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On the duality condition for quantum fields. 

*)t) Joseph J. Bisognano 

Lawrence Berkeley Laboratory 

University of California 

Berkele,Y, California 94720 

and 

Eyvind H. Wichmann **) 

Department of Physics 
l 

University of California 

Berkeley, California 94720 

Abstract. 
I . 

A general quantum field theory is considered, in which the 

fields are assumed to be operator-valued tempered distributions. 

The system of fields may include any number of boson fields and 

fermion fields. A theorem which relates 'certain complex Lorentz 

transformations to the TCP-transformation is stated and proved • 

With reference to this theorem duality conditions are considered, 

and it is shown that such conditions hold under various physi­

cally rea sonable a ssumptions about the fields. Extensions of the 

algebras of field operators are discussed with reference to the 

duality conditions. Local internal symmetries are. discussed, and 

it is shown that these ,commute with the Poincare group and with 

the TCP-transforma tion. 

Submitted for publication to the Journal of Mathematical Physics. 
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10 Introduction. 

In an earlier publication 1), hereaf'ter ref'erred to as: BW I, 

the authors have discussed the ~uality condition f'or a Hermitian 

scalar field. It is the purpose of' the present paper to extend 

the results in BW I to a general f'ield theory, within the frame­

work described in the monographs by Streater and Wightman 2), 

and by Jost 3). We thus consider a theory in which there appears 

an arbitrary set of' local and relatively local spinor- and 

tensor fields. Each field hes a finite number of components, 

and is assumed to be an operator-valued tempered distribution. 

In contrast to the situation in BW I we now have to consider 

fermion fields, and their characteristic anticommutation rela­

tions, mich necessitates an obvious1modification in the defi­

nitions of the duality conditions. 

As we shall see,. however, much of the reaaoning in BW I 

applies in almost unchanged f'orm to the. issues in the present 

study. When this is the case we shall rely heavily on BW I, 

and not repeat arguments already given in that paper. The nota­

tion and terminology in BW I will be followed whenever appli­

cable. We also refer to BW I for additional references to re-

lated worlt. 

In Sec. II we review some aspects of the geometry of Min­

kowski space, andwe also review some well-known facts about 

the quantum mechanical Poincare group and its complex exten­

sion. In Sec. III we state our assumptions about the quantum 

fields, which are more or less standard. In these two sections 

we also explain the notation whioh we follow in the subsequent 

• • 
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discussion. 
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The locality condition for the quantum fields is expressed 

in terms of the familiar (normal) commutation- and -
anticommutatlon relations. For our purposes it would be extre-

mely cumbersome to have to consider commutation- and anticommu­

tation relations simultaneously, and we therefore find it advan­

tageous to restate the locality conditions in terms of the va-
\ 

nishing of certain commutators. The simple device through 

which this can be achieved is explained in Lemma 1 with refe­

rence to the field operators,.and more generally, in Theorem 2 

in Sec. V. 

In Sec. IV we 'discuss the relationship between complex Lo­

rentz transformations and the TOp-transformation. The cons ide-

rations are analogous to the considerations in Secs. III and IV 

in BW I, except that we now deal with spinor- and tensor fields 

rather than with a single scalar field as in BW I. The main re­

'sult in this section is presented in Theorem lj this theorem 

is analogous to Theorem 1 in BW I. The form of this theorem is 

hardly surprising, in view of the analogous result in BW I, and 

some readers might feel that it would have been enough just to 

state the theorem. We felt, however, that an outline of the rea-

soning was in order, and that some of the cumbersome details 

should be presented explicitly in writing and not left entirely 

to the imagination of the reader. 

Sec. V in BW I was devoted to a discussion of some algebraic 
, 

questions relating to Theorem 1. This discussion applies as 

such to the present study, and we do not repeat it here. 

In Sec. ,v of the present paper we discuss the duality condi-
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tion for the wedge regions WR and WL ' where WR = 

I x I x 3 > Ix4\ I and WL = {x. I x 3 
< -I x41 } • This discussion 

is analogous to the discussion in Sec. VI . in BW I. The issue 

is the following. We wish to find two von Neumann algebra s 

A(WR) and A(wL ) such that A(WR) can be regarded as lo-

cally a ssocia ted wi th WR and A(WL) oan be regarded a s lo-

cally associa ted wi th WL • Furthermore the association should 

be consi stent wi th the well-known TCP-symmetry of the quantum 

fields. These notions are defined preoisely in Definition 2 in 

Sec. V. If there are no fermion fields, then one aspect of looa­

li ty is tha t .A (WR) is conta ined in the commutant ~ (WL)' 

of ACWL), and the condition of duality; is tha t ~ (WR) = .ACWL)' .. 

In a theory in which fermion fields do occur these conditions 

have to be modified in an obvious way. The oondition of duality 

is now tha t .A(WR) = ( z A(wL) Z·l)' , where Z. is the uni-

tary operator defined by Z = (I + iUO)/(l+i) in terms of the 

unitary oper@tor Uo whioh represents a rotation by angle 2~ 

about any axis. In this paper we employ the notation .A(WL)q =. 

(Z A(WL)Z-l)' , an~ we call .A(WL)q the guasioommutant of 

the algebra A(WL). The modified conditions of locality 

and duality are thus stated in terms of the notion of a quasi­

commutant. We note here that the seoond iterated quasicommutant 

is equal to the second iterated commutant, and that the quasi­

commutant is equal to the oommutant whenever Uo = I, and 

hence Z = I. The reader who feels temporarily bewildered by the 

appearance of the superscript q in Secs. V and VI might find 

it helpful to ignore, at first, the distinotion between a quasi-

• Co 
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commutant and a commutant, and hence to read the superscript q 

as the familiar von Neumann prime. This corresponds to the spe­

cial case of no fermion fields. We feel that the modifications 

occa sioned by the presence of fermion fields are really utterly 

trivial, although perhaps slightly distractive at first. 

In a quantum field theory the local von Neumann algebras must 

be appropriately related to the field operators. Let f(wR ) de­

note the algebra of (in general unbounded) operators constructed 

from fields averaged wi'th test func~ions with support 1n WR ' and 

let q.> (W
L

) be analogously defined. A na tura 1 rela tionship bet-

ween .A (WR) and . q.> CWR ) is tha t the operators in the latter 

algebra shall have closed extensions affiliated to .,4CWR), wi~ 

the analogous relationship between A(wL) and fCWL). We have 

~ be en a ble to sh ow tha t von Neuma nn a 1ge bra s .A(WR) and 

.A(WL) with the above properties do exist for a general field 

theory, i.e., without further assumptions about the fields 

which go beyond the usual minimal assumptions •. Hence we consider 
\ 

some special condi tions on the fields which guarantee the exis­

tence of algebras ,.ACWR) and .A(WL ) with physically satis­

i'ectory properties. Our conditions on the i'ields are not as 

such physically unreasonable, but it would clearly be desirable 

to se,ttle the question ~i' whether they are in i'act necessary. 

The main results in Sec. V are presented in Theorem 3 and 4. 

We'riote here tha t the se re sul ts, in thespecia 1 case of a single . , 

Hermit'ian scalar field, are considerably stronger than our 

results in BW I. 

In Sec. VI we discuss the construction of ~ocal von Neumann 
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-algebra s a ssoc ia ted with other re gions than wedge regions IOn -

terms of' algebras associated \-lith WR · and WL ,.andwe show 

that the extended system of' local algebras satisf'y a condition 

of' dua li ty if' the algebra s .A (WR) a nd .A (WL) do. For rea sons 

of' simplicity we restrict our considerations to very special 

regions: double cones and their causal complements. Our results 

concerning the properties of' the extended system of' algebras in 

general are sta.ted in Theorems 5 and 6. Theorem 7 describes the 

situation under specif'ic assumptions ~bout the f'ields. The?!s­

cussion in Sec. VI is analogous to the discussion in Sec. VII 

in BW I, but the results in the present paper are considerably 

stronger than our earlier results. The paper concludes with· 

Theorem 8, concerning local internal symmetries, in which we 
, 

note that such symmetries commute with all Poincare transf'orma-

tions and with the TCP-transf'ormation. 

• 

, 
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II. Geometrical preliminaries. About the quantum mechanical 

Poincare group • 

Mink ow ski . space .M is parametrized by the custDmary Car-

te sian c oordina te s l 2 3 4 " x = (x ,x ,x ,x ) • The Lorentz "metric. 

is so defined that x.y = x~4 _. xlyl _ x2y2 _ x3y 3. The ele-

-ments A = A(M,y) of the proper Poincare group Lo are para-

metrized by a four-by-four Lorentz rna trix M, and a real 

four-vector y, such that the image Ax of a point x e.M 

-under any A e Lo is given by AX = .~(M,y) x = Mx + '1 0 The 

iinage of any subset R of ~ under' A· is denoted AR. 

The group of all four-by-four Lorentz matrices M, i.e., the 

group of all proper homogeneous Lorentz transformations, is de­

noted Lo. A rotation in Lo by angle Q about the unit vector 

! is denoted R(~,Q). We denote by V(!3,t) the velocity trans­

forms tion (in Lo) in the 3-direction gi van ~'1 

1 ., 0 , 0 , 0 

0 0 , 1 , 0 , .. 
V(!3' t) = 

... -..., 
(ll ;.f' "-, 

0 cosh( t) sfnh(t) o· , , ~ 

O. , 0 , sinh(t) , cosh(t) 

We, defiJ)8 a "righ~t wedge" WR •. and a "left wedge tiWL ' as 

the following open subsets of Minkowski space: 

I". 
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j' 

These two regions are bounded by two characteristic planes 

'~hose intersection is' the 2-plane I x I x3 
:I x4 = 0 } • We 

note t~at the one-parameter Abelian group of velocity transforma-

tions 'V(!3,t) , t real, maps WR onto itself and WL onto 

itself. 

We next consider an involutory mapping x -. JX of Minkowski· 

space onto itself, defined by 

where R(~3''Jt) denotes the rotation by angle 'Jt about the 3-axis. 

We see tha t J maps Wn " onto WL I and the mapping can be des­

cribed as a reflection iq the common nedge~ t x I x 3= x4 = 0 ~ , 

of the pair of, wedges, WR and WLe 

We note that V(~3,t), as given in (1), is an entire analytic 

function of t. It is easily seen that 

( 4) 

,....., 
....... For any sub,set R of Minkowski space ~' we define the 

, '\ 

causal complement' RC of R by 
I 

RC =t xl (x-y).(x-y) < 0, all y e R 1 (6) 

We note that with this definition 

where the bar denotes ,the closure. Two open regions Rl and R2 

such that R C - R'o 1 - 2 and ,- form a, pair of 

,. 
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causally complementary open regions. Among such pairs the pair 

WR and WL is distinguished by the simple geometric rela tionships 

described above. Any pair of wedge-regions bounded by two non­

parall~l characteristic planes are distinguished in the same 

sense, and any such pair is in fact Poincare-equivalent to the 

-for some A e L • o 
We shall here define W as the set of all (open) wedge-regions 

bounded by two intersecting characteristic planes, i.e., 

(6) 

Although we shall at first be explicitly concerned with WR it 

is clear tha t analogous considera tions apply to any W e W • 

The regions WR and WL have further distinguishing properties, 

which are of crucial importance for our 'discussion, namely the 

following. Let t = tr + iti ' with t r , ti real. If x e WR, 
then the complex four-vec tor z( t) = V(~3' t)x is an element of 

the forward imaginary tube in 04,' i.e., Im(z(t» e V+ ' for all 

complex t in the open strip 0 < ti ~ ~ , and z(t) is in the 

closure of the forward imaginary tube for all t in the closed 
r-... 

, strip . 0 ~ ti ~ ~. We here denote the forward ligh/tcone wi th the 
\ 
~~r i gi n a s a pe x by V + ; the ba c kWa r d 1 i gh tc one is de no te d V _ • 

\ 
Similarly: if x e WL ' then z(t) is in the. forward imaginary 

tub~ for a 11 c,2~~J:e.x t in the strip -~ <, ti <. 0 , and in the 
I '. 

closed forWard imagina'ry tube for all t in the closure of the 

above strip. These assertions are easily established through a 

simple computation. (See formula(45b) in BW I). We note that the 

above facts were also of crucial importance in Jost's proof 
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of the TCP-theorem 4). 

For the reader's convenience we shall here review some well-

known facts about the universal covering groups of the Lorentz­

andPoi:n:'care groups, and about the canplex extension of the co-
. 5) 

vering group of the Lorentz group • 

The universal covering group of to' i.e-., the group of all 

unimodulartwo-by-two complex matrices, is denoted 1 . A spe­

cific two-to-one homomorphism of 1 onto Lo is given by 

g --.-. M( g) , 07) 

where 01'02'03 are the usual Pauli-matrices, and where 04 = I. 

The rota tions and ve loci ty transforma tions in g are denote d 

(8) 

and under the homomorphism (7) we thus have 

R(e,Q) = M(u(e,Q», V(e,t) = M(v(e,t» 
N ~ N _ (9) 

The group i can be regarded as the complex extension of the 

group SU(2) of all unitary matrices (rotations) u e , ' and 

every irreducible(unitary) representationu.:... nS(u) of SU(2) 

'canbe afiaCtic~l~y extended to a representation g _ nS(g) 

of 9 ,such that'the matrix elements of nS(g) are homogeneous 

polynomials of degree 2s in the matrix elements of g •. The most 

general finite-dimensional irreducible represen~·,tJ9n, of fJ is ( 

of the form 
... , I 

(10 ) 

where gr =(g t )-1. The mapping g _ gr is an outer 8utomor-

• 

\, 

. 
I 

/ , 
I • 
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phism of i which preserves every element in the subgroup 8U(2). 

In view of the complex structure of i it follows that the 

complex extens ion ~c of. i is the direc tproduct of CJ wi th 

itself, i.e., the group fI c = q X <l of all ordered pairs (gl,g2) 
, , ftC . 

of elements in lJ with the law of composition (gl ,g2)(gl,g~) = 
( lIt I ") Th b iii glgl,g2g2. e group 9 can e dent f ed with a partt,cular 

"real subgroup" of lie through the one-one correspondence 

(11) 

To the set· of all finite-dimension~l irreducible represente­
s' sit . 

tions g -+ D ' (g) of ~ corresponds a particular family of 

finite-dimensional irreducible representations of ie' which can , 
be regarded as the set of all finite-dimensional irreducible 

analytic representations of <ie' namely the representations 

(12) 

With reference to the above definitions we define, for any 

complex number t,the complex velocity transformation vc (!3,t) 

in the 3-direction as the element 
( 

I 

If· ... 

