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The work presented in this paper studies the question of what are the characteristics of Maximum 
Likelihood Estimator (MLE) reconstructions in Positron Emission Tomography (PET) that make that 
method superior to the standard Filtered Backprojection (FBP). PET data of human brain Fluoro­
deoxiglucose studies have been used to evaluate the comparative statistical characteristics of regional 
bias and expected error of the two methods. The results are that properly reconstructed MLE images 
are as unbiased as those obtained by FBP and that the expected error in the MLE case is approximately 
proportional to the square root of the number of counts in a region. In contrast, FBP reconstructions 
show an expected error that is high and nearly independent of the number of counts in a region. A 
preliminary study shows that those statistical characteristics of MLE reconstructions translate into 
improved lesion detectability in regions of low activity for the case of a simple detectability task carried 
out by non-medical observers. 

I. INTRODUCTION 

Since Shepp and Vardi first introduced a Maximum Likelihood Estimator (MLE) iterative 
procedure [1] based on the Expectation-Maximization algorithm of Dempster et al,[2] numerous 
workers have investigated the method and have, in general, reached the conclusion that, handled in 
some specific manner, it yields "better" or "less noisy" images from Emission Tomography (ET) data 
than conventional Filtered Backprojection (FB) reconstruction methods. It has often been felt, 
however, that there is a need to understand in which manner MLE images are better than FBP and that 
the differences in the quality of images should be quantified in statistical terms. Llacer and Bajamonde 
[3] were able to demonstrate some statistical characteristics of MLE reconstructions of PET data from a 
Hoffman brain phantom which were a first step in the direction of providing a quantification of the 
difference between MLE and FBP images. The principal conclusions that were reached were: 



1. By chasing properly designed methods, MLE images can be sharper than FBP images without 
paying a significant penalty in noise, 

2. Those MLE images exhibit biases of the same order as those of FBP images, and 
3. The MLE images have lower variance in the regions of low intensity than the FBP images. 

In this paper we will report on a more detailed comparative statistical study of MLE and FBP 
reconstructions of data from Fluoro-deoxiglucose (FDG) human brain PET studies of four normal 
subjects. A companion paper [4] describes the mathematical development of a methodology for MLE 
image reconstruction in PET that has been found to result in images that exhibit a consistent and 
favorable set of characteristics in terms of bias and expected error. That methodology will be used in 
the reconstruction of the images to be reported in this paper. Section IT of this paper describes the 
methods, data and results of the statistical analysis. Section III describes the results of a Receiver 
Operating Characteristics (ROC) "lesion" detectability study of a very simple nature carried out with 
simulated images and non-medical personnel. The ROC study supports the idea that the mathematically 
describable advantage of the MLE images translates itself into improved lesion detectability in specific 
cases. The paper will conclude with a discussion of what has been accomplished and what still needs. 
to be done in order to establish the MLE methodology as the preferred reconstruction method for PET. 

II. BIAS AND VARIANCE ANALYSIS 

Bias has a well-defined meaning in Statistics and, in the imaging context, could be described as 
differences between the expected value of reconstructed pixel intensities and the correct values. In the 
case of tomographic reconstructions, in which filtering of high frequencies is a necessity, the above 
definition of bias is not practical, since all edges in the image would show bias. A more practical 
definition that we devised in Ref. [3] is that of "regional bias" as the difference between the expected 
average value in extended uniform regions, away from edges, and the correct average values for those 
regions. In t~is paper we will examine regional bias for images reconstructed from real FDG human 
brain data. MLE reconstructions will be compared with FBP reconstructions of the same data sets and 
to reference images obtained by reconstructing corresponding data sets with large number of counts. 
For the reference FBP reconstructions we have used the Shepp-Logan filter in configuration space, 
which can be expected to exhibit less bias than filtering in frequency domain.[5] The pixel-by-pixel 
standard deviation from the mean image for sets of independent data from the same subject will also be 
examined for MLE vs. FBP reconstructions. 

