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ABSTRACT OF THE DISSERTATION 

 

System theory-based investigation of the brain: From Behavior Across Species to Solving a 

Fundamental Neural Code  

 

By 

 

Sandra Gattas 

 

Doctor of Philosophy in Electrical Engineering  

 

University of California, Irvine, 2021 

 

Professors Michael Yassa and Lee Swindlehurst, Co-Chairs 

 

Neuroscience is the study of the brain. It is an interdisciplinary field. At one level, 

behavioral tasks are carefully designed to understand behavior and cognition. At other levels, 

different devices and technologies are used to acquire neural data (the brain communicates via 

electrical signals) at different scales and link such data to behavior. The interdisciplinary nature 

is not just evident in the data acquisition but also in the processing and analyses of the data. 

Signal processing and other system theory-based techniques, statistical methods and 

computational modeling can be used to identify useful information in brain-acquired signals 

(electrical, blood flow, volume, etc.) and link them to behavior and cognition in healthy and 

diseased states.  

As a field, neuroscience has made numerous meaningful discoveries primarily using the 

traditional hypothesis driven, top-down, deductive approach. In this approach, the goal is to 
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identify local phenomena that can account for macroscopic (behavioral) effects. This approach 

provides answers to the specific questions or hypotheses tested. My early work follows this 

approach.  

In my first deductive-approach study, I developed a behavioral task that enables 

controlled delivery of rodent enrichment. I invented an Obstacle Course, which is a track with 

built-in obstacles that rodents must overcome to complete a lap and receive reward. Comparing 

this track with traditional enrichment (toys in larger home-cages) we found that animals running 

this track outperformed animals receiving traditional enrichment. This track then improves upon 

the rodent model for enrichment, which is used to test the hypothesis that enriched human life 

experience plays a protective role against myriad debilitating neurological diseases including 

dementia.   

In the second deductive-approach study, I analyzed data from surgically implanted depth 

electrode recordings of electrical brain activity in rats engaged in a behavioral task where they 

were tested on their memory for a sequence of odors (memory for temporal order). Spectral 

analysis on this data revealed that the hippocampal area CA1 (a region important for memory 

processing) recruits power in the 20-40 Hz range during odor-processing, and that the steady-

state dynamics of this neural synchrony occurs after a decision is made about temporal order. 

20-40 Hz power during this post-decision state increases with knowledge of the odor-sequence. 

Lastly, machine learning analysis revealed that power in this post-decision state is predictive of 

sequence memory response accuracy. 20-40 Hz power is generally suggested to gate 

information within a brain network implicated in a given cognitive process (suppress distractors 

and maintain representations in facilitating sensori-motor integration); here we extend its role to 

sequence memory processing in the hippocampus.  

The third deductive study was similar in nature to the aforementioned one, but in 

humans. Neural electrical signals were recorded from the brains of patients suffering from 

epilepsy, using surgically implanted electrodes for clinical monitoring, while they engaged in a 



 xvii 

memory task. Spectral analysis revealed increased 4-5 Hz power in the hippocampus and 

neocortex, two key memory systems in the brain, during successful discrimination between 

similar memories. In this work, it was essential to make inferences about the presence and 

directionality of interactions between the two memory systems recruiting 4-5 Hz power. This led 

to my fourth deductive project -- expansion of two methodologies; 1) measuring 4-5 Hz phase 

transfer entropy but as a function of time, and 2) using the Kalman filter to estimate parameters 

of a time-varying autoregressive model for subsequent Granger causality analyses – both 

methods enabled inferences about the direction of communication between the two memory 

systems. Using these methods, I identified a pattern of directional communication between the 

hippocampus and neocortex that is consistent with predictions from computational models.  

 These deductive works led to new discoveries. However, I encountered a boundary 

point in deductive research – I can only know the answers to the specific hypotheses tested. But 

my knowledge about the general operational range and dynamics of the underlying brain circuits 

was absent. Given the astounding complexity of the brain, and the numerous behavioral 

phenomena it supports, deductive approaches alone do not suffice, as they may leave us with 

incomplete and perhaps misleading information regarding the underlying brain circuits. So I 

changed my approach to an inductive one. 

An inductive, bottom-up approach, which is conspicuously absent in the field, reveals 

physiological rules that link biological phenomena with behavior. I therefore employed Volterra 

series-based system identification as an inductive approach and comprehensively, agnostically, 

and rigorously identified the operations of a given brain area, the hippocampal CA1. This was 

implemented by stimulating and recording from rodent brain slices that were kept live through 

an artificial physiological environment. Nearly the entirety of the operational range of the CA1 is 

captured in a single formula, an input-output nonlinear transfer function. Using this function 

alone, the CA1 output to a random input in a new set of animals can be predicted with high 

accuracy. Moreover, examining this formula led to new discoveries and provided insight about 
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the CA1 system software, despite this being one of the most heavily studied nodes in the brain. 

Contrary to the fields popular belief, the formula revealed the presence of system nonlinearity in 

CA1. Additionally, intuition is gained by examining this formula regarding how the CA1 treats 

inputs (amplification, suppression, harmonic generation) based on the content of the input.  

All in all, across species, and using different modalities and approaches I summarize 

work concerned with first identifying specific neural electrical activity for specific behavior. Then 

I transition to a different approach -- identifying the fundamental rules of a candidate brain area, 

capturing nearly the entirety of its processes and operations in a single input-output transfer 

function. Potential future work could extend this approach to other brain nodes and link them 

together appropriately based on known anatomical connectivity. An exciting possible outcome of 

such a research program would be to ultimately characterize the entire brain circuit, through 

iterative system identification, such that a physically realizable brain can be built.  
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Chapter 1 

 

Introduction 

Neuroscience is the study of the nervous system, which includes the study of the brain. 

The fundamental cell for communication in the brain is a neuron (there are other cell types 

essential for the health and function of the brain). Neurons in the brain communicate via 

electrical signals. Therefore, the brain is a large electrical circuit, however, with some topology. 

Certain anatomical areas in this large circuit (subcircuits or nodes) have clear functions – 

language, motor, visual processing centers, etc. 

The structure (hardware) and function (software) of the brain circuit have been studied 

for decades. This has been done through an interdisciplinary approach. Advanced technologies 

and equipment are used for data acquisition; electrophysiology (electrode insertion in the brain 

to record electrical activity), magnetic resonance imaging (MRI) to measure brain structure or 

blood flow patterns (functional MRI, fMRI), magnetic resonance spectroscopy (to measure 

certain metabolites), and many more techniques. Similarly, the interdisciplinary nature is evident 

on the data analysis end. Signal processing may be applied to extract useful information from 

neural data and link it to cognition and behavior. Statistical concepts are applied for significance 

testing, machine learning and model generation. Mathematics and physics are critical for 

generating theories or computational models regarding brain operations at the level of a neuron 

to a larger scale brain sub-circuit.  

Over the last decades, the neuroscience field has made meaningful progress regarding 

brain structure and function. Briefly discussed are some examples of progress in the 

neuroscience field. With sufficient certainty, different brain areas are ascribed to functions 

(sensory, motor, language, memory, emotion, reward processing, etc.) and the anatomical 

connectivity between these areas are also well identified. Properties of certain cell types 
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(channels, neurotransmitters, cell morphology, etc.) are also well mapped. In fact, there are over 

27,000 pubmed articles to the search term ‘neuroscience’. 

 The traditional approach taken in neuroscience studies is a ‘top-down’ deductive 

approach. In this approach, the goal is to identify local phenomena that can account for 

macroscopic (behavioral) effects. This provides answers to the specific questions or hypotheses 

tested. For example, lesion studies can be used to test if the absence of one brain area leads to 

impairment in a particular behavior. Or, by measuring neural activity during a particular 

behavior, an association between such activity and its possible function can be made. In this 

approach, hypotheses can be supported and possibilities can be narrowed down. However, only 

that which is precisely examined and tested is revealed – absent all other untested questions or 

even unimagined possibilities.   

Despite this tremendous progress, there remains a critical gap. This gap is that the 

transfer dynamics that give rise to the fundamental unit of communication in the brain is 

unknown – how electrical spike patterns of a presynaptic cell are processed and transformed 

into output spike patterns by the post synaptic cell (the synapse is the junction of 

communication between a pair of neurons). Until this transformative process is identified, we are 

limited in generating an adequate theory for how the brain works, and more so, ever building 

one.  

A natural consequence of this lack of knowledge, a lack of system identification of the 

brain circuits and subcircuits, is a lack of knowledge regarding deviation from normal (disease). 

There is a tremendous amount of debilitating neurological and neuropsychiatric disorders that 

are not defined (depression, schizophrenia, autism, dementia, etc.) – only a subset of 

observable symptoms and/or pathological markers are associated with these diseases. Such 

collection of symptoms and pathological observations are all the tools employed clinically to 

guide diagnosis and treatment. However, if brain circuits are fully mapped (identified), then in 

theory, one can identify the deviations in such mapping during disease, thereby defining the 
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mappings and operations of the disease circuitry. In this sense, the generality of the disease, its 

definition, would be the metric for diagnosis and drug development.  

Conspicuously absent from the strategies of research employed in neuroscience are 

complementary ‘bottom-up’ inductive approaches through which identification of fundamental 

principles can be attained. Secondary to attaining such revealed fundamental rules and 

principles would be to link biological phenomena with behavior. In other words, identifying the 

behavioral consequences that may arise because of the identified basic circuitry and its 

operations. 

System identification provides a means to both employing inductive strategies in 

neuroscience and addressing the critical gap of identifying the transformative process of input to 

output electrical spike patterns. System identification is concerned with complete 

characterization on an unknown system (i.e., a black box; a physical hardware for which its 

operations are unknown). These unknown operations can be summarized in a single 

mathematical formula – an input-output transformation function. Identifying the system means 

knowing its transformation function, which reveals how the system operates on an arbitrary 

input to generate an output. In the context of neuroscience, the physical hardware can be 

defined as a particular brain input-output node (brain area). Knowing the transformation function 

of this brain node would reveal its basic operational principles (its neural computations).  

The Volterra series expansion technique for system identification fully captures nth order 

system dynamics in a relatively agnostic manner (limited assumptions about the system). This 

agnostic approach prevents the generation of partially complete or misleading models. With 

sufficiently exciting inputs that tap into the system’s operational range and a clear definition of 

the hardware of the system, a unique solution of a system input-output transfer function can be 

obtained. Note: the term transfer function traditionally refers to linear systems, however, for 

convenience, this term is extended here to nonlinear systems. The power of this single 

mathematical formulation is not merely the generation of a predictive model, nor is it insight into 
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a subset of the tendencies/operations performed by the system. Rather, this function enables 

comprehensive characterization of the operational range of the system. Examination of this 

transfer function in the time and frequency domains reveals the operations that the system 

performs (attenuation, amplification, harmonic generation, frequency intermodulation etc.) 

Therefore, the relatively agnostic, complete, and rigorous nature of this approach leads to the 

discovery of a system’s universal mathematical rules. 

Summarized in this dissertation are a series of system theory-based neuroscience 

investigations. A deductive approach is initially employed, but after reaching a boundary point 

with such approach, an inductive approach is used instead. The general theme to the deductive 

neuroscience investigations is memory processing (how the brain efficiently stores and 

organizes information from our diverse experiences, encodes temporal order of events, and 

discriminates between similar memories during memory formation and retrieval). However, the 

theme generalizes when an inductive approach is employed, becoming focused on 

comprehensively characterizing system operations, defining the system as a brain area heavily 

implicated in memory, irrespective of behavior. Investigations occurred at several scales 

(behavioral measurements to recording neural electrical activity) and in different species (mouse 

brain slices, behaving rodents, and in vivo human intracranial recordings).  

Chapter 2 discusses the first study whereby a novel behavioral paradigm for mice (and 

rodents more generally) was invented. The purpose for its invention was to advance the animal 

enrichment model (enriched life experience) of a hypothetical construct in humans—the 

cognitive reserve hypothesis—that enriched life experiences (number of hobbies, bilinguality, 

integration in social communities, etc.) serves a neuroprotective role against pathology and 

symptomology of debilitating diseases including dementia. However, there is a paucity in 

translating rodent enrichment findings to clinical settings. This is possibly due to two reasons 1) 

inability to quantify degree of animal engagement with enrichment stimuli using traditional 

enrichment methods (group housing and larger cages with toys and deeper bedding), 2) rodent 
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enrichment studies focused on the effects of enrichment on lower order cognition (recognizing a 

novel object, recalling the location of a platform, etc.). We addressed these two gaps by 

enriching animals through a new paradigm, the Obstacle Course (OC), which enables controlled 

enrichment, and by testing animals on tasks of higher order cognition after the OC experience. 

The Obstacle Course is a square track with built-in easily exchangeable obstacles which mice 

must overcome to finish a lap and receive reward. Mice running this course 1 hour daily for ~2 

months outperformed traditionally enriched mice on behavioral tasks tested, and the OC 

paradigm revealed novel effects of enrichment on higher order cognition. 

 A transition occurs in chapter 3, whereby in addition to behavior, neural electrical 

recordings were acquired and aligned in time to such behavior, and the animal model was rats 

instead of mice. While memory for spatial navigation has gained much attention in the field, 

memory for temporal order is relatively less understood. More specifically, the frequency content 

in the brain has been linked to aspects of memory for spatial navigation. However, its links to 

memory for temporal order are largely unknown. The goal of this study was to identify the 

spectral content associated with memory processing for temporal order of events. To test this, 

electrical activity from the rat brain was recorded while rats behaviorally indicated whether a 

presented odor is in the right position of an odor-sequence rats had learned prior. Using spectral 

analysis, we found that 20-40 Hz power was reliably recruited in the hippocampal CA1 area 

during odor processing. Instantaneous power reached steady-state after a decision was made 

about temporal order, and power in this post-decision period increased with knowledge of the 

sequence. Machine learning analysis revealed that power during this post-decision state is 

predictive of accuracy regarding the temporal order of events. Moreover, 20-40 Hz power was 

stronger in one end of the CA1 (proximal) axis, which suggests anatomical candidates for its 

generation. Here, we extended the likely role of 20-40 Hz in gating information within a brain 

network (suppressing distractors and maintaining representations during sensori-motor 

integration) to hippocampal sequence memory processing. Its presence in the hippocampus 



 6 

may have implications for memory impairments related to inattention or inability to suppress 

distractors. What remains unclear is the necessity for this signal in sequence memory 

judgements and the information it may be preserving.  

 Chapter 4 further advances in the animal model to human subjects and focused on a 

different aspect of memory processing, namely pattern separation. Pattern separation is thought 

to be a mnemonic process whereby highly similar memories are encoded, stored, and retrieved 

as distinct experiences despite their high degree of overlap. This is thought to be a core aspect 

of memory processing, since our day-to-day experiences are highly similar in nature (ex. seeing 

the same co-workers, at approximately the same time of day and in the same location). Prior 

studies identified anatomically some of the key brain areas involved in this process, however, 

what remained unclear were the neural population level firing patterns in these nodes and more 

generally, in the two key memory systems (hippocampus and neocortex), that facilitate pattern 

separation. We started by identifying population level synchronous firing patterns in candidate 

areas (hippocampus and neocortex) that support pattern separation. This was done by 

recording electrical activity from humans who had undergone a surgical procedure for electrode 

insertion in the brain for clinical purposes (epilepsy foci identification), while individuals 

performed a pattern separation task. Using spectral analysis, we found that 4-5 Hz power is 

increased in both the hippocampus and the neocortex, the two presumed key memory systems, 

specifically when subjects discriminated between similar items (pattern separation). Using 

information theory and the 4-5 Hz phase signal, we found that there is an ongoing exchange in 

communication between the two areas during both encoding and retrieval. However, the 

exchange had biases for each phase. During memory encoding, the directional bias favored the 

hippocampus à neocortex direction of information transfer, while the converse was observed in 

retrieval. This suggests that the two systems are constantly exchanging information, and it is 

possible that during encoding, information is integrated into neocortex for storage and during 

retrieval it is accessed from the neocortex by the hippocampus for a comparative measure of 
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whether items are similar or different. The neural synchrony identified, and the information 

transfer at this neural synchrony reveal some system dynamics that occur during pattern 

separation. What remains to be determined is whether these dynamics are necessary for 

pattern separation to occur, and more generally, the entirety of the neocortical and hippocampal 

memory systems operations that support this mnemonic process and others.    

 The investigation in chapter 4 revealed that the two key memory systems, hippocampus 

and neocortex, both display synchronous 4-5 Hz firing during encoding and retrieval for items 

that are successfully discriminated between their similar counterparts. This prompted the 

question of whether the 4-5 Hz in each system occurred independently or if communication 

between them took place through this signal. As mentioned above, an information theory-based 

analysis method was employed to make inferences about directional communication. Chapter 5 

focuses more closely on this topic of estimating the directional influence in the brain; discussed 

are two novel adaptations of two existing methodologies for measuring communication between 

brain areas. First, the information-theory based phase transfer entropy metric was adapted into 

a time-dependent one. Second, the general linear Kalman filter (which could handle multi-

channel and multi-trial data present in the study design) was used to estimate the parameters of 

an autoregressive model and the model was then used in the granger causality calculation for 

estimates of directional influence.   

 The investigations summarized in chapters 2-6 were a key steppingstone for developing 

an intuition of the unknowns about brain memory systems and considerations regarding how to 

efficiently uncover these unknowns. Tremendous progress in the field and through this prior 

work has been made. Yet we are far from a full characterization of these systems and many 

other systems in the brain, such that we can build them into physically realizable circuits. 

Therefore, a different approach is taken next. First, the identification of the majority of 

computations in a brain area are first investigated, in a relatively complete manner and with as 
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little assumptions as possible. Then, ultimately, the characterized system can teach the 

researcher about its operational capacities and their behavioral consequences.  

In chapter 6, I discuss the use of system identification to uncover as much of the 

operational dynamics as possible of a candidate brain area, the hippocampal CA1. This requires 

a clear definition of the system hardware (brain area) and the input and output data (causal 

link); therefore, a transition is made in the animal model, going from humans to live slices of 

mouse brains (slice electrophysiology). Volterra series expansion technique is employed on 

input-output data recorded from mouse CA1 brain slices. Input times were drawn from a 

Poisson distribution and uniformly varied in amplitude between two values and were delivered 

via a stimulating electrode through the CA1’s main input pathway (hippocampal CA3 axonal 

projections). Induced outputs from the CA1 (apical dendritic field) were recorded. Despite the 

CA3:CA1 node being arguably the most heavily studied synapse in the brain, we made 

discoveries about the CA1, through this system identification study, never before known in 

neurophysiology.  

Contrary to popular believe, the CA1 is a nonlinear system. Examination of its second 

order Volterra kernel revealed system properties, namely how it treats the inputs based on its 

content (amplify, suppress, frequency filtering, etc.). In addition to the insight gained, the 

Volterra series-based system identification enabled the capturing of most system dynamics in a 

single mathematical function. This function can predict with 93% accuracy the CA1 output 

waveform (instantaneous values) to random inputs delivered in novel animals.  

The dynamics of CA3:CA1 node are a result of immense biological complexity – more 

complicated than the most complicated machine. The ability to condense such complexity in the 

form of Volterra kernels was an open question in the field of neurophysiology. Having 

successfully done this in one node provides a steppingstone for a lifetime of work, as discussed 

in the concluding chapter. It opens the door to the possibility of repeating the procedure in the 

remaining nodes. A possible direction this work may take is to identify two key transfer functions 
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– one at the most fundamental scale, and the second at the most functional scale. The transfer 

function at the fundamental scale is one that maps the basic unit of communication in the brain 

– input spike patterns to output spike patterns between a pair of neurons. The transfer function 

at the functional scale is a net input-output transformation function that uncovers how inputs 

from the external world are processed into outputs that support our subsequent interaction with 

the world we live in. Knowing these, we can possibly achieve a more full understanding of the 

brain and relieve suffering from debilitating conditions of neurology and neuropsychiatry.  
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Chapter 2: Using behavior to understand rodent behavior (deductive):  

 

A new enrichment paradigm reveals higher order cognitive enhancements and enables 

controlled delivery of enrichment - an advance to the rodent enrichment model 

 

2.1 Abstract 

Enrichment in rodents affects brain structure, improves behavioral performance, and is 

neuroprotective. Similarly, in humans, according to the cognitive reserve concept, enriched 

experience is functionally protective against neuropathology. Despite this parallel, the ability to 

translate rodent studies to human clinical situations is limited. This limitation is likely due to the 

simple cognitive processes probed in rodent studies and the inability to control, with existing 

methods, the degree of rodent engagement with enrichment material. We overcome these two 

difficulties with novel behavioral tasks that probe, in a fine-grained manner, aspects of higher 

order cognition associated with deterioration with aging and dementia, and a new enrichment 

protocol, the 'Obstacle Course' (OC), which enables controlled enrichment delivery, 

respectively. Together, these two advancements will enable better specification (and 

comparisons) of the nature of impairments in animal models of complex mental disorders and 

the potential for remediation from various types of intervention (e.g., enrichment, drugs). We 

found that two months of OC enrichment produced substantial and sustained enhancements in 

categorization memory, perceptual object invariance, and cross-modal sensory integration in 

mice. We also tested mice on behavioral tasks previously shown to benefit from traditional 

enrichment: spontaneous object recognition, object location memory, and pairwise visual 

discrimination. OC enrichment improved performance relative to standard housing on all six 

tasks and was in most cases superior to conventional home cage enrichment and exercise track 

groups.  
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2.2 Introduction 

Decades of research findings support the conclusion that experience affects neural 

architecture and plasticity [1-5]. Indeed, enriched experiences have been shown to affect brain 

morphology and electrophysiology, promote positive effects on behavior and can be protective 

against the effects of aging, Alzheimer’s disease (AD), other forms of dementia, and a myriad of 

additional disease states [6-14]. Although predominantly studied in animal models, similar 

findings have been reported in humans [15-17], where factors including education level, 

vocabulary, hobbies and multi-linguality serve as composite measures of ‘cognitive reserve’ – 

an operational construct that has been posited to play a protective role against aging and 

dementia [18]. 

Despite the overwhelming evidence regarding the beneficial effects of enrichment from 

rodent studies, and the cognitive reserve hypothesis pointing to promising protective effects in 

humans, there is limited translatability to human clinical situations. There are two aspects to the 

rodent environmental enrichment (EE) model that likely contribute to its limited clinical 

translatability.  

First, most rodent studies have investigated enrichment effects on lower-order cognitive 

processes using multiple variants of the same simple behavioral tasks. These behavioral tasks 

primarily include finding a platform in a water maze (Morris Water Maze; MWM, probing spatial 

learning and memory), open field exploration (open field test; OFT, probing exploration and 

emotionality), elevated mazes (elevated plus maze; EPM, probing anxiety) and object 

recognition (OR, probing recognition memory) [19]. The output of this body of work is impressive 

and has established that EE improves spatial and non-spatial learning and memory, sensory 

discrimination, sociability, and anxiety, in wild type rodents and/or models of aging and disease 

[6, 19-26]. However, there is no fine-grained analysis of the effects of EE on complex aspects of 

cognition. This is needed for a better behavioral mapping between rodents and humans and will 
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more clearly point to which aspects of complex mental disorders benefit from EE (or other forms 

of therapy). Here, we employ three new behavioral tasks probing different aspects of higher 

order cognitive processes which are subject to deterioration due to aging and AD in humans 

[27-29]: 1) categorization and abstraction -- hypothesized as the functional basis for the 

neocortical-hippocampal memory network in memory formation, consolidation and retrieval ; 2) 

multisensory integration, which requires inter-regional communication, a prerequisite for 

engagement of the aforementioned network; and 3) higher order perception.  

Second, with existing methods of enrichment, it is not possible to control for the degree 

of animal engagement with enrichment stimuli or identify which aspects of enrichment contribute 

to the measured outcomes. It is important to have a method which controls for animal 

engagement with objects to study how factors such as age, disease or brain manipulations 

interact with EE effects, because such variables can influence animals’ motivation level and 

therefore, receipt of enrichment. Moreover, despite recent improvements in standardization of 

enrichment methods [30, 31], as opposed to traditional enrichment (placing animals in larger 

cages, group housed, with extra bedding, toys, and running wheels), there is not an existing 

method that enables parsing out social stimulation, cognitive stimulation and physical exercise. 

Here, we present a novel enrichment paradigm, the Obstacle Course, which addresses these 

two foregoing limitations to existing enrichment methods.  

We advance the EE model’s utility in two ways: 1) showing that enrichment also 

enhances specific aspects of higher order cognitive functions in mice by using a series of 

complex behavioral tasks, and 2) delivering enrichment through a novel paradigm, the Obstacle 

Course (OC), which enables systematic control over animal engagement with enrichment 

stimuli, is delivered outside of animal housing, and has an exercise matched Control Course 

(CC) (Fig. 1). We tested enrichment effects on categorization, perceptual invariance, and 

multisensory integration using new paradigms for object category, view-invariance, and 

crossmodal object recognition, respectively (Table 1). We found that OC training elicited 
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improved and long-lasting performance on the three aforementioned tasks, especially at longer 

delays between encoding and retrieval. These effects were not observed with exercise alone, 

tested using the CC. Lastly, because these enrichment effects were observed with our novel OC 

enrichment paradigm, we also validated the OC by replicating findings obtained from three 

previously utilized tasks: object recognition, object location memory, and pairwise visual 

discrimination. For all tasks, enrichment was delivered both through the OC and through 

traditional enriched housing (EH). The OC group was comparable to the EH group on tasks with 

shorter learning-to-testing delays and outperformed the EH group on most tasks of longer 

delays.  
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Figure 1. The obstacle course paradigm 
a. Example OC track filled with 12 inserts. b. Example lap time data for a 30-min duration on the 
OC. Note that animals tended to take longer to complete a given lap when a change to the track 
was performed immediately prior to the lap (blue asterisk). See Supplemental Video 2 for 
demonstration of animal change in speed pre and post change to the track. c. An example CC 
track filled with 12 hurdles. d. Example lap time data for a 30-min duration on the CC. No 
changes were made to the CC throughout a given session. e. Schematic of changes made in a 
1-h OC session. A total of 5 changes were made, which included 3 rearrangements (e.g., 
swapping obstacle 4 with obstacle 7, indicated by arrows) interleaved with 2 replacements of old 
inserts with novel ones (indicated in red). See Supplementary Figure 1 for a detailed OC and 
CC protocol. f. Three example obstacles used in the OC (12 for the entire course). 
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Table 1. Experimental timeline 
Table outlining enrichment and behavioral testing schedule, including experiment date, age of 
mice during each experiment, and duration between enrichment discontinuation and behavioral 
testing. Abbreviations: rep-repeated, m-months, wks-weeks, d-days.  
 

2.3 Results 

Spontaneous object recognition (SOR): Enhancement of long-term object memory with 

OC training  

We first tested whether the OC experience can induce the previously reported EE 

enhancements of object recognition memory [32, 33]. Four groups of mice, Obstacle Course 

(OC), Control Course (CC), Enriched housing (EH), Standard housing (SH), were first tested on 

the SOR task with a 10-min sample phase and a 24-h delay in the 9th week of enrichment (Fig. 

2a-b). In this first experiment, an analysis of variance (ANOVA) showed that the effect of group 

did not reach significance, F(3, 36) = 2.613, p = 0.066, partial η2 = 0.179. However, planned 



 16 

comparisons using independent samples t-tests indicated that the OC group showed an 

enhancement on task performance compared to the SH group, t(18) = -3.027, p = 0.007, after 

Bonferroni correction for multiple comparisons (p = 0.0083). Two-tailed paired-samples t-tests 

(sample DR vs. choice DR) showed that mice in the OC, t(9) = -8.109, p < 0.001, EH, t(9) = -

3.624, p = 0.006, and SH groups, t(9) = -3.846, p = 0.004, all demonstrated evidence of intact 

memory. 

In a subsequent experiment, we introduced both short and long-term retention delays 

and increased task difficulty by shortening the sample phase to 7 min (Fig. 2a, c). A repeated 

measures ANOVA revealed a significant interaction between length of delay and group, F(3, 36) 

= 16.818, p < 0.001, partial η2 = 0.584. Significant main effects were also found for delay, F(1, 

36) = 124.724, p < 0.001, partial η2 = 0.776, and group, F(1, 36) = 5.720, p = 0.003, partial η2 = 

0.323. With the 20-min delay, no significant differences between groups were found and a two-

tailed paired samples t-test showed that the OC, t(9) = -7.364, p < 0.001, CC, t(9) = -4.784 p = 

0.001, EH, t(9) = -11.927, p < 0.001, and SH groups, t(9) = -3.114, p = 0.012, all demonstrated 

intact object memory. However, between-group differences were observed with the 24-h delay. 

Further analysis with post-hoc independent samples t-tests revealed significant differences in 

performance between the OC group and the EH group, t(18) = -6.287, p < 0.001, CC group, 

t(18) = -5.573, p < 0.001 and SH group, t(18) = -5.836, p < 0.001, when the delay was 24 h. 

Two-tailed paired-samples t-tests showed that only the OC group discriminated the novel object 

t(9) = -8.075, p <0.001. 

One month following the end of the enrichment period, the enhancement observed on 

the SOR task with a 7-min sample and 24-h delay persisted for the OC group (Fig. 2a, d). 

Observed were significant main effects of group, F(3, 36) = 3.575, p = 0.023, partial η2 = 0.230, 

and delay, F(1, 36) = 7.421,  p = 0.010, partial η2 = 0.171, while the interaction between group 

and delay did not quite reach significance, F(3, 36) = 2.745,  p = 0.057, partial η2 = 0.186. 

Further analysis with planned independent samples t-tests revealed a significant difference in 
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performance on the task between the OC group and the EH group, t(18) = -5.292, p < 0.001 and 

the CC group, t(18) = 3.917, p = 0.001 when the delay was 24 h. At this delay, only the OC 

group performed significantly above chance, t(9) = -5.962, p < 0.001. When the delay was 

reduced to 20 min, each group’s performance, OC, t(9) = -2.750, p = 0.022, CC, t(9) = -4.397, p 

= 0.002, EH, t(9) = -2.773, p = 0.022, and SH, t(9) = -4.054, p = 0.003, was above chance on 

the SOR task.   

 

Figure 2. SOR - Enhancement of long-term object memory with OC training exceeds EH 
effects 
a. Schematic representation of the Spontaneous Object Recognition (SOR) experiments. b. 
Task performance with a 10-min sample and a 24-h delay during the 9th week of enrichment. 
The OC group demonstrated a significantly higher discrimination ratio (DR) compared to the SH 
group. OC, EH, and SH groups showed DRs above chance. c. SOR task performance with a 
sub-optimal sample time at two delay durations during the 10th week of enrichment. With a 20-
min delay, all groups significantly discriminated above chance. With an increased delay to 24 h, 
the OC group DR was significantly higher compared to all other groups. (Delay x group 
interaction p<0.001, delay main effect p<0.001, and group main effect p = 0.003). Only the OC 
group showed a DR above chance. d. Replication of c, but completed 1 month post-
discontinuation of enrichment. With a 20-min delay, all groups significantly discriminated above 
chance, demonstrating intact object memory. With an increased delay to 24 h, the OC group 
demonstrated enhanced object memory, performing significantly better than the EH and CC 
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groups (Delay x group interaction p = 0.057, delay main effect p = 0.01, and group main effect p 
= 0.023). The OC group was the only group to discriminate the novel object significantly above 
chance.  
*p < 0.05, **p < 0.01, ***p < 0.001 indicate significant two-tailed paired-sample t-tests (choice 
DR vs. sample DR). ♦♦ p < 0.01, ♦♦♦ p < 0.001 indicate a significant difference between groups 
(two-tailed independent samples t-test, Bonferroni correction p = 0.0083). 
 