(13a) 

of , the group ,~c,_~~d it follows fram (12) that 

Sl 8" 8' 1 8 It 1) ) 
Dc '-' .. (.vc(~3,t» =D (exp(-'2to3» ®D (exp('2'ta 3 (13b) 

The matrix-valued function of t in (13b) i8 an entire analy-

tic function of the complex variable t, and hence the unique 

( 
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S. sit 
analytic extension of' the matrix-valued function D '. (v(~3' t» 

of the real variable t. We note in particular tha t 

• " ' ' , , . 28 It . • 8 n 
D~ ,s (V~(~3,i'lt» = (-1). D

S
'. (u{~3''lt» (14a) 

s's" {_1)2S',. S' slt{ ( Dc' (vo {!3,-i'lt» = D '. U ~3''lt» (14b) 

The f'ormu1a V(!3' in) = - R (~3' n) is a special oa se of' (14a) 

(with st = sit = 1/2), and with Mo denoting the analytio ex­

tension of' the represent~tion g --M(g) to the complex group 

<10 we have Mo {vo (~3' t) = V{!3' t) . for all complex t~ 

-The uni versa 1 covering group of Lo is denoted <iJ .. The 

elements X = A( g, x) are the ordered pairs consisting of any 

g E <a and any x eM , with the law of' composi tion 

X(gt,x t )A{g",Xtl ) =,.X(gtgtl, X'!. M{gt)xtt
). We define an explicit 

homomorphi sm A -..,.A{X) by A{X(g,x» =. A(M(g),x). 

The Hilbert space }l of physical states is assumed to be se-

parable. It is assumed to carry a strongly continuous unitary 

representation X -+ U(A) of the quantum mechanical Poincare 

group ~ • We write U{g,x) = U(A(g,X», and we also employ 

'the special nota'tion T(x) = U(I,x) for the translations. The 

translations have the cammon spectral resolution 

f' ix.p 4 
T(x) ~ U(I,x) = e ~(d p) (15) • 

.... -
-. ' "f 

and it is assumed that the support of" the spectral measure II 
, -

is contained in the closed f'orward lightcone V+ (inmomentum 

space). This assumption about the support of ~ will be 

ref'erred to as the "spectral condition" in what follows. 

) . 
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We assume the existence of a vacuum state, represented by 

the unit vector f} , uniquely characterized by its invariance 

under all transla tions. The vacuum state then sa tisfies 

U("A)'.Q =JJ for all "A e ~. It is well-known that the spectral 

co~di tion allows the extension of' the representa tion of the 

translation subgroup to,a unique representation z -. T(z) 

of the semigroup of complex trans-

lations for which Im(z) e V+ ,such that T(z) is a bounded and 

strongly continuous function of z in the closed forward imagi­

nary tube, and a strongly analytic function of z' in the open 

forward imaginary tube. 

The one-parameter group of velocity transformations in the 

3-direc tion" as well- as its ana lytic extension to the complex 

domain, will be of particular interest, and we shall therefore 

employ the shorter notation Vet) = U(V(f!3,t),O) for the repre­

sentatives of these velocity transformations. More generally 

we shall write 

v(,,) = 

for any complex 
• 

I 

"t. Here 

I e
-ires 

- ~(ds) 
F , ( 

J 

-
is the spec tr,s{ mea sure 

~-
in the 

s~multaneous spectral resolution of the ,'group of all V(t), t 

real, and /~'1~'e,~t:l~,4~e Self-adjO}!~t operator, with donain 
\ ". ..... // .'.. - -.... ""'-.-.. -

DK, such that 'Vet) = exi>(~~tK3). For a discussion of the domains 

of the normal operators V("t) we refer to Sec. IV in BW I. We 

denote (as in BW I) by D+ the domain on which Vein) is self-

adjoint, and by D the domain on which V(-in) is self-adjoint. -

( 
f 

I 
( 
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III.Assumptions about the quantum fields. 

We denote by .:b(Rn ) the set of all complex-valued infini­

tely differentiable func tions of compact support on n-dimen­

sional Euclidean space Rn , and we denote by S(Rn ) the space 

of test functions on Rn in terms of which tempered distribu-

tions are defined. The space S(Rn ) 1s regarded as endowed 

. wi th the particular topology appropris te to the det'ini tion of 

tempered distributions 6). 

For an unbounded linear or antilinear opera tor X defined on 

a domain D we shall employ the unorthodox notation (X,D), as 

* * . * in BW I. The adjoint of (X,D) is denoted (X,D) = (X ,D(X », 
where D(X*) is the domain ot' the adjoint. This notation will 

, not be employed for manif'estly bounded opera tors,f'or which the 

domain is taken to be the entire Hilbert space ):l • 

We shall next state the basic assumptions about the ,quantum 

fields. It is not our aim here to state a set of minimal inde­

--.....'1 pendent assumptions for a field theory, but rather to describe 

\ the si tua tion which pre va ils in a standard field the ory. , 
. "-a')W~~;ssume ~~'.existence of a Bet of' boson fields ~ (b) (x), 

\ 

\ 

where b 1s an element in an 

fields ~(f) (x), Where\ -r" is , . 

index setIB, and a set of fermion 

an element in an index set IF. The . 
. ( 

index sets are regarded as, disjoint, and it isra~ss.umed that at / ,. .~ \~ " " ~_ .... -..... ~ .r , 
least one of these sets is nonampty; otherwise they are arbitra-

'. \. 

rye We thus admit as possible special cases the cases when 

either I B, or else IF is empty. Each field ~ (b) (x) or ~(r)(x) 

has a finite number of components, denoted ~~b)(x), respecti-

( 
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ve1y ~~r)(x), where ~ is a suitable index distinguishing bet­

ween the components. 

b) We also consider the set of all components of all the fermion 

fields and all the boson fields. An element in -this set is de"'! 

noted ~~(x), where ~ is an element in an index set IT such 

that when .~ runs through IT each component of each field is 

obtained once and once only. Each component ~ (x) is an opera-
. . ~ 

tor-valued tempered distribution in the following sense. To each 

rex) _ e S (R 4 ), and each ~ e IT' corresponds a closable linear 

opera tor (~~[t] ,D1 ) on a dense domain DI (independent of t 

and p.) such tha t 'l' [rJ D1 C D1 • The mapping 
~ -

r ---+ (~~(r] ,D1 ) is linear, and for any (e D1 the vector 

'f ~(!'] ~ is a strongly continuous function of!' on S (R 4). 

Furthermore, if a= (~1,~2, ••• ,p.n) is any ordered n-tup1et 

of indices from IT' then there corresponds to every 

f(xI,x2' ••• '~) e S(R4n ) a closable linear operator 

( 'f{!';a} ,DI ) on Dl such that 'P{!';O}D
l 

C Dl •. The 

mapping f _ ( 'f{f;a} ,D
l

) is linear, _. 

and for any 

tinuous function of 
\ 

the vec tor '1'{r ;a} ( 

f on S (R 4n) .If f 

is a st.r.ongly con-_ 
• - I.. ,-.-

~ 

is of, the particular 
/ 

'form f'(xl ,x2 , ••• ,xn ) = f'1(xl )f'2(xZ )· ••• f'n(X,6">' , with f'k e S(R4 ) 
. i 

fork = 1, ••• ,n, then, on DI' 

(17) 

This is consistent with the common notation for ~lf.;al in 
-f 

terms of the symbolic integral at right in 

"'. l 
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~ {fiO} = 

--
c) Let f(}ft.) be the algebra, defined ot;l D1, which is the' linear 

span of the identity I and all operators (~{f;o},Dl'>.The dense 

d~main Dl is assumed to be precisely equal to • 
d) For any field component '1' l'" (x) there exists a field compo­

nent '.I \-L 1 (x) such tha t for' any f e . S(R4) 

('f\-L'[1'*] ,Dl )*':) (~l"'[f] ,D1 ) (19) 

The field component ':P l"" (xl t is then also denoted 'fJ l'" (x). 

e) The domain Dl is invariant under i ' i.e., U(A)D1 = D1 ,for 

any A e ~ • The action of U(A) by conju~tion on the elements 

of f (M) is specified by the condi tions 

a.) T ( x' ) P ( x) T ( X I ) -1 = '1' ( x+x' ) 
\-L . \-L 

for any field component 'f' l'" (x). 

(3) For each _ ... b e l B, 

\ 

' .. l"" 

(20a) 

(20b) f 
( 

where g-. r(b)(g) is similar to one of the repre,sentations (' 
/ ' I . I" 

g-+ DS's (g) 
" ........ l' • 

i'or which 2( SI+SIt) is'" an ~ integer\, / 

y) For each l' e Ip , 

U(g,O) ~(f)(x) U(g,O)-l = 2: r(f)(g-l) ~(f)(M(g)x) 
l'" • l"'\-L I l'" I . 

\-L 

(20c) 

) I, 



--

. . 

(17) 

where g -+ r (.1') (g) is similar to one of the repre senta tions 

g~ Ds.,slt(g) for which' 2(SI+S") is an ~ integer. 

The sums at right in (20b) and (20c) extend over all the com­

ponents of the field ~(b)(x), respectively the field ~(1')(x). 
1') All the fields satisfy the normal conditions of locality, i.e., 

they satisfy the condi tions (in the sense of distributions), 

[~~b)(x), ~~~t)(xt)] = 0, ['~~b)(x), ~Jft)(xt)1 = 0 

{ ~~ l' ) (x), ~! ~ t) (x' )} = 0 ( 21 ) 

on Dl for all spacelike x-x, • Here the curly bracket denotes 

the anticommutator, i.e., {X,XI} = XX' + X'X. 

The above formulation of the basic assumptions about the 

fields is more or less standard. The essence of the notion of 

a set of quantum fields is a certain kind of representation of 

a tensor algebra of multicomponent test functions by an 

operator algebra fCA\). The precise 

formula tion of a general field theory is 

unfortunately beset by cosiderable notational difficulties • 

We ha vetrie d to select a notation whichi s convenieht~'for" our F' ... 

,particular purposes. Let us now elabora te furtQ.~rl on the basic . . 
\ .' assumptions, and on some well-known immedi~~e consequences. 

g)"'·Whether the number of fields is finite., countably infinite, 

or tincountabl:y i~ini te is~ imma terial for the conclusions which 
, f ~ 

we shall·m:aw. That each 1'ield ~(b)(x) or {t(f)(x) ·.has only 

a fini te number of components, where the notion of "component" 

of course refers specifically to the transformation laws (20b) 

and (20~), is, however, essential. Our purpose wi th introducing 

the specific "irreducible fields" ~(b) (x) and ~(f) (x) was to 

\. 
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be able to state the transformation laws (20b) and (20c)~ as 

well as the locality conditions (21), with maximum clarity. For 

the subsequent discussion it will, however, be more convenient 

to employ a uni:fied notation, in terms o:f the symbols ~ "" (x), 

:for all the fie ld componen ts, and we sha 11 therefore resta te 

the conditions (20b) and (20c) in the :form 

The "matrix" reg) can be regarde.d as the direct sum o:f 

the:finite-dimensional matrices r(b)(g) and r(:f)(g) in an 

obvi ou s sense. The sum in (22) is alway s a :fini te sum, and :for 

ea ch :fi xe d "'" (or ea ch :fixe d II t) there is only a :fini te number 

of' values o:f ll' (respectively of' ll) f'or which r llll' is dif':fe­

rent :from zero. We shall also consider the ana lytic extension 

·or the repre senta tion g -. r( g) o:f ~ to a repre senta tion 

(Sl,g2) -. r(gl,g2) o:f Cfc' de:fined as the direct sum o:f 

the corresponding analytic extensions o:f the representations 
i 

r (b) (g) and r(:f) (g) a s described in Sec .11. To the complex 

~elo<?A~y_~ran,s(~rmation I vc (!3,t) ,thus corresponds the represen­

tative r(vC(!3"t~), each matrix element o:fwhich.is an entire I 
analytic f'unction o:f "the complex variable t. Wi th re:ference to 

this extension we thus def'ine the diagonal Itma trix" '. rft (with .... 
r 

eigenvalues +1 and -1) by 
" , 

(23) 

/ 

That r" has the stated properties follows at once from (14a). 

• 
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h) The domain Dl on which the "averaged fields," and the opera-
, , 

t~rs in (p(.#..) are defined should be carefully noted. It follows 

readily from our assumptions that for any (X,Dl ) & (p (.M,) the, 

* domain of the adjoint (X,D1 ) contains Dl • The restriction 

of the adjoint to Dl t shall be denoted (X ,Ul ) , and called 

the Hermitian conjugate of, X ithe notion of the Hermitian conju­

gate of a field operator thus depends on the specific choice 

of Dl • It also follows from our assumptions that' (Xt,Dl ) & ,,(.M.) 

for all (X,Dl ) &. f (oM,). In particular the hermi tian conjugate 

~ lJ.(f] t of the averaged field ':f lJ.(t] is the averaged field 

'.:I'~[:r*J • The mapping (X,Dl ) --.. (Xt,Dl ) is an antilinear in-

volution off(J.t) (such that (X1X2 )t = x2txlt ). 

We note tha t every opera tor (X,D1 ) &, f (M) sa tisfies 

(Xt,D1)**C (X,D
1

)* (24) 

It is a hitherto unsolved problem whether the assumptions 

which we have made imply that the inclusion in (24) can be re­

placed by equality for some non-trivial set of operators in ffJ(,M,). 

i) Let R be any subset of Minkowski space JI.. • 

We definefO(R) as the polynomial algebra generated by the 
./ __ l '_~"" ... 

identity operator I and all operators (~IJ.[f],Dlr, with IJ. & IT'" 

f(x) & S (R~) and suppef) CR. We ,define tlie' algebra f (R) 
/ 

as the linear span of I and all operators ('i'lf;o} ,Dl ), 
\ ' . 

where, 0 = (",,1,112, .' •• ,lln2""is any n-tup:t.et of indices in IT' 

and wher~~- :f(xl'X2, ••• ,x~)~·e~ Sut4n) with supp(f) C eX R)n. 
, " f 

It is easily seen that (X,Dl ) -+ (X ,Dl ) is an involution 

of both 0' O(R) and "(R). From the condi tions (20a)- (20c) it 

follows that 
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U ( A) f 0 (R) U ( A ) -1 = f 0 ( A ( A )R) , 

U(A) feR) U(A)-l = f(A(A)R) 

for any A e Cf and any R. 

