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Small heat shock protein HSPB7 is highly expressed in the heart.
Several mutations within HSPB7 are associated with dilated car-
diomyopathy and heart failure in human patients. However, the
precise role of HSPB7 in the heart is still unclear. In this study, we
generated global as well as cardiac-specific HSPB7 KO mouse
models and found that loss of HSPB7 globally or specifically in
cardiomyocytes resulted in embryonic lethality before embryonic day
12.5. Using biochemical and cell culture assays, we identified HSPB7 as
an actin filament length regulator that repressed actin polymerization
by binding to monomeric actin. Consistent with HSPB7’s inhibitory
effects on actin polymerization, HSPB7 KO mice had longer actin/thin
filaments and developed abnormal actin filament bundles within sar-
comeres that interconnected Z lines and were cross-linked by
α-actinin. In addition, loss of HSPB7 resulted in up-regulation of
Lmod2 expression and mislocalization of Tmod1. Furthermore, cross-
ing HSPB7 null mice into an Lmod2 null background rescued the elon-
gated thin filament phenotype of HSPB7 KOs, but double KOmice still
exhibited formation of abnormal actin bundles and early embryonic
lethality. These in vivo findings indicated that abnormal actin bundles,
not elongated thin filament length, were the cause of embryonic
lethality in HSPB7 KOs. Our findings showed an unsuspected and
critical role for a specific small heat shock protein in directly modulat-
ing actin thin filament length in cardiac muscle by binding monomeric
actin and limiting its availability for polymerization.

HSPB7 | heart development | sarcomere | thin filament assembly | actin
polymerization

Several cardiac disease-causing mutations have been found
within thin filament genes, such as ACTC1 (1), TPM1, and

TNNT2 (2), reinforcing the realization that the proper function
of cardiac muscle relies on precise regulation of thin filament
contractile function. A critical characteristic of thin filaments is
their tightly controlled length, which is closely related to specific
contractile properties of distinct striated muscle types (3, 4).
Several actin binding proteins regulate thin filament length. The
pointed end capping protein tropomodulin 1 (Tmod1) (5) limits
thin filament length by inhibiting addition of actin to the pointed
end of actin filaments (6, 7). The actin nucleator, leiomodin2
(Lmod2) (8), is also required for regulating thin filament length in
cardiac muscle, as mice lacking Lmod2 exhibit shorter filament
lengths and reduced force-generating ability in cardiac myocytes
(9). The importance of precise regulation of thin filament length is
shown by the subsequent development of dilated cardiomyopathy
in Lmod2 mutants (9) or in transgenic (Tg) mice overexpressing
Tmod1 in their hearts (10). Moreover, loss of Lmod3, the Lmod
gene expressed predominantly in skeletal muscle, results in severe
nemaline myopathy characterized by sarcomere disorganization
and shorter thin filaments in both humans and mice (11, 12).
However, whether there are additional regulators that contribute
to this process and how actin binding proteins work in concert to
tightly regulate thin filament length remain largely unknown.

Small heat shock proteins (sHSPs) are a family of molecular
chaperones that bind nonnative proteins to prevent their ag-
gregation and assist in subsequent refolding by ATP-dependent
chaperones, such as HSP70 (13), or in targeting unfolded pro-
teins for degradation by proteasomal and/or autophagic pathways.
While some sHSPs are ubiquitously expressed, others are relatively
confined to heart and skeletal muscle, including HSPB6 and
HSPB7 (14). sHSPs recognize a broad spectrum of substrates,
ranging from cytoskeletal proteins to mitochondrial proteins (13).
Interestingly, sHSPs also associate with the actin cytoskeleton (15).
In addition, HSPB5/αB-crystallin is known to stabilize filamentous
actin (16), while HSPB1 was originally purified from turkey smooth
muscle as a fraction that inhibits actin polymerization (17). How-
ever, mechanisms by which sHSPs directly modulate actin dynamics
await additional investigation.
HSPB7 (also known as cardiovascular HSP) is highly expressed

