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Abstract

Scattering resonances and the complex absorbing potential method

by

Haoren Xiong

Doctor of Philosophy in Mathematics

University of California, Berkeley

Professor Maciej R. Zworski, Chair

Scattering resonances are the analogues of eigenvalues for problems on non-compact
domains. The real part and imaginary part of the resonances capture the rates of
oscillation and decay of the scattering waves. Hence the location of resonances reflects
the long-time behavior of the waves on non-compact domains.

In this thesis we study a computational technique for scattering resonances, that is
the method of complex absorbing potentials (CAP). We show that the CAP method
for computing resonances applies to the case of scattering by exponentially decaying
potentials. We also show that the CAP method is valid for an abstractly defined
class of black box perturbations of dilation analytic second order differential operators
which is close to the Laplacian near infinity. The black box formalism allows a unifying
treatment of diverse problems ranging from obstacle scattering to scattering on finite
volume surfaces without addressing the details of specific situations.

The black box scattering problem motivates us to study the boundary perturbations in
obstacle scattering. We show that all resonances in obstacle scattering with Dirichlet
boundary condition are generically simple in the class of obstacles with Ck (and C∞)
boundaries, k ≥ 2. This generalizes the case of eigenvalues of second order elliptic
operators on a compact domain that all eigenvalues are simple for a generic compact
domain.
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2.6 Pöschl–Teller potentials . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3 Review of scattering resonances 22
3.1 Scattering by compactly supported potentials . . . . . . . . . . . . . . 22



iii

3.2 Scattering by exponentially decaying potentials . . . . . . . . . . . . . 24
3.3 Black box scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.4 Long range perturbations of Laplacian . . . . . . . . . . . . . . . . . . 29
3.5 The method of complex scaling . . . . . . . . . . . . . . . . . . . . . . 32
3.6 Agmon’s perturbation theory of resonances . . . . . . . . . . . . . . . . 36

4 Boundary perturbation in obstacle scattering 41
4.1 Deformation of obstacle . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.2 Agmon’s theory and boundary perturbation . . . . . . . . . . . . . . . 42
4.3 Generic simplicity of resonances in obstacle scattering . . . . . . . . . . 45

5 The CAP-regularized operator 53
5.1 The Davies harmonic oscillator . . . . . . . . . . . . . . . . . . . . . . 53
5.2 An estimate of the weighted resolvent . . . . . . . . . . . . . . . . . . . 55
5.3 The regularized operator with exponentially decaying potential . . . . . 63
5.4 The regularized black box Hamiltonian and its analytic distortion . . . 65
5.5 Complex Higgs oscillators . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.5.1 Complex Higgs Oscillator on the Hyperbolic Plane . . . . . . . 72
5.5.2 Complex Higgs Oscillator with an Eckart barrier . . . . . . . . . 73
5.5.3 Complex Higgs Oscillator on hyperbolic half-cylinder . . . . . . 73

6 Resonances as viscosity limits 77
6.1 The CAP method for exponentially decaying potentials . . . . . . . . . 77
6.2 An auxiliary obstacle problem . . . . . . . . . . . . . . . . . . . . . . . 80
6.3 Dirichlet-to-Neumann operator . . . . . . . . . . . . . . . . . . . . . . 82
6.4 Compactly supported embedded eigenvalues . . . . . . . . . . . . . . . 87
6.5 Eigenvalues and obstacle deformation . . . . . . . . . . . . . . . . . . . 89
6.6 The CAP method for black box scattering . . . . . . . . . . . . . . . . 95

Bibliography 99



iv

List of Figures

1.1 An example of V ∈ L∞
comp(R) for illustrating the complex absorbing poten-

tial method for P = − d2

dx2 + V . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 An illustration of the complex absorbing potential method in the case of a

compactly supported potential shown on Figure 1.1. Resonances are com-
puted using squarepot.m [5]. . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3.1 Resonances of scattering by a bump potential shown on the top. Resonances
are computed using splinepot.m [5]. . . . . . . . . . . . . . . . . . . . . . . 23

4.1 Deformation φh
t in Diff(O) acting near a fixed point on ∂O, which is used

in Step 5 of the proof of Theorem 3. . . . . . . . . . . . . . . . . . . . . . 48