Object location memory (OLM): Enhanced object spatial memory with OC training 

For the second validation experiment, we investigated whether OC training can elicit 

enhancements in spatial memory as previously demonstrated with EE [34], and more 

specifically, object location enhancements [32]. To do so, all groups performed the OLM task 

(Fig. 3a). Enhanced task performance after OC training was observed when the delay between 

sample and choice was increased from 20 min to 24 h (Fig. 3b). With the same sample time of 

10 min, a repeated measures ANOVA revealed a significant interaction between the length of 

delay and group, F(3, 36) = 4.294, p = 0.011, partial η2 = 0.264, and a significant main effect of 

delay, F(1, 36) = 30.763, p < 0.001, partial η2 = 0.461; however, no main effect of group, F(3, 

36) = 0.963, p = 0.421, partial η2 = 0.074 was found (Fig 3d.i). 

With a 20-min delay, no significant differences between groups were observed (Fig. 

3d.i). Two-tailed paired-samples t-tests (sample DR vs. choice DR) showed that the CC, t(9) = -

5.279, p = 0.001, EH, t(9) = -5.394, p < 0.001, and SH groups, t(9) = -6.056, p < 0.001, all 

discriminated the displaced objects, while discrimination by the OC, t(9) = -2.224, p = 0.053, did 

not quite reach significance. Subsequent planned analysis for the 24-h delay using independent 

samples t-tests revealed significant differences in performance on the task between the OC and 

CC groups, t(18) = 4.340, p < 0.001, as well as the EH and CC groups, t(18) = 3.136, p = 0.006. 

Moreover, with this longer delay of 24-h, the enriched groups, OC, t(9) = 5.092, p = 0.001 and 

EH, t(9) = 4.464, p= 0.002, and the SH group, t(9) = 2.746, p = 0.023, discriminated the 

displaced object. 

Lastly, to probe the differences in spatial memory between the two enrichment groups 

further, we tested all groups with a shortened sample time of 7 min and delay duration of 24 h. 
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In this experiment, an ANOVA showed a significant effect of group, F(3, 36) = 3.623, p = 0.022, 

partial η2 = 0.232, and independent samples t-tests revealed that the OC group showed an 

enhancement on task performance compared to the EH group, t(18) = -3.041, p = 0.007 (Fig. 

3c). At this sub-optimal sample and increased delay, only mice in the OC group, t(9) = 2.585, p 

= 0.029 discriminated the displaced object.   

 

Figure 3. OLM: Enhanced memory for location with OC training exceeds EH effects  
a. Schematic of the Object Location Memory (OLM) experiments. b. OLM task performance. 
With a 20-min delay, the CC, EH, and SH groups demonstrated intact spatial memory. With a 
24-h delay, the OC and EH groups demonstrated enhanced object location memory, performing 
significantly better than the CC group (Delay x group interaction p = 0.011, delay main effect p < 
0.001 and group main effect p = 0.421). The OC, EH, and SH groups discriminated the 
displaced object above chance. c. Performance with a 7-min sample and 24 h delay. The OC 
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group showed enhanced memory relative to the EH group (Group main effect p = 0.022). Only 
the OC group discriminated significantly above chance. Experiment was implemented 5-6.5 
months post enrichment.  
*p < 0.05, **p < 0.01, ***p < 0.001 indicate significant two-tailed paired-sample t-tests (choice 
DR vs. sample DR). ♦♦ p < 0.01, ♦♦♦ p < 0.001 indicate a significant difference between groups 
(two-tailed independent samples t-test, Bonferroni correction p = 0.0083). 
 

Pairwise visual discrimination (PD): Enhanced cognitive flexibility with OC and CC 

training 

For the last replication experiment, we validated whether the OC experience can induce 

reported EE effects outside the domain of object-based tasks. It was previously shown that the 

PD task is effective in assessing cognitive function between groups (i.e. sex, disease models 

[35]), and that EE enhances reversal learning in this task [36]. No significant group differences 

were observed in the number of pretraining days F(3,36) = 1.928, p = 0.142, partial η2 = 0.138 

(habituation stages 1-7), nor in the acquisition phase (in regard to overall accuracy, number of 

sessions to criterion and session accuracy) (Supplementary Figure 2). With regard to the 

reversal phase (Fig. 4a.ii), there was a group main effect in the number of sessions to reach 

criterion (achieving 80% accuracy or higher on two successive sessions), F(3,36) = 12.819, p < 

0.001, partial η2 = 0.517 (Fig. 4b), and independent samples t-tests revealed significant 

differences between the OC and SH groups, t(18) = -6.104, p < 0.001 as well as the CC and SH 

groups t(18) = -5.273, p < 0.001, whereby the OC and CC groups required significantly fewer 

sessions. Additionally, there was a main effect of session when considering mean group 

accuracy in each of the first five sessions (where the first mouse reached criterion), F(3,36) = 

61.723, p < 0.001, partial η2 =0.632 (Fig. 4c.i), a main effect of group F(3,36) = 3.209, p = 0.034, 

partial η2 = 0.211, but the interaction between group and session was not significant F(3,36) = 

1.045, p = 0.411, partial η2 = 0.080. Post-hoc analysis of session performance revealed an 

effect of group during session 5, F(3,36) = 5.606, p = 0.003, partial η2 = 0.318. Independent 

sample t-tests revealed that the OC group performed with significantly higher accuracy 

compared to the SH group on session five, t(18) = 3.719, p = 0.002 (Fig. 4.c.i). Lastly, there was 



 21 

an effect of group when considering mean accuracy across the first five sessions, F(3,36) = 

3.222, p = 0.034, partial η2 = 0.212 (Fig. 4c.ii). 

 

 

Figure 4. PD task – enhanced cognitive flexibility with OC and CC training exceeds EH 
effects 
a. Schematic representation of the Pairwise visual Discrimination (PD) experiment. a.i-ii. 
Stimulus-reward association learning. a.i. Original association: animal receives reward upon 
contact with the S+ stimulus. a.ii. Reversal of association: previously learned S- stimuli become 
S+ stimuli and associated with reward. b. Mean session number to reach criterion (performance 
of 80% accuracy on two successive sessions) in the reversal phase per group (group effect p < 
0.001), with the OC (p < 0.001) and CC (p < 0.001) groups requiring significantly fewer sessions 
compared to the SH group. c.i. Group percent accuracy on the first five reversal sessions, with 
a main effect of session (p = 0.003) and an effect of group on the fifth session (p < 0.001), with 
the OC group performing significantly higher than the SH group on session five. c.ii. Mean 
accuracy across the first five reversal sessions for each group, with a group main effect (p = 
0.034). Post-hoc independent samples t-test did not reveal group pairwise differences.  
♦♦ p < 0.01, ♦♦♦ p < 0.001 indicate a significant difference between groups (two-tailed 
independent samples t-test, Bonferroni correction p = 0.0083). 
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Object category recognition (OCR): Enhancement of object category recognition with OC 

training 

Next, we examined OC enrichment effects on arguably more complex cognitive domains 

than those previously explored. First, we tested whether the OC enrichment enhances object 

category recognition memory (Fig. 5a) [37]. All groups were tested on two retention delays (30 

min, 1 h), both with a 10-min sample. A repeated measures ANOVA revealed a significant 

interaction between length of delay and group, F(3, 36) = 7.023, p = 0.001, partial η2 = 0.369, 

and a significant main effect for delay, F(1, 36) = 14.594,  p = 0.001, partial η2 = 0.288, but not 

for group, F(1, 36) = 0.745, p = 0.532, partial η2 = 0.058 (Fig. 5b). With the 30-min retention 

delay, two-tailed paired-samples t-tests (sample DR vs. choice DR) showed that mice in the CC, 

t(9) = -6.135, p < 0.001 EH, t(9) = -3.129, p = 0.012, and SH groups, t(9) = -6.074, p < 0.001 all 

demonstrated intact object category memory, while the OC, t(9) = -1.876, p = 0.093, 

performance did not reach significance. However, between-group differences were observed 

when the retention delay was increased to 1 h (Fig 5d). Further analysis with planned 

comparisons using independent samples t-tests revealed a significant difference in group 

performance on the task between the OC and the SH group, t(18) = 3.884, p = 0.001, when the 

delay was 1 h. Two-tailed paired-samples t-tests showed that the OC t(9) = -5.895, p < 0.001 

and the EH t(9) = -2.937, p = 0.017, groups discriminated the novel category. 
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Figure 5. OCR & VIOR - Enhancement of both object category recognition (OCR) and 
object recognition despite rotational changes to objects (VIOR) with OC training 
a. Schematic representation of the Object Category Recognition (OCR) experiment. b. OCR 
task performance with two delay durations. With a 30-min delay, the CC, EH, and SH groups 
significantly discriminated above chance, demonstrating intact object category memory. With an 
increased delay to 1 h, the OC group demonstrated enhanced object category memory, 
performing significantly higher compared to the SH group (Delay x group interaction p = 0.001, 
delay main effect p = 0.001, and group main effect p = 0.532). The OC and EH groups 
significantly discriminated the novel category above chance. OCR experiments were 
implemented 1.5-2.5 months post-discontinuation of enrichment. c. Schematic representation of 
the View Invariant Object Recognition (VIOR) experiment. d. VIOR task performance. The OC 
group treated the rotated object as familiar, equally exploring rotated and unrotated objects in 
the choice phase. The EH group significantly discriminated the rotated object. No significant 
group effect was observed (p = 0.240). VIOR experiments were implemented 3 months post-
discontinuation of enrichment.  
*p < 0.05, **p < 0.01, ***p < 0.001 indicate significant two-tailed paired-sample t-tests (choice 
DR vs. sample DR). ♦♦ p < 0.01, ♦♦♦ p < 0.001 indicate a significant difference between groups 
(two-tailed independent samples t-test, Bonferroni correction p = 0.0083). 
 

View-invariant object recognition (VIOR): Enhancement of object recognition despite 

rotational changes in object orientation 
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We then investigated the effects of OC enrichment on higher order perception using 

VIOR testing (Fig. 5c). An ANOVA showed that the effect of group did not reach significance, 

F(3, 36) = 1.468, p = 0.240, partial η2 = 0.109. The OC group, to the most extent (numerically), 

treated both rotated and non-rotated objects as familiar, exploring them equally (Fig. 5d). 

Conversely, a paired-samples t-test showed that the EH group displayed preference for the 

rotated object suggesting that this group tended to perceive the rotated object as novel t(9) = -

3.046, p = 0.014. 

 

Cross-modal object recognition (CMOR): Enhanced cross-modal object memory with OC 

training 

Lastly, we identified the degree to which OC enrichment facilitates integration of sensory 

information from different modalities by testing all groups on a tactile-to-visual CMOR task (Fig. 

6a). Enhanced task performance after OC training was observed when the delay between 

sample and choice was increased to 1 h (Fig. 6b). A repeated measures ANOVA did not show a 

significant main effect of delay, F(1, 36) = 1.584,  p = 0.216, partial η2 = 0.042, and the 

interaction between length of delay and group did not reach significance F(3, 36) = 2.762, p = 

0.056, partial η2 = 0.187. However, there was a significant main effect of group F(3, 36) = 4.981, 

p = 0.005, partial η2 = 0.293.  

At a 30-min delay, planned independent samples t-tests revealed a significant difference 

in group performance on the task between the CC and the SH group, t(18) =  -3.758, p = 0.001 

(Fig. 6b). At the same delay, two-tailed paired-samples t-tests showed that both the OC, t(9) = -

3.720, p = 0.005 and the SH, t(9) = -4.468, p = 0.002 groups discriminated between the novel 

and familiar objects. Subsequent planned analysis for the 1-h delay using independent samples 

t-tests revealed a significant difference in group performance on the task between the OC and 

the CC group, t(18) = 4.119, p = 0.001. Moreover, at this 1-h delay, only the OC group 

discriminated between the novel and familiar objects t(9) = -4.357, p = 0.002.  
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Figure 6. CMOR: Enhanced cross-modal object memory with OC training  
a. Schematic of the Cross-Modal Object Recognition (CMOR) experiment. b. CMOR task 
performance. At a 30-min delay, the SH group discriminated significantly more than the CC 
group. The OC and SH groups discriminated the novel object above chance. With a 1-h delay, 
the OC group demonstrated enhanced performance relative to the CC group (Delay x group 
interaction p = 0.056, delay main effect p = 0.216, and group main effect p = 0.005). Only the 
OC group could discriminate the novel object. Experiment was implemented 4-4.5 months post 
enrichment.  
*p < 0.05, **p < 0.01, ***p < 0.001 indicate significant two-tailed paired-sample t-tests (choice 
DR vs. sample DR). ♦♦ p < 0.01, ♦♦♦ p < 0.001 indicate a significant difference between groups 
(two-tailed independent samples t-test, Bonferroni correction p = 0.0083). 
 

2.4 Discussion 

In the present study, we sought to advance the rodent enrichment model by performing 

a fine-grained analysis on the effects of EE on different aspects of higher order cognition using 

the OC as a novel protocol enabling controlled delivery of enrichment. We first showed that the 

OC course is at least comparable or superior to traditional home cage enrichment in terms of 

the benefits conferred on performance in established learning and memory tasks. Then we 

presented a novel account of enrichment-mediated enhancements of lesser studied cognitive 

functions: object categorization/generalization, object perceptual processing and information 

transfer across sensory networks. The extension of enrichment effects to these domains should 

help to improve behavioral mapping between rodents and humans in that they are more 

complex functions associated with deterioration from aging and dementia [27-29]. This kind of 
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fine-grained, systematic analysis using novel behavioral tasks will be critical in revealing which 

aspects of complex mental disorders could benefit from enrichment or other forms of therapy. 

The present study takes important first steps in revealing the potential for beneficial effects of 

enrichment interventions across a spectrum of complex cognitive abilities. Lastly, delivery of 

enrichment in a controlled manner, accomplished with the OC protocol, can provide greater 

insight into which aspects of enrichment and how the degree of engagement with stimuli 

influences certain processes.  

Our results were observed with a novel enrichment paradigm, the Obstacle Course. 

Conversely, Enriched Housing did not elicit improvements in view-invariant object processing 

nor cross-modal sensory integration, and yielded a less prominent effect on category 

recognition. The OC group also outperformed current standards of enrichment on previously 

reported measures, demonstrating superior long-term memory for object identity and spatial 

location (especially with short, ‘suboptimal’ study durations) and enhanced cognitive flexibility 

(pairwise discrimination reversal). Most of these effects cannot be explained by physical 

exercise alone, as tested through an exercise-matched Control Course. Lastly, OC induced 

enhancements were sustained for over 8 months after discontinuation of enrichment, an 

important demonstration of the potential longevity of effects produced by this protocol.   

Across tasks, the main enhancement effects with OC training that significantly differed 

from EH were generally observed with shorter sample times and longer delays (SOR, OCR, 

CMOR, and OL). This suggests that, with OC training, less time is necessary to encode and/or 

consolidate information about the external environment into long-term memory. In line with this, 

is the observed result of superior performance by the OC group compared to all other groups on 

OCR. We have previously reported that mice can only perform OCR with retention delays longer 

than 30 min when an exemplar pre-exposure period is implemented, which possibly enables an 

improved representation of the to-be-remembered object categories [37]. However, in the 

current study, the OC group was able to perform the task successfully without an exemplar 
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preexposure period. Thus, the benefit of enrichment in general, and our OC paradigm in 

particular, could be explained at least partly by improved schema formation.  

Schema formation is a process reliant on semanticization and abstraction of experiences 

and generation of internal representations which are categorically organized. The facilitation of 

these processes could enable items to be more rapidly integrated into long-term memory if they 

are to some degree consistent with existing memories or schemas [38-40]. The OC experience 

requires rich interactions with a wide variety of object-based obstacles, which may facilitate 

establishment of object schemas. Thus, a reasonable hypothesis is that OC animals have more 

highly diversified internal representations of the world that would support such an effect. This 

possibility, as well as alternatives involving enhanced learning and memory via boosting of 

neuroplasticity mechanisms, warrant further testing in subsequent studies to unravel the means 

by which OC training achieves superior effects.  

OC training also improved perception and multi-sensory integration. With OC training, 

mice recognized object identity despite rotation (VIOR) to a greater degree than observed with 

EH. This finding also supports the notion that OC mice generated a stronger internal 

representation and/or better retained object representations, recognizing a given object from a 

different angle. Another possibility is that more sophisticated perceptual processes were at play 

and not merely superior long-term memory [41, 42]. Additionally, with OC enrichment, mice 

were better able to perform an explicitly cross-modal cognitive task, visually recognizing objects 

that they had previously only explored tactilely. The mechanisms by which these enhancements 

occurred cannot be delineated from the present study. However, these results demonstrate that 

OC training enhances neural processes that can be impaired in human cognitive disorders. 

Tasks such as OCR, VIOR, and CMOR probe how animals integrate sensory information about 

object features to build, maintain and utilize object representations. Supporting the translational 

value of using these tasks, deficits in feature binding and multisensory integration can be 

observed in human disorders such as AD [43], schizophrenia [44], and autism spectrum 



 28 

disorder [45, 46], and have also been observed in animal models of these disorders [47-49]. In 

particular, the binding of object features has been shown to be impaired in the early stages of 

AD [50], but preserved with healthy aging in humans [51] and rodents [52]. Accordingly, 

neuropathological, structural and electrophysiological studies indicate impaired inter-regional 

communication in AD; for example, neuropathology is concentrated in areas of cortico-cortical 

and neocortical-hippocampal exchange as well as heteromodal association cortices [28]. 

Altogether, OC enrichment in the current study appeared to enhance neural processes in 

rodents that are at-risk in aging or AD, as well as other human disorders of cognition 

characterized by dysfunction in distributed brain networks.  

Finally, a few clarifications regarding the present study are worth noting. First, the 

Standard Housing group performed significantly better compared to the Control Course group 

on the CMOR task. This could possibly be explained by potential adverse effects of removal of 

physical exercise from the CC group which was not experienced by the SH group. Rather, the 

SH group only experienced positive changes as it was moved into slightly larger cages post 

completion of the enrichment protocols. Secondly, while group means trended towards 

improved performance by the OC group compared to all others on several aspects of PD task 

acquisition, we did not find robust differences in performance between OC and EH. This is 

consistent with a prior report of EE primarily enhancing reversal learning compared to aspects 

of the acquisition phase in this task [53]. This could be related to the longitudinal nature of 

testing required in the present study; all groups may have benefitted as testing continued 

following the explicit enrichment phase [54]. Alternatively, it is possible that OC training 

produces differential effects on different brain circuitry, the requirements of which vary across 

behavioral tests—this is an intriguing possibility that requires further investigation. Indeed, 

additional work is needed to clarify the specific neurobiological effects of OC and CC training 

and how these might differ from traditional enriched housing conditions. Lastly, due to the labor 

intensive nature of running each animal daily for an hour, we were limited in the number of mice 
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per group (n = 10 mice, n = 2 groups, 20-hours per day for 20 mice). Given this practical 

limitation, and the abundance of male-only studies in the EE literature, we opted to test male 

mice only in this initial study. While we predict that female mice would undergo similar OC-

mediated cognitive enhancements, future work is needed to test this important question directly.  

In addition to new accounts for enrichment effects, we also propose a novel paradigm 

that is methodologically advantageous to existing enrichment paradigms. With current 

enrichment methods, it is not possible to have experimental control over the level of animal 

engagement with enrichment stimuli. This poses an issue when delivering enrichment with other 

experimental manipulations (genetic line, drug intervention, sex), which may modulate animal 

engagement level with enrichment stimuli. Conducting such manipulations, however, is crucial 

for maximizing the translational value of EE studies. With the OC, enrichment level can be 

matched across animals by fixing the duration spent on the course (as done in the current 

study) or the number of laps completed. Additionally, contrary to prior attempts of 

standardization [30, 31], the set-up of the course requires that the rodent interacts with each 

obstacle before proceeding through the track. Lastly, the OC has a control counterpart which 

approximates the degree of physical demand, since the CC is identical in size, contains 

elevated hurdles recruiting muscular activity and energy expenditure, and both the control and 

experimental groups were run for a fixed duration. This is contrary to running wheels that do not 

systematically match the amount of exercise to that achieved in the enrichment cages. Future 

work could further advance the design by fully automating the course via motion-sensing to 

enable unidirectional movement and automated reward delivery. 

Altogether, the present study provides a stepping-stone to better investigations of the 

therapeutic potential of enriched experience. Advancing knowledge of the effects of enrichment 

can provide a basis for lifestyle changes and improved therapies for disease states. Moreover, 

separating the biological effects of different components of EE is of importance because certain 

patient populations experiencing cognitive decline may also have physical inabilities (e.g., 
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paralysis, motor impairment) and cannot benefit from the protective effects of physical activity-

based EE, but could achieve alternative forms of cognitive stimulation. Therefore, there is 

clinical value to understanding the cognitive enhancements of EE, and more generally, 

expanding upon the current methods of studying enrichment effects in rodent models. 

 

2.5 Methods 

 

Overview 

The study was composed of four groups of mice (n = 10 per group): obstacle course 

(OC), control course (CC), enrichment housing (EH), and standard housing (SH) groups. The 

course groups, both OC and CC, were housed the same as the SH group, but were removed to 

run on their corresponding courses for 1 h/day, 6 days/week, for 9 weeks. Meanwhile, the EH 

mice remained in their enrichment cages, which were matched for object number with those of 

the OC. After the 9-week enrichment/control period, all animals were housed in cages 

intermediate in size to the SH and EH conditions without added enrichment while cognitive 

testing continued. 

 

Animals 

A total of 40 28-day-old male C57BL/6 mice were obtained from Charles River (St. 

Constant, Quebec, Canada). All animals were 42 days old at the initiation of the study. After 

implementation of the 9-week enrichment protocols with their corresponding controls, animals 

were tested on a battery of object recognition and learning tasks beginning at 4 months of age. 

Tests were executed monthly from 4-10 months (Table 1).  

Throughout the length of experimental testing, animals in the OC, CC and SH group 

were housed in clear polyethylene cages (16cm x 12cm x 26 cm) in groups of 3-4. Animals in 

the EH group were housed in larger cages (60cm x 60cm x 25 cm) in groups of 5. All cages 
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were furnished with corncob bedding, crink-l’Nest and cotton nest squares for maintenance of 

the quality of health of the mice. Animals were fed a lightly restricted diet of 3g of food per a day 

(Teklad Global 18% Protein Rodent Maintenance Diet, Harlan Teklad, WI) until their weight 

stabilized (6 weeks on the tracks).  

Subsequently, all groups were transitioned to a limited diet of 2.5g of the same food per 

day per mouse. Water was available for all groups ad libitum. Due to aggression, 8 out of 10 EH 

mice had to be individually housed immediately after the enrichment period, while only 1 out of 

10 animals from the OC group was individually housed 5 months post discontinuation of 

enrichment. Animals were maintained on a 12-hour light-dark cycle, and tested during the light 

phase. All procedures followed the guidelines of the Canadian Council on Animal Care and 

were approved by the University of Guelph Animal Care Committee. 

 

Course set-up 

The base tracks were custom-made at the University of Lethbridge and were identical for 

both the OC and CC groups (Fig. 1a, c). The track is a square-shape design with the following 

dimensions: 860 mm arm length (including the corners) and 610 mm (excluding the corners), 

120 mm arm width with surrounding walls of 70mm in height on each side. The walls were 

utilized to contain the animal within the course. The track was mounted on four legs 18-cm in 

length. The track exterior was entirely enclosed by corrugated plastic cardboard, blocking the 

animal’s view of the testing room and limiting it to the interior of the course only. Corrugated 

barriers were also inserted at each corner to prevent the animal from cutting corners, ensuring 

passage through the course interior. Beam sensors were inserted in each corner and connected 

to a programmed Arduino board to track the time spent in each arm and the total time to 

complete each lap. Lastly, video monitoring was implemented using a top-down view of the 

mice for video recording. Offline video analysis using DeepLabCut was implemented for animal 

tracking (Supplemental Videos 3-4). Grey rectangular board pieces made of sintra foam sheets 
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were used as a base for obstacles, and a total of 12 inserts (base+obstacle) filled the course (3 

inserts per arm) at a given time. A 0.03ml drop of Neilson ® strawberry milkshake (fat/lipid 

content: 22.58 g/L, sugar content: 125.81 g/L) was given as reward at the end of each lap for 

both OC and CC groups. A wall divider was placed immediately before the start site of the 

course to ensure unidirectional animal movement. 

 

Obstacle Course protocol 

Each arm of the track was allocated 3 obstacles positioned serially. Handmade 

obstacles were glued to the grey plastic bases to fit within the course perimeter. Daily, within 

each group (OC vs. CC), mice were run in a randomized order (between first to last), for a 1-

hour duration over the course of 9 weeks. A detailed protocol was followed for each week, 

which ensured matched course alterations across animals. The protocol can be found in the 

supplementary material (Supplementary Figure 1) and is briefly outlined here.  

All groups were habituated to handling and the OC and CC groups to food reward (strawberry 

milkshake) for one week. In the following week, animals were gradually habituated to an empty 

course for the first four days. In the subsequent 2 days, 12 triangular hurdles were gradually 

inserted to fill the entire course (Fig. 1c, Supplementary Figure 1). Course enrichment began 

after empty course and hurdle habituation. In the first week of enrichment, 3 obstacles were 

added each day for 4 days until the course contained 12 obstacles. In the subsequent days for 8 

weeks, the following daily manipulations were implemented: change to existing obstacle→ add 

new obstacle → change to existing obstacle → add new obstacle → change to existing 

obstacle. This led to a daily protocol of adding 2 new obstacles and making 3 rearrangements to 

the track (Fig. 1e, Supplementary Figure 1). Changes consisted of rotating obstacles 180 

degrees in their position or swapping the positions of a given pair of obstacles. These 

manipulations were spread across the 1-hr session, at intervals of 10 min. Supplemental Video 

2 illustrates a segment of an OC session with obstacle manipulations. OC mice experienced a 
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total of 132 obstacles in the 9-week enrichment period (Supplemental Video 1), and 12 identical 

hurdles in the week prior to enrichment. 

 

Control Course protocol 

The CC group was habituated in the same manner as described above. Like the OC, the 

CC was gradually filled with 12 hurdles. There were no subsequent manipulations performed to 

the course. The CC group ran the 12-hurdle filled course for a matched duration of 1-hour for 

the remainder of the study. This group served as a control for physical exercise. 

 

Home cage enrichment protocol 

Larger sized cages (60cm x 60cm x 25 cm) were used for the EH group. Home-cage 

enrichment began on the same day as course enrichment. The addition of new objects followed 

the same daily pattern as the addition of new obstacles for the OC group. Three objects were 

added to cages daily for 3 days, followed by replacement of 2 old objects with 2 new ones. The 

EH group experienced a total of 132 objects throughout the duration of the enrichment period. 

Kraft Smooth peanut butter was put in different locations in the enriched cages to facilitate 

foraging and interaction with enrichment objects. In contrast, the SH cage enrichment was 

limited to nesting material with no additional objects or cage manipulations. 

 

Behavioral testing 

Mice were tested on six behavioral protocols, five of which exploit rodents’ tendency to 

explore novel items preferentially [53, 55, 56] and the sixth involved a touch-screen based 

learning and reversal task [55]. All tests except the object location and touchscreen tasks, were 

conducted using an enclosed Y-shaped apparatus [37]. Each object was used once for each 

object-based task. Table 1 indicates the timeline for each behavioral test. Objects were always 

washed with ethanol immediately prior to being placed in the apparatus. These tasks were 
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chosen to assess different, complementary aspects of object and spatial cognitive processing 

and learning, partly as an index of the generalizability of the beneficial effects of the enrichment 

protocols. The principal behavioural score for object-based tests was an object discrimination 

ratio (DR), the difference in time spent exploring the novel versus the familiar object divided by 

the sum (DR = time of novel object exploration – time of familiar object exploration / total time of 

exploration). DR values were calculated for each mouse and then averaged across mice. 

 

Spontaneous object recognition (SOR) 

The SOR task [47] was used to assess whether EE mediated memory enhancements for 

object identity can be induced with the OC experience. SOR testing was initially implemented 

during the 9th week of enrichment and again 1-month following discontinuation of enrichment. 

The task consisted of a sample (7 min or 10 min) phase, during which animals were presented 

with two identical objects in each arm of the Y-apparatus (Fig. 2a). This was followed by a 

delay, and then the choice phase (3 min), in which one of the two objects from the sample 

phase was replaced with a novel object. Two delay durations were tested for each mouse, 20-

min and 24-h, in order to assess short and long-term memory, respectively. The novel object 

position was counterbalanced between the right and left arms of the Y-apparatus. 

 

Object-location memory (OLM) 

The OLM task was used to test whether OC enrichment was sufficient to induce 

enhancements of spatial memory, independently of object identity [47] OLM testing was 

implemented 5 and 6 months post enrichment, and consisted of sample (10 or 7 min), delay (20 

min or 24 h), and choice phases (3 min) (Fig. 3a). The task is run in an open field (45 × 45 x 

30cm). In the sample phase, two identical objects are presented in two corners of the open field. 

Following the retention delay, the same identical objects are presented, but one is displaced to 
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the opposite corner. Preference for this displaced object indicates recognition of the original 

spatial location.  

 

2-Choice pairwise visual discrimination (PD) with reversal  

The PD task was used to replicate EE enhancements in cognitive flexibility [36] and to 

assess learning capacity [55] using a non-object-based task. This is a 10-stage protocol, with 

the first 7 stages aimed at gradually habituating the mouse to the experimental set-up 

(Supplementary Figure 2), and stages 8-10 involved learning image-reward associations as well 

as the reversal of such associations (Fig. 4a). Each mouse was required to reach a pre-defined 

criterion to proceed to the subsequent stage in the experiment. Stage 1 is a 10 min habituation 

to the chamber. Stage 2 is a 20 min habituation including habituation to simultaneous light, tone, 

and strawberry milkshake reward delivery. Stage 3 is the same as 2, with an extension to 40 

min. Stage 4 involved delivering reward/tone/light upon mouse touching the singly presented 

stimulus. Stage 5 required the mouse to touch the presented image for reward/tone/light 

delivery. If criterion is not reached after a maximum of 7 sessions, the animal is taken back to 

stage 4. Stage 6 required the mouse to initiate a subsequent trial via a nose poke of the food 

tray. For stages 4-6, criterion was set as completion of 30 trials in a 60-min duration, with a total 

of 40 images utilized. Stage 7 introduced a punishment for touching the incorrect location, 

where a 5-sec time out was introduced with the chamber light turned on before the ITI and 

subsequent trial could be initiated. Criterion was set as completion of 24 out of 30 trials or better 

within a 60-min duration for 2 consecutive sessions, and two stimuli were utilized. Stages 8-9 

involved presentation of both stimuli, delivery of reward upon animal contacting an S+ stimulus, 

and punishment following the S- stimulus contact (Fig. 4a.i). Correct behavior is followed by a 

new trial, and incorrect behavior is followed by repetition of the same trial until the correct 

response is achieved. Criterion was set as completion of 24 out of 30 trials or better within 60 

min for 2 consecutive sessions. Stage 10 involved contingency reversal where responding to 
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the previously learned S- becomes associated with reward (S+) and vice versa (Fig. 4a.ii). The 

session ended after completion of 30 trials or a 60-min duration. 

