come from isospin-

conserving decays. This 2-to-1 ratio holds for any pd (or nd) reac-

tion half set, so it holds for any sum over such half sets, and thus 

overall. 

High energy cosmic rays striking the Earth's atmosphere interact 

with the atmospheric elements and produce, among other things, pions: 

cosmic rays + atmosphere + pions + anything 

It so happens that both the "beam" and the "target" have, to good 

approximations, very simple isospin properties: about 90% of cosmic 
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rays are protons and nearly all the rest are alpha particles or other 

isospin-singlet nuclei; and more than 99% of the atoms in the dry 

atmosphere are nitrogen or oxygen, the nuclei of which are isospin 

singlets. It then follows from a superposition of results obtained 

above that, to the extent all the cosmic rays are protons or sin-

glets and tl:}e atmosphere contains only singlets, charged and neu-

tral pions are produced in the ratio 2 to 1. 

B. More complicated initial states 

In the reactions considered so far, at least one of the collid-

ing particles was an isospin singlet. Since singlet populations are 

automatically uniform, the initial state in such reactions is no 

more complicated than it is in a decay process. It remains to con-

sider reactions in which neither of the colliding particles is a 

singlet. Suppose, for example, a beam each portion of which con-

+ 0 tains equal numbers of '11" 1 s, .'11" 1 s, and '11" 1 s is incident upon a tar-

get each portion of which contains equal numbe~s of protons and 

7 
neutrons. The beam population will remain uniform only if its 

interactions as it traverses the target remove 'lr+ 1 s, 0 
'11" 1 S, and '11" 1 S 

at the same rate; and since these depletion rates are proportional 

to cross sections, the cross sections (either overall, or for any 

specific reaction set) must be reiated by 

a + + a + 
'11" p '11" n a o + a o 

'11" p '11" n 
= (5) 

where, for example, a'lr+p is the sum of all the cross sections for 

+ + the '11" p modes. Now any particular '11" p mode is charge symmetric to 
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-a 1r n mode, and thus cr - cr~-n by the charge-symmetry rule. Simi-'lr+p - II 

cr o and cr _ = cr~+n' so that, from Eq. (5), 1r n 1r p 11 

cr+ +a_ 
'7r p '7r p 

2 cr 0 '7r p 
(6) 

Thus the 2-to-1 charged-to-neutral rule for pions in a reaction half 

set (here the 1rp reactions) applies to the initial state as well as 

to the final state. Note that charge uniformity does not imply that 

cr + , a o , and a - are all equal. 
'7r p '7r p '7r p 

As an example, consider pion-proton collisions in.which no addi-

tional particles are created (elastic and charge-exchange scattering). 

The charge modes are 

+ + 
'7r p + '7r p 

0 0 
'7r p + '7r p 

+ + '7r n 

1rp + 'ltp 

0 
+ '7r n 

According to Eq. (6), 

cr ++ + cr = 

where the first and second subscripts give the charges of the initial-

and final-state pions. And only if 

a++ + cr + cr 0+ 

0 will twice as many charged pions as 1r 's be produced. These equa-

tions may be solved to give the 1r0p cross sections in terms of the 

others. 
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A last point, to be made by comparing the reactions ~d.+ NN and 

NN + Tid, concerns reactions in which the beam and target particles 

are from the same multiplet. The Tid + NN charge modes are 

+ pp 

+ pn 

TI d + nn 

and a uniform beam of pions incident upon a target of deuterons will 

remain uniform only if the .cross sections for the three modes are 

equal. Now consider the reactions NN + Tid, with a uniform beam of 

nucleons incident upon a uniform target of nucleons. If, by the 

order of the initial-state particles, account is.taken of whether 

the TI
0

d final state is produced by protons incident upon neutrons or 

neutrons upon protons, there are four charge modes: 

pp + TI+d 

pn + TI
0

d 

np + TI
0

d 

nn + TI d 

0 
For the pion population to be uniform, the sum of the pn + TI d and 

0 np + TI d cross sections must equal either of the other cross sec-

tions. 
0 

But an actual experiment measures either the pn + TI d or 

the np + TI0d cross section, not the undifferentiated sum. Since 

these two cross sections are equal by charge symmetry, the cross­

section ratios of interest here are, going down the list, 2:1:1:2.
8 

In any nucleon-nucleon reaction set, the pN and nN (or the Np 
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and Nn) reactions form charge-symmetric half sets. Thus for the pN 

reactions in which a single pion is produced, 

+ 
PP -+ pmr 

0 
-+ PP1T 

. ., + pn -+ nn1T 

0 
-+ pn1T· 

-+ pp1T 

the cross sections are related by cr = 2cr , where cr and cr are the 
c 0 c 0 

sums of the cross sections for the reactions in which a charged or 

neutral pion is produced. And for the pN reactions in which two 

pions are produced, the relation is, with the usual notation, the 

by now familiar 2cr = cr + 4cr 
cc co 00 

Shane Burns and Thomas Trippe (both of Lawrence Berkeley Lab-

oratory) forced me to be clearer. This work was supported by the 

Director, Office of Energy Research, Office of High Energy and 

Nuclear Physics, Division of High Energy Physics of the U.S. Depart-

ment of Energy under Contract No. W-7405-ENG-48. 
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APPENDIX 