5.1 An illustration of the ellipticity of the deformed operator in the case of
dim = 1, β = 0.4, which shows that the numerical range of the principal
symbol of ih2∆ξ + |ξ|2 is compressed to avoid the region {λ2 : λ ∈ Ω}. We
choose ρ(·) = 0.4 tanh(·) for calculation. . . . . . . . . . . . . . . . . . . . 61

5.2 The spectrum of the complex Higgs osicllator on the hyperbolic plane. The
red dots are the eigenvalues of ∆H2 + ω2 tanh2 r with ω2 = −100i while the
black dots are the resonances. We also plot the resonances of ∆H2 , which
are the blue dots on the real axis. This shows the deformation of resonances. 74

5.3 The spectrum of the Higgs osicllator on hyperbolic half-cylinder with pa-
rameter l = 2π and ω2 = −100i. We only plot the spectrum with respect
to the Fourier modes m = 0, 10, 20 for illustration. Here the red dots are
eigenvalues and the black dots are resonances. We also plot resonances for
ω = 0 (blue dots) with respect to the same Fourier modes to show the
deformation of resonances. . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6.1 An auxiliary obstacle separating the black box from the differential operator
outside. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80



v

Acknowledgments

First and foremost, I would like to thank my advisor, Maciej Zworski, for all the en-
couragement and support over the years, for suggesting these projects, and for teaching
me the techniques to approach the problems. It would be impossible for me to complete
this thesis without his guidance. Partial support by the National Science Foundation
grants DMS-1500852 and DMS-1901462 is also acknowledged.

I am very grateful to Semyon Dyatlov, Michael Christ, Daniel Tataru, Fraydoun
Rezakhanlou, John Lott, Kiril Datchev, Jeffery Galkowski, Mengxuan Yang, and Jian
Wang for teaching me different aspects of mathematics and for many helpful discussions
during the last several years. I am also thankful to anonymous referees of my papers
for many valuable suggestions.

Finally, I would like to express my gratitude to my family for their patience and
encouragement, especially my wife for her constant understanding and support during
the hard times of this pandemic.



1

Chapter 1

Introduction and statement of
results

Scattering resonances are the analogues of eigenvalues for the wave equations on non-
compact domains. Each resonance corresponds to a resonant wave. The local energy
of the wave decays exponentially due to the fact that energy can escape to infinity.
This is in contrast to the case of waves on compact domains where the energy is
conserved. The rate of decay of the resonant wave is determined by the imaginary part
of the resonance, while the frequency of the wave corresponds to the real part of the
resonance. Hence the location of resonances is crucial in understanding the long time
behavior of the wave on non-compact domain.

There are many tools that have been used for computation of scattering resonances:
the method of complex scaling, which will be reviewed in §3.5, has been brought to
computational chemistry by Reinhardt [44]; the method of perfect layer potentials
(PML) has been used in computational physics – see Berenger [4]. In this chapter, we
review another technique for computing resonances – the complex absorbing potential
(CAP) method, first used in physical chemistry – see Seideman–Miller [46], Riss–Meyer
[45], Mandelshtam–Taylor [36] for an early treatment and Jagau et al [29] for some
recent developments. The CAP method is rougher but easier to implement, which
provides an accurate approximation for the location of scattering resonances – see for
instance Figure 1.2. We also review generic simplicity of scattering resonances, which
means that resonances of higher multiplicity are very rare. This property is very useful
when we deal with the difficulties caused by higher multiplicities of resonances. Then
we give a brief introduction to the new results obtained by the author, and introduce
some related open problems. In the last section of this chapter, we give the outline of
this thesis.
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1.1 The complex absorbing potential method

The complex absorbing potential method is based on replacing the Hamiltonian P by

Pε := P − iεx2, ε > 0.

For simplicity, throughout this thesis we shall write

x2 := x21 + · · ·+ x2n, x ∈ Rn.

