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ARTICLE OPEN

Conserved immunomodulatory transcriptional networks
underlie antipsychotic-induced weight gain
Rizaldy C. Zapata1,3, Besma S. Chaudry 1,3, Mariela Lopez Valencia1, Dinghong Zhang1, Scott A. Ochsner2, Neil J. McKenna2 and
Olivia Osborn 1✉

© The Author(s) 2021

Although antipsychotics, such as olanzapine, are effective in the management of psychiatric conditions, some patients experience
excessive antipsychotic-induced weight gain (AIWG). To illuminate pathways underlying AIWG, we compared baseline blood gene
expression profiles in two cohorts of mice that were either prone (AIWG-P) or resistant (AIWG-R) to weight gain in response to
olanzapine treatment for two weeks. We found that transcripts elevated in AIWG-P mice relative to AIWG-R are enriched for high-
confidence transcriptional targets of numerous inflammatory and immunomodulatory signaling nodes. Moreover, these nodes are
themselves enriched for genes whose disruption in mice is associated with reduced body fat mass and slow postnatal weight gain.
In addition, we identified gene expression profiles in common between our mouse AIWG-P gene set and an existing human AIWG-P
gene set whose regulation by immunomodulatory transcription factors is highly conserved between species. Finally, we identified
striking convergence between mouse AIWG-P transcriptional regulatory networks and those associated with body weight and body
mass index in humans. We propose that immunomodulatory transcriptional networks drive AIWG, and that these networks have
broader conserved roles in whole body-metabolism.

Translational Psychiatry          (2021) 11:405 ; https://doi.org/10.1038/s41398-021-01528-y

INTRODUCTION
Antipsychotic drugs are effective medications for the treatment of
psychiatric disease but have significant side effects, including
antipsychotic-induced weight gain (AIWG) [1, 2]. AIWG has been
shown to increase the risk of both developing metabolic syndrome
[3] and of mortality [4]. Approximately 20% of patients treated with a
broad range of APs gain clinically significant amounts of weight (>7%
of their baseline weight) [1]. Notably, the incidence of diabetes
among second-generation antipsychotic users is four times higher
than age-matched, race-matched, and sex-matched controls [5].
Metabolic side effects are also the most commonly reported reason
for noncompliance with second generation antipsychotic medica-
tions [6]. Although almost all antipsychotics result in some degree of
weight gain [1], the extent of weight gain varies between individuals
[7, 8]. Some individuals can gain a pound per week of treatment,
while others are relatively refractory to weight gain [1, 9–13].
Olanzapine is one of the most clinically effective antipsychotic

drugs but also results in highly significant weight gain in many
patients [1, 2, 9, 13, 14]. Therefore, there is a need to determine which
patients are less susceptible to the metabolic side effects of
antipsychotics and would be good candidates for drugs such as
olanzapine, and conversely, identifying patients that should be
prescribed alternative antipsychotics with less weight gain liabilities.
Although olanzapine is known to target multiple receptors including
serotonergic (5-HT2 and 5-HT6), dopaminergic (D2, D3, and D4),
muscarinic (M1–5), α1 adrenergic and histaminergic H1 receptors, the
underlying biological mechanisms responsible for AIWG are

incompletely understood. Previous studies have shown that the
effect of olanzapine on AIWG can be effectively modeled in mice
[15, 16]. Here, we used gene expression profiling in a mouse model to
illuminate signaling pathways predisposing to AIWG, and to identify
genes with potential as blood-based biomarkers of AIWG in humans.

MATERIALS AND METHODS
Mouse studies
Antipsychotic-induced food intake and weight gain study. Forty female C57BL/
6J mice (stock #000664) were purchased from Jackson Laboratory at nine
weeks of age. After seven days of acclimation to experimental conditions
(12:12 light–dark, 20–21 °C, 50% humidity), blood was collected and total RNA
isolated from blood using Mouse RiboPure Blood RNA Isolation Kit (AM1951,
Invitrogen, Carlsbad, CA, USA) according to the manufacturer’s instructions. All
mice were transitioned to a 45% high-fat diet (HFD) compounded with
54mg/kg olanzapine (Research Diets, Inc., D09092903) for 14 days. The
olanzapine dose selected results in mouse plasma levels (21 ± 5 ng/mL) that
are similar to the levels observed in humans treated with olanzapine
(10–50 ng/mL) [17]. All 40 mice were singly housed throughout the study, and
food intake was measured daily, and body weight was measured every other
day for 14 days. At the end of the study, mice were anesthetized and
sacrificed. Hypothalami were dissected and stored at−80 °C for qPCR analysis.
Food intake was analyzed for all 40 mice. We then classified the top five
weight gainers as weight gain-“prone” mice (AIWG-P) and the five least
weight gainers as weight gain “resistant” mice (AIWG-R). Sample sizes were
selected based on previous studies [15]. No randomization or blinding was
applied in these studies. All experiments were approved by and conducted in
accordance with the University of California, San Diego IACUC.
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High-fat diet-induced weight gain study. Baseline blood was collected
from C57BL6 mice and total RNA isolated using Mouse RiboPure Blood
RNA Isolation Kit (AM1951, Invitrogen, Carlsbad, CA, USA) according to the
manufacturer’s instructions. Starting body weight was recorded before
mice were transitioned from normal chow to a 45% high-fat diet (HFD) for
14 days, at which point body weight was recorded and body weight gain
calculated. Mice were then divided into high-fat diet-induced weight gain-
prone (HFWG-prone) and HFWG-resistant groups.

