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Department of Chemical Engineering, University of Coimbra,
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Summary: We consider the problem of optimally designing Lot Quality Assurance Sampling (LQAS) plans for

health monitoring purposes. A Mixed Integer Nonlinear Programming (MINLP) formulation is proposed to address

the problem when pre-defined levels of accuracy of diagnostic metrics used to assess the programmes are imposed.

The formulation is used for finding LQAS plans for different combinations of diagnostic metrics which are compared

to classic plans based on purely statistical backgrounds.
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1. Introduction

A Lot Quality Assurance Sampling (LQAS) is a classification procedure for decision making

about the acceptance of a given lot. The strategy is grounded in the statistical tools developed

around 1920-30 to help control the quality from a production line. LQAS was developed in the

1950’s for the industry to check product quality and quickly found wide-spread applications in

health care surveys. Robertson and Valadez (2006) provides a review of LQAS and illustrates

how it can help decision makers classify a given population characteristic as acceptable or

not. Lemeshow and Taber (1991) provides statistical details and also compares merits of

having a single or double-sampling plan.

LQAS is commonly used in public health research to determine if a health policy or

a community program is working for the intended purpose. Some specific applications of

LQAS are monitoring immunization programmes to ascertain their cost effectiveness (San-

diford, 1993), monitoring elimination leprosy in a region (Gupte et al., 2004), examining

effectiveness of community intervention programs of captia and management systems on

maternal and child health behavior change (Valadez et al., 2005), assessing the prevalence

of acute malnutrition (Deitchler et al., 2007; Olives et al., 2009; Olives and Pagano, 2010)

and monitoring malaria outcome indicators (Biedron et al., 2010). Vanamail et al. (2006)

discussed operation feasibility and implementation of LQAS as a tool for routine monitoring

in the context of filariasis control programs. LQAS invariably includes design questions; given

user-specified decision parameters for the problem, what are the optimal sample size and the

decision rules to implement for, say, monitoring the effectiveness of a disease eradication

community based program or a state-sponsored vaccination program? Interest in LQAS

continues to date. For example, Olives et al. (2012) applied ideas to incorporate outcomes

that have a few categories, not just two, with application to Schistosomiasis control.

The design of LQAS plans for health monitoring is similar to Acceptance Sampling plans by
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variables or attributes for quality control purposes. Both can be formulated as optimization

problems (Duarte and Saraiva, 2008, 2013), which frequently require the minimization of

certain quantities, such as the sample size or the Average Sampling Number (ASN) subject

to the constraints at the controlled points of the operating characteristic (OC) curve.

Very often the health monitoring programmes are intended to reach a previously defined

level of a statistical measure quantifying the performance of the binary classification test.

Among the vast number of diagnosis performance metrics, the most used are: (i.) Specificity ;

(ii.) Sensitivity ; (iii.) Negative Predicted Value (NPV); and (iv.) Positive Predictive Value

(PPV). For a review of the diagnostic performance metrics the reader is referred to Altman

and Bland (1994); Fletcher et al. (2012) and in §2.2 we review the definitions commonly

accepted in biostatistics community.

Despite of the advantages of the LQAS plans based on controlling two points lying to

the OC curve which are easier to find and are tabulated, when a diagnosis accuracy metric

is previously established it would be beneficial implementing LQAS plans specifically for

that purpose. While the first are based on purely statistical knowledge, the second accounts

for the specific goals of the monitoring health programmes. From our knowledge this topic

has never been investigated, and in this paper we propose the first systematic approach for

designing LQAS plans to meet pre-defined levels of diagnosis performance metrics.

The paper includes four additional sections. In Section 2, the mathematical background

that supports our approach is presented. Section 3 introduces the MINLP formulation for

designing LQAS plans to satisfy the OC-curve constraints and diagnosis performance criteria.

In section 4 we present and compare results, and in Section 5 we conclude.