 

Object category recognition (OCR) 

The OCR task was used to evaluate the ability to generalize within object categories and 

distinguish between separate categories [57]. OCR testing was implemented between 1 and 2-

months post-discontinuation of enrichment, and consisted of sample (10 min), delay (30 min, 1 

h), and choice phases (3 min) (Fig. 5a). In the sample phase, mice were exposed to two 

different objects of the same category (e.g., toy cars). In the choice phase, two new objects 

were introduced: a new object from the same category, and a new object from a different 

category. Preferential exploration of the new object from the previously unsampled category 

was interpreted as within-category generalization (i.e., a preference for the novel category). 

 

View invariant object recognition (VIOR) 

The VIOR task was used to assess flexible use of object representations when mice 

were presented with previously explored objects from novel perspectives [47]. VIOR testing was 

implemented 3-months post-discontinuation of enrichment, and consisted of sample (10 min), 

delay (5 min), and choice phases (3 min) (Fig. 5c). In the sample phase, two identical objects 

were shown in the same orientation. For the choice phase, one object was rotated (90 degrees) 

while the other remained in its original orientation. In the case of the VIOR task, absence of 

preference for either object in the choice phase is interpreted as recognition that the two objects 

are the same despite their differing orientations. 

 

Cross-modal object recognition (CMOR) 

The CMOR task was utilized to test object recognition across sensory modalities [47]. 

CMOR testing was implemented 4-months post-discontinuation of enrichment, and consisted of 
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sample (10 min), delay (30-min, 1 h), and choice phases (2 min) (Fig. 6a). In the tactile sample 

phase, mice were exposed to two identical objects, one in each arm, under red light (to prevent 

visual processing). In the visual choice phase, transparent barriers were inserted in each arm 

between the mouse and the object, preventing tactile interaction. Preference for the novel object 

in the choice phase thus indicates cross-modal (tactile-to-visual) object recognition. 

 

General behavioral procedure and statistical analysis 

Regarding the OR tasks, the behavioral testing room, Y-maze apparatus, video-scoring 

procedure and statistical analyses were identical to those described in Creighton et al., 2019. To 

clarify further, for all object tasks, a DR was calculated for both the sample and choice phases. 

The sample phase DR reflects exploration when the objects are equally novel. Using paired 

samples t-tests, the choice phase DR was then compared to the sample phase DR to assess 

whether mice discriminated significantly above chance.  Additionally, for these tasks, each 

animal underwent an individual trial. However, if high variance was observed, each animal 

experienced a second trial, where a single mean value across the two trials was obtained per 

animal.  

The visual discrimination and reversal tasks were conducted in automated touchscreen 

operant chambers (Bussey-Saksida Mouse Touchscreen Chamber System, Lafayette 

Instrument Co., Lafayette, IN), with instructions and event recordings operated through the 

software Whisker Server and ABET II. 

For PD task statistical analysis, a repeated-measures four-way analysis of variance 

(ANOVA) was used to analyze between-group differences across the relevant testing days. 

Based on significant differences identified, appropriate post-hoc analysis was performed 

sequentially. All other group comparisons were completed with a one-way ANOVA and 

appropriate post-hoc tests. 
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2.6 Supplementary material

 

Supplementary Figure 1. Detailed OC enrichment protocol  
Top panel is a table outlining OC and CC protocols including weekly and daily executions. 
Bottom schematics further detail the daily and weekly manipulations to the track. Habituation 
occurred at week 0 in the same manner for both the OC and CC groups. Weeks 1 – 9 apply to 
the OC group only. By the end of week 1, the OC was filled with novel obstacles. The 
manipulations that took place on week 2 were done in a similar manner for weeks 3 - 9. By the 
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end of each week, a full new set of 12 obstacles were introduced to the OC track. Enrichment 
occurred for a duration of 9 weeks. Each day, mice within each group were run on their 
respective tracks in a randomized order between one and 10 (first to last).  
 

 

Supplementary Figure 2. PD task – habituation schematic and supplementary results  
a. Schematic representation of the PD habituation stages. a.i-ii. Gradually habituating the 
animal to: i. recording chamber, simultaneous delivery of reward, tone, and light, ii. touching a 
presented stimulus to trigger reward, and nose-poke in reward tray to trigger stimulus 
presentation. b-c. Mean accuracy across all (b) reversal F(3, 36) =1.196, p = 0.325, partial h2 =  
0.091 and (c) acquisition F(3, 36) = 1.945, p = 0.14, partial h2 = 0.139 sessions per group. d. 
Mean session number to reach criterion (performance of 80% accuracy on two successive 
sessions) per group in the acquisition phase. No group main effect was observed F(3,36) = 
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2.004, p = 0.131, partial h2 = 0.143. e.i. Group percent accuracy on the first six acquisition 
sessions with a main effect of session, F(5, 36) = 6.975, p < 0.001, partial h2 = 0.162 and an 
effect of group in session six, F(3,36) = 4.340, p = 0.010, partial h2 = 0.266, with the OC group 
performing significantly higher than EH on session six t(18) = 3.294, p = 0.004. ii. Mean 
accuracy across the first six acquisition sessions for each group revealed no significant 
differences in group accuracy, F(3,36) = 1.78, p = 0.168, partial h2 = 0.129. 
 
Supplementary Video 1. Example obstacles 
A video displaying utilized obstacles for the OC.  
 
Supplementary Video 2. Example obstacle course session 
Example Obstacle Course session from week 5, day 1, animal # 13. Demonstrated in the video 
are 3 consecutive runs on the OC by the same mouse: one lap prior to and two laps following 
course manipulation. As demonstrated, animals tended to take longer time to complete laps 
immediately following course manipulation, spending more time interacting with the manipulated 
or new obstacle. However, animal speed returned to baseline on the second lap after 
manipulation. In this particular video, the manipulation involved swapping two already existing 
obstacles.  
 
Supplementary Video 3-4. Deep learning tracking of animal performance on the OC 
(Video 3) and CC (Video 4) 
Using image frames extracted from video monitoring of animals on the course, DeepLabCut 
was trained to track animal position (cyan circle) in order to calculate time to complete laps on 
the respective tracks.   
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Chapter 3: Rodent behavior and associated neural activity revealed through spectral 

analysis and machine learning (deductive):  

 

A role for proximal CA1 20-40 Hz dynamics for performance on a nonspatial sequence 

memory task 

 

1.1 Abstract 

The hippocampus is known to play a critical role in processing information about temporal 

context. However, it remains unclear how hippocampal oscillations are involved, and how their 

functional organization is influenced by connectivity gradients. We examined local field potential 

activity in CA1 as rats performed an odor sequence memory task. We found that odor sequence 

processing epochs were characterized by distinct spectral profiles and proximo-distal CA1 

gradients of theta and 20-40 Hz power compared to running epochs. We found that 20-40 Hz 

power was predictive of sequence memory performance, particularly in proximal CA1 and 

during the plateau of high power observed on trials in which animals had to maintain their 

decision until instructed to respond. Altogether, these results provide evidence that dynamics of 

20-40 Hz power along the CA1 axis support nonspatial information processing critical for 

performance on an odor-based sequence memory task and are consistent with a role for 20-40 

Hz power in gating information processing.  

3.2 Introduction 

Frequency content in local field potential recordings is preserved across species, varies 

predictably with behavior, and is central to brain function (Buzsaki and Watson, 2012). Across a 

broad range of frequencies (0.5 – 500 Hz), spectral features including power, phase, coupling 

thereof, and oscillatory modulation of spiking activity have been shown to be biologically 

meaningful, and are thought to be a means of effective inter and intra regional communication 
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(Fries 2005, Lisman, 2005, Chalk et al., 2016, Schyns et al., 2011, Buzsaki and Watson, 2012). 

These spectral dynamics have been observed with distinct cognitive states and can be used to 

decode behavior (Trimper et al., 2017, Rangel et al., 2017, Bae and Luck, 2019, Kikumoto and 

Mayr, 2018). Therefore, spectral dynamics hold informational value and may elucidate neural 

computations including those supporting learning and memory (Axmacher et al., 2006). 

It is well established that the hippocampus is critical for spatial learning and memory 

(O’Keefe & Nadel, 1978) and that distinct frequency content is observed in hippocampal 

subregion CA1 during spatial navigation in rodents (see Colgin, 2016). CA1 theta power 

increases with running speed and exploration and its phase is thought to link representations of 

a spatial trajectory and, more generally, constituent items of a given episodic experience 

(Buzaki & Moser, 2013, Dreu and Zugaro, 2019). The CA1 also exhibits transient increases in 

slow (25-55 Hz) and fast gamma (60-100 Hz) power during running, through which the CA1 is 

coherent with the CA3 and entorhinal cortex, respectively (Colgin et al.,2009). Slow gamma was 

also shown to support associative memory encoding, predicting subsequent retrieval (Trimper et 

al., 2017). In addition, frequency dynamics during spatial memory tasks exhibit heterogeneity 

along the CA1 proximo-distal axis, possibly pointing to distinct coding properties associated with 

the underlying engaged circuits. Findings from prior studies support the notion that coding of 

fundamental aspects of an experience (space, context) increases towards proximal (pCA1) 

(Henrikson et al., 2010, Nakazawa et al., 2016) while coding of secondary associations made 

within space (odor-location) may increase towards distal (dCA1) (Igarashi et al., 2014). It 

remains unclear, however, the degree to which the aforementioned frequency content and 

associated gradients during spatial memory extend to memory for temporal order.  

Consistent with its unique architecture and connectivity (McNaughton and Morris, 1987; 

Lisman 1999; Foster and Knierim 2012; Buzsáki and Tingley 2018), a growing literature shows 

the hippocampus is also critical for remembering sequences of nonspatial events (Fortin et al. 

2002; Kesner et al. 2002; Allen and Fortin, 2013; Eichenbaum, 2014) and that hippocampal 
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neurons code for temporal relationships among such events (MacDonald et al., 2011; Allen et 

al. 2016; Shahbaba et al., 2019). The hippocampal population level spectral dynamics for 

sequence memory have mainly been largely understudied (Nakazono et al., 2015, and Hattori & 

Sakata, 2014). We previously showed that a 20-40 Hz rhythm in the CA1 is recruited during an 

odor-based sequence memory task (Allen et al., 2016). Activity in the 20-40 Hz range overlaps 

in frequency with slow gamma (~25-55 Hz) and beta (~15-35 Hz). An emerging hypothesis is 

that beta serves a “gating” function, based on findings from striatal and cortical circuits 

(Leventhal et al., 2012; Engel & Fries, 2010; Schmidt et al., 2019), whereby beta reflects a 

neural status quo bridging the period between the decision and the response. it is unclear 

whether this hypothesis extends to the role of 20-40 Hz in the hippocampal CA1, and more 

generally, the recruited spectral profiles in the CA1 which support memory for temporal order.  

To address these issues, we examined CA1 local field potential recordings while rats 

performed a hippocampal-dependent odor-based sequence memory task (Fortin et al., 2002). 

This task offers precise time-locking to stimulus presentations and responses, as well as distinct 

trial types associated with distinct cognitive demands. As in our previous work (Allen et al., 

2016), we report power increases in the 20-40 Hz and theta frequency ranges during the odor 

sequence processing periods. Here we extend these results by demonstrating that the same 

electrodes exhibited a distinct spectral content in a different state (running on the track), which 

was characterized by high theta power and a broadband increase in power for frequencies 

above 24 Hz. Power in the recruited frequencies varied along the proximodistal axis of CA1 in a 

behavioral state dependent manner. We also made several contributions to our understanding 

of 20-40 Hz oscillations to hippocampal function. We observed that 20-40 Hz power gradually 

increased during odor presentations and reached a plateau (steady-state) on trial types 

involving a sustained hold response. In these ‘’hold response” trial types, 20-40 Hz power 

increased with session performance, whereas oscillations in other frequency ranges showed a 

negative relationship with performance. Finally, we identified that 20-40 Hz steady-state power 
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in proximal CA1 is a key predictor of the performance-related effects we observed. Collectively, 

these results suggest that 20-40 Hz power dynamics in the proximal segment of CA1 are linked 

to processing the temporal context of nonspatial events and reflect a post-decision state serving 

to protect local, task-critical information processing until a response can be performed.  

 

3.3 Results 

Five rats were trained on an odor-based sequence memory task that critically depends on 

the hippocampus (Fortin et al., 2016). In this task, animals receive repeated presentations of a 

sequence of five odor items, and must correctly identify each item as being presented “in 

sequence” (InSeq; e.g., ABC…) or “out of sequence” (OutSeq; e.g., ABE…) to receive a water 

reward (Fig 1A-C). More specifically, each odor presentation is triggered by the rat’s nose 

entering to odor port and animals need to behaviorally indicate whether the presented item is 

InSeq (by continuing to hold their nosepoke response until an auditory signal occurs at 1.2 sec) 

or OutSeq (by withdrawing their nose before the signal). The exact time cut-off to classify InSeq 

from OutSeq responses was determined separately per animal based on the intersection of 

distributions for InSeq and OutSeq poke durations (Fig 1G). This was done because while 

centered around 1.2 sec, there was some individual animal variability in the exact time cut-off 

for indicating in InSeq response. This variability is possibly due to animals relying on their own 

timing rather than on the auditory signal to withdraw. For InSeq items, hold durations longer and 

shorter than the identified time cut-off reflected correct and incorrect responses, respectively 

(InSeq+ and InSeq-; Fig 1C). The converse was true for OutSeq trials; poke durations shorter 

and longer than the time-cutoff reflected correct (OutSeq+) and incorrect (OutSeq-) responses, 

respectively. 

Following a training period of 2-4 months, animals were surgically implanted with a 

microdrive over the dorsal CA1 region of the hippocamps and tetrodes were then slowly driven 
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to the pyramidal layer over a period of 2-3 weeks. LFP activity was then recorded from tetrodes 

spanning much of the CA1 proximo-distal axis as animals performed the task (Fig 1D-F). We 

analyzed LFP activity from three sessions: a session in which animals were tested on the 

sequence learned preoperatively (ABCDE; well-trained session), as well as two successive 

sessions testing a novel sequence (VWXYZ; novel1 and novel2 sessions). According to our 

previously established performance metric (Sequence Memory Index, SMI; Allen et al., 2014), 

performance in these sessions ranged from low, to moderate, to high, providing an opportunity 

to compare LFP activity across three different levels of performance.  

 

Figure 1. Experimental protocol for the investigation of CA1 oscillatory dynamics during 
a sequence memory task 
A. Schematic of behavioral apparatus. Using an automated odor delivery system located at one 
end of a linear track, rats were presented with a series of five odors delivered in the same odor 
port. Delivery of each odor was initiated with a nose poke in. B. Schematic of trial presentations. 
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In each session, the same sequence of five odors was presented multiple times. Approximately 
half the presentations included all items “in sequence” (InSeq; e.g., ABCDE) (top panel) and the 
other half including one “out of sequence” (OutSeq; e.g., ABDDE) item (bottom panel). Odor 
presentation terminated with the onset of an auditory signal at 1.2 sec (indicated in B). Rats 
were required to behaviorally indicate whether the presented odor is InSeq (by holding their 
nose poke response until the auditory signal; > 1.2 s) or OutSeq (by withdrawing their nose 
poke before the signal; <1.2 s) to receive a water reward. After completion of each sequence 
(correctly or incorrectly), animals were required to run to the opposite end of the linear track and 
return to the odor port before the next sequence could be presented. C. Schematic of trial type 
definitions. InSeq+ (InSeq correct) and InSeq- (InSeq incorrect) trial types reflect trials where 
items were presented in-sequence, for which nose poke duration was longer or shorter than 
~1.2 sec, respectively. OutSeq+ (OutSeq correct) and OutSeq- (OutSeq incorrect) trial types 
reflect trials where items were presented out-of-sequence, for which nose poke duration was 
shorter or longer than ~1.2 sec, respectively. D. Schematic of experimental timeline. Electrode 
hyperdrive implantation took place after animals were trained on sequence 1 (A-B-C-D-E) for 2-
4 months. Following recovery, neural activity was recorded while the animal performed the 
already learned task (well-trained). Following data acquisition of the well-trained session, neural 
activity was recorded during two different stages of learning a novel odor sequence (V-W-X-Y-
Z), “ novel1” and “novel2”, respectively. Histology was done after experiment termination for 
electrode localization. E. Sample histology image showing the range of tetrode tip locations, 
which spanned much of the proximodistal axis of CA1 (3 tip locations shown; red circles). For 
each animal, a set of four tetrodes equally distributed across the proximodistal axis (with 
comparable locations across animals) was used for local field potential activity analysis. F. 
Representative InSeq+ (left) and OutSeq+ (right) LFP data (top panel) and corresponding time-
frequency plots. G. (top) Poke durations for all InSeq and OutSeq trials during one well-trained 
session for a representative animal. (bottom) Normal distribution functions fit separately for the 
observed InSeq and OutSeq trial poke durations in the top panel. The intersection of the two 
distributions (t=1.1306 sec) was used as the time cut-off to determine response accuracy (hold 
durations > and < 1.1306 sec reflected InSeq and OutSeq responses, respectively). Panels from 
this figure were adapted from our previous work (Allen, 2016). 
 

Odor sequence processing and running epochs are associated with distinct spectral 

features, which vary across the CA1 proximodistal axis. 

We began by investigating whether distinct spectral features in CA1 accompany odor 

sequence and running periods of the task, and whether the observed spectral content varied 

across the proximodistal axis of CA1. To do so, group (n=5) peri-event spectrograms were 

generated from four electrode locations along the proximodistal axis and aligned to odor 

processing (Fig 2A) and running (Fig 2B) epochs. For each electrode site, spectrograms were 

generated using analytic morlet wavelets and spectral power was z-score normalized to power 

at the same site during a 30-minute period of the recording session. Data were taken from the 
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well-trained session in which animals performed at a high level (Allen et al., 2016). For all group 

analyses, a random intercept linear mixed-effects model (LMEM) was fit to the data where 

electrodes, sessions, or trial types were treated as fixed effects and subjects were treated as a 

random effect (to account for inherent correlations from repeated measures at the subject level; 

see methods for model formulation). 

We found that power in the 20-40 Hz and theta (4-12 Hz; defined a priori) range 

observed during odor presentations showed significantly distinct patterns across the 

proximodistal axis. More specifically, 20-40 Hz power (110-1200 msec period following port 

entry) increased toward proximal CA1 (LMEM ANOVA: significant effect of electrode F3,2214 = 

41.995 p < 0.001). Power in the most proximal site (electrode 1) showed significantly higher 

power compared to the two most distal sites (electrode 3 and 4) (t2214 = -8.072 p <0.001 and t2214 

= -8.024 p < 0.001, respectively). Power in electrode 1 did not differ significantly from that of 

electrode 2 (t2214 = -0.206 p = 0.837). In contrast, theta power in the same period significantly 

increased towards distal CA1 (LMEM ANOVA: significant effect of electrode F3,2214 = 60.952 p < 

0.001). Electrodes 2, 3 and 4 showed significantly higher theta power compared to electrode 1 

(t2214 = 5.008 p < 0.001, t2214 = 11.99 p < 0.001, and t2214 = 10.733 p < 0.001, respectively).  

The same electrodes exhibited a different spectral pattern during running periods, which 

occurred between sequence presentations (Fig 2B, E-F). More specifically, the 20-40 Hz power 

observed during odor sampling was weak during running. Additionally, contrary to the odor 

processing periods, theta power during running was significant higher in proximal CA1 (LMEM 

ANOVA: significant effect of electrode F3,2768 = 71.005 p < 0.001) and was characterized by a 

higher center frequency (~ 9Hz during running compared to ~6 Hz during odor sampling). 

Electrode 1 showed significantly higher power compared to electrodes 3 and 4 (t2768 = -8.173 p < 

0.001, and t2768 = -12.414 p < 0.001, respectively) while power in electrode 1 did not differ 

significantly from that of electrode 2 (t2768 = -0.876 p = 0.381; Fig 2E). The running period was 

also characterized by increased high frequency broadband power (> 24 Hz to avoid theta’s first 
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harmonic), which significantly increased towards distal CA1 (LMEM ANOVA: significant effect of 

electrode F3,2768 = 181.34, p < 0.001). Electrodes 3 (t2768 = 13.255 p < 0.001) and 4 (t2768 = 19.53 

p < 0.001) showed significantly higher power compared to electrode 1. Power in electrode 2 did 

not differ significantly from that of electrode 1 (t2768 = 1.051 p = 0.293).  

 

 

 

Figure 2. Odor sequence processing and running are associated with distinct CA1 
oscillatory states, which vary across the proximodistal axis 
A-B. Group peri-event spectrograms (n=5) during (A) odor sampling period (InSeq+ trials only) 
and (B) running periods  in four electrode locations along the CA1 proximodistal axis (0ms = port 
entry). C. Mean z-score 20-40 Hz power during 110-1200ms period of odor presentation 
significantly increased toward proximal CA1 (significant effect of electrode F3,2214 = 41.995 p = 
2.1702e-26). D. Same as in (C), but for theta (4-12 Hz) showing increased power towards distal 
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CA1 (significant effect of electrode F3,2214 = 60.952 p < 0.001). The time-frequency periods used 
in C-D are indicated by black boxs in panel A; defined a priori. E. Mean z-score higher frequency 
power (>24 Hz to avoid theta’s first harmonic) increases along the CA1 axis (significant effect of 
electrode F3,2768 = 181.34, p < 0.001). F. Same as in (E), but for theta showing decreased power 
along the CA1 axis (significant effect of electrode F3,2768 = 71.005 p < 0.001). Individual animal 
values and within animal SEM across trials are overlaid for each barplot. All data were extracted 
from the well-trained recording session (high performance level). *p < 0.05, **p < 0.01, ***p < 
0.001 indicate significant differences between groups two-tailed t-test, Bonferrnoi correction p = 
0.0167). 
 

CA1 20-40 Hz power increases with session performance. 

We then examined whether power in the 20-40 Hz range was linked to performance, and 

whether this association varied along the proximodistal axis. To do so, we extended the 

previous analyses, which were applied to the well-trained session, to two consecutive sessions 

in which animals learned a novel odor sequence (correctly identified InSeq trials only). This 

allowed us to compare power across three sessions characterized by low (novel1, first session 

on novel sequence), moderate (novel2, second session on novel sequence) and high levels of 

performance (well-trained session; Fig 3). Unlike the previous analyses, here we evaluated 20-

40 Hz power during the 250 msec time window preceding the withdraw response to capture the 

period of high power observed toward the end of odor presentations (at which point power has 

plateaued; Fig 3B).  

We found that 20-40 Hz power significantly increased with performance level (LMEM 

ANOVA: significant effect of session F2,4812 = 46.71 p < 0.001), which complements our previous 

study showing learning-related differences in waveform amplitude (Allen et al., 2016). This 

performance effect did not significantly vary across the proximodistal axis (non-significant 

interaction between electrode and session F6,4806 = 0.745 p = 0.614), but instead scaled with the 

local amplitude of 20-40 Hz, suggesting this behavioral correlate is present throughout dorsal 

CA1. Comparing the effect due to electrode, power is highest in electrode 1 and lowest in 

electrode 4 for the three sessions. Average power is significantly higher in electrode 1 

compared to electrodes 2, 3, and 4 (t4812 = -2.969 p = 0.003, t4812 = -8.896 p < 0.001, and t4812 = 
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-11.095 p < 0.001, respectively), after Bonferroni correction for multiple comparisons (corrected 

p-value = 0.010) (Fig 3C). Across electrodes, the well-trained session showed significantly 

higher power compared to novel1 (t4812 = 8.451 p < 0.001), while power during the novel1 and 

novel2 sessions did not significantly differ (t4812 = 1.470 p = 0.14168, corrected p-value = 0.010). 

It is important to note that we chose an a priori time window (-250 - 0 msec prior to port-

withdrawal) to quantify this performance effect. We also used a data-driven approach to 

examine whether other epochs exist during which 20-40 Hz dynamics statistically vary with 

performance level and along the CA1 axis (Fig 3B). 

Lastly, we tested whether the observed performance-related effects are specific to 20-40 

Hz dynamics or generalize to other bands, including theta (4-12 Hz), the slow gamma range 

non-overlapping with 20-40 Hz (40-55 Hz), and fast gamma (65-100 Hz; Figure 3—figure 

supplement1). We found that performance-related effects were weaker, and the patterns 

differed from those of the 20-40 Hz range. Whereas 20-40 Hz power increased with 

performance, theta and fast gamma power decreased (theta LMEM ANOVA: F2,4806 = 7.681 p < 

0.001; fast gamma LMEM ANOVA: F2,4806 = 8.147 p < 0.001) and slow gamma showed a non-

linear relationship with session performance (LMEM ANOVA: F2,4815 = 5.993 p = 0.003) This 

suggest that the 20-40 Hz band is unique in showing a distinctive increase in power with 

performance level.  
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Figure 3. CA1 20-40 Hz power increases with knowledge of the sequence 
A. Group peri-event spectrograms across three sessions in which performance levels were low 
(novel1, first session on novel sequence; Bottom row), moderate (Novel2, second session on 
novel sequence; Middle row) and high (well-trained session; Top). All plots are aligned to port 
withdrawal (0ms = port withdrawal) and only include InSeq+ trials.  B. 20-40 Hz power traces from 
data in (A). Significant epochs after multiple comparisons correction are indicated with dashed 
horizontal lines, performed separately for each electrode (cluster-based permutation testing, 
n=1000 permutations, p < 0.05). C. Mean z-score power in the 250 ms period prior to port 
withdrawal (indicated by black and dashed rectangles in A and B, respectively) in each of the 
three session, shown separately for each CA1 site. Power increased with session performance 
and in the most proximal sites (significant effect of session F2,4806 = 17.387, p < 0.001, significant 
effect electrode F3,4806 = 8.9081, p < 0.001). Individual animal values and within animal SEM 
across trials are overlaid for each barplot. *p < 0.05, **p < 0.01, ***p < 0.001 indicate significant 
differences between groups two-tailed t-test, Bonferrnoi correction p = 0.0167). 
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20-40 Hz steady-state power in proximal CA1 is predictive of accuracy for temporal order 

judgments.  

To shed light on the type of processing reflected by 20-40 Hz oscillations, we took 

advantage of the four different trial types included in our paradigm: InSeq trials that were 

correctly or incorrectly identified (InSeq+, InSeq-) and OutSeq trials correctly or incorrectly 

identified (OutSeq+, OutSeq-) (Fig 1C). We began by visualizing power dynamics as a function 

of the entire time course of trials, focusing on the electrode and session with highest 20-40 Hz 

power (electrode 1, well-trained session). Aligning data to port entry (Fig 4A, left), we observed 

that the rising phase (~0-750 ms) was similar across trial types and that differences emerged 

later in the trial. Specifically, we observed that power was sustained (reaching a steady state) 

on trials in which animals performed a “hold” response (InSeq+ and OutSeq-), whereas it fell off 

earlier (during the transient phase) on trials in which the animals performed a “withdraw” 

response (OutSeq+ and InSeq-). Aligning data to port withdrawal confirmed that the withdrawal 

response occurs during steady state for the hold responses, but stochastically during the 

transient response or early steady state for the withdraw-responses (Fig 4A,B, right).  

To account for the confounding effect of this posthoc observation, we compared power 

across the four trial types using an early epoch relative to port entry (250-500 ms). This epoch 

was chosen in aims of minimizing the possibility of capturing modulations in the power dynamics 

by hold-/withdraw-response behavior. There were no significant differences between trial types 

in this epoch (LMEM ANOVA: non-significant effect of trial-type F3,749 = 0.480 p = 0.693; Fig 4C, 

left), suggesting that the 20-40 Hz transient response did not differ with response type 

(hold/withdraw) nor accuracy (correct/incorrect). Relative to port-withdrawal, and consistent with 

the posthoc observation, power differed between the hold- and withdraw-response trials in the 

last 250 msec period (LMEM ANOVA: significant effect of trial-type F3,743 = 9.451 p < 0.001), 

with significantly higher power during the InSeq+ (hold) compared to the OutSeq+ and InSeq- 

(withdraw-response) trial types (t743 = -2.829 p = 0.005 and t743 = -4.787 p < 0.001, respectively). 
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However, power in this epoch did not significantly differ between the hold-response trials 

(InSeq+ and OutSeq-) (t743 = -0.458 p = 0.647).  

To more thoroughly examine whether 20-40 Hz power is associated with accurate 

temporal order judgments, we used a random forest classifier to test whether power in a set of 

pre-defined epochs and across the CA1 axis predicts response accuracy. Given our post-hoc 

observation of fundamentally different dynamics for the hold vs. withdraw-response trials, all 

classification analyses focused on comparing accuracy using the hold-response trial types 

(InSeq+ vs OutSeq-). This enabled correct vs incorrect comparisons while matching of motor 

behavior and poke duration distributions (Figure 4—figure supplement1 A). Classification 

analysis was performed using a 16-D feature vector which included 20-40 Hz power during two 

epochs relative to port entry (200 - 350, 350 - 500 ms) and two epochs relative to port 

withdrawal (-400 - -200, -200 - 0 ms) in each of the four CA1 sites (4 epochs X 4 electrodes) 

(Figure 4—figure supplement1 A, left). We found that these features were not sufficient to 

discriminate correct and incorrect trials, as classifier performance was at chance levels (mean 

AUC, TPR and FPR of 0.492, 0.497 and 0.474, respectively) (Figure 4—figure supplement1 A, 

right). As a follow up, we then used a larger feature space which included time epochs covering 

the majority of the waveform. We defined a 24-D feature vector which included 20-40 Hz power 

in four epochs relative to port entry (200-350, 350-500, 500-650 and 650 -1200 msec) and two 

epochs relative to port withdrawal (-400 - -200 and -200 - 0 msec) in each of the 4 CA1 sites (6 

time epochs X 4 electrodes) (Figure 4—figure supplement1 B, left). Using the overlap of lasso 

(alpha = 0, 0.01, 0.02, and 0.03) and gini impurity based relative importance (Figure 4—figure 

supplement1 C-D), the 24-D vector was reduced to 3 features most predictive of trial accuracy: 

20-40 Hz power during the 650-1200 msec period relative to port entry, in the most proximal 

sites (electrodes 1-3) (Figure 4—figure supplement1 E).  

We found that these three features were sufficient to discriminate between correct and 

incorrect temporal order judgments (InSeq+ and OutSeq-, respectively). In fact, the classifier 
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performed with mean areas under the curve (AUC) of 0.588 and 0.477 on the observed and 

shuffled data, respectively (Fig 4D-E), and a Mann-Whitney U test showed a statistically 

significant difference between the observed and null AUC values (with higher classification 

performance on the observed data; U = 839538 p < 0.001). Observed compared to null 

classification (received operating curve) ROC is displayed in Fig 4E, with mean observed 

classifier AUC, true positive rates (TPR), and false positive rates (FPR) of 0.588, 0.562 and 

0.444, respectively.  

Posthoc group analyses of the identified feature (650-1200 msec time-epoch) showed a 

significant effect of trial type (InSeq+ vs OutSeq-; LMEM ANOVA: F1,2406 = 32.687 p < 0.001) 

and electrode (F3,2406 = 90.573 p < 0.001), but no significant interaction (F3,2403 = 0.193 p = 

0.901). Interestingly, power was significantly higher on incorrect temporal order judgments 

(OutSeq- power was higher than InSeq+). Across trial-types, power was significantly higher in 

electrode 1 compared to electrodes 3 and 4 (t2406 = -12.310 p < 0.001 and t2406 = -13.025 p < 

0.001, respectively). Power in electrode 1 was also higher than power in electrode 2, however, 

this difference did not reach significance (t2406 = -2.215 p = 0.027, corrected p-value = 0.013). 

