Lawrence Berkeley National Laboratory
Recent Work

Title
ON THE DUALITY CONDITION FOR QUANTUM FIELDS

Permalink
https://escholarship.org/uc/item/0sf4t339

Author
Bisognano, Joseph J.

Publication Date
1975-08-01

eScholarship.org Powered by the California Diqital Library

University of California


https://escholarship.org/uc/item/0sf4t33q
https://escholarship.org
http://www.cdlib.org/

Submitted to Journal of Mathematical e e . LBL-4283
Physics ’ -4 Preprint C-\

ON THE DUALITY CONDITION FOR QUANTUM FIELDS

Joseph J. Bisognano and Eyvind H. Wichmann

August 1975

Prepared for the U. S. Energy Research and
Development Administration under Contract W-7405-ENG-48

4 2
For Reference

Not to be taken from this room

~ SE—

I

€82%-14"1



DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.



B ey @ R4
a2
A A 8 |

. - Y2 93
39 (1) 2=

g
4 Q
4 .
N O '
b st

On the duality condition for quantum fields.
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Abstract.
‘ 4

.;A general quantum field theory is considered, in which the
rields‘are_aSSumed.to be operator-valued temperéd distributions.
The system of fields may include any number of boson fields and
fermioﬁ fields., A theorem which relates certain complex Lorentz
trénsformatiqns toufhe TCP-transformation'isjstated and proved.
With reference to this theorem duality conditions are considered,
and it'is shown that such conditions hold undqr various physi-
cally reasonable assumptions about the fields. Extensions of the
algeﬁras'of field qﬁeratofs are discussed with reference to the
duality conditions. Local internal symmetries are discussed, and

it is shown that these commute with the Poincard group and with

the TCP-transrormations
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I, Introduction.

1)

In an earlier publicétion s hereafter referred to as Bw I,
‘the authors have discussed the duality condition for a Hermitian
.scalar field. It is the purpose of the present paper to extend
the results in BW I to a general field theory, within the frame-

work described in the monographs by Streater and Wightman 2)

and by Jost 3)

o Wo thus consider a theory in which there appears
an arbitrary set of local and relatively local spinor- and
tensor fields. Each field has a finite number of components,

and is assumed to be an operator-valﬁed tempered distribution.
In contrast to the situafion in BW I we now have to consider
fermion fields, and their characteristic anticommutation rela-

tions, which necessitates an obvious modification in the defi=-
nitions of the duality conditions.

As we shall see,. however, much of the reaaoning 1n BW I
épplies in_almost'unchanged form to the.issues in the presont
study. When this 1s the case we shallirely‘heavily on BW I,

| and not repeat arguments already given in that paper. The nota-}
tion and terminology in BW I will be followed whenever appll-

| cable. We also refer to BW I for additional referonces to re-
lated work.

| In Sec. II we review some aspects.of the géomotry of Min-

'.kowski opace, andmavalso review some well-known facts about

the quantum mechanicnl Poincaré group and its complex'exten-

sion; In Sec., III we state our assumptions about the quantum

fields, which are more or less standérd. In these two sectlons

we also explain the notation which we follow in the subsequent
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discussion. |

The locality condition for fhe quantum flelds is expreségd
in ﬁérms of the familiar (normal) commutation- and
anticommutation relations. For our purpbses i1t would be extre-
'mely cumbersome to have to consider commutation- and anticommu-
tation relations simultaneously, endw e therefore find it advan-
ﬁégeous to restate the locality éonditions 1h terms oq the va-

nishing of certain commutators. The simple device through

which this can be achieved 1s explained in Lemma 1 with refe-
rencé to the fleld operators,.and more generally, in Theorem 2
in Sec. V.

In Sec. IV'ﬁe'discuss theurelationship between complgx Lé-
- rentz transformations and the TCP-transformation. The conside-
rations are ahalogous to the consideratidns 1n Secs. IIT and IV
in BW I, except that we now deal with spinor- and tensor flelds
" rather than with a single scalar field as in BW I. The maln re-
‘'sult in this section 1s presented in Theorém 1l; thls theorem
1s analogous to Theorem 1 in BW I, The form of this theorem is |
hardly surprising, iIn view of the analogous result in BW I,'andl
vsome readeré might feel that 1t would have been enough jﬁsﬁ to |
state the theorem. We felt, however, that an outline of the rea-
- soning was in order, and that some of:the cumbersome details
should be presented ekplicitly in writing‘and not left entirely
to the iﬁagination of the reader. |

Sec, V 1h BW I was devoted to a discussion of some algebraic
questions réiating to Theorem 1. This discussion appligs as
such to the present stpdy, and we do not repeat 1t here.

In Sec. -V of the present paper we discuss the duality condi-
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tion for the wedge regions WR and ‘WL » where WR = o

{ x l x° > |x4\ } and Wy, = { x |x3< -';:4' } « This discussion

| 1s analogous to phe discussion in Sec. VI in BW I. The issue

is the following. We wish to find two von Neumann algebras
u4(WR) and _d4(WL) such that .A(WR) can be regarded as lo-
cally associated with WR . and ~4(WL) éan be regarded as 10;
cally associated‘with WL . Furthermore ﬁhe association should
be congisﬁent with the welléknown TCP-symﬁetry of the QUantUm
fields. These notions.are defined precisély in Definition 2 1in
Sec. V. If there are no fermion fields, then one aspect 6f loca=
' lity is that ¢4(w ) is contained in the commutant J4(WL)

of .A(wL), and the condition of duslity is that JA(Wp) = .A(wL)

In a theory in which fermion fields do occur these condi tions
have to be modified in an obvious way. The condition of duality
is now that .A(WR) = ( Z.A(WL) Z'l)' , ﬁhere Z 1is the uni-
tary operator defined by Z = (I + iUo)/(1+1) in terms of the
unitary opere tor U0 which represents a'roéation by angle éh"
about any axis. In this paper we emploj_the notation a4(wL)q-=
(Z.A(WL) Z'l)f » and we call .A(WL)q the quasicommutant of

the algebra .A(WL). The modified conditioné'of localityl

and duéli;y are thus stated in terms of the notion of a quasi-
commutant. We note here that ﬁhe secohd iterated'éuasicommutant
1s equal to the second iterated commutant, and that the quasi-
commutant is equal to the commutant whenever U, = I, and

-hepcev Z =1, Tbe reader whovfeels temporarily bewildered by the
appearance of the'superscriét q in Secs. V énd VI might find
it helpful to ignore, at first, the distinction between a8 quasi-
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_commufant and é comﬁutant, and hepce to read the superscript Q
as the familiar von Neumann pr;me. This corresponds to the épe-
| cial case of no fermion fields. We feel thaf the modifications
foccasioped by the presence of fermion fields are really'utterly
trivial,lélthough perhaps slightly‘distréctiﬁe at first,
In a quantum field theory the local voh Neumgnn algebras must

- be appropriately related to the field operators. Let (P(W_R) de=~
note the algebra of (in general unbéunded) operators constructed
from fields averaged with test functions with support 1n wR s &nd
let -(P(WL) be analogously defined. A na tural relationship bet-
ween .A(wl;) and P(WR) is that the operators in the latter
algebra shall have closed extensions affiliated to v4(WR), with
the analogous relationship between A(WL) and P(WL). We have
not been able to show that von Neumann algebras .A(WR). and
_;A(WL) ﬁith the abovg properties do exist fqr a-general field
theory, i.e., without further assumptions about the fields.
which go bejond the usual minimal assdmptions..Hence we consider
some speciél conditions on the fields which guarantee the exis-
tence of algebras ‘Q4(WR$ and .A(WL) with physically satis~
factory properties. Our conditions on the fields are not as

such physically unreasonable, but it would clearly be desirabla
to sgttle‘the question of whe ther they are in fact necessary.
The ﬁain results in Sec.s V are presented in Theorem 3 and 4.
We;ﬁoye‘heré‘fhat these results, in the special case of a singie
Hermiéian Ecalar field, are considerably stronger than our
results in BW I. B

In Sec. VI we discuss the construction of 16051 von Neumann
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-algebrés associated with 6ther regions than wedge regioné in
terms'of~algebfas associated wiﬁh WR 'and.wL » andwe show
that the Qxfended system of local algebras'éatisfy a condition
of dﬁality if'the_algébras ¢4(WR) and ¢4(WL) " do. For reasons
of simplicity we restrict our considerations to very special
‘regions: double §one$ and their causal complements, Our.results
concerning the pfoperties of the e*tended,system of élgebras in
general are stated ;n Theorems 5 and 6., Theorem 7 describes the
éituétion'under spécific assumptions about the fields; The dis-
cussion in Sec. VI is.analogous to the discussion in Sec.vVII
in Bw I; but the results in the ppesentvpaper are considerably
strongér than our earlier results. The papef concludes with
Theorem 8, concerning local internal symmetries, in which we

note that such symmetfies commute with all Poincaré transforma=

tions and with the TCP-transformation.
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JT. Geometrical preliminaries. About the quantum mechanical

Poincare group.

Minkowski-space M is parametrized by the customary Car-f

4) . The Lorentz "metric"

is so defined that Xx.y = x4y4 - - 2y2 - X y « The ele-

tesian coordinates (x ,x X ,x

ments A = A(M,y) of the proper Poincare group L are para-
metrized by a four-by-four Lorentz matrix M » and a real
four-vector y, such that the image Ax of a point x e M
under eny Ace io. is given by Ax=A(M,y) x =Mx + 3 . The
image of any subset R of M under A - is denoted AR,

The group of all four-by-four Lorentz matrices M , i.e., the
group of ell_proper homogeneoos Lorentz trehsformations,lis'de-
noted L . A rotation in L by angle @ about the unit vec tor |
' g‘bis denoted  R(e,8). We denote by V(gs,t)' the-velocityﬁtrans_
formation (in L) in the 3-direction given by )

-

~ 0 s, Y, 0 ,. 0 |
Viegt)= 1 PR NS
-0 ’ 0] » cosh(t) , sinh(t)

! : ‘ L S . -

We derine a “right wedge Wq and a "left wedge Wy » as
the following Open subsets of Minkowski space:

’wR R M R O
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These two regions are bounded by two characteristic planes

'whose intersection is' the 2eplane { x | Xaxt=o0 } o We

'note- that the one-parameter Abelian group of velocity transforma=-
“tions nv(gs,t)' ’ t.rea'l, maps wR onto i{:self and wL onto
- itself.,

We next consider an involutorxv mapping x-» Jx of Minkowski -

space onto itself, defined by

J]X = = R(Q.Sa‘ﬂ)x s Or J(x :xzsx 2 X ) (xlsxza"xsa'#) (3) |
where .R(es,'n:) denotes the rotation by angle ® about the 3-axls,
We see that J maps WR onto WL » and the mapping can be des=
cribed as a reflection in the common "edge" : x I x%= x¥ =0 b

of the pair of wedges WR and WL

We note that V(es,t), as gliven in (1), is an entire analytic

7

function of t. It is easily seen that

J o= Vggin) o (4)

~ For I subset R of Minkowski space .M - we define the

'causal complement R® of R by

_‘={x] (x-y)(x-y)<0,a11yen} | ""..(5)

. o . . - .'- . ) e
We note that wi_yth' this definition wR°1 =Wy and W AW,

”

where the bar denotes the closure. Two open regions Rl and R2

such that Rlc =»§é . and R2°' =4'§1 form a pair of

-



o PUusaagzeoe

causally complementanj open reglons. Among such pairs the pair

WR and wL is distinguished by the simple geometric relationships
described above., Any pair of wedge-regions bounded by two non-
parallel characteristic planes are distinguished in the same
sense, and any such peir is in fact Poincaré-equivalent to the
pair (Wp,Wp), i.e., of the form (AWp, AW, ) for some A efio .

~ We shall here define W' as the set of all (open) wedge-regions |

bounded bj two intersecting characteristic planes, i.e.,

W= {avg | oaef b T (e)

Although we shall at first be explicitly concerned with W it

R
- is clear that analogous considerations apply to any W e W

The.regions WR:-and.‘wL have further distinguishing prOpertiesg
which are of crucial importance for our 'discussion, namely the
following, Jet t = tr + iti s with tr’ ti real, If x e WRf
then the complex four=-vector z(t) = V(gs,t)x is an element of
the forward imeginary tibe in 04,\1.6., Im(z(t)) ¢ V., » for all
complex t 1in the open strip 0 < t; < ® , and z(t) is in the
closure of the fofward imaginary tube for all ¢+ in the closed

. strip 0 £ ti~< . We here denote the forward lightcongunith the

v v -

Y
‘origin as apex by V+ 3 the backward lightcone is denoted V_.

éimilarly: if x e WL-, then z(t) is in the forward imaginary
tube for all complex t in the strip -m < ti < 0, and in the
closed forward imaginary tube for all t in the closure .of the
above strip. These assertions are easily established through a
simple computation. (See formula(45b) in BW I). We note that the

above facts were also of crucial importance in Jost!s proof
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- of the TCP-theorem 4),.

'_For the reader's convenience we shall here review some welle
known-i?a_cts about the ﬁhi’versal covering groups of the Lorentze
and Poificard grou-ps,' and about the complex extension of the co=-

vering group of the Lorentz group 5).

The universal covering group of L, 1.e., the group of all
unimodular two-by-two complex matrices, is denoted g . A spé-‘-

cific two-to-one homomorphism of ¢ onto L° is given by
IR S o |
g — M(g) , Mrs.(g) =3 Tr(g °r8°8) : §7)

where 01,02,05 are‘- the usual Pauli-matrices, and where 04 =1I,

The rotations'and velocity transformations in g are denoted

; ) ,e,-_g») » vig,t) = exp(-g 8.g) - (8).

u(e,®) = exp(-
and under the homomorphism (7) we thus have

R(s,0) = M(u(g,0)) , V(e,t) = M(v(g,&)) (9)

The group g can be regarded as the complex extension of the
group SU(2) of a1l unitar"x' matrices (rotations) ue g . and
every irreducibie(unitary) representation u —»D%(u) of SuU(2)
can b a‘ﬁalytic}a\iiy extended to a repfesentation g — D*(g)
of g , such that_‘the matrix _eietﬁents of _Ds(g) are homogeneoué
- polynomials 6f deng'e'e 28 in the ma-tri.x‘ eleménts‘ 6f_‘ g. The most .

general finite-dimensional irreducible represe.nt&tj‘.’pn\. of g 1is {
of the form | | B X
o ' ' ™ o ' ' " o S
g — D°*% (g) = D (") ® D% (g) - (10)

where gf = '(gT)"1 « The mapping g — g is an outer automor-

§ -
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“phism of 4 which preserves every element in the subgroup SU(2).