Some familiarity with the elementary formalism of isospin (or 

angular-momentum) conservation and Clebsch-Gordan coefficients is as-

sumed in what follows. Charge uniformity implies a certain relation 

between Clebsch-Gordan coefficients, and this relation is shown to 

follow from a symmetry property of the coefficients. The proof here 

directly covers only the basic 2-body coupling c -+ a+ b, where, as in 

~ -+ Nn, N* -+ Nn, and A
2 

-+ pn decays, a and b are particles belonging 

to different multiplets. 9 

Two quantum numbers, the isospin I and the third component m, 

specify the is9spin properties of a particle. The value of I, which 

is the same for all the members of a multiplet, is given by the fact 

that the number of members is (2I + 1); and in order of decreasing 

charge the members take on the m values I, (I- 1), (I- 2), • · ·, -I. 

Thus the quantum numbers (I,m) of the proton, n-, and 6° are (~2 ,+~2), 

(1,-1), and <%,-%>, respectively. If isospin is conserved in the 

decay c -+ a+ b, where the particle quantum numbers are (I ,m ) , etc., 
c c 

then Ic can only be one of the values (Ia + Ib), (Ia + Ib- 1), • · ·, 

I I a- Ib I, and me must equal (rna+~). The branching fraction for this 

decay is equal to the square of the Clebsch-Gordan coefficient 

C(I Ibi ;m ~m). 
a c a b c 

0 -Thus, since the 6 -+-pn branching fraction is 1/3, 

ization for Clebsch-Gordan coefficients, 

2 . 
L C (I Ibi ;m ,m- m ,m ) = 1 a c a c a c 
m 

a 

(Al) 
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where the summation is over all the m (or m. = m - m ) states acces-
a D c a . 

sible from a given m state, corresponds to having the branching 
c 

fractions for each charge state of multiplet c add up to unity. 

Sin.ce the sum of branching fractions for each m state is one, . c 

the sum of branchi·ng fractions for all (2I + 1) m states. is 
c c 

(2I + 1). This sum of all the branching fractions may be split up 
c 

into (2I + 1) pieces, one for each of the charge states of multiplet 
a 

a: the six !J..-+ Nrr branching fractions divide into two sets, one for 

those associated with a proton, the other for those associated with 

a neutron. If the multiplet-c population is initially uniform, then 

the total number of a particular m state produced by the decays is 
·a 

proportional to the sum of the branching fractions associated with 

this m state. Thus the multiplet-a population will only be uniform 
a 

if the (2I + 1) partial sums of branching fractions are all equal, 
a 

independent of the value of m • For (2I + 1) equal pieces to add up 
a a 

to ( 2I + 1), they must each be equal to ( 2I + 1) I ( 2I + 1) • Thus, in 
c c a 

terms of Clebsch-Gordan coefficients, charge uniformity implies that 

I c2
(I Ibi ;m ,m .. m ,m ) 

a c a c a c 
m 

c 

for each value of rn • 
a 

( 
2Ic + 1) 
2Ia + 1 J 

There are a number of so-called symmetry relations between 

(A2) 

Clebsch-Gordan coefficients, and one of. them tells how the coeffi-

cients for the coupling together of isospins Ia and Ib to get iso­

spin I are related to those for the coupling of isospins I and 
c c 



10 Ib to get isospin Ia 

C ( I Ibi ; m m. m ) 
a c a o c 
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(A3) 

Squaring both sides of this and summing over m while keeping m fixed 
c a 

gives 

I c2
(I Ibi ;m ,m -m ,m) = a c a c a c 

m 
c 

( 
2Ic+ 1 J 
2I + 1 

a 
'i' c2

( I I I · -m m -m -m ) 
L c b a' c' c a' a 
m 

c 

(A4) 

The summation factor on the right-hand side is by Eq. (Al) equal to 

unity, and what then remains of Eq. (A4) is Eq. (A2). Thus the rela-

tion implied by charge uniformity is indeed satisfied by the Clebsch-

Gordan coefficients. 

. ; 

" 

,, 

.. 
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NOTES AND REFERENCES 

1. See almost any text on elementary particle physics for examples of 

such calculations. The only two (both quite old) that also discuss 

Shmushkevich's method are P. Roman, Theory of Elementary Particles. 