RNA sequencing
The RNA extracted from blood was sequenced at the UCSD Institute for
Genomic Medicine. The quality of the RNA was assessed using the
Tapestation 2200 (Agilent) and Libraries prepared using TruSeq Library
prep kits (Illumina), and then run on the Tapestation high-sensitivity DNA
assay kits to ensure the correct library size. Libraries were quantified using
the Qubit® 2.0 Fluorometer, pooled, and run on the Illumina NovaSeq 6000
(Illumina). Reads were mapped to the mouse transcriptome using Bowtie2
algorithm [18] and counted as reads per gene using RSEM [19] and then
analyzed using the statistical algorithm limma (RRID:SCR_013027). RNA-
sequencing data have been archived in the Gene Expression Omnibus
(GEO) database GSE157438 (RRID:SCR_005012). Human RNA-seq data were
obtained from a previous published study where blood samples were
sequenced from patients before three months of treatment with
antipsychotics [20]. This study conformed to the international standards
for research ethics and was approved by the Cantabria Ethics Institutional
Review Board (IRB).

Hypothalamus RNA isolation and RT-qPCR
Total RNA was isolated using Trizol (Invitrogen, Carlsbad, USA) and purified
using RNAeasy (Qiagen) according to the manufacturer’s protocol. RNA
concentration and quality were measured on a NanoDrop (NanoDrop
Technologies, Rockland, DE, USA). cDNA was prepared and qPCR was
performed with Perfecta FastMix (95073-05 K, VWR) and specific primers
(Supplementary file section 1). Gene expression was normalized using
Pgk1 and Hprt as the housekeeping genes using the ΔΔCt method. Data
were analyzed by Student’s t-test. Normal distribution was tested using
Shapiro-Wilk test prior to proceeding with a Student’s t-test with Welsh’s
correction, thus not assuming equal variances between populations. p <
0.05 was considered statistically significant using Graphpad Prism.

PANTHER Gene Ontology analysis
PANTHER Gene Ontology analysis of gene sets was carried out using
the Panther Overrepresentation Test (Release 20200728; [21]) with the
following parameters: Reference List, Mus musculus (all genes in the
database); Test Type, FISHER; Correction, FDR.

Signaling Pathways Project transcriptional regulatory
network analysis
Transcriptional regulatory network analysis of gene sets was carried out
as previously described [22, 23]. Consensomes are gene lists ranked
according to measures of the strength of their regulatory relationship
with upstream signaling pathway nodes derived from independent
publicly archived transcriptomic or ChIP-Seq datasets [20]. To generate
ChIP-Seq consensomes, we first retrieved processed gene lists from
ChIP-Atlas [24], in which genes are ranked based on their mean MACS2
peak strength across available archived ChIP-Seq datasets in which a
given pathway node is the IP antigen. Of the three stringency levels
available (10, 5, and 1 kb from the transcription start site), we selected
5 kb. We then mapped the IP antigen to its pathway node category,
class, and family, and organized the ranked lists into percentiles to
generate the node ChIP-Seq consensomes [22]. Genes in the 95th
percentile of a given node consensome were designated high-
confidence transcriptional targets (HCTs) for that node and used as
the input for the HCT intersection analysis using the Bioconductor
GeneOverlap analysis package implemented in R as previously described
[21]. p-values were adjusted for multiple testing by using the method of
Benjamini and Hochberg to control the false discovery rate as
implemented with the p.adjust function in R, to generate q-values.
Evidence for a transcriptional regulatory relationship between a node
and a gene set was represented by a larger intersection between the
gene set and HCTs for a given node than would be expected by chance
after FDR correction (q < 0.05).

Other statistical analyses
Genes mapping to the Mammalian Phenotype Ontology phenotypes
“decreased total body fat mass” or “slow postnatal weight gain” were
retrieved from the Monarch [43], IMPC [44], or MMPC [45] resources. A
hypergeometric analysis (Graphpad, Prism 7.0) was used to estimate the
overrepresentation of genes mapped to these phenotypes among nodes
with HCT/AIWG-P intersections of q < 0.05. There was enrichment of mouse
orthologs of genes whose expression correlated with weight gain and
body mass index in humans. Hypergeometric analysis was used to analyze
overrepresentation of genes in the E2 ubiquitin-conjugating and E3
ubiquitin ligase enzyme classes among genes at the intersection of the
AIWG-P gene set and mouse orthologs of the HWG/BMI gene set. The
universe was set at the total number of genes currently annotated in the
SPP database (24703).