The potential x2 is an example of a CAP and other potentials have also been used.
The operator Pε has discrete spectrum and as ε → 0+ the eigenvalues converge to
resonances of P uniformly on compact subsets of some neighborhood of the real axis.
We refer to these limits as viscosity limits by analogy to the case of Pollicott–Ruelle
resonances in Dyatlov–Zworski [13]. In that case, the analogue of Pε is given by X+ε∆
where X (the analogue of our iP ) is the generator of an Anosov flow on a compact man-
ifold and ∆, the Laplace–Beltrami operator for some metric, is an analogue of our x2

(using Fourier transform). This then corresponds to a standard “viscosity/stochastic”
regularization.

We shall mention that fixed complex absorbing potentials have already been used
in mathematical literature on scattering resonances. Stefanov [53] showed that semi-
classical resonances close to the real axis can be well approximated using eigenvalues
of the Hamiltonian modified by a complex absorbing potential. For applications of
fixed complex absorbing potentials in generalized geometric settings see for instance
Nonnenmacher–Zworski [39, 40] and Vasy [56].

Zworski [65] showed that scattering resonances of −∆ + V , V ∈ L∞
comp, are limits

of eigenvalues of −∆ + V − iεx2 as ε → 0+, see Figure 1.1 and 1.2 for a numerical
illustration. The author extends Zworski’s result to dilation analytic potentials [63],
exponentially decaying potentials [62] and black box Hamiltonians [61]. Kameoka
[30] characterized the resonances of Stark Hamiltonians using the complex absorbing
potential method. The analogous results were proved for kinetic Brownian motion by
Drouot [11], for gradient flows by Dang–Rivière [8] (following earlier work of Frenkel–
Losev–Nekrasov [14]), and for 0th order pseudodifferential operators, motivated by
problems in fluid mechanics, by Galkowski–Zworski [17] while the dynamics of viscosity
limits for 0th order pseudodifferential operators were studied by Wang [58]. A very
different example is the Wigner–von Neumann-type Hamiltonian, for instance, P =
− d2

dx2 +a
sinx
x
, in which case Kameoka and Nakamura [31] showed that the corresponding

limits exist only away from a discrete set of thresholds.

We should point out that results like that of [13] and [11] are not valid for non-
hyperbolic flows. A negative example is the geodesic flow on the torus, T2 = S1 × S1

with the flat metric. The geodesic flow on S∗T2 = S1
x1

× S1
x2

× S1
θ is generated by

V = cos θ ∂x1 + sin θ ∂x2 .
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Let Pε := V/i+ iε∆, ε > 0, where ∆ is the flat Laplacian, by the Fourier expansion in
x, we have

Spec(Pε) =
⋃
n∈Z2

Spec(Pε(n)), Pε(n) := −iεD2
θ + |n| cos

(
θ − tan−1 n1

n2

)
− i|n|2ε.

Recalling the asymptotic behaviour of the spectrum of these Galtsev–Shafarevitch
operators [18] as ε→ 0+, we obtain the accumulation points in the case of the generator
of the geodesic flow on T2 regularized using the flat Laplacian:

−i[0,∞) ∪
⋃

n∈Z2\{0}

{z : |Re z| ≤ |n|, Im z = −C|n|+ C|Re z|},

which form a discrete set of lines – see [13, Figure 3.], where C ≈ 0.85 is a special
constant – see [18].

Figure 1.1: An example of V ∈ L∞
comp(R) for illustrating the complex absorbing poten-

tial method for P = − d2

dx2 + V .

Figure 1.2: An illustration of the complex absorbing potential method in the case of a
compactly supported potential shown on Figure 1.1. Resonances are computed using
squarepot.m [5].
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1.2 Generic simplicity of resonances

A property that holds on an intersection of open dense sets is called generic. In a famous
paper Uhlenbeck [55] proved generic properties of eigenvalues and eigenfunctions of
second order elliptic operators on a compact manifold. The analogous result was proved
for eigenvalues of the Laplacian on a Riemannian cover by Zelditch [64].