in heart and skeletal muscle (18). Mutations found within the
HSPB7 gene are associated with heart disease (19–22). In zebra-
fish, loss-of-function studies showed that HSPB7 is essential for
left–right asymmetry and cardiac morphogenesis (23, 24). How-
ever, the role of HSPB7 in mammalian heart is still unclear. To
further investigate biological functions of HSPB7, we generated
mice with global KO of HPSB7 and found that they died from
heart defects before embryonic day 12.5 (E12.5). Close examina-
tion of sarcomeres in KO cardiomyocytes revealed the pres-
ence of abnormal actin bundles (AABs), which were continuous
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throughout the length of the sarcomere and associated with
α-actinin. Measurement of thin filament length revealed longer
thin filaments, which coincided with up-regulation of the actin
binding protein Lmod2. However, genetic ablation of Lmod2 in
HSPB7 KO embryos did not prevent formation of AABs, although
average thin filament lengths were reduced, consistent with de-
letion of Lmod2 alone (9). The foregoing suggests that up-
regulation of Lmod2 was important for increased thin filament
length but not for assembly of AABs in HSPB7 mutants. In-
terestingly, we found that HSPB7 bound to monomeric actin (G
actin) and repressed actin polymerization, indicating that loss of
HSPB7 could result in excessive actin polymerization and AAB
formation. Our findings shed light on HSPB7’s role in thin fila-
ment length regulation and suggest a possible interplay between
HSPB7 and regulators, such as Lmod2 and Tmod1.

Results
HSPB7 Is Essential for Fetal Heart Development. To investigate
HSPB7’s function in vivo, we generated an HSPB7 KO mouse
line utilizing homologous recombination. In brief, Exon 2 of the
HSPB7 gene was flanked by two LoxP sites, and a neomycin
cassette was inserted immediately downstream in Intron 2 to serve
as a selection marker (Fig. S1A). Correctly targeted ES cells were
used to generate living mice via germ-line transmission and bred
with ubiquitously expressed Sox2-Cre (25) mice to generate an
HSPB7 global KO allele. Western blot results from E11.5 hearts of
KO animals indicated complete loss of HSPB7 protein (Fig. S1A).
We were unable to recover viable KOs, suggesting that HSPB7 KO
mice died in utero (Fig. S1B and Table S1). From E9.5 to E10.5,
mutants were grossly indistinguishable from WT littermates (Fig.
1A). However, at E11.5, mutants had noticeably smaller left ven-
tricles compared with WT littermates (Fig. 1A). Examination of
embryonic hearts revealed that HSPB7 KO embryos had relatively
smaller hearts, starting from E10.5 (Fig. S1C). We also observed
enlargement of cardinal veins in E10.5 KO embryos by PECAM
(platelet endothelial cell adhesion molecule) staining (Fig. S1D), an
indication of congestive heart failure (26). At E11.5, nearly one-half
of KO embryos had died and begun to be resorbed, and by E12.5,
most HSPB7 KO embryos had died (Fig. S1B and Table S1).
To uncover detailed morphological changes in mutant hearts,

we performed H&E staining on embryonic heart sections. At
E10.5, HSPB7 KO hearts were slightly smaller and more
rounded in shape relative to controls (Fig. S1E). By E11.5, tra-
beculae were smaller and thinner, and the right ventricular wall
was thinner in E11.5 mutant hearts relative to controls (Fig. 1B).
To investigate whether the observed phenotypes were owing to
loss of HSPB7 function in cardiomyocytes, we examined ex-
pression of HSPB7 by whole-mount RNA in situ hybridization of
WT and mutant embryos. Results showed that HSPB7 was

exclusively expressed in heart and undetectable in other parts of
the embryo (Fig. S2A). Immunofluorescent staining using anti-
bodies against HSPB7 and the cardiomyocyte marker α-actinin
indicated that that HSPB7 expression was confined to car-
diomyocytes (Fig. S2B). HSPB7 was expressed throughout the
cytoplasm of cardiomyocytes in an irregular punctate pattern in
contrast to the striated pattern observed for sarcomeric α-actinin
(Fig. S2B). To further ensure that observed phenotypes resulted
from a cardiomyocyte-specific requirement for HSPB7, we used
Nkx2.5-Cre (27) and cTnT-Cre (28) mouse lines to delete
HSPB7 specifically in cardiomyocytes. Timed pregnancy results
showed that all HSPB7 cardiac-specific KO (cKO) embryos de-
veloped similar phenotypes as global KO embryos, similarly dy-
ing before E12.5 (Fig. S2C and Tables S2 and S3).
As expression of HSPB7 was confined to cardiomyocytes (Fig.