RESULTS
Olanzapine treatment results in variation in weight gain in
mice
Although all mice gained weight in response to olanzapine/HFD
feeding, the extent of weight gain varied from ~1 g to ~7 g over
the course of 14 days of treatment (Fig. 1A). We identified the five
mice that gained the most weight (‘prone’, AIWG-P) and compared
them with five mice at the other end of the spectrum that were
‘resistant’ to weight gain (AIWG-R). The average weight gain of the
AIWG-P group was 6.3 g compared with 1.3 g in the AIWG-R group
(Fig. 1B). Throughout the study, the AIWG-P mice ate approxi-
mately 0.5 g (19% more food) per day than the AIWG-R group
(average ‘AIWG-P’= 3.1 g/day vs ‘AIWG-R’= 2.6 g/day) (Fig. 1C, D).
After 14 days of treatment, the mice were sacrificed, and tissues
dissected. As expected, AIWG-P mice had significantly higher
gonadal white adipose fat mass (gWAT) (Fig. 1E) and greater liver
mass (Fig. 1F) than the AIWG-R group.
Given that olanzapine is known to induce orexigenic gene

expression in the hypothalamus [15], we next compared
hypothalamic expression of appetite-regulating genes in the
AIWG-P and AIWG-R groups. Hypothalamic expression of Agrp
(agouti-related neuropeptide), Hcrt (hypocretin neuropeptide
precursor), and Mch (melanin-concentrating hormone) was
strongly elevated in the AIWG-P cohort relative to the AIWG-R
cohort. In contrast, expression of the anorexigenic genes Pomc
(proopiomelanocortin) and Cart (cocaine and amphetamine-
related transcript) was lower in the AIWG-P relative to the AIWG-
R cohort (Fig. 1G).
We next prepared RNA from blood taken at baseline from

individuals subsequently assigned to the AIWG-P and AIWG-R
cohorts and conducted RNA sequencing (Fig. 2A). We identified
558 genes that were significantly differentially expressed (FC > ±
1.25, p < 0.05) at baseline between the AIWG-P and AIWG-R
cohorts (Fig. 2B and Supplementary file section 2), of which 389
were elevated in AIWG-P > AIWG-R (AIWG-P gene set), and 169
were elevated in AIWG-R > AIWG-P (AIWG-R gene set). Panther
Gene Ontology (GO) analysis [25] of the AIWG-P gene set
indicated enrichment of genes mapping to a number of
biological processes with known relevance to lipid metabolism
(Fig. 3; Supplementary file section 3). For example, the over-
lapping porphyrin (GO:0006778; q= 8e-8) and tetrapyrole
(GO:0033013; q= 3e-5) metabolic process pathways encompass
genes encoding enzymes with characterized roles in energy
metabolism, including Hmox1 [26, 27], Alas1, and Alad [28].
Similarly, mitochondrial autophagy (GO:0000422; q < 4e-3) is a
fundamental process in cellular energy metabolism that has
been linked to a spectrum of signature disorders of the
metabolic syndrome, including type 2 diabetes and obesity
[29–32]. Of particular interest given the well-characterized
connection between immunity, inflammation and obesity
[33, 34] was the enrichment for the immune system
(GO:0002376; q < 1e-2) process (Fig. 3).
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Fig. 2 RNA sequencing analysis displays differential gene expression between ‘prone’ and ‘resistant’ cohorts. A. Principal component
analysis. B Heat map of differentially expressed genes between cohorts.

2 4 6 8 10 12 140
-4

-2

2

4

6

8

0W
ei

gh
t G

ai
n 

(g
)

Resistant
Mid-range
Prone

0 2 4 6 8 10 12 14
0

2

4

6

8

Time (days)

W
ei

gh
t G

ai
n 

(g
)

Resistant
Prone

*
*

*
*

*
*

*

A B

Res
ist

an
t

Pro
ne

0

1

2

3

4

Fo
od

 In
ta

ke
 (g

)

*

C D

E F

Res
ist

an
t

Pro
ne

0.0

0.5

1.0

1.5

2.0

Li
ve

r w
ei

gh
t (

g)

*

Res
ist

an
t

Pro
ne

0.0

0.2

0.4

0.6

0.8

1.0

gW
AT

 w
ei

gh
t (

g)

*

Agrp Npy Hcrt Mch Cart Pomc
0

1

2

3

4

5
R

el
at

iv
e 

Ex
pr

es
si

on
Resistant
Prone

*

*

*

**

G

0 2 4 6 8 10 12 14
0

1

2

3

4

5

Time (day)

Fo
od

 In
ta

ke
 (g

)

