
UC Berkeley
UC Berkeley Previously Published Works

Title
Magnetic fields from compensated isocurvature perturbations

Permalink
https://escholarship.org/uc/item/0sg8p73k

Journal
Physical Review D, 107(10)

ISSN
2470-0010

Authors
Flitter, Jordan
Creque-Sarbinowski, Cyril
Kamionkowski, Marc
et al.

Publication Date
2023-05-15

DOI
10.1103/physrevd.107.103536

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License, 
availalbe at https://creativecommons.org/licenses/by/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0sg8p73k
https://escholarship.org/uc/item/0sg8p73k#author
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/


Magnetic Fields from Compensated Isocurvature Perturbations

Jordan Flitter∗

Physics Department, Ben-Gurion University of the Negev,
Beer-Sheva 84105, Israel

Cyril Creque-Sarbinowski
Center for Computational Astrophysics, Flatiron Institute,

162 Fifth Avenue, New York, New York 10010

Marc Kamionkowski
William H. Miller III Department of Physics and Astronomy,
Johns Hopkins University, Baltimore, Maryland 21218, USA

Liang Dai
Department of Physics, University of California,

366 Physics North MC 7300, Berkeley, CA 94720, USA

Compensated isocurvature perturbations (CIPs) are perturbations to the primordial baryon den-
sity that are accompanied by dark-matter-density perturbations so that the total matter density
is unperturbed. Such CIPs, which may arise in some multi-field inflationary models, can be long-
lived and only weakly constrained by current cosmological measurements. Here we show that the
CIP-induced modulation of the electron number density interacts with the electron-temperature fluc-
tuation associated with primordial adiabatic perturbations to produce, via the Biermann-battery
mechanism, a magnetic field in the post-recombinaton Universe. Assuming the CIP amplitude sat-
urates the current BBN bounds, this magnetic field can be stronger than 10−15 nG at z ≃ 20 and
stronger by an order of magnitude than that (produced at second order in the adiabatic-perturbation
amplitude) in the standard cosmological model, and thus can serve as a possible seed for galactic
dynamos.

I. INTRODUCTION

Our current cosmological model is consistent with the
idea of a period of inflationary expansion in the early Uni-
verse that generated the primordial density perturbations
that seeded the growth of cosmic large-scale structure.
The canonical model is, however, no more than a toy
model, and so efforts are aimed to seek new relics in pri-
mordial perturbations, beyond the nearly scale-invariant
Gaussian adiabatic perturbations predicted in the sim-
plest models. Possibilities include various types of non-
Gaussianity, departures from scale invariance, and as-
sorted type of isocurvature perturbations [1–14].

Included among these possibilities are compensated
isocurvature perturbations (CIPs), perturbations to the
dark-matter density that are compensated by baryon-
density perturbations in such a way that the isocurva-
ture part of the total matter perturbation vanishes [15–
17]. CIPs, which can arise in some multi-field models
[15, 16, 18–22] or during baryogenesis [23] are particularly
intriguing as CIPs induce (at linear order) no tempera-
ture fluctuations in the cosmic microwave background
(CMB). The fluctuations remain frozen until shortly af-
ter recombination due to CMB drag. The subsequent
evolution is triggered by the baryon-gas pressure, which

∗ E-mail: jordanf@post.bgu.ac.il

is small, thus affecting perturbations only on very small
scales. Constraints to CIPs on large scales come from
higher-order effects on the CMB power spectrum [24–28]
and the CMB trispectrum [29–31] while CIPs on small
distance scales may be manifest in CMB spectral distor-
tions [32, 33] or the recombination history [34]. Still,
these effects arise only at higher order in perturbation
theory and so are fairly weakly constrained. The effects
of CIPs have also been considered for baryon acoustic os-
cillations [35–37]; 21-cm fluctuations [16]; velocity acous-
tic oscillations [38, 39] in the 21-cm power spectrum [40];
scale-dependent bias [41, 42]; and kSZ tomography [43–
45].

