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Abstract: We present a wide-field method for obtaining three-dimensional 
images of turbid media. By projecting patterns of light of varying spatial 
frequencies on a sample, we reconstruct quantitative, depth resolved images 
of absorption contrast. Images are reconstructed using a fast analytic 
inversion formula and a novel correction to the diffusion approximation for 
increased accuracy near boundaries. The method provides more accurate 
quantification of optical absorption and higher resolution than standard 
diffuse reflectance measurements. 
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1. Introduction 

Optical tomography with multiply scattered light [1] is a rapidly growing field with 
applications ranging from human breast [2] and brain [3], to small animals [4]. Recently, in an 
effort to image large fields of view quickly, we and others have begun projecting spatially 
extended patterns of light on tissue, eliminating the need to use large arrays of optical fibers or 
raster scan a collimated beam [5–7]. In particular, it has been experimentally demonstrated 
that by projecting sinusoidal patterns of light onto tissue, one can determine the tissue’s 
optical properties by measuring the relative decay of spatial patterns of differing frequencies 
[5,8]. This technique has been applied to imaging stroke in the rat cerebral cortex [9], 
visualizing cortical spreading depression [10], and assessing layered structures in skin [11]. 
The principle advantages of projecting a spatially extended source are that one can image a 
large field of view quickly, it is non-contact, inexpensive, and it eliminates the need for 
detectors with a wide dynamic range since all detectors are close to a spatially extended 
source. This is especially important for reflectance measurements, since the remitted light 
intensity due to a point source decays by many orders of magnitude within millimeters. 

In our previous work using a spatially modulated light source, tissue optical properties 
were determined by fitting to a model of light propagation that assumed the tissue was a 
homogeneous or a layered structure. The data acquired by each detector (i.e. each pixel on the 
CCD array) was analyzed independently of all the other detectors. This approach tacitly 
assumed that tissue optical properties (within layers) did not vary with depth, and that 
neighboring volumes of tissue did not affect the light intensity measured at a given pixel. This 
approach is sufficient for samples in which optical property changes are both gradual and 
located near the surface. However, we expect images of small buried objects to appear 
blurred, and to underestimate optical property changes. This is because each detector samples 
a volume much larger than the absorber, and because each detector is primarily sensitive to 
the optical properties at the surface. Thus, the optical properties assigned to any region of 
tissue are in fact the average values for a much larger region, and this average is highly 
weighted by the optical properties at the surface. The goal of image reconstruction is 
ameliorate this partial volume effect, by modeling the sensitivity of each measurement to the 
entire tissue volume. 

The theoretical framework for describing the propagation of plane waves of diffuse light 
and reconstructing images of sub-surface heterogeneities in the spatial Fourier domain have 
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been known for several years [12,13]. However, the original reconstructed images using these 
methods were acquired by raster scanning a collimated laser beam and numerically taking a 
Fourier transform of the resulting data [14,15]. Recently, an algorithm was proposed for 
reconstructing three-dimensional images directly from measurements made by illuminating 
tissue with sinusoidal patterns [16]. The algorithm takes advantage of the insight that 
illuminating with sinusoidal functions of different frequencies is theoretically equivalent to 
raster scanning a point source and then taking a Fourier transform of the data with respect to 
the source positions. 

In this manuscript we experimentally validate the tomographic approach of Ref [16]. using 
tissue simulating phantoms with buried heterogeneities resembling superficial veins. We also 
modify this approach by implementing a novel correction to the diffusion approximation 
which gives increased accuracy in the reconstructed images near the tissue surface [17]. We 
quantitatively measure the optical absorption of buried objects, determine their relative 
depths, and image them with higher resolution than is obtained by fitting to a homogeneous 
model. 

2. Methods 

2.1 Theory 

The propagation of multiply scattered photons in biological tissue is governed by the radiative 
transport equation (RTE). For a continuous-wave light source at a single wavelength the RTE 
for light appears as: 

 
2ˆ ˆ ˆ ˆ ˆ ˆ ˆ( , ) ( ) ( , ) ' ( , ') ( , ') ( , ) .a s sI I d s A I Sµ µ µ⋅∇ + + − =∫s r s r s s s r s r s   (1) 

Here ˆ( , )I r s  is the specific intensity, 
a
µ  is the absorption coefficient, 

s
µ  is the scattering 

coefficient, ˆ ˆ( , ')A s s  is the scattering kernel, and ˆ( , )S r s  is the source. The diffusion 

approximation to the RTE is obtained by expanding ˆ( , )I r s  to first order in ŝ  resulting in an 

approximation for ˆ( , )I r s that consists of both a photon density and a current term: 