(26) 

We tri via 111 ha va f 0 (R) c q> (R) c Ql<.M,). ,According to a 

well-known theorem of Reeh and Schlieder 7) the linear manifold 

O>O(R)D is dense inJ( for any open nonempty R. 

j) Let the unitary operators UOand Z be defined by 

Uo = U(-I,O) '. Z = (I + 1UO)/(1 + i) (26 ) 

The se opera tor s tri via lly sa ti sfy 

and 

2 _ 
Uo - I , • Z2 = Uo ' U(A)UOU(A)-l = Uo' U(A)ZU(A)~l = Z 

(27a) 

(27b) 

Furthermore it follows from the assumptions in e )abova that 

Z (3(b)(x) Z-l I: (3(b)(x) 
~ ~ 

(28a) 

Z ~(t) (x) Z-l = iU ~(f) (x) 
~ '0 ~ 

(28b) 

tor 8):1 b6s~~f1elds Ci (b) (x) and all fermion fields V(f) (x). , 
, 

The 1tact that the,involution UOconnnutes with all boson 

fields, but anticonnnutes with all fermion fields permits a 

unique resolution of anyJfield operator into a sum of a "boson' 
\ -- ........ , J 

operator" and a ttfermion operator'"n and-'it also permits a re;-
,~ . ..... ,. 

statement of the locality conditions (21) in terms of the vsni-

shing of certain commutators. We shall state the important ,facts 

in the matter in the form of a lemma for later reference. 
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Lemma 1.a)Let Uo and Z be defined as in (26). For any 

~ubset R of A , let 

fB(R) = t (X,Dl )' I 
f F(R) = t (X,D1 ) I 

UOXUo = X , (X,Dl ) e f(R)} 

UOXUO = -X, (X,Dl ) e f(R) } 

(29&) 

(29b) 

Then every (X,D1 ) e f(R) ha s a unique resolution of the form 

x = ~ + Xt ' ~ e f B (R) , Xt e f p (R) (30a) 

I where, in tact, 

(&>b) 

The sets fB(R) and fp(R) are ma'pped onto themselves under 

the involution (X,Dl ) -. (Xt,Dl ). Furthermore, 

z~z-l = ~ , Zxtz-l = iUoXt ' (31) 

for all ~ e f B(R) and all Xt e f p(R). 

b) For any (X,Dl ) e feR), let (XZ,D1 ) be defined by 

(XZ,D
l

) = Z(X,Dl)Z-l = (ZXZ-l,D
l

) (32) 
I 

It Rl and R2 are two open subsets of ~ such the t RI C R2
0

, 

then it follows from the locality conditions int) above that 

[Xb,Yb] = 0 , [~'Yf] • 0" [xt,Yb] = 0, {xt,Yt } == ~ (33&) 
, ~ 

on Dl for all ~ efB(RI ), Xt efF(Rl ), Yb efB·(1~2) and 
, f-
~t efF (R2 )· The conditions (33a) are equ;~lent to t,Qe condi-

tion ,(: 

\".{-x-, Y .. ~ =0 .. ' 

---
(33b) 

.. " .... -.... ,~ 

on Dl for all X e f(Rl) , Y e f(R2 ). 

We omit, the completely tri vial proof. We note tha t the Lemma 

is vacuous if Uo = I,which is the case if and only it there is 

no fermion field. 
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IV. Complex Lorentz transformations and the.TCP transformation. 

In this section we shall present the generalizations appropriate 

ror the present situation of the considerations in Secs. III and 

IV in BW I. The main result is presented in Theorem 1, which 

corresponds to Theorem 1 in BW I. As in BW I we arrive at the 

main conclusion through a sequence of lemmas, arranged in such 

a way that the similarities with the discussion in BW I are 

pretty obvious • 

.:- For any r(Xl'~' ••• ,Xn ) & g(R4n) we derine a Fourier trans-

'" form f by 

, n . 

J d4 (x1 )·· .d
4

(xn ) f(Xl , • • ., Xn) exp( i L: ~ ·Pr ) (34) 
(00) ~l 

For any positive integer n we denote by Tn the open tube­

region 
. , 

Tn = {(zl'Z2'· •• 'Zn) I Im(zk) & V+, k = l, ••• ,n} (35)· 

in complex 4n-dimensional space, regarded as a direct Slm of ---.. 
" n replicas or complex Minkowski space, and parametrized by an 

", 

( .. -, ) 
"n-tuplet z1' z2' ••• '~n of complex rour-vectors. The closure 

-' 
or Tn is denoted . Tn:---, 

Lemma 2: Let "z & Tl ' 'l.e., 

I 
I 

Z is eny comp].ex :C.our-vec tor in. 
,-. t / 

the closed rorward imaginary tube'. Then ~ .~ "" 

a) 
T(z) D1 C D1 · (36a) 

b) It f & S(R4n ) thereexi s ts an t z & S (R4n ) . such that 

" I 
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n 
tZ(Pl' ••• ,Pn ) = r(Pl' ••• ,Pn )· exp( lz.L: PI' ) 

r=l 

tor (Pl' ••• ,Pn ) . e Vn ' where Vn 1s the subse t otR
4n 

defined by 

n. 
2: PI' & V+_, k .. l, ••• ,n '} 
r=k 

. and for every such f z we have 

(3Gb) 

( 36c) 

(36d) 

where 0 is any ordered n-tuplet (~1,~2, ••• ,~n) of indices 

from IT. 

Lemma 3. a) For each n ~ 1 , let En be the set of all func-

tions .f(Xl , ••• 'Xn;zl' ••• ,zn) defined tor (Xl' ••• ,~) & R4n 

and (Zl' ••• ,Zn) e Tn ' and such that f e S(R4n) and such that 
,.., 

the Fourier transform r of f ~e1ative to the variables 

(X1, ••• ,Xn) satisfies the condition 

n n 

f(P1'·· .,Pn;zl'···' Zn) = e~ (i L L: zk·Pr ) 
k=lr=k 

(37a) 

. , 

for all (Pl' ••• ' Pn) e Vn ' wi th V~ define d J.ff. ... in (36c).- The 

set-~n is non-empty, and to every n-tuplet 0 = (~1,~2,.o.,~n) 
I / 

of indices from I T - corre~ponds a unigue'vector-valued 

function ¢(Zl'Z2' ••• 'z ;0) on Tn ' defined by . n 

(37b) 

where' t is any element of En •. 

[I 
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b) The vector-valued runction ~(zl'Z2' ••• 'Zn;a) is 8 strongly 

analytic runction or Czl , z2' ••• ' Zn) on Tn ' and ror each point 

in this domain it is an analytic vector for the Lie algebra ot 

the group U( ~). 

c) For any element A = A(g,x) or the quantum mechanical Poin-

care group Cj , 

u(Al ~(Zl'Z2' ••• 'Zn;a) = 

'E f ,(g-l) 9'(MZ1+x,MZ2,MZ~, ••• ,Mz ;a l ) (37c) a,a - ~ n 
a' - _ 

where M = M(g), and where the sum is over the rinite number or 

n-tuplets a' = (~lt,~2·t, ••• ,~nt) or indices rrom IT ror which 

J\ 

r a,a t (g) =r ~l,~lt (g) r ~2,~2t (g) ••• r ~n,~nt (g) (37d) 

is not identically zero (as a runction or g),. 

It may here be noted that 

(37e) 

is a derensible notation (within the tramework ot distribution 

the ory) r or th6 vec tor ~(Zl'Z2,···,zn;a). 

Lemma 4. a) La t ' r't:k tk & S( R 4 ), k = 1, ••• , n \ be any 
'\ 

n-tuplet or test function,s, and let a = (~1,~2, ••• ,~n) be any f 

I 

ordered n-tuplet or indic~s rrom IT. For k = l, ••• ,n ,let 

Xk = ~ ~k[rk] • Then the vector 

T(Zl) Xl T(Z2) X2 ••• T(zn) Xn D (38a) 

is well derined (through sue:cessive lert mul tiplica tions) ror 

.-
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-all· (zl'Z2, ••• ,zn) & Tn ' and it is a strongly continuous 

-function of the variables (zl,z2, ••• ,zn) on Tn ,. and 8 

strongly analytic function of these variables on Tn. 

" b) There exist func-
. . 4n 

tions .f(xl , ••• ,~;zl' .••• ' Zn) defined for' (Xl'·· .'Xn) & R 

and (Zl' ••• , Zn) e Tn ,and such that f & S (n4n) and such that 
H 

the Fourier transform f of f rela ti ve to the variable s 

(xl' ••• ,~) sa ti sfie s the condi tion. 

n n n 

r(Pl' ••• 'Pn;Zl~ ••• 'Zn) = e~(iL L:Zk·Pr) nrk(Pk)' (38b) 

k=l r=k k=l 

for all (Pl' ••• 'P ) & V , wi th V defined as. in (36c) , and n n ,n 

for all (zl,z2, ••• ,zn) e Tn • For any such function 1', 

(380) 

c) If f'k e .b(R4 ) f'or k = 1,2, ••• ,n, and (Zl'Z2' ••• ,Zn) e 

Tn ' then, 

.. 
( 38d) 

d) Let t Rn I n = 1, ••• ,co 1 be any set of open, non- . 

empty subsets of Minkowski space. For such a set, and for any 

n ~l , let Sn denote the linear span of all vectors of the 
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, with Xk defined as in a) above, and 

with fk & S(n4 ) , s~pp(rk) C Rk ' for k = 1, ••• ,n • 

.I Then the linear span of. the vacuum vector D and the union 

of all the linear manifolds Sn is dense in the Hilbert space J(. 

About the proofs: The Lemmas 2-4 in the present paper corres­

pond to the Lemmas. 2-6 in Sec. III of BW I, and the reasoning 

there presented applies wi th very trivial modifica tiona. The 

conclusions in Lemmas 2 and 4; the conclusion in part a) of 

Lemma 3, and the conclusion (in part b) of Lemma 3) that 
. 

is analytic as asserted, follow from. the 

spectral condition, the action of the translation group by con­

jugation on the fields, and the assumption that the fields are 

tempered distributions on the domain D1.That we now deal. with 

an arbitrary number of field components instead of with a single 

field as in BW I is immaterial in the proofs. The formula (37c) 

is the tri vial generaliza tion of the. formula (34) in BW I.Since 
. A -1 

thematrix reg ) in (37c) is in effect similar to a finite 

direct sum of matrices Dsf,s"(g-l), and hence an entire ana­

lytic function of g , it follows that ~(zl,z2, ••• ,zn;a) is 

an analytic vector for the Lie algebra of the group U(9",O), and 

hence al so for the. Lie algebra of the group U(~) •. 

We next consider the action of the complex velocity ·transfor­

mations Vet) = exp(-itK3), where t is complex, 01). the vectors 

~(zl,z2' ••• ,zn;o) • We denote 'by· DV('Ji/2) the domain on which 

VCin/2) is self-adjoint, and by DV(-n/2) the domain on which 

V(-in/2) is self-adjoint. The domain DV(n/2) is then a core for 

all operators Vet) with 0 ~ Im(t) ~ n/2, and the domain· 

• 
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0 0 4 ~ O. t~ 4 0 n:~ 8 1 
1d f(27) 

DV(-n/2) is a core for all operators Vet) with 

o ? Im(t) ~ -n/2. The next Lemma corresponds to Lemmas 8 and 

9 in BW 'I, and it is proved, on the basis of Lemma 3, by a very 

trivial modification of the rea soning in BW I. 

Lennna 6. La t 

four-vectors 

Y'k4> IYk31 , for k = l, ••• ,n. Let a = (1l1,1l2,o •• ,lln) be 

any ordered n-tuplet of indices from IT. For any k, and any 

complex t we define ~(t) by 

(39&) 

a) If Xk & WR (i.e., Xk3 > fXk 41 ), for k = l, ••• ,n, then 

(zl(i-t), ••• ,zn(i-t» & Tn for all -t & [0,'Jt/2] • The vector 

~(Zl' ••• 'Zn;a) is in the domain Dv(n/2),' and 

V(i-t)~(Zl'···'Zn;a) = 

L r o,o'(VC(!.3,-i-t» 1(Zl(i-t), ••• ,zn(i-t);a') (39b) 

a' 

for all -t & lO,n/2] ., where 
A 

r is defined as in (37d) • 

b) If ~ & WL (i.e., ~3 < -11<:4\ ), for k = ~, •• ~.,n ~ then 

'(Zl(i-t)' ••• 'Zn(i-t» & Tn for all" & [-1t/2, 0,] .The vector 

~~zl' ••• ,zn;a) is in the dOMain .' DV(-n/2),: and the relation 

(~9b) holds ·for all' 't e [-n/2, 0] 0 

c) -Let (xl' ••• ,Xn ) ~be~-stfcp._,~a-t'""\...~ & WR for' 

k = 1, .:.,n. Let V be the rea 1 f orwar d time like 
I . 

four-vee tor 

with components v' = (0,0,0,1) , and let t be a real variable. 

Then 
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• 

s-lim ' J\ 
t .... O+ I:ra,a'(o.) V(-i1t/2) ¢(Jxl+itv, J~+itv, ••• , J~+itv;a') III 

a' 

(390) 

of' the group ~c. Here J is def'ined as in (3). 

The next Lemme corresponds to Lemma 10 in BW I. 

Lemma 6. Let Rl be a bounded, open, non-empty subset of' WR ' 

and let xo & WR be such that (X-Xc) & WL for all X e Rl • 

For any integer n > 1 we define the set· Rn by 

f'or all n, and if n >k, then 

(40a) 

(x'-x") e W R 

for al-1 x'~ & Rn ' x" & Rk • In particular Rn is space-like 

separated f'rom'Rk (i.e., Rn C Rk
C

) if' n:/ k. 

b) Let t fk I k =·1, ••• "n} be an n-tuplet of tes,t f'unctions /; 

such that 

Let f k
i 

'f' & 
k 

denote 

4 ) 8 (R) and su pp (f k) C Rk , f' or k = 1, ••• , n.f 

the te s t'- fl:lnc£fon' deTIneci"'-by' fil (x) = f k (-x) • 

Let a = (lll,\l2, ••• ,\Jon) be any ordered n-tuplet of' indice s 

from IT. Let c(s) e ebeRl) • Then 

... 



0 0 {~~! ~l t:~ 4 () 'II 8 i '" 
(~9)- ~ 

• 

r~,a U(u(!3,'Jt),O)C(K3)~~1[f1i] ~~2(fa~] ••• j'~nlfnl]D 
( 4Ob) ,.. 

where r" is the diagonal ma trix given by 

(40c) 

'1;his Lemma can be proved, on the basis of Lemmas 4 and 5, by 

. a trivial modifica tion of the rea soning by which we proved 

Lemma 10 in BW Ij the modification, of course, has to do with 
,. 

the appearance of the matrices' r in the formulas. To bring 

out the similarities with the discussion in BW I we define the 

te st func tion f j 
k by 

j . 
fk (x) = f k ( J x), and we then have 

U ( u ( ! 3' 'Jt) ,0) ~ ~k l f k 
1

] U ( u ( ! 3' 'Jt) ,0 ) -1 -

L r',~k,~. (u (!3' -'Jt» ':f ~, l fk j] 
&Jo' 

With reference to this formula it is easily seen that the 

formula ( 52) in BW I is a special case of (40b). 
,.. 