Here we show that CIPs induce magnetic fields by in-
teracting with primordial adiabatic perturbations during
the dark ages, after recombination but before the epoch
of reionization. The CIP gives rise to an isothermal per-
turbation to the electron number density that then inter-
acts, via the Biermann-battery mechanism [46], with the
electron-temperature gradients associated with the adia-
batic perturbation to generate a magnetic field. A similar
mechanism operates in the standard cosmological model
at second order in the adiabatic-density-perturbation
amplitude [46] and generates magnetic fields weaker than
O(10−15 nG) at the redshifts, z ≃ 20, at which the first
structures become nonlinear. As the CIP amplitude may
be four orders of magnitude larger than the adiabatic-
perturbation amplitude, one might expect that the CIPs
can induce magnetic fields of order 10−11 nG at redshifts
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z ∼ 20 and thus possibly detectable by 21-cm measure-
ments [47, 48]. Yet, our analysis shows that cancela-
tions in the amplitude of the fluctuations in the electron
number-density suppress that enhancement.

The remaining parts of this paper are organized as fol-
lows. In Section II we discuss large- and small-scale con-
straints on the CIP amplitude and relate those to the
amplitude of the CIPs-induced free-electron-density fluc-
tuations. We then derive, in Section III, the magnetic
fields that could have arised from the CIPs. We conclude
with a discussion on our results in Section IV.

In this work we have adopted the cosmological pa-
rameters from the best-fit of Planck 2018 [49], that is
a Hubble constant h = 0.6736, a primordial curva-
ture amplitude As = 2.1 × 10−9 with a spectral index
ns = 0.9649, and total matter and baryons density pa-
rameters Ωm = 0.3153, Ωb = 0.0493.

II. COMPENSATED ISOCURVATURE
PERTURBATIONS

We describe the CIP field ∆(x) = δρb(x)/ρ̄b to be
the isocurvature fractional perturbation to the baryon
density. This field is then accompanied by a fractional
isocurvature perturbation δρc(x)/ρ̄c = −fb∆(x) to the
cold-dark-matter density, where fb = Ωb/Ωc is the ra-
tio of the baryon and dark-matter densities. We take
the primordial CIP field to be a realization of a random
field with a power spectrum ∝ kα with the wavenum-
ber k. The time evolution of the CIP field is simple.
The absence of any density perturbation implies no cur-
vature perturbations (at least at linear order) and thus
no gravitational acceleration. The pressure gradients in
the baryon-photon fluid introduced by the baryon fluc-
tuation are extremely small. The baryon isocurvature
perturbation then remains frozen through radiation drag,
which ends at redshift z ≃ 800, when the baryon temper-
ature is roughly 0.2 eV and the baryon sound speed thus
cs ∼ 1.3× 10−5 c. At this point, the baryons then spread
out at the sound speed, thus smoothing fluctuations on
comoving distance scales smaller than ∼ 2 × 10−2 Mpc,
comparable to the Jeans scale.

If the power-law index α > −3, then the perturba-
tions are largest at small wavelengths (high k). If the
perturbation amplitude is large, it will affect the agree-
ment between observed light-element abundances and the
predictions of big-bang nucleosynthesis (BBN). If the de-
pendence of light-element abundances on the baryon den-
sity is perfectly linear, then there will be no change to
the abundances after averaging over small-scale fluctua-
tions. The dependence of the deuterium abundance on
the baryon density is, however, not linear; it is approx-

imated by (D/H) ∝ Ω
−3/2
b [50]. Tthe deuterium abun-

dance will thus be shifted at quadratic order in ∆ by

(1 + ∆)
−3/2 ≈ 1− 3

2∆+ 15
8 ∆2, and after averaging over

many small-scale fluctuations the fractional variation in
the deuterium abundance is δ(D/H)/(D/H) ∼ 2⟨∆2⟩.

FIG. 1. Fluctuations in the fractional free-electron-density
at z = 20 as a function of the CIP amplitude. This fig-
ure was made by running CLASS [54] (which inherently runs
HyRec) with different values of Ωb and Ωc that are controlled
by the CIP amplitude ∆. As CLASS and HyRec return ne/nH,
where nH is the hydrogen-number-density, that quantity was
multiplied by nH ∝ Ωb (1− YHe), where YHe is the helium-
mass-ratio (a quantity that is interpolated by CLASS given
the cosmological parameters).

