
UC Irvine
UC Irvine Previously Published Works

Title
Th17 Cytokines and the Gut Mucosal Barrier

Permalink
https://escholarship.org/uc/item/0sg0j280

Journal
Journal of Clinical Immunology, 30(2)

ISSN
1573-2592

Authors
Blaschitz, Christoph
Raffatellu, Manuela

Publication Date
2010-03-01

DOI
10.1007/s10875-010-9368-7
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0sg0j280
https://escholarship.org
http://www.cdlib.org/


Th17 Cytokines and the Gut Mucosal Barrier

Christoph Blaschitz & Manuela Raffatellu

Received: 29 December 2009 /Accepted: 7 January 2010 /Published online: 2 February 2010
# The Author(s) 2010. This article is published with open access at Springerlink.com

Abstract Local immune responses serve to contain
infections by pathogens to the gut while preventing
pathogen dissemination to systemic sites. Several sub-
sets of T cells in the gut (T-helper 17 cells, γδ T cells,
natural killer (NK), and NK-T cells) contribute to the
mucosal response to pathogens by secreting a subset of
cytokines including interleukin (IL)-17A, IL-17F, IL-22,
and IL-26. These cytokines induce the secretion of
chemokines and antimicrobial proteins, thereby orches-
trating the mucosal barrier against gastrointestinal
pathogens. While the mucosal barrier prevents bacterial
dissemination from the gut, it also promotes coloniza-
tion by pathogens that are resistant to some of the
inducible antimicrobial responses. In this review, we
describe the contribution of Th17 cytokines to the gut
mucosal barrier during bacterial infections.
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Intestinal Pathogens and the Gut Mucosal Barrier

In normal individuals, the gut mucosa constitutes a barrier
against the systemic spread of both pathogenic microorgan-
isms and the resident intestinal microbiota. Once this barrier

has been breached, dissemination of microbes from the gut
can result in a systemic disease known generally as sepsis.
With regards to bacteria, the frequency of bacteremia
(bacterial sepsis) is higher in patients with altered mucosal
immunity (such as children and the elderly) as well as in
patients affected by immunodeficiency, implicating the
mucosal barrier as an important line of defense against
bacterial dissemination [1, 2]. Similarly, increased perme-
ability of the mucosal barrier with concomitant bacterial
translocation has been reported in Crohn’s disease [2].

A portion of the gut mucosal barrier function is orchestrated
by the intestinal microbiota that coexist with the host in a
mutually beneficial symbiosis [3]. These functions include
inducing secretory IgA production and intraepithelial
lymphocyte recruitment as well as providing a physical
blockade to pathogen colonization [4]. At least one of these
mucosal defenses or others to be detailed below must be
circumvented or endogenously fail for pathogens or the
resident microbiota to disseminate beyond the gut mucosa.

Some intestinal pathogens including nontyphoidal Salmo-
nella (including Salmonella typhimurium), Campylobacter,
and Shigella cause inflammatory diarrhea and are character-
ized by their ability to invade the intestinal mucosa. In stark
contrast to these organisms, the closely related pathogens
enterohemorrhagic Escherichia coli (EHEC) and enteropatho-
genic E. coli (EPEC), among others, cause secretory diarrhea
and are noninvasive [5]. With regards to the latter group, these
strains of E. coli belong to the class of organisms known as
attaching–effacing (AE) bacteria because they form charac-
teristic AE lesions as a result of their intimate adhesion with
the intestinal mucosa. As both EHEC and EPEC are poorly
pathogenic in mice, Citrobacter rodentium, a natural mouse
pathogen related to E. coli which also causes AE lesion
formation, has been widely used as an experimental model for
AE pathogens and will thus be included in this discussion [6].
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Orchestrating the Gut Mucosal Barrier: an Emerging
Role for T Cells

The host innate immune system is activated by pathogen-
associated molecular patterns such as lipopolysaccharide
and flagellin [7]. Epithelial cells, macrophages, and
dendritic cells play an important role in the initial response
to mucosal pathogens. However, there is mounting evi-
dence that direct interaction of pathogens with these cells is
not sufficient to generate an effective mucosal response.