2. Mathematical background

In this section, we provide the background material required for the formulation and nu-

merical solution of LQAS plan design problem. In section 2.1 we introduce LQAS plans, in
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§2.2 we introduce the diagnosis performance metrics, in §2.3 we review the use of Gaussian

Quadrature Formulas (GQF), and in section 2.4, we briefly review the fundamentals of

MINLP.

2.1 LQAS plans

This section presents the fundamentals of Acceptance Sampling. Following convention, we

use the binomial distribution to model the probability of individuals having the characteristic

ξ in the population where ξ can model outcomes as “having a disease”/“having not a disease”

or “having been vaccinated”/“having not been vaccinated” among others depending on the

program monitoring purpose. In the former scenario “having not a disease” is represented

with ξ = 1 and the opposite outcome by ξ = 0. In the latest context, ξ = 1 is to represent the

outcome “having been vaccinated” and ξ = 0 the opposite result. Practically, the result of the

test on each individual is either conforming or nonconforming, with the former corresponding

the individual having the sought characteristic, i.e. a success with ξ = 1. Throughout, we

make two assumptions: (i) the probability of selecting nonconforming/conforming individuals

is independent of the sampling method; and (ii) the potentially infinite number of individuals

of the population is not impacted by the sample.

We represent a sampling plan by S(n, r), where n is the sample size and r is the acceptance

limit used to declare a lot/population acceptable (or not) based on a binary outcome ξ taking

values 0 or 1. A primary goal is to assure that the lot or population is acceptable when the

proportion of outcomes ξ meets a given conformity proportion. The procedure randomly

samples n individuals and the population/lot is accepted if the number of individuals in

the sample tested positive (ξ = 1) is greater or equal to r. Otherwise, the population/lot

is declared unacceptable. Since the decision is based on testing a particular hypothesis, the

inference is subject to statistical type I and II error rates. To measure the classification
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errors we use the probability of acceptance of lots/populations with a given proportion p of

successes, denoted by Pa(p).

Very often the LQAS plans are designed to reach pre-specified levels of risk of misclassi-

fication of populations/lots at required lower and upper proportions of success, pL and pU ,

respectively. The constraints imposed to the plan are grounded on statistical knowledge,

and require that the probability of incorrectly classify a lot of upper quality level pU as

unacceptable (type I error) should be lower than α, and the probability of incorrectly classify

a lot of lower quality pL as acceptable (type II error) should be lower than β, i.e.

P (x > r|pL) 6 β (1a)

and P (x > r|pU) > 1− α. (1b)

Here x is the number of individuals of the population/lot with the sought characteristic (i.e.

ξ = 1) and P (x > r|pL) is the probability of considering the population/lot acceptable for a

given proportion level of successes pL.

The probability of obtaining a specified number x of individuals with the sought characte-

ristic in a sample of n from a population with a proportion p having the characteristic ξ = 1

is modeled by the binomial distribution

P(x) =

(
n

x

)
px (1− p)n−x, x = 0, · · · , n. (2)

If the number of conforming individuals tested (with ξ = 1) in the sample is less than r,

we reject the population/lot and conclude that the programme was not succeed, otherwise

we accept the population and infer that the programme is well succeed. In public health

research, we may want to ascertain if the people are adequately vaccinated in a region, and

so x in such a study is the number of people vaccinated in the sample.

The OC curve represents the probability of acceptance of populations/lots with a given

proportion p of individuals with ξ = 1. For acceptance/rejection purposes of populations
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tested for a characteristic following the binomial distribution (2), the OC curve is

F (p|n, r) =
n∑
x=r

P(x) =
n∑
x=r

(
n

x

)
px (1− p)n−x, (3)

which is computed using the regularized Beta function, here denoted by I, see Press et al.