The ∼ 1% precision of the current deuterium abun-
dance [51] then suggests ⟨∆2⟩ ≲ 5× 10−3.
If on the other hand α ≤ −3, the baryon density is

smooth on small scales but varies on large scales. The
rapid Compton interactions prior to recombination will
imprint these large scales fluctuations in the baryon den-
sity field into large scales fluctuations in the CMB, which
would be observed as a difference between the CMB
power spectrum on one half of the sky and that on
the other half. Current CMB constraints indicate that
⟨∆2⟩ ≲ 4× 10−3 [28].
The Biermann-battery mechanism will depend on

the fractional free-electron-density perturbation δe(x) ≡
δne(x)/n̄e. The free-electron-density ne at any given
point in the post-recombination Universe will be the
product of the baryon density and the free-electron frac-
tion xe. After recombination, the free-electron fraction is
proportional to (1 + ∆)

−1.05
(for small values of ∆), an

approximation that we have verified with detailed calcu-
lations from HyRec [52, 53]). Due to an O (%1) correction
from the helium abundance [50], the induced electron-
density perturbation by the CIPs is therefore

δe(x) ≈ −0.06∆(x) ≡ −ξ∆(x), (1)

as we have verified numerically with HyRec, see Fig. 1.
Ultimately, the suppression by ξ will generate weaker
magnetic fields, even though the CIP amplitude can be
four orders of magnitude stronger than the adiabatic per-
turbations.

For simplicity, we will take the free-electron power
spectrum to be in the form of a power-law,

Pe (k) = Aek
−3
max(k/kmax)

α Θ(kmax−k)Θ(k−kmin), (2)
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parameterized in terms of an amplitude Ae and power-
law index α. For a slow-roll inflation, a scale-invariant
CIP power-spectrum is usually considered (with α =
−3), a choice that is also consistent with the latest Planck
CMB analysis [28]. Here we work with a general index α
to allow comparison of our results with other CIP probes
in the literature. In our model, the CIPs power van-
ishes at Fourier modes below kmin, which essentially cor-
responds to the horizon scale, and above kmax. For kmax

we shall adopt as our fiducial value the Jeans scale at the
end of the drag epoch, i.e. kmax ∼ 400Mpc−1.

The BBN bound on ⟨∆2⟩ implies an electron-density
variance ⟨δ2e⟩ = (2π2)−1

∫
k2 dk Pe(k) ≲ 5×10−3 ξ2. We

thus constrain

Ae ≲ (5× 10−3 ξ2)× 2π2(3 + α) (α > −3). (3)

To derive the CMB bounds on Ae, we consider the CIP
variance, smoothed on a sphere of radius R,

⟨∆2⟩R =
1

2π2

∫
k2 dk

[
3j1 (kR)

kR

]2
P∆ (k) , (4)

where j1 (x) is the spherical Bessel function of or-
der 1. The CIPs power spectrum is obtained from
Eq. (1), P∆ (k) = ξ−2Pe (k). By taking R = RCMB ∼
125Mpc [26, 45], the CMB constraints on the CIP vari-
ance imply

Ae ≲
(
4× 10−3 ξ2

)
/Iα (α ≤ −3), (5)

where

Iα =
1

2π2

∫ kmax

kmin

k2+α dk

k3+α
max

[
3j1 (kRCMB)

kRCMB

]2
. (6)

III. BIERMANN BATTERY MECHANISM

We now consider the magnetic fields produced in
the post-recombination Universe by the interaction of
electron-density fluctuations, with k ≤ kmax, with pri-
mordial adiabatic density perturbations. In the stan-
dard cosmological model these density perturbations are
characterized by the ΛCDM power spectrum. Right af-
ter recombination, the growth of perturbations to the
baryon density are suppressed by Compton drag, but
at later times, z ≲ 800, the baryons freely fall and
later acquire the same distribution as dark matter, but
only for Fourier modes with wavelengths longer than
the baryon Jeans scale [55]. The gas is adiabatic and
so baryon-temperature perturbations (and thus electron-
temperature perturbations) have an amplitude 2/3 times
the density-perturbation amplitude. This linear-theory
evolution proceeds until a redshift z ∼ 20 at which
point fluctuations are suppressed at scales smaller than
the Jeans scale12 kJ ≃ 200 Mpc−1. We thus here