In view of the complex structure of ¢ 1t follows that the
complex e.xtens 1onA %e ef{ ¢ is the direct "product_ of G with
itse}.f, 1.5., the greup gc = I x4 'of‘ all ordered pairs (81’82)
of elements in ¢ with the law of composition (g{ ,g;)(g;;gg)v=

'R

(8181’8232) ‘The group ¢ cen be identified with a particular

"real subgroup" of g, through the one-one correspondence

g «— (g5e) ()
. To the set of ail finite-dimensional irreducible representa=-
n . .
tions g —’DS"S (g) of ¢ corresponds a particular family of
‘finite~dimensional irreducible repr.esentations of %o? which can

be regarded as the set of all finite~-dimensional irreducible

analytic representations of gc, namely the representations
gn .
(81’82) — D 's8" (81382) = D® (Sl)QD (82) ,(12)

With reference to the ‘above‘ definitions we define, for -any
complex number t, the complex' velocity transformation vc(gs, t)
A in the 3-direction as the element S

(13a)

v (es,t) (exp(- "tos)o exp(-z-tos))

of\the ‘group q,c,'_a_nd 1t follows from (12)' that =

D5t vy (a5 t)) = D' (exp(= Ftog)) B0 (exp(Gtog))  (A%)

.The matrix-valued function of t in (13b) is an entire analy-

tic function of the complex variable t, and hence the unique
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' . . ] | )
analytic extension of the matrix-valued function pd 28 (v(gs,t))

of_the real variable t. We note in particular that

-D:"B'.'-(f‘”;c(_?.a'i“)-) = (41)28'..' 'Ds"gn(“(?;s-ﬂ)) - (14a)
D2"+5" (v (e5-1m) = (-1)°° D°'+%"(uleg,n)) ery

The formulé V(gs,in) = - R(gs,n) i1s a special casc‘of (14a)
(with st = g" =1/2), and with M, denoting the anslytic ex-
tension of the representation g — M(g) to the complex group
9, We ‘have M (v (es,t)) —vV(es,t) for all complex t.

The universal covering group of L is denoted '§ « The
elements A = X(g,x) are the ordered pains consisting of ény
g e ¢ and any X e M ,.with the law of'composition
X(g',x')k(g",x") = Ag'g", x'+ M(g')x") We define an explicit
homomorphism A —A()A) by A(X(g,x)) =. A(M(g),x).

The Hilbert space Hoor physicai states is assumed to be se=-
parable. It.is assumed to carry a strongly continuous unitary
representation A _+_U(X) of the quantum mechanical Poincare
group g . Wevwrite U(g,x) = U(l(g,x)); and we also‘employ
"the special notétion T(x) = U(I,x) for the translations, The

ktranslétions have the common spectral resoluﬁion
. [ ixep o4
(x) = U(L,x) = [ o7 T ula% ) o (15),
and it is assumed that the support of the spectral measure p
is contained in the ciosed forward lightcone V+ (in momentum
space). This assumption about the suppont of p will be

referred to as the "spectral condition" in what follows.
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We assume the existence of a vacuum state, répresented by
the unit vector 2 uniguelx characterizod by its invariance

under all translations. The vacuum state then satisfiles

U(M)Q =Q for a1l A ¢ q, o« It is well-known that the spectral
‘condition allows the extension of the representagion of the
' trénslation subgroup to a unique represenéation z — T(z)

of the semigroup of complex trans-

lations for which Im(z) e §+ ,such that T(z) isvé bounded and
strongly continuous function of 2z in the closed forward imagi;
nary tube, and a strongly analytic function of 2z in the open
forward imaginary tube,

The one-parameter group of velocity tfansformations in the
S-direction,’ab'well'as its analytic extension to the complex
domain, wiil be of particular interest, and we shall therefore
employ the shorter notation V(t) = U(v(gs;t),O) for the.repre-v
sentatives of thesé'velocity transformations.vMore generally

we shall write

S
'

1for aﬁy complex <. Here Py is the spectnéipmeasure in the
| simultaneous spectral resolution of the ,group of all V(t), ¢

p
rea%? and wa}is the\unlque self-adjoﬁnt operator, with domain
R
For a discussion of the domains

 Dy» such that v(t) = exp(-itK

5)'
‘of the normal operators V(T) we refer to Sec. IV in BW I, We

~denote (as in BW I) by D, the domain on which V(in) is self-

adjoint, and by D_ the domain on which V(-ix) is self-adjoint.

V(%) = exp(-iK,) = fe'ns pelds) '/ ~ - qxe)~

«
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III.Assumptions about the quantum fields.

We denote by D(R™) the set of all complex-valued infini-
tely differentiable functions of compact support on hfdimen-
sional Euclidean space Rn, and we denote by S(Rn) the space

of test functions on R® in terms of which tempered distribu-

tions are defined. The space 3(3n)‘ is regarded as endowed
with the particular topology appropriate to the definition of

tempered distributions 6).

For an unbounded linear or antilinear operator X defined on
a domain D we shall employ the unbrthodox notation (X,D) , as
in BW I, The adjoint of (X,D) is denoted (X,D)* = (x¥,p(x¥)),
:where. D(X¥) 1s the domain of the adjoint. This notation will
not be employed for manifestly bounded opérators; for which the B
~domain is taken to be the entire Hilbert space R I

We shall next state the basic assumptions about the quantum

: _fields. It is not our aim here to state a set of minimal inde-

| pendent assumptions for a field theory, but rather to describe

the situation which prevails in a standard field theory.

; B(b)(x):

e TN U

“a) We assume the‘existence of a set of boson fields

. _
~where b 1s an elemént in an index set Iy, and a set of fermion
fields ¢(f)(x), where ‘fx is an element in an index set Ip. The ‘
(
index sets are regarded as disjoint, and it 1sf§ssumed that at{

e N ‘J

least one of these sets is nonempty otherwise they a;\\agPitra-
ry. We thus admit as possible special cases the cases when .
either Iy, or else I, is empty. Each field p(b)(x) or d(f)(x)

has a finite number of components, denoted Béb)(x), respecti-
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vely . d&f)(x), where i is a suitable index distinguishing_ bet-
‘ween the _c‘omvpone‘nts. | |

b) We\also-cbnéider the vset.vof all cmpoﬁehts of all the fermion
fie‘lds and all the boson fields. An e’lement in 'this set is de-
noted 50 (x) , where p is an element in an index set 1’.,1l such
that when p runs through IT each component of each field :I.s _

| obtained pnce and once only. anh gornponent ?u(x) is an opera- |
torfvaiue.d tempered distribution in the following sense. To each |
£(x) e 'vg(R"‘),v and each p € Ip, corresponds a 'cib_sable linear
operator (50 (f] sDy ) on'a dense domain D, (independent of f

7 and p.) such that [f]D C Dl- « The mapping

by -—»' (yp[f] ’Dl) is linear, and for any é € D, the vector

’ yu[f]é is a -strongly continuous function of f, on S(R4).

~ Furthermore, if o = (pl,pu2,...,un) is any ordered n~-tuplet

of indices from IT’ then there corresponds to every
f(xl,xz,...,'xn) € S(R4n) a closable linear operator 3
(y{f o} ,D,) 1 such that ¥{r; o}D C Dy o The

mapping £ — (P{r; o} ’Dl) is linear,
and for any {e Dy the vector Y{f;o}e is a sphong}y’cgn—i‘
'\ tinuous function of £ on S(R4n). 'If f is of ‘the particular

Torm (X, %y eeesx,) = £ (%005 (x5)0euf (x7) , witn £, e S(RY)
for k = 1, ooo,n, then, On Dl ’ B )
Pirso} = y,(0) vpzlfal vt ¥ unlfy) - an

This is consistent with the common notation for y{r-o} in
terms of the symbolic integral at right in '
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yir;e} =

(fd4(xl)d4(x2)...d4(x DE0x) s Kp0 0 e s X)) 93 (x0) P o(xp)en ()
®) -
(18)

c) Let (P(M) be the algebra, defined on Dl’ which is the linear
span of the identity I and all operators (}P{f;O},Dl) .The dense
domain Dy 1is assumed to be precisely equal to P (M) .

d) For any field component y (x) there exists a field compo-

_nent yu,(;) such that for any f ¢. g(R4)

0y, 0271 0¥ Dy, [e] D) (19)

~ The field component Yu,(x) is then also denoted 39 (x)
e) The domain Dl is invariant under q s 1.0,, U()\)Dl = Dl sfor
any A\ € G . The action of U(A) bj conjugation on the elements
of (P(M) is specified by the conditions

«) T(x')P,(x) T(x")'l' = ¥, (x+xt) ‘ | (20a)

for any field componeht yp(x).

B) For each Nb € IB’

-

\

U(g,0) a“”mu(g.o) Z rﬁﬁ!(g‘l) 8B ug)x)  (200) !

p ]
0

is similar to one of the reprepsentations/

.ﬁhere g —» F(b)(g)

'

i 8',8" . \\ , Mo o~ A ' ¢‘\ ) A
g— D (g) for which "2(g'+s") i3 an even integeri. f

¥) For each f € Iz

U(g,0) ¢|,(;f)(") U(g,0)" = Y, r&ﬁz '1) d(f’(m(g)x) (20¢)
1 ]
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where g —»l"(f)(g) is similar to one of ﬁhe representations
g Ds',s"(s) for which 2(s'+s") 1is an odd integef.

| The sums at right in (20b) and (20c) extend over all the com-
ponents of the field 6(b)(x), respectively the field d(f)(x)

f) All the fields satisfy the normal conditions of locality, i.e.,

they satisfy the conditions (in the sense of distributions),

[a“”(x), ‘b Mx1)] = o,.[p‘b’m, ¢‘f Y(x1)] =0

{Véf)(x). ¢(f )(x')}" =0 | (21)

on D1 for allbspacelike x-x! . Here the curly bracket denotes.
the'anticommutator,‘i.e., {X,X'} = XXt + XX , _

The above formulation of the basic assumptions abcut the
fields is more or less standard. The essence of the notion of

a eet of quantum fields is a certain kind of representation of

~ a tensor algebra of multicomponent test fpnctions by an
operator algebra P (M). The precise
formulation of a general field theony is

unfortunately beset by cosiderable notational difficulties.

We hawe tried to select a notation which is convenienk”fcr"our-*\'
?articular_purposes. Let us now elaborate furcner'on the basic
éssumptions, and on some. weil-known immediaﬁe consequencee.

g)  Whether the number of fields is finite, countably infinite,

or uncountably infinite is immaterial for the conclusions which
we shall draw. That each field B(b)(x) or ¢(f)(x) has only

a finite number of_components, where the notion of “component"

cf course refers specifically to the transformation lans (20b)

- and (20c), is, however, eesential. Our purpoee with introducing

" the specific "irreducible fields" B(b)(x) and d(f)(x) was to
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be able to state the transformation laws (20b) and (20c¢), as
well as the locality conditions (21), with ma ximum clarity. For
the subsequent disctission it wiil, however, be more convenient
to employ a unified notation, in terms of the symbols yu(x),
for all the field components, and we shall therefore restate
the conditions (20b) and (20¢c) in the form

U(g,0)p,(x) U(g,0)7 Z l"w.(s"l) » .(M(s)x) (22)

The "matrix" T’(g) can be regarded as the direct sum of

the -finit'e-dimensivonal matrices r(b)(g) and l"(f)(-gh) in an
obvious sense. The sum in- (22) is always a finite sum, and foi'
each fixed B (or each fixed p.') there is only a finite number
of values of p?! (respectively of p) for which FU-P-' is diffe-
rent from zero. We shall also consider the analytic extension
 .of the representation g — 1 (g) of g. to a representation
(gl,gg) —» F(gl,ga) of. Fo » def.ined as the c}irec't sum of
the corresponding analytic extensions of the representations
.'I"(b)(g) and F(f)(g) as described in Sec.IZé To the complex |
vvelocity transformation‘ v (es,t) ‘thus corresponds the represen~-
tative I'(v (OS’t)) , each matrix element of which is an entire /
analytic function of the complex variable t. With reference to /

this extension we thus define the diagonal matrix :l"" (with.

. - - - ’
_ : . ) /
o~ . . . .
. « .
- LT P Y !

eigenvalues +1 and -1) by

1"

T = Flygleg-in) r(u(eS.‘K)) R  (23)

That ™" has the stated properties follows at onoe from (14a).
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h) Thve’ domain Dl on which the "averaged rfields,™ and the opera=-

tors in  P(M) are defined should be carefully noted. It follows

readily from our assumptions that for any (X,D ) € (P(.M«) the

domain of the adjoint_ (X,Dl)* contains D,. The restriction

ef the adjoint to D, shall be denoted (XT,Dl) » and called

“the ﬁermitian conjugate of X ; the notion of 'the Hermitian conju- |

| gate of a I‘i'eld"Operator'thus depends'on the specific choice

of D;. It also follows from our assumptipns that: (XT,_DI) e P(M)

for all (X,D ) e‘P(M) In particulsr the hermitian c'en-jugate

P [:t‘]T ‘of the averaged field Y [f] is the averaged field
T[.‘t‘ ] . The mapping (X, D ) — (X »Dy ) 1s an antilinear in-

)’=

x. 1
~ volution of P(M) (such that ‘(Xl o 2 Xy )e

We note that every operator (X,Dl) € _(P(.M.) satisfies
o)™ ¢ xo* (24)

It is a hitherto unsolved problem whether the assumptions
which we have made imply that the inelusion in (24) can be ro-
placed by equality for ‘some non—tr'ivial set of operators in (P(MV).. o
1) Let R be any subset of Minkowskl space .M '
We define (P (R) ~as the polynomial algebra generated by the
identity opera tor I and all operators (50 [f] Dl) ’ with-:; i’.l‘
f(:_:) € S(Rf) and supp(f) CR . We ,derine'the algebra (P (R)
as the lihear 'span of T and ali op-e':f;tors'(?{f'o} »sDy )s
where ¢ = (p,l,p.e,...,p.n) 1s any n-tuplet of indices in IT’
and where. - f(xl,xz,...,x ) e S(R4n) with supp(f) C (x R)Z,

It is easily seen that (x Dl) _.(X1,D1) 1s an involution
of both PO(R) and P (R). Prom the conditions (20a)-(20c) it
follows ‘that | | | |
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U(A) P (R) T(M™E = Po(A(MR) , |
u(r) P(R) U(x)'l = P(A(MR) | " (25)

 for any A € q and any R.