(1996, Chap. 6) for details:

F (p|n, r) =
n∑
x=r

(
n

x

)
px (1− p)n−x = I(p, n− r, r − 1). (4)

One of the early strategies used to design LQAS plans is based on the OC curve. In

practice, the sample size and the acceptance constant are determined such that the conditions

F (pL|n, r) 6 β and F (pU |n, r) > 1 − α are both validated for pre-defined levels pL and pU

and risks α and β. In spite of the decision grey region pL 6 p 6 pU being the interval where

the consequences of the misclassification error have lower impact, there are recognized risks

that are not accounted for in the LQAS plans. In particular, LQAS plans may have good

sensitivity but not good specificity (Sandiford, 1993).

2.2 Diagnosis performance metrics

Diagnostic tests where the result is binary are conventionally summarized in a two-by-

two table (Fletcher et al., 2012). The corresponding diagnostic accuracy tests is commonly

measured by some metrics; among them are (i) Sensitivity; (ii) Specificity; (iii) PPV; and

(iv) NPV. Formal definitions of the diagnosis performance metrics for binary outcome tests

summarized in two-by-two contingency tables are, respectively (Griner et al., 1981):

Spec. =
TP

TP + FN
, (5a)

Sens. =
TN

TN + FP
, (5b)

NPV =
TN

TN + FN
(5c)

PPV =
TP

TP + FP
(5d)

Here, TP is the number of individuals with ξ = 1 that test positive (desirable outcome),

FN is the number of individuals with ξ = 1 that test negative (undesirable outcome), FP
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is the number of individuals with ξ = 0 that test positive (undesirable outcome), and TN

is the number of individuals with ξ = 0 that test negative (desirable outcome). Specificity

is the proportion of individuals with ξ = 1 correctly identified, Sensitivity is the proportion

of individuals with ξ = 0 correctly identified, NPV the proportion of individuals that test

negative correctly identified, and PPV is the proportion of individuals that test positive

correctly identified. In what follows, we use the formal definitions (5) adapted to three-by-

two Table 1. The elements of the three-by-two Table 1 are the number of individuals (or

its proportion) that test negative or positive for different proportion of success where the

grey zone is an additional scenario. Table 2 combined with equations (6) set the metrics

for lots/populations with low proportion of individuals with ξ = 1 (p 6 pL) and large

proportion (p > pU). In what is to follow, we call the proportion of individuals with

ξ = 1 as the anticipated prevalence, as Lemeshow and Taber (1991). Typically, we have

low anticipated prevalence rate (LAPR) populations and high anticipated prevalence rate

(HAPR) populations if p 6 pL and p > pU , respectively.

[Table 1 about here.]

[Table 2 about here.]

a =

∫ pL

0

n∑
x=r

(
n

x

)
px (1− p)n−x dp b =

∫ pU

pL

n∑
x=r

(
n

x

)
px (1− p)n−x dp (6a)

c =

∫ 1

pU

n∑
x=r

(
n

x

)
px (1− p)n−x dp d =

∫ pL

0

r−1∑
x=0

(
n

x

)
px (1− p)n−x dp (6b)

e =

∫ pU

pL

r−1∑
x=0

(
n

x

)
px (1− p)n−x dp f =

∫ 1

pU

r−1∑
x=0

(
n

x

)
px (1− p)n−x dp (6c)

2.3 Gaussian Quadrature Formulas

Gaussian Quadrature Formulas are a class of methods that use appropriate weights and

nodes to numerically integrate a complex function f(t) to a high degree of accuracy. For a
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one dimension integral over an arbitrary compact interval [a, b], the formula is:

∫ b

a

w(t) f(t)dt
.
=

M∑
j=1

wj f(tj)

where w(t) is a weighting function, and M is the number of points, also designated as nodes,

used in the integration. The accuracy of the approximation of the integral as a sum depends

on the selected weight wj at the nodes tj. A major advantage of GQF is that with judicious

choices of the nodes and weights, it needs only M points to exactly integrate polynomials of

degree 2 M −1 or less. This means that only M evaluations of the function f(t) are required