A. Procedures 

1. Data and Reconstruction Methods 

i) '. 

l ' -

Data from four subjects, S 1 through S4, have been used in this study. FDG data were taken in six 
sequential time intervals for each subject when the radioisotope concentration in the brain had f. 
stabilized. The number of counts per data set was between 1.1 and 1.4 million per image plane. The six 
data sets were followed by high count data sets that have been added to form a reference data set. From t· 
the data sets for each subject, 3 out of 15 planes have been selected, one in the upper, one in the middle 
and one in the lower brain. This corresponds to 18 data sets per subject, plus the reference sets. Data 
for subjects S 1 and S2 were obtained with separate random coincidence files, while the randoms for 
S3 and S4 were pre-subtracted by the hardware. The differences in reconstruction strategy for the two 
types of scan data are described in the companion paper.[ 4] 
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Fig. 1: Shepp-Logan and Butterworth filter functions used in the FBP reconstructions reported in this 
paper. 

The independent data sets have been reconstructed by the FBP method with two different filters 
whose frequency pass characteristics are shown in Fig. 1. The Shepp-Logan filter with a cutoff 
frequency has been selected through the experience of several years of clinical practice with FDG brain 
images, and the Butterworth filter exhibits improved response in frequencies in the region between 
0.15 and 0.3 of the sampling frequency (3.18 cycles/em), while reducing higher frequency noise. The 
appropriateness of the parameters chosen for the Butterworth filter was confirmed by analyzing the 
power spectral density of a group of independent images of the same source distribution and 
determining the approximate cutoff frequency above which there was mostly noise. Independent visual 
tests carried out by physicians at the Department of Nuclear Medicine, UCLA have confirmed the 
appropriateness of the filter for the brain data used. The filtering and the backprojection (BIN) 
algorithms for the reconstructions were obtained from the Donner Algorithms Package.[6] 

The data sets were also reconstructed by the "data splitting" MLE-PF method, following the 
methodology described in Ref. [4]. For the images resulting from MLE reconstructions to be 
statistically acceptable (feasible), the iterative procedure has to be stopped at some point. The stopping 
criterion that we have used is based on likelihood cross-validation, as described in detail in the 
companion paper.[ 4] The method contains a measure that defines the qualities of the image. In this 
paper, we will call this measure the Cross Validation Ratio (CVR). The CVR changes as the iterative 
procedure continues, with initial values of- 1.0 at the early iterations and a theoretical optimum of zero 
at the stopping point, but stopping the iterations at values between 0.5 and 0 should be studied when 
evaluating the reconstruction of real PET data. A final filtering with a Gaussian kernel is part of the 
MLE-PF procedure. We have used a filter with a standard deviation equal to 0.75 pixels. As shown in 
Fig. 2, the choice of this filter results in edge responses for the MLE-PF images which are as sharp as 
or sharper than those of the FBP reconstructions. 
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The reference data sets, containing between 
10 and 30 million counts were reconstructed by 
FBP using the full bandwidth Shepp-Logan 
filter in configuration space. The 
reconstructions are somewhat noisy, but can be 
expected to be unbiased in the "regional" sense 
described above. 

2. Bias analysis 

Because of the lack of registration between 
FBP and MLE reconstructions (FBP assumes a 
space invariant point response function, while 
the transition matrix that we use for the MLE 
takes into consideration the narrowing tube size 
as we move away from the center of the image 
[1 ]), it is not possible to carry out a pixel-by­
pixel comparison between the reference image 
and the individually reconstructed images, 
except within FBP reconstructions. The use of 
pixel value frequency histograms has also been 
found inadequate for the same reason. Then, 
bearing in mind our definition of "regional 
bias", we have established the following 
procedure: 

0 
> 

-- FBP Butterworth 
100 - - FBP Shepp-Logan 

---- MLE-PF, cr = 0.75 pixels 

80 

60 

40 

20 

0 

25 30 35 
Pixel Number 

Fig. 2: Typical profile of a left edge of a brain 
PET image reconstructed by the FBP and 
MLE-PF. The edge appears sharper in the 
MLE-PF reconstruction than in the FBP cases. 
The pedestal to the left of the profiles 
corresponds to the activity in the skull. 

a) The reference image is normalized so that the average value of a relatively large selected region 
of interest (ROI) with high isotope uptake corresponds to an image value of 100. The available 
number of image values (color levels in the display) is 128. 

b) The six independent images to be analyzed are then normalized so that the high activity ROI 
also corresponds to an average image value of 100. 

c) At least two more ROI's are selected in uniform areas of low activity, staying away from steps 
in activity. These ROI's can be of any shape, including long strings of pixels. 

d) Ratios are obtained between the mean activity in the low activity ROI's and the high activity 
ROI. This is done for the reference image and for the "mean image" obtained by averaging 
pixel-by-pixel the six independent reconstructions of a given method. 

e) The measured regional activity ratios of the reference are compared to those of the different ("' 
reconstruction methods. 