In the case of resonances, Klopp and Zworski [33] showed that a generic potential
perturbation in Euclidean scattering splits the multiplicities of all resonances. That
means that for any r, there exists V ⊂ L∞(B(0, r);R), an intersection of open dense
sets, such that all resonances of −∆ + V , V ∈ V are simple (multiplicity= 1), and
L∞(B(0, r);R) can be replaced by other spaces of functions. Their argument in fact
applies to a class of non-self-adjoint Fredholm operators on an abstract Hilbert space
(see for instance §3.3 and §3.4). This result is very useful when we deal with the
difficulties caused by multiplicities of resonances, as many statements about resonances
are easy when there is no multiplicity but become more complicated in the case of
higher multiplicity. Using Agmon’s peturbation theory of resonances [1] instead of the
exterior complex scaling used in [33], Borthwick and Perry [6] extended this result to
scattering on asymptotically hyperbolic manifolds.

Apart from potential perturbations, I also mention that the evolution of eigenvalues
of second order elliptic operators under boundary perturbations have been studied since
Hadamard [24]. Henry [25] developed a general theory on perturbation of domains
for second order elliptic operators. The author [60] studied resonances in obstacle
scattering under generic boundary perturbations.

1.3 Statement of results

In this section, we introduce the main results in this thesis. To describe the convergence
of the eigenvalues of Pε as ε→ 0+, we adopt the Hausdorff metric, that is for two non-
empty subsets A,B of C,

dH(A,B) := max

{
sup
a∈A

inf
b∈B

|a− b|, sup
b∈B

inf
a∈A

|a− b|
}
.

1.3.1 CAP method for exponentially decaying potentials

We show that the CAP method for computing scattering resonances applies to the case
of exponentially decaying potentials. We consider the following Schrödinger operator:

P = −∆+ V acting on L2(Rn), |V (x)| ≤ Ce−2γ|x| for some C, γ > 0.

The exponentially weighted resolvent
√
V (P − λ2)−1

√
V can be meromorphically con-

tinued to the strip Imλ > −γ, see Froese [15], Gannot [19] and a review in §3.2.
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Resonances of P , denoted by Res(P ), are the poles in this meromorphic continuation.
We show the following

Theorem 1. The operator Pε := P − iεx2, ε > 0, is a non-normal unbounded operator
on L2(Rn) with a discrete spectrum. Let

Spec(Pε) ∩ C \ e−iπ/4[0,∞) = {λj(ε)2}∞j=1, −π/8 < arg λj(ε) < 7π/8.

Then for any 0 < a′ < a < b and γ′ < γ such that the rectangle

Ω := (a′, a) + i(−γ′, b) ⋐ {λ ∈ C : −π/8 < arg λ < 7π/8}. (1.3.1)

we have
lim
ε→0+

{λj(ε)}∞j=1 ∩ Ω = Res(P ) ∩ Ω,

where the limit is taken with respect to the Hausdorff metric.

1.3.2 CAP method for black box scattering

We show that the CAP method also applies to an abstractly defined class of black box
perturbations of the Laplacian in Rn which can be analytically extended from Rn to
a conic neighborhood in Cn near infinity. The abstract setting of black box scattering
was introduced by Sjöstrand and Zworski in [49]. The black box formalism allows a
unifying treatment of diverse problems ranging from obstacle scattering to scattering
on finite volume surfaces – see Examples 1–3 in §3.4, and we don’t need address the
details of specific situations.

The black box Hamiltonian P is assumed to act on a Hilbert space with an orthog-
onal decomposition:

H = HR0 ⊕ L2(Rn \B(0, R0)).

The orthogonal projections onto HR0 (the black box) and L
2(Rn\B(0, R0)) are denoted

by 1B(0,R0) and 1Rn\B(0,R0) respectively. We refer the readers to §3.3 for a more detailed
introduction of the black box formalism.

We do not assume P to be equal to −∆ near infinity as in [49]. Instead, we follow
Sjöstrand [50] and assume that P is a dilation analytic perturbation of −∆ near infinity,

1Rn\B(0,R0)Pu =
(
−

n∑
j,k=1

∂xj
(gjk(x)∂xk

) + c(x)
)
(u|Rn\B(0,R0)), ∀u ∈ Dom(P ),

where gjk, c ∈ C∞(Rn;R) with all derivatives bounded satisfying

gjk = gkj, ∀ j, k, |
n∑

j,k=1

gjk(x)ξjξk| ≥ C−1|ξ|2,
n∑

j,k=1

gjk(x)ξjξk + c(x) → ξ2, |x| → ∞,
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and there exist θ0 ∈ [0, π/8], δ > 0, and R ≥ R0, s.t. g
jk, c extend analytically

to {sω : ω ∈ Cn, dist(ω,Sn−1) < δ, s ∈ C, |s| > R, arg s ∈ (−δ, θ0 + δ)}
and the second half of (3.4.2) remains valid in this larger set.