(North-Holland, Amsterdam, 1960), and R.E. Marshak and E.C.G. Sudar-

shan, Introduction to Elementary Particle Physics (Interscience, 

New York, 1961) • 

2. The original papers are I. Shmushkevich, Dokl. Akad. Nauk SSSR 103, 

235 (1955) [translation: AEC-tr-2270 (unpublished)], and N. Dushin 

anq I. Shmushkevich, Dokl. Akad. Nauk SSSR 106, 801 (1956) [trans-

lation: Soviet Phys. - Dokl. 1:_, 94 ( 1956)] . The most complete 

treatment is G. Pinski, A.J. Macfarlane, and E.C.G. Sudarshan, Phys. 

Rev. 140, Bl045 (1965). See also the two books mentioned in Ref. 1. 

3. Two comments should perhaps be made here. (1) Although strict 

charge uniformity is assumed in getting branching fractions, it is 

in fact only statistically true. Each f meson that decays into two 

+ -pions "decides" with probabilities 2/3 and 1/3 between the 7T 7T and 

0 0 
7T 7T modes. Thus, in accord with ordinary statistics, a fi~ite sam-

ple of f + 7T7T decays is unlikely to split exactly in the 2-to-1 

ratio: a sample of 150 might split 102 to 48, or 96 to 54, etc. 

(2} Small corrections need to be made to branching fractions to take 

into account the small differences in masses between the particles 

of a multiplet. 0 + The 7T is slightly less massive than the 7T and 7T , 

so slightly more energy is released in f 0 
+ 7T07TO decay than in 

0 + -f + 7T 7T decay, and the corresponding branching fractions are 
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expected to be shifted slightly up from 1/3 and down from 2/3. 

4. As the examples have shown, branching fractions are. found by making 

all the particle populations uniform first before any decays and 

then again after them all. A related result comes from keeping the 

populations uniform while the decays are'going on. Ih the p ~ TITI 

example, the initially uniform p population will remain uniform at 

. 'f h + 0 all t~mes only ~ t e p , p , and p all decay at the same rate: by 

+ . 
the time any given fraction of the p 'shave decayed, so also have 

0 
decayed just the same fraction of the p 'sand p 's. ·Thus the life-

+ 0 
time distributions of the p , p , and p are all the same. In the 

f ~ TITI example, the pion population will be uniform at all times 

+ - 0 0 only if the 2-to-1 ratio of TI TI and TI TI decays is maintained in 

every time interval. Thus the ratio of the branching fractions is 

the ratio of the decay rates, and the lifetime distributions of the 

two modes have the same time dependence. It is easy to show that 

the same is true for the six ~ ~ Nn modes. 

5. These statements follow from the rules for coupling isospin vectors 

together. It is, however, more in the spirit of the present work 

to remark (without proof) that a process such as N* ~ Nf is allowed 

by isospin conservation if and only if all the charge states of all 

the particle multiplets appear when the charge modes are written 
\.I 

down; if they do not all appear, as in the f ~ WTI example where the 

+ -
TI and TI were absent, then there is no way to make all the popula-

.• 

tions uniform. By this rule, both N* ~ Nf and N* ~ Np decays are 

allowed. Similar comments apply to the next sentence in the text. 
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6. The ATI case is a little more complicated than the others. The charge 

7. 

modes for the first step are 

N*+ 

+ 

Let the corresponding branching fractions be f++' f+' and f 0 , where 

the subscripts are the A charges. The normalization constraint is 

f + f · + f
0 

= 1. The requirement that there be twice as many charged ++ + 
. 0 

pions as TI 1 s is f ++ + f 0 = 2f +. The requirement that there be as 

++ - + 0 
many A 1 s plus 11 1 s as A 1 s plus A 1 s is f ++ = f + + f 0 . The solution 

of these equations is f = 1/2, f = 1/3, and f
0 

= 1/6. Then using ++ + 

the A.+ NTI branching fractions derived in Sect. II·A and summing up 

the contributions to f. f , and f gives the results in the text. 
cc' co oo 

0 0 
Beams of TI 1 S are in fact not obtainable because the TI lifetime is 

very short (isospin is not conserved in pion decays). 

8. Thus the order of the initial-state particles tells which is beam 

and which is target, whereas the list of final-state particles is 

just that, a list of the particles produced, with the order being of 

no significance (so that different orderings are not counted as dis-

tinct). The order of the final-state particles does take on signif-

icance when differential distributions are considered - it becomes 

0 0 
necessary to distinguish, for example, between TI d + pn and TI d + np, 

. 0 + - 0 . - + 
or between f + ~ TI and f + TI TI - but this c~mplication will not 

be gone into here. 
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9. For a more general and sophisticated treatment, see the article by 

G. Pinski et al. cited in Ref. 2. 

10. This is Eq. (3·17a) of M.E. Rose, Elementary Theory of Angular 

Momentum (Wiley, New York, 1957). It may be obtained from Eq. 

(3·5·15) of A.R. Edmonds, Angular Momentum in Quantum Mechanics 

(Princeton, Princeton, 1960), by using his Eqs. (3·5-14) and 

(3·5·17). 

• 
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