Resistant
Prone

* *
*

*
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AIWG transcriptional regulatory networks are enriched for
immunomodulatory and inflammatory signaling nodes
Although the Panther GO analysis illuminated processes in which
AIWG-P genes were functionally involved, it was much less
informative on the extent to which genes in the AIWG-P and
AIWG-R sets had common upstream transcriptional regulators.
The Signaling Pathways Project (SPP) curates archived ‘omics’
datasets to compute consensus-regulatory signatures, or consen-
somes, which rank genes based on measures of the strength of
their transcriptional regulatory relationships with specific
upstream signaling pathway nodes [22]. As such, SPP represents
a reduced-bias environment within which to identify high-
confidence transcriptional targets (HCTs) of these nodes. We
recently described HCT intersection analysis, in which we
computed coronavirus infection HCTs against human signaling
node HCTs to identify candidate host pathways mediating the
transcriptional response to CoV infection [23]. To gain insight into
signaling pathway nodes whose gain or loss of transcriptional
function contributes to AIWG, we next applied HCT intersection
analysis to compute intersections between the AIWG-P and AIWG-
R gene sets and HCTs for mouse signaling pathway nodes. We
interpreted the extent and significance of these intersections as
evidence for loss or gain of function of signaling nodes in weight
gain proneness or resistance.
Figure 4 shows node HCT intersections (q < 0.01) with the AIWG-

P and AIWG-R gene sets; the full set of intersections is provided in
Supplementary file section 4. All q-values cited in the following
section were generated using the R GeneOverlap package as
previously described [23]. Strikingly, node HCT intersections were
strictly partitioned between the AIWG-P and AIWG-R gene sets
such that no nodes had HCT intersections with both gene sets.
Consistent with the Panther GO analysis (Fig. 3), and the well-
documented evidence connecting inflammation, the immune
system, and metabolic disease [29, 31, 32, 35], we observed HCT
intersections for numerous immunomodulatory and inflammatory
nodes that were specific to the AIWG-P gene set. The two most
robust AIWG-P intersections were for Tal1/SCL (2e–48) and Gata1
(1e–36), which play critical roles in the development of
hematopoietic lineages with fundamental roles in immune
processes [36, 37]. Other prominent immunomodulatory nodes
with AIWG-P intersections included members of the AP-1
(21339212; Jun, 4e-7; Jund, 4e-4; Fos, 7e-3), interferon-regulatory
([38]; Irf1, 7e-3; Irf9, 2e-2; Irf2, 4.9e-2), STAT ([38]; Stat2, 2e-2; Stat3,
3e-2; Stat1, 3e-2), C/EBP ([39]; Cebpa, 3e-4; Cebpb, 6e-3; Cebpd; 2e-
2), and SMAD ([40]; Smad1, 3e-2) transcription factor families.
Given the wealth of studies connecting circadian rhythms and
metabolic dysfunction, and our recent observations of the
importance of circadian rhythms in AIWG [41], we were interested
to note significant intersections of the AIWG-P gene set with HCTs
of several transcription factors with characterized roles in circadian
biology, including Nr3c1/GR (q= 5e-3; [42]), MAX (4e-2 [43]), and
members of the estrogen-related receptor (Esrra, q= 4e-4, Esrrb,
2.4e-2 [44]) and C/EBP (Cebpa, 3e-4; Cebpb, 6e-3; Cebpd, 2e-2;
[45]) families.

Candidate drivers of AIWG transcriptional programs are
enriched for genes supporting body fat mass and weight gain
in mice
As candidate transcriptional modulators of AIWG, we next
hypothesized that nodes with q < 0.05 HCT intersections with
the AIWG-P gene set would be enriched for genes whose
disruption was associated with underweight or slow weight gain
phenotypes in mice. To investigate this further, we assembled a
list of genes that (i) were annotated by the Monarch [46], IMPC
[47], or MMPC [48] initiatives to the Mammalian Phenotype
Ontology phenotypes “decreased total body fat mass (DBFM)” or
“slow postnatal weight gain (SPWG)” (Supplementary file section
5). Consistent with their potential participation in signaling
pathways mediating AIWG, we found that nodes with significant
(q < 0.05) HCT intersections with the AIWG-P gene set were
robustly enriched (20/59; OR, 3.0, p= 9.7e-7) for genes whose
disruption is associated with either of the two phenotypes (Fig. 5;
Supplementary file section 4, DBFM/SPWG column).