1 Strictly speaking, the comoving Jeans scale at z = 20 is
∼ 900Mpc−1. To reduce clutter though, we refer to kJ ≃

calculate the generation of magnetic fields at redshifts
20 ≲ z ≲ 800 after baryon drag and before nonlinear
structures form. Nonlinear evolution is likely to am-
plify the magnetic fields, perhaps considerably, and so
the magnetic-field strengths we obtain should be consid-
ered conservative lower bounds.
Magnetic fields are generated in the Biermann-battery

mechanism if there is a component of the gradient of the
electron temperature that is perpendicular to the gradi-
ent of the electron density. The evolution of the cosmic
magnetic field B is related to the electric field E through
Faraday’s law, ∂B/∂t = −c∇×E, with c being the speed
of light. Taking the pressure term to be the dominant
term in the generalized Ohm’s law [57], the electric field
is E = −∇pe/ (nee), where pe is the electron pressure
and e is the electron charge. Accounting for the expan-
sion of the Universe, the evolution of the magnetic field
is then [58]

d

dt

(
a2B

)
= − c

en2
e

∇ne ×∇pe

= −ckB
ene

∇ne ×∇T, (7)

where a (t) is the scale factor and the second line fol-
lows the equation of state of collisionless electrons, pe =
nekBT , with kB the Boltzmann constant and T the elec-
tron temperature. After defining δT ≡ δT/T̄ to be the
fractional electron-temperature perturbation and T̄ the
mean electron temperature (which we take to be the
mean baryon temperature), in the lowest order of per-
turbation theory we arrive at [46]

d

dt

(
a2B

)
= −ckBT̄

e
∇δe ×∇δT . (8)

The Fourier components B̃(k, t) of the magnetic field
induced between some initial time ti and time t are given
by

B̃(k, t) =
ckB

a2 (t) e

∫ t

ti

dt′ T̄ (t′)

×
∫

d3k1
(2π)3

[k1 × (k− k1)] δ̃e(k1, t
′)δ̃T (k− k1, t

′).

(9)

As there is no gravitational attraction in the linear or-
der of the CIP theory, we approximate the electron

200 Mpc−1 as the scale where the temperature fluctuations are
suppressed by k−2 compared to the baryons-density fluctua-
tions [56].

2 In addition, in our analysis we neglect effects from the relative
velocity between baryons and cold-dark-matter vbc. We antici-
pate, based on the treatment in Ref. [46], the including of vbc
would result an O (1) correction of the induced magnetic field,
as well as to an extension of the magntic field power spectrum
to larger wavenumbers.
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isocurvature-density fluctuation as constant in time over
the relevant wavelengths after recombination, and the
electron-temperature perturbation scales as the linear-
theory growth factor D(z) (normalized to unity today)
which varies as D(z) ∝ 1/(1 + z) over the relevant red-
shifts. The electron temperature T̄ (z) ∝ (1+z)2 and the
time is t ≃ (2/3)(ΩmH2

0 )
−1/2(1 + z)−3/2 at these red-

shifts. The redshift (or time) dependence then factorizes
and allows us to write the magnetic-field power spectrum
at redshift z as

PB(k, z) = [FB(z)]
2
∫

d3k1
(2π)3

[k1 × (k− k1)]
2

×Pe(k1)PT (|k− k1|) , (10)

where

FB(z) =
2ckBT̄ (z)D(z)

e
√
ΩmH0

(1 + z)1/2. (11)