We trivially have PO(R)C P(R)C (P(M,) According to a
well-known theorem of Reeh and Schlieder 7) the linear manifold
'PO(R).Q is dense in X for any opeh nonempty Re

- J) Let the unitary operaf;o_rs Uo and Z be defined by
Uy = U(-I,0) , 2= (I +10,)/(2 +1) - (26)
These operators triviaiiy, satisfy‘

v2=1 ,2%2=0u., unUU)"Y =10, v(r)zur)t =
. 0 o )
- (27a)
and , : ‘
Uy = 720 =Q » UOD1 = Dl ’ ZDl = D1 | (27p)
Furthermore it follows from the a'ssumptiéns in e) above that

U, péb)(x);= géb)(x) Uy » A pé?)(x) z-L = B&b)(i)  (29a)
vy #)(x) =.~.¢(f-)(x)A.U 2 ¢{f)(x) 27 = 10, d‘f’m (28b)

for ail boson fields B(b)(x) and all femion fields d(f)(x)
The fact that the\ involution Uo commutes with all boson

" fields, but anticomxhuiies with all fermion fields permits a

unique resolution of any \field operator into a sum of a "boson

o~ a“’\

operator" and a "fermion operator," and Tit also permits a re-
. -

statemeni: of the locality conditions (21) in terms of the vani=-

shing of certain commutators. We shall state the important facts

in the matte_r in the form of a lemma for later reference.
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Lemma l.a)Let U, &and Z be defined as in (26). For any
subset R of M s lot

Py = { (X0 | TxU, =X, (%,0) ¢ PRI} (29)

Po(R) = {(x,0)) | ugxu,

X, (X,0;) ¢ PR)}  (200)
~ Then e?rery- (X,Dl') e (P(R) has a unique 'res_olution of the foﬁn
. X, +Xo 5 X e _(PB(R) » Xo € PF(R) ' . (30a)

' wh.ere, 1'n, faclt., a | | |
X, = 30X+ UXU) , X = (X = UpXUp) : (30b)

The sets @B(R) and ~PF(Rj are ma'ppgd onto themselves under

the involution (X,Dl) — (XT,Dl). Furthermore,
2%, 2"t = 2X.2°1 = U X, | (31)
2 T =X o £ o*r ,

for all X e PB(R) and all X, e PF(R).;

b) For any (X,Dy) e P(r), et (xz,nl) be defined by

- -1 _ -1 |
(x%,D)) = 2(X,Dy)z"" = (zx2"%,Dy) (32)

If Rl and R2 are two open subsets of M ‘such that Rlc R'2c’. ,
then it follows from the 1ocalitj conditions in f) above that

[(xpryd =0, [x, %] =0, [xe,¥] =0, {xp¥,F=0 (32a)
: , [ T
on Dl for all Xb ePB(Rl), xf SPF(RI)’ Yb eGBB.(Rz) and
Y. ¢ -PF(RZ). The conditions (32a) are equiydlent to the condi-
tion L o . |
‘\\ ..f["“X“, YE\] = o - ._ » - ) ) . (55b) v

- -~
S

4

on D, for all X eP(Ry), Y e P(R,). |
We omit the completely trivial proof. We note that the Lemma
is vacuous if Uo = I, which is the case if and only if there 1is

no fermion field,
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Iv, Cbmplex Lorentz transformations and the TCP transformation.

In this section we shall present the generalizations appropriate
for the present situation of the considerations in Secs. III and
IV in BW I. The main result is presented in Theorem 1, which
corresponds to Theorem 1 in BW I. As in BW I we arrive at the
main conclusion through a sequence of lemmas, arrénged in such .
a8 way that the similarities with the discussion in BW I are
pretty obvious. |

For any f(xl,xz,...,x ) € S(R‘m) we define a Fourier trans-

~

form f by
?(plt'OO’Pn) =
fd4(>' )eo.dd(x )f(xl,...,x ) GX'P(izxr'Pr ) (34)
() _ r=1

For any poéitive integer n we denote by Tn the open tube-

region
Tn = {(zlyzz’ooogzn) l IM(zk) € V+ 9 k =.1,.. ool } (35)

in complex 4n—dimensiona1 space, regarded as a direct sum of

e

'n replicas of complex Minkowski space, and parametrized by an

) '\
_n=tuplet (zl’z2’°"’Qn) of complex four-vectprs. The closure 7

of ‘1‘n is denoted En:\j . !f
Lemma 2: TLet 2 eril »'1.060, z is any comﬁ}ex four=-vector 19/
the closed forward imaginary iﬁSe. Then- s .
a) T(z) D, € Dy. o (36a)

1C D7 , :

b) It f e S(R'm) ‘there exists an £, ¢ S(R4n) such that
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T (pl,...,pn) = i‘(pl,...,p ) exp( 1z'2 P, )  (36Dp)
r==1
for (p ) eV where V. 1is the subset of 'R"m-‘
o l"“’pn n?’ n . -0
defined by
—{(pl’...’p ) ' Zprsv -9 kﬂlgoo..n } s (560)
_ r=k
-and for every such fz we have ‘
(z)pirscl o= P{r0 0 (364)

where O 1is any ordered n-tuplet (ul,p2,.;..,pn) of indices
from Iqe | _ I '
Lemma_3. a) For each n > 1 » let E, be the set of all I‘unc-
tions r(xl,...,xn, 12 %0 ¢ 2y ) defined for (xl,...,xn) € R“i‘n
and (z,...,z) € T, and such that f e S(R™) and such that
the Fourier transform £ of f relative to the variables

(x),++05%,) satisfies the condltion

F(Plu_oupnﬂl‘...-,zn) = exp(iz- Z:zk-p'r ) | (37a)
k=1 r=k e S

~
i ~ f

fOr all (plgooo’pn) € V » Wim v} definedﬁsl'in ($C)0‘T«h8
set E is non-empty, and to every n-tuplet c = (u.l,p,2,.o.,p.n)

of 1ndices I‘rom IT‘ corresponds a unigue vector-valued

function d(zlgzzgooo’z O) on T ; defined by
¢(zla22"'-92n;°) = EP{I‘;O}Q | - (37b)

where f 1is any element of E . '



(24)

b) The vector-valued function d(zi,zé,;..,znzo) is a strongly
‘analytic function of (.z]:,za,..-.,zn) on T , and for each éoint
in this domain it is an a-naly.tic vector for the Lie algebra of
' the group U(F). | _ |
vc) For any element A = A(g,x) of the quantum mechanical Poin=

—.

care group F 5
U(x) ¢(zl)z2’00;’2n;o).=

Zr

g, O'(g-l) ¢(M21+X,M22,Mza, oe .,Mzn;o') (370)
where M = M(g), and where the sum is over the finite number of
" n=tuplets ot = (plt,n2',...,un') of indices from In for which

wielr

f'o,o,(s) =Fu1’u 2'(8) eee I ng(g) (37(1)

Be,p BN,

is not identikcally zero (as a function 61‘_ g).e

It may here be noted that
yul(zl) yuz(zl"’zz) o.ooo ym(zl+zz+...+zn)9 (573)

1.s a defensible notation (withih the fraﬁework_of distribution
theory) for the vector d(zl,zz,...,z ;o).‘ , §

Lemma 4. a.) Let {\fk l £ eg(R ), k = 1,...,!1} be any
n-tuplet of test I‘unctions, and let o = (p.l,p,?,...,p.n) be any

| ordered n-tuplet of indices from IT. For k = 1,...,n s let
X

-~

K = p.k[fk] . Then the vector .

?(zl) X, T(zz)_xz oo T(zh) X, R | o (38a)

is well defined (thr"o'ugh' suecessive left muitiplicaticns‘) for
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all (21’22"'_”2n)- € Tn » and it is a ‘s,tr'ongly continuous

function of the variables (zi,zz,...,z ) on 'I‘ ,’ and &

strongly analytic function of- these variables on T .
" _b) There exist func-

tions f(xl,...,xn,zl,...,z ) defined for (xl,...,%) € R4n

lvand (zl,...,zn) € Tnv , and such that f ¢ S(Rq‘n) and such that
‘the Fourier transform T of I‘ relative to the variables
(xl,..v.‘,xn') satiéfies the conditibn.,

. r(pl,...,pn,zl,...,z ) = exp( Z Zz ‘P, ) TTI' (Pk (58b)‘

k=1 r=

for all (pl"f"pn) e V, , with Vn_def_ine.c_l gg.in (:569) » and

for all (zl,z2, .'..,zn) € En . For any such function f,

y{f;o}Q = }T(z_l) Xy T(25) Xgeee T(z ) X Q (38¢)
) If £, ¢ .b(R4)

for k = 1,2,...yn, &and (zl,zz,'...;z ) &
rwh , then, .

fd4(>1)---d4(x )t <x1>r (x, )...r (x )><
(w)

| ¢(zl*"l’zz*"z_‘xl""s*"s"‘z.’""zn+xn X139 =

T(zl) Xy T(z ). x2 oo T(z )X R (38d)
~d)  Let { Rnl n = 1,...,co} _be any set of open, non-.
empty subsets of Minkowski space. For such a set, and for any

n>1, let Sn denote the linear span of all vectors of the -
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form 'Xlxz...XnS?l » with X, defined as in a) above, and
with fk € S(R4) » Supp(fk) C Rk » for k = 1,ooo,n0

, Then the linear span of the vacuum vector @ and the union

of all the linear manifolds Sn is dense in the Hilbert space X.

About the proofs: The Lemmas 2-4 in the present paper corres-

pond to the Lemmas,2-6_‘in Seco III of BW I, and the reasoning

- there presented applies with very trivial modifications. The
'oonclusions.in Lemmas 2 and 4; the conciusion in part a) of
Lerma 3, and thé conclusion (in part b) of Lemma 3) that |
¢(z1,z2,...,zh;o)' is analytic as asserted, follow from the
spectral condition, the action of the‘translation group by con=-
Jugation on the fields, and the assumption that the fields are
tempered distributions on. the domain D,. Thet we now deal with
an arbitrary number of field components instead of with a single
" field as in BW I is 1mmaterial in the proofs. The formula (37¢)
is the trlvéal generalization of the formula (34) in BW I.Since
thefmatrlxj l"(g ) in (37¢) is in effect similar to a finite
direct sum of matrices Dsf’sf(g'l) » and hence an.entire'ana-v
1lytic function of g, it follows that d(zl;zz,Q..,zn;o) is

an analytlc vec tor for the Lie algebra of the group U(g,0), and
- hence also for the Lie algebra of the group u(g).

We next’ consider the-action of the complex velocitjotrensfor-
ma tions V(t)'— exp( ith), where t is complex, on . the vectors
¢(zl,zz,...,z 30) . We denote by D (n/?) the domain on which
V(in/2) is self-adjoint, and by Dy(=n/2) the domain on which
V(-in/2) is self-adjoint. The domain Dv(n/é)'is then a core for
all operators V(t) with 0 £ Im(t) 1/2, and the domain .
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Dv(-n/é) is a core for all operators V(t) with
0 > Im(t) 2 =%/2 . The next Lemma corresponds to Lemmas 8 and
9 in BW I, and it is proved, on the basis ‘of Lemma 3, by a very
trivial modification of the reasoning in BW I,

Lemma 5. Let (zl,...,z ) be an n-tuplet of complex
- 1__2 .
four-veptors z,, = X Hy, , vhere xk’ yk,real T ST = 03

yk4 lyksl ? for k = 1, seseplle et o = (ul’u’2’°..’un) be l
any ordered n-tuplet of indices from IT‘ For any k, and any

complex t we define zk(t) by

zk(t) = V(gs.t) z.k : - V (39a)

a) If X e Wg (1.0., xk§ > |xk4|'), for k = 1l,.005n, then
(zl(ic),...,zn(it)) e Tn for all < e [0,&/2] « The vector
.d(zl,..;,znjq)_ is in the domain Dv(#/é),iand
V(i’t’)¢(zl,...,z o) =
Z ?‘o 0'(v (65,-1T)) d(z (i’t),...,z (1")'0') (39b)
ot : - '
- ‘for all T e [0,1(/2] , where I 1s defined as in (37d).
b) If Xk e wL (i.e., xk < _lxk | )’ for k = 1,0- .,n , then
(zl(i't),_...,z_n(i'c)) e T for all < e['_-u/z, 0] .The vector
g(z1500092,30) 1s in the domain_'Dv(-ﬂ/2){ and the relation
(39b) holds for all Te [-n/2, 0] » . !
0) ‘Let (Xl,..;,x ) .be\’Sl’j“Ch ma‘t‘.\x‘k € w for:'
k = 1,...,n. Let v be the real forward timelike four-vector
with components v = (0 0,0,1) , and let t be a real variable. |

Then
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8=1im A : s o |
& _’0+ . ; ro'g' (°+) V(iﬂ/n?a) ¢(x1+i:tv,x2+itv, o0 o»’xn"'itV;O' ) =

v

e 0': Y To,gi(0) V(-in/2) BUx HEY, TX+1EY, 00, JJ&;*itV:O") =
o! | - -

= Blzypeenrzyse)  (s9e)

: 'Qhere | zk.=k(xk1,xk2,ixk4,ixk3) ’ for kK =1ys.0pn, and where
c_;_ and c_ are ‘.the elements c.'._ = vc'(és,in/z) s C_ = vc-(gs,-.in/zb)"
of the group ¢.. Here J 1is defined as in (3).

| The next Lemma corresponds to Lemma 10 in BW I,
Lemma 6. Let Ry ‘be a bounded, open, non-empty. .subse.t of Wy »
and let Xg € Wp be such that (x-x;) € WL' for all x e ﬁi.

For any integer n > 1 we define the set Rn' by
.Rn = { x + (n-'.\.):c0 l X e-Rl' } ' - : (40a)

a) Then R C Wy for alln, and if n >k, then (x'=x") ¢ WR

for all x' e R# s X" € Rk. In particular‘-Rn is space-like
. \ . | o

vseparatrecvi .from Rk (1.e., Rn C Rk ) if n # k.

b) Let { rk| kK =1,.0e,n } be an n-tuplet of test I‘undtions//"
)

such that ‘fk € S(R4) and supp(fk) C Rk , for k= 1,0c0yns
Let .f'ki denote the test{\fhnc'f”i*aﬁ‘.de’f'{ﬁ&i‘*by‘ rd(x) = rk(-x).'
let o© = (r1,un2, .‘..,p.n) be any ordered n-tux;let of 1nd1c§s
'from Ipe Let 6(8) e.b(Rl) « Then
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v{in)e(Kz) w 5[f] Y ,2(f2] oo 'f‘m[fn]rz =

I's.o U(“(?.s”‘)’q)"‘xs)Vullfli] b"pz[fz:-i] Euapm[fni]-Q

| | (40b)
where I "is the diagonal matrix given by '

Ay _ A L A : ' : |
Fre Pyylepetn) Flutegm)  (400)

- This Lemma can be prowed, on the basis of Leﬁmas 4 and 5, by
,a‘priVial modification of the reasoning by whicb‘we proved (
Lerma 10 in BW I; the modification, of course,‘has to do with
the appearance of the matrices f: in the formulas, To bring
out the similarities with the discussion in BW I we definé the

test function fkj by fkj(x) = fk(_jx), and we then have
U(u(e,,m),0) [f 1] U(u(e,,n) 0)"1 =
o ki k Qx21)y

,Zl“l\uk’u.(u(gs,-ﬂ)) yu.[rkj_.] | (404)

With reference to this formula it is easily seen that the
formula (52) in BW I is a special case of (40b).

That the matrix re in (400) is dlagonal (with diggonal ele-
ments +1 or =1) follows at once from the fact that the matrix
T\I'"' in (23) is diagonal (with diagonal ‘elemerits *+1 or -1).