(Gerald and Wheatley, 1994). For w(t) = 1, a = −1 and b = 1 the nodes correspond to the

zeros of the M th order Legendre polynomials; see, for example, Atkinson (1989). For w(t) = 1

and an arbitrary compact interval on the real line, the weights and nodes are determined

from recursive algorithms such as those presented in Davis and Rabinowitz (1984). The

numerical approximations of the integrals (6) obtained using GQF are:

a =
pL
2

M∑
j=1

[
1− I

(
tj
pL
2

+
pL
2
, n− r, r − 1

)]
wj (7a)

b =
pU − pL

2

M∑
j=1

[
1− I

(
tj
pU − pL

2
+
pU + pL

2
, n− r, r − 1

)]
wj (7b)

c =
1− pU

2

M∑
j=1

[
1− I

(
tj

1− pU
2

+
1 + pU

2
, n− r, r − 1

)]
wj (7c)

d =
pL
2

M∑
j=1

I
(
tj
pL
2

+
pL
2
, n− r, r − 1

)
wj (7d)

e =
pU − pL

2

M∑
j=1

I

(
tj
pU − pL

2
+
pU + pL

2
, n− r, r − 1

)
wj (7e)

f =
1− pU

2

M∑
j=1

I

(
tj

1− pU
2

+
1 + pU

2
, n− r, r − 1

)
wj (7f)

where tj are the zeros of the Legendre polynomials in [−1, 1] and wj are the weights. In all

calculations presented in subsequent sections we consider M = 20.



8 Biometrics, December 2017

2.4 Mixed Integer Nonlinear Programming

Mixed Integer Nonlinear Programming refers to a class of optimization problems including

continuous and discrete variables and nonlinear functions in the objective function and/or

the constraints. Mixed Integer Nonlinear Programs (MINLPs) arise in a wide range of

applications, including chemical engineering, finance, and management. The general form

of a MINLP is

min
x,y

f(x,y) (8a)

s.t. hi(x,y) = 0, ∀i ∈ E (8b)

gi(x,y) 6 0, ∀i ∈ I (8c)

x ∈ X, y ∈ Y (8d)

where each function hi(x,y) and gi(x,y) is a mapping from Rn to R, E is the set of equality

constraints, I the set of inequalities, X ∈ Rn is a continuous compact domain, Y is discrete

domain containing integer values, x is the set of continuous variables and y the set of integer

variables.

The most commonly used algorithms used to solve MINLPs are the outer approximation

(Duran and Grossmann, 1986), the branch and bound (Fletcher and Leyffer, 1998) and

the extended cutting plane (Westerlund and Pettersson, 1995). For the fundamentals of

MINLP and the algorithms the reader is referred to Floudas (2002). All the problems

addressed in the paper are solved with a branch and bound algorithm using the solver

SBB (GAMS Development Corporation, 2013b) available within the general modeling system

GAMS 24.2.1 (GAMS Development Corporation, 2013a). SBB combines the standard branch

and bound method known from Mixed Integer Linear Programming and a standard NLP

solver supported by GAMS 24.2.1. Here CONOPT is used for solving the relaxed nonlinear

programs (Drud, 1985) and CPLEX is used for solving local integer linear programs (GAMS
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Development Corporation, 2013b). The relative tolerance used in all problems is 10−5. In our

design context the variables a, b, c, d, e and f are continuous; and n and r are integer. All

computation in this paper were carried using on an Intel Core i7 machine (Intel Corporation,

Santa Clara, CA) running 64 bits Windows 10 operating system with 2.80 GHz.

3. Optimal LQAS formulations

In this section we introduce the MINLP formulations for designing LQAS plans. In Section

3.1 we address the problem of finding a LQAS plan that assures that the conditions (1)

at the controlled points of the OC curve are satisfied, and in §3.2 we consider the problem

of designing plans for a combination of diagnosis performance criteria where lower bound

thresholds are assumed. The former problem will be designated as the OC curve-constrained

design problem and the later as the performance criteria-constrained design problem. In

both cases the objective is the minimization of the sample size which has an economic

impact. Typically, the algorithms used to design OC curve-constrained LQAS plans stand

on enumerative procedures where n and r are successively iterated until the constraints at

the controlled points of the OC curve are both satisfied (Lemeshow and Taber, 1991).