 
3

ˆ ˆ( , ) ( )  .
4 4

c
I

π π
= Φ + ⋅r s r J s   (2) 

Near boundaries, where the specific intensity is not isotropic, both the density and current 
terms are important. Retaining both terms, the Green’s function to the RTE can be 
approximated in terms of the Greens function for the diffusion equation as [12]: 

 
'

ˆ ˆ ˆ ˆ( , , , ') (1 )(1 ) ( , ') ,
4

c
G ' ' G

π
∗ ∗= + ⋅∇ − ⋅∇

r r
r s r s s s r rℓ ℓ   (3) 

where c is the speed of light in the medium, 1/ ( ')
a s
µ µ∗ = +ℓ , and ( , ')G r r  is the Greens 

function for the diffusion equation which obeys the equation 

 [  ] ( , ')  ( ') ,
a

D c Gµ δ−∇ ⋅ ∇ + = −r r r r   (4) 

subject to the boundary condition 

 ˆ( , ') ( , ') 0 .G G+ ⋅∇ =r r n r rℓ   (5) 

Here / 3D c
∗= ℓ  is the diffusion coefficient, ℓ  is the extrapolation length, and n̂  is the 

outward pointing unit normal. As demonstrated in Ref [18], the Greens function for the 
diffusion equation in a semi-infinite medium can be decomposed into plane waves according 
to 
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governs the decay of spatial waves as they propagate to or from the surface of the tissue. The 

decay rate 2 1/2( ) ( / )
a

Q c Dµ= +q q  is determined by the optical properties of the medium and 

the frequency of the spatial wave. 
Our goal is to determine the spatial variations in absorption by projecting sinusoidal 

patterns of differing frequencies and phases on the sample, and measuring the spatially 
varying intensity of the remitted light at the surface. The change in specific intensity due to a 
perturbation of the absorption coefficient in the medium obeys to first order the following 
integral equation: 

 
3 2ˆ ˆ ˆ ˆ( , , )   ( , ) ( , , , ) ( ) ,d d d d ad r d s I Gϕ δµ= ∫k r s r s r s r s r   (8) 

where ˆ( , , )
d d

ϕ k r s  is the experimentally measured data function at detector location 
d

r , in 

direction ˆ
d

s , due to a light source with spatial wave number k . ( )
a

δµ r  is the change in 

absorption, and ˆ( , )I r s  is the specific intensity do to the spatially extended source and obeys 

the equation 

 
3 2ˆ ˆ ˆ ˆ( , ) ' '  ( ', ', , ) ( ', ') .I d r d s G S= ∫r s r s r s r s   (9) 

In our experiment, the source consists of light which is sinusoidal in space with wave number 

k, has intensity 
0

I , and is directed into the sample at the surface. It is described as: 

 
0

ˆ ˆ ˆ( , ) exp( ) ( ) ( ) .S I i zδ δ= ⋅ +r s k ρ s n   (10) 

By substituting Eqs. (3) and (9) into Eq. (8) and using Eqs. (5-7) and (10), Eq. (8) can be put 
in the form 

 2 30 
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where 
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By taking a 2D Fourier transform with respect to the detector locations ρd, Eq. (11) can be 
put in block diagonal form and inverted by analytical methods which have been previously 
described [12,19]. 

Note, the source function specified by Eq. (10) contains a complex exponential, while the 
source intensity in the actual experiment is real and positive. It has the form 
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 0 ˆ ˆ( , , ) (1 cos( )) ( ) ( ) .
2

I
S M zθ θ δ δ= + ⋅ + +k ρ k ρ s n   (14) 

Here M and θ  are the modulation depth and phase of the source. Since the diffusion 

equation is linear, we can obtain the data that would be generated by a source of the form of 
Eq. (10) by using the source described by Eq. (14). To do so, we acquire data for at least three 

phases, and add a linear combination of the resulting measurements of light intensity ( )I ρ  

such that the total source distribution from the three measurements equals Eq. (10). For 

example, using three phases ( 2 / 3,0,2 / 3θ π π= − ), we combine the resulting measurements 

as 

 
2 1 3 1 3

1
(2 ) ( ) .