The scalings of T̄ (z) and D(z) with z imply that FB(z) ∝
(1 + z)3/2. This scaling is slower than the (1 + z)2 scal-
ing for a static comoving magnetic field, indicating that
the comoving magnetic field is generated primarily at
late times. Our rough treatment of the evolution of the
baryon temperature at early times is thus justified and we
hereafter adopt kmin = 3 × 10−4 Mpc−1, corresponding
to the horizon scale at z = 20. Numerically, the baryon
temperature is T̄ (z = 20) ≃ 10 K, and D(z = 20) ≃ 0.06,
and then

FB(z) ≃ 4.1× 10−27 GMpc2
(
1 + z

21

)3/2

. (12)

The magnetic-field variance then becomes〈
B2

〉
=

∫
d3k

(2π)3
PB(k)

= [FB(z)]
2⟨sin2 θ⟩

×
[∫

d3k

(2π)3
k2Pe(k)

] [∫
d3k

(2π)3
k2PT (k)

]
,

(13)

where ⟨sin2 θ⟩ = 2/3 is the angle between k1 and k av-
eraged over all directions. The first integral in Eq. (13)
evaluates to Aek

2
max[2π

2(5+α)]−1
∣∣1− (kmin/kmax)

α+5
∣∣.

We evaluate the second integral using CLASS [54], cut-
ting off the integral at the Jeans scale kJ ≃ 200 Mpc. It
comes out to 2.2 × 105 (kJ/200Mpc−1)2 Mpc−2, where
the scaling with kJ arises given that the integral is domi-
nated by the high-k limit where Pm(k) varies very slowly
with k.

We thus find an rms magnetic-field strength〈
B2

〉1/2 ≃ 2.9× 10−15 nG

(
Ae

(2× 10−5) 2π2|5 + α|

)1/2

× kJ

200Mpc−1

kmax

400Mpc−1

(
1 + z

21

)3/2

×

∣∣∣∣∣1−
(
kmin

kmax

)5+α
∣∣∣∣∣
1/2

, (14)

FIG. 2. The magnetic-field power spectrum as a function of
wavenumber for different values of the electron-density spec-
tral index α. For values of α > −3 (α ≤ −3), the normaliza-
tion of the CIP power spectrum is taken to be the maximum
allowed by the BBN (CMB) constraint, Eq. (3) (Eq. (5)).
The vertical lines indicate the assumed Jeans wavenumber
kJ = 200 Mpc−1 and the cutoff kmax = 400 Mpc−1 in the
electron-density power spectrum.

at redshifts z ≃ 20. A few comments: (1) The scal-
ing with redshift is expected to break down for redshifts
z ≲ 20 for several reasons. First, small-scale perturba-
tions will go nonlinear, violating the assumption of lin-
earity. Second, the formation of stars will heat the gas
and increase the temperature. Moreover, we expect that
the motions of magnetized gas that winds up in gravi-
tationally bound systems will lead, through the dynamo
mechanism, to magnetic fields within halos that are far
stronger than the seed fields provided by our analysis.
(2) The behavior of the small-scale power spectrum, on
scales smaller than the Jeans scale, can be calculated,
as we show in the appendix. Here we have modeled it
as a strict cutoff for simplicity and to help indicate the
uncertainty on this small-scale physics. Yet, we find that
Eq. (14) is accurate to the order of O (10%) when we
compare it to numerical calculations with a more refined
modeling of the suppression at small scales, as we discuss
next.

IV. DISCUSSION

In Fig. 2 we plot the magnetic-field power spectrum
for values of −5 ≤ α ≤ 5, in each case taking Ae to be
the maximum value allowed by the BBN constraint for
α > −3 (Eq. 3) and by the CMB bound for α < −3
(Eq. 5). As above, the CIP power spectrum is assumed
here to be cut off at kmax = 400 Mpc−1; this cutoff
gives rise to the sharp drop in PB(k) at this value of
k, mostly evident at α = −5. In this calculation, though,
we use the standard ΛCDM power spectrum from CLASS
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[54], with best-fit Planck cosmological parameters [49].
We then extend it to smaller scales (higher k) with the
BBKS approximation [59] with the baryon correction of
Ref. [60]. We then continue the matter power spectrum
to k > kJ , above the Jeans scale, with a suppression
(k/kJ)

−4 [55, 56], for k > kJ = 200 Mpc−1, relative to
the BBKS power spectrum.