S2 A and B) and the overall phenotype of cKOs resembled those
of global KOs (Fig. 1B and Fig. S2C), we decided to use the global
HSPB7 KO for the remainder of our experiments. To investigate
whether a decrease in cardiomyocyte proliferation could account
for smaller hearts and thinner trabeculae in mutant embryos, we
used antibodies against the mitotic marker Phospho-Histone H3
(pHH3) and sarcomeric α-actinin to highlight proliferative car-
diomyocytes (Fig. S2D). Quantification of the percentage of pHH3-
positive cardiomyocytes indicated that proliferation in HSPB7 KO
was not affected until E11.5 (Fig. S2E), when about 40% of mutant
embryos had already died. Decreased proliferation observed at this
stage just before death suggested that it might be a secondary event
rather than causative for the observed phenotype. We barely ob-
served apoptotic cardiomyocytes in bothWT and HSPB7 KO E9.5–
E11.5 embryos by Cleaved Caspase 3 staining (Fig. S2F).

AABs Form Within Sarcomeres of HSPB7 KO Cardiomyocytes. Sarco-
meres are the fundamental unit of the contractile apparatus in
cardiomyocytes. Interestingly, sHSPs translocate to and stabilize
sarcomeres under stress conditions (29). We, therefore, asked
whether there were defects in sarcomere assembly that might lead to
insufficient cardiac function in HSPB7 KO embryos. To assess sar-
comere integrity, we performed immunofluorescence staining of
E11.5 embryonic heart sections using antibodies against two classic
sarcomeric proteins: α-actinin at the Z line and myomesin at the M
line. In WT cardiomyocytes, Z lines and M lines were prominent and
discrete, indicating proper assembly of sarcomeres (Fig. 2A). On the
contrary, sarcomeres in HSPB7 KO cardiomyocytes were poorly
organized (Fig. 2A). Whereas M lines were relatively unchanged, Z
lines were narrower and had a “checkerboard” appearance. Of note,
there were atypical structures interconnecting Z lines that were
stained by both α-actinin (Z line) and phalloidin (F actin) (yellow
arrows in Fig. 2A), indicating that they were actin filaments associ-
ated with α-actinin. Similar abnormal structures were observed in
E9.5 KO hearts and E10.5 KO hearts (yellow arrows in Fig. S3A),
indicating that this phenomenon preceded emergence of an overt
cardiac morphogenetic phenotype. As the abnormal structures could
be stained by phalloidin and contained α-actinin, we designated them
AABs. To further characterize AABs, we used antibodies against
another Z-line protein, cypher (30, 31), to investigate whether cypher
also might be a component of AABs. As shown in Fig. S3B, cypher
staining was detected in most AABs marked by α-actinin (yellow
arrows in Fig. S3B). We also used an antibody that specifically rec-
ognizes the Z-line portion of titin (Z1Z2) to examine whether titin
was included in AABs. Although the Z-line portion of titin was
largely overlapping with α-actinin in both WT and mutant sarco-
meres, the great majority of AABs did not contain Z1Z2 of titin
(yellow arrows in Fig. S3C). In very rare instances, Z1Z2 was ob-
served within AABs (yellow arrowheads in Fig. S3C).
Troponin–tropomyosin complexes are pivotal to contractile