Resident T cells represent a major component of the gut
mucosa and are located in between epithelial cells (intra-
epithelial lymphocytes) and in the lamina propria [8]. It is the
intraepithelial lymphocytes that likely contribute to the
barrier function and integrity of the intestinal epithelium [9,
10]. Several subsets of T cells (αβ, γδ, NK, NK-T) are
present in the gut mucosa and play an important role in
mucosal immunity [11]. Perhaps the most striking evidence
of the role T cells play in mucosal immunity comes from
patients infected with the human immunodeficiency virus
(HIV). HIV infects CD4+ T cells in the gut as early as a few
weeks after infection, resulting in almost complete loss of
this cell population [12–14]. Loss of mucosal CD4+ T-helper
cells consequently results in a loss of function of both B cells
and CD8+ T cells [15]. In HIV patients, CD4+ T cell
depletion results in increased susceptibility to bacteremia
caused by intestinal pathogens (mostly Salmonella, but also
Shigella and Campylobacter) [16–18]. This indicates that
CD4+ T cells are essential for the mucosal barrier against
pathogens that normally cause inflammatory diarrhea.

In the mouse model, depletion of either CD4+ or CD8+ T
cell subsets results in increased translocation of E. coli to the
mesenteric lymph nodes [19]. While mice do not develop
inflammatory diarrhea when infected with S. typhimurium,
streptomycin-pretreated mice infected with S. typhimurium
develop an acute inflammatory response in the cecum [20].
In this model, CD3+ (T cell) depletion results in dramatic
reduction of the gross pathology, neutrophil influx, and
expression of pro-inflammatory cytokines and chemokines
[21]. Similarly, CD3+ depletion or the absence of αβ T cells
both result in reduced clearance of C. rodentium infection in
mice [22, 23]. Overall, both clinical and experimental
evidence reveal that mucosal T cells play an important role
in containing commensals and pathogens to the gut.

Th17 Cells Orchestrate the Mucosal Response to Gut
Pathogens

Several studies have suggested that a new subset of T cells,
termed T-helper 17 (Th17) cells, orchestrate the mucosal
defense against pathogens. Th17 cells constitute a distinct
lineage from Th1 and Th2 cells and are characterized by the

production of a subset of cytokines: IL-17A, IL-17F, IL-22,
and IL-26 [24]. Th17 cell differentiation is directed by the
transcription factor RORγt, which is specific for the Th17
lineage [25]. The pro-inflammatory cytokines interleukin
(IL)-6 and TGF-β appear to drive Th17 differentiation, at
least in the mouse model [26], while the cytokine IL-23
appears to be indispensable for the protective effect of the
Th17 response against mucosal pathogens like C. rodentium,
Klebsiella pneumoniae, and S. typhimurium [27–29].

Another layer of complexity to the mucosal response to
pathogens is that Th17 cytokines can be secreted by other cell
types. IL-17 is released by γδ T cells in response to IL-23
stimulation [30, 31]. NK and NK-T cells can produce IL-17
and IL-22 [32, 33]. Antigen-presenting cells such as
dendritic cells can secrete IL-22 in response to bacterial
infection [34]. The cytokines IL-17A, IL-17F, and IL-22 are
expressed in the mucosa in response to several bacterial and
fungal pathogens; examples include K. pneumoniae infection
in the lung, C. rodentium and S. typhimurium infection in the
gut, Candida albicans infection of the oral cavity, and many
others (reviewed in [35]).

Adaptive T cells (Th17 cells), innate-like T cells (γδ T
cells), or both can contribute to the host mucosal immune
response. The contribution of Th17 cells during C. rodentium
infection is evident during the second week post-infection
[27]. In contrast, IL-17 expression occurs quite early during S.
typhimurium infection, ranging from 5 h post-inoculation of
rhesus macaque ileal loops to 48 h post-oral infection in mice
[29, 36]. The vast majority of gut T cells in the aforemen-
tioned rhesus macaque study were either CD4+ or CD8+ with
γδ T cells comprising less than 1% of the total gut T cell
population; this result suggests that γδ T cells are not a major
source of IL-17 at 5 h post-S. typhimurium infection in adult
rhesus macaques. In line with this observation, IL-17
production in response to S. typhimurium infection was
dramatically decreased in macaques previously infected with
the simian immunodeficiency virus which causes a selective
loss of CD4+ T cells in the gut (comprising both Th1 and
Th17 cells) [36]. In the mouse model, γδ T cells contributed
to the IL-17 produced at day 2 post-infection, but they were
not the sole source [29]. It thus appears that early activation
of both adaptive and innate-like T cells can lead to expression
of IL-17 and IL-22. As these T cells express the IL-23
receptor, expression of IL-23 by dendritic cells comprises a
common trigger or potentiating factor for early T cell
activation prior to the development of adaptive immunity.