(40d) 

That the matrix rft in (40c) is diagonal (with diagonal &1oe-

ments +1 or -1) follows at once from the fact that the matrix 

\r tt in (23) is diagonal (wi th diagonal elements +1 or -1). 

'Our conclusions up to this point in this section are completely 

independent of the lOC~Bllt;'coriditlon("f') in Section III. We 

shall now draw some further conclu sions, in which we take the 

locality conditions into account. Before we state the relevant 

lemma we recall tha t the domain of the close d and norma 1 opera-
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ratorV(t), t complex, depends only on Im(t). We write the ope­

rator as (V(t), DV(Im(t» ) when we wish to exhibit the domain 

explici tly. 

Lemma 7. Let { Rn I n = 1, ••• ,00 r be a f'ixed set 01' 

boundeq., open, non-empty subsets of' WR, constructed as in 

Lemma - 6. Let Q. be the linear span of the identi ty olD-

rator I and all opera tors (Q, D1 ) 01' the f'orm 

(4la) 

where ~ f
k

' k = l, ••• ,n \ is any n-tupletot test tunctions 

such that tk e S(R4 ) and supp(fk ) C Rk ' tork = 1, ••• ,n , 

end where a = (~1.~2,.o •• ~n) is any ordered n-tuplet of' indi­

ce s from IT. Then: 

a) Th~ l:l.near manifold D q = Q.D is dense in the Hilbert 

spaco Ji , and Dqc = span t c(K3 )Dq c (s) e eb(Rl) J is 

a core for every operator (V (t ). DV ( 1m (t ) ) ). 

b) * (Q ,D1 ) e -Q. • 

c) T~e·re ~xl st,s a unique antiuni tan opera tor J such that 

i1' 

-. 

<-.~ ,,;-- ---., 
The operator J is an lnvolution-,~i.eo, 

J2 == I 

and it satisties the conditions 

(41b) 

(410 ) 

:'Lt
, 

- : 

'" .-

l 
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o 0 

J Q I: D , 

for all (X,Dl ) e f(Jrt), and' 

JZJ = Z-l , 

JD = D , 
+ -

JD = D , 
- + 

JU J = U , o 0 
. JV(t)J = Vet) for all real t 

J(V(1n),D+)J = (V(-1n),D.) 

J(V(-1n),D_)J =: (V(1n),D+) 

d) The antiunitary operator defined by 
-' 

is a TOP·transformation which satisfies the conditions: 

and 
1 It t 

eO ~~ (x) eo - = p~ r lJ.,~ ':f '" (-x) 

(41d) 

(41e) 

(4lf) 

(41g) 

(4lh) 

(42a) 

(42b) 

(42c) 

where PlJ. = +1 - if ':I ~ (x) is a component of a boson field, and 

P\-L = -1 if ~~(x) is' a component of a fermion field. 

Proof: 11 This Lemma corresponds to Lemma 11 in BW I. The rea so-

~ ning in its proof is similar to our rea soning in BW I,. ·but 

there are SOMe important difference s of de ta i1 which ha va to be 

d~scussed. We first note that the assertions a) and b) are tri­

~al. The remaining assertions might be proved in thesta ted 
..., 

'iI,.· ,~-...,..~ _..... • . 

order, wnich in par ticular yields -8 proof of the TOP the orem. 
\ ",..r",. , 

In order to shorten the discussion we shall, however, base our 

proof of the assertion c) on the well-known fact that under our 

general assumptions abou t the fields a TOp-transforms tion eO 
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. 8) 
which satisfies the conditions. (42a)-(42c) does exist. The 

relations (42a)-(42c) will thus be assumed, and we define the 

antiunitary operator J by (4lh), where Z is given by (26). 

It is then trivial to show that J satisfies the relations 

( 4lc ) - ( 41g) • 

2) The formula (41b) holds tri via lly if Q is a multiple of I. 

Suppose now that Q is of the form (4la). We write ~ =~~k[fk] 

and Yk = ~ ~k[ tk 1J . for k = 1, ••• ,n, and we then have 

J Q,*!} = J X 1 
n ••• x 1 x t .Q 2 1 = 

(43&) 

where Po = P~l PIJ.2 .o.P~n I in view of (4lh) and (420). For 

any two operators Yr and Ys in the set { Yl 'Y2' ••• ,Yn }- the 

supports of the corresponding test functions f 1 . and t i are r s 
space-like separated, and hence Yr anticommutes with Ys if 

both operators are averaged fermion fields, whereas Yr 'commutes 

wi th Y s in a 11 other ca se s. It is ea sily shown tha t under 

the se c ircums tanoe s .. 
A* Z Y Y Y n Po n ••• 2 1M (43b) 

and hence . ... " 

* ..... " J Q, D = r ~,o.,U(U(!3,1t),O) Yl Y2 ••• Yn Q (430) 
.... -"\.- ,- - "'\ - /~-'---".-, ..... - I , • 

From this it follows, in view of (40b) in Lemma 6, that the 

operator Q. satisfies (4lb). From this it trivially follows 

that (4lb) holds for!1! Q e Q • 

.. 
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We are now prepared to state the main theorem of this 

section. It will be convenient for the subsequent discussion to 

introduce the following notation. For any 

we define the a 1ge9ra . f (R ) Z by 

subset R of ~ 

(44) 

where Z is given by (26). 

Theorem 1: a) The algebras q:>(W R ) and (p(WL)Z' are -lfo-algebraswith 

* the antilinear involution (X,D1 ) --- (X ,Dl ). They commute 

on D1, i.e., 

[X, Y] -fJ = 0 (45a) 

for all t/I e Dl and for all X e u:>(WR ) , Y e q:>(WL)Z. 

b) The vacuum vector 'Q is cyclic and separ.a ting for both q>(WR ) 

and (P(WL) ~ 0 

0) With Vet) = U(v(f!3,t),O) (a velocity transformation in 

the 3-direction), 

, V(t)(P(WL)Z V(t)-]. = (P(WL)Z 
(45b) . 

for all realt, and with J defined as in Lemma 7, 

(450 ) 

." ,r' 

d) With the domains D+. and D. such that the operators 

(V(in),D+) and (V(-11t),D.) are self-adjoint, 

Vein) X D . = J X*Qr (45d) 
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for any Xe q:>(W n' , and 

for any Y e q:>(WL ) z .1 

. e) The condi tion 

, all X e 6>(WR) 

define san' antl11near operator ('CR~ q:>(WR).Q) , and the 

condition 

c Z YD = Y*!] 
L 

,all Y e q:>(WL ) Z 

defines an antilinoar operator (CL
s , q:>(lt )sD) • 

The se two opera tors sa tisfy the- rela tiona 

10 »"** (C
L

z , f(w
L

) Z .Q ) * -= ( :JV(11t) , D+) 
(C R, v-(WR .Q • 

(46e) 

,( 46&) 

(46b) 

(460) 

This theorem· corresponds to Theorem 1 in BW I. The proof is 

identical with our proof in BW I, provided that we consistently 

substitute the operator CL
Z for the operator CL , and the 

'algebra q:> (WL)Z for the algebra a> (WL). In the .pa~ticular 
• , 

case that there is ~ fermion field among the quantum fields 

we have Uo = I and Z = I, and hence f (WL)Z = f> (WL),in 

which case the present theorem is identical with Theorem 1 in BW I. 

.. 
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The olgebra q:>(W
R

) , respectively the algebra q:>(W L)., . 

can be regar ded as consisting of field opera tors locally asso­

ciated with the wedge-region WR, respectively the region WL • 

We note that the role of these algebras is not quite as symmet-

ric in the present theorem as in BW I, in the sense that the 

assertions are about the pair C. f(wR ), f(wL)Z) rather than 

about the pair (f(WR), f(wL». It·is, however, easily seen 

that there is a completely equivalent formulation in terms of 

the pair' (q:>(WL),q:>(WR)Z), and we note, for instance, that 

. a> (Wr, )!1 C D _ ' (47a) 

for any Y e a>(WL ) , and 

v{ in) X D (47b) 

for any X e a>(w R)Z , where 

JL = Z.n-
l = UOJ = JUo (47c) 

Fur thermore, 

(47d) 

We conclude this section with the remark that all the conside-'-
rations in Section V in BW I also apply to the present situation, 

provided .~t f(wL ) is re.;pla,cedrby f{wL)Z and that q:>O{W
L

) 

is 'r~ep1ace~d by a> 0 (WL)~ = Z o>~ (WL)Z-l everywhere in the dis­

cussion.' In order to have a more suggestive notation it is then 

convenient to change the notation in BW I according to the 

scheme: 1.L (WL ) -.1J,(WL ) Z , .A L ~ A LZ , etc 0 
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V. The duality condition for the wedge regions WR !n2-WL-

The discussion in this section corresponds to the discussion 

in Sec. VI in BW I. We are thus concerned with the question of 

how the field operators in f(WR) might ~nerate a von Neumann 

algebra of bounded operators which can be regarded as being 

locally: associated with the region WR• We must, of course, here 

define the term "locally asscoeiated with" precisely, and in 

a manner appropriate for a field theory in which fermion fields 

might occur. To set the stage for the discussion we begin wi th 

some algebraic considerations. 

Defini tion 1: If .A is a von Neumann algebra such that 

.J 1 .J . .J Z = Z .J Z-l Uo '" Uo - =..., , and if lit lit wi th Z def'ine d as in 

(26), then the quasicommutant .A q of'.A is def'ined as the 

von Neumann algebra 

In a theory in which fermion operators, i.e., operators X 

-1 which satisi'y UOXUO = -X , occur the notion of' quasicommu-

tent 9) is the proper notion in terms of which one may f'o:rmulate 
I 

the conditions of' locality and of' duality. As an algebraic no­

tion the notion of' a qua si commutant is less general. than the 

notion of a commutant in the sense that thef'ormer notion ref'ers 

to a specif'ic.unitary involution UO-

We formula te the pertinent f'ac ts about the notion of a qua si-

c ornmu ta n t a s l' 0 110w s • 

Theorem 2: Let A be a von Neum~nn algebra such that uocA-U6-1
:a 

\ . ~ 

A , and let J4. q =(Z~ Z-l). be its quaslcommutant. Let 

cA B &: { X 1 U oXU 0 -1 = X , X & A ~ , 

,AF = t X ,. uoxuo• 1 = -X, X e J4 } (48a) 

,. 

.. 
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and 

(LJS1 q)B = {y I UOYU
O

• l = Y , .Y e ~q. \ ., 

<.,4<t)p = { Y I UOYUO• l =.Y, ·Y e.,fq \ 

Then: 

b) Every operator X e ~ has the unique representation 

X = ,~ + Xt , wi th ~ e '" B' Xt e .A p 

where, in faa t, 

~ = ~(X + uoxuo·l ), Xt = ~(X • uoXUo• l ) 

Eve,ry opera tor Y e .A q ha s the unique repre senta tion 

(48b) 

(60a) 

(60b) 

(60c) 

, where, in fa 0 t, 
, 
.' 

I 

i 

0) The elements ~ e v4B 
Yt e cA q), sa tisfy the 

[~, Yb] c 0 

[~, Yt ] a 0 

, [Xi" Ybl 

{Xf,yr } 

• 0 

; Xr e Ap 
o ondi 'bi one 

/ 

and 

,,.." r I 

(60d) 

( 618) 

(61b) 

( 5lt: ) 

(6ld) 
'I 

) 
The set (Aq)S is a von Neumann algebra, preoisely equal 

to the sot of all bounded operators Yb whioh satisfy the oon­

dition UoYbUo• l = Yb ' and the conditions (6la) and (610) for 
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all ~ & cAB ' Xf e .Ape The set tAB is a von Neumann alge­

bra, precisely equal to the se·t of all bounded opera tors ~ 

hi U -1 w ch satisfy the condition O~Uo • ~ .. and the conditions 

(5la) and (51b) for all Yb & (Aq)B' Y
t 

& (Aq)pe The set 

( A q)p i ill s prec se y equa to the set of all bounded operators 

-1 Y Yf which sa tisfy the condi t1. on UOYtUO = - 1" and the con-

di tions (5lb) and (51d) for a 11 ~&.AB' Xt & .A p • The set 

cA F is precisely equal to the se t of all bounded opera. tors Xt 
-1 which satisfy the condition UOXtUO = - Xt ' and the condi-

. q . 
tions (51c) and (Sld) for all Yb & (..4 )B' Yt & (Aq)p e 

d) The vector!} is cyclic (respectively separating) for A it 

and only it it 1-s separating (respectively cyclic) for .A q • 

We omit the very trivial proofs of these assertions. We stated 

the above facts in the form of a formal theOrem in view.of their 

importance for our discussion. The situation might be illustrated 

a s follows. Suppose tha t two von Neumann algebra s A- 1 and .).2 

are 1I10cally associated with't two regions Rl , respective1yR2, 

which are causally independent. The "local" nature of the asso­

ciation can then be expressed .through the relation ;1 C .A 2
q

, 

which, in ·View of the theorem, is equivalent to the customary 
\ 

conditions in: terms of commutators and anticommutators, i.e o , 

the.fermion opera to~s in ). 1 anticommute with the fermion ope-

ra tors in .v4 2 and commu.te wi t~ ,the boson opera tors in ..42 ' r. 
wherea s the boson opera tor~· in Jt ~ c ommu te wi th a 11 opera tor(s 

in .A 2 o Now cAl C Jr 2q 
is equivalent to the condi tion that 

[X,y] = 0 for all X & cAl and all Y & A2 z = Z ~2Z-l, which 

.,. 
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means tha t the locality condi ti"ons are expre ssible in terms of 

the vaniShing of certain commutators, irrespective of whether 

fermion operators occur or do not occur in the theory. This has 

the important practical consequence, from our point of view, that 

we do not have to create a new algebraic theory in order to deal 

with the case of fermion operatorsj as in BW I it suffices to 

consider the relationships between von Neumann algebras and 

their commutants. 10) Let us also note here that according to 

the fermion-superselection principle only a boson operator can be 

a physical observable. This means, with reference to our illus­

tration above, that the observables in A2 and .A 2
Z are pre­

cisely the same, and thus that the observable"s associated with 

the region Rl commute with the .observables associated with R2• 

Definition 2: a) A set X(WR) of bounded operators such that 

X* e X(WR) for all X e X(WR ) shall be said to be covariantll 

a s'socia ted wi th WR if and only· if 

( 52a) 

1ror a 11 elements A in the semigroup o(WR) consisting of all 

A e ~ such that A(X)WR C WR • In particular, / 

Vet) X(WR) V(t)-l = X(WR) , all real t~ (52b) 

and, more generally, 

-. U(A) X(WR) U(A)-l = )«WR), -all A e c;(WR) (520) 
" . - ---

where' ~ (W R) -.. i s the group of all e 1emen ts such that 

A( X)WR = WR ,i .e., all Poincare transforms tions which map WR 

ontoWR• 
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b) A set X(WL ) ~ of bounded operators such that Y* e X(WL ) 

for all Y e X(WL ) shall be said to be covariantl, associated 

with WL if and only it 

where X(WR ) is a set covariantly associated with WR• 

c) Let X(WR). be a set of bounded operators, covariantly asso­

ciated with WR as above. The association shall be said to be 

TCP-syrometric if and only if 

(54&) 

or, equivalently, . 