function of sarcomeres (32). To investigate whether AABs pos-
sessed troponin–tropomyosin complexes and might have the
potential to contract, we used two antibodies against Tpm1 (Fig.
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Fig. 1. General phenotype of HSPB7 KO mice. (A) Images of WT and KO
embryos from E9.5 to E12.5. A, left atria; V, left ventricle. (Scale bar: 1 mm.)
(B) H&E images of E11.5 embryos acquired using NanoZoomer slide scanner.
(Scale bar: 0.5 mm.) Estimated location of sectioning is indicated by a dotted
line on the whole-mount embryos images, Left. (Scale bar: 1 mm.) Magnified
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2B) and cardiac troponin T (cTnT) (Fig. 2C). As expected, the
staining pattern of Tpm1 or cTnT appeared closely flanking the Z
lines, consistent with staining of the narrow cardiac I bands.
However, neither Tpm1 nor cTnT were detected in AABs (yellow
arrows in Fig. 2 B and C). This result indicated that AABs did not
contain troponin–tropomyosin complexes and thus, would be un-
likely to generate contractions. Moreover, neither myomesin nor
myosin heavy chain were detected in the AABs, also indicating
that they are noncontractile (Fig. 2A and Fig. S3D).
Desmin forms short filament-like structures interconnecting Z

lines (33). We found similar desmin-containing structures in both
WT and mutant cardiomyocytes (green arrows in Fig. S3E), but
they did not overlap with AABs (red arrows in Fig. S3E), in-
dicating that they are distinct from AABs. Because HSPB7 has
been reported to interact with filamin C (Flnc) to prevent its
aggregation and mislocalization (34), we also performed immu-
nostaining with antibodies to Flnc. However, no changes in lo-
calization of Flnc and no evidence for Flnc aggregates were
observed in mutant cardiomyocytes. Additionally, Flnc was not
observed within AABs (yellow arrows in Fig. S3F).
Taken together, AABs found in HSPB7 KO cardiomyocytes

appear to be an abnormal form of actin filaments bundles that lack
a troponin–tropomyosin complex but include the Z-line compo-
nents α-actinin and cypher (Fig. S3G). Formation of AABs appears
to reflect defective actin filament/thin filament assembly, as no al-
terations were observed in thick filaments based on immunostaining
for myomesin (Fig. 2A) and myosin heavy chain (Fig. S3D).

HSPB7 KO Hearts Have Increased Lmod2 and Longer Thin Filaments in
Their Sarcomeres. The foregoing observations suggested that thin
filament assembly was dysregulated in HSPB7 KO hearts. As
thin filament assembly is a highly regulated process involving a
myriad of actin binding proteins (35), we examined the abundance
of various key regulators of actin dynamics under the assumption
that HSPB7 might stabilize one or some of these proteins acting as
a molecular chaperone. While amounts of most candidate proteins
remain unchanged, the actin nucleator Lmod2 was significantly
up-regulated in HSPB7 KO hearts (Fig. 3A and Fig. S4 A–C). The
intermediate filament protein desmin was also up-regulated (Fig.
S4 B and C), although this might be a secondary effect, as its level
increases in heart failure (36). Interestingly, qRT-PCR analyses
showed that Lmod2 mRNA levels exhibited a similar fold increase
to that of Lmod2 protein (two- to threefold) (Fig. S4 D and E).
This observation suggested that HSPB7 might not directly regulate
levels of Lmod2 through a protein–protein interaction.
In a previous study, overexpression of Lmod2 in cultured

cardiomyocytes reduced binding of the pointed end capping
protein Tmod1 to pointed ends of actin filament, and was ac-
companied by thin filament elongation (37). As Lmod2 was
significantly up-regulated in HSPB7 KO hearts, we assessed thin
filament length in both WT and HSPB7 KO cardiomyocytes.
Thin filament length was significantly increased in HSPB7 KO
cardiomyocytes from E10.5 hearts (Fig. 3B), reminiscent of
findings in Lmod2-overexpressing cardiomyocytes (37). Al-
though overall amounts of the pointed end capping protein
Tmod1 were unchanged (Fig. 3A and Fig. S4A), and some
Tmod1 was associated with thin filament pointed ends in the
middle of the sarcomere, another portion of Tmod1 appeared
diffusely localized throughout the cytoplasm in the HSPB7 KO
cardiomyocytes (Fig. 3C). This contrasts with WT sarcomeres,
where all of the Tmod1 is located at the thin filament pointed
ends and no cytoplasmic Tmod1 is detected (Fig. 3C). This
suggests that not all Tmod1 had assembled at its normal sarco-
meric location in the absence of HSPB7, consistent with defects
in thin filament assembly. Reduced Tmod1 capping of thin fil-
ament pointed ends may contribute to their elongation (38).