‘Our conclusions up to this point in this section are comple tely
1ndep?nd9nt of the localit;\bonditions f) in Section III. We
shall hpﬁ draw some further conclusions, in which we take the
locality conditions into account. Before we state thé relevant

lemma we recall that the domain of the closed and normal opéra-
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rator }FV(t‘)v, t complex, dépends only on Im(t). We write the ope=-
_zfa'tor as (V(t‘), Dv(Im(t)~) ) when we wish to'exhibit the domain
 explicitly, | | | |

- Lemma 7, Let { R | n =v1,...,oo } be a fixed set of
bounded, open, non-empty subsets of WR, constructed as in
Lemma 6. Let Q be the linear span of the 1dentity o =
rator I - and all Operators (Q, 1) of the form

EENCA TS PRENCS B  (am)

where { fk | kK = 1ye009n } is any n-tuplet of test functions
such that fk e S(R‘%) ~ and supp(fk) C R, fork =1,.c0,n,

and where o = (nl,u2, ...A.,un) is any ordered n-tupvlet of indi=-

.ces from IT'

Then?

a) Tho linear manifold Dg= Q£ is dense in the Hilbert
spaco X , and Dge = spaxj { c(l(:s)Dq l c(s) ¢ ,b‘Rl') } is
_a_core for every operator (V(t), Dy(Im(t)) ).

_'b.) (Q*’le) e 0 if (Q,D,) ¢ Q .

c) There 'ox‘ist_s a unique antiunitary operatoi- J such that
ir ‘_(Q,Dl) € -2 and c(s) e -b(Rl) ,'~thenl .
v(im) co(Kz) @R = o(Ky) Q¥R - (41b)

\~M“\'\ / ——— . '. -
The operator J 13 an involution, 1.0., -
' Jza;[' o ‘ : . o » (410)

and it satisfies the conditionsg -
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R S L 5 P gﬁ ok <
(z1) ¥ * ¢

JQ =9 , JIDy=D

1l 1l

, z3xaz=te P(M) | (414)
for all _‘V,(x,nl)"e' P(M), and |

523 =271, U3 =U_, IV(t)T = V(t) for all real t (4le)

o, D_, J(V(1m),D)J = (V(-im),D_) | (41r)

JD =D

=0, , J(v(-ixm),D_)J =?(V(1#).D*) o - (4lg)

d) The antiunitary operator 6o defined by
J =2 U(U(gsan)’o) 90 _ A (41n)

is a TCP=-transformation which satisfies the conditions:

02=Ty » 6,2 =9 s 6 Uesx) 0y = Ulg,ex) (42a)

0Py =D, , B, P(M) gyt = P(M) (42b)
and | | " : 7 | _ !

aoyu(x) 90'1 =p, Fu’u y:(-x). o - (42¢)

~ where pu-= +1 ’if,y?“(i) ‘4is a component of a boson field, And

Py = -1 1ir §9u(x)-vis‘a component of a fermion field.

Proof: 1) This Lemma correSponds to Lerma 11 in BW I, The reaso=-

_ning in its proof is similar to our reasoning in BW I, but

there are some important differences of detail which have to be
discussed. We first note that the assertions a) and b) are tri-
vial. The remaining assertions might be proved in the stated

order, which in particilar yields a proof of the TCP theorem.
In ordér to shorten the discussion we shall, however, base our
proof of the assertion ¢) on the well-known fact that under our

general assumptions about the fields a TCP-transformation 60
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which satisfies the conditions (42a)-(42c) does axist.e) The
relations (42a)-(42c) will thus be assumed, and we define the
antiunitary operator J by (41h), where Z is given by (26).

It is then trivial to show that J satisfies the relations
(41c)-(41g). \ -

2) The formula (41b) holds trivially if Q is a multiple of I.
Suppose now that Q 1is of the form (418). We write Xk tgpuk[fk]
and Y, = :Ppk[fkil for k =1,...yn, and we then have .

T, 1 =
Xy 2 =

JQ*.Q = JXnT oo xz

By ['5,q 2 Ululez,),0) Y, .. Y, ¥, P . (43a)
where 60 = pu_1 puz .o.‘ppn s in view of (41h) and (42¢). For
any two operators Y. end Y, in the set 4 Yl’Yé""’Yn } the
supports of‘the'corresponding test functions fr1 ~and fsi are
space-like separated, and hence Y, anticommutes with Y if
both operators_are_averaged fermion fields, whereas Yf ‘commutes
with Ya in ali other éases. It is easily shown that under

these circumstances

and hence R

. An ’ ' .
IQ¥e = I Ululegm),0) ¥y ¥, ou. X, @ (43c)

~. f‘p\/“""‘"\',‘ '.4 ‘.

From this it follows, in view of (40b) in Lemma 6, that the
 operator . Q _satisfies (41b) From this it trivially followa
_ that (41b) holds for all Qe 2.,
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We arenow'prepared to state the main theorem of this
section. It will be convenient for the subsequent discussion to

introduce the following notation. For any . subset R of M
we define the algekra (P(R)z by

P(R)z;,{(z;cz-l,pl) | ®ppe PRI} (40)

where Z 1is glven by (26)

Theorem 1: a) The algebras P(W ) and (P(wL)z are *.algebras with

the antilinear involution (X,Dy) —» (x* ,D ). They commute
on Dl’ l.00,

[x,Y] b =0 (45a)
for all Y ¢ Dl »and for 811 X ¢ P(WR) s Y e (P(wL).z,.
b) The vaeuum vector 2 1is cyclic and separating for both P(WR) .
and (P(WL) %
"6) With V(%) = U(v(g3,t),0) (a velocity transformation in |
‘the S-_directi‘on), |
-l _ pp | V2 eyl o z
V() P(ug) V(%) Lo Pug) L, VIR)PL)® V()T = Plug)
(46b)
for all real t, and with J defined as in Lemma 7,
v . _ e . f
JPg)T = Puy) (46c)
X B ) -~ oo _J" ) '.
d) With the domains D, and D_ such that the operators
' (‘V(in)_,D_',) and (V(-in),D_) are seli‘-adjoinf,

Pg)2 < D, , | Vin) X@ = Jx*e (454)
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_f.‘or__a_hj X e P(WR') , and
(P(WL)Z'.QC D, , V(-in)'Y.Q'% J Y0 ~ (46e)

for any Y é'o)(wl;)z N
e) The bondition

cgx2 = x*o , a1 xe Plp) ~ (46a)

defines an antilinear operator (‘CR," P(WR).Q) » and the

condition

o fye = Y*Q  , a1l Ye PR (46b)

defines an antilincar operator (CLZ, P(WL )zQ) .

These two operators satisfy the relations
(cg, Plug)R P a (0%, PM)? Q)" = (JV(ER) , D) (460)
(€2 G’(WL)ZQ),** = (g, Pwg)2)* = (JV(-im), D) (464)

~This theorem: corresponds to Theorem 1l in BW I. The proof is
identical with our proof in BW I, provided that we. consistently
substitute the operator CLz' for the ‘opera tor C; » and the
‘algebra G)(WL)z for‘ the algebra P(WL). Ixi 'thev-pari':icullar ‘
- case that there 1s no fermion field among the quantu'm fields :
we have Uy =1 v‘and z = i, and hence G)(W"L')z = P(WL) »in
which case the present theorem is identical with Theorem 1 in BW I.
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The algebra P(WR) , respectively the algebra P(WL),,

~ can be regar ded as consisting of field ope_rétors locally asso~
ciated with the wedge-region WR, respectively the region WL.
We note that the role 61‘ these algebras is not.quvite 8s symme t-

,ri‘c in the p,resent’theorem as in BW I, in the sense that the

~ assertions are about the pair (,,(P(WR)’ P(wL)z) rather than:
about the pair (P(WR), P(WL)). It is, however, easily seen

' that the_r.'efis' a completely equivalent formulation in terms of

the‘pair' (P(WL)"P(WR)Z)’ and we note, for instancé,~tha1;
P, 2 c D_ ,  V(-in) YQ = VIJ.L»Y*Q | - (47a)

for any Y ‘e;P(wL) » and

: Pug)2 2 c D+‘ . vam x o =3 x*o (47p)

for any X ¢ P(w R)z » where

-1

o Jp =Rt =TT =3, (47¢)
F‘urthermore; ,
I, POiL) 3 = Pwg)? S (ama)

We conclude‘ this section with the reinark that all the conside~
.rati‘_ons 1in Section V in BW I also appl-y to the present 'situétion,
“provided }:}wt | (P(WL) ‘is reg,la,ce@_ilrby (I"’(WL)z and that (Po'(wL-)
is ‘f:;eplace"d'.by (PO(WL)-z~ = ZP;(WL) z=1 everywhére in the dis- |
cussion.' In order to have a ‘more suggestive notation it is ﬁh_en |

convenient to change the notation in BW I according to the
scheme ¢ 'U,(WL) -.’u,(wL)z » ‘AL_' .ALZ » etcro
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V. The duality conditio;w for the wedge regions Wﬁ and WL.
'The discussion in this section corresponds to the discuséibn »
in Sec. VI in BW I. We ai'e thus concefngd with the question.of
how the field opera to:r's in (P(WR) might éenerate s von Neumann:
algebra of bounded operators which can be regarded as being -
locally associated with the region WR. We must, of course, here
define the term "locally asscoeiated with" pfecisely, and in
a manner appropriate for a field theory in which fermion fields
might-occur. To set the stage for the discussion we begin with

some. algebraic considerations.

Definition 13 If 4 is a von Neumann algebra such that
Uy .AUO']‘ = A , and if A2 =z42°1 with 2 defined as in

(26), then the quasicommutant A% of 4 1s defined as the

von Neumann algebra 42 = (Y.Az)'. |

In a theory in whichv fermion operators, i.e., operatorsvxv
which satisfy U XUO -1 _.x ’ oc‘cur the notion of quasi.commu-.
tant °) is the proper notion in terms of which one may formulate
the éonditioné of 1ocaiity and of duality. As an algebraic no-
tion the notion of a Qquasicommutant is less general than the
notion of a connnutan§ in the sense that the .former notion refers
to a specific. unitary involution | Uy
- We formulate the pertinent facts about the notion of a quasi-
commutant as follows.
Theorem 2¢. Let A ve a von Neumann algebra such that U, c)4 U'
.)4 , and let Jorq -(ZJ‘ 2.'1) be its quasicommutant. Let

A= x Jugutt=x, x ek,

Ap ={x |'onno_‘1 =X, X ed) (48a)
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| an‘d

(.Aq)B-{Y IUYU"]' =y , vedd},

(,A‘T)F..{Y|U "1_-2, Ye.ﬁlq¥ " (48p)
Then' |
GAl = A%, Ad=zd'et, (AN%=4 (e

b) Every operator X e A has the unique representation
=X +%X,, with X edy, Xoe Ay (50a)

where, in fact,

X, = 3(X + UXU,"Y) , X, = 2(x - Uxu,"h) (60b)

X, =3 o*V ) » =32

Every operator Y ¢ A9 has the unique representation

Y=Y +Y, , with Y e (.Aq)B,Yfe (A%)p (50¢)
where, in fact,

= 2(Y - U,Yu

; | Yy "-%_(Y + UOYU '1) ’ Yf 0 '1) (50d)
; - _
¢) The eléments X, ¢ Ap s xf € .AF 3 Y e (.;4“)B ‘and
Y, e (A%), satisfy the condivions -
[Xb' n =0 o (el
[xb, f] = 0 . O (510)
,_[xr, ] . o - (51;:_;)
N {xf,y} = XY, *err . 0 o (514)

/

)
The Set (Aq)B is a von Neumann algebra, precisely equal

to the set of all bounded operators Y, which satisfy the con-

b
‘dition UonU -1 p » @nd the conditions (6la) and (61c) for
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all Xb € 'A‘B ’ Xf e ‘AF“ The set ‘A'B is a von Neumann alge=
bra, precisely equal to the set of all bounded opera tors Xb
which satisfy the condition UX,U,"! = X, » and the conditions
(6la) and (51b) for a1l Y, e (A%)p, Y.e (A%),. The set

(Aq)F is precisely equal to the set of a1l bounded ope'ratora

-1

Y., which satisfy the condition UoYon ==Y, and the cone

b
ditions (51b) and (61d) for all X, e &y, Xp e Ap. The set
A P is precisely equal to ythé set of allfbo'umvied opera tors Xf
which satisfy the condition onfUO-l = = X, , and the condi-
tions (6lec) and (51d) for all Yb € (.AG‘)B, Yf e (cA"q)F. .

d) The vec tor '.Q‘ is cyclic (respectively separating) for JA ir
and only if it is separating v(respectiveiy cyclic) for AQ, |

" We omit the very trivial proofs of these assertions, We stated
- the above facts in the form of a formal thearem in view of their
‘importance for our discussion. The situation might be illustrated
as follvows. Suppose that two von Neumann algebras ;A"l and v.A
are "1ocally associated with" two regions Rl’ respec tively Rz,
vhich are causally 1ndependent. The “local" na ture of the 8830~
ciation can then be expressed through the relation tA C -A
which, in ~vi“e\w of the theorem, is equivalent_ to the customary '

conditions in'terms of commutators and anticbmmutators, i.e.,

the fermion operatorjs in A 1 anticommute with the fermion ope-

rators in LA o and commute with ‘the boson operators in uA—z,. (\
whereas the boson opera tors in tA’l commute with all“op'er;ia tors
in ‘A-2° Now qu ClAzq is .equiva}ent to the con‘dition.‘th‘at_
[x¥Y) =0 forall Xe A, enaall¥ve A= 2427, which
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means that the locality conditions are expressible in terms of

the vanishing of certain commutators, irrespective of whether

- fermion operators occur or do not occur in the theory. This has

~ the 'important practical consequence, from our point of view, that
we do. not have to create a new algebraic theory in order to deal
with the case of fermion operators; as in BW I it suffices to
consider the felationships between von Néumaxjm algebras and

their cémmutanta. 10) Leﬁ us also note here that accqrding to

the fé.rmion-superse'lection pripciple oﬁly a boson operator can be
a8 physical observable. This means, with reference to our iilus-
tration above, that the observables in -Az and .Azz are pre=
cisely the same, and thus that the observables associa ted with
the region Rl commute with the _observablés éssociated with 32.
Definition 2: a) A set J{(WR) of bounded operators such that

x* ¢ ){(WR) for all X e K(WR) shall be said to be covariantly
; agsociated with Wp if and only if |

Cu() Koig) st o Kwg) | t52a)
| ffor all elements A 1in the semigroup o(WR) consisting of all
A e'@ such that A()\_)WRC WR « In particular, &

V() Kwp) v(s)™ = Kg) , all resl ¢, (52b)
~ and, more génerally, :

U Keig) U™ = Kowg) 21 Ae Glig) (522)

——

where : @(WR) .48 the group of all elements A e§ such that

A(MWg = Wp ,1.e., all Poinceré transformations which map Wp

- onto 'WR.
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b) A set ){(WL) “of bounded operators such that ¥ e K(WL)

for all Y ¢ K(WL) shall be said to be covariantly associated

with WL if and onlyhif

Kiip) = Ulaley,,0) K(up) Ululey,m),00™t  (53)

where K(WR) 1s a set covariantly associated with Wpe
c) Let K(WR) .be a set of bounded operators, covariantly asso-

ciated with WR as above, The association s_hall be said to be

TCP-symmetric if and only if

or, equivalently, | | ‘_
I Rg) 378 = Kwp)® . (54)

where K(WL) is given by (63).