The magnetic-field power peaks in all cases at k ≃
kmax, but is a bit more broadly distributed to lower k for
α < −3 (see derivation in the appendix for the power-law
behavior at small and large scales). For α > 0 the power
at the vicinity of k ∼ kmax surpasses 10−15 nG. In all
cases, the magnetic-field energy density is negligible com-
pared with the thermal energy density in the gas at these
redshifts (this would require B ∼ nG), and so it is dy-
namically unimportant. It also follows, from this figure,
that this mechanism is not constrained by upper limits of
∼ nG to intergalactic magnetic fields [61–63] nor strong
enough to be relevant for the magnetic fields suggested
by interpretation of variability of gamma-ray sources [64–
66], which reach as small as B ∼ 10−8 nG. If the CIP
amplitude is close to its BBN upper bounds, as we have
assumed in this calculation, the field strengths may be
suitable to account for seed fields for galactic dynamos
[67], which in some models can be as small as 10−21 nG
at the time of galaxy formation [68]. The magnetic-field
strengths we obtain can be higher than those that arise
at quadratic order in the primordial density perturbation
[46].

In conclusion, in this work we have studied the spec-
trum and strength of magnetic fields that could have
been generated via the Biermann-battery mechanism,
where the fluctuations in the electron number-density are
sourced by the CIP field. Our main result is Eq. (14).
As a first study on this effect, we favored simplicity over
precision in order to estimate the strength of the CIP-
induced magnetic fields. Although the analysis presented
in this paper can be improved by performing a full per-
turbation analysis that includes also the relative velocity
between baryons and cold-dark-matter, as was done in
Ref. [46], we do not expect these improvements to al-
ter the qualitative features of the magnetic fields we ob-
tained, certainly not by orders of magnitude.

At first, one may have surmised that CIP-induced mag-
netic fields could be up to a few orders of magnitude
larger, given that the CIP amplitude can be orders of
magnitude larger than the adiabatic-perturbation ampli-
tude. Much of that gain is erased, however, by the near
cancellation between the fluctuations in the free-electron
fraction and the baryon density in the CIP. Our calcula-
tion shows that, when all the dust has settled, the CIP
allows for a larger magnetic field, but not much.
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discussions. We would also like to thank the anonymous

referee for useful comments that improved the quality of
the paper. JF is supported by the Zin fellowship awarded
by the BGU Kreitmann School. CCS was supported at
Johns Hopkins by the NSF Graduate Research Fellowship
under Grant No. DGE1746891 and the Bill and Melinda
Gates Foundation. This work was supported at Johns
Hopkins by NSF Grant No. 2112699 and the Simons
Foundation. LD acknowledges research grant support
from the Alfred P. Sloan Foundation (Award Number
FG-2021-16495).

APPENDIX: ANALYTICAL APPROXIMATIONS
FOR THE MAGNETIC FIELD POWER

SPECTRUM

Eq. (10) can written in the following form,

PB (k) = [FB (z)]
2
I (k) , (15)

where

I (k) =

∫
d3k1
(2π)3

|k1 × k|2 Pe (k1)PT (|k− k1|)

=
Aek

7+α

4π2k3+α
max

∫ 1

−1

dµ
(
1− µ2

)
Ix (k, µ) , (16)

and

Ix (k, µ) =

∫ xmax

xmin

dxx4+αPT [kβ (x, µ)] , (17)

where β (x, µ) =
√

1 + x2 − 2xµ, xmin ≡ kmin/k and
xmax ≡ kmax/k. For simplicity, we model the temper-
ature power spectrum as follows

PT (k) =
4

9
Pm (k)×

{
1 k ≤ kJ
x4
J k ≥ kJ

, (18)

where Pm (k) is the linear matter power spectrum and
xJ ≡ kJ/k.
Below we examine I (k) in two limits. Throughout the

derivation, we assume k ≫ keq ≈ 0.01Mpc−1 and assume
that the matter power spectrum scales as Pm (k) ∝ kns−4

(we ignore small logarithmic corrections). We also as-
sume that kJ and kmax are of the same order and limit
ourselves to α ≥ −5. The final expressions for I (k),
Eqs. (25) and (28) capture very well the power-laws be-
havior seen in Fig. 2 and provide a good order of magni-
tude estimation.