Cross-species markers of AIWG predisposition are classical
antiviral inflammatory effectors with conserved upstream-
regulatory nodes
We next wished to determine whether the pathways driving AIWG
are conserved between mice and humans. To do this, we compared
our blood AIWG-P gene set with a set of 155 genes that were
significantly differentially expressed in baseline blood between two
groups of subjects segregated on the basis of AIWG-P vs AIWG-R after
three months of antipsychotic treatment [20] (Supplementary file
section 6). We identified four transcripts in common between the
mouse AIWG-P gene set and human AIWG-P FC > 1.25 genes, namely,
Rhd, Ifit1, Ifitm3, and Rsad2 (OR= 3.2 p= 0.04, hypergeometric test;
Table 1). Rhd encodes the highly immunogenic erythrocyte Rh factor
antigen of the Rh blood group system [49]. The three other genes—
Ifit1, Ifitm3, and Rsad2 (Viperin)—are classic interferon-inducible
effectors that oppose DNA and RNA virus infection through a variety
of mechanisms, including disruption virus entry [50] and inhibition of
viral replication [51–53]. Interestingly, adipose tissue expression of
Rsad2 is increased in obesity and its genetic ablation results in
decreased fat mass due to increased thermogenesis [54].
Given that expression levels of these four transcripts were

conserved between mice and humans with respect to predisposi-
tion to AIWG-P, we speculated that their upstream signaling nodes
would be similarly conserved. Figure 6 compares percentile
rankings of the four cross-species’ AIWG-P genes in human and
mouse ChIP-Seq consensomes for which at least one of both the
human and mouse orthologs is a HCT (the full list of percentile
rankings for all four genes is in Supplementary file section 7). This
in silico analysis also recapitulates previous in vitro studies
identifying transcriptional regulatory connections between Stat2
and Ifit1 [55], Stat1 and Rsad2 [56], and Tal1, Gata1, and Rhd [57].
We observed striking cross-species conservation of the regulatory
relationships of the four genes with several of the key
immunomodulatory nodes previously identified in the HCT
intersection analysis. Moreover, we noted a clear demarcation

1E-05 1E-04 1E-03 1E-02 1E-01 1E+00

porphyrin-containing compound metabolic process (GO:0006778)
tetrapyrrole metabolic process (GO:0033013)
G protein-coupled receptor signaling pathway (GO:0007186)
mitochondrion organization (GO:0007005)
regulation of viral life cycle (GO:1903900)
autophagy of mitochondrion (GO:0000422)
protein polyubiquitination (GO:0000209)
immune system process (GO:0002376)
apoptotic process (GO:0006915)
glutathione metabolic process (GO:0006749)

Fig. 3 PANTHER Gene Ontology analysis of the AIWG-P gene set. Shown are terms with q < 0.05; full numerical data are provided in
Supplementary file section 3. No significantly overrepresentation terms were identified in the AIWG-R gene set.
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between the nodes conserved upstream of the canonical
interferon-stimulated genes Ifit1, Ifitm3, and Rsad2 on the one
hand, and Rhd on the other. Specifically, nodes upstream of the
conserved interferon-stimulated genes comprised members of the
STAT and interferon-regulatory families. This was in sharp contrast
to the close cross-species-regulatory relationship of Rhd with Tal1
and Gata1, which is consistent with the genomic co-occupancy of
these factors [58], as well as their fundamental requirement in the
development of hematopoietic lineages [36, 37].

Category Class Family Node AIWGP AIWGR 1.0E-48
Receptors Nuclear receptors Estrogen-related receptors Esrra 1.0E-36

Glucocorticoid receptor Nr3c1 1.0E-09
Enzymes Dehydrogenases Oxoglutarate dehydrogenases Ogdh 1.0E-07

Demethylases Histone-H3-lysine-36 demethylases (KDM) Kdm6b 1.0E-04
Methyltransferases Histone-lysine N-methyltransferases (KMT) Kmt2a 1.0E-02

Kmt2b
Kmt2d

Transcription factors BHLH factors Tal/HEN-like Tal1
BZIP factors C/EBP Cebpa

Cebpb
Fos factor Fos

Fosl1
Jun factor Jun

Jund
NF-E2-like factor Nfe2

C2H2 Zn finger factors Kruppel-like Klf4
YY1-like Yy1
ZNF148-like Zfp281
ZNF219-like Zfp217

HMG domain Group E Sox9
Homeo domain Pbx/knotted homeobox Pknox1

SIX4-like factor Six4
Tryptophan cluster Interferon-regulatory Irf1

REST corepressor Rcor1
Other transcription factors Two zinc-finger GATA factor Gata1

Gata2
Co-nodes Bromodomain Bromodomain containing Brd2

General transcription factors General transcription factor IIB Gtf2b
General transcription factor IIIC subunit Gtf3c1
TATA-box binding protein Tbp
TATA-box binding protein associated factor Taf2

Nuclear proteins Nuclear respiratory factor Nrf1
Other co-nodes Down-regulator of transcription Dr1
Phosphoproteins Acidic nuclear phosphoprotein Anp32e
RNA binding & RB motif proteins Nelfa

Nelfb
Nelfe

RNA binding fox-1 homolog Rbfox2
Transcriptional coregulators SPT5 homolog, DSIF elongation factor subunit Supt5

HCT INT Q HCT INT QChIP-SEQ CONSENSOME (± 5 kb from TSS)