. : : ' ' 3%
'd) A set K(Wp) of bounded operators which contains X~ 1if

iﬁ contéins X shall be said to be locally associa.tedr with WR

if and only if K(WR)' is covariantly associated with Wp and

Kog) c K9 | o (55)

where K(WL) is given by (63), and where the von Neumann al-
gebra K(WL)q is defined.as (K(WL)Z)‘ e

e) A von Neumann algebra .A(WR), locally associated with™ Ve,

shall be said to satisfy the condition of duality if and only
ir | |
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§

A(wn)' = A )9 A . (56)

‘where u4(wL) is defined in terms of .4(w ) in analogy with (55)¢
| We present these formal definitions for 1ater reference as
we will repeatedly encounter sets which satisfy one, or several,.

of fhese defining relations. The geometrical significance of

- these definitions ié obvious and need not be discussed here.
Concerhing the physical interpretation we note that the condi-
tions,ih'd).are minimum conditions which a set of™local obser-

~vables for Wp " would have to satisfy. In a quantum field
theorylthese'coﬁditions are not, however, by themselves enough;
the bounded local operators should also sqtisfy somevqondition
of locality relative to the local field operators,

Lemma 82 Let F be a set of closable operators, such that

U, }'Uo'l = F . We define the set F? as the set of all
* bounded operators X such that

x* (£,0)* C (1,0(x))* x* ,

x* (1,00e)™ < (¥,p(x))** x* R (57)

for all (Y,D(Y)) e F . Q.If, g_quivalenti , the set ‘:- Fa 34
precisely equal to the set of all bounded operators X such
that for all (Y,D(Y)) e F ,

x? (Y,D(Y)) c'(Y.D(i')')*“*icz ’

(x%)* (1,0(¥)) C (¥,p(¥)** (x¥)* (68)
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a) The set F2 1s a von Neumann algebra, and it satisfies
Q -1l _ Fa
the relation Uy (F?) v,™" = F9.

b) Lot the set JF 29 of bounded operators be defined by
F¥ = (Fya o (59)

Then qu is a von Neumann algebra precisely equal to the

von Neumann algebra genersa ted by the oﬁe i'ators | V and the
‘spectral projections of the operators K for

all pairs of operators {V, K } swhere V is tﬁe unique pare
tial isometry, and K 1is the unique non-negative definite self-

“adjoint operator, defined through the polar decomposition
(¥, p(¥ ™ = v (&, D(Y*)) ' ~ (60)

of the closure of any (Y¥,D(Y)) e F .
This lemma is s paraphrase of well-known facts about the
11)

commutant in the sense of von Neumann of va set of closed

operators « An equivalent definition for F2 4is thus
Fi= @F zh' | - (ela)

wit;h ‘the f)rime-notation of von Neumann, and th_é ,'set .'qu is
then given by | _

. Fu = (F™ )" - | | (610)
where F** denotes the set of all closures
_of the operators in ¥ . That the
assertion in b) above about the algebra J:qq (regarded as
given by (61b)) holds is well-known 12) (and easily proved),

That JF 9 (and hence J:qq) is invariant under conjugation

- by Uo follows trivially from the corresponding property of F.
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. »_We. shell call FQ the quasicommutant of the set of adjoints
a'nd"c.losures of the possibly unbounded operators in 3'.; this
is consistent with our~ea_r11er terminology in the case that
F ié actually a von Neumann algebra. We shall say that the
von Neumann all‘gebra Fi 45 generated by the set '3". |
We shall next consider some speciai sets of bounded opera=-
" tors defined in terms ofvfield operators in _!P(R), where R is -

any subset of M. In this section we are primarily interested

: " in the wedge-reglions WR and WL , but for later reference it

R

‘x

will be convenieht to consider other regions R as well. We note
here that it would be reasonable to restrict the regio’ns' R
such that they satisfy the condition R®® = R , but we shall

not do so since we ‘do not here wish to investigate the geo=-

_ “ metrical implications of this restriction.

. Definition 3: Let R be any subset of Minkowski space, and

,let R® be its causal complement (as defined in (5)).

/8) The set £ (R) 1is defined ss the set of all finite linear

combinations of operators of the form .(yu[r] ’Dl) » wheré‘ »

where p € Ip, and where f e 3(34) » with SUPPV(f) C R ..

b) The set Q(R) is defined as the von Neumann algebra genera=

ted by . oC(R): l.e.,
GR) = Lm) . (62)

where the superscript "qq" denotes the ‘gxapping F — qu
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defin_ed in Lemma 8.

c) The von Neumenn algebra C(R) is defined as the quasicommue
‘tant of ‘£(Rc), fe.0,., .

cr) = L% = GO (63)

where the superscript "q"™ denotes the mapping & —» F

defined in Lemma 8.

~d) The weak quasicommutant Cw(R) of 'P(Rc) is defined as

the set of all bounded operators X. such that

Crelxe> =(xtelxey G

for all ¢,¥ €Dy, and all (Y,D;) e (P(R®)% = 2 P(R®) 2-1,
We introduce the new term "weak qﬁasiéomm\jﬁant" with some reluc-. "
tance, but it does seem fairly appropriate to describe the

nature of the sets Cw(R). The adjective "yeak" 1s here in-

' tended to convey an impre.ssion of the "weak" nature of the
"commutation relations® (-64), as contrasted with the more res-
tric_tive conditions (67). It should be notéd, hdwevef, that the
operétors in ) CW(R)' commute in the weak semse of (64) with g_i_l
the operators in (P(R®)Z , whereas the operators in C(R)

~commute in tlr;e strong sense of (67) only with the operators
in the subset V‘C(Rc)z of (P(rR®)Z,. . ‘ !

We shall nex-t cohsider some fairly elementary properties of
the sets defined above.
Lemma 9: Let R Dbe any subset of ‘Minkow'ski space, and let

the sets .C(R), C(R), C‘;(R) and G(R) be defined ass in
Definition 3, Then: '



] , " 5,.'3 % g B -
s T
s 1y A a e '
o )

Q o= S (45)

a) Each one of these four sets satisfies the condition (65a).

of covariance, the condition (65b) of TCP-syrﬁmetrj, and the

condition (66c) of isotony, 1.6., if  Q(R) 1is any one of the
‘sets  S.(R), CI(R), 'CH(R) ~or g(R), then \

U(r) (R) U(M)™Y = Q(A(MR) T, a1l A eq | (65a)
L : _ | .
wheré =R denotes the set =R ='{ -X |x g‘R‘l}.
2(R) D Q(Ri) ’ whene ver ROR, | (65¢)

b) The set C_(R) 1is a weakly closed linear manifold, closed
under the *—opera tion, i.6., it contains X* if 1t contains X,

A bounded operator X 1is in Cw(R) if and only if
X (Y*,_Dl) c (o) *x | ~ (66)

for all (¥,D;) ¢ P(R®)% . |
¢) A bounded operator X 1is in CW(R) if and only if the
: conditioh (64) holds for all ¢ ,b Y € Dy , and all'(Y,Dl) eS:,('Rc)z,
or, ‘equivalently,‘if'and_only if the condition (66) holds far
a1l (7,0)) ¢ L(R®)Z, |
X, X%, & C(R) T (em)

for all X ¢ C’;,(R),gn_dxall '}\1, X, € C(R). In particular,

C(R) € C,(R) (670)
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e) If R° has é nonempty 1nte>rior, then Q is separating for
C (R), i.e., if Xe G (R) end XQ =0, then X =0,

If R. has a npnempty interior, then Q(R),Q is -‘dens.e in
the Hillber.t. Aspa'ce .H . »
r) 1r '(I‘pr' a particular subset R) the "inear field operators"
in the set L(R®) satisfy the condition'tha.t D, is a core |
for the adjoints of the operators in the set, l.e., »
(eT,0)%* = (£,0)*  rorall (¥,0,) ¢ L(R%), then C(R) =C_(R).
Proof: 1) The assertions a) ard b) are trivial. We note here
that the condition (66) (whiéh'is a trivial restatement of the
condition (64)) is equivalent to the condition that

x (v%,0)* ¢ (,op*x (68)
for all (Y,D) e (P(R®)% .
2) To prove th'_e': assertion ¢) we assume that X 1s a bounded
operator which satisfies the condition (64) for
a1l ¢ , Y € Dy , and all (Y,D,) e L(r®)%, 1t follows at once
. 042
that the condition (64) then also holds for all (Y,D ) e@ (R°)%.
For such an X , let ¢ , ¢ e Dl , and let (Y Dl) € P(Ro)z
Since,we have ZDl = Dy , and since the quantum fields are ope-
‘ ra tbr-valued tempered distributions, it follows from the
fact that (®.b(R4))n {13 dense in S(R that there
¢
exists a sequence {(Yk,Dl) | (&Ql) 8/»03‘053 )2 ,y k = 1,...,(1)}

of operators such that

s=1im - g s=1lim * * »
koo k¥ =Y,y lo %k ¢ = e fsg)
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It readily follows that the relation (64) holds for the .
aboye operator (Y,Dl), and hence X € C‘W(R) as asserf.edf
3) We consider the assertion d). Let X ¢ C(R), xw € CW(R.),
and ‘(Y,Dlj e L(R®)%, We then have, in view of (57) and (68),

x x, (¥%,0.)" < x (1,07 x, C(¥,0)¥x X, ~(70)

which means that XX_ ¢ C‘w(R). From this (67a) follows readi-

W
ly, and since I eCw(R) the relation (67b) follows.

4) If X eC,(R), then XQ =0 implies that
(Y elxy, )= (Yz*ylglxg) =0 (71)

for all Yl’ Y2 e -P(Rd)z . By the Reeh=Schlieder theorem the .
set @(RQ)ZQ is dense 1if R® has a nonempty int’erior,'which
implies that in this case X =0 if (71) holds. This provés the
first assertion in e), and in view of (67p) it follows that 2 1is
8 separavtiné vector for the wvon Neumann lalgebra C(r), and-'h_enée_
a‘:cyclic vector for its q\iasicommutant Q(Rc). whene ver the»in..
terior of R® 1is nonempty. It readily follows, since .g(R) sa~
tisfies the condition of isotony (65c), that q,(R)_,Q ~1'8
dense whenever R has a nonempty interior.
§) We consider the assertion f), If | (Y*,Dl)* = V(Y,Dl)** for
all (¥,0;) e L(r®) , ana if X & C_(R), then the relation
(68) implies that X e C(R). In view of (67b) this implies
 that Cw-(R) = C(R), as ’assezted. This completes the proof.

"We note that 1t does not foli_ow from the definition of CW(R) ‘
as a weak quasicommutant of an algebra (P(R®) of unbounded

operators (or equivalently as the’ "weak commutant" of the ope-
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rator algébra P(R®)Z ) that C,(R) 1is a von Neumann algebra;
the set need not be closed under multiplication. What the ac-
tual situation is in quéntum field theory we do not know., In
the case of free fields the premises in part f) of the lemma
are trivially satisfied, and Cw(R) is then identical with‘the
_v‘on Neumann algebra C(R). In this connection we refer to the
_ﬁork of Powers on algebras of unbounded operators, their "weak
commutan’cs," and related subjects. 13) |
Lemma 10: Let R be any subset of Minkowski space, and let
the notation be as in Definition 3 and Lemma 9. Let .AO(RY) be
defined as} the set of all bounded operators' X such that

XX and XX are both in C 4(R) for all ‘X e C (R). Then:

W
a) The set ,AO(R) is a von Neumann elgebra, and

C(RICA(R) C C(R) (r2)

" b) The mapping‘ R—‘AO(R) satisfies the condition of covariance
(65a) and the condition of TCP-sy'mmetry (65b) in Lemma 9. In
_>particu1ar_ Yo .}4 (R) U -1 . A (R)
c) All operators (Y, 1) e P(R®) have closable extensions
defined by o _ |
| (¥,D4) — (a(Y),Dla) = (y™¥, D,) | - (73a)

where: 'Da 1s the domain defined by

D, = span { X¢ |X e A (R), ¢ & p, } (73b)
These extensions satisfy the conditions ' 7
)

(%0 D (a®D,)" D (a(¥),Dg) > (x,0y)  (730)
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d) L’evt Pa(Rc). be the set of all operators (a(Y),D’a) with
(Y.,'_I'Jl) e (P(R®). Then, with the notation in Lemma 8,

h = r%)T P (rR%)% = R°" R) C G(r%) '
AgR) = P BT, PRI = B (RT) = A, (®) GE%)
and the closures and adjoints of the operators (a(Y),Da) in .

P (R®) are thus affiliasted to the von Neumann slgebra ‘AO(R)q.

'The weak quasicommutant of P (R®) relative to the domain.

D,.» i.e., the set of all bounded operators X such that
(x*plam?y ) =(a(n)®)*¢ |x¢> (74b)

for all ¢ ,¢ eD_, all (a(Y),Da) Y (P,(R®), 1is precisely
equal to the set CW(R). -
e) The mapping (Y’Dl) — (a(Y),Da) of the algevbra '(P(Rc)

onto Pa(Rc) is a representation, and it is a =representation

~ of the v%—algebra ~(P(R®) in the sense that
(a(x),0,) = (a(m)%p,) ~ (75a)

The representation is continuous in the sense that

8~lim - : o o
> 00 a(f, )y =0 | . ('75b')_

for all p e D whene ver

o-1m Y, ¢ =0 | - ~ (75e)
k—»o®

for all ¢ e D,.

Proof: 1) ,AO(R) is trivially a *-algebra since CW(R) is

- a H

closed under the ™-operation. From the fact that C,(R) 1is
weakly closed 1t follows that .AO(R) is also weak‘ly closed, and

hence a von Neumann algebra, The relation (72) is trivial in
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view of (67b). The assertions ‘b) are obvious.

2) It follows from (66) that if X eCH(R) and ¢ e D then

1 1
X¢ e D(Y¥) , for any (Y,Dl) e P(R®)%, In view of (72) this
implies that Da s 88 defined in (73b), is contained in the
domain of the a'djo'int of any opera tor (Y, D;) in P(r®)% or
in P(Rc)’ 'since 2D, = D_. It follows that the extensions ._

_ (a(Y),Da) are well-defined by (73a). Furthermore (73a) also

defines an extension of évery operator' (-Yz,Dl) e P(r®)? , and

we have

(a(ZYZ'l),Da) = Z (a(Y),Da') 7~ (76a)

for all (Y,D) & P(R®). |
3) Let Xy, X, ¢ A (R); ¢ e Dy end (Y,Dy) ¢ P (rR®)2%., Then
X Xo € ‘A (R), and since A R)YCC, (R) we have |

a(Y)X o® = YT*xx¢ -xx Yo = | |
=x,¥"%,¢ = Xja(Y) Xz ¢ | " (760)

which implies that X, commutes with (a(Y),Da)** in the étrong
sense of (67), and we have thus proved that JO(R) C Pa(Rc)q .
It furthermore readily follows that the relations (730).h01‘d for
all (Y,Dl) € G)(Rc)z » and hence for all (Y,Dl) € P(Rc) . The
relation (76a) is then trivial.