3.1 Formulation for OC curve-constrained LQAS plans

We consider that the risks α and β and the target proportions required for LAPR and HAPR

populations are imposed. The resulting MINLP minimizes the sample size providing that the

conditions (1) are satisfied. Equation (4) is used to represent the OC curve. The optimization
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problem is as follows:

min
n,r

n (9a)

s.t. I(pU , n− r, r − 1) > 1− α (9b)

I(pL, n− r, r − 1) 6 β (9c)

n > 2 (9d)

r > 1 (9e)

n, r ∈ N (9f)

where equations (9b-9c) are the constraints at the OC points, (9d) and (9e) are lower bounds

for n and r imposed by rational reasons.

3.2 Formulation for performance-constrained LQAS plans

Here, we consider that the targets for some of the diagnosis performance criteria listed in

§2.2 are known. Let us designate the target for Sensitivity for populations with a LAPR of

ξ = 1 as σL, the target to apply in populations with HAPR of individuals with ξ = 1 as σU ;

the target for Specificity for LAPR environments as θL, the target for HAPR scenarios as θU ;

the target for PPV for LAPR environments as πL and the target for HAPR environments as

πU . Finally, we designate the target for NPV for LAPR environments as %L and the target for

HAPR environments as %U . The reformulation of the criteria in Table 2 to avoid fractionary
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terms produces the performance constraints later included in the design problem:

Sensitivity for LAPR a > σL(a+ d) (10a)

Sensitivity for HAPR f > σU(c+ f) (10b)

Specificity for LAPR e+ f > θL(b+ c+ e+ f) (10c)

Specificity for HAPR a+ b > θU(a+ b+ c+ d) (10d)

PPV for LAPR a > πL(a+ b+ c) (10e)

PPV for HAPR f > πU(d+ e+ f) (10f)

NPV for LAPR e+ f > %L(d+ e+ f) (10g)

NPV for HAPR a+ b > %U(a+ b+ c) (10h)

Following, the relations (7) together with a combination of constraints (10) chosen to

construct LQAS plans to meet a given combination of diagnosis accuracy metrics are used

to formulate the performance criteria-constrained design problem:

min
n,r

n (11a)

s.t. Equations (7) (11b)

Combination of equations (10) (11c)

n > 2 (11d)

r > 1 (11e)

n, r ∈ N (11f)

a, b, c, d, e, f ∈ [0, 1] (11g)

Let us demonstrate our approach with an example where we want to find the LQAS plan to

reach a given level of Sensitivity for LAPR populations, σL, and for HAPR lots/populations,

σU . The problem (11) includes the relations (7) and the constraint (11c) aggregates the

constraints for Specificity (10a-10b). The problems for other criteria or criteria combination
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are constructed similarly. Notice that in some cases the criteria might be antagonistic which

may produce infeasible solutions which are also detected by the proposed formulation. This

topic will be further analyzed in §4.

4. Results

In this section we present the results for the OC curve-constrained design problem and

compare them with those obtained for the performance criteria-constrained design problem

for different combinations of performance criteria.

To test the formulation (9) for optimally designing LQAS plans we consider a scenario

where α = β = 0.10 and pL and pU are varied in a region commonly used in practical

studies. In all scenarios the difference between pU and pL is kept constant but different

values are considered. Table 3 presents the results and we observe that as the proportions

for LAPR and HAPR populations increase, larger is the ratio r/n, and more discriminant

is the plan. The results obtained are in good agreement with those of Lemeshow and Taber

(1991). All examples presented in following tables require less than 1.0 s of CPU time which

proves the numerical efficiency of the algorithm.