Loss of HSPB7 Leads to Formation of AABs Independent of Lmod2 and
Tmod1. Lmod2 KO mouse cardiomyocytes have shorter thin fil-
ament lengths, and mice develop early-onset dilated cardiomy-
opathy (9). Thus, if abnormal elongation of thin filaments was
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caused by elevated expression of Lmod2, we hypothesized that de-
pletion of Lmod2 in HSPB7 KO mice might ameliorate sarcomeric
defects. To address this, we generated Lmod2/HSPB7 double-
homozygous null mice. Immunofluorescent staining using antibodies
against HSPB7 and Lmod2 indicated that both proteins were suc-
cessfully eliminated in double-KO embryos (Fig. S5A), which died
before E12.5, the same stage as HSPB7 KOs. As expected, thin fil-
ament length was reduced ∼9% in Lmod2 KO cardiomyocytes (9)
and increased ∼4% in HSPB7 KOs (Fig. S5B). The average thin
filament length observed in Lmod2 KOs was incrementally increased
by ∼4% by loss of HSPB7, comparable with that observed in HSPB7
KOs alone. These observations suggested that each of these pathways
regulates thin filament length in an opposite and independent fash-
ion. Examination of thin filament assembly by performing immu-
nostaining with sarcomeric α-actinin antibody and phalloidin showed
that AABs were still present in double-KO embryos (yellow arrow-
heads in Fig. S5C). Together, these observations indicated that sar-
comeric phenotypes observed in HSPB7 KOs could not be rescued
by loss of Lmod2, and thus, were not consequent to observed up-
regulation of Lmod2. These results indicate that HSPB7 directly
limits thin filament length and that loss of HSPB7 leads to AAB
formation by an Lmod2-independent pathway.
The presence of Tmod1 in the cytoplasm of HSPB7 KO car-

diomyocytes could have resulted from the up-regulation of
Lmod2, as Tmod1 and Lmod2 have been proposed to compete
for binding to pointed ends in cultured cardiomyocytes (37).
However, the presence of cytoplasmic Tmod1 was not corrected
in Lmod2/HSPB7 double-KO embryos (Tmod1 staining in Fig. S5C),
suggesting that alterations in Tmod1 localization were not caused by
up-regulation of Lmod2. Previous studies in cultured cardiomyocytes
have shown that inhibition of Tmod1 activity by antibody microin-
jection results in actin filament elongation from pointed ends, with
increased overall length of thin filaments, and decreased beating of
cardiomyocytes (38). These observations suggested that reduced
Tmod1 association with thin filament pointed ends could potentially
account for the increased length of sarcomeric actin filaments and/or
formation of AABs in HSPB7 KO embryos. Therefore, to examine
whether overexpression of Tmod1 could rescue HSPB7 phenotypes,
we crossed Tmod1 Tg mice (10) into an HSPB7 KO background.
Immunofluorescence images of whole embryonic hearts showed that
expression of Tmod1 was substantially increased in Tmod1 Tg hearts
and HSPB7 KO/Tmod1 Tg hearts (Fig. S6A). Despite the significant
increase of Tmod1 at pointed ends (compare red arrowheads with
green arrowheads in Fig. S6B), AABs were still present in HSPB7
KO/Tmod1 Tg embryonic hearts (yellow arrowheads in Fig. S6B).
However, the thin filament length was not altered in HSPB7 KO/
Tmod1 Tg compared with HSPB7 KO, although thin filaments were
slightly shortened in Tmod1 Tg compared withWT (Fig. S6C). These
results indicated that increasing Tmod1 at pointed ends could not
rescue either the AAB or longer thin filament phenotype of the
HSPB7 KOs.