Negative elongation factor complex

Fig. 4 ChIP-Seq high-confidence transcriptional target (HCT) intersection analysis of the AIWG-P and AIWG-R gene sets and mouse signaling
nodes. q-values were generated using the GeneOverlap analysis package in R as previously described (Ochsner et al. 2020) [23]. White cells
represent q > 5e-2 intersections. Shown are q < 0.01 intersections; full numerical data are provided in Supplementary file section 4. The universe
for the intersection was set at a conservative estimate of the total number of transcribed genes in the mouse genome (30,000; [71]).
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Fig. 5 Pathway nodes driving predisposition to AIWG are enriched
for nodes required for body fat and postnatal weight gain in mice. In
total, 699 pathway nodes included in the AIWG-P HCT intersection
analysis (Supplementary file section 4) were plotted as log odds ratio
(log OR) against log10(-log10 P). A double-log procedure was required
due to the large p-value range. Nodes with significant (q< 0.05) HCT
intersections with the AIWG-P gene set are colored gray with an orange
border. Nodes with nonsignificant (q> 0.05) intersections with the
AIWG-P gene set are colored gray. A hypergeometric test was performed
on the overrepresentation in the q< 0.05 nodes of nodes encoded by
genes in the DBFM/SPWG gene set, indicated in yellow. Refer to the
Supplementary file for the specific intersecting nodes (section 4) and the
list of annotated DBFM/SPWG genes (section 5). Box acronyms: INT,
intersection; OR, odds ratio; p, p-value of hypergeometric test.

Table 1. Candidate biomarkers of AIWG in mouse and human studies.

FC Pr/Res
(p < 0.05)

Symbol Name Mouse Human

Ifit1 Interferon Induced Protein With
Tetratricopeptide Repeats 1

1.32 1.72

Ifitm3 Interferon-induced transmembrane
protein 3 (IFITM3)

1.25 1.28

Rhd Rh blood group, D antigen 1.94 1.45

Rsad2 Radical S-Adenosyl Methionine
Domain Containing 2

1.54 2.56

Four genes (IFIT1, IFITM3, RHD and RSAD2) are elevated in AIWG-P
individuals relative to AIWG-R individuals.
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Cross-species markers of AIWG are specific to drug-induced
weight gain and are not markers of predisposition to diet-
induced weight gain
To determine if the levels of these four genes were specific
predictors of drug or diet-induced weight gain, we conducted an
additional control study in mice. We analyzed blood-based gene
expression of these four genes before exposure to HFD for two
weeks (Supplemental Fig. 1A). Mice exposed to HFD for two weeks
gained between 2.9 g and 10.8 g each, with the HFWG-P group
gaining an average of 9.5 ± 0.86 and HFWG-R group gaining just
4.9 ± 1.34 (Supplemental Fig. 1B). Importantly, there were no
significant differences in gene expression of Ifit1, Ifitm3, Rd, or Rsad2
in baseline blood samples between these two groups (Supple-
mental Fig. 1C), suggesting that these genes are specifically markers
of drug-induced weight gain and not diet-induced weight gain.

Conservation of immunomodulatory transcriptional networks
predisposing to AIWG-P in mice and to weight gain and
elevated body mass index in humans
The conservation of AIWG-P genes and their transcriptional
regulators in the context of the mouse and human AIWG studies
led us to consider whether the AIWG-P transcriptional regulatory
network might be more broadly conserved in whole-body fat
metabolism in humans. To investigate this further we retrieved a set
of 157 human genes whose expression levels in blood were shown
to have a strong positive correlation with weight and body mass
index (BMI) in humans (designated HWG/BMI genes; Supplemen-
tary file section 8; [59]). Consistent with the connection between
the AIWG-P gene set and downstream inflammatory processes
(Fig. 3), pathway analysis of this gene set had indicated enrichment
of inflammatory genes [59]. When we overlaid mouse orthologs of
the HWG/BMI genes on the AIWG-P and AIWG-R gene sets, the high
degree of overlap of mouse orthologs of the HWG/BMI genes with
the AIWG-P gene set (40/157; OR= 30, p= 5e-41) was in striking
contrast to the complete absence of overlap with the AIWG-R gene
set (0/169; p= 1) (Fig. 7A; Supplementary file section 2, column
“Mm HWG/BMI”). As shown in Table 2, genes common to the AIWG-
P and HWG/BMI gene sets map to a broad range of functional
categories, classes, and families annotated according to SPP
convention as previously described. Of particular note, given
known connections between the ubiquitin–proteasome system,
innate immunity and obesity [60–62] is the substantial over-
representation (6/40; OR= 11.4, p= 1e-5, hypergeometric test) of
genes encoding enzymes in the E2 ubiquitin-conjugating and E3
ubiquitin ligase classes.
To evaluate whether this strong identity between mice and