3 3
tot

i
I I I I I I= − − + −   (15) 

Due to the relatively large subsurface absorption perturbation we use the Rytov 
approximation [20]. In order to calculate the Rytov data function we use the standard rules for 

complex numbers to write 
tot

I  in terms of an amplitude and phase (i.e. i

tot
I Ae φ= ), where for 

three phases 

 2 2 2 1 2
 ,

1 2 2 3 3 1

2
{( ) ( ) ( ) }

3
A I I I I I I= − + − + −   (16) 

and 

 1

1 3 2 1 3
tan { 3( ) (2 )} .I I I I Iφ −= − − −   (17) 

Then the Rytov data function is calculated as: 

 
(0) (0) (0)

{log( / ) ( )} .
Rytov tot

I A A iϕ φ φ= − + −   (18) 

This formulation differs from the usual temporal frequency domain in that the amplitude and 
phase represent the Fourier components in space, and not in time. The data acquired this way 
is equivalent to the data acquired by using point sources and then taking a Fourier transform 
with respect to their spatial positions. 

2.2 Instrumentation 

A schematic of the instrument is shown in Fig. 1. Broadband light was generated with a 
Newport Corporation power source (Newport Corporation, Irvine CA) and a 250 watt 
tungsten lamp. This light was used to illuminate a DLP Developers Kit 1024 x 768 pixel 
digital micro-mirror device (Texas Instrument, Dallas TX) which spatially modulated the light 
to be projected onto the phantom. Frequency patterns for the spatial modulation were 
generated using customized C# code (Modulated Imaging Inc., Irvine CA) and ALP 
(Application Program Interface) software. The patterned light was projected directly onto the 
phantoms approximately 500 mm from the projector system. Eleven frequencies evenly 

spaced from 0 to 1 cm
−1

 with four phases each were used. The diffuse reflected light images 
were acquired at 650 nm with a Nuance Multispectral Imaging System (CRi Inc., Woburn, 
MA) which consists of a liquid crystal tunable filter capable of acquiring at discrete 
wavelengths (10nm bandwidth) between 650 nm and 1100 nm, and a 1040 x 1392 pixel, front 
illuminated charge coupled device (CCD). A 6x6 cm field of view was acquired by the CCD 
using 4x4 hardware binning and an exposure time of ~100 ms. Cross-polarizers were placed at 
the source and detector in order to eliminate any specular reflection. 
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Fig. 1. Schematic of the experimental setup. Broadband light from a lamp is projected on the 
sample using a digital micro-mirror device (DMD) and detected at discrete wavelengths using a 
liquid crystal tunable filter and CCD. Crossed polarizers eliminate specular reflections. 

2.3 Phantoms 

Tissue simulating phantoms were made from silicone (P4, Eager Plastics, Chicago, IL), with 
titanium dioxide (TI-602, Atlantic Equipment Engineers, Bergenfield, NJ) used as a scattering 
agent, and nigrosin (Sigma, St. Louis, MO) as an absorber [21]. Optical property 
measurements obtained by fitting the diffuse reflectance at the different measured spatial 
frequencies to an analytic model for a homogeneous semi-infinite medium [5] were 

-10.004 mm
a
µ =  and -1' 0.9 mm

s
µ =  for 650 nm light. These values were calculated using 

standard reflectance phantoms measured previously using “gold standard” Diffuse Optical 
Spectroscopy (DOS), a multi-frequency, multi-distance method combining frequency-domain 
photon migration and broadband spectroscopy [22,23]. Phantoms were constructed with 
cylindrical tube shaped void(s) 1.8 mm in diameter running parallel to the surface centered at 
depths of 2 and 3 mm. A mixture of a fatty emulsion (Lyposin II, Abbott Laboratories, 
Chicago, IL), nigrosin, and water was injected into the tubes. The scattering properties of the 
mixture were matched to that of the silicone phantom, whereas the absorption varied so that 
the contrast between the tube and background material was varied from 3:1 to 100:1. 

3. Results and discussion 

An example of a three-dimensional reconstructed image is shown in Fig. 2. The phantom, 
depicted in Fig. 2(a), consisted of a single absorbing tube with an absorption contrast of 50:1. 
This is the absorption contrast in the near-infrared that we expect between superficial veins 
and the surrounding tissue. The center of the tube was located at a depth of 3 mm. Figure 2(b) 
is a volume rendering of the three-dimensional reconstructed absorption image. The tube 
surface in the volume rendering represents an isosurface of 60% of the maximum 
reconstructed value in the image. Individual slices through the three-dimension image at 
depths of 1-5 mm are shown in Fig. 2(c). At the surface the tube is not visible. The maximum 
amount of absorption occurs in the 1 mm slice. Absorption then decreases with depth until at a 
depth of 5 mm no absorption contrast is present. 
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Fig. 2. Example of a reconstructed image of a single absorbing tube located 3 mm below the 
surface of a tissue simulating phantom. (a) Schematic of the tissue simulating phantom. (b) 
Volume rendering of the three-dimensional reconstructed image. (c) Slices through the 
reconstructed image at depths of d = 1-5 mm. 