Figure 3 shows three sets of ROI's at different planes of different subjects, as examples of the ~' 
ROI's selected for the above procedure. 

3. Standard deviation analysis 

Once we have established that a method of reconstruction is acceptably unbiased, the following 
calculations are carried out: 
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Fig. 3: Three sets of regions of interest used in the "regional bias" study. One region is in a high 
activity area, the others are in lower activity areas. 

a) The pixel-by-pixel standard deviation with respect to the corresponding pixel mean is calculated 
for the six independent images. The resulting "standard deviation image" is then displayed and 
recorded with a color scale magnified by a factor of 10. 

b) A two-dimensional histogram is generated in which the abcissa corresponds to the number of 
counts in a pixel of the mean image, the ordinate corresponds to the standard deviation in a 
pixel and the color scale corresponds to the logarithm of the number of pixels. The logarithm is 
taken in order to be able to see the large range of number of pixels in the different histogram 
bins in a single image display. The two-dimensional histogram shows the relationship between 
average counts in a region of the image and the standard deviation that can be expected in the 
reconstruction of that region, or "expected error". 

B. Results of bias and standard deviation measurements 

The results of the bias and standard deviation measurements on the sets of data from the four 
subjects can be clearly separated into two groups: a) results from reconstructions of data sets in which 
the randoms background was obtained separately, subjects S1 and S2, and b) results for data sets in 
which the background was subtracted by the hardware before reconstruction, subjects S3 and S4. The 
MLE reconstructions of data from S 1 and S2 attained a reasonably unbiased condition and a favorable 
standard deviation when the iterations were stopped at the optimum point predicted by the cross­
validation stopping rule, i.e., at CVR = 0. On the other hand reconstructions from from S3 and S4 
data, if carried to that expected optimum point, exhibited excessive standard deviation. The detailed 
results will now be given. 

1. Bias results 

Table I shows the ratios of average activity in low activity ROI's to average activity in the high 
activity ROI for five different reconstruction processes, for subjectS 1, plane 3 (near top of brain). 

In all the reconstructions for all subjects, the differences between the ratios for FBP- Butterworth 
and FBP- Shepp-Logan filters have been small. On the other hand, stopping MLE-PF reconstructions 
at CVR = 0.5 and 0.3 points has always resulted in substantial bias. For those reasons, the FBP -
Shepp-Logan and MLE-PF at those stopping points will not be discussed further. A summary of 
results of bias for subjects S 1 and S2 is shown in Table 2. The results show that stopping the MLE-PF 
algorithm at the optimum point (CVR = 0), results in images that are as unbiased as FBP 
reconstructions. 
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TABLE 1 

Bias Analysis, subject S 1, estimated background 

Reconstruction method Activity ratio (low/high) 

Reference, FBP Shepp-Logan, conf. space 0.349 

FBP - Butterworth 0.344 

FBP- Shepp-Logan 0.351 

MLE-EM- stop at dXL/& = 0.5, cr = 0.75 0.386 

ditto. ~L/& = 0.3 0.368 

ditto. ~L/& = 0.0 0.354 

TABLE II 

Bias Analysis, subjects S I and S2, estimated background 
Ratio - Reference Ratio - FBP - Ratio - MLE-PF 

P a tient Image plane FBP - Shepp-Logan Butter worth CVR = 0.0 

PI 3- top 0.349 0.351 0.354 

7- middle 0.323 0.314 0.308 

11 -bottom 0.538 0.533 0.518 

P2 3- top 0.457 0.444 0.467 

7- middle 0.266 0.259 0.268 

11 -bottom 0.429 0.424 0.421 

XBB 9112-9626 

Fig. 4: Standard deviation images for a brain plane near the top of patient Pl. Left: reference image. 
Center: Standard deviation image for FBP- Butterworth reconstruction. Right: ditto for MLE­
PF image. There is some large scale structure in the latter case, with lower standard deviation 
values where the reference image has low activity. 
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TABLE III 