HSPB7 Reduces Actin Polymerization by Directly Binding G Actin. The
foregoing findings suggested that HSPB7 might directly influ-
ence actin polymerization independent of Lmod2 and Tmod1.
To investigate mechanisms by which HSPB7 could affect actin
polymerization, we sought to determine whether there was a
direct interaction between HSPB7 and actin. To this end, we
investigated whether HSPB7 bound to F actin using a cosedi-
mentation binding assay. We observed that HSPB7 alone pel-
leted after ultracentrifugation (Fig. 4A), probably because of its
tendency to form high-molecular weight oligomers (39). In-
terestingly, we found that the portion of HSPB7 in the super-
natant fraction containing G actin increased when coincubated
with F actin but not with BSA (Fig. 4A), while F-actin binding
protein α-actinin-2 was coprecipitated with F actin (Fig. S7A). This
result suggested that HSPB7 might bind directly to G actin rather
than to F actin. To examine whether HSPB7 interacted with actin in

mouse cardiomyocytes, we performed tandem affinity purification
(TAP) using isolated neonatal mouse cardiomyocytes infected with
adenovirus-expressing 3xFLAG/HA-tagged HSPB7. Results con-
firmed that the interaction between HSPB7 and actin occurred in
cardiomyocytes (Fig. 4B). To investigate a direct interaction be-
tween HSPB7 and G actin, we utilized a blot overlay assay by
immobilizing either G actin or F actin on Nitrocellulose membranes
and then, overlaying with HSPB7 protein. Western blotting with
antibody to HSPB7 indicated that HSPB7 preferentially bound G
actin over F actin in a manner comparable with preferential binding
of DNase I to G actin over F actin (40) (Fig. 4C). The much weaker
binding of HSPB7 observed in F-actin samples was likely owing to
the presence of some unpolymerized G actin within F-actin prep-
arations (Fig. S7B). Interestingly, the interaction with G actin was a
unique feature of HSPB7, as another heart-enriched sHSP, HSPB5/
αB-crystallin, did not bind G actin in reciprocal blot overlay assays
(Fig. S7C). To further confirm the interaction between G actin and
HSPB7, we performed zero-length covalent cross-linking experi-
ments using EDC [N-(3-dimethylaminopropyl)-N’-ethylcarbodiimide
hydrochloride] and NHS (N-hydroxysuccinimide) (41, 42). Purified
HSPB7 and G actin could be covalently cross-linked to a complex
with a molecular mass of ∼65 kDa, consistent with a 1:1 stoichiom-
etry of the HSPB7–actin complex (asterisks in Fig. S7D). Further-
more, both HSPB7 and actin were found within the complex as
shown by Western blot analysis (asterisks in Fig. S7D). Taken to-
gether, our results showed that HSPB7 bound G actin both in vitro
and in cardiomyocytes.
Next, we sought to determine whether HSPB7 was capable of

inhibiting actin polymerization based on its ability to interact with G
actin and thus, could have the potential to prevent excessive thin
filament elongation in cells. To this end, we performed actin po-
lymerization assays with or without purified recombinant HSPB7
protein. Interestingly, we found that HSPB7 seemed to reduce the
rate of actin polymerization in a dose-dependent manner (Fig. 4D).

A B
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Fig. 4. HSPB7 binds G actin and inhibits actin polymerization. (A) Silver stain
image of F-actin cosedimentation binding assay. S, supernatant; P, pellet.
(B) TAP performed in isolated neonatal mouse cardiomyocytes infected by
adenoviruses expressing either 3xFLAG/HA-tagged HSPB7 or EGFP. Samples
were immunoblotted with actin or FLAG antibodies. The residual amount of
actin in control EGFP sample is caused by unspecific binding of actin to EGFP,
which was expressed at a much higher level than HSPB7. (C) Western blot image
of blot overlay assay using an antibody against HSPB7 (Upper). Fluorescence
image of Alexa Flour 594-conjugated DNase I incubated with the same mem-
brane after treatment with stripping buffer (Lower). IB, immunoblot. (D) Actin
polymerization assay with or without the presence of recombinant HSPB7
protein. Pyrene labeled G actin (2 μM) was preincubated with increasing amount
of HSPB7 (10 μM, green; 40 μM, magenta) or buffer alone (blue).
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Like other actin binding proteins [e.g., profilin (43) and LATS1], we
had to use relatively high concentrations of HSPB7 to repress actin
polymerization. Taken together, these results suggest that HSPB7
may transiently bind G actin and limit its ability to polymerize.