Altogether, these results demonstrate that 20-40 Hz steady-state power in proximal CA1 is 

predictive of accuracy for temporal order judgments during hold response trials, and that 

incorrect judgments are associated with significantly higher 20-40 Hz power. 
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Figure 4. 20-40 Hz power steady state dynamics are disrupted with a withdraw response 
and predict hold response accuracy 
A. 20-40 Hz power traces for four trial types (InSeq+/-, OutSeq+/-) in the most proximal CA1 site, 
during the well-trained session, with activity locked to both port-entry (left) and port withdrawal 
(right). B. Distributions of time relative to port-entry (left) and port-withdrawal (left), using all trials 
across all animals used to generate traces in (A). Note that poke durations for hold responses 
(InSeq+, OutSeq-; shown in red hues) are longer compared to withdraw responses, and 20-40 
Hz reached steady-state with longer trial durations. C. Mean z-score 20-40 Hz power in the 250 - 
500 ms period after port-entry (left) and in the last 250 ms period prior to port withdrawal (epochs 
indicated by dashed rectangles in A) for each trial type. No differences were observed between 
conditions in the epoch relative to port-entry (non-significant effect of trial-type F3,749 = 0.4804, p 
= 0.69346). Power differed between the hold and withdrawal trials types in the 250 ms period 
relative to port withdrawal (significant effect of trial-type F3,743 = 9.4506, p < 0.001), with 
significantly lower power during the OutSeq+ and InSeq- (withdraw) trial types compared to 
InSeq+ (hold) (t743 = -2.8293 p = 0.0047902 and t743 = -4.7869 p < 0.001, respectively). D. Random 
forest classifier mean AUC distributions for classifying between the hold response types (class1: 
InSeq+, class2: OutSeq-) using observed and null data (mean observed and null AUCs of 0.5879 
and 0.4772, respectively). Classifier yielded significantly higher performance when using the 
observed compared to the null data (U = 839538 p < 0.001). 3-D classification feature vector 
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consisted of 20-40 Hz power in the 650-1200 ms period after porty-entry (see supplemental figure 
1 for feature selection procedure). E. Mean observed and null ROC for the classification in (D). 
Classifier mean observed AUC, TPR, and FPRs were 0.5879, 0.5619, and 0.4444, respectively. 
F. Mean group z-score 20-40 Hz power in the 650-1200 ms period identified through feature 
selection (features indicated with black circles), in each of the four CA1 sites. Steady-state power 
was significantly higher in the OutSeq- compared to the InSeq+ condition (significant effect of 
trial-type F1,2403 = 8.0819 p = 0.0045087, t = 5.7172 p < 0.001). Overall power was significantly 
higher towards proximal CA1 (significant effect of electrode F3,2403 = 81.972 p < 0.001), with 
electrodes 2, 3, and 4 showing significantly lower power compared to electrode 1 (t2406 = -2.2148 
p = 0.026869, t2406 = -12.31 p < 0.001 and t2406 = -13.025 p < 0.001, respectively). Individual 
animal values and within animal SEM across trials are overlaid for each barplot.  
 

Increased CA1 20-40 Hz power with session performance is selective to hold-response 

trials  

Figure 3 shows increased 20-40 Hz power with session performance and figure 4 shows 

that 20-40 Hz dynamics predictive of trial accuracy occur late in the trial. In linking these results, 

we aimed to delineate between two possibilities. The first possibility is that increased power with 

session performance reflects a direct index of sequence knowledge (i.e., CA1 representation of 

sequence knowledge or retrieval thereof). This would be supported if increased power with 

performance would be observed for correct trial types (InSeq+ and OutSeq+). The second 

possibility is that, given that accuracy predictive dynamics occurred later in the trial (supposedly 

after memory for order has been retrieved and a post-retrieval decision made), power increases 

may reflect a post-decision state that varies with session performance (or accuracy). An 

observation that would support this is that trials reaching a post-decision state (hold responses, 

InSeq+, OutSeq-) would yield increased power with session performance.  

To test these two possibilities, we investigated differences in dynamics across the three 

sessions separately for the four trial types (Fig 5). Consistent with the latter prediction, using 

CBPT, we found that power increased with performance level, only for the hold response trial-

types (InSeq+, OutSeq-; p < 0.05) (Fig 5A). Conversely, power dynamics did not significantly 

differ with performance level for the withdraw-response trials types (Fig 5B). This included the 

OutSeq+ trials where order memory retrieval is supposedly intact and improved with training. To 
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directly compare power in a fixed epoch across all trial types, the OutSeq- epoch was used 

since it was the overlap between significant epochs for the hold responses. During this epoch, a 

significant effect of performance level was observed for both hold-response trial-types (InSeq+ 

and OutSeq-; LMEM ANOVA: significant effect of performance F2,1229, = 14.184 p < 0.001 and 

F2,173 = 12.072 p < 0.001, respectively). For both trial types, epoch power during the well-trained 

session was significantly higher than that of the novel1 session (t173 = 3.984 p< 0.001 and t173 = 

4.462 p < 0.001, respectively). Lastly, for both trial-types, no significant differences in epoch 

power between novel1 and 2 sessions were observed (t1229 = -0.438 p = 0.662 and t173 = 0.748 

p = 0.455). Contrarily, epoch power during both withdraw-response trial-types (OutSeq+ and 

InSeq-) did not significantly differ with performance (LMEM ANOVA: non-significant effect of 

performance F2,128 = 0.384 p = 0.682 and F2,116 = 0.796 p = 0.453, respectively). These results 

support the notion that power increases with session performance may reflect a post-decision 

state that varies with knowledge of the sequence.  
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Figure 5. CA1 20-40 Hz power increases with performance level observed only with 
response maintenance 
A. Group mean normalized 20-40 Hz power traces for the hold trial types (InSeq+, OutSeq-) 
during the well-trained and novel2 sessions using the most proximal CA1 site. Significant 
epochs after multiple comparisons correction are indicated with dashed horizontal lines, 
performed separately for each trial type (CBPT, p < 0.05). Power was quantified using a fixed 
epoch across all trial-types (significant OutSeq- epoch; the overlap between hold response 
identified epochs). Power during the InSeq+ and OutSeq- trial-types (top, bottom, respectively) 
increased with session performance, with significantly higher power during the welltrained 
compared to the novel1 session (significant effect of performance F2,1229, = 14.184 p < 0.001 and 
F2,173 = 12.072 p < 0.001, respectively) B. Same as in (A), but for the withdraw trial types. Power 
during the OutSeq+ and InSeq- trial-types (top, bottom, respectively) did not significantly differ 
with performance (non-significant effect of performance F2,128 = 0.38387 p = 0.682 and F2,116 = 
0.79624 p = 0.45347). Individual animal values and within animal SEM across trials are overlaid 
for each barplot.  *p < 0.05, **p < 0.01, ***p < 0.001 indicate significant differences between 
groups two-tailed t-test, Bonferrnoi correction p = 0.025). 
 

3.4 Discussion 

We collected local field potential recordings from the CA1 hippocampal region as rats 

performed a sequence memory task to identify the frequency content supporting nonspatial 

information processing. The data presented here expand upon our previous report of 20-40 Hz 

power during the odor sequence processing periods of the task by evaluating the behavioral 

relevance and anatomical distribution of this rhythm across the CA1 proximodistal axis, as well 

as providing a direct comparison with another behavioral state (running). First, we demonstrate 

that running and odor sequence processing epochs are characterized by different spectral 

features. Running is associated with increased theta (4-12 Hz) and >24 Hz ranges, whereas 

odor sequence processing is associated with increased power in theta and 20-40 Hz ranges. 

Second, we show that in both behavioral states, there are distinct gradients of recruited 

frequency power along the CA1 proximodistal axis. During odor processing, 20-40 Hz power is 

higher in proximal CA1, whereas theta is higher in dCA1. During running periods, theta is higher 

in proximal, whereas >24 Hz power is higher in dCA1. Third, we observed differential 

performance-related effects across frequency bands; 20-40 Hz dynamics were positively 

associated with performance across sessions, while theta and gamma demonstrated a negative 

association. Fourth, we observed differential power dynamics associated with the task’s 
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discriminative response requirements. Both hold-response trials (InSeq+ and OutSeq-) and 

withdraw-response trials (OutSeq+ and InSeq-) displayed a transient phase where 20-40 Hz 

power gradually increased at a similar rate. However, dynamics subsequently diverged; 20-40 

Hz power declined on withdraw-response (presumed OutSeq decisions) trials while hold-

response trials (presumed InSeq decisions) displayed a steady-state period of elevated 20-40 

Hz power that remained until the animal withdrew. Fifth, we identified the steady-phase of 20-40 

Hz power in proximal CA1 as the key component carrying task-critical information. In fact, this 

component of the signal (observed on hold-response trials) increased with session performance 

and was predictive of the accuracy of temporal order judgments. Collectively these results 

suggest that 20-40 Hz power dynamics in the proximal segment of CA1 are linked to processing 

the temporal order of nonspatial events and may reflect a post-decision state serving to 

maintain and protect trial-specific information until a response can be performed. 

The nature of this experimental paradigm led to two potential limitations to consider 

when interpreting the findings. First, the use of a nonspatial discriminative response 

(hold/withdraw) prevented us from directly equating response duration across all trial types and 

unexpectedly led to different power dynamics between hold- and withdraw-response trials 

(possibly attributable to differences in cue utilization across conditions; see Leventhal et al 2012 

or merely in trial duration). For that reason, we focused our secondary analyses examining the 

effects of response accuracy to hold-response trials. Second, to ensure adequate performance, 

the task requires that the number of OutSeq trials be kept relatively low (otherwise it is unclear 

which sequence is being tested). This results in an uneven number of observations across trial 

types which could disproportionally influence a subset of our analyses. However, we controlled 

for this possibility by conducting pooled analyses using a linear mixed-effects model (LMEM) 

ANOVA to account for correlations in measures obtained from the same subject, and by 

matching sample sizes in the classification analyses. Overall, we believe these control analyses 
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significantly mitigated the potential influence of these confounding factors on the interpretation 

of our results.  

We observed a clear contrast in spectral profiles during spatial compared to nonspatial 

(odor-sequence) task segments. Consistent with prior reports (Trimper et al., 2017, Chen et al., 

2011, Ahmed et al., 2012)., theta and broad-band gamma power were recruited with running. 

Prior studies suggest that power and synchrony (between distant CA1 regions) shift to higher 

gamma frequencies with running speed and power correlates with changes in firing rate of 

individual interneurons. Such shifts are hypothesized to reflect faster transitions between 

sequential place cell-assemblies (Ahmed et al., 2012). We expand on these observations in 

demonstrating anatomical theta and gamma CA1 gradients. In contrast to these states and their 

gradients, during odor processing, 20-40 Hz dynamics emerge and suggest a preferential 

engagement of proximal CA1 in processing temporal order judgments.  

Evidence for functional heterogeneity along the CA1 proximodistal axis has been 

previously reported (Henriksen et al., 2010; Hartzell et al., 2013; Nakazawa et al., 2016; Ng et 

al., 2018). Such heterogeneity is not surprising given the known connectivity gradients of the 

lateral and medial entorhinal cortices (LEC and MEC; Van Strien, Cappaert, and Witter, 2009; 

Witter et al., 2017), namely that proximal and dCA1 are more anatomically and functionally 

associated with MEC and LEC, respectively. Consequently, the observation of different 

proximodistal gradients of oscillatory power across studies may result from differences in task 

demands, which could promote differential engagement of these entorhinal-CA1 circuits 

(although other factors, including methodological and analytical approaches, may also 

contribute to this difference). For instance, Igarashi et al. (2014) showed that 20-40 Hz power 

and LEC-CA1 coherence were higher in dCA1 during performance of an odor-place association 

task (whereas we showed higher power in pCA1). Since performance in their task depends on 

the correct identification of the specific perceptual features that distinguish one odor from 

another, the power increase in distal CA1 may reflect a stronger engagement of the LEC-dCA1 
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component of the circuit (as LEC receives strong olfactory input, including direct projections 

from the olfactory bulb; Haberly and Price, 1978; Agster and Burwell, 2009). In contrast, in our 

experiment, identification of the presented odor alone is insufficient for correct performance --- 

the animal must further identify whether the odor is being presented in the appropriate temporal 

context. The power increase in proximal CA1 we observed may reflect the fact that this 

additional temporal requirement preferentially engaged the MEC-pCA1 component of the circuit. 

Interestingly, although MEC is typically associated with spatial navigation functions, this 

interpretation is supported by a recent study by Robinson and colleagues (2017), in which they 

demonstrated that optogenetic inactivation of MEC disrupted temporal coding in CA1, while 

sparing spatial and object coding. Together with the proximodistal pattern we observed, these 

results suggest that perhaps the MECàproximal CA1 microcircuit may be important for the 

processing of nonspatial temporal information.  

Another possibility is that the motor output informed by the odor cue is related to the 

presence of 20-40 Hz (and theta) gradients. In the present study, animals utilized the odor cue 

to either maintain or terminate a hold posture. Utilization of a sensory cue to inform motor output 

has been shown to recruit ~20 Hz (beta) in the cortico-basal ganglia (CBG, Leventhal et al., 

2012) and the CA1-striatal circuits (Lansink et al., 2017) and in the DG (Rangel et al., 2015), 

giving rise to a working hypothesis for the functional role of ~20 Hz in sensory-motor integration. 

Therefore, the observed odor-processing gradients may reflect CA1 involvement with the 

relevant sensorimotor network. Lastly, the CA1 receives input from a number of other sources 

including EC, CA2, CA3, and the medial septum (van Strien, Cappaert, and Witter, 2009). 

Though we previously showed that the spiking activity of a proportion of CA1 neurons is phase-

locked to 20-40 Hz oscillations (Allen et al., 2016), the contributions of these upstream 

structures to the generation of this oscillation in CA1 remain unknown. Importantly, in the 

present study, we cannot rule out the possibility that volume conduction may contribute to the 

presence of these rhythms and their gradients. A prior studying performed current source 
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density analysis for hippocampal 15-35 Hz power, spanning DG, CA3 and CA1, and localized 

this rhythm to the DG (Rangel et al., 2015). Altogether, future experiments are needed to 

identify the differential contributions of volume conduction as well as mnemonic and 

sensorimotor circuits to the observed rhythms and their gradients.  

Oscillations in the 20-40 Hz range (typically referred to as beta) occur widely across the 

brain and have been associated with different functions across brain regions (Engel & Fries, 

2010; Schmidt et al., 2019). Of particular interest here is the hypothesis that beta serves a 

gating function that helps lock in and protect a neural state representing trial-critical information 

(i.e., maintain the status quo; Engel & Fries, 2010). Such a mechanism would be disruptive 

during encoding or recall processes but advantageous for maintaining a decision until the 

corresponding response is made, which is consistent with the 20-40 Hz trial-level dynamics we 

observed in CA1 (low power early in the odor period, but high power in the late period before 

the response). More precisely, as OutSeq+ trials required animals to perform an “immediate 

withdraw-response” (i.e., not wait until the signal), we can use the timing of those responses to 

infer when temporal order decisions occurred. During those trials it was the transient phase of 

20-40 Hz power that was consistently observed; any encoding and/or recall, as well as the 

decision based on such processes, necessarily occurred early in the induction of 20-40 Hz 

power. This is in line with observations that beta power is attenuated during encoding (Lundqvist 

et al., 2016; Zavala et al., 2017), and complements findings that transcranial magnetic 

stimulation at the beta frequency impairs encoding (Hanslmayr et al., 2014). The perspective 

that beta helps maintain the status quo would predict that the steady-state 20-40 Hz period 

observed on hold-response trials reflects the system actively maintaining an ensemble or 

network state in support of the decision to perform a hold-response. Though it is possible the 

post-decision ensemble state reflects a general signal, such as a postural one or a non-specific 

signal of a temporal context match, our current finding showed that this epoch is predictive of 

accuracy and our previous work showed that specific odor and temporal context information is 
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represented at the single-cell (Allen et al., 2016) and ensemble (Shahbaba et al., 2019) levels 

during this late trial period. It is therefore passible that what is “locked in” during the steady-state 

beta period is the trial-specific content supporting the animal’s judgment that the odor is 

presented in the correct temporal context. 

This potential gating function of beta is also consistent with the performance-related 

effects we observed on the session level. Here, we showed that 20-40 Hz power increases with 

session performance (lowest in novel1, highest in well-trained). High beta during the well-trained 

session possibly reflects higher levels of gating and effective suppression of distracting 

processes; this is a high performing session in which the sequence is already well-learned, 

minimizing the need for additional knowledge acquisition. In contrast, lower beta power in the 

novel 1 and 2 sessions, which are associated with a higher demand for encoding, may enable 

flexible knowledge acquisition processes that would otherwise have been interrupted. 

Consistent with complementary dynamics of beta and gamma rhythms previously reported 

(Howe et al 2011; Lundqvist et al 2016), we find an inverse pattern for gamma power (and 

theta) with performance, whereby gamma power is higher during acquisition of a new sequence 

(novel1-2) and decreases with session performance. This finding highlights the distinction 

between the functional role of 20-40 Hz and that of the other rhythms, and further corroborates 

the role of theta and gamma in exploration and encoding processes, respectively.  

Interestingly, when considering the relationship between steady-state 20-40 Hz power 

and performance at both the trial and session levels, we observe a non-linear relationship 

resembling that of an inverted u-curve. Whereas 20-40 Hz power increased with session 

performance (from novel1 to well-trained), steady-state power in the well-trained session was 

higher during OutSeq- (incorrect hold response) compared to InSeq+ (correct hold response). 

Although this result may seem counterintuitive in light of the proposed gating function of beta, 

these findings expand on previous work suggesting that low, intermediate, and high beta levels 

reflect increasing levels of suppression of seemingly distracting processes (Lundqvist et al., 
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2016, Schmidt et al., 2019, and Miller et al., 2018). Proximal CA1 higher steady-state beta 

levels during incorrect trials may reflect over suppression leading to interference with processes 

needed for successful performance on the task. In other words, the appropriate level of 

suppression may be advantageous in attenuating distractions, but too high a level may impede 

essential processes. Consistent with this are clinical reports demonstrating that increased beta 

in patients with Parkinson’s disease is associated with highly sustained, rigid movements (Chen 

et al., 2007; Pogosyan et al., 2009, Brown, 2007) and difficulty in switching behavioral paradigm 

(Stoffers et al., 2001); clinically disrupting beta power improves these symptoms, with a side 

effect of inability to ignore distractions and difficulty in focusing on the task at hand distractions 

(Cools et al., 2003, Moustafa et al., 2008). Together, these findings point to graded effects of 

beta, extending to the CA1. Alternatively, higher steady state power may reflect a point of no 

return, despite retrieval of knowledge that suggests a change in behavior. This latter possibility 

is consistent with the observation made by Leventhal and colleagues (2012), in which animals 

were given a second stop cue following an initial go cue. The likelihood of stopping decreased 

when the second cue occurred during the beta synchronization event elicited from the first cue, 

reflecting a ‘closed gate’ on the behavioral state initially cued. Future studies are needed to 

adjudicate between these possibilities, possibly by specifying the relationship between the 

information content represented in the ensemble activity and the 20-40 Hz power dynamics. 

Evidence from multi-site recordings suggest the 20-40 Hz dynamics we observed in CA1 

reflect task-critical, multi-regional integration. Coherence in the beta range between the 

hippocampus and olfactory regions (Martin et al., 2014; Kay 2014), as well as with the 

entorhinal cortex (Igarashi et al 2014) have been previously reported during odor dependent 

tasks. Importantly, these dynamics are not restricted to olfactory processing (visual cues; 

Lansink et al., 2017, auditory cues; Leventhal et al., 2012) nor do they exclusively coordinate 

hippocampus with olfactory or medial temporal lobe regions. Lansink and colleagues (2017) 

demonstrated CA1 beta (15-20 Hz) recruitment as rats responded in the presence of a reward 
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predictive visual cue that directed navigation (as opposed to goal-directed navigation absent a 

cue). Notably, during this recruitment neuronal firing was synchronized between CA1 and 

ventral striatum (Lansink et al., 2017). Specific to our task, structures connected to the 

hippocampus have also been shown to be critical for performance, including prefrontal, 

perirhinal, and mid-thalamic regions (Fortin et al., 2016; Jayachandran et al., 2019). As each 

structure likely contains region-specific representations, beta may serve to bind these regions 

together to coordinate these distinct task-critical representations and support goal-directed 

behavior (Fries, 2005). To clarify, multi-regional integration may serve as the general function of 

beta, which, in our paradigm, is in the service of supporting order memory judgments. Increases 

in CA1 beta have been reported in other task conditions and demands, such as exploration and 

novelty (Berke et al 2008, Franca et al 2014), which could reflect multi-regional integration 

supporting other forms of task-critical information processing. Collectively, these findings 

provide evidence for the far-reaching role of beta in binding the brain areas and gating their 

region-specific patterns of activity important for the task at hand. 

 

3.5 Methods 

Our group previously published using the same dataset, and a detailed description of the 

methods can be found in Allen and colleagues (2016). The methods are summarized below.   

Subjects 

Five male Long-Evans rats were used in this study. Animals were water restricted for 

optimum task engagement but were provided full access to water on weekends. Proper 

hydration levels were monitored throughout the experiment. All procedures were conducted in 

accordance with the guidelines from care and use of laboratory animals published by the 

National Institutes of Health. All animals were handled according to approved Institutional 



 69 

Animal Care and Use Committee (IACUC) protocols. Sample sizes were determined using 

standards in behavioral electrophysiology experiments. Data was recorded from 5 animals 

(each animal represents several months of work), with each animal providing data from 20 

electrodes. See table 1 for trial counts from 1 representative electrode per animal. 

Equipment 

The apparatus used for this task consisted of a linear track with water ports on either 

end for water reward delivery. One end of the maze contained an odor port (above the water 

port) connected to an automated odor delivery system. Photobeam sensors detected when the 

animal’s nose entered and withdrew from the odor port. Detection of nose poke-in triggered 

odor delivery. Separate tubing lines were used for each odor item, however, all converged at a 

single channel at the bottom of the odor port. The odor port was kept clear of previous odor 

traces using a negative pressure vacuum located at the top of the port. A 96-channel 

Multichannel Acquisition Processor (MAP; Plexon) was used to interface the hardware (Plexon 

timing boards and National Instruments input/output devices) in real time and record the 

behavioral and electrophysiological data as well as control the hardware.  

Odor sequence task  

In this hippocampus-dependent task, rats were presented with a series of five odors 

delivered one at a time in the same odor port (Fig 1A). In each session, the same sequence was 

presented multiple times, with approximately half the presentations including all items “in 

sequence” (InSeq; ABCDE) and the other half including one item “out of sequence” (OutSeq; 

e.g., ABDDE) (Fig 1B). Each odor presentation was initiated by a nose-poke and rats were 

required to correctly identify the odor as either InSeq (by holding their nose-poke response until 

an auditory signal at 1.2 s) or OutSeq (by withdrawing their nose-poke before the signal; <1.2 s) 
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to receive a water reward (Fig 1C). The presentation of the 5-item sequence terminated earlier if 

an incorrect response occurred. After termination of a sequence, regardless of performance, the 

animal was required to run to the opposite side of the track, then return back to the side with the 

odor port to begin the next sequence presentation. Animals were trained preoperatively on 

sequence ABCDE (lemon, rum, anise, vanilla, and banana) until they reached asymptotic 

performance (>80% correct on both InSeq and OutSeq trials; ~6 weeks). Following surgical 

recovery, electrophysiological data was collected as animals performed the same sequence 

(ABCDE), followed by two consecutive sessions using a novel sequence (VWXYZ; almond, 

cinnamon, coconut, peppermint, and strawberry), referred to as novel1 and novel2, respectively 

(Fig 1D). See Table 1 for individual animal trial counts in each session.  

Surgery 

Rats received a preoperative injection of the analgesic buprenorphine (0.02 mg/kg, s.c.) 

~10 min before induction of anesthesia. General anesthesia was induced using isoflurane 

(induction: 4%; maintenance: 1–2%) mixed with oxygen (800 ml/min). After being placed in the 

stereotaxic apparatus, rats were administered glycopyrrolate (0.5 mg/ kg, s.c.) to help prevent 

respiratory difficulties. A protective ophthalmic ointment was then applied to their eyes and their 

scalp was locally anesthetized with marcaine (7.5 mg/ml, 0.5 ml, s.c.). Body temperature was 

monitored and maintained throughout surgery and a Ringer’s solution with 5% dextrose was 

periodically administered to maintain hydration (total volume of 5 ml, s.c.). The skull was 

exposed following a midline incision and adjustments were made to ensure the skull was level. 

Six support screws (four titanium, two stainless steel) and a ground screw (stainless steel; 

positioned over the cerebellum) were anchored to the skull. A piece of skull ~3 mm in diameter 

(centered on coordinates: -4.0 mm anteroposterior, 3.5 mm mediolateral) was removed over the 

left hippocampus. Quickly after the dura was carefully removed, the base of the microdrive was 
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lowered onto the exposed cortex, the cavity was filled with Kwik-Sil (World Precision 

Instruments), the ground wire was connected and the microdrive was secured to the support 

skull screws with dental cement. Each tetrode was then advanced ~900 µm into the brain. 

Finally, the incision was sutured and dressed with Neosporin and rats were returned to a clean 

cage, where they were monitored until they awoke from anesthesia. One day following surgery, 

rats were given an analgesic (flunixin, 2.5 mg/kg, s.c.) and Neosporin was reapplied to the 

incision site.  

Electrophysiological recordings 

Both spiking and local field potential activity were recorded from the CA1 pyramidal layer 

of the dorsal hippocampus as rats performed the task (see Allen et al., 2016), but the present 

study focuses exclusively on a detailed analysis of the LFP activity. Each chronically implanted 

microdrive contained 20 independently drivable tetrodes, with each tetrode consisting of four 

twisted nichrome wires (13 µm in diameter; California Fine Wire) gold-plated to achieve a final 

tip impedance of ~250 kW (measured at 1 kHz). Following the surgical recovery period, tetrodes 

were slowly advanced over a period of ~3 weeks while monitoring electrophysiological 

signatures of the CA1 pyramidal cell layer (e.g., sharp waves, ripples and theta amplitude). 

Voltage signals from electrode tips were referenced to a ground screw positioned over the 

cerebellum. LFP activity was filtered (1.5 - 400 Hz), amplified (1000X), digitized (1 kHz) and 

recorded to disk with the data acquisition system (MAP, Plexon). Neural activity was first 

recorded on the odor sequence learned before surgery (ABCDE; “Well-trained” session), 

followed by two consecutive sessions on the same novel sequence (VWXYZ; Novel1 and 

Novel2 sessions). At the end of the experiment, recording sites were confirmed by passing 

current through the electrodes before perfusion (0.9% PBS followed by 4% para- formaldehyde) 
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to produce small marking lesions, which were subsequently localized on Nissl-stained tissue 

slices.  

Selection of electrodes along the proximodistal axis 

In order to sample four representative electrodes along the proximodistal axis of CA1, 

we chose the first and the last electrodes (most proximal and most distal, respectively) and two 

electrodes in between which were equidistant. We confirmed the relative spatial distribution of 

these electrodes as well as their localization within the pyramidal layer of CA1 based on 

standard spectral properties during baseline, odor sampling and running periods. For each of 

the four electrodes selected per animal, LFP activity patterns were confirmed in adjacent 

electrodes (from the remaining subset of 16 electrodes).  

Preprocessing and spectral analysis 

The raw data was pre-processed using a Butterworth notch filter to remove 60 Hz line 

noise. Artifact rejection was defined by time indices with voltage values greater or less than 5 

standard deviations above or below the mean signal, respectively, of the entire recording in the 

same channel. Artifact time points were included for the wavelet convolution in order to maintain 

the temporal structure of the data, but their associated power values were removed before 

computing the mean and standard deviation for baseline normalization (see below). Any trial 

containing an artifact was excluded from analyses. For spectral analysis, we utilized the 

Wavelet toolbox in MATLAB (Mathworks) to generate analytic Morlet wavelets for frequencies 

between 3 to 250 Hz. These wavelets were tested and verified on a simulated data with known 

spectral properties. Next, we extracted behavior-locked instantaneous power at the specified 

frequency ranges. In all analyses, the first trial of each sequence was excluded as it was always 

preceded by running, whereas the animal was stationary prior to all other trial positions.  
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Normalization 

Instantaneous power is reported as a z-score value relative to the mean and standard 

deviation of power for a given frequency calculated from a 30-minute subset of the recording 

from the same electrode. For comparison, we also used two additional normalization 

approaches. One approach calculated z-scores relative to the other time points within the same 

trial (0 to 1.5 s for trials aligned to port entry; -1s to 0s for trials aligned to port withdrawal). In the 

second approach, power for a given time point and frequency within a trial was divided by the 

sum of the power across all trial time points in the same frequency, which captured percentage 

increase in power at a given frequency. As all three methods yielded comparable results the 

reported results relied on the z-normalization to the 30-minute recording subset. As this 30-

minute period included a variety of behavioral and cognitive states, including odor sampling, 

running, grooming, and reward consumption, it offers a better characterization of the variance of 

spectral dynamics associated with the animal’s experiences. 

Machine learning analysis 

Classification analyses were performed to discriminate between InSeq+ and OutSeq-; 

these two trial types were matched for response type (hold) but differed in response accuracy 

(correct/incorrect, +/-). Support vector machine (SVM), logistic regression and random forest 

were three preselected classifiers which were trained and tested using leave-one-out cross 

validation, implemented using scikit-learn in python. 

For all classification analyses, trial number was fixed between the two classes. Since 

class 2 (OutSeq-) contained a smaller number of trials compared to class 1 (InSeq+), 1000 

iterations were performed where in each iteration classifier performance was computed using a 
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random subsample of class 1 equal in size to class 2. This yielded an observed distribution of 

area under the curve (AUC), and true and false positive rates (TPR, FPR) performance values. 

Random forest classification performance was tested using the pre-defined time 

windows (in Fig3-4A,C) with a 16-D feature vector including 20-40 Hz power in four time 

windows (200-350 and 350-500 msec relative to port-entry and -400 - -200 and -200 - 0 msec 

relative to port-withdrawal) windows and the 4 CA1 sites (Figure 4—figure supplement1 A). This 

enabled the investigation of whether the joint values of these features are sufficient to classify 

performance – an inference that is not extracted from Fig 4C.   

Then, implementation was done using a 24-D feature vector defined as 20-40 Hz power 

in four epochs relative to port-entry (200 - 350, 350 - 500, 500 - 650, 650 - 1200 msec) and two 

epochs relative to port-withdrawal (-400 - -200, -200 - 0 msec), in each of the four CA1 sites (6 

time epochs X 4 CA1 sites) (Figure 4—figure supplement1 B). Random forest showed the best 

performance and was utilized for all subsequent analyses (see Table 2). Lasso and gini impurity 

were subsequently used to further reduce the dimension of the starting feature vector, in aims of 

identifying which of the 24 features contributed to classification accuracy. Using lasso feature 

selection, sparsity was promoted over a range of alphas (0, 0.01, 0,02 and 0.03) (Figure 4—

figure supplement1 C). Features with non-zero weights across all alphas were compared to the 

five features with highest relative importance using gini impurity (Figure 4—figure supplement1 

D). The overlap between lasso feature selection and gini relative importance consisted of 3 

features (20-40 Hz power in 650-1200 msec period after port-entry in the three most pCA1 

electrodes; Figure 4—figure supplement1 E). These three features were utilized for the final 

classification analysis presented in Fig 4 D-E.  