4) We next ‘consider the weak quasicommutant Cwa(R) of Pa(Rc)
relative to the domain D « It is easily seen from the condition
(74b) that a bounded operator X 18 1n C (R) if and oniy ir
X,XX; € G (R) for all XysXg & A (R). This implies that 4
CualB) = CW(R), as asserted, e obviously have

t
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xxw, XX e G (R) for a1l X e C_(R), X e P, (R")q , and
in view of the results in step 3) above the first relation
(74a) follows. The remaining relations (74a) then follow tri-
" vially, in view of (72). | |
.5) Thé remaining assertions in part e) of-phe lemma are trivial,
and we omit the detailed proofs.
‘We must here state that we know much less about the rela-

tionships between the sets C(R),Cw(R) and .AO(R) than we

 would 1iké to know. We nﬁte here that = C(R) was defined as the

| quésicommutant of the subset ..C(Rc)_"of (P(Rr®), k_rhich means
- that the closures and adjointsof the operatoré in .{(Rc) are |
affiliated to the von Neumann algebra Q(Rc) = (B(R)q , but

we see no obvious reason why this would imply that the closures
and adjoints of the operators in P(R®) are also affiliated.
to this same von Neumann algebra. The lemma now shows that
there exists a "natural" extension (a(Y),D,) of all the ope-
‘rators in 0)(§°) such that the closures and adjoints of the -
extended. operators are affiligted to q(Rc), or to the possibly
‘smaller von ﬁeumann algebra U4O(R)q. it is here important to
note that this extension'depends on the set_.Rc, although

this is not shown explicitly in our notation. A field operat@r.
which can be associated with different regions might thus have
different e#tensions constructé& as inlthe lemma. -

_In view of our present lack of understanding of the general

structure of a quantum fieldﬁﬁheory the possible physical inter=-
pretation of the weak quasicommutant C(R) of P(r®) 1is rfar

from clear. With reference to the discussion by Licht of strict
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localization 14)

we note here the following. Let V be a par-
tial isometry in C (R)z such that V oI » and let y=VvVe .,
Then  1is in the domain of (Y,Dl) for any (Y’Dl) e (P(r®)

and we have, for any such (Y,Dl),-‘ | 4
Cyle™e) =<aly e> o (770)
and, more generally,

«<Y1YT* lYT*w> <Y ,Q'Y Q) S | (77p) |

for any two (Yl’Dl)’ (Yz’D].) 8--0’(30)9 We here assume that
both R and R® have nonempty interiors. It is then not herd
to show that if a vector !/’ satisfies the conditions (77v),
then ¥ is of the above form. |

The expression at left in (77a) might be loosely regarded as
the expectation value of the field operator Y in the state Y ",
and the"local charac ter" of the state then manifests itself in
the fact that the expectation value in the state equals the
vacu_\_jm'eipectation value, for all operators (Y,Dl) e (P(R®),
Note, hOWever,_ t‘hat» the operator YT* 'at left in (77a) cannot
in general be replacedv.by Y**; or by Y, as W might not be in
the domains of these .operators'. We furthermore note that the
condition (7’7a) also holds.for all the bounded operators in the
von Neumenn algebra C. '(R)q R but ‘not necessarily for ‘the ope-
rators in Q(Rc). In our opinion ('7'79.) 1s a necessary oondition
for a local state (localized in ‘the oomplement of R®) but by

»

'no means a sufficient condition. '

We shall next_consider the properties of the sets C(R), ‘AO'(R)’
.CW(R) and (;(R) for the special case that R e W' . The
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,'_We., shall call F9 the quasicommutant of the set of adjoints
and closures of the possibly unbounded operators in 3'.; this |
is consistent with our‘ea_rlier terminology in the case that

:F iS actually a von Neumann algebra. We __shall’say that the
von _Neumann algebra Fa 14 generated by the set A‘T. |

~We shall next consider some speciai sets of bounded opera=-
tors defined in terms of.field operators in _!P(R), where R 1s
any .subset of .M‘ o In this section we are primarily interested
in the wedge-regions WR and WL » buf for later reference it
will be convenient to consider other regions R as well. We note
here that it would be reasonable to restrict the regidns' R
such thét they satisfy the condition R®® =R , but we shall
not do so since we do not here wish to investigate the geo-

‘ métrical implications of this restriction.

‘. Definition 3¢ Let R be any subset of Minll{owsk'l.vspa‘c_e__‘,_ and
,let R® be its causal complement (as defiﬁed in (é)).' .

;a.) the'x-set $.(R) 1is defined as the set of all finite linear
combinations of operators of the form (yp[f] »Dy) , where
where p e Ip, and where “fe S(R4) » Wwith supp(f) C R .. |
‘b) Thé set g(R) is defined as the von Neumann algebra genera=
‘ted by &L(R), .e., |

.Q(R) = L(m)% e (62)

where the superscript "qq" denotes the mapping F—-F%
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definéd in Lerma 8,

¢) The von Neumann algebra C(R) 1s defined as the quasicommue

tant of L (R®), 1.e.,
cr) = L(R)% = G(r®)? B (63)

where the superscript "q" denotes the mapping 3-"-» J-'q

defined in Lemma 8,

d) The weak quasicommutant Cw(R) of _(P(Rc) is defined as

the set of al.l bounded operators X such that

3 ' - -
(y*el xw) =(x*| yv) (64)
‘for all ¢,y e D, and all (¥,D;) e P(R®)® =2 P(R®) 2%, -
We introduce the new term "weak quasicommutant" with some reluc- o
_ . v f
tance, but it does seem fairly eppropriate to describe the B

nature of the sets C,(R). The adjective "yeak" 1s here in-

" tended to convey an imprevssion of the "weak" nature of the .

"commutation relations® ('(-54)., as contrasted with the more res- ¢

 trictive conditions (67). It should be .noted, howevef, that the !

operators in : CW(R)' commute in the weak semse of (64) with all

the operators in (P(R%)% , whereas the operators in C(R)

_commute in the strong sense of (57) only with the operators

in the subset' }C(Rc)z of (P(r®)2, ' : f
We Shall nex‘_t consider some fairlyve_lementary properties of

the sets defined above.

Lomma 9: Let R be any subset of Minkow$k1 space, and let

the sets S (R), C(R), C;(R) end G(R) be defined ss in
Definition 3., Then:
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lemma which follows corresponds in part to our Theorem 3 in

BW I, with some added refinements which we overlooked before.

Lemma 11¢ I.,et' C(R), (R) A (R) and Q(R) be defined

as in Definition 3 and Lemma 10. Then:

.a)

Clig) = Cig) , ¢, Mg) = C_(Wg) ,
CGUIR) = GWR) . Aglip) = AR (78a)
with | analogous identities for the corfespondiﬂg objects

a'ssdciated with WL\.

Clig) C Ag(ig) C €, i) Glig) = cugt (78b)

b)) The von Neumann algebra C(WR) is locally associated with
W

R? and the association is TCP-symmetric, in the sense of
Definition 2.

¢) The set C '(w " and the von Neumann algebra g(w ) sare

: covariantly associated with WR, and the association is

V TCP-sxmmetric, in the sense of Definition 2. .

d) For every X ¢ C (wR) (and hence for every X in C(WR) '
or Ao(wR)) we hgve | o

XQ €D, , Vim)xQ =Jx"Q : (79)
6) The von Neumann algebra ‘AO;(WR) satisfies the conditions:

‘Ad(wL) = OO'AO(WR) 90-1 = U(u(gl;ﬂ),o)iﬁo(wn) U(u(gi,ﬂ),O)—l
| (80a)
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and
T A Hg) TN = A (W) | (80b)

for all Ae g such that A(A) Wp =VWp , 1;0., for ali Poin-

 caré ’transformations which map Wy onto Wp. |
£) v | . |

| [x, xJ3]2 =0 | (81)

for all X eAO(wR), X, Aecw(W'R).

2_1'_99_.2:  1) We consider the identities (78a). Let x e Wp . Then
we have C(Wp) D CMy) D Téx)C(Wg) T(x)™' , in view of the
fact that . C(R) satisfies the condition of isotony. Since
C(R) is'weakly‘ closed, and since T(x) is a strongly continuous'.
function of x, it follows at once that thg first lidentity in

(78a) _hbid's.’\ The next two identities are proved by exactly the
same reasoning. The fourth identity follows from the second, and
from the definition of Ag(R) in terms of C_(R).

2) The.‘inclusion relations between the first three sets at left
in (78b) correspond to (72) in Lemma 10, The ‘

éssertions'e) also follow from Lemma 10. (Note that we do

_rioﬁ assert that (80b) holds for all Poincaré transformations A
which map Wp into Wp). The assertion c¢) is trivial,

3) The relation Cw(wR) C 'C(WL)q is hot trivial;_ it is
equivalent to the condition that all operators in Cw(wR)
commute with all operators in - C(WL)z . To prove this rela-
tion we first consider the assertion d) of. the lemma. The rela-
ﬁiona (79) follows readily from the definition of Cw(wR) , and
Lemmalls 1n. BW I.(In this argument we depend, of course, ulti=
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" mately on Theorem 1 of the present paper in place of Theorem 1

4) Let X ¢ .A_O(WR) and let‘ X, € Cw(wR). Since, by c) above,
Cw(wR) 1s invariant under conjugation by V(t), it followe
that X V() X" V(t)"} & @_(W;) for all real t. In view of
 d) above it then follows from Lemma 14 in BW I that the rela-
tion (81) holds. ~ B o

) Let X e ClWp), and let X_e C,(Wg). Ve write
Y—ZJ?XJZ 1, and we thenhave Ye C (W )Je Lot x € Wp, and

let X(x) = T(x) X T(x)"1. Then
CX(x) e C(W ), and (81)' holds with X replaced by X(x). We

consider the special cases when each one of the operatexjs X
ahd Y is either a boson operator (i.e.; a bounded operater
which commutes with Uy )s or else a fermion operator (1,00, a
bounded opersa tor which anti-commutes with U )e The relation
(81) then implies- that

L
o

(X(x) Y +8YX(x)Q (82)

where s = +1 1f both X and Y.'are" fermion oper_etors, and
s = -1 if at least one of the operaﬁobs X 'anvd Y is e boson
voper"ator. | |

We note that the operator Q:(x) = x(x) Y +8 Y X(x) is inclu-
ded in the set C_(R) , where R = W U A(I,x)Wp j this
follows fyom Lemma 9 since X(x) SC(A(st)WR)C C(R)

and Y e cw(wL) C C"(R); Since the interior of R® is nonempty

it follows from Lemma 9 that Q(x) = 0, Since Q(x) is a strongly
continuous function of x we conclude that (XY + s¥X) =

Q(0) = 0, This in turn implies that
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[X, JXWJ]A = 0. From the fact that this relation holds in the
special cases considered it readily follows that 1t holds for
all X AAC.(_wR) » X, e C_(Wp). This means that |

cw(wR) c Cw ) = Gwy) , as asserted in (78b). This comple-
tes the proof of .1ihe lerma , 7

The relations (78a) should be carefully noted. The algebraic

ob jects appearing'in these relations are thus the same for the

closed'wedge Wgp as for the open wedge WR’ which fact leads
to.a considerable simplifica tion of the subsequent discussion.
Wg employ a nbta‘tion in the following according to which the
obvjects are labeled by | the open wedges WR and WL.

Thé-facts stated in part b) of the lemma éorrespond; in a
sense, to a well-known reéult of Borchers concerning the local
nature of quantum fields which are local ralative to an irredu-
cible set of local fields. 15) '

Theorem 3: Let'the'notation be as in Definition 3, and
Lemmas 10 and 11,

A) If the qﬁaritum fields are such that ,AO(WR)_Q- ' is dense

in the Hilbert space X , then .AO(WR) is locally associated

with WRY s, and the association is TCP=symmetric,in the sense of

Definition 2. Furthermore ‘AO(WR’) satisfies the condition of
duality, and |

Clig) © Aolig) = €, 0ix) = A )% © GUip)  (83)

B) If the quantum fields are such that there exists a von

Neumann algebra .A(WR)C CW(WR) such that .A(WR)Q' is
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dense, and such that .A(WR) is either locally associated

~with W‘R s Or else covariantly and TCP-symmetrically assoclated

with WR R 1n the sense of Definition 2, then:

a)"l‘he algebra .A(WR) is locally, and TCP-symmetricallx, asso-
ciated with wR‘.'Furthemore . ‘A(WR) satisfies the condition

of dualit »y and ‘ | _
Aolig) C Alig) = Avis)? e ) (848)

where

A(w

I,) = Ululey,m),0) Aip) Ululey,n),0)7 (84b)

as in Definition 2, The relation

,A (W ) = .A(W ) holds if and only if .AO(W )2 1is dense.
"b) The algebra .A(WR) \ is a factor, with 2 as a cyclic and
| separ‘atiﬁg vector., For any X e .A(W‘R);

XQ eD, , Vlim) XxQ = JX°Q (86a)

and

JA(W.R.)_J. = .Afwn)f | (86Db)

| ¢) There exj.sts an extension of the operators in -P(WR)

defined by
(,0,) — (e(X),Dp) = &x™, pp) (86a)
where. » | : - f
Djp = span { Y ¢ lYe Awi), '¢g p;}  (s6b)

such that the eXt_'.ension satisfies the conditions

1,00 D (ep(X)%Dyp)® 5 (ep(X),D0) D (X,Dy)  (866)
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The mapping (X,Dl) —> (eR(X')_,Dm) of ?(WR') onto the
set Pe(WR) of the extended operators is a continuous
#_representation in the sense described in Lemma 10,

. The closures and adjoints of all operators (eR(X),Dm) e

Po(Wg) are affiliated to the von Neumann algebra J‘(WR).
d) The weak quasicommutant C., ( ) of P (W) relative to

| -the domain D].R s 1.0., the sét of all bounded operators Y
'.such thet for all (X,D,) e (P(WR), |

¥* (eg(X)*,Dyp) C (eg(X),Dyp)" e | (87)

is precisely equal to the quasicomnuf:ant A(WL) of PG(WR)..
Proof: 1) Let A(‘WR) be a von Neumann algebra such that
A(Wg) C € (Wg) end  V(E)AWg) V(£)™H = A(Wg) for all
real t. The algebra .AO(Wﬁ),in particular, satisfies these con-
ditions, in view of Lemma 11, If now WA(WZ)R  1s dense, then
1t follows from Theorem 2 in BW I that (86a) and (85b) hold.
It furthermore follows from Lemma 16 in BW I that -A(W ) 1is

a fac tor. We have thus proved the assertions Bb). _

2) We c,onsider the relation (81) in Lemma 11, with | X, = xlxz ’
where Xl and X2 are elements of a voh Neumann algebra. |
.A(WR) which satisfies the premises in step i) above, and where
X e AO(WR). By repeated apﬁliéation of (81) it readily follows .
that [X, JX,7]3X,2 =0, and if A(wR).o is dense it
follows that [ X, JX;3] =0 for all X eyWg), Xy ¢ Ag).
In view of (85b) this implies that A (Wy) C A(Wg), as
asserted in (84a).