Discussion
In this study, we have identified a role for an sHSP in regulating
thin filament length in cardiomyocytes in vivo and elucidated the
mechanism by which it does so. HSPB7-deficient embryos died
before E12.5 and exhibited increased thin filament length and
AABs that extended across the normally actin-free H zone. Al-
though defects in cardiomyocyte proliferation were observed at
E11.5 in HSPB7 KOs (Fig. S2E), proliferative defects are likely to
be secondary to cardiac dysfunction and not causal to cardiac
dysfunction, as they occurred at a time when 40% of the HSPB7
KO embryos had died; also, defects in cardiac muscle structure
were already evident by E9.5 (Fig. S3A). We found that expression
of the actin nucleator Lmod2 was up-regulated, and the pointed
end capping protein Tmod1 was mislocalized in HSPB7 KOs,
suggesting that dysregulation of these proteins might account for
sarcomeric phenotypes of HSPB7 KOs. However, genetic rescue
studies indicated that sarcomeric phenotypes of HSPB7 KOs were
independent of dysregulation of Lmod2 or Tmod1, suggesting a
more direct role for HSPB7 in regulating thin filament length.
Indeed, several biochemical analyses showed that HSPB7 directly
binds to monomeric G actin, which could reduce its ability to po-
lymerize into F actin and thus, limit thin filament growth.
We found that average thin filament length was increased in

HSPB7 KO embryos. As overexpression of Lmod2 tends to in-
crease thin filament length (37), we sought to determine if up-
regulation of Lmod2 in HSPB7 KO could account for the phe-
notypes by creating Lmod2/HSPB7 double-KO mice. Like
Lmod2 single-KO mice (9), the thin filament length was signif-
icantly reduced compared with HSPB7 single KO, underscoring
the importance of Lmod2 in maintaining proper thin filament
length. Although it seemed that up-regulation of Lmod2 could
explain the average thin filament length increase in HSPB7 KO,
we found that thin filaments in Lmod2/HSPB7 double KO were
still significantly longer than Lmod2 single KO, indicating that
HSPB7 may directly repress thin filament elongation via a dis-
tinct pathway from Lmod2. Interestingly, the percentage of thin
filament length increase in Lmod2/HSPB7 double KO over
Lmod2 KO was comparable with the increase in HSPB7 KO over
control, indicating that the loss of HSPB7’s inhibitory effect,
rather than increased expression of Lmod2, largely contributes
to the longer thin filaments in the HSPB7 KO cardiomyocytes.
Overexpression of Lmod2 was thought to inhibit Tmod1’s

binding to pointed end by direct competition (37); however, re-
cently, a new model has been proposed that Lmod over-
expression and enhanced actin nucleation would generate more
nascent thin filaments that elongate from their barbed ends. An
increased number of filaments with free pointed ends could com-
pete with preexisting pointed ends for limiting Tmod, resulting in
decreased capping frequency and increased actin addition at
pointed ends and longer filaments (44). Similarly, the up-regulation
of Lmod2 observed in HSPB7 KO cardiomyocytes could produce
excess free pointed ends with reduced Tmod1 capping, possibly
contributing to the longer thin filaments observed in HSPB7 KO.
To test this possibility, we overexpressed Tmod1 by crossing Tmod1
Tg mice to the HSPB7 KO background. However, an increased
amount of Tmod1 at the pointed end did not reduce the length of
the elongated thin filaments in HSPB7 KO, although thin filament
length was decreased in Tmod1 Tg mice compared with WT as
expected (10). This observation implies that thin filaments may
largely elongate from their barbed ends in HSPB7 KO, as
Tmod1 only inhibits addition of actin to the pointed end (6). Ad-
ditionally, HSPB7 reduced rates of spontaneous actin poly-
merization in vitro, consistent with an effect on barbed ends, as

polymerization occurs predominantly at fast-growing barbed
ends under the conditions tested (45).
The AABs were continuous throughout the sarcomere. By