Replicates 
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Although it takes several months to train, implant, and record from each animal, the 

“experiment” focused on three daily sessions per animal (matched across animals). Data from 

the same animal was not collapsed across sessions. In our design, we view animals as 

biological replicates and, within each animal, the number of trials as technical replicates. 

Electrodes can be viewed as biological replicates since we compared effects as a function 

electrode position within the CA1. Table 1 provides detailed information on the number of trials 

included from each animal and for each statistical comparison.  

Outliers and Inclusion/Exclusion of Data 

Standard pre-processing approaches were used to exclude data contaminated by 

electrical noise or artifacts. Trials with artifacts associated with bumping or touching the 

headstage (voltage values > 5 SD above the mean) were automatically excluded. Note that this 

exclusion was performed before (and blinded to) analysis of the results. No additional statistical 

outliers were removed. 

Statistical analyses 

Data were first tested for normality using the Anderson-Darling test in Matlab (adtest 

function). All data met the normality assumption, except for the classification performance 

output measures (nonparametric tests were performed on the latter). To incorporate all 

observations in the ANOVAs, while accounting for correlations in scores from the same 

subjects, a linear mixed-effects model (LMEM) was then used for all group analyses unless 

otherwise stated. More specifically, the LMEM, which generalizes the conventional general 

linear model, includes both fixed effects (e.g., electrodes, trials, sessions) and random effects 

(subjects). Corresponding coefficients and intercepts were estimated for both types of effects, 

such that the fixed effects reported exclude the variation due to intra-subject correlations. LMEM 
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fitting and marginal ANOVAs were done using the fitlme and anova matlab functions, 

respectively. Restricted maximum likelihood method was used for model parameter estimation 

and cholesky parametrization was used for estimation of the random effects term covariance 

matrix. It is important to note that standard ANOVAs, either using one value per subject or 

collapsing observations across subjects, produced a comparable pattern of results, though the 

LMEM approach is more statistically rigorous. The Bonferroni correction was applied to all 

subsequent comparisons. 

Cluster-based permutation testing was used to agnostically identify group level 

significant time epochs that differed with session performance, as a function of the full power 

time course (Fig 3B, Fig 5). Briefly, this involved calculating a t-statistic for each time point, 

between the novel2 (insufficient correct trials counts to perform this contrast using novel1) and 

well-trained conditions, generating an observed t-vector. A null distribution of t-vectors was also 

generated over 1000 unpaired permutations, whereby in each permutation, condition labels 

were shuffled. A p-value for each time-point was obtained by comparing the observed to the null 

distribution of t-values at the same time-point, thereby generating a p-vector. To correct for 

multiple comparisons, clusters of contiguous timepoints with a p <0.05 were identified and 

compared to the null-distribution cluster size. Observed clusters with sizes larger than the 95th 

percentile value of null distribution cluster size were considered significant (means of correction 

for multiple comparisons).  

Permutation testing was implemented for the classification analysis, to generate both the 

observed (see machine learning analysis methods section) and null distributions. Regarding the 

null distribution, 1000 permutations were done whereby in each permutation, class 1 and 2 

observations were randomly shuffled yielding an arbitrary split of 2 classes. Classifier 

performance was calculated for each permutation, yielding null distributions for AUC, TPR and 



 77 

FPR performance measures. Lastly, since observed distributions of classifier performance 

measures were not normally distributed, a Mann-Whitney U test was used to test for differences 

between the null and observed AUC distributions. 

3.6 Supplementary material 

 

Figure 3—figure supplement1  
A-C. Mean z-score theta4-12 Hz (A), slow gamma40-55 Hz non-overlapping with beta (B) and fast 
gamma60-100 Hz (C) power in the 250 ms period prior to port withdrawal in each of the three 
session (novel1, novel2, well-trained), shown separately for each CA1 site. (A) Theta power 
significantly decrease with session performance (F2,4806  = 7.6814, p < 0.001) and along the CA1 
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axis (significant effect F3,4806 = 3.5256, p =0.014317), with a significant interaction between 
performance and CA1 site (F6,4806 = 4.0794, p < 0.001). (B) Slow gamma power showed a 
significant effect of session performance (F2,4806  = 7.6814 p = 0.026347). Power did not 
significantly vary along the CA1 axis and the interaction between performance and electrode 
was non-significant (F3,4806 = 0.25961 p = 0.85452 and F6,4806 = 1.9127 p = 0.074972, 
respectively). (C) Fast gamma power showed a significant effect of session performance (F2,4806  
= 8.1471 p < 0.001), CA1 site (F3,4806 = 6.4976 p < 0.001), and a significant interaction between 
performance and CA1 site (F6,4806 = 3.9286, p < 0.001). Electrode 4 power was significantly 
higher compared to electrode 1. (Bon ferroni correction: p = 0.01). Individual animal values and 
within animal SEM across trials are overlaid for each barplot.  
 

 

 

Supplementary Figure 2 
A. (left) Hypothesis determined 16-D feature vector was defined as 20-40 Hz normalized power 
in two epochs relative to port-entry (200 - 350, 350 - 500ms) and two epochs relative to port-
withdrawal (-400 - -200, -200 - 0 ms) in each of the four CA1 sites. (right) Random forest 
classifier performance is at chance (mean AUC, TPR and FRP of 0.4923, 0.4965 and 0.4740, 
respectively) using the feature vector in (A). B. Same as in (A), but using data driven definition 
of a 24-D feature vector including entire power time course, including four epochs relative to 
port-entry (200 - 350, 350 - 500, 500 - 650, 650 - 1200 ms) and two epochs relative to port-
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withdrawal (-400 - -250, -250 - 0 ms) in each of the four CA1 sites. Classifier performed with a 
mean AUC, TPR and FPR of 0.5727, 0.5532 and 0.4367, respectively. Performance was 
significantly higher for the observed compared to the null AUC values (U = 821138 p < 0.001). 
C. Feature selection from the starting feature vector defined in (B) using lasso at increasing 
definitions of alpha (promoting sparsity). Features indicated in asterisk contained non-zero 
weights with all alpha definitions. D. Gini impurity-based feature selection displaying the 5 
features with highest relative importance out of the feature vector defined in (B). (E) Final 
feature vector for Fig 4 analysis involved the overlapping features identified by the lasso and 
gini impurity approaches (indicated in magenta in C-D).  
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Supplementary Figure 3. 20-40 Hz power as a function of position in the sequence 
A. (Left) Group mean 20-40 Hz power traces locked relative to port entry, as a function of 
position in the sequence, for sequences where all items were presented in-sequence and 
associated with correct performance (InSeq+ -> InSeq+ -> InSeq+ -> InSeq+ -> InSeq+). (Right) 
Mean power in the 250-500 ms period after port-entry for each item in the sequence displayed 
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on the left.  B. Same as in (A) but for sequence types where all but the second item were 
presented in-sequence and associated with correct performance (InSeq+ -> OutSeq+ -> InSeq+ 
-> InSeq+ -> InSeq+). C-E. Same as in (B), but for the OutSeq+ items presented in the 3-5th 
positions, respectively.  
 

 

Table 1. 
Trial-type count shown for each session (well-trained, novel1, and novel2) and for each animal. 
Parenthetical values reflect artifact free (after artifact rejection) trial counts from the most 
proximal CA1 site per animal.  
 

Data availability 

Data are available on Dryad (doi: 10.7280/D11960) and code/scripts used to generate all paper 

figures and reported statistics are available on Github 

(https://github.com/FortinLab/Gattas_et_al_2020). 
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Chapter 4 

Human behavior and associated neural activity revealed through spectral analysis and 

information theory (deductive) 

 

Theta mediated dynamics of the human hippocampal-neocortical learning systems for 
memory formation and retrieval 

 

4.1 Abstract  

Episodic memory is thought to arise as a function of dynamic interactions between the 

hippocampus and the neocortex, yet the mechanisms by which these interactions manifest have 

remained elusive. Here, we report that theta (4-5 Hz) oscillations in humans support directional 

interactions between the hippocampus and the neocortex when memories are being formed and 

correctly retrieved. We observe that theta oscillations facilitate information transfer from the 

hippocampus to the neocortex during learning of new information, and from the neocortex to the 

hippocampus during the accurate retrieval of previously learned information. These results 

provide a mechanistic basis for the hypothesized roles of the two learning systems (hippocampus 

and neocortex) in episodic memory; theta oscillations may facilitate the integration of information 

into neocortex during encoding and the access of this information from the neocortex during 

retrieval. Future work can develop theta-based therapeutic interventions for conditions including 

addiction, post-traumatic stress, and dementia. 

 

4.2 Introduction 

The modification of synapses is thought to be necessary for memory formation. Long-term 

potentiation is a putative basis for this modification that is preferentially synchronized by theta (~5 

Hz) oscillations and can be induced by 5 Hz stimulation1,2. Observed in live recordings of local 
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field potentials, the theta rhythm is associated with molecular processes optimal for synaptic 

plasticity and learning and memory3–5. The formation, storage and retrieval of episodic memories 

are thought to rely on interactions between two learning systems, the hippocampus and the 

neocortex6–8. These interactions theoretically allow for the storage of similar memories using 

distinct neural codes (i.e. pattern separation) and the recall of previously stored memories from 

partial or degraded cues (i.e. pattern completion)9. Given the overwhelming evidence for the role 

of theta as a fundamental rhythm involved in memory formation and retrieval3,10,11, we asked 

whether hippocampal-neocortical theta oscillatory dynamics support pattern separation. Using 

human depth electrode recordings during a hippocampus-dependent pattern separation task, we 

demonstrate a prominent role for theta dynamics. We show that theta power is differentially 

recruited during successful pattern separation compared to overgeneralization errors, and its 

phase provides a means of directional information transfer within the hippocampal-neocortical 

network to facilitate pattern separation. During successful discrimination of similar items (i.e. 

pattern separation) we observe theta-mediated neocorticalàhippocampal directional information 

transfer. In contrast, during encoding, we observe theta-mediated hippocampalàneocortical 

information transfer for items later correctly discriminated at retrieval (subsequent memory). Our 

results identify dynamical systems interactions underlying pattern separation, and more generally, 

memory formation and retrieval in humans. Additionally, they provide a mechanistic basis for the 

hypothesized roles of the two learning systems in memory formation and retrieval; theta may 

facilitate the integration of information into the neocortex during encoding and the access of this 

information from the neocortex during retrieval. These results address a longstanding question in 

the neuroscience of memory, paving the path for the development of memory-based therapeutics 

for various conditions including addiction, post-traumatic stress, and age-related dementia.  

4.3 Results 
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Local field potentials were recorded from eight subjects implanted with concurrent neocortical 

(NC) and hippocampal (HC) intracranial electrodes during a hippocampus-dependent pattern 

separation task (Table 1, Fig. 1a). The task consisted of an incidental encoding and a retrieval 

phase. During encoding, subjects viewed images presented serially and indicated with a button-

press whether the item belonged indoors or outdoors. During retrieval, either repeated images 

from encoding (repeat), similar but not identical ones (lure), or new images (new) were shown, 

and subjects indicated ‘new’ or ‘old’ (Fig. 1a). A ‘new’ response to a lure reflected successful 

discrimination between encoding and retrieval images (lure+, lure correct), and an ‘old’ response 

indicated failed discrimination (lure-, lure incorrect).  

Mean overall task performance was 64.61%, with 82.19% repeat, 92.81% new, and 41.72% 

lure mean accuracies (Fig. 1b). Neocortical (NC) and hippocampal (HC) cue-responsive 

electrodes (see methods) were utilized for all analyses (Fig. 1c). NC electrodes included 

orbitofrontal (OFC), lateral and medial frontal (FRO), temporal (TEMP), cingulate (CING), insular 

(INS), and entorhinal/perirhinal (EC/PRC) cortices. Those for HC included DG/CA3, CA1, and 

subiculum. Using serially registered pre- and post-implantation MRI scans, we were able to 

pinpoint the location of each electrode contact with millimeter precision to achieve subfield-level 

resolution.  
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Table 1. Study Participants. Participant demographics, clinical notes, and electrode coverage. 
R: right, L: left. 
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1 34 M A 14 Bilateral HC 4 14 7 1 2 2 3 11 

2 32 F R 12 R lateral TEMP 5 5 4 0 4 5 0 5 

3 23 M R 12 R TEMP 4 18 12 13 6 1 4 9 
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Figure 1. Experimental protocol for investigation of hippocampal and neocortical 
dynamics  

a, Task schematic. The task contained two phases—an encoding and a retrieval phase. In the 
encoding phase, images of objects were displayed one at a time each for a 2-sec duration. 
Subjects indicated with a button press whether the images belonged indoors or outdoors. In the 
retrieval phase, one of three image categories was displayed: an image previously shown in the 
encoding phase (repeat), a similar but not identical image (lure), or a novel image (new). Following 
a 1-sec image display, and a 0.5 inter-trial period, a question prompt of ‘new or old’ appeared to 
which subjects responded with a button press. b, Individual subject behavioral performance on 
the task (overall accuracy) and specific task conditions (overall, repeat, new, low similarity lures, 
all lures combined, high similarity lures) c, Group coverage displayed in standardized (MNI) brain 
space. Coverage across all subjects (black), neocortical (OFC, FRO, TEMP, CING, INS, EC) and 
hippocampal ROIs (green), and the task responsive subset of anatomical regions of interest 
(magenta) are displayed. A hippocampus region is included in the ventral view.  
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We first identified the neural population level oscillatory dynamics within the HC that support 

pattern separation (Fig. 2). Consistent with our prior work12 and the well-recognized role for theta 

in memory processing3,10,11,13, theta power (~4-6 Hz) was significantly higher in the lure+ 

compared to the lure- condition in the HC (primarily DG/CA3) (p < 0.05, paired cluster-based 

permutation testing) (Fig. 2a). In DG/CA3, only theta survived correction for multiple comparisons 

(Fig. 2a, bottom panel).  

We then quantified whether this theta rhythm is also recruited in the NC. Across all NC areas, 

a similar narrow-band, 4-5 Hz power was significantly higher in the lure+ compared to the lure- 

condition (p < 0.05, permutation testing) (Fig. 2b). Frontal (~5-6 Hz) and temporal (~ 4-5 Hz) sites 

were key contributors and showed a statistically significant narrow band theta cluster (p < 0.05, 

permutation testing) (Fig. 2b, Supplementary Figure 1d). OFC, and to a lesser extent INS sites, 

also recruited slow-frequency oscillations to a greater extent in the lure+ compared to the lure- 

condition, however in these areas and in CING and EC/PRC, theta clusters did not survive 

multiple comparisons correction (Supplementary Figure 1). A NC theta discriminatory spatial map 

using the NC cluster is shown in Fig 2d. Theta power was significantly higher in 30 sites across 

OFC, FRO, TEMP, CING, and EC/PRC in the lure+ compared to the lure- condition (p < 0.05 

permutation testing) (Fig. 2d, top panel). We next assessed whether theta was the predominant 

shared rhythm across these discriminatory sites by generating an unthresholded lure+ vs. lure- 

difference map. Theta, absent other predominant oscillations, was observed (Fig. 2d, bottom 

panel). Together, these data suggest that the theta rhythm is preferentially recruited by HC and 

NC during memory processing supporting pattern separation.  

To assess specificity and ensure that this differential recruitment of theta was associated with 

pattern separation above and beyond what might be expected from accurate memory 

performance, we compared theta recruitment in lure+ with the new+ and repeat+ conditions (Fid. 
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2c,d). Hippocampal theta power was significantly higher in the lure+ compared to the repeat+ 

condition (p = 0.0160, permutation testing) but did not significantly differ from the new+ condition 

(p = 0.5754). DG/CA3 theta power was higher in lure+ than both repeat+ and new+ conditions 

and observed on an individual subject basis (Fig. 2c, bottom right panel, Supplementary Figure 

1e), however, these differences did not reach significance (lure+ vs. repeat+, p = 0.6853, lure+ 

vs. new+ p = 0.2338). Regarding NC discriminatory sites, theta power was significantly higher in 

the lure+ compared to all conditions (lure+ vs. repeat+ p = 0.002, lure+ vs. new+ p = 0.002 

permutation testing). Similar condition differences were observed when limiting NC sites to OFC, 

FRO, TEMP, which were key theta contributors in encoding and retrieval (lure+ vs. repeat+ p = 

0.002 and lure+ vs. new+ p = 0.002) (Supplementary Figure 1c), and to lesser extent when 

agnostically utilizing all NC areas  (lure+ vs. repeat+ , p = 0.002 and lure+ vs. new+, p = 0.1319) 

(Supplementary Figure 1b). Together, these results support the notion that theta recruitment 

across both DG/CA3 and NC was higher for conditions taxing pattern separation than for standard 

recognition memory conditions.  

Guided by the notion that the longer period of the slow-frequency theta rhythms may facilitate 

distant interactions limited by conduction velocity across longer synaptic delays14, we next asked 

whether theta phase provides a means for behaviorally relevant dynamical interactions between 

the two learning systems. More specifically, we hypothesized that during retrieval, theta mediates 

NC à HC information transfer, possibly reflecting the access of memory content from NC stored 

patterns. To do this, we used an information theory metric, phase transfer entropy (PTE) (see 

methods), to estimate directional 4-5 Hz information transfer. A PTE value of 0 denotes pure 

bidirectional interactions, >0 denotes a larger weight to the NCà HC direction, and <0 denotes a 

larger weight to the HCàNC direction.  
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The two systems interacted at retrieval in both directions, with distinct dynamics (Fig. 2e). 

Consistent with our hypothesis, interactions favored the NCà HC direction during pattern 

separation (lure+) (p = 0.0020, permutation testing) (Fig. 2f). This was observed on an individual 

subject basis (7/8 subjects) (Fig. 2g). Investigating dynamical interactions further as a function of 

time (PTE-FOT) (Fig 2e) revealed sustained significant differences favoring the NCàHC direction 

in the 0.6-1 sec post-stimulus period. A repeated measures ANOVA revealed a significant 

interaction between time and condition, F (50,73400) = 13.679, p < 0.001, and a significant main 

effect for time on NC-HC interactions F (50,73400) =10.392, p < 0.001. Clear epochs with 

significant differences between the lure+ and lure- conditions were identified with FDR corrected 

permutation testing. These dynamical systems interactions were specific to the lure+ accurate 

discrimination condition in which pattern separation is selectively taxed. Different interactions 

were observed in the new+ and repeat+ conditions, when examining both the time average and 

interactions as a function of time (Supplementary Figure 1, f-h).   
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Figure 2. Hippocampal and neocortical intra- and inter-regional dynamics during retrieval 

a-b, z-score difference map (lure+ - lure-) in (a) HC and (b) NC areas. Top: unthresholded maps 
(outlined voxels, p < 0.05). Bottom: significant clusters after multiple comparisons correction (p < 
0.05). c, Top: mean theta cluster power across 4 condition types (correct (+), incorrect (-)). In HC, 
theta power was significantly higher in the lure+ compared to the repeat+ condition (p(FDR) 
threshold = 0.0160). In DG/CA3, no significant differences between conditions, beyond lure+ and 
lure-, were observed (p(FDR) threshold <0.001). Bottom panel: DG/CA3 theta power traces. 
Individual subject (n=4) DG/CA3 mean theta power. d, Top: spatial map of NC sites with 
significantly higher NC theta cluster power in the lure+ compared to the lure- condition (p < 0.05). 
Bottom: difference map and condition specific theta power in NC (cyan) sites. Theta power was 
significantly higher in the lure+ compared to the repeat+ and new+ conditions (p(FDR) threshold = 
0.002). e, Phase transfer entropy (PTE) as a function of time (FOT) during the 1-sec post-stimulus 
period (time x condition interaction p < 0.001, and main effect for time, p < 0.001). PTE 
significantly differed in particular time epochs between the lure+ and lure- conditions (p(FDR) 
threshold = 0.019). Blue shading indicates epochs with larger NCàHC weight while gray shading 
indicates epochs with larger HCàNC weight.  f-g, Same as (e) but for a (f) single time window 
(0-1 sec), and (g) in individual subjects. Error shades and bars represent the S.E.M across 
channels (power), channel pairs (PTE), or trials (individual subjects, 3-D NC map). *p < 0.05, **p 
< 0.01, ***p < 0.001 indicate significant differences using two-tailed non-parametric paired 
permutation testing defining channel/channel pairs as observations (1000 permutations). 

Next, we investigated the role of theta dynamics during encoding of items that were 

subsequently discriminated correctly during retrieval (i.e. a subsequent memory analysis). First, 

we tested whether theta recruitment is larger for items later discriminated (àlure+) compared to 

those associated with failed discrimination (àlure-). During encoding, 4-5 Hz power was recruited 

for both stimulus types in HC and NC (Fig 3a). Power was higher in the àlure+ compared to the 

àlure- condition at slightly different center frequencies (4 Hz for HC and 3 and 5 Hz for NC; 

Supplementary Figure 2), although these clusters did not survive multiple comparisons correction. 

In contrast, when limiting NC analysis to the sites discriminating lure+ and lure- trials during 

retrieval, we observed a statistically significant cluster including the theta range, in which encoding 

cluster power was significantly higher in items later discriminated (p < 0.05, permutation testing) 

(Supplementary Figure 2c, traces displayed in Fig. 3b).   
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Figure 3. Hippocampal and neocortical intra- and inter-regional dynamics during encoding 
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a, Encoding HC and NC mean 4-5Hz power time traces for stimuli which were later discriminated 
(à lure+) and those associated with failed discrimination (àlure-) in retrieval. b, Same as in (a), 
but limiting NC sites to those showing a lure+ vs. lure- discrimination signal during retrieval. During 
encoding a statistically significant cluster after multiple comparisons correction (Supplementary 
Figure 2c) including the 4-5 Hz range was observed in these sites. c, PTE as a FOT during the 
2-sec post-stimulus onset (time x condition interaction p = 0.010, and main effect for time, p = 
0.016). PTE significantly differed in particular time epochs between the lure+ and lure- conditions 
(p(FDR) threshold = 0.02). Blue shading indicates epochs with larger NCàHC weight while gray 
shading indicates epochs with larger HCàNC weight.  d-e, Same as in (c) but for (d) a single time 
window (0-2 sec), and (f) in individual subjects. f. HC-NC PTE values in the àlure+ encoding, 
and lure+ retrieval conditions, shown separately in each NC site. Error shades and bars represent 
the S.E.M across channels (power), channel pairs (PTE), or trials (individual subjects). *p < 0.05, 
**p < 0.01, ***p < 0.001 indicate significant differences using two-tailed non-parametric paired 
permutation testing defining channel/channel pairs as observations (1000 permutations).  

We then asked whether theta-mediated systems interactions during encoding are important 

for later discrimination. We tested two key hypotheses: 1) Predominantly HC à NC interactions 

will be observed during encoding, possibly reflecting the integration of HC information into NC 

patterns 2) A greater degree of HC à NC information transfer during encoding would predict 

successful discrimination at retrieval. To test the first hypothesis, we compared encoding and 

retrieval PTE values separately in OFC, FRO and TEMP with the HC. In each region pair, the 

HCàNC direction was more prevalent during encoding, while the opposite direction of information 

flow was more prevalent during retrieval (Fig. 3f) (p = 0.002 for each site, permutation testing). To 

test the second hypothesis, we quantified information transfer in the two condition types over the 

2-second post-stimulus period in encoding, and as a function of time in the same period. Encoding 

interactions were again largely bidirectional, with a significantly larger HC àNC information flow 

in àlure+ compared to àlure- conditions (p = 0.002) (Fig. 3d). This was observed for most 

individuals (6/8 subjects) (Fig. 3e). PTE-FOT analysis further identified particular epochs (~0.2-

0.7 sec, and 1-2 sec) where the HCà NC bias was predominant (Fig. 3c). A repeated measures 

ANOVA revealed a significant interaction between time and condition type, F (30, 44040) = 

6.6476, p = 0.010, and a significant main effect for time on NC-HC interactions F (30, 44040) = 

5.861, p = 0.016. Once again, clear epochs with significant PTE differences between the lure+ 

and lure- conditions were identified with FDR-corrected permutation testing. Collectively, the 
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above results suggest that while systems interactions are largely bidirectional, small biases in 

directionality during encoding and retrieval may provide a mechanism for the HC’s role as an 

index and the NC’s role as the storage site for encoded patterns.  
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Figure 3. Hippocampal and neocortical intra- and inter-regional dynamics during encoding 
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a, Encoding HC and NC mean 4-5Hz power time traces for stimuli which were later discriminated 
(à lure+) and those associated with failed discrimination (àlure-) in retrieval. b, Same as in (a), 
but limiting NC sites to those showing a lure+ vs. lure- discrimination signal during retrieval. During 
encoding a statistically significant cluster after multiple comparisons correction (Supplementary 
Figure 2c) including the 4-5 Hz range was observed in these sites. c, PTE as a FOT during the 
2-sec post-stimulus onset (time x condition interaction p = 0.010, and main effect for time, p = 
0.016). PTE significantly differed in particular time epochs between the lure+ and lure- conditions 
(p(FDR) threshold = 0.02). Blue shading indicates epochs with larger NCàHC weight while gray 
shading indicates epochs with larger HCàNC weight.  d-e, Same as in (c) but for (d) a single time 
window (0-2 sec), and (f) in individual subjects. f. HC-NC PTE values in the àlure+ encoding, 
and lure+ retrieval conditions, shown separately in each NC site. Error shades and bars represent 
the S.E.M across channels (power), channel pairs (PTE), or trials (individual subjects). *p < 0.05, 
**p < 0.01, ***p < 0.001 indicate significant differences using two-tailed non-parametric paired 
permutation testing defining channel/channel pairs as observations (1000 permutations).  

Finally, we investigated whether learning system dynamics supporting early mnemonic 

discriminatory processes are distinct from the dynamics supporting subsequent response 

generating mechanisms (e.g. executive function and motor planning) associated with such 

processes. Within a trial, we refer to the early phase consisting of the 1-sec display of an image 

as the ‘mnemonic epoch’, and the later phase consisting of the last 1-sec preceding the subject 

response (while the question prompt is on the screen) as the ‘response generating epoch’. These 

two epochs were non-overlapping in time. In both systems, a drop in power across a broad range 

of frequencies (~3-30 Hz) preceding subject response was significantly larger in the lure+ 

compared to the lure- condition (p < 0.05, permutation testing) (Fig. 4a-d). In contrast, this was 

not statistically observed in the NC discriminatory sites (Fig. 4f). DG/CA3 slow-frequency power 

drop was also significantly larger in the lure+ compared to the new+ (p = 0.0240, paired 

permutation testing), but not the repeat+ condition (p = 0.2957) (Fig. 4g). NC slow-frequency 

power drop was specific to response judgements associated with successful pattern separation 

(lure+ vs repeat+ p = 0.002, lure+ vs. new+ p = 0.002) (Fig. 4h).  

We also tested whether this slow-frequency power drop was associated with changes in 

systems interactions between onset and response periods by estimating the distribution of within-

channel onset minus response PTE, separately in each direction (Fig. 4i). With equal probability, 
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NC-HC pairs are likely to increase or decrease the degree of information transfer upon transition 

to the pre-response period. This was observed in 4-5 Hz and across 3-20 Hz, and across all NC 

areas irrespective of discrimination level (Supplementary Figure 3h). Amidst these interaction 

shifts, the net direction was consistent with a larger NC à HC bias compared to that observed in 

encoding (p = 0.002 for each site, paired permutation testing) (Fig. 4j). Overall, these results 

suggest that during the later phase of response preparation and generation (presumably after the 

mnemonic processing has occurred), there is a drop in theta power in DG/CA3 and NC that was 

associated with successful pattern separation, as well as an equal probability of an increase or a 

decrease in information transfer between the two systems. This analysis demonstrates that power 

dynamics during the response generating epoch are distinct from the mnemonic epoch. This is 

observed to a much lesser extent when considering phase dynamics, which remain relatively 

maintained from the mnemonic to the response generating epoch.   
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Figure 4. Hippocampal and neocortical intra- and inter-regional dynamics during retrieval 
response period 

a,c,d,f, z-score unthresholded and thresholded (insets) difference maps (lure+ - lure-) locked to 
stimulus onset (left) and response (right) in (a) HC, (c) DG/CA3, (d) NC, and (f) discriminatory NC 
sites. b, e, Mean within-channel subtraction of power spectral density between the 1-sec post 
stimulus and 1-sec pre-response periods (onset - response PSD) in the (b) HC and NC (e) areas. 
g, h, Mean response locked slow frequency cluster (insets) power in DG/CA3 (g) and NC (h) 
across 4 conditions on a group, and 2 conditions on an individual subject level. g, In DG/CA3, 
slow frequency power was significantly lower in the lure+ compared to the new+ condition (p(FDR) 
threshold = 0.0240). h, In NC, power was significantly lower in the lure+ compared to the repeat+ 
and new+ conditions (p(FDR) threshold = 0.0279). i, Probability density function of within channel 
onset minus response PTE (onset - response NCàHC PTE (cyan) and onset - response HC à 
NC (black)). Median values are indicated on top of each distribution. j, PTE values in the àlure+ 
encoding, and lure+ retrieval onset and response conditions, shown separately in each NC site. 
k, Response time distribution across trial types and subjects. Error shades and bars represent 
the S.E.M across channels (power), channel pairs (PTE), or trials (individual subjects). *p < 0.05, 
**p < 0.01, ***p < 0.001 indicate significant differences using two-tailed non-parametric paired 
permutation testing defining channel/channel pairs as observations (1000 permutations). 

 

4.4 Discussion 

In summary, we have shown that theta power in the HC (particularly DG/CA3) and NC 

supports pattern separation, and that theta phase provides a potential mechanism for directional 

information transfer (measured by phase transfer entropy) in the HCàNC direction during 

encoding and in the NCàHC direction during retrieval. These early increases in theta power 

during the mnemonic epoch are followed by a pre-response drop, however, information flow 

distributions appear to be largely sustained. Overall, these results provide a putative mechanism 

for hippocampal-neocortical information exchange related to encoding and retrieval of episodic 

memories that is consistent with the hippocampus’ role as an indexing device.  

Prior studies investigating NC and HC involvement in humans mainly used methods from 

which directionality cannot be inferred13, focused primarily on sleep8, did not concurrently record 

from HC and NC15, or were limited in neocortical coverage16. Here, we identify the dynamics of 

oscillatory power and phase-dependent directional interactions supporting memory formation 

(new+) and retrieval (repeat+), as well as formation and retrieval of events underlying successful 
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pattern separation (lure+) vs. overgeneralization errors (lure-). Each of these cognitive states is 

supported by unique interactive dynamics between the NC and HC. These results provide 

empirical evidence for the role of theta and theta-mediated interactions in supporting pattern 

separation, and more generally memory formation and retrieval. They form a mechanistic basis 

for the long-hypothesized role of theta in episodic memory processing, directional interactions 

hypothesized by the memory indexing theory6,17 and computational models based on the two 

learning systems7,18–21. 

