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Local entanglement and confinement transitions in random transverse-field Ising

model on the pyrochlore lattice

Tom Pardini,1 Anirudha Menon,2 Stefan P. Hau-Riege,1 and Rajiv R. P. Singh2

1Lawrence Livermore National Laboratory, 7000 East Ave. Livermore, CA 94550
2Department of Physics, University of California Davis, CA 95616, USA

(Dated: October 15, 2019)

We use Numerical Linked Cluster Expansions (NLC) and Exact Diagonalization (ED) to study
confinement transitions out of the Quantum Spin Liquid (QSL) phase in the pyrochlore-lattice Ising
antiferromagnet with random transverse fields. We calculate entanglement entropies associated with
local regions defined by single tetrahedra to observe these transitions. The randomness-induced
confinement transition is marked by a sharp reduction in the local entanglement and a concomitant
increase in Ising correlations. In NLC, it is studied through the destruction of loop resonances
due to random transverse-fields. The confining phase is characterized by a distribution of local
entanglement entropies, which persists to large random fields.

PACS numbers: 74.70.-b,75.10.Jm,75.40.Gb,75.30.Ds

In recent years, many candidate quantum spin-liquid
(QSL) materials have been identified [1–7]. A char-
acteristic of QSLs is the high degree of quantum en-
tanglement, allowing them to host fractionalized quasi-
particles. However, a convincing experimental demon-
stration of QSL remains elusive. Part of the difficulty
lies in the nature of the phase, which does not have a
measurable order parameter. Emergent, fractionalized
degrees of freedom do not directly couple to external
probes. Thus, with few exceptions, such as quantized
thermal hall effect [8], most experimental signatures of
QSL are indirect and subject to alternative interpreta-
tions. Impurities, which are ever present in condensed
matter systems, play a significant role in shaping the
macroscopic phases and understanding them is impor-
tant for establishing a QSL experimentally [9–16].

One class of materials that have attracted significant
interest are the spin-ice family of rare-earth pyrochlores
[17–25]. Magnetic rare-earth ions form a lattice of corner-
sharing tetrahedra. Though these ions typically have
large spin, strong spin-orbit coupling and crystal-field ef-
fects map them on to an effective two-state or spin-half
system. The local Ising axis is defined by the line joining
the vertex to the center of the tetrahedron. When ex-
change interactions favor ‘2-in-2-out’ Ising states in each
tetrahedron, this leads to macroscopic ground state de-
generacy classically with the well-known Pauling entropy
[26]. This classical spin-liquid, also called spin-ice, is well
established in some rare earth pyrochlores [18].

These materials can be divided into Kramers and non-
Kramers systems [17]. The former consist of odd num-
ber of electrons per ion which must have a two-fold de-
generacy for every single-ion eigenstate. The latter will
typically have non-degenerate eigenstates and double de-
generacy can only arise as a result of some lattice sym-
metry. Thus spin-active non-Kramers systems can arise
from two nearby non-degenerate states well separated
from the rest, or, from a lattice-symmetry protected dou-

FIG. 1: Cluster of 6 tetrahedra connected in a ring. The six
interior sites of the cluster are denoted by green circles and
the 12 boundary sites are denoted by red circles. The arrows
denote one spin-ice configuration for the cluster.

blet ground state which will be split by impurities. These
systems can be modelled by random-transverse field Ising
models [27–32]. Indeed the material Pr2Zr2O7 is a real-
ization of this model [33].

Here we study the quantum Ising-antiferromagnet
on the pyrochlore lattice by Numerical Linked Clus-
ter (NLC) expansions [34–36] and exact diagonalization
(ED). We focus on the local entanglement properties of
the system and examine their behavior at the confine-
ment transitions. We find that entanglement of spins of
a tetrahedron with the rest of the system contains sharp
changes associated with different confining transitions.