3) We consider again the relation (81), with X = XzX, » where
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Xz5 X, € AO(WR)’ and 'Xw € }Cw(WR). By repeated application
of (81) we easily show that

[ X5 XJF1x,2 =0 - (88)

~In the particular case that ‘)4 (w )2 is dense the rela- |
tion (88) implies that (. (WR) C (J.A (W ) J)' ‘AO(WR) ’
where the equality between the last two members follows from
step 1) sbove. In view of (78b) in Lerma 11 it then followé
 that the relations (83) hold. We have thus shown that the pre-
mises in A) imply the relations (83). Since C (WR) is cova-
riantly associated with Wy we then conclude that .AO(WR) is
locally associated with WR. We have thus proved the

assertions A).

4) We consider a von Neumann algebra A(w ) which satisfies
\7 the premises in part B). If .A(W ) 1is locally associated with
‘,wR , then AL C Awg)? = (AW = (FAmp) 1)
‘ in view of (85b), and this means that the association of ‘A(WR")'

with Wp  is TCP-symmetric. Conversely, ir .A(W ) is

: TCP-symmetrical]_.x assoclated with Wp , then (85b) implies at

once that .A(WR) = A(WL)q s @nd in particular the association

is local. It readily follows from the results in steps2) and 3)

above that -AO(WR) = ,A(WR) if and only if ‘AO(WR)'Q is dense.
~ We have thus proved the assertions Ba).

5).The assertions Bc) are proved in the same manher as the

corresponding assertions sbout ﬁhe eitension '(Y,Dl) —_—

(a(Y),Da) * in Lemma 10, and we need not repeat the arguments.

6) We I‘inallly consider the assertion d). It readily follows
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frém (87) that a bounded operator Y isin C_ (W ) 1if and -
only if Y.¥ ¥, e C (W) for all Y, ¥, e AW ). We can
restate this as follows. The opérator X, 1is ‘in> (cha(wL) J)z
if and only if XX X, e C_(Wp) for all X;, X, e AWg),

An operator 'Xw which satisfies the above condition 1s thus
included in Cw(wR)‘ By the same reascning as in the proof of
(81) in Lemma 11 we show that [ X, .TXWJ] R =0 for all

W
step 3) in the present proof we conclude that [ X, .waJ] = 0,

X e ‘A(WR)’ X, € (ché(wL) J)Z , By the same reasoning as in’

which means that C.. (W.)%2c AW,)" = A(W,.)% . Since the set
we' L R L

A ) 1is trivielly included in C_ (Wy) 1t follovs that the
two sets are equal, as asserted.,

This completes the proof of the theorem. We postpone the
discussion of this result until after the next theorem.
' Theorem 4: Let the notation be as in Theorem 3 (.0., a8 in De-
finition 3 and Lemma 10), o , o |

a) The following six conditions _afe equivalen t:

'1)‘

'_'.S(v‘lﬁ) c Gw)? -~ (s9%)
| Clig) = Clw)? o (89b) !
3) Guip) C e, lig) T (8se)

4) @ 1s a cyclic vector for C(Wg).
5) 2 is a separating vector for g(wn').
6) Gg)e €D, , and
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%

VAR) XQ = JTX¥Q | | (894)

for all X ¢ S(WR).

b) If thesel conditioné are satisfied, then
Aglig) = Clig) = C (Wp) = §lwg) ~ (90)

The von Neumann-algebra —.AO(WR) satisfies the premiées of
part A) of The orem 3, and all the conclusions of that theorem
apply. In parficular .AO(WR) 1s a factor with @ as a cyclic
'and sepafating vector. It is locally and TCP-symme trically
associated with vWR, and it satisfies the condition of duality.
Proof: 1) We first note 1;h9t since Q(WR).Q 1s dense by part e)
~of Lemma 9, the relations (90) imply that '.AO(WR) satisfies -
' the premises of part A) of Theorem 3, and it then follows tri-
’S vially from that theorem that the six conditions in part a).'of :
| .‘.,the present theorem are satisfied. ‘
:_2) Since ("(WL)':1 = ;C(WR) the condition (89a), ih view of (78b)
._{n Lemma 11, at once implies the conditions (90). Similarly (.8.9b)
implies}‘(QO). The condition (89¢) implies; in view of .(78b), that:«
CyWg ) = (} (WR) » and hence Cw(wR) is a ‘von. Neumann algebra,
which, by the definition of ¢40(wé) must be equal to A, (Wg).
Since this von Neumann algebra now .has. L2 _aé a cyclic vector
it readily follou.rsA from Theorem 3 that all the conditions (90)
hold. . | B | |
,. 3) The conditions 4) and §) in p_art.a)‘of the theorem are obvious=-
1y equivalent. In condition 4) holds, then .A(WR) = C(Wg) sa-

tisfies the premises of part B) of Theorem 3, and it follows tri-
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vially that the conditions (90) are satisfied,

4) If condition 6) is satisfied 1t follows from Theorem 2 in

Bw' I 'th‘at Jg(wR) J = g(wn)' » which implies (89p), and
hence (90). This eompletes the proof'.

' As the symbolism in Theorems 3 and 4, and in the preceeding

- Lermas, might appear bewildering we shall now discuss the situa=-
tion in plain English., Part b) of Theorem 4 describes what we
regard as highly desirabdble properties of a quantum field

,theory, and these = o _ |
properties are thus implied by either one of the six equivalent _ :
'.conditions in part a). We consider the first of these, namely
the relation (89a). The von Neumann algebra S(WR) is"gene-‘f
rated"y the quentum fields ‘(yu[r] »D;) with the support

of f 1in the right wedge Wp » and g(WL) is defined ana-
logously. The condition (89a) is simply the condition that

these algebras are l-é.@.?_ls i.0., One is contained in the qua‘si-.
ccmmutant of the other. These algebras are always sufficiently '
"large" in the sense that each one of them has the vacuum vector ‘
as a cyclic vector,_ and according to (78) in Lemma 11 it is -
always the case that the qeaeicommutant of either or;e is con-
tained in the other. We do not kriow, however, whether 6899;)' holds
‘generally; in a particuler field theoary it could be the case

that these algebras are "too large" in the sense that they fail
to be locally associated with the wedges. The theorem now shows
that the condition that the algebra S(WR) not be too large in

the above sense 1s precisely the condition that Q 1is a sepa-
rating vector for g(wR), i.e., the condition that g(wR)



(63)

does not contain any nonzero operators which amnihilate the
vacuum vec tor.

The slgebra C(Wgp) ~1is defined as a "strong" quasicommutant

of the field operators (9".[1‘] »D9), with supp(f) C WL,' 1.0,
' C(WR) is precisely equal to the set of all bounded opera tors
which commute with the closures of the operators (yu[f] ’Dl)z’
‘vsupp(f) C Wy , in the strong sense of von Neumann. 'I'h_é algebra
C(wR) is then trivially equal to the quasicommutant of S(WL).
vAcvcording to Lemma 11 the algebfa C(W ) is always locallz
associated with WR, and the association is furthermore TCP=

symmetric. These circumstances corre spond to a well-known re-
‘sult of Borchers which we referred to earlier.ls) The

algebra C(Wp) is a reasonable choice for "the algsbra of

" unless it so

B all bound}ed‘ operators locally associ;ted ﬁith WR
hapﬁéns that this algebra is "too small™ in the sense that it
| fails to satisfy the duality condition..B'y the 'theore_m the al-
. gebra 1is .too small in the above sense if and only if i£ doe s not
lhave_ the vacuum vector as a cyclic veétor, i.é;, if and only:' if

)

C(W )R is a proper subspace of the Hilbert Space \H

We ha ve already discussed (following Lemma 10) the possible
physical interpretation of the set C (WR)’ -

defined (in Definition :5) as the "weak quasicommutant” of all
the operators in (P(WL) Now it is interesting to note that by
I)emma 11‘, the wedge-regi‘on WR has the special property t_hat
_C'w(wR,) is included in g(wR)'. This result, which wé derived
on the basis of Theorem 1, is not a triviality in our opinion.
" We dlso know that an analogous inclusion relation does not hold

for arbitrary open ‘ré'gions R, It is furthermore interesting to
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note that, by Theorem 4, the seemingly weak condition
v g(wR)c cw(wR) s1.6., the condition that the operators in

g(wR) commute at 1ee_'\ét in the weak sense of (64) with the

op'erétors (yu[r] ,_Dl)z for whiqh supp(f) C Wy » in fact

implies that C(Wp) = C_(Wp) = Gig), 1ee., that C, (Wg)

is a von Neumann algebra, identical with S(WR), and that

g(wR)' i'é. locally associated with Wp and satisfies the

condition of duality. This result is abo ultimately based on .

Theorem 1, and it doe s not seem.to fo_llow from some more tri-

~ vial considerations.

| We do not know at this time whether C,Wg) 1is always a

‘von N_eumann algebra, i.e., closed under multiplicatién, without

further conditions on the quantum fieuald's. The set C"(WR) is

trivially equal to the von Neumann algebra C(WR) ir

xT,0)* = (x,0)™ for a1 (X,D;) ¢ L(W,). One might thus

say that the relation C_(Wp) # C(Wg) (if there are quantum

field théoi-ies for which this is the case) in some sense reflects f

the’inadequacy of the domain Dl for the definiti.on.of the (

field operators. Let us here note that with our pre-éent under-

standihg of the situation the equality C"(.WR) = C(WR) does

not by itself seem to imply the duality conditionv.v In particular

~we have not shown that it might not héppen that Cw(wR) con-

sists of multiples of the identity only. o o R
The sixth condition in part a) of Theorem 4 is of a "techni=

cal" nature, withbut any immediate physical interpretation.. We

stated this condition because its form suggests s possible direct
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-connection with Theorem 1. We note, for instance, that in the
very speoial case that the vacuum vector is an ahelytic vec tor
for the fleld operators (:Pu{f] R Di) (as is the case for a
free fie1d) then the sixth condition follows trivislly from
the facts in Theorem 1. We are not, however, here conjectufing
that the sixth condition follows in general from Theorem 1

alone.

Even if the premises of Theorem 4 are not satisfied it is

conceivable, according to Theorem 3, that the quantum filelds

nevertheless have extensions which ere affiliated to von
Neumann algebras which satisfy a duality condition, at least
for the wedge-regions in W .1t is easily seen that'if
(X, Dl) — (eR(X),DlR) is aﬁ extension of a set of field
operators which satisfies the condition (86¢c), then the ﬁeak

quasicommutant (relative to DlR) of the set of extended ope-

' ,& rators is necessarily contained in the weak qoasicommutant of-‘

\the original set. The" premises in part B) of Theorem 3 thus'
! _

'seem to us to express minimal conditions which a "ocal® alge-
bra "generated" by the fields must satisfy., |

In Sec. VI of BW I we considered four particular conditions

~on the_quantum field, called Conditions I-IV, which were shown

. | '
. to imply the duality condition for the wedge-regions. We shall

\hpt state the generalizations of these condltions here, but
we assert‘that our earlier Conditions I, II and IV:trivially

imply the premises of Theorem 4, and that our Condition 111
implies the premises of part B) of Theorem 3.
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'VI. The duality condition for von Neumann alggbras assoéiated(

with double cones and their causal complements.

In this‘éeétioh we shall genefalize the discussion in Sec. VII
of BW I. We shéll thus consider the construction of von Neumann
.algebras 16ca11y éssdciated with a particular fémily of regions,
| namely double cones and théir causal complements, in terms of
a von Neumann algebra .A(WR) locally associated with W,. The

scheme is the same as in BW I,

Definition 4: Let the von Neumann algebra A (Wp) be locally
associated with Wg, in the sense of Definition 2,

.a) For.any We Mf ,.i.e., for any wedge-region W bounded by
two noh-pafallel'charac£eristic planes, we define'q von Neumann

el gebra A (W) by

AMOWE) = UM AME) UM, anyreF (1)
b) For any two points x, snd x, in Minkowski spaéé
such that x? € V.(x) (where V,(xy) 1is the forwnrd light {:
cone with x, as apex), we define the double cone C = C(xq,x,)
oy |

Clxpxy) = Vy(x) O V_(x5) (02)

where V (x2) is the backward 1ight cone with x2 as apex. The /
double .cones so defined are thus open and nonempty. We denote
by 1)0 the set of all double cones.

Fof any double cone C we define a von Neumenn algebra

B(C) vy



B@E =nidw) |wew , woc) (93)

c)‘For any C ¢ 'bc we define the von Neumann algebra A(Eo)
by o

'A(6°)%{,.A(w) |wew, wcb"’}f | (94)

d) A set of von Neumann algebras, defined as above, shall be

calléd a local AB=gsystem.

It is easily seen that the definition in part a) above is
consi.stent, l.e., that the algebras defined by the right-hand
side of (91) for two different A',A", are equal whenever

A(')\')WR = A()‘")WR . We remark here that, as in BW I, we profer

to regsrd B(G) es associated with the closed set C ,

\ and hence the above notation.

\ We shall next state a theorem corresponding to Theorem b

» and part of Theorem 6 in BW I.

Theorem 5: Given a local AB;system, defined as in Definition 4

~in terms of a von Neumann algebra -.A(WR) locally associated
| "\ with Wp. Thent

‘\.
/I)

a) The algebras in the AB-system satisfy the conditions of
'\covariance and isoton y 1ee., 1ir Q(R) denotes .A(R) or

/_,,"/,'B(R)', with the appropriate restriction on R, then the condi=-

ti"onsv(65a) and (65¢) hold. Furthermore,

BE) c A C ACS (95)
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for all W eW , €y, C, & D, such that _clc WCCl .

b) The algebras B(C) are local, in the sense that

B c BE)YT 3 | " (o6a)

'for any Cl, Co. € ,bc , such that C'l‘C'; Czc'. Furthermore,

"33("5)'q o A(C®) (96b)

for any C ¢ .bc.'