It is critical to note that bidirectional interactions between HC and NC have been recently 

investigated in human physiology recordings16. In this study, the authors report that decreased 

NC alpha/beta (8-20 Hz) power precedes and predicts increased HC fast gamma (60-80 Hz) 

during episodic memory encoding, whereas increased HC slow gamma (40-50 Hz) power 

precedes and predicts decreased NC alpha/beta power during retrieval. While at first our results 

may appear at odds with these findings, there are key differences across studies that are 

important to note. Similar to their findings, we qualitatively observed decreased NC alpha (~7-15 

Hz) during encoding for subsequently discriminated items (Fig S2a,d). We also observed 

increased HC slow gamma (~35-55 Hz, Fig 2a, 4a) and decreased NC alpha/beta (~12-23 Hz, 

Fig 2b) for successfully discriminated items during retrieval. However, we chose to focus a priori 

on the theta rhythm given its known role in long-range communications. In our results, it also was 

a shared signal across the NC and HC (in particular DG/CA3), which makes it a likely candidate 

for information transfer. We used an information theoretic approach (phase transfer entropy) to 

determine whether there was meaningful information transfer across regions. The latter cannot 

be inferred purely from correlational data. Finally, we demonstrate temporal dynamics of 

information exchange that suggest a more complex interplay among the two regions during both 

encoding and retrieval. Thus, our reported results complement previously published work and 



 107 

additionally provide a putative mechanism by which indexing can occur in interleaved and 

directionally biased HC-NC interactions. 

Since the 1930s, the theta rhythm has been observed across species and behavioral 

states10,22. Amongst a diverse set of its behavioral correlates, a subset includes arousal, attention, 

decision making, learning and memory, working memory and motivation10,13. These processes all 

require the processing of external inputs10. The hippocampal theta rhythm is thought to function 

as a temporal organizer, enabling first and higher order temporal linkages amongst cell 

assemblies and converting such orders to synaptic strengths10. This is supported by experimental 

work showing that after controlling for other factors, theta was primarily associated with temporal 

ordering of experiences13,23,24. Theta cycles may separate encoding and retrieval epochs by 

alternating processing modes during the peak and trough 11. During the peak, LTP occurs and 

more predominant inputs from EC to CA1 prevail, possibly facilitating encoding, while LTD occurs 

during the trough with predominant CA3 inputs to CA1, possibly facilitating retrieval25,26. Evidence 

for theta’s role has been demonstrated in its temporal organization of place27 and grid28 cell firing 

(phase precession)29, and cell encoding time intervals30. These findings point to theta as a 

potential mechanism to encode space and time, the basic ingredients for episodic memory, 

thereby serving as a fundamental neural code in memory processing.  

With respect to learning systems interactions, theta is proposed to encode and temporally 

bind representations across neocortical modules, as well as mediate the interactions between HC 

and NC with the HC acting as an index generator3. Our results could be explained by this model, 

providing a mechanistic basis for memory indexing theory. The involvement of the two learning 

systems in this hippocampus-dependent pattern separation task is predicted by indexing theory 

and is demonstrated by theta recruitment in HC and NC sites during both encoding and retrieval. 
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According to the indexing theory, during encoding, a unique spatiotemporal neocortical pattern is 

generated upon an experience, which is strengthened by the hippocampus6,17. This strengthening 

could be driven by modifications of intracortical and cortical-hippocampal synapses when inputs 

arrive at the peak of theta. It is therefore possible that the observed increase in NC encoding theta 

power and the theta-phase mediated HCàNC information flow reflects neocortical learning, 

strengthened by the hippocampus. The complementary learning systems theory has been 

recently updated to demonstrate that the neocortex is capable of such rapid learning if new 

information is consistent with existing schemas7,31, which is supported by experimental 

evidence32,33. Given the schema-consistent objects viewed in this study, it is possible that 

integration of information into neocortical connections occurs rapidly during the encoding phase. 

Indexing theory also proposes that upon encountering a partial cue, neocortical modules 

can be activated and accessed by the hippocampus to facilitate retrieval. Consistent with this 

prediction, we observe that the increase in NC theta power precedes that of the HC during 

successful retrieval and information flow begins to predominantly favor the NCàHC direction. 

These two observations could reflect reactivation of a neocortical pattern and its access by the 

hippocampus to enable comparison of the similar lure to an existing memory, a necessary process 

for accurate discrimination (i.e. recall-to-reject)20,34. In line with the notion that theta power likely 

supports the aforementioned early mnemonic processes, is that theta power as well as 

surrounding slow frequencies are significantly diminished preceding response, and half of the NC-

HC electrode pairs show a decrease in information transfer. This, in conjunction with prior work 

showing increased hippocampal and DLPFC gamma power in the same task preceding 

response35, suggest relatively more local neocortical and hippocampal activity during the decision 

phase.   
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A possible alternative explanation for theta power dynamics during successful encoding 

and retrieval is active sensing and exploration that facilitates memory encoding10,22,36–39. This is a 

possible explanation for neocortical theta increases during encoding of items that are 

subsequently discriminated. However, this is unlikely to be driving condition differences during 

retrieval since the new+ condition is more novel compared to lure+ and does not show similar 

increases in theta power or interaction dynamics. Another possibility is that theta facilitates 

retrieval of the context in which memory of the item was generated rather than memory of the 

item itself40,41. However, this again would not explain the differences between lure+ and repeat+, 

both of which presumably have accurate stimulus-specific context retrieval that leads to accurate 

recall. Finally, an intriguing possibility is that oscillatory inhibition varies as a function of theta 

phase, with increasing levels of inhibition promoting the suppression of competing memory traces 

to facilitate accurate retrieval13,42. This could be a mechanism by which encoding and retrieval 

dynamics contribute to successful discrimination among similar items, although this possibility 

needs to be directly tested by manipulating inhibition. 

Although a preponderance of evidence exists for the role of theta in episodic memory 

processing, such a role may be much more general. For example, theta could be a mechanism 

for synaptic modification with experience and for routing and integration22 of multimodal 

information between behaviorally recruited circuits. This could explain the observation of theta 

across numerous cognitive states and its enhanced recruitment as a function of increased 

sensory and mnemonic processing10,13. Theta’s long period theoretically increases its coding 

capacity and makes it advantageous for the routing of information within and across distributed 

networks15 overcoming the constraints of conduction velocity and longer synaptic delays3,14. This 

is further supported by the notion that the leading cellular contributors to theta generation in the 

hippocampus, GABAergic interneurons43,44, are highly connected, long-range projecting hub cells 

orchestrating network synchrony45. Additionally, individuals with higher PFC-HC white matter 
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integrity tend to have high slow-frequency power recruitment (delta/theta), and better long-term 

memory46,47. Finally, intracranial theta burst stimulation of the entorhinal region, where 

hippocampal/neocortical exchange takes place, has been previously reported to improve memory 

function in patients with epilepsy46,47. Altogether, theta may be a key contributor to routing inputs 

and integration of multimodal information into synapses —this would manifest across cognitive 

domains including, but not limited to episodic memory.  

Despite the prominent role of theta oscillations in primate and rodent studies, it is important 

to note that not all species utilize theta to temporally organize information in episodic memories. 

For example, the hippocampal formation in bats exhibits temporal coding and synchronization in 

the absence of low-frequency oscillations, suggesting that rhythmicity is not necessary for 

effective phase coding48,49. From an evolutionary standpoint, theta rhythmicity could be one of 

several possible mechanisms that enable memory formation and retrieval.  

In conclusion, our results provide a novel mechanistic account for indexing theory by 

demonstrating a role for theta-mediated intra and inter-regional dynamics during encoding and 

retrieval to support accurate memory discrimination. Future studies are needed to identify the 

molecular and cellular processes underlying the observed role of theta and whether theta codes 

for memory representations directly or facilitates their exchange. Ultimately, identification of 

episodic memory system dynamics can lend to developing memory-based therapeutics for 

various conditions including addiction, post-traumatic stress, and age-related dementia.  

4.5 Methods 

Experiment paradigm 

Electrophysiological recordings were conducted while participants engaged in a 

hippocampal-dependent1,2 pattern separation task1,2 (Fig. 1a). The task consisted of an encoding 



 111 

and a retrieval phase. During encoding, subjects were shown 120 images, presented one at a 

time for 2-seconds. Each stimulus presentation was followed by a question prompt of ‘indoor’ or 

‘outdoor’, whose duration was determined by subject response time via a button press. During 

retrieval, 160 images were presented serially and belonged to one of three categories: repeated 

images (40) from the encoding phase (repeat), similar but not identical images (80) to those 

presented during encoding (lure), and new images (40) (new). Following each 1-sec stimulus 

presentation period, a question prompt of ‘new’ or ‘old’ appeared, to which subjects responded 

with a button press. A ‘new’ response to a lure image (lure+) reflects successful discrimination 

between encoding and retrieval images. Conversely, an ‘old’ response to a lure image (lure-) 

reflects failed discrimination.  

Participants 

Electrophysiological recordings were acquired from eight adult (ages 23-52) patients (3 

females) stereotactically implanted with depth electrodes (Integra or Ad-Tech, 5-mm 

interelectrode spacing) for clinical monitoring (Table 1). Surgical implantation was done to localize 

the seizure onset zone for possible surgical resection. Electrode placement was determined 

exclusively by clinical needs and took place at the University of California Irvine Medical Center. 

The inclusion criterion was concurrent electrode coverage over both hippocampal (HC) and 

neocortical (NC) areas. Informed consent was obtained from each participant for study inclusion 

in accordance with the institutional review board of the University of California, Irvine.  

Electrophysiological recording acquisition and data pre-processing 

Recording and offline filtering  

The task was programmed in PsychoPy2 (Version 1.82.01). Participants performed the 

task on an Apple Macbook Pro placed at a comfortable viewing distance. Participants indicated 
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their responses using an external apple keypad. A photodiode was placed in the corner of the 

computer screen to capture stimulus presentation onset and offset timestamps with millisecond 

precision to time-lock them to the neural recordings.  

Electrophysiological recordings were acquired using a Nihon Khoden recording system 

(256 channel amplifier, model JE120A), analog-filtered above 0.01 Hz and digitally sampled at 

5000 Hz. Following acquisition, data were pre-processed using customized MATLAB scripts.  

Post-acquisition, data were downsampled to 500 Hz. Line noise and harmonics were 

removed using a 2nd order butterworth band stop infinite impulse response filter, with band stop 

frequencies centered around (+/-1Hz) 60Hz and 2nd-3rd harmonics.  

Artefact rejection 

Artefacts were identified in the time domain for each channel. Time points with values 

exceeding the mean channel signal +/- 3-4.5 multiples of the standard deviation were indicated.  

Timepoints near (1-sec before and after) the identified artefacts were also flagged as artefacts. 

After acquisition of spectral values, flagged artefactual timepoints were removed from the 

estimates of the mean and standard deviations of spectral power for baseline normalization. 

Moreover, any trial with a minimum of one artefact time point in the pre-stimulus baseline or post 

stimulus periods was removed entirely from all analyses.  

Re-referencing  

A Laplacian referencing scheme was implemented, whereby for a given electrode N, the 

averaged signal was computed over its neighboring electrodes, N-1 and N+1, and subtracted 

from the signal in electrode N. This has been previously suggested as an optimal scheme for slow 

frequency oscillatory activity3. However, all reported results were reproduced using two additional 
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approaches: 1) No post-acquisition re-referencing and 2) Using a probe-specific white-matter 

reference electrode. 

Electrode localization and selection 

Localization 

Post implantation CT was co-registered to pre-implantation and post-implantation 

structural T1-weighted MRI scans for identification of electrode anatomical locations. There were 

two exceptions; for one patient, a pre-implantation T2-weighted MRI scan was used, and for a 

second patient, only a post-implantation T1-weighted MRI scan was used for identification.  

Overlaid images were visualized in AFNI. An experienced rater (M. S. L.) identified 

electrodes in neocortical areas which included orbitofrontal (OFC), frontal (FRO), temporal 

(TEMP), cingulate (CING), insular (INS), and entorhinal/perirhinal (EC/PRC) cortical electrodes 

as well as hippocampal areas which included CA1, subiculum (SUB), and DG/CA3. OFC labeled 

electrodes are mutually exclusive from FRO electrodes. The first rater used a previously 

described4 0.55mm isotropic resolution in-house anatomical template, the Duvernoy atlas5, and 

reported medial temporal lobe (MTL) localization guidelines6  for anatomical identification of MTL 

electrodes. The labeled in-house template was resampled (1mm isotropic) and aligned to each 

subject’s pre-implantation scans using ANTs Symmetric Normalization7. For all other non-MTL 

electrodes in the neocortex, Freesurfer cortical parcellations8 and whole human brain atlas9 were 

used. 

Based on the anatomical labels within each subject’s space, the electrode location was 

determined by identifying the region of interest that encompassed the center of the electrode 

artefacts. Cases in which electrodes were on the border between ROIs, bordering CSF, or 

between gray matter and white matter were noted as such and excluded from these analyses. A 
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notable exception from this exclusion criteria are the entorhinal/perirhinal localized electrodes that 

only bordered white matter or CSF, as electrodes localized in this region are few across all 

patients. 

A second, experienced rater (M.A.Y.) independently localized entorhinal/perirhinal, 

hippocampal and DG/CA3. Across the two raters there was a 100% concordance for hippocampal 

sites, 100% concordance for DG/CA3 sites, and 75% concordance for entorhinal/perirhinal sites 

(those two sites were collapsed during analysis).  

Electrode selection  

The following inclusion criteria were applied for all electrodes (Fig. 1c): 1) Either located 

in the neocortex or the hippocampus, 2) placed entirely in gray matter (not overlapping with white 

matter or ventricles) 3) Cue responsive. Neocortical electrodes included: OFC, FRO, TEMP, 

CING, INS, EC/PRC. Hippocampal electrodes included: SUB, CA1, DG/CA3. Cue responsivity 

was defined as significant increases in slow frequency power (3-6 Hz) from pre-stimulus baseline 

(-0.3-0 sec vs. 0-1 sec) in any condition type (repeat+, lure-, lure+, new+), or across pooled trials 

from all condition types during the retrieval phase. Significant increases were measured using 

non-parametric, unpaired permutation testing (1000 permutations) between mean pre-stimulus 

and post-stimulus trial power values for each channel. Contacts from each subject meeting each 

of the inclusion criteria were projected onto a standard brain model (Montreal Neurological 

Institute, MNI) and visualized using DSI Studio. Retrieval cue responsive electrodes were used 

for all analyses (encoding and retrieval power and phase transfer entropy measures). 

Spectral analysis 

Power extraction and baseline normalization  
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Analytic Morlet wavelets were generated in MATLAB using the Wavelet toolbox and tested 

on simulated sinusoids of known spectral properties. Wavelets were used to extract power values 

in the 3-200 Hz frequency range, which were then converted to decibels (dB). For each trial, 

instantaneous power values were normalized relative to the channel mean and standard deviation 

of pre-stimulus power values at the same frequency. For a given trial, the pre-stimulus durations 

utilized to generate the normalizing distribution were only those preceding the same condition 

type as the trial to be normalized (condition specific pre-stimulus normalization). Then, for each 

trial, a z-score value was obtained for each time-frequency point; thereby generating a 

spectrogram. Baseline normalization was computed separately for the encoding and retrieval 

phases. Pre-stimulus artefact timepoints were included in the wavelet analysis to maintain the 

temporal structure of the data but were excluded from the normalizing distribution. A condition-

specific baseline was utilized in this study due to condition-specific activity occurring in the 

response period, which precedes subsequent trials. However, results reported were reproduced 

with normalization relative to power distributions across the 1) entire recording, and 2) pre-

stimulus baseline.  

Group and individual subject analysis 

For trial-type analysis, data were epoched relative to stimulus presentation and subject 

response timestamps. Z-score normalized spectrograms were averaged across trials within a 

channel to generate mean z-score normalized spectrograms for each channel. For region-based 

group spectral analysis, channels were pooled across subjects and defined as observations. For 

region-based individual subject analysis, spectrograms were averaged across channels in each 

trial, and trials were defined as observations.  

Identification of significant time-frequency clusters 
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Significant time-frequency clusters which differed between the lure+ and lure- conditions 

were identified using cluster-based permutation testing10. Briefly, this involved calculating a t-

statistic in each voxel, between the lure+ and lure- time-frequency z-score normalized matrices 

(z-maps), thereby generating the observed t-map. The observed t-map was then compared to a 

null distribution of t-maps generated over 1000 paired permutations. In each permutation, 

condition labels were shuffled within a random subset of channels (paired). A p-value for each 

voxel was obtained by comparing the observed to the null t-value in the same time-frequency 

voxel, thereby generating a p-map. To correct for multiple comparisons, clusters of contiguous 

voxels with a p <0.5 were identified and compared to the null-distribution cluster size. Observed 

clusters with sizes larger than the 95th percentile of those from the null distribution were 

considered significant after correction for multiple comparisons.    

Phase transfer entropy analysis 

An information theory metric, phase transfer entropy (PTE), was used to estimate the 

direction of information transfer in the 4-5 Hz frequency range.11,12 PTE quantifies the mutual 

information between the past of signal ‘X’, X(t-!) and the present of signal ‘Y’, Y(t). Mutual 

information reflects the degree of the reduction in uncertainty of one random variable (distribution 

of present phase values in region Y), given knowledge of another random variable (distribution of 

the past phase values in region X). PTE calculation was performed as described in Lobier et al., 

201411 and normalized between -0.5 and 0.5 as described by Wang et al., 201912. PTE was 

calculated using two methods; first as a time-average measure across the 2-second and 1-second 

periods following stimulus onsets in encoding and retrieval, respectively. Second, PTE was 

calculated in moving windows in these same periods (see PTE as a function of time (PTE FOT) 

below). 

Briefly, PTE was calculated using the following formula, 
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"#$	& → ( = 	*+,(.)	0	,(. − !)2 − *(,(.)	|	,(. − !)	, 5(. − !)) 

Where *+,(.)	0	,(. − !)2  is the conditional entropy of the distribution of ,(.) conditioned on 

,(. − !), and	*(,(.)	|	,(. − !)	, 5(. − !)) is the conditional entropy of the distribution of ,(.), 

conditioned on	,(. − !) and  5(. − !)). 

The entropy of a random variable Y is, 

*(,) = 	−67(() log! 7(()
"

 

and conditional entropy is calculated by, 

*(,|5) = −	67(&, () log!
7(&, ()

7(&)
#,"

 

Given these definitions, the terms necessary to compute PTE XàY are the estimated 

marginal probability mass function (pmf) of the output past ,(. − !), joint pmf of the output past 

and present ,(.), ,(. − !), joint pmf of the output and input present ,(.), 5(.), and joint pmf of the 

output present, output past and input past	,(.), ,(. − !),	5(. − !). Each pmf was estimated using 

the entirety of the trial data, rather than a single trial. Bin width was defined according to Scott’s 

choice13 and the lag value ! was set to 100ms.  

PTE XàY (NC à HC) and PTE YàX (HC à NC) were calculated separately and normalized as 

follows:	

	

"#$ = 	0.5 − >
"#$%&→(&

"#$%&→(& + "#$(&→%&
@	
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Therefore, a value of 0.5 reflects equal bidirectional biases, and values larger and less 

than 0.5 reflect higher NCàHC and HCà NC directional bias, respectively. Normalized PTE was 

then subtracted from 0.5, with a value of 0 denoting bidirectional interactions, a value greater and 

less than zero reflecting higher NCàHC and HCà NC directional bias, respectively. 

Phase transfer entropy as a function of time (PTE FOT) 

PTE as a function of time was calculated as described above, however, in moving 0.5 sec 

windows with a 10ms step size (encoding and retrieval) and a 50ms step size (encoding). 

Statistical analysis 

After identification of the time-frequency cluster which significantly differed between lure+ 

and lure- across channels in a given region, power in this cluster was averaged in each channel, 

generating a single value. Mean channel cluster power values were used to statistically examine 

two additional contrasts, lure+ vs. new+ and lure+ vs. repeat+, using paired non-parametric 

permutations testing (randomly shuffling condition labels in a manner similar to what is described 

above), followed by false discovery rate (FDR) correction for multiple comparisons.  

Similarly, paired non-parametric permutations testing was utilized for statistical examination 

of PTE values, using PTE values from channel NC-HC pairs as observations. A total of 1000 

permutations were performed in all tests.  
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4.6 Supplementary material  

Subject OFC FRO TEMP INS CING EC/PRC DG/CA3 HC 

1 2/4 9/14 5/7 0/1 2/2 1/2 2/3 8/11 

2 0/5 2/5 0/4 0/0 2/4 2/5 0/0 1/5 

3 2/4 15/18 7/12 6/13 3/6 0/1 2/4 4/9 

4 5/7 6/7 9/11 0/0 2/6 3/7 2/3 8/13 

5 2/2 13/13 8/11 0/0 7/9 0/0 1/3 7/13 

6 3/4 8/11 5/11 1/3 1/1 2/3 02/1 2/6 

7 2/2 4/4 8/17 2/2 2/4 1/2 0/0 6/6 

8 1/1 10/10 7/13 4/6 2/3 0/0 0/0 4/4 

Table 2. Proportion of task active electrodes per region during retrieval  

Cue responsivity was defined as a significant difference in slow frequency (3-6 Hz) power 
between pre and post stimulus presentation during retrieval. OFC: orbitofrontal cortex, FRO: 
frontal cortex, TEMP: temporal cortex, INS: insular cortex, CING: cingular cortex, EC/PRC: 
entorhinal/perirhinal cortex, DG/CA3: dentate gyrus / CA3; HC: hippocampus (includes DG/CA3, 
CA1 and subiculum). 
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Supplementary Figure S1. Hippocampal and neocortical intra-regional dynamics 
supporting during retrieval 

a, Unthresholded z-score difference map (lure+ - lure-) in orbitofrontal (OFC), cingulate, insular, 
and entorhinal cortices maps (outlined contiguous voxels, p < 0.05 before multiple comparisons 
correction). Clusters were not significant after multiple comparisons correction. b-c, Mean NC (b) 
and discriminatory (lure+ vs. lure-) OFC, frontal (FRO), and temporal (TEMP) cortical sites (c) 
theta cluster power (inset) across four condition types. b, NC power was significantly higher in 
the lure+ compared to the new+ (p = 0.002) condition, but did not significantly differ from the 
repeat+ condition (p = 0.1319, p(FDR) threshold = 0.002) conditions. c, Discriminatory OFC, FRO 
and TEMP electrodes showed significantly higher theta power in the lure+ condition compared 
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the repeat+ (p = 0.002) and the new+ conditions (p = 0.002, p(FDR) threshold = 0.002). d, Spatial 
map of OFC, FRO, and TEMP sites, in standardized (MNI) brain space, which showed 
significantly higher NC theta cluster power in the lure+ compared to the lure- condition (p <0.05). 
e, Individual subject mean theta cluster DG/CA3 power for repeat+ and new+ condition contrasts 
with lure+. f-, Phase transfer entropy (PTE) across the 1-sec post-stimulus period. A significantly 
higher weight to the NC à HC direction was observed in the lure+ compared to the lure- and 
new+ conditions (p(FDR) threshold = 0.002). g-h PTE as a function of time (FOT) (time x condition 
interaction p < 0.001 F (50,73400) = 19.631, and main effect for time F (50,73400) = 18.201, p < 
0.001). PTE significantly differed during time epochs between the two conditions (p(FDR) threshold 
= 0.019). h, Same as in (g), but displaying lure+ and repeat+ contrasts (time x condition interaction 
F (50,73400) = 16.516, p < 0.001, p < 0.001, and, main effect for time F (50,73400) = 13.516, p 
< 0.001). PTE significantly differed in time epochs between the two conditions (p(FDR) threshold = 
0.0220). Error bars represent the S.E.M across channels (power), channel pairs (PTE), or trials 
(individual subjects). *p < 0.05, **p < 0.01, ***p < 0.001 indicate significant differences using two-
tailed non-parametric paired permutation testing defining channel/channel pairs as observations 
(1000 permutations). 
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Supplementary Figure S2. Hippocampal and neocortical intra- and inter-regional dynamics 
during encoding 

a, Unthresholded (outlined contiguous voxels with p < 0.05, paired permutation testing, 1000 
permutations) and thresholded (significant clusters after multiple comparisons correction, p<0.05) 

OFC-FRO-TEMP-CING-EC
(retrieval discriminatory sites)

OFC-FRO-TEMP-CING-EC
(retrieval discriminatory sites)

HC

OFC-FRO-TEMP
(retrieval discriminatory sites)

NC

-0.02

0

0.015

a b

c d

e
-->lure-
-->lure+

0 2
-0.1

0

0.25

HC-NC Intra-regional dynamics

HC - NC (OFC - FRO - TEMP) Inter-regional dynamics

stim onset

-->lure-
-->lure+

4
6
10
15
23

201
130
84
55
35

4
6
10
15
23

201
130
84
55
35

4
6
10
15
23

201
130
84
55
35

4
6
10
15
23

201
130
84
55
35

-4

4 (lure+) - (lure-)
 z score pow

er

4
6
10
15
23

201
130
84
55
35

time (sec)0 2
time (sec)0 2 time (sec)0 2

time (sec)0 2 time (sec)0 2

time (sec)0 2
4
6
10
15
23

201
130
84
55
35

H
C

 -
> 

N
C

N
C

 -
> 

H
C

m
ea

n 
4-

5 
H

z 
P

TE

time (sec) Lure+ NC->HC >> lure-
Lure+ HC ->NC >> lure-

0-0.5 1.5-2

stim onset

0.5-1.5

fre
q 

(H
Z)

fre
q 

(H
Z)

m
ea

n 
z-

sc
or

e
th

et
a 

po
w

er



 123 

z-score difference (àlure+ - àlure-) in all retrieval discriminatory NC sites. b, Mean theta (4-5 
Hz) power traces across NC discriminatory sites. c, Same as in (a), but limiting retrieval 
discriminatory sites to OFC-FRO-TEMP. d, Unthresholded difference maps for all NC and all HC 
sites. e, PTE-FOT relative to stimulus onset, calculated over a 0.5 sec window and a 10ms 
overlap. Error shades and bars represent the S.E.M across channels (power) or channel pairs 
(PTE).  
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Supplementary Figure S3. Hippocampal and neocortical intra- and inter-regional dynamics 
during retrieval response period 

a, HC slow frequency cluster (inset) power, relative to response, was significantly lower in the 
lure+ compared to the new+ condition (p = 0.002), but did not significantly differ from the repeat+ 
condition (p = 0.6913, p(FDR) threshold = 0.0279). Individual subject mean cluster power for repeat+ 
versus lure+, new+ vs. lure+, and lure- vs. lure+ contrasts are displayed. b-c, Individual subject 
mean slow frequency cluster power in DG/CA3 (c) and NC (d), relative to response, for repeat+ 
versus lure+, and new+ vs. lure+ contrasts. d, Z-score normalized unthresholded and thresholded 
(insets) difference maps (lure+ - lure-) locked to stimulus onset (left) and response (right) in NC 
OFC, FRO, and TEMP sites. e, g, Within-channel subtraction of the power spectral density (PSD) 
between the 1-sec post stimulus onset and 1-sec pre-response period (onset - response PSD) in 
the indicated sites. f, z-score unthresholded difference map locked to response in OFC, FRO, 
and TEMP discriminatory sites. h,i, Probability density function of within channel onset minus 
response (onset - response) NC–> HC (cyan) and HCà NC (black) PTE. Distributions are 
displayed for PTE computed across 3-20Hz in steps of 1-Hz (h), in the 4-5Hz range (i) in the 
indicated areas. Error shades and bars represent the S.E.M across channels (power) or trials 
(individual subjects). *p < 0.05, **p < 0.01, ***p < 0.001 indicate significant differences using two-
tailed non-parametric paired permutation testing defining channel/channel pairs as observations 
(1000 permutations). 
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Chapter 5: Two methods for estimating directional communication between brain areas 

(deductive) 

 

(1) Time-dependent phase transfer entropy and (2) General Linear Kalman Filter based 

estimates for Granger causality  

 

5.1 Original definition of phase transfer entropy 

In the last chapter, a metric called phase transfer entropy (PTE, Lobeir et al, 2014) was 

used to make inferences about the direction of communication between two memory systems in 

the brain – the hippocampus and the neocortex. In this chapter, I emphasize how this metric 

was adapted to extend it to a time dependent measure.  

First, a brief description is provided regarding the original definition and use of PTE. For 

a given pair of simultaneously recorded time series (ex. two electrode sensors recording from 

two different brain areas), the data is first band-pass filtered for a desired frequency range. 

Then, the phase signal of such frequency range is obtained. PTE quantifies the mutual 

information between the past of phase signal ‘X’, X(t-!) from one electrode sensor and the 

present of phase signal ‘Y’, Y(t) from another electrode sensor.  

"#$	& → ( = 	*+,(.)	0	,(. − !)2 − *(,(.)	|	,(. − !)	, 5(. − !)) 

Where *+,(.)	0	,(. − !)2  is the conditional entropy of the distribution of ,(.) conditioned on 

,(. − !), and	*(,(.)	|	,(. − !)	, 5(. − !)) is the conditional entropy of the distribution of ,(.), 

conditioned on	,(. − !) and  5(. − !)). 

The entropy of a random variable Y is, 

*(,) = 	−67(() log! 7(()
"
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and conditional entropy is calculated by, 

*(,|5) = −	67(&, () log!
7(&, ()

7(&)
#,"

 

Given these definitions, the terms necessary to compute PTE XàY are the estimated 

marginal probability mass function (pmf) of the output past ,(. − !), joint pmf of the output past 

and present ,(.), ,(. − !), joint pmf of the output and input present ,(.), 5(.), and joint pmf of the 

output present, output past and input past	,(.), ,(. − !),	5(. − !).  

In the context of multi-trial experimental design where several observations are collected 

to probe a given cognitive function, the entirety of the trial data is used to generate the 

aforementioned pmfs. For example, PTE can be calculated using n 1-sec trials. Depending on 

the sampling rate (fs), the data used to generate the pmf would be nTrials*tTimepoitns*fs values. 

Such data indexing would provide a single PTE measure for the 1-sec period, using timepoints 

from all trials, and defining the timepoint as the observation. 

An example from chapter 4 is provided, whereby a single PTE is calculated using 1-sec 

trials, separately for two conditions (correct and incorrect subject response; lure- and lure+, 

respectively, Fig. 1).   
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Figure 1. Example application of PTE calculated over a single time epoch 

(see chapter 4 for more detailed figure information) 

 

5.2 Extension of the PTE metric into a time-dependent one 

The PTE measure can be adapted to a time dependent one. PTE can be calculated in 

moving windows of shorter duration (ex. 0.5 sec) and with a small step size (ex. 10ms or 50 ms). 

The pmf generated for a time-dependent metric would be estimated separately for each time 

window, using datapoints only from the time window of interest (ex – the first window would be 0-

0.5 sec), then iteratively repeating the PTE calculation for each moving window. This would then 

yield a time dependent PTE metric (Fig. 2).   
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Figure 2. Example application of time dependent PTE  

(see chapter 4 for more detailed figure information) 

 

5.3 Considerations regarding time-dependent PTE estimates 

A crucial step to the PTE calculation is the probability mass function estimates. With 

smaller time windows, less observations (time-points) are available for such estimates.  

Therefore, the choice of a time-window (and utilized fs) should account for the trade-off between 

temporal granularity and adequate pmf estimates. Qualitative approaches for evaluating the 

adequacy of the pmf estimates include comparing the variability in PTE output measures for small 

step sizes between windows (large % overlap). Additionally, the time dependent PTE measure 
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(mean PTE across all time windows) should be consistent with the single PTE calculated over the 

entire period. Both qualitative tests are met in the examples provided above (Figs. 1-2)  

5.4 Advantage of time-dependent PTE in the context of neural data analysis 

The brain operates at a wide range of time scales, exhibiting ultraslow (0.01 to 0.1) to 

ultrafast (400-800 Hz) frequencies (Hughes 2008, Watson 2018). Behavioral neuroscience 

experiments occurring while neural data is simultaneously collected traditionally have a 

trial/condition based design, whereby each trial is of particular duration relevant for the behavior. 