A simple NLC calculation diverges inside the QSL
phase. To obtain convergent results, one must consider
each cluster as embedded in a superposition of spin-ice
states. The confinement transition can be observed by
studying the destruction of ring-exchange resonance due
to the random fields. A modification of Benton’s per-
turbative argument [28] shows that at the phase bound-
ary the width of the transverse-field distribution scales
quadratically with the mean value in agreement with the
NLC results. We also find that the confining phase [32]
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FIG. 2: (a) Expectation value of spin along the transverse
field mx, and (b) Single-tetrahedron entanglement entropy
ST , as a function of the transverse-field h with no disorder.
The data is for 16 and 32-site clusters and 4th and 5th order
NLC. The vertical black lines denote the transition point [30,
31] between QSL and the paramagnetic phase. NLC does
not converge within the QSL phase, and for this reason NLC
results are not shown for small h values.
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FIG. 3: (a) Ising correlations Czz, and (b) Single-tetrahedron
entanglement entropy ST as a function of width of the field
distribution w for different mean values of the field h. Data
have been obtained via ED on a 16-site cluster, and each
data point represents an average over 100 independent dis-
order configurations. Error-bars are from finite sampling of
disorder.

is characterized by a broad distribution of local entan-
glement entropies, a property which persists to high ran-
dom fields. This means that even with increasing random
fields there will be pockets of strong entanglement with
local behavior of a QSL.
We consider the Hamiltonian

H = J
∑

<i,j>

σz
i σ

z
j −

∑

i

hiσ
x
i , (1)

where J = 1, and the transverse fields hi are independent
Gaussian random variables with mean h and standard
deviation w. On a finite cluster with periodic boundary
conditions, we calculate the ground state wavefunction of

the system. We divide the system into two parts A and
its complement B. Let the reduced density matrix of A
be ρA. The von-Neumann entanglement entropy between
A and its complement B is:

SA = SB = −Tr ρA ln ρA. (2)

In this work, A is made up of the four spins belonging
to any single tetrahedron, and B is made up of all the
remaining spins. This leads to the definition of single-
tetrahedron entanglement entropy

ST = [−Tr ρT ln ρT ]. (3)

The square brackets indicate that the quantity is aver-
aged over the tetrahedra in the cluster and over disorder
configurations. In addition, we study the average mo-
ment along the local field, defined as

mx = [
1

N

∑

i

|〈σx
i 〉|]. (4)

Here N is number of sites and the angular brackets
throughout this study refer to ground state expectation
values, while the square brackets refer to an average over
disorder configurations. We also calculate the correlation
sum for the Ising components:

Czz = [
1

N(N − 1)

∑

i,j 6=i

|〈σz
i σ

z
j 〉| ], (5)

where the sum is over all pairs of spins.
To obtain the results in the thermodynamic limit, we

turn to NLC [34–36]. An extensive property of interest
P , per site, can be calculated by a sum over connected
clusters c that can be embedded in the lattice.

P/N =
∑

c

L(c)×W (c), (6)

where L(c) is the lattice constant of the cluster, or the
number of times the cluster arises in the lattice per site.
The weight W (c) is defined recursively as

W (c) = P (c)−
∑

s

W (s), (7)

where P (c) is the property for the cluster and the sub-
traction is over subclusters.
To study property of spin-ice systems, it is useful to

consider clusters made up of full tetrahedra [37, 38]. To
5th order, that is up to 5 tetrahedra, there are a total
of 8 clusters. We include a 9th cluster, consisting of six
tetrahedra in a ring, shown in Fig. 1, as it plays a special
role in the spin-ice phase.
We begin with results for the uniform system (w = 0).

In Fig. 2, the expectation value of the spin along the
transverse field and the local entanglement entropy as-
sociated with a single tetrahedron are shown as a func-
tion of the field. The 4th and 5th order NLC results are
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indistinguishable in the plot in the high-field paramag-
netic phase, showing that they represent the results in
the thermodynamic limit. The ED results for 16− and
32−site clusters are also shown. In the thermodynamic
limit, there may be a small discontinuity at the transition
[30, 31], but finite size effects are small in the paramag-
netic phase right down to the transition. This first order
transition point from previous studies [30, 31] is indicated
by the vertical black lines.
While the simple NLC converges well in the high-field

phase right up to the transition, it diverges in the QSL
phase and we need to modify it for the QSL. The physics
of QSL is lost by having fluctuating spins at the boundary
of the finite clusters. This is because every spin must be
part of two tetrahedra in order to not mix different ice
states by local fluctuations. But the boundary spins of
a cluster belong to only one. Thus, two boundary spins
in the same tetrahedron can be flipped to go from one
ice configuration to another already in order h2. This is
clearly incorrect.
In order to fix this problem we adopt a modified NLC