Bias Analysis, subjects S3 and S4, pre-subtracted background 
Ratio - Ref. Ratio - FBP- Ratio - MLE- Ratio - MLE-

Patient Image plane FBP - SL Butterworth PF at 0.2 PF at 0.1 

P3 4- top 0.457 0.443 0.449 0.437 

8- middle 0.378 0.375 0.382 0.374 

12- bottom 0.430 0.424 0.431 0.417 

P4 4- top 0.445 0.448 0.459 0.446 

8- middle 0.367 0.360 0.375 0.366 

12- bottom 0.528 0.526 0.522 0.519 

For the case with background pre-subtracted by the hardware, the results of the statistical analysis 
are different from the above. Table 3 shows the bias results for subjects S3 and S4. Columns for MLE 
stopping points at CVR = 0.2 and 0.1 are shown. The case for CVR = 0 is not considered because it 
leads to excessive standard deviation. 

2. Pixel-by-pixel standard deviation results 

If we consider the MLE-EM results at CVR = 0.0 for subjects S 1 and S2 acceptably unbiased and 
those at CVR = 0.2 or 0.1 also acceptable for S3 and S4, we can now proceed to study the pixel-by­
pixel standard deviation of the reconstructions with respect to their means as a measure of how much 
error can be expected in a single reconstruction of one data set. Figure 4 (left) shows the reference 
image for subject S 1, plane 3. Figure 4 (center) shows the standard deviation image for the FBP -
Butterworth reconstructions, with a grey scale magnified by a factor of 10, and the same figure (right) 
shows the corresponding standard deviation image for the MLE-EM reconstructions at CVR = 0.0. It 
is evident that the expected error in the FBP image is distributed uniformly in the whole brain area, 
with some decrease in the regions outside the brain. In contrast, the standard deviation image for the 
MLE-EM results shows structure, with lower standard deviation in the regions of lower activity, and 
practically zero deviation outside the brain. This pattern of expected error is observed in all the standard 
deviation images that we have obtained and it suggests making two-dimensional histograms ("expected 
error" histograms) of frequency of pixels having a given mean number of counts and a given standard 
deviation. The dependency between mean number of counts in a region and the standard deviation can 
then be examined for the different reconstruction methods. 

Figure 5 shows, on the top row, the expected error histograms for the three data sets (top, middle 
and lower brain) of subject S 1, reconstructed by FBP-Butterworth. On the lower row the 
corresponding histograms for the MLE-PF at CVR = 0.0 are shown. There are two main regions in the 
histograms that correspond to the area of the brain: grey matter in the large region near the center and 
white matter towards the left. Further to the left there is the region of counts outside the brain (image 
background). Then, we can observe that the expected error in a MLE reconstruction in grey matter is 
not higher and often lower than the corresponding results in the FBP reconstruction, while the error in 
the white matter is substantially lower in the MLE. In an approximate quantitative way, one could state 
that the expected error in white matter is approximately equal to that of grey matter in FBP 
reconstructions, while it is reduced by at least a factor of the square root of the ratio of counts for the 
MLE results. The results for subject S2 support the same conclusion. 

-7-
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Fig. 5: Histograms of number of pixels having a given standard deviation (ordinate) and a given 
image value (abcissa). The standard deviation scale is magnified X10 with respect to the image 
value scale. Top row: Histograms from FBP reconstructions of top, middle and lower brain 
planes for patient Pl. Bottom row: Histograms from MLE reconstructions of the same data. 
The large clusters near the middle of the histograms correspond to pixels in the grey matter, 
the next clusters to the left are in the white matter. The left-most clusters correspond to 
background, outside the brain. 

The standard deviation results for subjects S3 and S4 show higher expected error in some parts of 
the grey matter areas than the FBP results if the iterative process is stopped at CYR = 0.1 and 0.0. 
Their results are similar to those of Fig. 5, however, where we stop at CYR = 0.2. It appears, then, 
that the justification for stopping the MLE procedure at CVR = 0.0 as being the point of highest 
consistency in the cross-validation process [ 4] does not apply well to data that have lost their Poisson 
characteristics by having even a small percentage of background counts subtracted (- 3 - 5% ), with 
negative numbers set to zero. 