Image reconstruction leads to a significant increase in resolution compared to images 
created by fitting for optical properties on pixel by pixel basis while assuming a homogeneous 
model. Profiles of tomographic images are shown in Fig. 3. The profiles are from experiments 
with a single absorbing tube at depths of 2 mm (Fig. 3(a)) and 3 mm (Fig. 3(b)). In both cases 
the contrast in 50:1. The curves are normalized to a maximum value of one to facilitate a 
comparison of the two methods. The solid lines correspond to the lateral profiles of the 
reconstructed images. The full-width-half-maximum (FWHM) for the plots shown are 1.8 mm 
and 2.2 mm at depths of 2 mm and 3 mm respectively. We also measured the FWHM for 
tubes with contrasts ranging from 3:1 to 100:1. The FWHM ranged from 1.8 to 2.3 mm at a 
depth of 2 mm and from 2.2 to 3.2 mm at a depth of 3 mm, with the low contrast images 
having slightly lower resolution. For comparison, profiles of the images obtained by fitting 
pixel by pixel to a homogeneous model are shown with dotted lines. The FWHM is 
approximately three times larger. For the different concentrations, the FWHM determined 
from homogeneous model fits ranged from 4.4 to 6.8 mm at 2 mm depth, and from 5.5 to 9.5 
mm at 3 mm depth. 

 

Fig. 3. Line profiles of the reconstructed images of a single absorbing tube at depths of (a) 
2mm and (b) 3 mm. Solid line corresponds to tomographic reconstruction, and dotted lines 
correspond to pixel by pixel fitting to a homogeneous model. Curves are normalized to 
facilitate comparison. 
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The improved resolution not only allows one to distinguish between nearby absorbers, but 
also decreases errors in quantification due to the blurring of nearby objects in the image. As a 
demonstration, we imaged four absorbing tubes at a depth of 2 mm. Each tube contained the 
same concentration of nigrosin, with the expected contrast being 50:1. The lateral spacing 
between the tubes was 3, 4, and 5 mm (see Fig. 4(a)). In the reconstructed image and line 
profile (Fig. 4(b)) the tubes are clearly resolved and all have approximately the same 
reconstructed value of absorption. In contrast, for the image obtained by fitting pixel by pixel 
(Fig. 4(c)), the center two tubes appear to contain much more contrast than the outer tubes. 
This is because the image the absorption from nearby tubes, which appears broadened, is 
added to absorption of any given tube such that the central tubes falsely appear to have more 
absorption. Note, the maximum intensity also differs greatly, as images created using the 
homogeneous model underestimate the actual contrast by about a factor ten. 

In order to quantify the ability of both imaging methods to accurately recover the amount 
of absorption in a small sub-surface heterogeneity, we performed titration experiments in 
which the expected contrast in a single tube was varied from 3:1 to 100:1. Figure 5 shows the 
measured contrast versus the expected contrast using both the tomographic (Fig. 5(a,c)) and 
pixel by pixel (Fig. 5(b,d)) methods. The depth of the absorbing tube was 2 mm for Fig. 
5(a,b), and 3 mm for Fig. 5(c,d). The contrast was determined by selecting a region of interest 
(ROI) 1 mm wide along the length of the tube and dividing the mean absorption value for the 
voxels in the ROI by the background value. For the tomographic images we selected all 
voxels from the depth at which the contrast was greatest. Error bars represent the standard 
deviation of voxels in the ROI. 
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Fig. 4. (a) Schematic of tissue simulating phantom with four absorbing tubes located at a depth 
of z0 = 2 mm, and with lateral separations of d1 = 5 mm, d2 = 4 mm, and d3 = 3 mm. (b) Image 
and line profile of the reconstructed image using the tomographic method. (c) Image and line 
profile of the image produced by fitting to a homogeneous model. 

Regardless of depth or imaging method, all curves are linear up to a contrast of 30:1, and 
then begin to saturate as expected due to the non-linearity of the inverse problem for diffuse 
light. We note that for this experiment, the linear range for tomographic reconstruction was 
larger than in previous work by a factor of about three [14]. However, non-linearity is 
expected to be more severe as the size of the inclusion becomes larger. Here the absorbing 

tube has a thickness of 1.5 ∗
ℓ , where as in the previous work the thickness of the absorber 

was 13 ∗
ℓ . Within the linear range both methods accurately give the relative change in 

contrast between the absorber and the background. However, the tomographic method comes 
closer to the actual values. Within the linear range, the percent error in measured absorption 

(i.e. 100 x (measured – expected)/expected) had a mean value of −2% and −28% at depths 2 
mm and 3 mm respectively using the tomographic method. 