Th17 Development in the Gut Depends on Microbiota
Composition

The gut microbiota is primarily composed of bacteria
belonging to the phyla Bacteroidetes and Firmicutes [37,
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38]. As demonstrated in gnotobiotic (lacking microbiota)
mouse studies, development of gut immunity is strongly
influenced by the intestinal microbiota. It was recently
shown that some bacteria of the genus Clostridia (phylum
Firmicutes), termed segmented filamentous bacteria (SFB),
are essential to the development of Th17 cells in the mouse
gut [39–42]. One host factor that influences the composi-
tion of the gut microbiota, including colonization by SFB,
is the expression of antimicrobial peptides such as
defensins [42]. Expression of a human specific alpha
defensin (DEFA5) in the mouse dramatically changes the
microbiota composition, including the loss of SFB [42].
Concomitant with these changes in the microbiota, fewer
IL-17 producing T cells were isolated from the lamina
propria. In contrast, mice colonized with SFB had an
increased expression of genes associated with inflammation
and antimicrobial defense and were subsequently more
resistant to infection with C. rodentium [41]. These recent
studies demonstrate that specific members of the gut
microbiota can shape aspects of the mucosal barrier.

Th17 Cytokines Control Pathogen Dissemination
from the Mucosa

The role IL-17 and IL-22 play during mucosal infections
has become apparent following several studies that
employed mice lacking these cytokines (IL-17A, IL-17F,
IL-22), their receptors (IL-17Ra, IL-17Rc), or upstream
cytokines responsible for their induction (IL-23 p19
deficient mice). During colonic infection with C. roden-
tium, IL-17A, IL-17F, and IL-22 appear to play a role in
controlling the severity of gut pathology [34, 43]. In rhesus
macaques, depletion of Th17 cells by SIV results in
alteration of the mucosal barrier and increased dissemina-
tion of S. typhimurium to the mesenteric lymph nodes.
Moreover, IL-17Ra−/− mice have increased translocation of
S. typhimurium to the mesenteric lymph nodes and spleen
[36]. Ileitis caused by Toxoplasma gondii infection is
dependent on IL-23 stimulated IL-22 production by CD4+
T cells in the small intestinal lamina propria [44]. As
illustrated in these and other studies, IL-17 and IL-22
upregulation appear to comprise a stereotypic response to
infection with mucosal pathogens.

Receptors of IL-17A and IL-17F (IL-17Ra and IL-17Rc)
are expressed in several cell types, while receptors for IL-22
and IL-26 are expressed solely by epithelial cells [45–48].
Little is known about the role of IL-26 because this cytokine
is not present in the mouse genome. In vitro stimulation of
intestinal epithelial cells with IL-17, IL-22, or IL-26 induces
changes in gene expression, including upregulation of
chemokines (CXCL-8, CCL20) and antimicrobial responses
(iNos, lipocalin-2) [49–52]. IL-17 also contributes to tight

junction formation and increased trans-epithelial resistance in
polarized intestinal epithelial cells [53]. Both IL-17 and IL-
22 stimulate granulopoiesis by inducing expression of the
granulocyte colony stimulating factor G-CSF [54–58].
Induction of G-CSF and CXC chemokine expression
contribute to neutrophil accumulation and function in the
mucosa in response to infection [59, 60]. Th17 cytokines
thus contribute to the mucosal barrier by several mechanisms
which, upon activation, result in a mucosal immune response
geared towards eliminating pathogens.

The mucosal response in patients with inflammatory
diarrhea is characterized by a massive neutrophil infiltrate in
the intestinal mucosa. Clinical evidence suggests that neu-
trophils are important in containing diarrheal pathogens to the
gut and preventing their systemic spread. In patients affected
by primary neutrophil immunodeficiency (i.e., chronic gran-
ulomatous disease), S. typhimurium often disseminates from
the gut, resulting in bacteremia [61, 62]. HIV infection also
results in a secondary neutrophil immunodeficiency [63, 64]
which is likely a contributing factor to the susceptibility of
HIV patients to bacteremia [65]. In the mouse model of
inflammatory diarrhea, Th17 deficiency results in reduced
neutrophil recruitment to the mucosa during infection with S.
typhimurium [36]. Thus, a defect in neutrophil recruitment
may explain why S. typhimurium dissemination increases in
the absence of IL-17 signaling.