C. Effect of background subtraction methods 

The above observations raise the question of whether images reconstructed from data sets in which 
the random background estimates have been obtained separately are "better" than those in which the 
background has been pre-subtracted. In order to answer this question, the data sets for subject S 1 have 
been reprocessed by subtracting the randorns background (setting negative numbers to zero) and 
reconstructing accordingly. The results obtained show that regional bias and pixel-to-pixel standard 
deviation at CVR = 0.2 are practically indistinguishable from the results obtained originally from those 
data sets and so are the images. The number of iterations required by each method to arrive at the 
desired stopping point are similar. When the MLE is allowed to go to CVR = 0.1 with the pre­
subtracted data, bias results do not change substantially, but the expected error (standard deviation 
histogram) shows a noticeable deterioration of the image with respect to the one obtained originally. 
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XBB 9112-9 629 
Fig. 6: Samples of FBP-Butterworth reconstructions. Two independent data sets each of top, middle 

and bottom brain planes are shown. 
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Fig. 7: Samples of MLE-PF reconstructions. The data correspond to the same data sets of Fig. 6. 
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The only conclusion that one can extract from this experiment is that, in cases with relatively low 
background (in the order to 5% or less), reconstruction from data in which the background data were 
obtained separately from the scan data allows for a more "elegantly" defined stopping point, but the 
results are not significantly different than reconstructions with pre-subtracted background. 

D. Effect of speeding up the reconstruction by the Successive Substitutions method 

The reconstructions reported above have been carried out by using the MLE iterative formulas 
based on the EM algorithm, as defined in Ref. [4]. The data sets for subject S 1.have also been 
processed by the faster iterative formulas derived from the Successive Substitutions (SS) algorithm 
also described in Ref. [4]. Although in simulation experiments a speedup parameter of 3.0 could be 
used with no apparent instability, we have found that, with real data, we should stay below n = 2.0 for 
reliably stable solutions. This results in reconstructions of the S 1 data sets that are visually 
indistinguishable from those of the EM algorithm. Bias results differ from the EM case usually in the 
third digit of the ratios of low activity to high activity regions, while the expected error histograms are 
not significantly different from those of the EM. The SS results have been obtained in approximately 
one-half the number of iterations needed by the EM method. 

E. Examples of optimized MLE reconstructions 

Having arrived at a point in which the characteristics of MLE images are well defined in terms of 
bias and expected error, it will be useful to give a comparative visual example of the differences 
between those images and the corresponding FBP images. Within the limitations of the printing 
process, it is hoped that the images of Figs. 6 and 7 will show the differences expected from the above 
analysis: a) MLE results that are at least as good as the FBP results in the areas of high radioisotope 
uptake and b) show a significantly reduced "noise" in the regions of low uptake. For this purpose we 
have chosen two independent data sets each of planes 3, 7 and 11 for subject S 1. Figure 6 shows the 
FBP - Butterworth reconstructions, and Fig. 7 shows the MLE-PF at CVR = 0 results. Each one of the 
data sets contains between 1.3 and 1.45 million counts. 

ill. PRELIMINARY ROC ANALYSIS 

A preliminary ROC study has been carried out in order to establish whether the lower expected 
error in the regions of low activity in MLE reconstructions results in an improved detection of small 
focal lesions in those areas, in comparison with FBP reconstructions. The ROC methodology, 
although it can only be applied to relatively simple observer tasks, is now well established as a reliable 
method of statistically determining the differences in performance of medical procedures that combine 
human observers and technology in carrying out medical diagnostics tasks.[? ,8,9,10,11] This 
preliminary ROC study did not involve medical personnel, but was done with the assistance of ten 
scientists and engineers in different disciplines, carrying out a detection task. By designing a very 
simple task, it has been hoped that the use of non-medically trained observers would still yield 
meaningful results. This preliminary test was not meant to replace ROC tests with medical personnel, 
which are under way. 

A. Design of preliminary study 

The ROC study was carried out with a computer generated phantom consisting of an outer elliptical 
ring of 100% activity and an internal region of 25% activity. The dimensions of the phantom were 
similar to those of a human brain. From the source phantom, statistically independent data sets of 500k 
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Fig. 8: Examples of images used for a preliminary ROC study of detectability. The simulated 
phantom on the left contains one simple "lesion" which is to be detected in the FBP 
reconstructions (middle) or MLE-PF (right). The case shown is for a lesion of 85% intensity 
which should be easily detected in the reconstructions. 

counts were generated according to the Poisson distribution by computer simulation. The CTI-831 
Neuro PET tomograph was the model use for the data set. 