scheme. We envisage local fluctuations in the interior of
the QSL. Each cluster is divided into interior and bound-
ary spins depending on whether or not the spin belongs to
two or one tetrahedron in the finite cluster (See Fig. 1).
The boundary spins feel additional longitudinal fields,
coming from tetrahedra external to the cluster. It can
be shown that the modified NLC in 5th order gives per-
turbative properties correct to order h8 except for the
ring exchanges. However, these perturbative terms gen-
erate very small entanglement at small fields and ring
exchanges are key to the physics of the QSL [21–23].
In order to capture the physics of ring exchanges one

must consider clusters where tetrahedra form rings. All
the order one entanglement for small h arises from ring
exchanges [23, 30]. This resonance can be destroyed by
random fields, effectively killing the superposition and
consequential entanglement. For studying this, cluster
9 consisting of six tetrahedra in a ring shown in Fig. 1
plays a crucial role.
In this cluster, each tetrahedron has two interior and

two boundary spins. In our modified NLC, the cluster
is embedded in a larger system. The Ising couplings of
the spins external to the cluster result in longitudinal
fields on the boundary spins of the cluster. The problem
divides into different sectors corresponding to different
boundary longitudinal fields. The key sector is one where
in each tetrahedron one boundary spin has a positive and
the other negative longitudinal field. At low energies this
sector maps on to an effective 2−level system given by
the two alternating spin configurations along the hexagon
of the cluster.
For a uniform system, this leads to an entanglement en-

tropy for each tetrahedron of ln 2 in the sector where the
resonance occurs, and zero in all other sectors apart from
small perturbative corrections. Thus a sum over all tetra-
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FIG. 4: (a) Distribution of single-tetrahedron entanglement
entropy ST for h = 0.1 and various w values. The color scale
represents the normalized intensity I. (b) Several cuts of the
intensity I in (a) for selected w values. For w = 0.01, the
intensity is a delta function shown as a solid black line at
ST ∼ 1.77.

hedron gives 6 ln 2 in the resonating sector. The cluster
has 730 total spin-ice states, 128 of which lead to the res-
onating state. If we assume that each one of the spin-ice
states must be weighted with equal probability in the in-
terior of the spin-ice as expected at the Rokhsar-Kivelson
(RK) point [39], the weight of this cluster for the entan-
glement entropy per tetrahedron becomes (6× 128/730)
ln 2. This cluster has a count of one per site or two per
tetrahedron. Thus, multiplying the weight by a factor of
2 gives an entanglement entropy for a tetrahedron in the
thermodynamic system to be approximately 1.5. Our ED
estimate for the low field entanglement entropy shown in
Fig. 2 is less than 20 percent higher than this. The com-
parison suggests that the resonating configurations are
enriched relative to others by less than 20 percent with
respect to the RK point in the model. This is consistent
with the Monte Carlo study of the ring-exchange model
[23].

We now turn to the main focus of our study with ran-
dom transverse fields. The Ising correlation sum and
tetrahedron entanglement entropy from ED are shown in
Fig. 3, where we see that an increase in the Ising cor-
relation occurs concomitant with a decrease in local en-
tanglement entropy. This shows that the confinement
transition is associated with the lifting of degeneracy
in the spin-ice subspace and leads to the development
of Ising correlations [32]. Fig. 4 shows the distribution
of single-tetrahedron entanglement entropies. One finds
that as soon as one enters the confining phase the entan-
glement entropy develops a broad distribution. Fig. 4b
shows a few cuts through the distribution function. In
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the QSL phase the entanglement entropy is essentially a
delta function. In the confining phase it is broad. for the
finite system, there remains weight at the largest value
until one gets into a paramagnetic phase around w = 0.5
after which the peak gradually moves to smaller values.
However, the distribution remains broad all the way up
to large randomness.
Note that ED cannot give the correct thermodynamic

phase boundary because our cluster has loops of length 4
coming from periodic boundary conditions. These small
loops lead to a phase boundary where w scales linearly
with h.
To study the phase boundary for the thermodynamic

system, we must use NLC and focus on cluster 9. The
tetrahedron entanglement entropy in the resonating sec-
tor of cluster 9 is shown in Fig. 5. We see that the res-
onance, which leads to an entanglement of ln 2 is killed
with disorder. To further understand this, we turn to
perturbation theory [28]. With disorder, the two-state
problem for the cluster can be described by an effective
Hamiltonian