Since behavioral executions occur at slower time scales compared to underlying neural processes 

that support such behavior, having a fine-grained (faster time scales) analysis of neural processes 

is critical.  

In the examples provided above, the single PTE metric calculated using 1-sec data for the 

lure+ condition (successful memory performance) suggests there is larger PTE for the neocortex 

à hippocampus direction (Fig 1). However, the temporally fine-grained analysis using time-

dependent PTE shows that the directional communication is largely bidirectional; sometimes the 

hippocampus à neocortex direction is larger than the neocortex à hippocampus, and vice versa 

(Fig 2). This finding of bidirectionally of communication between these two memory systems was 

meaningful given a prior unidirectionality hypothesis in the field. Lastly, this approach informs as 

to where in the 1-sec trial directional biases occur; in the current example, the neocortex à 

hippocampal directional bias predominated specifically in the later period of the trial. This guided 

the interpretation of the single PTE metric calculated in Figure 1, regarding what kind of 

information (ex. perceptual vs. mnemonic) may be communicated to the hippocampus by the 

neocortex.  

5.5 References 
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5.6 Kalman filter-based granger causality for estimating directional communication 

between the hippocampus and the neocortex. Abstract 

We aim to examine the directionality of communication between hippocampus and 

neocortex, using the same data as in Chapter 4, using an alternate approach. Here, we used 

the General Linear Kalman filter to estimate the coefficients of a multi-variable, time-varying 

autoregressive model (MV-TV- AR). Subsequently, we implemented time-varying partial granger 

causality (tv-pGC), which incorporates the measurement residual and measurement prediction 

covariance, to infer temporal relationships between brain areas. We found that the estimated 

model can successfully predict a given measurement point, using a linear combination of past 

measurement values weighted by the estimated AR coefficients. Moreover, we found an 

increase in GC index, reflecting directional communication from the hippocampus to the 

neocortex, preceding successful discrimination between highly similar memories.  

5.7 Kalman filter-based granger causality for estimating directional communication 

between the hippocampus and the neocortex. Introduction 

We aim to model the human intracranial multi-trial, multichannel data during a pattern 

separation task (see Chapter 3 for a detailed description of the experimental design and 

associated data) using a time-varying multivariate autoregressive (MV-TV- AR) model. This 
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model will then be used in a Granger causality calculation to enable for the investigation of 

directional linear dependence between neocortex and hippocampus that support pattern 

separation [1].  

Given that the spectral content of the data as well as the interaction of neural ensembles 

change with time, and the large number of implanted electrodes, we will utilize a time-varying 

multivariate model, respectively [2]. The model is estimated using a General Linear Kalman 

Filter (GLKF), which is similar to the classical Kalman filter counterpart, however, it differs in that 

it extends the state space representation to a matrix state space model for a multi-trial, 

multivariate time series [3]. In comparison to other estimators, Kalman filtering has gained 

acceptance for its accurate instantaneous estimation of time-varying AR parameters modeling 

high dimensional data [2]. In regard to data with high signal-to-noise ratio, and large number of 

electrodes and trial numbers, it was shown that the GLKF outperforms the classical one [2]. 

Subsequent to estimation of the TV-MVAR model parameters by means of the GLKF, a 

measure of linear dependence between brain regions, the granger causality index (GCI) is 

calculated.  

Using the AR modeling by means of GLKF followed by GCI, we observed an effective 

functional connectivity in the hippocampal- neocortical network as well as within the 

hippocampal network that may support successful discrimination between highly similar 

memories.  

5.8 Kalman filter-based granger causality for estimating directional communication 

between the hippocampus and the neocortex. Methods 

Time-varying vector AR Model Fitting 

A time-varying, vector autoregressive (VAR) model is defined by  
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,(A) = 	6B)(A)	,(A − C) + D(A)

*

)+,
 

(1)                                                                       

Where ,(A)(./0/1)is a vector,  

B)(34546,34546) is a time-varying matrix, and 

ADEDF represents the number of electrodes, A represents the time index, and 7 

represents the model order. 

The model order was chosen such that the root mean squared error (RMSE) is reduced, while 
avoiding large 7 for computational ease and prevention of model overfitting (Fig. 1).  

 

Fig. 1. Choice of model order 
Average RMSE across all trials and all electrodes between the predicted measurement by the 
estimated AR model coefficients and the true measurement. Each line represents a different 
value of parameter c in equation 6. 
 
 

The General Linear Kalman Filter 

 Implementation of the GLKF filter was based on the reported Milde, et al. approach [3]. 

The GLKF operates based on the state (dynamic) and measurement equations defined in 

equations 2 and 3, respectively. The state equation is defined by 

5(C + 1) = 	H(C)5(C) + I(C)					C = 1,2, . . , K 

(2) 
H(C)(7,./0/1) is the state transition matrix defined as an identity (I) matrix.  

5(C)(7∗./0/1,./0/1) is the state being estimated which is p AR model coefficients. 5(C) is a time-

varying matrix.  
I(C) is the process noise, whose covariance was defined as LM(7,./0/1) where L was set to 1. 
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The measurement equation (3) is defined based on equation 1.   

N(C) = 	*(C)5(C) + O(C)	 
(3) 

*(C) = [Q(C − 1)	Q(C − 2)…Q(C − 7)]         
(4) 

*(C)(.9:;<0=,7∗./0/1) contains concatenated neural data from matrix Q> which is a 2-D matrix for 

timepoint k from Q(.9:;<0=,./0/1=,>9;?/7@;.9=) 
 

 

(Q)))+,
% 		T

Q,
,(C) ⋯ Q34546

, (C)
⋮ ⋱ ⋮

Q,
3ABCD5E(C) ⋯ Q34546

3ABCD5E(C)
X

)+,

%

 

(5) 
 

The recorded data is modeled such that for a given electrode, the trials are a collection 

of realizations from a stochastic process. Moreover, all electrodes reflect an underlying 

multivariate stochastic process. *(C)(.9:;<0=,7∗./0/1) is p past time points from 

Q(.9:;<0=,./0/1=,>9;?/7@;.9=), whose multiplication by the estimated coefficients 5(C)(7∗./0/1,./0/1) 

generate the predicted N(C). 

O(C)is the measurement noise with covariance matrix Y(C) which is defined below [4,5]. 

Y(C) = 	Y(C − 1)(1 − F) +
F+N(C) − N(C|C − 1)2

F
(N(C) − 5(C|C − 1))

A.Z[\E] − 1
 

(6) 
 

The constants L and F for the estimation of process and measurement noise, 

respectively, were set to 1 for two reasons. First, the RMSE between the recorded neural signal 

and that predicted by the estimated AR model decreased as a function of increased c (Fig. 2). 

Moreover, setting a higher value for F increases the weight in the Y(C) equation for the current 

measurement prediction errors rather than previous errors. This is reasonable given that we are 

trying to estimate the error in the measurement rather than that of the filter. Since filter 

performance improves with time, adding a larger weight to the current error rather than a 
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weighted combination of recent and past errors, will more likely capture error in the 

measurement. 

 

The following initial conditions were defined: 

5(7) = 0, Y(7) = 	 M34546 	, "(7) = M(34546,*)	        

 

Following the above definitions, the classical KF algorithm was iteratively repeated from  

C = " + 1:K as follows: 

Predicted state  
5(C + 1|C) = H(C)5(C|C) 

(8) 
State prediction covariance 
"(C + 1|C) = H(C)"(C)H(C)F + _(C) 

(9) 
Predicted measurement 
N(C + 1|C) = *(C + 1)5(C + 1|C) 

(10) 
Measurement prediction covariance 
`(C + 1) = *(C + 1)"(C + 1|C)*(C + 1)F + .Z\FD+Y(C + 1)2M3ABCD5E 

(11) 
Filter gain 
a(C + 1) = "(C + 1|b)*(C + 1)F`G,(C + 1)       

(12) 
Updated state estimate 
5(C + 1|C + 1) = 5(C + 1|C) +a(C + 1)I(C + 1) 
       

(13) 
Where I(C + 1) = N(b + 1) − N(C + 1|C) is the measurement residual, 

(14) 
and N(C + 1) = Q(b + 1) is the recorded neural data. 

(15) 
Joseph form covariance update 

"(C + 1|C) = +M −a(C + 1)*(C + 1)2	7(C + 1|C)+M −a(C + 1)*(C + 1)2
F

+	+a(C + 1)	.Z\FD+Y(C + 1)2M3ABCD5Ea(C + 1)′2	 
 

Filter performance was evaluated based on RMSE (Fig. 2, 3) of the measured signals versus 

the signal predicted by the estimated AR model.  
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Time Varying Partial Granger Causality Index 

Granger causality index (GCI) is a measure of the degree to which information in a given 

signal can be explained by the past of another signal. In order to calculate time varying-partial 

GCI (tv-pGCI), a ratio of the prediction error term from the estimation of AR model is used. 

Since the AR model cannot perfectly explain the time series, at each time iteration k of the 

Kalman filter, there is an associated prediction error  

"$(C) = Y(C), where 

 Y(C) = Y(C − 1)(1 − F) +	
6HI())GI()|)G,)K	HI())GI()|)G,)K!

3ABCD5EG,  

First, "$(C) is calculated with all electrodes included. Then, "$B4MN64M(C) is calculated each 

time with a single electrode removed.  

.I, 7dLM	C→O	 = EA e
"$B4MN64M([, f)

"$(f, f)
g 

(17) 
 

Focusing on the diagonal elements, a ratio of PEreduced(j, j) (with electrode i removed) to 

PE(j,j) (with all electrodes included) indicates whether there was a reduction or an increase in 

prediction error of the signal in electrode j, with electrode i removed. A tv-pGCI ratio greater 

than zero, indicates a directional relationship from signal i to signal j, in that prediction error of 

signal j is reduced with the inclusion of electode i. GCI is calculated between all possible pairs of 

electrodes, and as a function of time. 

Intracranial recordings and memory task data acquisition  

The data utilized for this study is from a human subject who underwent a neurological 

surgery for implantation of electrodes in the brain for clinical monitoring. Local field potential 

recordings were acquired from over 100 electrodes covering brain regions including neocortex 

and hippocampus. Recordings were acquired at a sampling rate of 5000 Hz while patients 

engaged in a task that required discrimination between highly similar memories.  
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5.9 Kalman filter-based granger causality for estimating directional communication 

between the hippocampus and the neocortex. Results 

General Linear Kalman Filter and AR Model Performance  

Proper GLKF performance would indicate proper estimation of the AR model 

coefficients. We tested the accuracy of the estimation of the AR model coefficients by applying 

equation 1, in that we used the model to predict a current value of the signal given a linear 

combination of past values of the signal weighted by the coefficients. Figure 2 shows an 

exemplar trace of the true signal compared to that of the predicted signal by the model. The 

average RMSE across trials and electrodes between the measured and predicted signals is 

0.17 – a value that is over 257 times smaller than the RMS of the data (43.396) (Fig. 4).  

We used the same procedure of average RMSE calculation to define the model order 

and filter parameter c (Fig. 2, 3). We found that average RMSE decreases with model order for 

any parameter c (Fig 1). Therefore, the model order was set to 10 given the trade-off between 

RMSE and computation time. Subsequently, different values of c were examined for the model 

order 10. This parameter is part of equation 6 for Y(C) and _(C) estimation – an approach 

previously applied to neural data [3]. The parameter c was set to 1 for a decreased RMSE and 

as well as to add a higher weight to current error rather than previous errors in the GLKF 

algorithm.  
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Figure. 2. Examination of filter and model performance 
The main figure shows an overlay of the observed signal (recorded neural signal) in orange and 
the predicted signal by the estimated AR model coefficients in blue. Since there is high 
correspondence between the estimated and observed, the two signals are plotted in the inset 
with a +50 y-axis shift for better visualization.  
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Figure 3. Definition of filter parameter 
Average RMSE across all trials and electrodes between the observed measurement and that 
predicted by the estimated AR model coefficients as a function of filter parameter c. Significantly 
large errors are observed for values of c <0.15. Shown in the inset figure, is the average RMSE 
for values >0.15. 
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Figure 4. Distribution of voltage values of recorded data 

 

Tv-pGCI  

In order to investigate the directionality of interaction between different brain areas 

during successful discrimination between highly similar memories, tv-pGCI was computed. More 

specifically, the direction of interaction between different neocortical sites and the hippocampus 

was examined during two behavioral conditions: successful discrimination (pattern separation) 

and failure to discriminate (pattern completion) between similar memories. Using data from one 

patient, observed is a decrease in GCI from hippocampal to neocortical electrodes and between 

different hippocampal electrodes in the 0.5 sec prior to display of a highly similar memory that is 

later incorrectly discriminated (Fig. 5a-b). However, this decrease in GCI is not observed 

preceding the trials where successful discrimination occurs. This effect was observed between 

cingulate cortex and prefrontal cortex with the hippocampus. 
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Figure 5a. Neocortical (cingulate cortex)-hippocampal connectivity matrices during a 
memory task 
Mean tv-GCI in the 0.5 seconds preceding stimulus presentation (first column), the first second 
after stimulus presentation (second column) and the 1-2 seconds after stimulus presentation 
(third column). This was computed for two behavioral conditions: successful pattern 
discrimination (first row) and failure to discriminate (second row). Voxel values represent linear 
dependence (GCI) from row i à column j. Each voxel of the first two rows represents an 
electrode from cingulate cortex, and the reminder 6 rows represent electrodes from the 
hippocampus.  
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Figure 5b. Neocortical (prefrontal cortex)-hippocampal connectivity matrices during a 
memory task 
Same as in Figure 5a. Here, each voxel of the first three rows represents an electrode from 
prefrontal cortex, and the remainder 6 rows represent electrodes from the hippocampus. 
 

5.10 An alternative approach, Kalman filter-based granger causality, to estimating 

directional communication between the hippocampus and the neocortex. Discussion 

In this study we utilized the GLKF to fit a TV-MVAR model to intracranial neural data 

acquired from a human subject during engagement in a memory task. The GLKF is considered 

to be a useful estimator for this dynamical problem given the desired instantaneous estimates 

and its improved performance for the multi-trial, multichannel and high SNR case. Moreover, the 

generation of instantaneous prediction error, which is not the criterion for optimality, makes 

detection of GCI by means of prediction error ratios feasible.  



 146 

Using the described methodology, we have shown that the estimated AR model 

parameters can successfully generate observed data with small RMSE. It is important to note 

that the number of parameters to data points, in this case, may be too large. Replication of 

these results with smaller model parameters is crucial to prevent overfitting. 

GC analysis revealed hippocampal-neocortical directional influence that supports pattern 

separation. More specifically, stronger hippocampal influence on neocortical structures is 

observed only prior to trials that are later successfully discriminated, however, it is not observed 

prior to failure to discriminate. This could suggest that a minimum baseline communication from 

the hippocampus to the neocortex is required for successful performance. This baseline 

communication may involve the initiating of indexing of previously stored memories to extract 

memory features from neocortex. After this indexing and feature extraction takes place, then 

successful comparison between previously stored memories and their highly similar currently 

presented counterparts can take place.  
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Chapter 6: System identification of a given brain region reveals comprehensively its 

basic operational rules (inductive) 

 

Solving the fundamental neural code of the hippocampal CA1 apical dendritic system 
 

6.1 Abstract 

Mathematical formulas that fully capture the governing dynamics of synaptic 

transmission are required for constructing biologically realistic models of brain networks as well 

as gaining insight into their fundamental operations. We investigated the feasibility of deriving 

such a formula – an input-output transformation function for the CA3 to CA1 node of the 

hippocampus. Surprisingly, and in contrast to the field’s general belief, in vitro slice experiments 

indicated that these synapses behave in a nonlinear fashion. We used randomly spaced 

activation of CA3 projections and the Volterra expansion technique for nonlinear system 

identification of the CA3-CA1 system. The resultant function revealed the key computations of 

the CA1 (i.e. attenuation, amplification, linear, and nonlinear filtering based on input 

characteristics). Additionally, the function accurately predicted the continuous waveform of 

recorded CA1 field excitatory postsynaptic potential (fEPSP) responses with minimal error on 

data collected from a second set of animals that were not used for function estimation. Thus, the 

function appears to describe a fundamental and generalizable rule for an essential link in 

hippocampal circuitry. This work paves the path to uncovering the governing dynamics of other 

components of the hippocampal system and ultimately, the entire brain. 

 

6.2 Introduction 

The hippocampus constitutes a relatively minor (<1%) portion of the human forebrain but 

plays a pivotal role in the encoding and storage of declarative long-term memories [1]. 

Theoretical and computational models have long proposed that the dentate gyrus (DG) could 
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serve to orthogonalize overlapping inputs such that our highly similar day to day memories can 

be distinctively encoded and stored (i.e., pattern separation) [2-5] Conversely, for memory 

retrieval, the massive recurrent collateral system of CA3 was hypothesized to act as an auto-

associative network, recovering an existing stable pattern when presented with a partial/noisy 

cue of such memory (i.e., pattern completion) [2-4, 6]. Experimental studies in rodents [7-12] 

and humans [13-15] have provided convergent evidence that pattern separation and completion 

are indeed processes instantiated in hippocampal circuitry[16].  

These studies collectively use what is, in essence, a ‘top-down’ deductive strategy in 

which the goal is to identify local phenomena that can account for macroscopic (behavioral) 

effects. Conspicuously absent are complementary ‘bottom-up’ inductive approaches through 

which identification of fundamental principles can be attained. While the former provides 

answers to the specific questions tested, the latter reveals physiological rules that link biological 

phenomena with behavior. Despite significant progress in our understanding of the 

hippocampus thus far, we are still missing a mapping of its fundamental operations. This has 

limited our capacity to build a realizable construction of the hippocampal circuit that is complete 

and accurate, and more generally, to build biological models that are generalizable across 

problem domains. We therefore employ an inductive approach to comprehensively, agnostically, 

and rigorously study the hippocampal circuit [17]. 

System identification, a powerful tool widely used in engineering, aims at fully and 

accurately characterizing all possible operations performed by an unknown system (i.e., a black 

box) (Fig. 1A). Applying methods from this field to a particular synapse in the hippocampus (an 

unknown system), we have employed a bottom-up approach to identify nearly all the 

fundamental principles that govern its dynamics. The Volterra series expansion technique (VSE) 

for system identification fully captures nth order system dynamics in an agnostic manner (with no 

prior assumptions about the system, Fig. 2A right panel). This agnostic approach prevents the 

generation of partially complete or misleading models [17]. With sufficiently exciting inputs that 
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tap into the system’s operational range and a clear definition of the hardware of the system 

being studied (achieved with an in vitro setup for establishing causal links between inputs and 

outputs), a unique solution of a system input-output transformation function – a single formula 

describing a system that can predict its output to an arbitrary input – is obtained (Fig. 1A). We 

note that the term “transfer function” traditionally refers to linear systems, however, for 

convenience, our use of this term extends to nonlinear systems (Halás & Kotta, 2007). The 

power of this single mathematical formulation is not merely the generation of a predictive model, 

nor is it providing insight into some of the tendencies/operations performed by the system. 

Rather, this function ensures accurate and complete characterization of the entire system under 

normal conditions which are approximated in our experiments [17]. A consequence of these 

specifications is a predictive formula that can be applied not just within but across animals. 

     Examination of this transfer function in the time and frequency domains reveals the 

operations that the system performs. Kernel examination in the time domain reveals the kinds of 

inputs a given system suppresses or amplifies, how these operations vary as a function of input 

recency, and the extent of/type of nonlinearities in the system. Examination of kernels in the 

frequency domain reveals the system’s linear filtering properties (1st order kernel) and influence 

of interactions of multiple frequencies in the input on the frequency content of the output (higher 

order kernels; i.e. harmonic generation, intermodulation between pairs of input frequencies) 

[18]. Therefore, the agnostic, complete, and rigorous nature of this approach leads to the 

discovery of universal mathematical rules guiding the system’s synaptic physiology and 

representing fundamental laws of nature that translate to a major leap forward in our 

understanding of the brain. 

Synaptic transmission relies on currently present input and responses that occurred in 

the recent past – frequency facilitation and depression are well-studied examples. The factors 

controlling these interactions are numerous and involve diverse mechanisms operating over 

different temporal scales (e.g., release dynamics, feedforward IPSCs, summation and shunting, 



 150 

dendritic channels). Whether the entirety of such immense biological complexity can be 

accurately and concisely captured in a single mathematical description is an open question. 

Here, we report the successful derivation of a generalizable transfer function that fully describes 

up to 2nd order operations performed by CA3:CA1 synapses on arbitrary input patterns in order 

to generate observed outputs. The function can predict with minimal error the output to arbitrary 

inputs delivered to the CA3:CA1 node of new animals that were not used for the transfer 

function estimation. Examination of this transfer function revealed rules about the CA3:CA1 

synapses not previously known, to the best of our knowledge, despite this being one of the most 

heavily studied synapses. Surprisingly, we also find that the dynamics of these synapses violate 

linearity, which has been a long-standing assumption in the field. These results establish the 

feasibility of incorporating neurobiologically grounded rules for communication into network 

models of hippocampus and other structures.  

 

6.3 Result 

The CA1 is a nonlinear system 

We first tested the prevailing hypothesis that the CA1 is a linear system [12, 16] (Fig 1B-

C). A system is linear if and only if superposition holds (Fig 1D). Superposition principle states 

that the output to a linear combination of individual inputs would be the same linear combination 

of the individual outputs. For example, if y1 is the output to x1, and y2 is the output to x2, then the 

output to ax1+bx2 would be ay1+ by2 for any weights a, b, and inputs x1, and x2. A linear mapping 

for scalar inputs is a straight diagonal line (Fig. 1D, bottom plot) – the long-hypothesized CA1 

transfer function. In order to test whether the CA1 is linear, we stimulated the Schaffer 

collaterals at varying input magnitudes and recorded the corresponding output from the CA1 

apical dendrites (Fig. 1E). Field excitatory post-synaptic potential (fEPSP) amplitude and slope 

(Fig. 1F) were plotted as scalar values in response to the input (Fig. 1G). As shown, these two 

output measures do not vary linearly with the input, thus, system superposition is negated, and 
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therefore CA1 apical dendrites fail the linearity test (Fig. 1F). To further test whether a linear fit 

could explain the relationship between the input (stimulation voltage) and output (fEPSP slope), 

we ran a lack of fit hypothesis test and found that a linear regression line does not fit the data (p 

< 0.0001, F (79,144) = 74.6, Fig. 1G). This is further evidenced by examining the deviation of 

the data from the line of best fit; the error is not zero with constant variance. Rather higher error 

values are present in the earlier and later ranges of x. Noteworthy is that the system behaves in 

a linear manner over certain ranges of the input (piecewise linear over the approximate x ranges 

of ~1-4, ~5-9, and ~10-15), when considering slope as a function of the input.  
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Figure 1. The CA1 is a nonlinear system 
A, block diagram. X(n) is the input, y(n) is the output, and the block represents an unknown 
system. Identifying the function which transforms the input into the output reveals the unknown 
system. B, Hypotheses regarding input-output transfer functions of hippocampal subfields. C, 
CA1 block diagram representation of the popular belief of CA1 linearity. D, superposition is a 
mathematical definition of linearity. Superposition: any linear combinations of any inputs yields 
the same linear combination of the individual outputs. A linear system must display 
superposition and will have a line as its input-output curve (bottom). E, Schematic of slice 
electrophysiology recording set up. Inputs X(n) were delivered to the Schaffer collaterals and 
outputs y(n) were recorded from the CA1 apical dendrites. F, Field EPSP peak value (left, red) 
and slope (right, blue) detection. G, CA1 input-output curve. Inputs are varying voltages and 
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output are fEPSP slope (blue) and peak (red). Line of best fit for slope as a function of input 
magnitude is overlaid (n=225). Lack of fit test showed that a best fit line does describe the input-
output data (p < 0.0001, F (79,144) = 74.6).  
 

CA1 nonlinear system identification 

Characterization of a system’s operations (i.e., identifying its transfer function), differs 

based on whether or not the system is linear. For a linear, time-invariant system, estimating the 

function h(i) would fully characterize the system (Fig. 2A-B, D). For a nonlinear system, 

nonlinearities would not be captured in h(i) but in higher order terms (Fig. 2A-B, E). Since 

linearity did not hold in CA1, we identified the CA1 apical dendritic transfer function by 

estimating both h(i) and h(k,m) to capture linear and nonlinear components, respectively (Fig. 

2C), using the VSE technique for system identification [17]. We have truncated this expansion in 

two ways: 1) system order, p, was defined as 2 whereby only quadratic non-linearities of the 

system are captured and any higher order nonlinearities that might be present are ignored, and 

2) system memory, L, was defined as 60 msec. The term h(i), the first order kernel, is a vector 

of weights on current and past input values that contribute to the current output (Fig. 2B, D). 

The term h(k,m), the second-order kernel, is represented by a symmetric matrix; its diagonal 

slices reflect weights for how the multiplicative nature of neighboring input values τ timepoints 

apart influences the output (Fig. 2B, E). Different diagonals reflect weights for different lags 

(τ’s). Within a diagonal (a fixed τ), values further along that diagonal reflect weights for the 

multiplication of τ neighboring inputs that have already occurred in the more distant past relative 

to the current output (i.e., the memory of the system, and more simply, the CA1 record of its 

input history, Fig. 2B).  
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Figure 2. CA1 nonlinear system identification 
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A, schematic of a division of system types—linear and nonlinear. Corresponding methods to 
fully characterize each type. B, h(i) is a vector of weights. H(k,m) is a 2-d matrix of weights. 
H(k,m) is a function of two parameters, the inter-spike-interval (ISI, or tau) represented by a 
fixed diagonal, and how far in the past the ISI occurred (moving along the diagonal) C, block 
diagram for the CA1 non-linear transfer function (h(i), h(k,m)). D-E, Schematic representation of 
how h(i) (D) and h(k,m) (E) reflect system linear and 2nd order nonlinear operations, 
respectively. Output traces in D and E are not exact, but approximations to serve as an 
illustration. 
 

Estimation of first and second order Volterra kernels 

To estimate the first and second order kernels, we stimulated the Schaffer collaterals 

with pulse train signals x(n) and recorded the output signals y(n) from the apical dendrites of the 

CA1 (Fig. 3A). For each animal (n=11), input signals were delivered in two 15-minute sessions. 

Input spike time was drawn from a Poisson distribution with a spike rate of 2 spikes/sec and 

spike amplitude chosen uniformly from two values (x1 which induces a sub-maximal fEPSP 

response y1 of around 3-4 mV, and x2 as a fraction of x1 [either ½ or ¾] Supplementary Figure 

2). These input properties and experiment durations were carefully chosen through simulations 

to ensure kernel estimation accuracy (Supplementary Figure 1).  

Similar to other brain areas, the CA1 likely contains subsystems with their own 

governing dynamics, such as dendritic layer field responses and cell layer spiking (Fig. 3B). 

Linking these subsystems together, a transfer function for input spike patterns x(n) to output 

spike patterns s(n) —the fundamental unit of communication in the brain, which is currently 

uncharacterized—can be obtained. Here, we start with identifying the transfer function (h(i) and 

h(k,m)) which transforms spike input into a net apical dendritic field output, fnet(n) (Fig. 3C). 

Estimation of these kernels is reformulated as a least-squares regression problem. Group kernel 

estimates were obtained using the last 12 minutes of the 2nd 15 minute session from each 

animal and after normalizing the input-output data (Fig. 3D-E). The unit impulse response (Fig. 

3E right panel), which is the sum of the first order kernel (Fig. 3D) and second order main 

diagonal entries (Fig. 3D-E), is by definition, a system’s response to a delta-function (i.e., a 

spike). For the dendritic system, as predicted, this is the fEPSP (See Supplementary Figures 
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3-6 for individual animal estimates). The magnitude of the 2nd order kernel diagonal values 

(1.563) is larger than that of the 1st order kernel (0.6386 Fig. 3D-E). Using these two values, the 

contribution of the linear component (h(i)) and nonlinear component (h(k,m)) to the peak output 

is quantified as a function of the input (Fig. 3F, top formula and bottom graph). The ratio of 

nonlinear to linear contribution increases with increasing magnitudes of the input (the square of 

the input is larger, thereby applying h(k,m) weights to this larger square contributes more greatly 

to the output). For the CA1 apical dendritic system, the nonlinear component outweighs the 

linear one in generating the output at input values larger than ~0.4. 
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Figure 3. Estimation of first and second order Volterra kernels 
A, linking mathematical formulation (left) to experimental design (right). Y(n) and x(n) are the 
known recorded and stimulated signals, respectively. The CA1 system, h(i) and h(k,m), is 
unknown. B, Large gray box represents the block diagram of input spike patterns x(n) 
transformed to output spike patterns s(n). Black line focuses on the proximal dendritic domain, 
and the two other domains are faded (distal apical and basal). Primary branch, secondary and 
tertiary branches are shown each with their respective inputs, X1(n),..,X3(n), field outputs, f1(n) 
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,..,f3(n) and nonlinear transfer functions hf1(i), hf1(k,m)… hf3(i), hf3(k,m). fnet is the net voltage from 
dendritic field outputs. This is for a given post-synaptic cell. fnet from approximately 15 different 
cells are measured with the recording set up. fcb reflects the voltage signal at the cell body, 
which is digitized (sigmoid in magenta) at the axon hillock to 0,1 for spike or no spike, 
respectively. C, Block diagram of the proximal apical dendritic subsystem that transforms 
Schaffer input x(n) to fnet from ~15 cells. D, the identified CA1 Apical dendritic system; h(i), 
h(k,m). E, h(k,m) main diagonal slice, h(k,k) (left) and system unit impulse response (UIR) 
(right). F, Quantification of system nonlinearity. Using the peak values of the h(i) and h(k,m) 
(indicated in E), the predicted output peak (black) is plotted as a function of the input. h(i) and 
h(k,m) contributions to the output are displayed in magenta dashed and solid lines, respectively. 
Percent of output generated by the nonlinear system component is shown in green. The 
intersection of the vertical and horizontal lines indicates that the nonlinear contribution to the 
output outweighs the linear one for input ranges larger than ~0.4. 
 

Estimated CA1 transfer function reliably predicts CA1 output on new animals 

We next asked whether we can use the estimated group transfer function to predict the 

CA1 response on external data (i.e., in other animals). To do so, 11 different estimates of the 

CA1 apical dendritic transfer function were made; for each iteration, data from 10 animals were 

used to estimate the transfer function, which was then used to predict the CA1 output for the 

11th animal (Fig. 4A). Normalized external prediction error across the 11 animals (12 slices) was 

0.0669%. The transfer function was therefore generalizable to new data, and reliably predicted 

the output, despite the complexity of the input patterns (Fig. 4B). 

We next quantified the importance of the nonlinear component of the CA1 transfer 

function to external prediction accuracy, by quantifying the drop in prediction accuracy when 

using only a first order kernel (linear system) compared to using both the first and second order 

kernels (Fig. 4C). To do so, we separately estimated two transfer functions; one whereby the 

optimum stand-alone h(i) kernel estimates were made, and a second whereby the jointly 

optimum h(i) and h(k,m) were co-estimated. We found that prediction error on external data was 

significantly lower when using the transfer function of a nonlinear CA1 system in contrast to a 

purely linear system (p = 0.001, paired non-parametric permutation testing).  

An estimated linear system failed to predict the CA1 output to both single pulses (Fig. 