"Abnormal" data sets were obtained by adding one lesion to the above described "normal" data. 
The lesion consisted of a hot region of 7.5 mm diameter with activity levels ranging from 55% to 85%, 
straddling the range of detectability by human observers in the presence of reconstruction noise. The 
lesion was placed at random in the internal 25% activity region. A total of 70 normal and 80 abnormal 
independent data sets were eventually generated and used in the study, although not all the observers 
saw all the sets. Each data set was reconstructed by the FBP and MLE-PF methods, except that the 
MLE reconstructions were stopped by the feasibility criterion described in Ref. [4]. The total number 
of images generated was 300. Figure 8, left to right, shows the source phantom, the FBP and the MLE 
reconstructions of a typical data set corresponding to an abnormal case with 85% activity level in the 
lesion, a reasonably easy case to detect correctly. The interior 25% region has been adjusted in the 
display so that it corresponds to the same average grey level in the three images. 

Up to ten observers, readers r1 through riO, looked at each normal and abnormal image. The 
images were presented to the reader in random order on an image display station (color and b&w), and 
the reader was asked to respond to the question: "Does this image have a lesion?", after using any 
viewing methodology that they wished to establish, according to the following scale: 

1 - almost definitely not 
2 - probably not 
3 - perhaps yes 
4 - probably yes 
5- almost definitely yes 9 

The results of the readings were processed by ROC evaluation programs supplied by Charles E. 
Metz of the University of Chicago. In addition to fitting ROC curves, the programs calculate a number f 
of statistical parameters to test the validity of the hypothesis being tested. 

B. Results of preliminary ROC tests 

After processing the results for the ten readers, it was found that eight out of ten readers gave ROC 
curves similar to the one of Fig. 9, which corresponds to reader r4, indicating a substantial advantage 
in lesion detectability for the MLE reconstructions. One reader indicated a smaller advantage and one 
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reader showed no significant difference 
between the two reconstruction methods. The 
ordinate of the ROC curves corresponds to the 
true positive fraction (TPF), or the fraction of 
positive decisions in actually positive cases. 
The abcissa corresponds to the false positive·· 
fraction (FPF), or the fraction of positive 
decisions in actually negative cases. 

An interpretation of the above results can 
be given in the following manner: for the 
specific task of detecting a hot lesion on a cool 
field in a smooth phantom with lesion activity 
level near the threshold of detectability, we can 
state that the fraction of lesions detected 
correctly by eight out of ten observers, 
operating at a FPF = 0.15 (a region of 
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reasonable desired performance), increased on Fig. 9: ROC curve obtained from one of the 
the average from- 0.51 to 0.71 when using observers (r4) typical in 8 of the 10 
MLE-PF reconstructions, compared to FBP participants in the preliminary ROC 
reconstructions. Table 4 summarizes the results study of detectability .. 
of the preliminary study. Some derived values are not available due to accidental data loss in the early 
part of the study. The p-value, in our context, is defined as the calculated probability that the TPF for 
the MLE would be so much higher than that of the FBP if the MLE and FBP reconstructions were 
equally effective in lesion detection. In order to defme the power, let us set an acceptance threshold a= 
0.05, i.e., we postulate that when p-value < 0.05 the modalities are accepted as having different 
diagnostic value, and when p-value > 0.05 we consider the modalities undistinguishable. Then power 
is a measure of the separability of the two methods at that· value of acceptance threshold. More 
precisely, it is the probability of arriving at the decision that the two methods are different if they are 
indeed different. Values of a = 0.05 and Power ~ 0.80 are recommended for good statistical 
confidence in ROC studies. The p-values and powers shown in Table 4 were calculated by the . 
programs CORROC2 and ROCPWR2 of the Metz package, using correlated pairs of responses given 
by the observers to the FBP and MLE reconstructions of each data set. 