One of the mucosal responses induced during C. rodentium
colonic infection is the secretion of antimicrobial C-type
lectins of the RegIII family, including Reg3γ and Reg3β
[34]. Induction of Reg3γ is dependent on IL-22 and is
important in controlling intestinal infection with C. rodentium
or vancomycin-resistant enterococci [34, 66]. β-defensin 1, 3,
and 4 are also induced during C. rodentium infection in the
gut by IL-17A and IL-17F [43], however the role these
antimicrobial peptides play in this model is not yet known.

Gut Inflammation Promotes Pathogen Colonization

Intestinal pathogens replicate in the gut and reach high
numbers in the stool in order to achieve transmission via the
fecal–oral route. Replication in the gut requires adaptation to
harsh conditions including the presence of bile salts, mucus,
and the resident microbiota competing for nutrients and
binding sites along the intestinal epithelium. Several recent
studies suggest that pathogens have an advantage over the
resident microbiota in colonizing the gut as bothC. rodentium
and S. typhimurium infections lead to overgrowth of the
pathogen with concomitant growth suppression of the
resident microbiota [67–70]. However, such suppression
occurs only in the presence of an inflammatory response,
so in the absence of inflammation, the microbiota constitute
a barrier against S. typhimurium colonization [67, 68]. While
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the mucosal response is thus effective in keeping pathogens
confined to the gut mucosa, it has the unfortunate side effect
of promoting pathogen overgrowth in the intestinal lumen.

The mechanisms by which the inflammatory response
promotes pathogen growth are not completely understood.
One hypothesis is that pathogens thrive in the inflamed gut
because they have adapted to access nutrients during
inflammation to a higher degree than the resident microbiota.
One potential nutrient source during intestinal inflammation
may be represented by mucins, which are upregulated by IL-
17 and IL-22 stimulation of intestinal epithelial cells [49]. The
ability of S. typhimurium to swim in the direction of nutrients
increases the fitness of the organism in the inflamed
intestine, but not in the normal gut [71]. Induction of the
mucin MUC1 was observed in the distal colon of patients
infected with Salmonella saintpaul and Campylobacter
jejuni [72], suggesting that pathogen colonization of the
mucus layer may be relevant for the pathogenesis of
inflammatory diarrhea in humans. Fitting in with this idea,
it was recently demonstrated that mucin can be degraded by
a serine protease autotransporter (the Pic mucinase)
expressed by enteroaggregative E. coli (EAEC) and Shigella
flexneri [73, 74]. In a mouse model of infection, the Pic
mucinase enhances EAEC colonization and growth in the
presence of mucins, thereby enhancing fitness of this
pathogen [74].

While the acquisition of carbon, nitrogen, and oxygen
atoms are essential for the growth of any organism, so too is
the acquisition metal ions. One host strategy to fight infections
is to reduce the accessibility of metal ions. The most studied
metal ion with regards to bacterial infection is iron, an essential
micronutrient. Under normal conditions, iron is largely bound
to serum transferrin. In the inflamed gut, lactoferrin secreted
by neutrophils functions as another iron-binding molecule,
exhibiting greater iron affinity at low Ph than transferrin [75].
To overcome these host defense mechanisms, bacteria secrete
iron chelators known as siderophores which have a higher
affinity for iron than either transferrin or lactoferrin [76, 77].
Once bound to iron, siderophores are internalized by
specialized bacterial transport systems, thereby providing an
iron source during iron starvation.

The siderophore enterochelin (produced by most mem-
bers of Enterobacteriaceae), is a target of the host
antimicrobial protein lipocalin-2 [78]. Lipocalin-2 binds to
iron-laden enterochelin and prevents its uptake by bacteria,
thereby inhibiting growth of susceptible strains [78, 79].
Both in vitro and in vivo, lipocalin-2 expression and
secretion is dependent on stimulation of epithelial cells
with IL-17 and IL-22 [49, 58]. Thus, lipocalin-2 expression
is increased in mucosal surfaces, including the gut, during
the course of mucosal infections. As an adaptation to this
host defense, pathogens such as S. typhimurium, pathogenic
E. coli, and some strains of K. pneumoniae have developed

resistance to lipocalin-2 by encoding for at least one
additional siderophore, termed salmochelin [80–83]. Sal-
mochelin is a glycosylated form of enterochelin that is not
bound by lipocalin-2, thus its expression restores the ability
of bacterial pathogens to acquire iron [49, 84–86].