probing with various antibodies raised against sarcomeric com-
ponents, we discovered that these AABs bundles contain Z-line
components, including α-actinin, but lack thin filament (Tpm1,
cTnT) or thick filament components (myosin heavy chain,
myomesin), which are critical for sarcomere contractile function
(32). We concluded that these abnormal actin filament bundles
are an aberrant Z-line structure and are unlikely to contract
independently. We speculate that continued growth of thin fil-
aments from their barbed ends through the H zone might result
in confluence of antiparallel actin filaments, allowing binding of
α-actinin and thus, mimicking the situation at the Z line (Fig.
S8). Thus, α-actinin and other Z-line proteins (e.g., cypher)
would recognize AABs as a pseudo-Z line. In addition, we found
that expression of α-actinin remained constant in HSPB7 KO
compared with WT (Fig. S4 B and C). The expansion of the
abnormal Z-line structures containing α-actinin, F actin, cypher,
and other Z-line components might decrease the amount of
correctly localized α-actinin at the Z lines, which might further
exacerbate defective thin filament assembly. The formation of
these abnormal Z-line structures in HSPB7 KO cardiomyocytes
resembles expanded Z-line pathologies referred to as streaming
Z lines or nemaline bodies in skeletal muscle myopathies (46).
To our knowledge, such structures have not been reported be-
fore in developing mouse cardiac muscles. Our data show that
loss of the thin filament length regulator, Lmod2, in HSPB7 KOs
does not rescue formation of AABs, implying that HSPB7 can
act independently of Lmod2 in repressing excessive elongation of
thin filaments and abnormal expansion of Z lines. Our data also
suggest that the AABs, but not elongated thin filament length,
may be the cause of cardiac defects and embryonic lethality in
the HSPB7 KO mice. However, additional studies are needed to
determine whether indeed AABs are sufficient to cause observed
cardiac defects and lethality or whether the latter are caused by
other as yet unidentified factors.
The mammalian sHSP family consists of 10 family members,

HSPB1–10 (47). Although several sHSPs (e.g., HSPB5/αB-crys-
tallin, HSPB6, HSPB7, and HSPB8) are relatively enriched in
the heart (14), only ablating HSPB7 leads to an embryonic lethal
phenotype in mice. In contrast, HSPB5/2 double-KO (48) and
HSPB8-KO (49) mice are viable and do not have a basal cardiac
phenotype. In addition, we recently showed that HSPB5, HSPB6,
and HSPB8, which interact with BAG3, show a dramatic re-
duction in protein levels in Bag3 cardiac-specific KO mutant
hearts (50). On the contrary, HSPB7, which does not interact
with Bag3 (51), was unaltered (50). Together, these observations
show that HSPB7 possesses an indispensable and unique func-
tion in the heart, which is distinct from other sHSPs. Our ob-
servation that, in contrast to HSPB7, αB-crystallin did not
interact with G actin in blot overlay assays (Fig. S7C) also
highlighted that the ability of HSPB7 to bind G actin and limit its
availability for polymerization is not a common feature of sHSPs.
Recently, mice lacking HSPB7 specifically in skeletal muscle

were reported to develop progressive myopathy (34). Flnc ag-
gregation was found in HSPB7-deficient muscles, and the
amount of Flnc aggregates was correlated with the severity of
symptoms (34). However, we did not observe Flnc aggregation or
any changes in Flnc localization in our HSPB7 KO embryos (Fig.
S3F), indicating that HSPB7 may play different roles in cardiac
and skeletal muscle. This notion was further supported by differ-
ences in HSPB7’s subcellular localization in embryonic heart and
skeletal muscle. We observed that HSPB7 was evenly distributed
in E11.5 cardiomyocytes. In contrast, HSPB7 was found to localize
at the Z line in skeletal muscle cells (34) and adult cardiomyocytes
(52), implying that HSPB7 might play distinct roles in embry-
onic and adult cardiomyocytes. These findings also indicate that
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HSPB7 could be involved in biological processes other than actin
dynamics, which warrants additional investigation.

Materials and Methods
The sources of reagents and detailed methods are described in SI Materials
and Methods. All animal studies were performed in accordance with the NIH
Guide for the Care and Use of Laboratory Animals (53) and approved by the
Institutional Animal Care and Use Committee of the University of California,
San Diego. HSPB7 KO mice were generated as described (54). Immunostaining
and in situ hybridization were performed as described (55, 56). qRT-PCR was

performed as described (57). HSPB7 coding sequence was amplified from
mouse adult heart cDNA and cloned into pET-trx1a (58).
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