We conclude from the above analysis that there is a definite improvementin small lesion detection 
that corresponds to the decrease in pixel-to-pixel standard deviation in feasible MLE reconstructions. 
The question of whether detectability tests carried out with human data by physicians would result in 
results as favorable as the ones shown above cannot be answered at this time. The design of a clinical 
ROC study has been completed and the data generation and image reconstruction are underway at the 
time of this writing. Five M.D.'s at the Department of Nuclear Medicine, UCLA, ate participating in 
the clinical study, which should be completed by the end of 1991. 

IV. DISCUSSION AND CONCLUSIONS 

Since Shepp and V ardi published their initial work on the MLE method of reconstruction for Positron 
Emission Tomography,[l] it has been known that MLE images exhibit "low noise", although what 
was actually meant by that has remained unclear for some time. In the last few years a number of 
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TABLE IV 

Statistical parameters derived from the preliminary ROC study 
See text for definition of parameters 

Number of TPF at FPF = 0.15 Power at 

Reader images read MLB FPB p-value a = 0.05 

r1 2:6 0.65 0.46 Data loss 

r2 205 0.70 0.57 Data loss 

r3 220 0.78 0.74 0.58 "'0.08 

r4 260 0.73 0.56 0.005 "'0.83 

r5 160 0.57 0.31 Data loss 

r6 260 0.71 0.50 0.004 "'0.82 

r7 300 0.67 0.58 0.13 "'0.35 

r8 300 0.77 0.57 0.0005 "'0.94 

r9 300 0.74 0.52 0.0004 "'0.95 

riO 300 0.79 0.60 0.0004 "'0.96 

workers have published attempts at characterizing MLE images in terms of the accuracy with which 
radioisotope uptake in specific regions of interest can be determined, by comparison with FBP images 
using their standard filtering methods. Typically, the comparison has been made with MLE images in 
which the. stopping point of the iterative procedure has been determined arbitrarily. Still, other workers 
have developed variations on the iterative formulas with the aims of speeding up convergence, 
modifying the frequency contents of the resulting images, etc. by changing the iterative formulas in 
reasonable, but ad hoc ways, with the result that, typically, it is no longer known what function is 
being maximized or minimized by the process. Other workers, among them some of us, have presented . 
algorithms based on Bayesian considerations that use some prior knowledge for the solution of the 
problem, in addition to the measured data. The use of the prior knowledge, principally entropy or a 
smoothness constraint, requires the incorporation of parameters that can be set in an educated way, but 
also with a large degree of arbitrariness. A similar problem exists in the process of limiting the set of 
images from which MLE estimates can be accepted (method of sieves). The result of all this activity, in 
too many papers to refer to here, is one of confusion in the minds of possible users of the method. The 
principal question: "Is the MLE method good for something specifically?" has not been addressed 
before in a consistent way, to our knowledge. 

What we have attempted to do in this paper and its companion, is to present a methodology for 
solving the Emission Tomography image reconstruction problem that: 

1) uses Maximum Likelihood as the target function to maximize, but recognizes that the iterative 
process must be stopped before the resulting images become unusable by the method 
attempting to follow noise in the data too closely, 

2) uses a cross-validation method for determining that stopping point, with little or no 
arbitrariness when handling real tomographic data, 

3) yields images that have similar statistical characteristics in the regions of high radioisotope 
uptake as nearly optimum FBP images, so that uptake measurements can be expected to be at 
least as good as those obtained with the latter images, 
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4) yields images that are less variable in the regions of low activity than FBP images, with an 
apparent improvement in lesion detectability in those regions, and 

5) has excellent possiblities of being implemented in parallel processing structures at a reasonable 
price in the near future. 

We believe that the work presented here goes some way in the direction of answering the above 
question: properly obtained MLE images can provide better information about regions of low activity 
without giving up accuracy of uptake measurements or anatomical information in the regions of high 
activity. This has been determined for the case ofFDG studies in the human brain, but can be expected 
to extend to studies with all other radioisotopes. 

Two areas, at least, need further verification and study: 

1) quantification of radioisotope uptake as a function of time and 

2) detectability of lesions in real data by medical personel. 

In both cases, it would be expected that MLE-PF reconstructions are as good as FBP for ROI's in high 
activity areas, while information from ROI's placed in regions of low activity, in the presence of high 
activity regions, would be much improved with the MLE-PF reconstructions. We are proceeding to 
verify those expectations. 
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