Iron acquisition through salmochelin promotes S. typhimu-
rium colonization of the inflamed gut, but not of the normal
gut or in the absence of lipocalin-2 [49]. Thus, the capacity to
acquire iron during intestinal inflammation is an important
virulence trait for survival in the inflamed gut. Other mucosal
pathogens have additional siderophores (yersiniabactin,
aerobactin) which also provide an advantage for colonization
of mucosal surfaces, although their role in iron acquisition in
the inflamed gut remains to be determined [87–89].
Lipocalin-2 is also induced by pathogens at other mucosal
surfaces including Streptococcus pneumoniae and Haemo-
philus influenzae in the nasal mucosa, Helicobacter pylori in
the stomach, and C. albicans in the oral cavity [90–92].
These pathogens are not susceptible to lipocalin-2 mediated
iron withholding because they do not acquire iron through
enterochelin. Although its role in these infection models has
yet to be established, it is plausible that lipocalin-2

Fig. 1 Th17 cytokines and the gut mucosal barrier. Dendritic cells
activated by pathogens secrete several cytokines including IL-22 and
IL-23. IL-23 stimulates several subsets of T cells (Th17 cells, γδ T
cells, NK, and NK-T cells) to secrete IL-17 and IL-22. T cells promote
amplification of the host response by stimulating the intestinal
epithelium to secrete CXC chemokines (neutrophil chemoattractants)
and antimicrobial peptides (lipocalin-2, calprotectin, Reg3γ, and β-
defensins). While the Th17 response prevents bacterial dissemination
from the gut, it also promotes colonization of the mucosa by
pathogens that are resistant to some of the induced antimicrobial
responses. The ability to acquire nutrients and associate with the
expanded mucous layer during inflammation promotes colonization of
pathogenic microbes

J Clin Immunol (2010) 30:196–203 199



production may be exploited by these pathogens to promote
their colonization by suppressing the growth of competitors.

Other metal ions such as zinc and manganese are also
essential micronutrients for bacteria. The antimicrobial
peptide calprotectin, which is present in neutrophil granules,
chelates zinc, and manganese, is involved in host defense
against bacterial infections [93]. Expression of the S100A8
and S100A9 subunits of calprotectin is induced in the
mucosa in response to IL-17 and IL-22 stimulation [34, 94].
The role that this and other antimicrobial peptides play in
host defense to pathogens remains to be established.

Conclusions

The function of the cytokines IL-17, IL-22, and IL-23 in
response to gut pathogens is summarized in the model
proposed in Fig. 1. Dendritic cells activated by pathogens
secrete cytokines including IL-22 and IL-23 [34, 95].
Several innate-like and adaptive T cells harbor the IL-23
receptor and are activated by this cytokine to release IL-17
and IL-22 [11]. These cytokines stimulate epithelial cells to
express CXC chemokines resulting in neutrophil recruit-
ment to the site of infection. Neutrophils constitute part of
the mucosal barrier against inflammatory diarrheal patho-
gens by containing these infections to mucosal sites and
preventing bacteremia [96].

IL-17 and IL-22 also induce the expression and secretion
of antimicrobial peptides including lipocalin-2, Reg3γ, β-
defensins, and calprotectin [34, 43, 49, 58]. Some of these
antimicrobial peptides may control dissemination from the
mucosa, as in the case of Reg3γ during C. rodentium
infection [34], while others such as lipocalin-2 suppress the
growth of commensal microbiota and consequently pro-
mote the growth of resistant pathogens [49]. Pathogens
which have adapted to this hostile environment have
acquired a range of virulence factors that provide access
to nutrients in the inflamed gut, including glycoproteins in
the mucus layer and metal ions.

Pathogens have thus evolved to take advantage of
various aspects of the mucosal response to gain an edge
over the resident microbiota in colonizing the inflamed gut.
Even though the enhancement of pathogen colonization is a
“side effect” of IL-17 and IL-22 mediated responses,
resolution of diarrhea typically occurs within a few days
of its onset. In contrast, defects in Th17-mediated responses
like those observed in HIV patients result in increased
dissemination of both pathogens and the microbiota,
culminating in bacteremia with a high mortality rate [97,
98]. So while Th17 responses appear to be detrimental by
promoting pathogen colonization of the mucosa, in the end
it is the resulting decrease in bacterial dissemination from
the mucosa that protects the host.
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