4D) and more complex temporal pulse patterns (Fig. 4E). Using single pulse inputs, a linear 
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system failed to predict the change in output fEPSP amplitude with a change in input stimulation 

– since it assumes superposition (i.e., increasing the input by 75%would proportionally increase 

the fEPSP negative peak by 75%, Fig. 4D). This superposition is also the only mechanism 

employed by a linear system to predict the output on successive pulses at random times and 

amplitudes, leading to error accumulation (Fig. 4F). Conversely, the estimated nonlinear 

transfer function tracks isolated inputs of variable magnitudes (Fig. 4D) as well as arbitrary 

pulse patterns (Fig. 4B) by accounting for their time of occurrence and the lag between all 

possible pairs of spikes (Fig. 4F). Examination of the second order kernel weights reveals that 

the CA1 amplifies consecutive pulses that are 2 to 5 msec apart (leading to a less negative 

fEPSP), having occurred anywhere from 5 to 30 msec in the past relative to the current time 

point being predicted (Fig. 4E inset). These ranges were extracted from a pruned second order 

kernel. Included in this pruned matrix are the entries of the second order kernel whose values 

were either below or above the 5th and 95th percentiles, respectively, of the mean divided by the 

standard deviation of entries across all animals (consistently large negative and positive 

weights, respectively, across animals). Capturing these CA1 dynamics in the second order 

kernel enables the nonlinear transfer function to reliably predict the output to a random input.  
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Figure 4. Estimated CA1 transfer function reliably predicts CA1 output on new animals 
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A, Table (top) and (bottom) plot displaying external animal prediction error (model generated 
using n-1 animals, with the test animal excluded). B, Example of predictions from animal 8 data 
for isolated spikes (top row, first two panels), successive spikes (top row, third panel), and 
paired pulses of variable inter-spike-intervals ISI (remaining). All examples were extracted from 
a continuous 15-min recording. C, Differences in external animal prediction error using jointly 
optimum h(i), h(k,m) and the optimum h(i), reflecting nonlinear and linear systems, respectively 
(p = 0.001, paired non-parametric permutation testing). D, Black traces reflect mean true 
response to x1 (top) and x2 (bottom) to isolated spike inputs (not preceded nor followed by 
spikes in the prior 1-sec and 0.25 sec, respectively). Predicted waveforms by linear and 
nonlinear CA1 are shown in blue and magenta, respectively. Linear CA1 applies superposition 
(y2 is the same linear combination of y1 as x2 is of x1.). E, Pruned h(k,m) displays a 
thresholded matrix where included voxels are those in the top and bottom 5% of the 
standardized mean (mean/standard deviation) kernel value distribution (top). Positive weights 
(red rectangle) are applied for input pairs with an ISI of 2-5 ms. Weights attenuate as a function 
of the ISI past (blue bracket). Negative weights are present for ISI’s of 40-60 ms (blue voxels). 
F, Illustration of utility of pruned model for output generation. An input of two spikes that are 2 
ms apart is shown in green. Part of the predicted output value at 15ms, generated by the 
nonlinear term, is the input weighted by the 15th element of the matrix slice that is 1-off the 
diagonal. 
 

6.4 Discussion 

The work presented here is a formal identification of the computational operations of the 

hippocampal CA1 apical dendritic system. We first experimentally tested the general belief that 

the transfer function for the Schaffer collateral input to CA1 output is a linear function [12, 16, 

19-21] and found clear evidence for non-linearity (Fig. 1D). In further support of this finding, we 

demonstrate that if the CA1 transfer function is estimated based on assumed linear dynamics, 

such transfer function fails to predict not only the output to complicated input patterns, but also 

responses elicited by single pulses of variable amplitude (Fig. 4D). To identify the nonlinear 

transfer function of the CA1 subsystem, we used the VSE – an agnostic technique that 

completely characterizes an rth order system with rth order kernels, capturing the entirety of a 

system’s dynamics, and enabling the prediction of output in response to arbitrary input [17]. We 

reliably identified the first and second order kernels in individual animals (Supplementary 

Figure 3-4) and, using this identified CA1 subsystem transfer function, successfully predicted 

with high accuracy the dendritic output to complex input patterns delivered in a separate group 

of animals (Fig. 4).  
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Examining this transfer function revealed new insight about system dynamics. First, the 

summation of the first order kernel and the diagonal entries of the second order kernel, by 

definition, are the unit impulse response (UIR) of the system (response of a system to activation 

of its afferents with a spike input) (Fig. 3D-E). Indeed, the sum of these two estimates yields the 

fEPSP (Fig. 3E right panel).  

Second, we found that deviations of the system dynamics from linearity can be 

quantified in a generalizable manner and are dictated by the ratio of h(k,m) to h(i) magnitude. 

The larger the ratio, the earlier the deviation occurs (at smaller values of x). For the CA1 apical 

dendritic system, nonlinearities make up more than 50% of output magnitude at normalized 

input values larger that ~0.4; at these values, the 2nd order kernel contributes more to the fEPSP 

waveform. More generally, this approach of quantifying system nonlinearity provides a means 

for the canonical comparisons of nonlinearities across the hippocampal subfields (DG, CA3, and 

CA1 Fig. 1B), which is a key rationale for subfield engagement in the core memory processes 

of pattern separation and completion. 

Third, use of the 2nd order kernel was critical to capturing system 2nd order nonlinearities. 

More specifically, in the time domain, h(k,m) contains a weight for the multiplicative interaction 

of all possible pairs of input values and their distance in time from the present output. This 

allows for temporal summation to occur, whereby the influence of the multiplicative interaction of 

neighboring values of the input and CA1’s memory for such neighboring values, dictate the 

output. Examination of the CA1 apical dendritic system 2nd order kernel reveals that the positive 

weights (less negative fEPSP) are applied to neighboring values of the input that are ~2-5 msec 

apart (paired pulses in the ~150-500 Hz range), keeping them in memory for ~5-28 msec. In 

contrast, the system applies negative weights (more negative fEPSPs) to neighboring values of 

the input that are ~40-60 msec apart (paired pulses in the ~16-25 Hz range) (Fig. 4E-F). The 

comprehensive approach used in the present work has thus revealed previously undetected 

physiological operations in one of the most intensively studied synapses. Notably, unexpected 
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rules afford an opportunity for strong synergies between the current inductive strategy and the 

deductive investigations conventionally used in neuroscience. This would involve the 

development of a priori hypotheses about how physiological processes with different time 

constants (e.g., transmitter mobilization, feedforward inhibition) interact to produce 

generalizable rules.   

While kernel estimates were relatively consistent from animal to animal, the first order 

kernels did show some variability (Supplementary Figure 3). This is due to the presence of two 

types of first order kernels extracted across animals; one which resembled an upward sloping 

fEPSP (type #1; reflected in the grand average, Fig. 3D) and a downward sloping one (type #2). 

This difference in 1st order kernel estimate is consequential and informs as to the nature of 

system output as a function of input. 1st order kernel type #2 will lead to a more negative fEPSP 

contribution in addition to the negativity generated by the 2nd order kernel. This greater 

negativity effect will be even larger for smaller inputs where h(i) predominates the response 

compared to h(k,m) (compare Supplementary Figure 2-3).  

The low amplitude fEPSPs used in the present study are generated by a small fraction of 

the synapses (~15) at the recording site in the proximal apical dendrites of CA1. Termination 

patterns, and thus spatiotemporal summation of EPSPs, will likely differ significantly across 

stimulation and recording electrode sites (Fig. 3B). Similarly, the number of contacts with 

feedforward interneurons that shunt excitatory currents in pyramidal cells will differ between any 

two small collections of stimulated axons. Together these factors provide a reasonable 

explanation for the observed variation in h(i) kernels. 

The synapse represents a fundamental unit of communication in the brain – where input 

spike patterns are transformed into output spike patterns (Fig 3B). Knowing the transfer function 

for this process is essential to generating an adequate theory for the brain. This transformative 

process involves sequential intermediary transfer functions whereby dendritic field response 

fnet(n) to a sequence of afferent action potentials x(n) is first generated and followed by spiking 
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s(n) by the target cells (Fig 3B). Results reported here describe a transfer function for the 

dendritic component of the system while earlier system identification work provided insights 

regarding voltage fluctuations at the cell body (fcb Fig, 3B, Cook et al., 2007) and translation into 

spike output [22-27]. 

Included in the latter are quantitative analyses of voltage transfer along the main 

dendritic shaft to the fcb [28], information that is crucial to modeling EPSP-initiated spiking 

patterns. Other studies have used system identification to extract relationships between random 

interval afferent stimulation and the production of synchronous spike discharges by multiple 

neurons (population spikes) in the three nodes (dentate gyrus, CA3 and CA1) of the trisynaptic 

hippocampal circuit [22-24]. While transfer functions for single event (pop-spike) results reveal 

some of the system’s properties, they do not bear directly on patterns of output spikes, which is 

required for full characterization of the fundamental unit of communication in the brain. 

Systematic comparisons of input-output spike patterns have been conducted using in 

vivo recordings from CA3 (input stage) and CA1 (output stage) during well-defined behaviors 

[25-27]. By design, such studies utilize a restricted set of input patterns (those associated with a 

particular context) and thus cannot produce the generalized kernels obtained with sufficiently 

exciting inputs in an in vitro model. Moreover, correlations between the two subfields in vivo 

could in part reflect near simultaneous input to both regions from a third region such as 

entorhinal cortex or septum, areas known to synchronize activity within the hippocampus. 

Nonetheless, the results provide special cases that must be satisfied by universal models. 

Constraints are also provided by prior work reducing analog outputs to univariate measures 

(fEPSP slope and pop-spike magnitude) of CA1 elicited by specialized inputs (fixed frequency 

stimulation) recruiting different numbers of Schaffer collateral axons [29]. Thus, while prior work 

has generated important insights about input/output relationships throughout the trisynaptic 

circuit, the current work extends these insights to produce generalizable and fundamental rules 

guiding the operations of a well-studied system, the Schaffer collateral to CA1 synapse. While 
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this work identifies the transfer function of input spike patterns to the CA1 apical dendritic field 

(Fig. 3C), further work is needed to link concise mathematical descriptions of the CA1apical 

dendritic field to output spiking patterns by pyramidal neurons.     

There are a few limitations to the current work. First, two assumptions were made in 

implementation of system identification in the present study. The CA apical dendritic system 

was defined to be 2nd order with a 60 msec memory – these definitions captured the fEPSP 

transformations with small error (93% external animal prediction accuracy). Through a 

qualitative examination, we found that the 60 msec assumption is a key contributor to prediction 

error. Consistent with prior work, it is likely that the CA1 keeps a longer record of the input [29]. 

There is also a potential for higher than 2nd order dynamics [24], although this was not apparent 

in our study through a qualitative examination of model predictions to isolated paired pulses (a 

system is second order if a second order model can predict accurately the responses to isolated 

paired pulses). Future work is needed to formally test system memory length and order. 

Second, VSE is a nonlinear system identification technique for time invariant systems (system 

dynamics are stationary as a function of time). We indexed and estimated kernels using the 

most stationary segment in the data (12-min, see methods). However, our results do not 

address instances in which system dynamics change quickly and dramatically as in the case of 

long-term potentiation or depression. Whether system dynamics as captured in Volterra kernels 

are altered under these circumstances is an intriguing and fundamentally important future 

question to address.   

Other connections in the hippocampal network differ in important ways from the 

CA3:CA1 link studied here and have diverse types of specializations. They are likely to have 

transfer functions that are quite different from that described above. It will be of considerable 

interest to determine if these bear any logical relationship to inferred functions such as pattern 

separation and completion. Work in this area will also serve to evaluate the feasibility of 

integrating the transfer functions for multiple sites into a large-scale model for the entire 
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hippocampal network. Such an enterprise would first require tests of whether the strategy used 

in the present work to define dendritic responses to diverse patterns of input can be applied to 

the spiking patterns triggered by the responses (Fig. 3B). If so, then it should be possible to 

create a robust and realistic hippocampal simulation and ask if operations that emerge naturally 

from it can be directly linked to observed behavioral phenomena. Connecting this to extant 

cortical models, a step that will be facilitated by the economical nature of transfer functions, will 

be a quantum leap towards brain-based artificial intelligence.   

 

6.5 Methods 

Animals 

Experiments were conducted using 11 male mice (10 C57BL/6N and 1 sighted FVB129) 

2-3 months of age (Supplementary Table 1). Animals were group-housed (4-5 per cage), on a 

12-hr light/dark cycle, and with food and water ad libitum. All procedures were approved by the 

UC Irvine Institutional Animal Care and Use Committee and in line with the NIH guidelines for 

the Care and Use of Laboratory Animals.  

 

Hippocampal slice electrophysiology 

Animals were sacrificed between 10:00am-11:00am. Acute hippocampal slices were 

prepared as described previously [30]. Briefly, transverse slices of the middle third of the left 

hippocampus (360 um thickness) were cut using a McIlwain chopper and collected in chilled 

artificial CSF (ACSF) which contained in mM (124 NaCl, 3 KCl, 1.25 KH2PO4, 1.5 MgSO4, 26 

NaHCO3, 2.5 CaCl2, and 10 dextrose). Slices were then transferred to the interface chamber 

kept at 31±1°C and had 60-70 mL/hr infusion of oxygenated ACSF. The interface chamber was 

prepared an hour prior to slice preparation. Slices were left for 1.5-2 hours to equilibrate prior to 

recording. A stimulating electrode (twisted nichrome) was placed in the CA3-CA1 Schaffer 

collaterals and a glass recording electrode (2 M NaCl filled, 2-3 MΩ) was used to record 
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extracellular field potentials from the CA1 apical dendrites. The stimulating and recording 

electrodes were placed in the CA1b stratum radiatum with the stimulating electrode slightly 

offset towards the stratum pyramidale, and the recording electrode in the middle of the stratum 

radiatum [30]. In most animals, stimulation intensity (x1) was set to induce a ~3.5-4 mV 

population-spike free fEPSP (Supplementary Figure 2). 

 

Recording protocol 

For each animal, a 10-minute stable baseline session was recorded before experiment 

initiation. Baseline stimulation consisted of a single pulse every 20 seconds. After ensuring 

stable baseline responses, two 15-min sessions were recorded per animal. Slices were left to 

stabilize for 5 minutes without stimulation between the two 15-min sessions. Stimulation 

patterns were random with spike times drawn from a Poisson distribution (lambda of 2 

spikes/second) and amplitudes uniformly drawn from two values (x1 and x2: x1 induced a 3-4 mV 

fEPSP and x2 was a fraction of x1, Supplementary Table 1). Recording duration and patterns 

were explored and determined through simulations such that they yielded unbiased parameter 

estimates (Supplementary Figure 1).  

 

Equipment 

The stimulation signal x(n) was generated digitally in MATLAB 2018a (The MathWorks, 

Natick, MA), converted to an analog signal using a 16-channel data acquisition hardware (DA-

16, A-M Systems), which was then connected to a stimulus isolation unit (2200, A-M Systems) 

enabling the delivery of current to the stimulating electrode. DA-16 was also used to digitally 

record the delivered analog input x(t) and CA1 analog output y(t), sampled at 10,000 Hz and 

saved in MATLAB. Both stimulus delivery and recording implemented through the DA-16 were 

interfaced using MATLAB and its Data Acquisition Toolbox for Measurement Computing.  
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Analysis: Simulations 

Prior to initiation of data collection, simulations were conducted to aid in the appropriate 

experimental design for accurate and unbiased Volterra kernel estimates. Ground truth first and 

second order Volterra kernels were generated, using knowledge of the structure of these 

kernels (symmetric second order kernel) and candidate CA1 dynamics (Supplementary Figure 

1A). The ground truth first order kernel was defined as an fEPSP. This is because h(i), for a 

linear system, is the response to a delta or spike input and the CA1 apical dendritic field 

generates an fEPSP to a spike input. Using these ground truth kernels, we tested the nature of 

the input and amount of data needed for accurate kernel estimation. 

First, we found that increased randomness in the input increases the likelihood of 

tapping into the second order structure – with such input kernel weights for all possible tau’s are 

applied and reflected in the output, such that they can be recovered with the input/output data. 

We therefore decided to deliver inputs at random times pulled from a Poisson distribution, which 

also mimicked the underlying distribution of neural spike timing (Supplementary Figure 1B). 

The Poisson parameter lambda was set to 2 spikes/second. A slow spike rate was chosen to 

prevent overstimulating the slice thereby affecting its dynamics during the recording, and this 

spike rate was used in prior work [31-33].  

Second, we found that a binary input leads to estimation bias due to multicollinearity – 

where the first order kernel and the diagonal elements of the second order kernel become 

coupled. This is because the first order kernel provides weights for individual input values and 

the diagonal of the second order kernel provides weights for the square of such values (Fig. 2B, 

D-E). With a binary input (0 and a non-zero value), the square of the input vector becomes a 

linear combination of it leading to multicollinearity and estimation bias. We therefore randomly 

drew the spike amplitude uniformly from two values, x1 and x2 (x1 induced a ~3-4 mV, and x2 was 

a fraction of x1 either ½ or ¾, see Supplementary Table 1 and Supplementary Figure 2). 
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Finally, for the desired model order – a 60 msec kernel length and up to a second order 

kernel, we quantified normalized estimation error as a function of data duration 

(Supplementary Figure 1 C-D). The error reached a plateau of 0 with 13-15 minutes for a 

single session.  

 

Analysis: Data curation and preprocessing 

Data curation and preprocessing were done offline in MATLAB. The recorded input 

signal was used to identify the input timestamps. The detected timestamps were then used to 

remove stimulation artifacts from the CA1 record. Local points (17 data points ~1.7 ms) around 

the artifact peak were replaced by propagating the CA1 signal immediately before the artifact 

using the slope of the signal at the boundaries of the artifact (before and after) plus noise pulled 

from a normal distribution with 0 mean and the standard deviation of the CA1 artifact free record 

weighted by 1/16. The data was then downsampled to 1000 Hz. All individual animal kernel 

estimates took place subsequently using this data (non-normalized). 

For group analysis, additional preprocessing was implemented and consisted of within 

animal 1) pre-stimulation normalization and 2) normalization of fEPSP amplitude relative to the 

mean fEPSP induced by x1. Pre-stimulation normalization accounts for slow drifts in the data, 

which offset the starting value of the induced fEPSP. Each value following a stimulus was z-

score normalized relative to the mean and standard deviation of a 100 msec (1000 data points, 

before downsampling) period prior to stimulation that does not overlap with a CA1 response (up 

to 80 msec) from a prior stimulus. For successive stimulations, however, this baseline period did 

not exist. Therefore, successive stimuli occurring proximally in time shared the same pre-

stimulus baseline period which occurred before the train. 

After pre-stimulus baseline normalization, all values were normalized to the negative 

peak of the mean fEPSP trace induced by x1 (~3-4 mV). This enabled all y(n) output values to 

be bounded between 0 and ~-1 for all animals. Additionally, this enabled normalization of the 
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input signal across animals; whereby the x1 inducing ~ -1 normalized response was arbitrarily 

mapped to 1 for all animals. Then, x2 became simply equal to the original fraction used during 

the experiment – either ½ or ¾.  

 

Analysis: Kernel estimation 

Out of two 15-min sessions recorded per animal, the last 12-min data (most stationary 

subset) of the 2nd 15-min session was utilized to obtain individual animal estimates for 

subsequent group analysis. This choice accounted for the tradeoff between stationarity and 

sufficient data for accurate estimation (Supplementary Figures 1, 3-4). 

The curated CA1 output signal was used as the y(n) vector, and an equal length spike 

vector, x(n), was re-arranged into a matrix, Xdesign such that the kernel estimation is reformulated 

into a least squares regression problem y(n)  = X design* hall(n) and solved using the pinv function 

in MATLAB. hall(n) contains all kernels (both first and second order) in vector format. It is 

important to note that in generating the design matrix, we took advantage of the symmetry of the 

second order kernel and only estimated the diagonal and upper triangular elements of the 

kernel to reduce the number of unknown parameters.  

 

Analysis: normalized prediction error 

Normalized prediction error was quantified as the sum of the squared error (predicted - 

true) normalized by the sum of the squared true output [22]. This measure was calculated for 

stimulation epochs (each stimulation time point and the following 60msec data). Such epochs 

are ones where non-zero predictions were made, otherwise the system is assumed to be at 

rest.  
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Analysis: Statistical analyses 

Significance testing on prediction error was done using non-parametric paired 

permutation testing with 100 permutations. 

6.6 Supplementary material 

 

animal 

# 

# of 

slices 

# of 

trials 

Trial 

duration 

Stim 

protocol 

1 2 3,3 20 X1 

2 1 2 15 X1, ½*X1 

3 1 1 15 X1, ½*X1 

4 1 2 15 X1, ½*X1 

5 1 2 15 X1, ¾*X1 

6 1 2 15 X1, ¾*X1 

7 1 2 15 X1, ¾*X1 

8 1 2 15 X1, ¾*X1 

9 1 2 15 X1, ¾*X1 

10 1 3 11,15,15 X1, ¾*X1 

11 1 2 15 X1, ¾*X1 
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Table 1. 
Table displaying recording information regarding each animal.  
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Supplementary Figure 1. 
Simulation to identify recording duration and input type needed for accurate and unbiased 
kernel estimation. A, Artificially generated ground truth first (left) and second (right) order 
kernels. B, example of nonbinary (0, X1 =1 or X2 = 0.75* X1) input with ISI from a Poisson 
distribution and spike amplitude from a uniform distribution. C, Normalized estimation error as a 
function of data duration. D, Example kernel estimates (left) and h(k,m) error matrix (right) using 
1 minute (top) and 11 min (bottom) data, whose total errors are circled in C. 
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Supplementary Figure 2. 
Individual animal induced mean responses Y1 and Y2.  
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Supplementary Figure 3. 
Individual animal h(i) estimates using the last recorded 12-minutes for each animal. 
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Supplementary Figure 4. 
Individual animal h(k,m) estimates using the last recorded 12-minutes for each animal. 
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Supplementary Figure 5. 
Individual animal diagonal slice h(k,k) of the second order matrix h(k,m). 
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Supplementary Figure 6. 
Individual animal unit impulse response (UIR). 
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Chapter 7 

 

An Electrical Engineer’s journey to developing a vision for solving the neural code 

7.1 Trajectory of an electrical engineer’s investigation of the brain 

Summarized in this dissertation are the key material of my PhD work, discussed in the 

order in which the work was done. While conducting these research works, in parallel, I was 

also gaining new insight through my electrical engineering coursework. The neuroscience 

research was initially primarily done through the lens of a neuroscientist. However, the 

engineering insight gained began to influence the work. Every chapter in this dissertation and 

my engineering coursework were critical to my trajectory of studying the brain and shaped the 

development of a longer term research vision.     

My early work in neuroscience, primarily done through the lens of a neuroscientist, 

informed me of how neuroscientists think about the brain, state-of-the-art methodologies, 

experimental design, and the knowns and unknowns about the brain. Being integrated in the 

neuroscience environment and having acquired this information, I was able to identify avenues 

in neuroscience that could benefit from the electrical engineering insight gained. These avenues 

progressed from implementation of existing methodologies in system theory to the hypothesis 

driven questions in neuroscience, to adapting such methodologies, to finally, using the 

methodologies to study the brain comprehensively and inductively as a system.  

 

7.2 Key take-homes from each chapter which contributed to shaping an overarching 

vision for solving the neural code 

 

Chapter 2 

In chapter 2, using behavior alone, we learned about the brain as a system, and how its 

specifications change with experience. We showed that mice running the obstacle course were 
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generally smarter than any other group. The study showed that the brain’s prior experiences 

influence the encoding and/or storage of new experiences. From a system standpoint, prior 

processing and/or storage affects future processing and/or storage. The findings also pointed to 

a potential mechanism for this change in system specifications; numerous experiences may 

lead to efficient storage by organizing encoded information into a categorical structure making 

content readily accessible during memory recall, and new content readily integrated into this 

organized structure during learning new information.  

These inferences about the system have implications for healthy and clinical 

populations. Positively challenging life experiences that are rewarded (obstacles in the rodent 

model) can make the brain smarter and protect it from the effects of aging and debilitating 

disease. In other words, positively challenging experiences that are rewarded matter, because 

they could lead to software and hardware changes that could help make wiser and more 

resilient agents.  

 

Chapter 3 

In addition to the discoveries discussed in chapter 3, three key lessons were gained 

about the brain system. First, like physical (non-biological) systems, the brain system 

response—neural activity measured during behavior—is composed of a transient and a steady 

state phase. Interestingly, these distinct phases are distinctly linked to behavior. It’s the steady 

state period of the 20-40 Hz hippocampal response that predicted the accuracy of sequence 

memory performance.  

Second, powerful analysis tools, such as machine learning, are critical to guiding 

investigations of high dimensional neural data. Machine learning and feature selection provided 

a means to comprehensively explore a high-dimensional feature space and identify useful 

neural information and its links to behavior. This undertaking may simply be impractical to do 

with the naked eye or through a series of univariate analyses. In our study, the a priori chosen 
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time windows of 20-40 Hz power, thought to most likely be linked to memory performance (right 

after the odor is presented, and right before a decision is made), showed no link. Had we not 

examined many features through machine learning feature selection, we would have missed the 

steady-state period that is critical for memory performance.  

The last salient lesson from this study is the degree to which the 20-40 Hz signal is a 

general signal, nonspecific to a brain area. Based on the literature, 20-40 Hz is present in 

numerous brain areas and behavioral contexts (ex. motor, language, olfaction, auditory beat 

perception and more). We, however, encountered it in the hippocampus during a sequence 

memory task. This provides insight to the brain’s coding scheme – it is possibly repurposing the 

20-40 Hz signal and without interference. Finally, the seeming generality of this signal points to 

the need to understanding the basic principles of the brain–if we know the coding scheme of the 

brain, we’d know where 20-40 Hz fits operationally, and its behavioral consequences.  

 

Chapter 4 

Key take homes regarding neuroscience investigations were also obtained from the work 

discussed in chapter 4. When considering pattern separation (successful discrimination 

between memories), the field generally tended to focus on a few brain areas (hippocampal 

subfields). However, our work showed that numerous areas (hippocamps and neocortex) show 

distinct neural activity (increased 4-5 Hz power) during successful discrimination between 

memories. This pointed to the first lesson–the necessity of considering the remainder of the 

brain, since it is an interconnected network, when studying a given area. In other words, shying 

from readily ascribing key discoveries to the area in which they were discovered, and 

considering that the discovery may be generalizable to, or at least supported by, the rest of the 

brain. 

In this chapter, information theory was used in a deductive approach, to estimate a 

direction of communication between two areas, and important discoveries were made to this 



 185 

end. A bidirectional exchange between two key memory systems, the hippocampus and 

neocortex, is estimated by the phase signal of the 4-5 Hz frequency range. Although 

communication was largely bidirectional, small yet significant biases in the direction of the 

exchange varied in a behavior dependent manner (memory formation vs. retrieval and failed vs. 

successful mnemonic discrimination). It is possible that this 4-5 Hz signal is conducive to 

information transfer between distant brain areas since it is a slower frequency with a longer 

period that can account for the bottleneck of conduction velocity and multiple synaptic delays. 

An interesting extension to this work, however, would be an inductive use of information theory 

to identify the coding scheme of the brain. An undertaking would be to identify the 

sender/receiver maps across brain nodes and attempt to decode the coding scheme.  

 

Chapter 5 

In chapter 5, we adapted and applied two different techniques, phase-transfer entropy 

and Kalman filter-based granger causality, respectively, to estimate directional communication 

between the hippocampal and neocortical memory systems. The presence of these two 

approaches and their application on the same data is key for reproducibility – identifying findings 

that are robust to the approach. Future work is needed to test for reproducibility of findings 

made in chapter 4, by comparing the inferences obtained from each of these techniques.  

More generally and inductively, considering the essence of the Kalman filter, that it 

updates the mean and covariance matrix to make predictions about new observations prompts 

a higher-level possibility. This possibility was previously presented in the literature –does the 

brain operate like a Kalman filter? Update its mean and covariance to predict the best next 

action? 

 

Chapter 6 
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Finally, rather than conducting a study that prompts discussion of likely possibilities of 

brain operations or computations, we inductively and comprehensively captured these 

operations. Operations in the CA3:CA1 dendritic node were captured with limited a priori 

assumptions and in a manner non-specific to a behavioral state. We now know this is possible, 

to solve the code to one node of the brain.  

We solved the code for one of the most heavily studied nodes. Despite this, we made a 

series of discoveries never before known. We found that contrary to popular belief, the 

CA3:CA1 node is nonlinear. Moreover, examining the system solution revealed how the system 

treats input spike patterns (attenuation and suppression based on spike timing); the system 

applies positive weights to spikes that are 2-5 msec apart that have occurred anywhere from 5-

28 ms in the past relative to the current output. This speaks to the power of a comprehensive, 

agnostic and inductive approach – to ask the system to define itself, rather than the observer 

looking for what he/she assumes to be present in the system. The identified transfer function for 

the CA3:CA1 nodes generalizes across animals; the function can predict the entirety of the 

output waveform (instantaneous predictions) to arbitrary inputs delivered in a new set of animals 

with 93% mean external prediction accuracy.  

Lastly, the node for which a neural code was solved serves as a model to many other 

nodes in the brain since its basic architecture is shared -- pyramidal cells which are all over the 

cortical telencephalon. Having done this successfully, in a model node, opens the door for doing 

this in the remaining brain nodes.   

 

7.3 Possibilities that may arise from this work 

The longer-term research plan is to apply system identification on additional nodes. For 

example, the pyramidal cell has two dendritic domains – apical and basal. We aim to estimate a 

transfer function for the basal domain and compare it to the identified apical domain transfer 

function. This will enable us to determine the differences in transfer dynamics at each of these 



 187 

dendritic domains. Other inputs to the CA1 will be evaluated in the same fashion (e.g. 

temporoammonic pathway from the entorhinal cortex). Knowledge gained here will be integrated 

with the well-known physiology of synapses and dendrites such that a comprehensive 

understanding of the CA1’s governing rules and dynamics can be established. In a similar 

fashion, this procedure can be repeated for the remaining nodes of the hippocamps (DG, CA3, 

subiculum), such that a complete model for the hippocampal formation can be achieved. A 

complete and accurate model of the hippocampal formation can be examined for emergent 

phenomena—the model can teach the observer about network capabilities and functions that 

arise from the network’s basic design. Identifying the governing dynamics of the hippocampus is 

critical because it is a structure vulnerable to a host of different disorders. 

The hippocampus is also a component in the larger circuit of the brain. We expect that 

the rules and dynamics of different nodes within this circuit to be different, depending on their 

functions and connectivity patterns. This level of complexity may complicate this endeavor, 

however, scaling upwards, transfer functions can be estimated for other circuit components and 

linked appropriately given knowledge of the anatomy. The end goal is to have this linking of 

nodes yield a single block diagram and its associated net transfer function. This single net 

transfer function would describe the governing dynamics for the brain. Scaling downward, to a 

single transfer function for a single synapse, we can identify the operations that transform input 

spike patterns to output spike patterns – the transfer function for the fundamental unit of 

communication of the brain. 

By examining these transfer functions that explain brain governing dynamics, we will 

have more comprehensive models whose behavior could possibly enable us to build an 

adequate “theory of brain”. In the same way, we can precisely define diseases and have a 

metric for reverting the obtained definition of disease to normal. For the first time, we can define 

the generality for the disease, and treat its biological basis, not its symptoms. The most 

important goal of the system theory-inspired full understanding of the human brain is to guide 
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individuals to having a good quality of life and to prevent and alleviate the suffering from 

debilitating neurological and neuropsychiatric diseases.  

 

 

 