humans extended to upstream transcriptional drivers of these
gene sets, we next identified nine human nodes with significant
(q < 0.05) HCT intersections with the HWG/BMI gene set (Supple-
mentary file section 9). The gene encoding the top-ranked node in
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Fig. 7 Conservation of immunomodulatory pathways supporting
AIWG in mice and weight gain and elevated body mass index in
humans. A. Volcano plot of differential gene expression between
AIWG-P and AIWG-resistant mice. The AIWG-P gene set (AIWG-P/
AIWG-R FC > 1.25, p < 0.05) is indicated in red and the AIWG-R
gene set (AIWG-P/AIWG-R FC < 0.75, p < 0.05) is indicated in blue.
p > 0.05 genes are colored gray. A hypergeometric test was
performed on the overrepresentation in the AIWG-P gene set of
mouse orthologs of the human HWG/BMI gene set, indicated in
yellow. Refer to the Supplementary file for the specific intersecting
genes (section 2, Mm HWG/BMI column) and the full human HWG/
BMI gene set (section 8). Box acronyms: INT, intersection; OR, odds
ratio; p, p-value of hypergeometric test. B In total, 699 pathway
nodes included in the AIWG-P HCT intersection analysis (Supple-
mentary file section 4) were plotted as log odds ratio (log OR)
against log10(-log10 P). A double-log procedure was required due
to the large p-value range. Nodes with significant (q < 0.05) HCT
intersections with the AIWG-P gene set are colored gray with an
orange border. Nodes with nonsignificant (q > 0.05) intersections
with the AIWG-P gene set are colored gray. A hypergeometric test
was performed on the overrepresentation in the q < 0.05 nodes of
mouse orthologs of nodes with significant (q < 0.05) HCT inter-
sections with the human HWG/BMI gene set, indicated in yellow.
Refer to the Supplementary file for the specific intersecting nodes
(section 4), the full HWG/BMI gene set (section 8), and the full
results of the human HCT intersection analysis of the HWG/BMI
gene set (section 9). Box acronyms: INT, intersection; OR, odds
ratio; p, p-value of hypergeometric test.
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this analysis, TAL1, has been identified as a human BMI-associated
GWAS locus, and knockout of the Drosophila ortholog results in
decreased percent body fat [63]. Of these nine nodes, mouse
orthologs for seven had been included in the earlier mouse HCT
intersection analysis (Supplementary file section 4, column q <
0.05 INT HWG/BMI). Reflecting a strong conservation between the
AIWG-P and HWG/BMI gene sets at the transcriptional regulatory
level, mouse orthologs of five of these seven nodes (Tal1, Gata1,
Zmiz1, Cebpd, and Smad1; OR 6.3, p= 2e-4, hypergeometric test)
had q < 0.05 intersections with the mouse AIWG-P gene set
(Fig. 7B). Notably, of these five nodes, all but Zmiz1 have well
documented roles in the inflammatory and immunomodulatory

signaling. Moreover, Tal1/TAL1 and Gata1/GATA1 were the top-
ranked nodes in both analyses (Fig. 7B). Collectively, these data
indicate that inflammatory and immunomodulatory signaling
pathways contributing to weight gain and BMI are strongly
conserved between mice and humans at the levels of both
transcriptional drivers (pathway nodes) and effectors (pathway
node genomic targets).

DISCUSSION
In this study, we found that immunomodulatory transcriptional
effectors and their upstream regulatory drivers strongly predispose

Table 2. Functional categorization of genes in common between the mouse AIWG-P gene set and the human HWG/BMI gene set.

Category Class Family Symbol

Enzymes Dehydratases Carbonic anhydrases (CA) Car2

E2 ubiquitin conjugating enzymes Ubiquitin conjugating enzymes E2 (UBE2) Ube2f

Ube2h

E3 ubiquitin ligases Makorin (MKRN) Mkrn1

Membrane associated ring-CH-type finger Marchf8

Tripartite motif-containing (TRIM) Trim10

Trim58

Kinases Membrane palmitoylated proteins Mpp1

Lyases Ferrochelatases Fech

Oxidases Spermine oxidases Smox

Peptidases Cathepsins (CTS) Ctsb

Peroxidases Peroxiredoxins (PRDX) Prdx2

Regulatory factors Protein phosphatase 1 regulatory subunits Bcl2l1

Transferases Hydroxymethylbilane synthases Hmbs

Other enzymes Glutamate-ammonia ligases Glul

Glutaredoxin Glrx5

Transcription factors E2F/FOX E2F E2f2

Co-nodes Cell cycle, cell division & DNA repair Cell cycle checkpoint proteins (RAD) Rad23a

Growth arrest and DNA damage inducible Gadd45a

CNS Proteins Synuclein Snca

Cytoskeleton components & regulators Dematin actin binding protein Dmtn

Tropomyosin Tpm1

F box domain F-box protein Fbxo7

Fbxo9

Family with sequence similarity Family with sequence similarity member Fam104a

Fam210b

Globins Hemoglobin subunit theta Hbq1b

Membrane proteins Transmembrane and coiled-coil domain Tmcc2

Receptor associated factors GABA type A receptor associated protein like Gabarapl2