J X(W
R

) J-1 = X(WL)Z (54b) 

where X(WL ) is gi van by (53). 

* d) A set X(W
R

) of bounded operators which contains. X if 

it contains X shall be said to be locally associated· with WR 

if and only -if X(WR) is covariantly associated with WR !.lli! 

(55) 

where X(W
L

) is give~ P! (53), and where the von Neumann a1-:., . 
• . , , 

gebra X(WL)q is defined.as (X(WL,Z
) . 0 

e) A von NeUMann algebra .A(WR ), locally associat~d w1-th-" WR, 

shall be said to satisfy the condition of dualitl if and only 

if 

( 

I 
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( 66) 

where ACWL) is defined in terms of ACWR ) in analogy with (63). 

We present these formal definitions for later reference as 

we will repeatedly encounter sets which satisfy one,or several, 

of these defining relations. The geometrical significance of 

these definitions is obvious and need not be discussed here. 

Concerning the physical interprets tion we note tha t the condi­

tions in d) are minimum c ondi tions which a set of'tlocal obser­

vables for WR n would have to satisfy. In a quantum field 

theory these conditions are not, however, by themselves ~noughi 

the bounded local operators should also satisfy some c.ondition 

of locality relative to the local field operators. 

Lemma 8: Let l' be a set of closable operators, such that 

. u :r u -1 = Y .. We define the set ,0 0 :r q B s the set of all 

" bounded opera tors X such that 

, 

XZ (Y,D(Y»** C (Y,D(Y»** XZ ( 67) 

for all C 
'l' • 't'- q Y,D(Y» e tT • Or, equivalently, the set IT is 

precisely equal to the set of all bounded operators X such . 

that for all (Y,DCY» & :r , 

, 

(68) 
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a) The set ~q is a von Neumann algebra, and it satisfies 

the relation Uo( ~q) Uo -1 = :r q • 

b) Let the set yqq of bounded operators be defined. by 

( 59) 

Then yqq is a von Neumann algebra precisely equal to the 

von Neumann algebra genera ted by the Ote rators V and the 

spectral projections of the operators K far 

all pairs of operators {V, K J ,where V is the unique par­

tial isometry, and K is the unique non-negative definite self­

adjoint operator, defined through the polar decomposition 

(Y,D(Y»** = V (K, n(y*":t-» (60 ) 

of the closure of any (Y,n(Y» e :r . 
This lemma is aparapbrase of well-known facts about the 

cammutant in the sense of von Neumann 11) of a set of closed 

operators. An equivalent definition for y<l is thus 

y'q - (61a) 

with the prime-notation of von Neumann, and the set ~qq is 

then given by 

where f iHfo denotes the set of all closures 

of the opera tors in ;;- • Tha t the 

(61b) 

assertion in b) above about the algebra yqq (regarded as 

given by (6lb» holds is well-known 12) (and easily proved). 

That 3=q (and hence J:"qq) is invariant under conjugation 

by Uo follows tri via lly from the corre sponding property of J: • 
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We sha 11 call yq the qua sicommu tant of' the se t of' adjoints 

and closures of' the possibly unbounded opera tors in :r; this 

is consistent with our earlier terminology in the case that 

y is actually a von Neumann algebra. We ,shall say that the 

von Neumann algebra :rqq is genera te d by the se t :t. 
We shall next consider some special sets of' bounded opera-

-- tors defined in terms of field operators in feR), where R is 

any subset of .M • In thi s sec.tion we are primarily interested 
. 

in the wedge-regions WR and 'WL ' but for la ter reference it 

will be convenient to consider other regions R as well. We note 

here that it would be reasonable to restrict the regions R 

such that they satisf'y the condition RCc = R , but we shall 

I not do so since we -do not here wish to investigate the geo­
\ 
I metrical implications of' this restriction. 

Defini tion 3: Let R be alV subset of Minkowski space, and 

I let RC be its causal compl:,ement (as def'ined in (5) ) •. 
\ 

I a) The set £(R) is defined as the set of all fini te linear 

combinations of operators of) the form (PJ.I.[1'] ID l ), where 

where J.I. e IT' and where ,e 8(R4 ) , wi th supp (f') C:: R • 

b) The set ~(R) is,de1'ined as the von Neumann algebra genera­

te d by J: (R ), i.e., 

(62) 

where the superscript "qq" denotes theV1a pp1ng :t ..... :rqq
. 



def'ine d in Lemma 8. 

c) The von Neumann algebra C(R) is defined as the quasicommu­

tant of J:(Rc)~ i.e., 

where the superscript "qlt denotes the mapping l' --+ :rq 

defined in Lemma 8. 

d) The weak guasiconnnutant Cw(R) of f(Rc ) is defined as 

the set of all bounded operators X suCh that 

(64) 

.. 

We introduce the new term "weak quasicommutant" with some reluc-

tance, but it does seem fairly appropriate to describe. the 

na ture of the se ts C (R). The a djec ti va "weak" is here in­w 

tended to convey an impression of the "weak" na ture of the 

Itcommutation relationsU. (64)~ as contrasted with the more res­

trictive co~ditions (67). It should be noted, however, ,that the 

operators in ' Cw(R) commute in the weak sense of (64) with ill 

the operators in f(Rc)z ~ whereas the operators in C(R) 
. 

commute in the strong sense of (67) only with the operators 

in the sUbset'1 .(Rc)z of f{Rc)z. 

We shall next consider some fairly elementary properties of 

the sets defined above. 

Lemma 9: Let R be any subset of Minkowski space, and let 

the sets .(R), C(R), Cw(R) and ~(R) be defined as in 

Definition 3. Then: 

\ 

,'-

\ 

F 
r 

.I 
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a) Each one of these four sets 'satisfies the condition (66a). 

of covariance, the condition (66b) of TOP-symmetry, end the 

condition (66c) of isotonI, i.e., if Q(R) is any one 9f the 

sets £(R), C(R), Cw(R) I or ~(R), then . 

U(A) Q(R) U(A)-l .. Q( A(A)R), , all A e ~ 

. 1 
eO Q.( R) eo - = Q (-R ) 

where -R denote s the se t -R =' i -x I x e R. J • 

Q(R) ::> , whenever R:> Ri 

(66a) 

(65b) 

(66c) 

b) The set Cw(R) is a weakly closed linear'manifo1d, closed 

under the *-operaticn, i.e., it cont~ins X* if it contains X. 

A bounded opera tor X is in Cw(R) if and only if 

(66 ) 

} for all (Y,D
1

) e Q>(Rc)z.· 

I c) A bounded operator X is in Cw(R) if and only if the 

) 
condi tion(6~) holds for all tP, '" e Dl ' and all (Y,D1 ) e i(Rc)z, 

.' or, eqUivalently, if and only if the condition (66) holds, far 

all (,Y,Dl ) e £(Rc)z. 

d) ('~ .. 

(67a) 
\ , 

for all X e Cw(R) ... @l1-d~all~l' X2 eC(R). In particular, 
, ,~ 

C·(R) C C~(R) (67b) 
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e) ,If RC has a nonempty interior, then D is separating for 

eweR), i.e., if X e Cw(R) and X D = 0 , then X III O. 

If R, he s a nonempty interior, then tt(R)D is dense in 

the Hilbert space ' Ji • 

f) If (for a particular subset R) the "linear field opera tor sit 

in the set .c(Rc ) satisfy the condition that, Dl is 8 core 

for the adjoints of the operators in the set, i.e., 

( t ~ ** r C Y ,Dl ) = (Y,Dl ) for all (Y,Dl ) e J..(R ), then C(R) =Cw(R). 

Proof: 1) The assertions a) atld b) a~e trivial. We note here 

that the condition (66) (which is 8 trivial restatement of the 

condition (64» is equivalent to the condition that 

* ** *' X (Y ,Dl ) C (Y,Dl ) X (68) 

for all (Y,D
l

) & ('p(RO)Z. 

2) To prove the assertion c) we assume that X is a bounded 

operator which satisfies the condition (64) for 

all; , '" e Dl ' and all (Y,Dl ) & .(RC)Z. It follows at once ~ 

that the condition (64) then also holds for all (Y,Dl ) e fO(RO)Z. ( 

For such an X , let t/J , '" & D1 ,and'let (Y,D1 ) & f(Ro)z. 

Since .. we have ZDl = Dl ' and since the quantum fields are ope-

ra to~-valued tempered distributions, it follows from the 

fac t' tha t (eJ.)(R 4»n is dense in S (R4n) tha t there 

exists a sequence t (Yk,Dl ) (~,Dl) -. ~. 
e f (RO)z 

/'00. 0" , k • 1, ••• , (X) l 
of operators such that 

s-lim Y tP 
k- (X) k = YI/J s-lim , k .... CO 

Y *; 
k 

I: Y*¢ (69) 

I 
I 

'" 
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'\ 

\ 
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It readily follows that the relation (64) holds for the -

above operator (Y,D
l

), and hence X e eweR) as asserted. 

3) We consider the" assertion d). Let X eC(R}, Xw e eweR}, 

and (Y,D
l

) e £(RO)Z~ We then-have, in view of (57) and (68), 

X Xw (y*,Dl )** C X (Y,D
l
)· Xw c (y,Dl )* X Xw (70) 

which means tha t XXw e C w (R). From thi s (67a) follows rea di-

ly, and since I eCw(R) the relation (67b) follows. 

4) If X eCw(R), then XI} = 0 implies that 

(71 ) 

If} C Z for all Y l , Y2 e v- (R) • By the Reeh-Schlieder theorem the 

set (p (RC)z Q is dense if RC has a nonempty interior, which 

implies that in this case X = 0 if (71) holds. _Thi s prove s the 

\ first assertion in e), and in view of (67b) it follows that I} is 
I . 

a separating vector for the von Neumann algebra C(R ), and-hence 

a cyclic vector for its quasicommutant ~(RC) whenever the in­

terior of RC is nonempty. It readily follows, since ~(R) sa-

/ tisfies the condition of isotony (65c), that ~(R)Q is 

dense whenever R has a nonempty interior. 

) ( * * ** 5 We consider the assertion f). If Y ,Dl ) = (Y,Dl ) for 

'all (Y,Dl ) e £(Rc ) , and if X e Cw(R), then the relation 

(68) implies that X e C(R). In view of (67b) this implies 

tha t Cw(R) = C(R), a s asserted. Thi s c omple tes -the pr'oof. - ;-

We note tha tit does not follow from the defini tion of e w(R) 

a s a weak qua sic ommu tent of an algebra g.> (RO) of unbounded 

operators (or equivalently as. the-"weak commutant'· of the ope-
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rator algebra f(Rc)Z ) that Cw(R) is a von Neumann algebra; 

the se t need not be closed under mul tiplica tion. Wh.a t the ac­

tual situation is in quantum field theory we do not know. In 

the case of free fields the premises in part f) of the lemma 

are trivially satisfied, and C (R) is then identical with the . w 
von Neumann algebra C(R). In this connection we refer to the 

work of Powers on algebras of unbounded opera tors, their "weak 

commutants, nand rela ted subjects. 13) 

Lemma 10: Let R be any subset of Minkowski space, and let 

the notation be as in Definition 3 ~nd Lemma 9 0 Let ~O(R) be 

defined as the set of all bounded operators X such that 

XXw and XwX are both in C w(R) for all Xw & C w(R). Then: 

a) r:J;he se t ..A 0 (R) is a von Neumann algebra, and 

(72) 

b) The mapping R~.AO(R) satisfies the condition of covariance 

(65a) and the condition of TOP-symmetry (65b) in Lemma 9. In 
. 1 

particular .Uo.Ao(R) UO- == .AO(R) • 

c) All operators (Y,D1 ) & f(Rc ) have closable· extensions 

defined by 

(y t*, .) D a 

whereDa is the domain defined by 
( 

These extensions satisfy the conditions 

(738) 

(731)) 

(7:30 ) 

l 

I 
( 
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d) Let fa(R C
) be the set of all operators (a(Y),Da ) with 

(Y,D
l

) e f(Rc ). Then, with the notation in Lemma 8, 

and the closures and adjoints of the opera tors (a(Y) ,Da) in ' 

fa(Rc ) are thus affiliated to the von Neumann algebra .AO(R)Cl. 

The weak quasicommutant of fa-eRe) relative to the domain 

Da , i.e., the set of all bounded operators X such that 

for all f/J ,'" e Da ' all . ° (a(Y),D ) & f .(R ), " a a 
equa 1 to the set C w(R). 

e ) The ma pping 

onto f aCRe) is a representation, and it is a 

of the *-algebra . (P(Ro) in the sense that 

* (a (Y) ,D ) 
a 

is precisely 

* -repre senta tion 

(75a) 

The representation is continuous in the sense that 

s-lim a (Y ) '" 
k-oo k 

for all IJI e Da whenever 

s-lim Y
k 

l/J = 0 
k~<X) 

for all q, & Dl • 

= 0 (75b) 

, . 

(75c) 

Pr~of: 1) .Ao(R) is trivial-l~\a *-algebra since Cw(R) is 

closed un der the *-operation". From the fact that Cw(R) is 

weakly closed it follows that J4 0 (R) is also w~akly closed, and 

hence a von Neumann algebra. The relation (72) is trivial in 
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view of (67b). The assertions "b) are obvious. 

2) It follows from (66) tha t if X e Cw(R) and ¢> e Dl I then 

Xf/> * e D(Y ) , for any (Y,D
l

) e f(Ro)z. In view of ( 72) this 

implie s tha t Da I as defined in (73b), is contained in the 

domain of the adjoint of any operator (Y,Di) in (P(RC)Z or -
in g:> (Rc ), since ZD = D • It follows that the extensions a a . 
(a(Y),D) are well-defined by (73a). Furthermore (73a) also 

a 

defines an extension of every operator (yZ,D
l

) e (P(Ro)z , and 

we have 

(76a) 

:for all (Y,D
l

) e (P(Ro). 

3) Let Xl' X2 eAo(R); ¢> e Dl and (Y,Dl ) e (P (Ro)z. Then 

~lX2 e AO(R), "and sinoe eAO(R) CCw(R) we have 

t* a (Y )XI X2 </> = Y X1X2 ¢> = XIX2 Y ¢> = 

=X1Y f-:X2 ¢> = Xla(Y) Xa t/> (76b) 

** which implies that Xl commutes with (a(Y),Da ) in the strong 

sense of (57"), and we ha ve thus proved tha t .A o (R) C (P a (Rc)q • ., 

It furthermore readily follows that the rela tions (73o) hold for 

all (Y,D
l

) e (P(Rc)z , and hence for all (Y,D
l

) e ~(Rc) • The 

relation (75a) is then trivial. 