1. First limit: k ≪ kJ < kmax (1 ≪ xJ < xmax)

In the limit where xmax ≫ 1, we split the integral of
Ix (k, µ) into two regimes, Ix (k, µ) = Ixmin→1

x (k, µ) +
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I1→xmax
x (k, µ). For the first piece, Ixmin→1

x (k, µ), we ap-
proximate β (x, µ) ≈ 1, which yields

Ixmin→1
x (k, µ) =

4

9
Pm (k)C(1)

α (k)

≈ 4

9
Pm (kmax)C

(1)
α (k)x4−ns

max . (19)

where C
(1)
α (k) is an O (1) factor (assuming α ≥ −5)

C(1)
α (k) =

{
1−x5+α

min

5+α ≈ 1
5+α α+ 5 ̸= 0

− lnxmin α+ 5 = 0
. (20)

For the second piece, I1→xmax
x (k, µ), we approximate

β (x, µ) ≈ x. Thus, in the range 1 ≤ x ≤ xmax,

PT [kβ (x, µ)] ≈ 4

9
Pm (kmax)

(
x

xmax

)ns−4

×

{
1 1 ≤ x ≤ xJ

(x/xJ)
−4

xJ ≤ x ≤ xmax
,

(21)

Then, the calculation of I1→xmax
x (k, µ) is straight-

forward,

I1→xmax
x (k, µ) =

4

9
Pm (kmax)C

(2)
α

×

{
xα+5
max α+ ns + 1 ≥ 0

x4−ns
max α+ ns + 1 < 0

, (22)

where C
(2)
α is another O (1) constant,

C(2)
α =


(α+ns+1)xα+ns−3

max/J
−4

(α+ns+1)(α+ns−3) x
α+ns+1
max/J α+ ns + 1 > 0

lnxJ +
1−x−4

max/J

4 α+ ns + 1 = 0

− 1
α+ns+1 α+ ns + 1 < 0

,

(23)
where xmax/J ≡ xmax/xJ = O (1).

Because xmax ≫ 1, xα+5
max ≫ x4−ns

max for α + ns + 1 ≥ 0
and therefore I1→xmax

x ≫ Ixmin→1
x , while I1→xmax

x and
Ixmin→1
x are comparable for α+ ns + 1 < 0. Thus

Ix (k, µ) =
4

9
Pm (kmax)

×

{
C

(2)
α xα+5

max α+ ns + 1 ≥ 0(
C

(1)
α (k) + C

(2)
α

)
x4−ns
max α+ ns + 1 < 0

,

(24)

Since Ix (k, µ) does not depend on µ, the µ integral in
Eq. (16) gives 4/3, and we have

I (k) = AB

×

C
(2)
α

(
k

kmax

)2

α+ ns + 1 ≥ 0(
C

(1)
α (k) + C

(2)
α

)(
k

kmax

)α+ns+3

α+ ns + 1 < 0
,

(25)
where

AB ≡ 4AePm (kmax) k
4
max

27π2

≈ 2× 10−6

(
Ae

10−4

)(
kmax

400Mpc−1

)ns

Mpc−1.

(26)

2. Second limit: kJ < kmax ≪ k (xJ < xmax ≪ 1)

In the limit where xmax ≪ 1, we approximate
β (x, µ) ≈ 1 and therefore

Ix (k, µ) =
4

9
Pm (k)x4

JC
(1)
α (kmax)x

5+α
max

≈ 4

9
Pm (kmax)x

−4
max/JC

(1)
α (kmax)x

13+α−ns
max .

(27)

Again, the µ integral in Eq. (16) gives 4/3, and we have

I (k) = ABC
(1)
α (kmax)x

−4
max/J

(
k

kmax

)ns−6

. (28)
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