The slight decrease in resolution at 3 mm suggests that the decrease in contrast measured 
at 3 mm is in part due to a partial volume effect. That is, the 3 mm tube appears broader and 
less intense due to the fact that the sensitivity of each detector is sharply peaked at the surface, 
and becomes both broader and smaller in magnitude with depth. While the reconstruction 
algorithm accounts for this effect, it does not remove it completely. Unlike the maximum 
absorption value, the total amount of reconstructed absorption does remain relatively constant 
with the depth of the tube. By integrating the reconstructed absorption of the entire tube, the 
total amount of reconstructed contrast is equal for the 2 mm and 3 mm depths to within 10%. 
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In contrast, when fitting pixel by pixel to a homogeneous model the absolute values of 
absorption are underestimated by up to a factor of about ten. This was expected, since the 
trajectories of the detected photons are primarily located in background medium, and not in 
the absorbing tube. 

 

Fig. 5. Plot of measured (reconstructed) vs. expected (known) contrast for absorbing tubes 
whose contrast ranged from 3:1 to 100:1 at depths of (a,b) 2 mm and (c,d) 3 mm. The 
tomographic method was used in (a) and (c), whereas (b) and (d) were calculated by fitting to a 
homogeneous model. Error bars denote the standard deviation of voxels within a region of 
interest (see text). The dotted line represents the known value. 

We were able to determine the relative depths of absorbers, but not their absolute depths. 
Figure 6 show the depth profiles of the tomographic images of the single tubes at both depths. 
For clarity, only depth profiles for the 5x, 10x, 20x, 30x, and 50x concentrations are shown. 
The grey area denotes the range of depths at which the maximum absorption was 
reconstructed. For both the 2 and 3 mm depths, the reconstructed images underestimate the 
depth of the tube. The maximum absorption occurred from 0.6 to 0.7 mm and 0.9-1 mm for 
actual depths of 2 mm and 3 mm respectively. We attempted to use spatially varying 
regularization [24] to overcome this effect. However, for these particular experiments we 
found that the depth at which the tubes appeared in the image was more determined by our 
choice of regularization parameter, than by the actual depth of the absorber. 
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Fig. 6. Depth profiles of the three-dimensional images. For clarity only contrasts of 5x (dashed 
line), 10x (dash-dot line), 20x (dotted line), 30x (solid line with dots), and 50x (solid line) are 
shown. The grey area corresponds to the range in depth were the maximum values of 
absorption occur. 

In these experiments the absorbers were located at 2-3 ∗
ℓ  from the surface of the 

scattering medium, where the diffusion approximation to the radiative transport equation 
(RTE) is known to break down. It may be possible to more accurately determine the depths of 
buried absorbers by modeling photon transport using the RTE. Reconstruction algorithms 
such as the one used in this manuscript can be modified to incorporate radiative transport 
provided that the Fourier components of the Green’s functions (see Eq. (7)) can be calculated 
for the RTE [25,26]. We are currently exploring the use of both analytic [27] and Monte Carlo 
methods to solve for these Fourier components. Use of the RTE may also result in more 
accurate quantification and improved resolution. 

5. Conclusion 

We used structured illumination to generate three-dimensional images of absorption contrast. 
The use of a new image reconstruction formula allowed us to obtain improved quantification 
which was linear up to contrasts of 30:1 for a small absorber similar to a superficial vein. It 
also led to a reduction in the full-width-half-maximum in the images of approximately a factor 
of three. We were able to determine the relative depths of the absorbers based on the 
reconstructed images, but always underestimated the absolute depth. 

Acknowledgements 

This research was made possible by the Laser Microbeam and Medical Program �LAMMP|, 

an NIH Biomedical Technology Resource, Grant No. P41-RR01192; the Beckman 
Foundation; and the Military Photomedicine Program, AFOSR Grant No. FA9550-08-1-0384. 
Soren Konecky was supported by a fellowship from the Hewitt Foundation for Medical 
Research. 

 

(C) 2009 OSA 17 August 2009 / Vol. 17,  No. 17 / OPTICS EXPRESS  14790
#112525 - $15.00 USD Received 9 Jun 2009; revised 3 Aug 2009; accepted 4 Aug 2009; published 5 Aug 2009