Figure 1 presents the OC curves for optimal plans obtained for scenarios S1 and S5. They

illustrate the constraints satisfaction for both setups, and the larger discriminant power of

the plan obtained for S5. We observe that both OC curves pass below the point (pL, β) and

above the point (pU , 1 − α) as required by the formulation. For the error rates considered

(α = β = 0.1), both plans are constrained at the point (pL, β).

[Table 3 about here.]

[Figure 1 about here.]

Table 4 presents the LQAS for several combinations of diagnosis performance criteria. The

same trend observed for OC curve constrained plans applies here; as the proportions assumed
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for LAPR and HAPR increase, the discrimination of the plans increases as well as the ratio

r/n.

To analyze the optimality of the solutions of the performance criteria-constrained design

problem let us consider the LQAS plan obtained for scenario S5 when both the criteria

sensitivity for LAPR and for HAPR are to be met (line 5 of Table 4). The OC curve of the

plan S(6, 4) is presented in Figure 2, which also depicts the areas a, b, c, d, e and f . Table

5 lists the values of the areas and the Specificity for both groups, and we observe that the

constraints (a/(a+ d) > σL and f/(c+ f) > σU) are satisfied.

[Table 4 about here.]

[Figure 2 about here.]

[Table 5 about here.]

Our results demonstrate that for some specific anticipated prevalence proportions (pL

and pU), particular combinations of diagnosis performance metrics and lower bounds, the

optimization problem is infeasible and there is not an LQAS plan satisfying all constraints

simultaneously. When the solution of (11) can not be obtained because of the antagonistic

characteristics of the constraints, the feasibility of a relaxed problem including not the

integral terms is checked with another mathematical program. That is, we convert the

inequalities (10) into equivalent equalities and solve a square system of 6 algebraic equations

with respect to a, b, c, d, e and f using the solver CNS (GAMS Development Corporation,

2013b) included in GAMS 24.2.1. CNS is for constrained nonlinear systems and uses the

nonlinear programming solver CONOPT.

Besides the relations between the parameters required by the constraints on the diagnosis

metrics, others derived from geometrical assumptions using Figure 2, e.g. a+d = pL, b+e =

pU − pL, c+ f = 1− pU and a+ d+ b+ e+ c+ f = 1, can be derived. The possible results

of the procedure are: (i) a combination of a, b, c, d, e and f exists and the original design
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problem is feasible; and (ii) there is not a combination of a, b, c, d, e and f and the design

is infeasible. In this case, lower values of threshold bounds must be used.

To demonstrate the use of this check tool let us consider the LQAS plan obtained for the

setup where the design criteria are the Specificity for LAPR and Specificity for HAPR (second

line in Table 4) and the threshold level is 0.95 for both criteria, i.e. θU = θL = 0.95, pL = 0.6

and pU = 0.9. The mathematical programming problem solved to check the feasibility of the

design problem is

find a, b, c, d, e, f (12a)

s.t a+ b = θL(a+ b+ d+ e) (12b)

e+ f = θU(b+ c+ e+ f) (12c)

a+ d = pL (12d)

b+ e = pU − pL (12e)

c+ f = 1− pU (12f)

a+ b+ c+ d+ e+ f = 1 (12g)

a, b, c, d, e, f ∈ [0, 1]. (12h)

The model (12) is infeasible, and consequently, an LQAS plan satisfying the constraints

cannot be found. In practice, the maximum value of θU and θL that make the problem feasible

for θL = θU is 0.7692. If we allow θU 6= θL, then for θU = 0.95, the maximum value of θL

that produces a feasible plan is 0.6888. These findings are dependent of the values assumed

for pL and pU .

5. Conclusions

We propose MINLP formulations to handle the problem of designing LQAS plans for imple-

menting in health monitoring programmes. The design problem consists of minimizing the

sample size such that a set of constraints are satisfied. First, we consider the design problem
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using the classic framework where the constraints result from the points controlled of the

OC curve. Next, we propose a formulation where the constraints result from a combination

of diagnosis performance criteria the plan are sought to guarantee. As far as we know, our

formulation is the first that can be used to design LQAS to meet pre-defined levels of diagnosis

performance criteria. The later formulation requires numerically calculating integrals and

we use 20-point based GQF for such a purpose. We test our proposed formulations for a

large range of setups and diagnosis accuracy criteria combinations, and compare the results.