4) We next 'consider the weak quasicommutantCwa(R) offa(Ro) 

relative to the domain Da. It is easily seen from the condition 

(74b) that a bounded operator X iB""in C (R) if and only lr. 
wa 

XI XX2 e Cw(R) for all Xl ,X2 e .AO(R). Thi~ implies th8.t .I 
I 

Cwa(R) = Cw(R), as asserted. We obviously have 
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xxw' XwX e Cwa(R) for all Xw·e Cwa(R), x e f a(RC)ct , and 

in view of the results in step 3) above the first relation 

(74a) follows. The remaining relations (74a) then follow tri­

via lly, in view of (72). 

5) The remaining assertions in part e) of the lemma are trivial, 

and we omit the detailed proofs. 

We must here sta te the t we know much less about the rela­

tionships between the sets C(R), Cw(R) and AO(R) than we 

would like to know. We note here that C(R) was defined as the 

i f th b r- (RC) .t of qua s c ommu ta n toe su se t Jv 

that the closures and adjointsof the operators in £(Rc ) are 

affiliated to the von Neumann algebra 

we see no obvious reason why this would imply that the closures 

and adjoints of the opera tors in P(Rc ) are also affilia ted 

to this same von Neumann algebra. The lemma now shows that 

there exists a "natural" extension (a(Y),D
a

) of all the ope­

rators in P(Rc) such that the closures and a-djoints of the 

extended. operators are affiliated to ~(RC), or to the possibly 

smaller von Neumann algebra AO(R)q. It is here important to 

note tha t thi s extensi on depends on the se t RC, a1 though 

thi s is not shown explici tly in our notation. A field opera tor. 

which can be associated with different regions might thus have 
~ 

different extensions constructed as in the lemma • 

. In view of our present lack of understanding of the general 
, 

struc ture of a quantum field theory the possible physical inter-

pretation of the weak quasicommutant eweR) of f(Rc) is far 

from clear. With reference to the discussion by Licht of strict 
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localization 14) we note here the following. Let V be a par-

tial isometry in Cw(R)Z such that V*V. I , and let 
. * 

Then t/J is in the domain of (Y,D1 ) for any (Y,Dl ) e 

and we have, for any such (Y,D1 ), 

< '" Iy t* '" > =<·D.ly 
D) (77a) 

and, more generally, 

(77b) 

for any two (Y1 ,Dl ), (Y2,D1 ) e. P(Rc). We here assume that 

both Rand RC have nonempty interiors. It is then not hard 

to show tha t if a vec tor t/J. sa tisfie s the condi tions (77b), 

then t/J is of the above form. 

The expression at left in (77a) might be loosely regarded as 
o 

the "expec ta tion value of the field opera tor Y in the sta te '" "~ 

and the"local character" of the state then manifests itself in 

the fact that the expectation value in the state equals the 

vacuum expectation value, for all operators (Y,Dl ) e f(R C
). 

Note, however, that the operator yt* at left in (77a) cannot .. 

. ** in general be replaced by Y or by Y, as ~might not be in 

the domains of these operators. We furthermore note that the 

condition (77a) also holds for all the bounded operators in the 

von Neumann algebra Cw(R)ct , but not necessarily for· the ope­

rators in lk(RC
). In our opinion (77a) is· a necessarycondi tion 

for a local state (localized in the ~omplement of RC ) but by 
" f ... 

no mea ns a suffic ien t c ondi tion.' ,. 
. -, 

We shall next consider the properties of the sets 

Cw(R) and lk(R) for the special case that R e ')If • The 
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We sha 11 call 1'q the qua sicommu tant of the se t of adjoints 

and closure s of the possibly unbounde d opera tors in r i thi s 

is consistent with our earlier terminology in the case that 

r is actually a von Neumann algebra. We shall say that the 

von Neumann algebra rqq is generated by the set r. 
We shall next consider some special sets of bounded opera­

tors defined in terms of field operators in .fJ(R), where R is 

any subset of .M. • In this sec.tion we are primarily interested 
. 

in the wedge-regions WR and WL ' but for la ter reference it 

will be convenient to consider other regions R as well. We note 

here that it would be reasonable to restrict the regions R 

such that they satisfy the condition RCo = R , but we shall 

not do so since we 'do not here wish to investigate the geo­
\. 

\ metrical implications of this restriction. 

Defini tion 3: Let R be atr1 subset of Minkowski space, and 

/ let RO be its causal comp~ement (as defined in (5» •. 
, 

J a) The set £(R) is defined as the set of all finite linear 

combina tiona of operators ofT the form ('j> [1'] ,Dl ) , where 
1.1. ' 

where 1.1. & IT' and where r& 8(R4 ) , wi th supp (1') CR •. 

b) The set ~(R) is, defined as the von Neumann algebra genera­

te d by £ (R ), i.e., 

where the superscript "qq" denotes the mapping l' -. r qq , 
< 

(62) 
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def'ined in Lemma 8. 

c ) The von Neumann a 1ge bra C (R) is define d a s the qua sic ommu­

tant of J:(Rc ), 1.e., 

where the superscript "q" denotes the mapping 3=" --+ J="q 

def'ined in Lemma 8. 

d) The weak guasiconnnutant eweR) of f(Rc ) is defined as 

the se t of a 11 bounded' opera tors X such that 

(64) 

'for all tP, 'I' e Dl ' and all (Y,Dl ) ef(Rc)z = z f(Rc ) Z-l. 

We introduce the new term "weak quasicommutant" with some reluc-

tance, but it does seem fairly appropriate to describe, the 

nature of the sets eweR). The adjective "weak" is here in­

tended to convey an impression of' the "weak" na ture of' the 

"commutation relationsU. (64), as contrasted with the more res- ; 

trictive co~ditions (67). It should be noted, however, ,that the 

operators in 'Cw(R) commute in the weak sense of (64) with!.!! 

the operators in f(Rc)z, whereas the operators in C(R) 
. . 

commute in the strong sense of (67) only with the operators 

in the SUbset" J:(Rc)z of f{Ro)z. 

We shall next consider some f'airly elementary properties of 

the se ts defined above. 

Lemma 9: Let R be any subset of Minkowski space, and let 

the sets J:(R), C(R), C~(R) and ~(R) be defined as in 

Definition 3. Then: 

r 
l 

\ 

,F 

I 
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lemma which follows corresponds' in part to our Theorem 3 in 

BW I, with some added refinements which we overlooked before. 

Lemma 11: Let C(R), Cw(R) ,.AO(R) and ~(R) be defined 

a s in Definition 3 and Lemma 10. Then: 

- -C(WR ) , Cw(WR) = Cw(WR ) , 

(78a) 

with analogous identities,for the corresponding objects 

a ssocia ted wi th WL• 

(78b) 

b) The von Neumann algebraC(WR ) is locally associated with 

WR, and the association is TCP-symmetric, in the sense of 

Definition 2. 

c) The set Cw(WR ) and the von Neumann algebra ~(WR) are 

covariantly associated with WR, and the association is 

TCP-symmetric, in the sense of Definition 2 •. 

d) For every X & Cw(WR) (and hence for every X in C(WR) 

or AO(WR» we have 

, V(in) X!J = :r X*!J (79 ) 

e) The von Neumann algebra AO;(WR ) satisfies the conditions: 

AO(WL ) = 8 0 Ao (WR) 8 0- 1 = U(u(!.l,n),O).AO(WR ) U(u(!1,n),or"
1 

(80a) 
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and 
(SOb) 

-for all X e i such that A(X) WR = WR ' i.e., for all Poin-

car& transforms tions which map WR onto W,. - R. 

f) 

(Sl) 

Proof: 1) We consider the identities (7Sa). Let x e WR • Then 

we have C(WR):::> C(WR) :::> TEx) C(WR ) T(x)-l , in view of the 

fact that . C(R) satisfies the condition of isotony. Since 

C(R) is weaklY. closed, and since T(x) is a strongly con~inuous 

function of x, it follows at once that the first identity in 

(7Sa) holds.;' The next two identities are proved by exactly the 

same reasoning. The fourth identity follows fram the second, and 

from the definition of .Ao(R) in terms of . eweR). 
2) The inclusion rela tions between the first three sets at left 

in (7Sb)c orre spond to (72) in Lemma 10. The 

assertions e) also follow fram Lemma 10. (Note that we do 

not assert tha t (SOb) holds for all Poincare transforma tions A 

which map WR ~ WR)~ The assertion c} is trivial. 

3) The relation Cw(WR) CC(WL)q is not trivial; it is 

equivalent to the condition that all operators in Cw(WR) 

commute with all opera tors in C (WL ) Z • To prove this rela-

tion we first consider the assertion d) of the lemma. The rela­

tions (79) follows readily from the definition of Cw(WR) , and 

Lemma 13 in BW I.(In this argument we depend, of course, u1ti .. 
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mately on Theorem 1 of the present paper in place of Theorem 1 

in BW I.) 

4) Let X e .AO(WR ) and let Xw e Cw(WR). Since~by c) above, 

Cw(WR) is invariant under conjugation by Vet), it follows 

that X Vet) Xw * V(t)-l e Cw(WR) for all real t. In view of 

d) above it then follows from Lemma 14 in BW I tha t the rela­

tion (81) holds. 

5) Let X e C(WR), and let Xw e Cw(WR). We write 
1 . 

Y = ZJXwJZ- , and we then have Y e Cw(W
L

). Let x e W
R

, and 

let X(x) = T(x) X T(x)-l. Then 

X(x) e C(WR), and (81)1 holds wi th X replaced by X(x). We 

consider the special cases when each one of the operat~rs X 

and Y is either a boson operator (i.e., a bounded operator 

which commutes with UO)~ or else a fermion oper~tor (i.e., a 

b ounde d opera tor which an ti-c ommu te s wi th U 0). The re la tlon 

(81) then implies'that 

( X(x) Y + s Y X(x» D = 0 (82) 

where s = ~lif both X and Yare fermion operators, and 

s = -1 if a t lea st one of the opera tor s X and Y is a boson 

opera tor. 
, 

We note that the operator Q;(x) = X(x) Y + s Y X(x) is inclu-

ded in the set C w(R) , where '. R = WL U A(I,x)WR ; this 

follows from Lemma 9 sinceX(x) eC(A(I,x)WR)CC(R) . 

and Y e Cw(WL) C Cw(R). Since the interior of RC 1s nonempty 

it follows from Lemma 9 that Q(x) = O. Since Q(x) is a strongly 

continuous function of x we conclude that (XY + sYX) = 

Q(O) = O. This in turn implies that 
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[x, JX J] = O. From the .fact that this relation holds in the w . 

special cases considered it readily .follows that it holds .for 

!ll: X eC(wR), Xw e ,Cw(WR ). This means that 

Cw(WR) c C(WL)q = ~(WR) , as asserted in· (78b)~ This comple-

tes the proo.f o.f the lemma. 

The rela tions (78a) should be care.fu11y noted. The algebraic 
J , 

objects appearing in these relations are thus the same for the --closed wedge WR as for the open wedge WR' which :fact leads 

to a considerable simp1i.fica ti"on of the subsequent discussion. 

We employ a nota tion in the .following according to which the 

objects are labeled bY' the open wedges WR and WL • 

The facts stated in part b) of the lemma correspond, in a 

sense, to a well-known result o.f Borchers concerning the local 

na ture o.f quantum fields which are local rela ti va to an irredu­

cible set o:f local :fields. 15) 

Theorem 3: Let the notation be as in De:finition 3, and 

Lemmas 10 and 11. 

A) I.f the quantum .fields are such that .AO(WR).Q· is dense 

in the Hilbert space Jl , then .AO(WR ) is locally associated 

~ WR ' and the association is TCP-symmetric,in the sense of 

De.finition 2. Furthermore .AO(WR) satis:fies the condition o:f 

dua li ty, and 

B) I:f the quantum fields are such that there exists a von 
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dense, and such that A(wR) is either locally associated 

with WR ' or else covariantly and TCP-symmetrically associated 

~ WR ' in the sense of Definition 2, then: 

a) The algebra ~(WR)' is locally, and TCP-symmetrically, asso­

ciated with WRe Furthermore .A(WR ) satisries the condition 

of dua li t,.~ and 

(849. ) 

where 
(84b) 

as in Definition 2. The relation 

A 0 (WR ) = A(WR ) holds if and only if .AO(WR).Q is dense. 

b) The algebra .A (WR ) is a factor, with Q as a cyclic and 
, 

separa ting vector. For any X & .A(WR), 

Vein) XD = J X*D 

and 

c) There exists an extension of the operators in f(WR) 

derined by 

(85&) 

(86b) 

. (86a) 

where 
(86b) 

such that the extension satisfies the conditions 

(860) . 
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The mapping (X,Dl ) -. (eR(X)~DlR) or f(wR ) onto the 

se t f e (WR) or the extended opera tors is a continuous 

*-representation in the sense described in Lemme 10 • 

. The closures and adjoints of all operators (eR(X),Dm) e 

a:> e(WR) are afriliated to the von Neumann algebra .,4(WR). 
-

d) The weak guasicommutant Cwe(WL) of Ole(WR ) relative to 

the domain DlR , i.e., the set of all bounded operators Y 

such that ror all (X,Dl ) e Ol(wR), 

(87) 

is precisely equal to the quasicommutant .A(WL ) of a:> e (WR). 

Proof: 1) Let .A (WR) be a von Neumann algebra such tha·t 

.A (WR) C Cw(WR ) and V( t) .A(WR) V( t,>-l • .A (WR) for all 

real t. The algebra .AO(WR),in particular, satisries these con­

ditions, in view of Lennna 11. If now .A(WR),Q is dense, then 

it follows from Theorem 2 in BW I that (8Sa) and (85b) hold. 

It furthermore rollows from Lemme 15 in BW I that .A(WR ) is 

a .factor. We have thus proved the assertions Bb). 

2) We consider the relation (81) in Lemma 11, with Xw = X1X2 ' 

where Xl and X2 are elements of a von Neumann algebra 

.A (WR ) which satisfies the premises in ~tep 1) above, and where 

X e .AO(WR). By repeated application of (81) it readily follows· 

that [x,JX1J]JX2 ,Q =O,andi.f .A(WR).o is dense it 

follows that [X, JX1J] = 0 .for all X e.AO(WR), Xl e .A(WR). 