Heff = aσx + bσz, (8)

where a = 63

256
h6, while

b =
1

48

∑

t

(h2

i1 − h2

i2)(h
2

b1 − h2

b2), (9)

where the sum is over all six tetrahedra. Here, hi1 and hi2

are the random-fields at the interior sites and hb1 and hb2

the random fields at the two boundary sites of the tetra-
hedra. Benton had argued [28] that the average degen-
eracy lifting perturbation should scale as wh3. However,
as seen from Eq. 8, there are two cancellations in each
tetrahedron and b must vanish as w2. We find that for
Gaussian disorder it scales approximately as 14.7w2h2.
Calling the point a = b as the transition point gives the
phase boundary w = ch2, with c ≈ 0.90. This phase
boundary is also shown in the inset of Fig. 5 and agrees
well with our calculations, where the transition is deter-
mined by the horizontal dashed line corresponding to an
ST of 0.4165 as appropriate for a = b in Eq. 7.

A sketch of the phase diagram is shown in Fig. 6 with
QSL, Paramagnetic (PM), Ising (I) and Griffiths-McCoy
(GM) phases. The Ising phase is characterized by en-
hanced random Ising correlations, whereas the Griffiths-
McCoy phase is characterized by only pockets of entan-
glement corresponding to rare regions in the disorder
configuration. The PM-QSL boundary is indicated to
be vertical. NLC results differ sharply from ED, even
with non-zero w, around h = 0.6. Whether the phase
immediately to the left of the boundary is a true ther-
modynamic QSL or an inhomogeneous Griffiths-McCoy
like phase [40] with only pockets of high entanglement de-
serves further attention. The paramagnetic phase bound-
ary at large w is roughly horizontal. Various properties
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FIG. 5: Single-tetrahedron entanglement entropy ST obtained
from cluster 9 as a function of width w for different h values.
Each data point represents an average over 200 independent
disorder configurations. The horizontal line corresponds to
ST = 0.4165. The inset shows the transition point obtained
from these calculations (diamonds) and from perturbation
theory (dashed line).
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FIG. 6: A sketch of the phase diagram for the random
transverse-field Ising model with QSL, paramagnetic (PM),
Ising (I), and Griffiths-McCoy (GM) phases. The triangles
represent confinement phase boundary on the finite cluster.
The diamonds are obtained from NLC and represent the phase
boundary in the thermodynamic limit.

collapse on a single scaling curve at larger w implying
a predominantly local paramagnetic behavior. The con-
finement transition due to randomness, obtained in the
finite cluster study from Ising correlations and entangle-
ment entropy respectively are shown by open and closed
triangles. The thermodynamic phase boundary, where
hexagonal loop resonances are lost, is shown by diamonds
and perturbation theory results are indicated by a dashed
line. The nature of the phase transition and the possi-
bility of a long-ranged spin-glass phase deserves further
consideration [41].

To summarize, we have studied the random transverse-
field Ising model on the pyrochlore lattice using NLC
and ED. This model has a deconfined QSL phase, which
is subject to two types of confining transitions [32].
Large transverse-fields lead to confinement where spins
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are locked along the field direction. On the other hand,
a distribution of random fields leads to a selection within
the ice manifold also leading to a loss of entanglement and
confinement. We have shown that local entanglement
associated with spins in a tetrahedron contains sharp
changes associated with these transitions.

Simple NLC converges well in the high-field phase,
right up to the transition. But, it diverges in the QSL.
The QSL phase can be studied within NLC by embedding
each cluster inside a spin-ice. Nearly all the entanglement
in the QSL phase arises from ring-exchange resonances.
These can be frozen by random transverse-fields leading
to confinement.

In the confining phase, there is a distribution of lo-
cal entanglement entropies, a property which persists to
large random fields. Experiments on Pr2Zr2O7 found
rather large randomness [33], implying that the system
can at best have pockets of high entanglement. Improve-
ment in material preparation should lead to reduced dis-
order. Our work provides quantitative estimates of how
much randomness needs to be lowered to obtain a true
QSL phase.

It would be interesting to extend these studies to ran-
dom XXZ and other models of quantum spin-ice, where
many other varieties of quantum spin-liquid phases are
known to exist [42].
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