¢ ) The mapping W — A(W) is continuous from the outside
in the sense that . |

AW = Ay | wgew , youw i} . (97a)
and it 1s continuous from the inside in the sense that .(
4 . | , - o w | N
Ay ={Aw) |weW , Wcv | (om) %
The mapping C — 33(6) is continuous from the outside in [\

\l-

the sense that v o

BE@) = iy | e Dy ccocyt (970) *

Y

The mapping C®—» A(C®) 1s continuous from the inside in
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the sense that

AC®) = { AG®) leye by, 281" (ora)

d) If the algebra A(w ) sétisfies, in addition,‘ the condition
of TCP-symetry, as stated in Definition 2, then the AB-system

is TCP=symmetric in the sense that
6, AW 8570 = AL, 6, B(C) 6, L= B(-0)

0, A(E%) 0,70 = A(E®) - | (98

for all W eW", Ce .b , and vwhere -R ‘=4{.x I -x ¢ R} |
for any subset R of Minkowski space. /
o) If the algebra .A(W ) satisfies, in additlon, the condition
of dx:ality; as stated in Definition 2, then the algebras B(C)
sétisfy a condition of duality in the sense that :

@ = AC) (99)

for any C € Dy
The assertions a)-d) in the theorem correspond to Theorem 6
in BW I, and the assertion e) to the assertion a.) in Theorem

6 in BW I. The above assertions are proved by a very trivial

: modifi_ca'tion of the reasoning whereby we proved the correspori-
ding agsertions‘ in BW I, and we do not feel that it is necessafy
to repeat the arguments here. The modifications, of course, have

tﬁét"do with the circumstance that the locality conditions in
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(o)

the present theorem refer to the notion of a quasicommui:ant,
rather than to the notion of a commutant as in BW I’,'
The above theorem is of interest because it shows how a

"wedge-algebra" .A(WR) with physically desirable properties

gives rise to a system of algebras(associated with othe;"regiona)
with physically desirable properties, su’cl; as covariance, isd-
tony, TCP-symmetry and dualit';y.. In our study of a general quan-
tum field theory the crux of the matt;ef is thus to establish

the existence of an algebra -A(WR) which is'l_ocal.ly assoclated
with Wg, and which satisfies the conditions of TCP-symmetry .
and‘duality. .

Now i.t should be noted that riothihg sald so far guarantees - =
that B((-!), for some particular C ¢ 'bd s contains other ele=-
ments than multiples of the- identity. In a physically s,at_israo-
tory "local" theory it must clearly be the case that at least
some of the algebras .33(6) are nontrivial. In a quantum fielfd
theory one might in fact demand that all the algebras B(a) |
~are nontrk-ivial, and furthermore one might rd'emand‘ that the alge-~ ,
bras 13(5) associated with all c C 'C.oe , for some C_, )
should generate the algebra .4(500). We shall :;.how that this :

is in fact the case if the quantum fields satisfy the condi-
tions in part a) of Theorem 4. We do not have 8 corresponding !
re_sult for fields which merely se tisfy the premiseé of |
‘Theorem 3. The situation ig the latter case is complicated by .

the fact that the extensions of the fleld operators described
in Theorem 3 depend on the region with which the operators are

associasted, and to clarify the situation it would be necessary

r



to investigate the relationship between the domains of the .
extensions for different regions. This we have not done, and
we shall therefore restrict our considerations to the case when

the premises of Theorem 4 are satisfied. WevnOt,e, hoﬁeVer, that

we do obtain a satisfactory local theory if the fields sa tisfy -
' the premises of Theorem 3, and some additional éondition_ which
- guarantees that B(E)'.Q . 1s dense. We refer here to the

assertions b) and d) in Theorem 6 in BW I, which can readily be
generalized to the present situation. It is of interest to state
| the generalization of the first one of thesé assertipns as
follows, ' ;
Theorem 6: Let the von Neumann algebra .A(WR) sa ti sfy the
. pfemises of Theorem b, and let a local AB-system be definéd in
teﬁns of ‘A.(WR) as in Definition 4. Let .A(WR) 'sa.tisfy the

;'condition of duality, as well as the additional condition that

- XQ eD, , VUM XQ =73x"Q (100

= /; | S
© fifor a1l X e A(Wg). |
.» If there exists a double cone C, such that 33(60)9 is

L

¢ .
‘dense in the Hilbert space X , thens

' ‘ . - - - oI
VAR = {80 [ced, » CC C_lé} ~ (101a)

for every C, ¢ ‘bo s and |
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Aw) = {B(Aao)l A e f‘o ’ AEOCW }'ﬂ- 5 (101b)

AE°) = | B(ACy) | A e L, .,AEO.CEI",}'_"‘ (101c) :
er .e‘vei'y ..01 8 ‘bc’ W e W ° If‘furthermore' 60 C WR-,.__the_n |
- Alg) = {V(t)'B(EO)' vyt | tenrt }" ~(1014)

'i‘hese aséertior;s are proved by the same rea soning as in our
proof of thé corresponding assertions in Theorem 6 in BV I, and
we shall not repeat the arguments. We note here that the premi=-
ses of the theorem at once imply that £ 1is a cyclic and se-
perating vectbr for ,A(WR), as well aé .for 33(56)‘.' We further-
more note thaﬁ ‘the condition. (100) is not required for tﬁe con=
clusion in part e) of Theorem b. .It.is, hdwever, essential for 8
the present theorem, and in parti.cular for the conclusion (101d). ( :

We refer here to our discussion in Sec. V of BW I of the

: .-l‘\
connection between our considerations and the Tomita-Takesaki “\\ \\
theory of modular Hilbert algebras, 16) The relation (101d) can 4 1\
thus be understood with reference to the fact that because of '!" A

(100) the groﬁp { V,(t.)v | t e R1} 1s precisely the modular
aufomorphism group for ‘A(WR)' | |

In preparation for Theorem 7 we pfove a 1émma about the
nature of the weak quasicommutent Cw(R) in the special case

that R 18 the closure of a double cone in 'bc‘
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(73)

¢, =n{c,m| welW

, w>G } |  (102)

Proof. 1) Let 'C:l denote the set defined by the right side

of (102).,1It is at once obvious that cw(?:') C Ci , andwe thus

have to prove that if X e C,; , then Xee C ().

2) Let p e Iy and let f(x) e H(R*) such that

[y

supp(f) R, C C° « The support R, of the test function f

‘1s thus a compact subset of the open set c . For any x we

denote by b(x;p) the open ball of radius p > O centered

at x (where Minkowski space is regarded as a Euclidean épace

with Cartesian coordinates x
x e R, we can select a p(x)

. for some W e W  sueh that

A

o

>

W

finite set {xk |xk eR_, X =

(x ,xz,xs,x4) )o Now, for each

0 such that b(x;2p(x)) C W',v
C C°. The set {b(x;p(x))l xe Rol}

.',of open balls covers Ro s and since Ro is compact this open

covering c‘ontains a finite subcovering. There thus exists a

1,0005n ) of points, and a set

. f,{ w | Wk € W’ p k = 1,...,n} of wedges, such that

L R QU blmelm)) | k= Lean } (102)

, 'b(xk;2p.(xk)) c w cg®

s K= 1,005 (105b)

5In view of (103a) there then exists a set

{fsk(x) | & ¢ -b(R4) » k=1,.0.,n} of functions such that

supp(gk) C b(x_32p(x.)) for Kk =1,..0,n , and
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n .

Z gelx) =1 , a1l xe R, ' (103c)
k=1 - ‘
Let (Y,Dy) = (v [r] »D,) and (Y,,D,) = (y [fgk] sD;)

for k—lgooo’n e We then haw
(¥,D,) = Z( 0 (w03a)

where (Yk,D ) € £(Wk) . If now X e Ci » then X ¢ C (ch)
and hence X commutes in the weak sense (64) with ( 1)

K= 1,e00pn .‘It follows, in view of (193d) that
<(Y’)z¢ Ixsb) = (x*¢ |¥2¥ ) (1020)

for all ¢,¢ e Dy.

3) For any X ¢ C the relation (103e) thus holds for all
(.Y’Dl) = (yu[f] ’Dl) e .C(Cc such that supp(f) is compact.
The set .}b(R‘?) is dense in S(R4) in the ‘topology of the
space of te’mvpevred test functions, and since the qixantum fields
are operator-valued tempered distributions it readily» follows _
that (103e) holds for all (Y, 1) = (v [1‘] ,Dl) € .C(CG .S\jch
that £ ¢ 8(RY), supp(f)C C°, 1.e., for a1l elements of
£(C°%). It then follows, in view of Lemma 9, part ¢), that
X e C (6) This, in effe‘ct; completes tho proof of the Lemma. |

" We are now prepared to present the main result of this section. 3

Theorem 7: Let the quantum fields be such that the condi tions

(
{
v

in part a) of Theorem 4 are satisfied, l.e., the von Neumann

algebra -A(WR) = 'AO(wR) . satisfies the relations ', -

Ag) = Clwg) = G (Wp) =  GWp) A104)
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and hence the algebra is 1oca'11y and TCP-‘symmetricélljr a’ésocia-
~ ted with Wee Fur thermore v.A(WR) satisfies the'condi‘t‘ioﬁ of |
dualit.,y,. and the conditions (100). Let a iocal AB-_-sysbet-n be con-
'structed from A(W ), as in Definition 4. Then: :
a) The algebra A(W ) satisfies all the general and special pre-
mises of Theorems b and 6, and all the conclusions of these theo=-
rems apply. In particulaf B(EO)Q ~ 1s dense for any Cj ¢ 'bc
Furthermdré, for any Cd € 'bc such that 60 C. Wgs

Avg) - {V(£) G (cy) ~v(1-,)‘1 K ¢ &b }* ‘ ~ (105a)
.A(é‘l") = { L;(Ac(5) l’ Aely , -A‘éoc51° }"f . (108b)
b) For any. VCe .bc; | |
C(C) c c (€) = B(C) , () "c B(c) | - | (106a)
cw(é'c): C(Ec).:) 3(6°) , 9(60) > ;A(aoﬁ)v\ . ’.‘(i'oeb)

¢) With the notation of Lemma 10, .A (c) C,(C) = B(c) for
all C e .b . For any such C the operators in P(c® ) have
~extensions constructed as in part c) of Lemma 10, and these ex-
té'nsions have thé properties described in the iem., In particu-
lar'-vthe closures and adjoints of the-exténded operators :are
af}filiated' to the von Neumann algebra‘ .A(Ec). |

d) With the notation of Lemma 10, C_(3°)D A,(E%) D C(E°)
for all Ce b . For any such C the operators in P(C) have

extensions. constructed as in part c¢) of Lemma 10, arid these ex-
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tensions have the properties described in the lemma. In particu=-
lar the closures and adjoints of the extended operators aré_ |

affiliated to the von Neumann algebra Ao(6°)q C 9(5) C B((':,.
Proof:1)The algebra A(WR) trivially satisfies the general pre-

mises of Theorem 5. From the construction of the AB-system, and

from (104), it follows, in view of Lemma 12, that CW(E) = B(C).

Since the mapping R‘—’Q(R) satisfies the condition of iso=-
tony, the inclusion relation at right in (106a) follows from
(104). The remaining relations (106a) and (106b) are then trie
vial, ) _

A2) Since, by Lemma 9, 9(0)9 is dense for any C ¢ ‘bc it
follows‘.that B(C)2 1s dense, ss asse:rj'ce.d: in paft_ é.) of the
theorem. Let now Co e, and _60 C Wg. Let 'AR' denote the
von Neumann algebra defined by the right mémbe'r in (106a), The
vector £ is then a cyclic vector for '.AR , and in view of '
the consfruction we have V(t) ARV(t)-lv = ‘AR for all real t,.
Furthermore it is trivially the case that J‘(WR) ) ‘AR . It
ther follows from Theorem 2 1h BW I that "A(WR) = ‘AR s 88
.asserted in (106a). The relation (106b) follows trivially from
the relation (106a). _ | o

3) The assertions ¢) and d) of thé theorem are trivial in
view of Lemr‘na‘lO.'.’ o |

As we see from this tﬁeorem, a bverj Satisi‘actory "lécal"
theory results if the quantum fields satisfy the premiées of
Theorem 4, i,e.,, anj one of the six conditions in part a) of
that theorem. There' thus Qxisté a local AB-system which satis-

fies the condition of TCP-symmetry, and the condition of

TN
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Bl
B
&5

duality 33(6)@' = .A(Ec) . Furthermoré, for any C e "bo , the
von Negmanh algébra 33(5) has 2 as a cyclic and separating
yggtép.mTheAré}apipns (101a)-(io1d)‘hold; which means that the
sef_qf local operétorsvassoqiated with the bounded regibns c
is sﬁfficiently 1arge.in the sense that tbese operators generate
all the algebras of.thé AB-system, as described by the re-
lations (lbla)-(101d). Now it.is interesting to note that the
algebra 33(6) is in fact equal to thé weak. qua sicommu‘tantv.
(3*(5) of the‘set of all field operators of the form |
A‘(gpg(.f] ’Dl) » where f eTS(.R4), supp(f) C_.ac . We thus have
a conceptually simple prescription for "finding" the algebras
33(5). provided that it has first been established that the
quantum fieldé dofsatisfy‘the_premises of Theorem 4.
We note_herévﬁhat this is the case under what we called
' vvCondition I in BW I, because this condition says that C(WR).Q
is dense. It follows thatlall<the canclusions in Théofem'? hdld
under our earlief Condition I. We overlooked this:fact in our
previouS'papqr, | | | |
We infer from the work of Landau X7) that G(@) 1isin

general smaller than '33(5). The study of Landau is concerned
with generalized free fields, in whicﬁ case we have the furthef
simplification that €. (R) = C(R) for any sgbset R of M. We
then have A(C®) = G(C®) ana B(C) = C(T), but 1t can well
happen that - 9(6-) # B(C).

We conClﬁde.bj‘stating a theorem abbut local internal symme-

' trieé.
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Theorem 8: Let .A(WR) be a von Neumann algebra 1bcally and
TCP-symmetrically associated with WR. It is assumed that',¢4(wR)
satisfieé~thefc§nditioh of duality, and that furthermore

X2 Cp, -, VEm)xQ = Jx*Q o (107)
for all X e .A(W ). Let a local AB-system be constructed in

terms of ,4(w ) as in Definition 4.

Let G be a unitary>0perator such that

¢ =2 , cAM) Gt = Aw), entweW  (108a)
Thén:
a) The operator G commutes with the TCE—transformation,_and
with all Poincaré transformations, i.e.,

0t 6 =0 , TG tmt=e , 811 2 eq (108b)

b) For all doublé-cbnes’C;

oB(@et = BE) , 0ACTI= AG) (108

¢) The set of all unitary operators G which satisfy the condi-

tions (108a) forms a group, the group of all locsl internal

symmetries,

‘This theorem is proved by the same reasoning as in our proof
of the corresponding Thearem 7 in BW I, and it is not nece ssary

to repeat the arguments here. We note here that the conclusions
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of the theorem do not foilow (as far as we know) merely from

the assumptions that J4(WR) satisfies the condition of duality
and is locélly and TCP-symmetrically asséciated with WR. Our
‘prbof in BW I depends on the specific conditions (107), which

presumably characterize local von Neumann algebras in a quantum
18)

field theory. Without the conditions (107) it can be shown
that G  commutes with allbtranslations,'but it appears that |
fﬁrthef assﬁmptions are necessary for'the'conclusion t&at ¢

also commutes with homogensous Loreht? transformations., 19) _
We,. fihaliy note .that the "group of all local internal'sym'me-

‘tries," as defined above, will in general include superselection

‘symmetries with no observable physical effects,
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LEGAL NOTICE

This report was prepared as an account of work sponsored by the
United States Government. Neither the United States nor the United
States Energy Research and Development Administration, nor any of
their employees, nor any of their contractors, subcontractors, or
their employees, makes any warranty, express or implied, or assumes
any legal liability or responsibility for the accuracy, completeness
or usefulness of any information, apparatus, product or process
disclosed, or represents that its use would not infringe privately
owned rights.
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