In view of (85b) this' implies that .AO(WR ) C .A (W
R

), as 

a sserted in (84a) .• 

3) We consider again the relation (81), with X = Xi"-4 ' where 

( 

I 
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X
3

, X
4 

e AO(WR), and 'Xw eCw(WR). By repeated application 

of (81) we easily show that 

=0 (88) 

In the particular case that AO(WR)Q is dense the rela-

tion (88) implies that C~(WR) C (J.AO(WR ) J)' = .AO(WR) , 

where the equality between the last two members follows from 

step 1) above. In view of (78b) in Lemma 11 it then follows 

that the relations (83) hold. We have thus shown that the pre­

mises in A) imply the relations (83)."Since Cw(WR) is cova­

riant1y associated with WR we then conclude that AO(WR) is 

locally associated with WRe We have thus proved the 

a ssertions A:). 

4) We consider a von Neumann algebra A(WR) which sa tisfies 

'1) the premises in part B). If A(WR ) is locally associated with 

',Wil ' then .A(WL ) C .A(WR)q =, (.A(WR)' )t, = (J A(WR ) J)z 
t ' 
i in view of (86b), and this means that the association of A(WRJ 

\With WR is TCP-symrnetrice Conversely, if .A (WR) is 

TCP-symmetrically; associated with WR ' then (85b) implies at 

once tha t A (WR) = .A (WL)q ~ and in particular the a ssocia tion 

is local. It readily follows t'rom the results in steps2) and 3) 

above that AO(WR ) = .A(WR ) it' and only it' .AO(WR).Q is dense. 

We have thus proved the assertions Ba). 

6) The assertions Bc) are proved in 'the same manner as the 

correspondingaBsertions about the extension 

(a(Y),Da ) , in Lemma 10, and we need not repeat the arguments. 

6) We finally consi der the a ssertion d). It readily ,follows 
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frOm (87) that a bounded operator Yw is in Cwe(WL ) if and 

only if Yl.YwY2 e Cw(WL ) for all Y l , Y2 e .A (WL ) • We can 

restate this as f'ollows. The operator X is in (JC (WL ) J)Z w we 

if' and only if XJ!-wX2 & C w(WR ) f'or all Xl' X2 & .A (WR). 

An opera tor X which satisf'ies the above condition is thus w . ' 
included in Cw(WR). By the same reasoning as in the proof' of 

(81) in Lemma 11 we show that [X, JXwJ] Q = 0 f'or all 

X e .A(WR), Xw e (JCwe(WL ) J)z • By the same reasoning as iri' 

step 3) in the present proof' we conclude that [ X, .rx J] = 0, 
. . w 

which mean~ tha t ewe (WL)Z c .A (WR ) t· = .A(WL)Z • Since the set 

.A (WL ) is trivially included in Cwe(WL ) it follows that the 

two sets are equal, as asserted. 

This completes the proof' of the theorem. We postpone· the 

discussion of' this result until af'ter the next theorem. 

Theorem 4: Let the notation be as in Theorem 3 (i • e • J a s in De-

f'inition 3 and Lemma 10). 

a) The following six condi tions are equi va 1m t: 

1) (89a) 

2) 
(89b) I 

3) 
(8ge) 
r, 

4) {} is a cyc lic vec tor for C(WR ). 

6) !} is a separating vector f'or ~(WR). 

6 ) .~ (W R )!} C D + ' and 

{ 

t 

< 
( 
i 

. . 
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V(i'Jt) X'Q - J X* f} (89d) 

b) If' these conditions are satisf'ied, .then 

(90 ) 

The von Neumann algebra .AO(WR) sa tisf'ies the premises of' 

part A) of Theorem 3, and a 11 the conclusions of that theorem 

apply. In particular .AO(WR) is a f'actor with f} as a cyclic 

and separating vector. It is locally and TCP-symmetrically 

associated with WR, and it satisf'ies the condition of' duality. 
• J 

Proof: 1) We first note that since ~(WR)f} is dense by part e) 

of Lemma 9, the relations (90) imply that .AO(WR)satisf'ies 

the premises of part A) of Theorem 3, and it then follows tri-

') via lly from tha t the orem tha t the six c ondi ti ons in pa rt a) of' 

\ the pre sent theorem are sa ti sf'ie d. 
, 
'2) Since ~(WL)q = C(WR) the condition (89a), in view of' (78b) , 
l 
in Lemma 11, at once implies the conditions (90). Similarly (89b) 

implies (90) 0 The condi tion (89c) implies, in view of (78b), that 

Cw(WR) = ~(WR) , and hence Cw(WR) is a von Neumann algebra, 

which, by the definition of .AO(WR ) must be equal to .AO(WR). 

Since this von Neumann algebra now has f} as a cyclic vector 

it readily f'ollows from Theorem 3 that all the conditions (90) 

hold. 

3) The conditions 4) and 5) in part a) of the theorem are obvious­

ly equi valent. In condition 4) holds, then .A(WR ) = C(WR ) sa­

tisfies th~ premise s of part B) of Theorem 3, and it follows tri-
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vially that the 'conditions (90) are satisfied. 

4) If condition 6) is satisfie,d it follows from Theorem 2 in 

BW I that J ~(WR) J I: ~(WR)' , which implies (89b), and 

hence (90). This oompletes the proof. 

As the symbolism in Theorems 3 and 4, and in the preceeding 

Lemmas, might appear bewildering we shall now discuss the situa­

tion in plain English. Part b) of Theorem 4 describes what we 

regard as highly desirable properties of a quantum field 

the ory, a nd the se 

properties are thus implied bY' either one of the six equivalent 

conditions in part a). We consider the first of these, namely 

the re la ti on (89a). The von Neumann algebra ~(WR) is "'gene-

ra te d"by the quantum fie lds (~ ~[1'l ,Dl ) with the support 

of l' in the right wedge WR ' and ~(WL) 1 s deflned ana-

logously. The condi tlon (89a) 1 s si mply the condition tha t 

these algebras are local, 1.e., one is contained in the quasi­

commu ta n t of the other. The se a 1ge bra s a re a lways suffic le n tly 

"large" in the sense tha t each one of them ha s the vacuum vec tor ( 
, .-

as a cyclic vector, and according to (78) in Lemma 11. it is ' 

always the case that the quasicommutant of either one is con-

, , 

tained in the other. We do not know, however, whether ~89al holds '-. 

_generallYj in a particular field theory it could be the ca se 

that these algebras are "too large" In the sense that theY' fail 

to be locally associated with the wedges •. The theorem now shows 

that the condltion that the algebra ~(WR) not be too lar~ in 

the above sense is precisely the condi tion tha t D is a sepa­

rating vector ~or 9(WR ), i.e., the condition that ~(WR) 
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does not contain any nonzero operators which annihilate the 

vacuum vector. 

The algebra C(WR)' is defined as a "strong" quasicommutant 

of the field operators (~ll(r] ,Dl ), with supp(f) C WL, i.e., 

C(WR) is precisely equal to the set of all bounded operators 

which canmute with the closures of the operators (YJ [f],Dl)Z, 
1.1.. 

supp(f) C WL , in the strong sense of von Neumann. The algebra 

C(WR) is then trivially equal to the quasicommutant of ~(WL). 

According to Lemma 11 the algebra 

associated with WR, and the association is furthermore TCP­

symmetric. These circumstances corre spond to a well-known re­

sult of Borchers which we referred to earlier.16 ) The 

algebra ,C(WR) is a reasonable choice for "the algebra of 

all bounded operators locally associated with WRn unless it so 

happens that this algebra is ntoo small" in the sense that it 

fails to satisfy the duality condition. By the theorem the al-

: gebra is too sma 11 in the above sense if and only if it doe s not 

~have the vacuum vector as a cyclic vector, i.e., if and only if 

) C(WR)!J is a proper subspace of the Hilbert spaceJ! • 

We ha ve already discussed (following Lemma 10) the possible 

physical interpre ta tion. of the se t C w(WR), 
, I 

defined (in Definition 3) ~sthe "wea·k quasicommutantn of all 

the operators.in f(w
L
). Now it is interesting to note that,by 

Lemma ll,the wedge-region WR has the special property that 

Cw(WR} is included in ~(WR). This result, which we derived 

on the basis of Theorem 1, is not a triviality in our opinion. 

We also know that an analogous inclusion relation does not hold 

for arbitrary open regions R. It is furthermore interesting to 
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note that, by Theorem 4, the seemingly weak condition 

~(WR)C Cw(WR ) ,i.e., the condition that the opera~ors in 

~(WR) cormnute at least in the weak sense of (64' with the 

operators (~~[f] ,D1 )Z for which supp(f) C WL ' in fac~ 

implies that C(WR) = Cw(WR ) = ~(WR)' i.e., that Cw(WR ) 

is a von lleumann algebra, identical with ~(WR)' and that 

q(WR ) is locally associated with WR and satisfies the 

condition of duality. This result is aBo ultimately based on 

The orem 1~ and it doe s not seem to follow from some more tri­

vial considerations. 

We do not know a t this time whether ,Cw(WR) is always a 

von Neumann algebra, i.e., closed under multiplication, without 

further conditions on the quantum fields. The set Cw(WR) is 

trivially equal to the von Neumann algebra C(WR) if 

t * ** . (X ,Dl ) = (X,D1 ) for all (X,D1 ) e £(WL ). One might thus 

say tha t the rela tion C w(WR ) rI- C(WR) (if there are quantum 

field theories for which this is the case) in some sense reflects'i' 

the inadequacy of the domain D1 for the definition of the 
-

field operators. Let us here note that with our present under-

s tanding of the si tua tion the e qua li ty C w (WR) = C (WR ) doe s 

not by itself seem to imply the duality condition. In particular 

we ha ve not shown tha tit might not happen the t Cw(WR) con­

sists of multiples of the identity on11.~ 

The sixth condition in part a) of Theorem '4 is of a "techni­

cal" nature, without any immediate physical interpretation. We 
-

, , 

stated this condition because its form suggests a possible direot 

( 



, 

(66 ) 

connection with Theorem 1. We note, f,or instance, that in the 

very special case that the vacuum vector is an analytic vector 

for the field operators (~",,[f']. Dl ) (as is the case for a 

free field) then the sixth condition follows trivially from 

the facts in Theorem 1. We are,~, however, here conjecturing 

that the sixth condition follows in general fram Theorem 1 

alone. 

Even if the premises of Theorem 4 are not sa tisfied it is 

conceivable, according to Theorem 3, that. the quantum fields 
. 

nevertheless have extensions which are affiliated to von 

Neumann algebras which satisfy a duality condition, at least 

for the wedge-regions in ~ • It is easily seen that if 

is an extension of a set of field 

operators which satisfies the condition (S6c), then the weak 

quasiconnnutant (relative to DlR ) of the set of extended ope-

'\ ra tors 1:s necessarily contained in the weak. quasicommuten~ of' 

,the original set. The premises in part B) of Theorem 3 thus 
\ 
I seem to us to express minimal conditions which a "local" alge-

bra "generated" by the fields must satisfy. 

In Sec. VI of BW I we considered four particular conditions 

on the quantum field, called Conditions I-IV. which were shown 
'\ . 

. to imply the duality condition for the wedge-regions. We shall 

" npt state the generalizations of these conditions here, but 
I 

~e assert that our earlier Conditions I, II and IV trivially 

imply the premises of Theorem 4, and that our Condition III 

imp~.ie s the premise s of part B) of Theorem 3. 
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VI. The duality condition for von Neumann algebras associated. 

with double cones and their causal complements. 

In this section we shall generalize the discussion in Sec. VII 

or BW I. We ·shall thus consider the construction or von Neumann 

algebras locally associated with a particular ramily or regions, 

namely double cones and their causal complements, in terms of 

a von Neumann algebra .A(WR) locally associated with WR• The 

scheme is the same as in BW I. 

Derini tion 4: La t the von Neumann algebra .A (WR) be locally 

associated with WR, in the sense of Definition 2 • 

. a) For any W e ~ , i.e., for any wedge-regian W bounded by 

two non-parallel characteristic planes, we define a von Neumann 

al gebra 

-, any A e <i (91) 

b) For any two points Xl and Xzin Minkowski space 

such thot x 2 e V+(Xl ) , (where V+(Xl ) is the forward light 

cone with Xl as apex), wo define the double cone C = C(xl ,x2 ) 

by 

(92) 

/ 

where V _ (x2 ) is the backward light cone wi th x2 as apex. The { 

double ·cones so defined are thus open and nonempty. We deno~ , 

bv ..... the set of all double cones. 
t1 .u c 

For any double cone C we define a von Neumann algebra <.. 

33(0) by 

( 
I 
I 

( 



-, W ::>0 \ (93) 

c) For any 0 & .;Dc we define the von lleumann algebra ~(Cc) 

by 

(94) . 

d) A set of von Neumann algebras, defined as above, shall be 

called a loca 1 AB-system. 

It is easily seen that the definition in part a) above is 

consistent, i.e o , that the algebras defined by the righ~-hand 

side of (91) for two different A' ,An, are equal whenever 
- -

A(A.t )WR = A(A.tt)WR • We remark here that, as in BW I, we prefer 

-to regard 13(C) as associated with the closed set C , 

\ and hence the above notation. 

\ 
We shall next state a theorem corresponding to Theorem 5 

: and part of Theorem 6 in BW I. 

Theorem 5: Given a local AB-system, defined as in Definition 4 
I 
'in terms of a von Neumann algebra v4 (WR ) locally associated 

\; with WR• Then: 
(~\ 

"I) a) The algebras in the AB- sy s tem satisfy thec ondi ti ons of 
"/\ 

/" ,,- ':)\Coveriance and isotonI, i.e., if Q(R) denotes .A(R) or 

«/,~l3(R), with the appropriate restriction on R, then the condi­
,/ 

tions (65a) and (65c) hold. Furthermore, 

(96) 



(68) 

- e for all W & W' ,Cl , C2 & .:bc ' such that Cl ewe C2 • 

b) The algebras l3 Ce) are local, in the sense that . . 

(96a) 

for any Cl , C2 < & .be ' such that C1 . C c2
C

. 0 Furthermore, 

(96b) 

for any C & .:be. 

c) The mapping W - ACW) is continuous from the outside 

in the sense tha t 

(97a) 

and it is continuous from the inside in the sense that 
I 

'.A (w) =. {.A (1,1 i) I Wi & ~, Wi C w t.·· (97b) 
\ 

"' . j 

The mapping C ---j3(C) is continuous from the outside in t\ 
the sense that 

, c c Co \ (970) 

The mapping CC 
--.. .A(Cc ) is continuous from the inside in 

~. 

• 

'- ..... ."" 

'. 