Glutamate ionotropic receptor NMDA type subunit associated Grina

Ring finger proteins Ring finger protein Rnf10

Rnf11

Stress response factors DnaJ heat shock protein (Hsp40) member Dnaja4

Transporters & transport proteins Solute carrier superfamily member Slc25a37

Slc48a1

Slc4a1

Other co-nodes BCL2 interacting protein like Bnip3l

Cellular repressor of E1A stimulated genes Creg1

FUN14 domain containing Fundc2

PITH domain containing Pithd1
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mice to AIWG. In validation of our findings, we showed that genes
encoding these upstream regulatory drivers are enriched for genes
whose disruption in mice is associated with reduced body fat mass
and slow postnatal weight gain. We proceeded to identify a
minimal, cross-species AIWG-P signature that has the potential to
determine the likelihood of AIWG in individual patients. We then
demonstrated robust conservation between AIWG-P effectors and
transcriptional drivers and those associated with weight gain and
body mass index in humans. Collectively, our results provide
mechanistic insight into the known links between inflammation,
immunomodulation, obesity, and the metabolic syndrome [33, 34],
as well as the extent to which pathways driving these connections
are conserved between mice and humans.
Combining conventional pathway analysis of AIWG-P genes

with a dissection of their regulatory relationships with upstream
signaling pathway nodes, our analysis affords insights into the
mechanisms underlying AIWG that are unavailable through
pathway analysis alone. Initial GO pathway analysis of the
underlying biological functions of AIWG-P genes indicated a
strong link with inflammatory processes, which are known drivers
of the development of metabolic disease [33, 34]. This was
corroborated and extended by the HCT intersection analysis,
which illuminated robust conservation of the regulatory relation-
ships of AIWG-P genes with numerous inflammatory nodes in
both mice (Fig. 4) and humans (Fig. 6), suggesting that individuals
with a primed immune system are highly susceptible to AIWG.
Significantly, while genes encoding AIWG-P nodes were enriched
for genes whose disruption is associated with reduced body fat
mass and slow postnatal weight gain (Fig. 5), no such enrichment
was observed for the AIWG-P gene set itself (data not shown).
These results indicate that transcriptional drivers of AIWG-P, rather
than transcriptional effectors, are more likely to have nonredun-
dant roles in the regulation of AIWG.
Although inflammation and immunomodulation were the

primary thematic connections across AIWG-P genes, other
paradigms were evident. For example, the significant intersections
of the AIWG-P gene set with HCTs of several transcription factors
with characterized roles in circadian biology were of additional
interest in light of our recent studies showing that the circadian
rhythm plays an important role in AIWG [41]. This suggests that
variation in expression of genes that regulate the circadian rhythm
also contributes to the risk potential of AIWG. Interestingly, the
AIWG-P HCT intersection for the adipogenic master regulator
Pparg is relatively small (4.6e-2), suggesting either that members
of this gene set are indirect Pparg targets, or that they represent a
module of transcriptional effectors that predispose to weight gain
via a mechanism that is largely independent of classical
adipogenic pathways. In addition, although the primary motiva-
tion of this study was the characterization of markers of AIWG and
their transcriptional drivers, this analysis also paves the way for
future studies into the role of AIWG-P nodes with no previously
reported connections to whole-body energy metabolism, includ-
ing Anp32e (q= 9e-3) Six4 and Zfp281 (both q= 8e-3).
In this study, we focused on female mice as they most closely

model the antipsychotic-induced weight gain observed in human
patients. Notably, there is a growing body of literature that
women are more susceptible to AP-induced weight gain and
metabolic side effects than men [64–67]. In addition, olanzapine
was dosed in the diet (54 mg/kg diet) resulting in mouse plasma
levels (21 ± 5 ng/mL) that are similar to the levels observed in
humans treated with olanzapine (10–50 ng/mL) [17]. In previous
dosing studies in mice, olanzapine dosing above 25–100 mg/kg in
the diet had equivalent effects on body weight gain [17].
Importantly, the terminal elimination half-life of OLZ in mice is
approximately 3 hr [68] compared with 21–54 h in humans [69],
depending on a range of factors including sex and ethnicity [70].
Therefore, to ensure exposure across the course of the day

and night, we opted for diet administration, whereby self-
administration ensures exposure in rodents across the day.
In summary, we have identified transcriptional regulatory

networks comprising immunomodulatory signaling nodes and
their downstream effectors that predispose to AIWG. In addition,
we identified a group of cross-species AIWG-P effectors whose
regulatory relationships with several immunomodulatory nodes
are highly conserved between mice and humans. To further
validate these cross-species effectors as biomarkers in predicting
AIWG, future studies will be needed involving independent
replicate groups of mice and humans. In validation of our study,
we found that numerous AIWG-P nodes are encoded by mouse
genes with known adipose phenotypes, and that the immuno-
modulatory AIWG-P transcriptional networks are conserved in
predisposing to weight gain and elevated body mass index in
humans. These points of convergence underscore the relevance of
immunomodulatory transcriptional networks identified in this
study to AIWG and metabolic disease more generally across mice
and humans.
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