Finally, we analyze cases where the combination of diagnosis performance criteria can not

be satisfied simultaneously, and a feasible plan can not be found. In this case, we propose

a linear programming formulation to check the feasibility of the LQAS design problem for

that combination of anticipated prevalence proportions and threshold bounds.
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Figure 1. OC curves for LQAS plans obtained for scenarios S1 and S5 employing the OC
curve-constrained design problem formulation (α = β =0.1).
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Figure 2. OC curve for LQAS plan obtained with the performance criteria-constrained
design problem formulation for scenario S5 when the target for Sensitivity for LAPR and for
HAPR populations is imposed (σU = σL = 0.95, pL = 0.6, pU = 0.9).
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Table 1
Outcomes of the LQAS plan.
Proportion of individuals with ξ = 1 in the population
0 6 p 6 pL pL 6 p 6 pU pU 6 p 6 1.0

Test Outcome (ξ)
0 a b c
1 d e f
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Table 2
Diagnosis metrics for different prevalence rates of individuals with ξ = 1 in the population.

Anticipated prevalence
Low rate (p = pL) High rate (p = pU )

Performance
metrics

Sens. a
a+d

f
c+f

Spec. e+f
b+c+e+f

a+b
a+b+d+e

PPV a
a+b+c

f
d+e+f

NPV e+f
d+e+f

a+b
a+b+c
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Table 3
LQAS plans obtained with the OC curve-constrained design problem formulation (α = β =0.1).

Scenario pL pU n r
S1 0.40 0.70 25 13
S2 0.45 0.75 23 13
S3 0.50 0.80 21 13
S4 0.55 0.85 21 14
S5 0.60 0.90 18 13
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Table 4
LQAS plans obtained with the performance criteria-constrained design problem formulation.

Combination of criteria Scenario pL pU n r

Sensitivity for LAPR & S1 0.40 0.70 8 4
Sensitivity for HAPR S2 0.45 0.75 9 5
(Constraints: (10a,10b)) S3 0.50 0.80 7 4
(σU = σL = 0.95) S4 0.55 0.85 8 5

S5 0.60 0.90 6 4
Specificity for LAPR & S1 0.40 0.70 12 6
Specificity for HAPR S2 0.45 0.75 13 7
(Constraints: (10c,10d)) S3 0.50 0.80 17 10
(θU = θL = 0.75) S4 0.55 0.85 13 8

S5 0.60 0.90 18 12
Sensitivity for LAPR & S1 0.40 0.70 3 2
Specificity for HAPR S2 0.45 0.75 3 2
(Constraints: (10a,10d)) S3 0.50 0.80 3 2
(θU = 0.75, σL = 0.95) S4 0.55 0.85 3 2

S5 0.60 0.90 4 3
PPV for LAPR & S1 0.40 0.70 4 2
PPV for HAPR S2 0.45 0.75 5 3
(Constraints: (10e,10f)) S3 0.50 0.80 4 3
(πU = πL = 0.6) S4 0.55 0.85 5 4

S5 0.60 0.90 8 7
NPV for LAPR & S1 0.40 0.70 6 3
NPV for HAPR S2 0.45 0.75 7 4
(Constraints: (10g,10h)) S3 0.50 0.80 6 4
(%U = %L = 0.95) S4 0.55 0.85 7 5

S5 0.60 0.90 5 4
PPV for LAPR & S1 0.40 0.70 4 2
NPV for LAPR S2 0.45 0.75 5 3
(Constraints: (10e,10g)) S3 0.50 0.80 4 3
(πL = 0.6, %L = 0.95) S4 0.55 0.85 5 4

S5 0.60 0.90 5 4
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