• 1 
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. , 
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I 

(69 ) 

the se nse tha t 

(97d) 

d) If the algebra A (WR ) satisfies, in addition;' the condition 

of TCP-symmetry, as stated in.Definition 2, then the AB-system 

is TCP-symmetric in the sense that 

e 0 A (W) eO -1 = .A (-W ) , e 0 ~ ( c) eo -1 = J3 (-0' ) 

eO v4 (cc) 9
0

• 1 = .A (:..cC) 

for all W & W·, C & JJ ,and where -R = I x c 
for any subset R of Minkowski space. 

(98) 

I -x & R } 

e) If the algebra .A(WR ) satisfies, in addition, the condition 

of duality, as stated in Definition 2, then the algebras j3(C) 

satisfy a condition of duality.in the sense that 

(99) 

for any C & b o ' • 

~, The assertions a)-d) in the theorem correspond to Theorem 6 
( 

. , 
r in BW I, end the assertion e) to thea Bsertion a) in Theorem 

\ 
6 in BW I. The above a ssertions are proved by a very tri via 1 

. modification of the reasoning whereby we proved the correspon-

ding as;sertions in BW I, end we do not feel that it is necessary 

to repeat the arguments h.ere. The modifica tiona, of course, have 

to 1 do wi th the circums ta nee tha t the loca li ty c ondi tions in 
\ 



· the present theorem reter to the notion ot a quasicommutant, 

rather than to the notion of a commutant as in BW I., 
o 

The above theorem is of interest because it shows hoil a 

"wedge-algebra" J4CWR) with physically desirable properties 

gives rise to Q system of a1gebrasCassoc-iated with other'regions) 

with physically desirabl'e properties, such as covariance, iso­

tony, TCP-symmetry and duality. In our study of a general quan­

tum field theory the crux of the matter is thus to establim. 

the existence of an algebra ACWR ) which is locally associated 

with \-lR' and which satisfies the conditions of TCP-symmetry 

and duality. 

Now it should be noted the t nothing said so far guarantees 

that 33CO), for some particular C e' .bc ' contains other ele­

ments than multiples of the identity. In a physically satisfac­

tory "local" theory it must clearlY,be the case that at least 

~ of the algebras 33CO') are nontrivial. In a quantum field 

theory one might in fact demand that!l1 the algebras 33 CO') 

are nontri via 1, and furthermore onemigh t demand that the alge-

bras 33CO) associated with all 0' C Co· , far some Co' 

shall show that this should genera te the alge~ra .J - C ",CC o ). We 

I 

\~ 

,r 
} 

( 

1 

is in fa c t the ca se if the quan tum fie Ids sa ti sfy the c ondi­

tions in part a) of Theorem 4. We do not ha va 8 corresponding 

result for fields which merely ~atisfy the premises of 

Theorem 3. The situation iO the latter case is complicated by 
/ 

-the fact that the extension~ of the field operators describe"d 

in !heorem 3 depend on the region with which the operators are 

associated, and to clarity the situation it would be necess~r'y 
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to investigate the relationship'between the domains of the ' 

extensions for different regions. This we have not done', and 

we shall therefore restrict our considerations to the case when 

the premises of Theorem 4 are satisfied. We note, however, that 

we do obtain a satisfactory local theory if the fields satisfy 

the premises of Theorem 3, and some additional condition which 

guarantee s the t is dense. We refer here to the 

assertions b) and d) in Theorem 6 in BW I, which can readily be 

generalized to the prese~t situation. It is of interest to state 

the generaliza tion of the first one of these assertions a8 

follows. 

The orem 6: La t the von Neumann algebra sa tisfy the 
j 

premises of Theorem 6, and let a local AB-system b~ defined in 

terms of .A'<WR ) as in Definition 4. Let .A(WR) satisfy the 

'·condi tion of duality, as well as the additional condi tion that 
I 

~ * (100) Xf} e D+ , Vein) X D = J X D 
.' ., . -'J 

,/~I;for all X e .A (WR ). 

" 
,,~. 

\ 

If there exists a double cone 

'dense in the Hilbert space Jl , then: 
\ 

\ 

\ o e J)c , 

tor every 01 e .:bo ' and 

such the t is 

- - C }tS o CO l , (lOla) 



(72) , 

.A (w) (lOlb) 

(1010 ) 

for every .01 & .'bo ' w & o\llt It furthermor -0 C t.r:· th 
" .' e 0 "R" en 

, (lOld) 

These assertions are proved by the same reasoning as in our 

proof of the corresponding assertions in Theorem 6 in BW. I, and 

we shall not repeat the arguments. We note here that the premi­

ses of the theorem at once imply thatD is a cyclic and se­

parating' vector t:or .A(WR), as well as for 33(°0 >.' We further­

more note that the condition (100) is not required fOr the cori-

clusion in part e) of Theorem 6. It is, however, essential for' ./ 
\ 

the present theorem, and in particular for the conclusion (lOld). I 
We refer here to our discussion in Sec. V of BW I of the 

connection between our considerations and the Tomita-Takesaki 
16) theory of modular Hilbert algebras. The relation (lOld) can 

thus be understood with reference to the fact that because of 

(100) the group {V(~) It & Rl} is precisely the modula:r 

automorphism group for .A(WR). 

In prepare tion for Theorem 7 we prove a lemma about the 

nature of the weak quasicommutent eweR) in the special oase 

tha t R is the closure of a double cone in .'b o. 

.'\ 
\.'" $ 

/.' " . 
'- '"', \ '\ -. . '1 
If \ .. 
; \ 

1 

/ 
'. 
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Lemma 12: Let C e .bo • Then· 

W e W' , • 
W:>C } (102) 

Proof. 1) Let . C 1 denote the set defined by the right side 

of (102).It is at onoe obvious that Cw(C) C C 1 ' and,we thus 

ha ve to prove that if X e C 1 ' then X eC w(e). 

2) Let ~ e IT' ,and let rex) 'e .b(R4 ) such that 
·0 supper) = Ro C C ' .• The. suppor.t Ro of the test. function' r 

is thus a compact subset of the open set CC. For any x we 

denote by b(x;p) the open ball of radius p > 0 centered 

at x (where Minkowski space is regarded as a. Euclidean space 

with Cartesian coordinates x = (x1 ,x2,x3,x4) )0 Now, for eaoh 

x e Ro we can select a p(x) > 0 such that b(x;2p(x» C w 

for some W e ~ suoh that weco. The set Ib(x;p(x» I x e Ro} 

',of open balls covers Ro' a nd since Ro is compact this open 

~overing contains a finite subcovering. There thus exists a 
I 
fini te set { ~ I ~ e Ro ' k = 1, ••• ,n l of points, and a set 

.., j{Wk Wk e ~, k = l, ••• ,n} of wedges, such that 

, .. '. 
k = 1, ••• ,n } (103&) 

, k = 1, ••• ,n (103b) 

\ 
,} In view of (1103&) there then exists a set 
) 

{lgk(x) I stc e .b(R4 ) , k III l, ••• ,n l of functions such that , 
su pp ( gk ) C b ( ~ ; 2p (~) ) for k = 1, ••• , n , and 

( 
I 



.! 

Let 
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n 

L gk(x) = 1 ,all x e Ro 

k=l 

for k = 1, ••• , n • We the n he w 

n 

(1030 ) 

(Y,Dl ) = L (Yk,D1 ) (103d) 
k=1 

where (Yk ,D1 ) & £(Wk ) • If now X e C1 ' then X e .Cw(W
k

O) 

and hence X' commutes in the weak sense (64) with (y
k

,D
1

)S for 

k = 1, ••• ,n • It follows, in view of (103d) that 

(1036 ) 

for all ¢J , '" e D1 • 

3) For any X e Ci the relation (1038) thus holds for all 

(Y,D1 ) = (~~[f] ,D1 ) & ~(Cc) such that supp(f) is compact. 

The set .;b(R4) is dense in S(R4 ) in the topology- of the 

space of tempered test functions, and since the quantum fields 

are opera tor-valued tempered distributions it readily follows 

tha t (1036) holds for!l! (Y,D1 ) = (y ~[1'] ,Dl ) &£(CO) such 
4 . 

that f & S(R), supp(f) C Co, i.e., for all elements of 

£.(Cc).It then follows, in view of Lemma 9, part e), that 

X & Cw(C). This, in effect, completes the proof of the Lemma. 

r 

" 
, 

, 

) 
) 
, 

.~ .. 
\.. 

',. 

{ . 
, .i!""'. 

I 

We are now prepared to present the main re aul t of this section.} . 

( 
\ 

Theorem 7: Let the quantum fields be such that the conditions 

in part a) of Theorem 4 are satisfied, i.e., the von Neumann \ 

algebra 

(,104-) 
/ '. I ' 

I 
" 
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and hence the algebra is locally and TCP~symmetrica11y associa-

ted with WR • Furthermore .A(~R) satisfies the condition of 

duality, and the conditions (100). Let a localAB-system be con­

struc te d from .A (WR), . a s in Definition 4. Then: 

a) The a 1gebra .A (WR ) sa tisfies all the genera:). and special pre­

mises of Theorems 5 and 6, and all the conclusions of these theo-

rems apply. In particular j3(Co)~ is dense fo~ any Co e .bo • -Furthermore, for any Co e JJ o such that Co C WR, 

(105a) 

( 106b) 

b) For any C e ..... 
eU o ' 

, ~ (C)c j3(C) (106a) 

~ (00 ) :J .A (Co) (106b) 

c) With the notation of Lemma 10, .AO(C) = Cw(C) = j3(C) for 

all C e JJ o. For any such C the opera tors in f(Co ) ha ve 

extensions constructed as in part 0) of Lemma 10, and these ex-

tensions have the properties described in the lemma •. In particu­

lar the closures and adjoints of '\ihe. extended operators are 

affiliated to the von Neumann algebra .A(Oo). 
d) With the notation of Lemma 10, 

for all C e .bo • For any such C 

C w(Co) ::> . .A 0 (Co) :J C (Co) 

the opera tors in f (e) ha va 

extensions. conotructed as in part 0) of Lemma 10, and these ex-
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tensions have the properties described in the lemma. In particu­

lar the closures and adjoints of' the extended opera tors are 

af.filiated to the von Neumann algebra .Ao(Cc)q c ~(C) c l3(CJo 

Proof:l)The algebra .A(WR) trivially satisfies the general pre­

mises of' Theorem 5. From the construction of the AB-system, and 

fran (104), it f'ollows, in view of Lennna 12,that Cw(c) = b(e). 
Since the mapping R .... ~(R) satisf'ies the condition of iso-

tony, the inc~usion relation at right in (106a) f'ollows from 

(104). The remaining relations (106a) and (106b) are then tri-

vial. 

2) Since, by Lemma 9, ~(C).Q is dense for any C e 1>c it 

follows that 33(0).Q is dense, as asserted in part a) of the 

theorem. Let now Co e1>c and Co C WR• Let .AR denote the 

von Neumann algebra defined by the right member in (1068). The 

vector.Q is then a cyclic vector for . .A R ' and in view of' 

the construction we have Vet) .ARV(t)-l = .AR for all real t. 

Furthermore it is trivially the case that .A(WR):>.A R • It 

then follows from Theorem 2 in BW I tha t.A(WR ) = .A R ' as 

asserted in (105a). The relation (106b) follows trivially from 

the relation (106a). 

3) The assertions c) and d) of the theorem are tri vial in 

view of Lemma 10.' 

As we see from this theorem, a very satisfactory ··local" 

theory results if the quantum fields satis.fy the premises of' 

Theorem 4, i.eo, anyone of the six conditions in part a) of 

that theorem. There thus exists a local AB-system which satis-' 

fies the condition of TCP-symmetry, and the condition of' 

,.' .. 

,-

... 
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duality 13(C)Q = A(Cc) • Furthermore, for any C e JJ c ' the 

von Neumann algebra 13(e) has !} ns a cyclic and separating 

.ve(Jt?!,.I~J:1e r~;ta .. tions(10la)-(101d) . hold,. which means that the 

se t of loca 1 opera tor s ass oc ia te d wi th the bounde d re gi ons C 

is sufficiently large in the sense that these operators generate 

all the algebras of the AB-system, as described by the re­

lations (lOla)-(10ld) .• Now it is interesting to note that the 

algebra b(e) is in fact equal to the weak quasicommutant. 

Cw(C) of the set of all field operators of the form 

(YJ~(f] ,Dl ) ,where f eS(oR4 ), supp(f) C- CC • We thus have 

a conceptually simple prescription for "finding" the algebras 

provided that it has first been established that the 

quantum fields do' satisfy the premises of Theorem 4. 

We note here that this is the case under what we called 

Condi tion I in BW I, because this condi tion says tha t C (WR )!} 

is dense. It follows that all the conclusions in Theorem 7 hold 

under our earlier Condition I. We overlooked this fact in our 

pre viou spa J2er • 

We infer from the work of Landau 17) tha t ~ (e) is in 

general smaller than . b(e). The study of Landau is concerned 

with generalized free fields, in which case we have the further 

simplification that Cw(R) = C(R) for any spbset R of M. We 

then ha va J (c-c) = r.(C-c ), and b(C·) C(-)· ~ 7 ~ = C, but it can ~el1 

happentha t ~(C), j3(C). 

We conclUde by sta ting a theorem sbbut local internal symme-

tries. 
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, , 
Theorem 8: Let be a von Neumann algebra loca lly and 

TCP-symmetrically associated with WR• It is assumed that, . .ACW
R

) 

satisfies the condition of duality, and that .furthermore 

, , V( i 1t) X D = J X* D (107) , 

for all X e .A(WR)" Let a local AB-systembe constructed in 

terms of ~,(WR ) a s in Defini tion 4. 

Le t G be a uni tary opera tor such tha t 

GD =D , G .A(W) G~l =.A(W)", all W e W (108al) 

Then: 

a) The operator G commutes with the TCP-transformation, and 

with all Poincare transformations, i.e., 

, ' 

, U(~) G U(A)-l = a, all A & ~ (108b) 

b) For all double-cones C, 

, (lOa. ) 

c) The set of all unitary operators G which satisry the condi-, , 

tions (108a) forms a group, the group of all local internal 

symme trie s. 

This theorem is proved by the same reaeoning as in our proof 

of the corresponding Theorem 7. in BW I, and it is not necessary 

to repeat the arguments here. We note here that the conclusions 

/ 
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of the theorem do not follow (as far as we know) merely from 

the assumptions that .A (WR ) satisfies the condition of duality 

and is locally and TCP-symmetrically associated with WR- Our 

proof in BW I depends on the specific conditions (107), which 

presumably cha.racterize local von Neumann algebras in a quantum 

field theory_ Without the conditions (107) it can be shown 18) 

that Gcommutes with all translations, but it appaars that 

further assumptions are necessary for the conclusion that G 

also commutes with homogeneous Lorent~ transformations. 19) 

We. fina lly note tha t the "group of all loca 1 internal symme­

-tries,tt as defined above, will in general include superselection 

sy~metries with no observable physical effects. 
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