The scattering resonances of P are defined by the method of complex scaling – see [49],
[50] and a review in §3.5. We prove the following result:

Theorem 2. The operator Pε := P − iε(1−χ(x))x2, ε > 0, where χ ∈ C∞
c (Rn) is equal

to 1 near B(0, R0), is an unbounded operator on H with a discrete spectrum. Denote
by Res(P ) the set of resonances of P . Then, uniformly on any precompact open subset
Ω of the sector {z ∈ C \ {0} : −2θ0 < arg z < 3π/2 + 2θ0},

lim
ε→0+

Spec(Pε) ∩ Ω = Res(P ) ∩ Ω.

1.3.3 Generic simplicity of resonances for obstacles

An obstacle scattering problem was used in the proof of Theorem 2, which motivates
us to study the behavior of resonances in obstacle scattering under boundary pertur-
bations. Suppose that O ⊂ Rn is a bounded open set such that ∂O is a Ck (k ≥ 2)
hypersurface in Rn. Let ∆O be the self-adjoint Dirichlet Laplacian on Rn \ O with
domain

D(∆O) := H2(Rn \ O) ∩H1
0 (Rn \ O). (1.3.2)

The resolvent of −∆O,

RO(λ) := (−∆O − λ2)−1 : L2(Rn \ O) → L2(Rn \ O), Imλ > 0,

continues meromorphically as an operator from L2
comp(Rn \O) to L2

loc(Rn \O) – see for
instance Dyatlov–Zworski [12, §4.2], when n is odd the continuation is to λ ∈ C and
when n is even to the logarithmic cover of C \ {0}: Λ = exp−1(C \ {0}). We denote
the set of poles of RO(λ) by Res(O), whose elements are called scattering resonances
for the obstacle O. For λ ∈ Res(O), its multiplicity is given by

mO(λ) := rank

∮
λ

RO(ζ)dζ,

where the integral is over a circle containing no other pole of RO(ζ) than λ. A resonance
λ ∈ Res(O) is called simple if mO(λ) = 1.

Consider a class of obstacles diffeomorphic to a fixed obstacle O0 (for example,
O0 = BRn(0, 1)), that is,

X :=

{
Φ(O0) :

Φ ∈ Ck(Rn;Rn) is a Ck-diffeomorphism, Φ(∂O) = ∂ Φ(O)

and Φ(x) = x, ∀ |x| > R, for some R > 0.

}
. (1.3.3)
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A topology can be introduced to this set using Ck norms of the diffeomorphisms, see
Pereira [42]. We show the following result.

Theorem 3. For any fixed obstacle O0 and the corresponding family X given by (1.3.3),
there exists a generic set X ⊂ X such that for every O ∈ X , all resonances λ ∈ Res(O)
are simple. By a generic set we mean an intersection of open dense sets.

Remark. We should point out that an analogue of this result for Robin boundary
condition (and in particular for the Neumann boundary condition) remains an open
problem – see §1.4.4 for a detailed discussion.

1.4 Open problems

In this section we introduce some open problems.

1.4.1 CAP method on aymptotically hyperbolic manifolds

It remains an open problem whether the CAP method for finding resonances works
for the hyperbolic space and more generally, asymptotically hyperbolic manifolds. The
problem can be formulated as follows: let (M, g) be a complete Riemannian manifold
of dimension n + 1 with boundary ∂M given by {ρ = 0} where ρ : M → [0,∞) is a
C∞ function such that dρ ̸= 0 on ∂M , and ρ > 0 on M . Suppose that the metric ρ2g
extends to a smooth Riemannian metric onM and that |dρ|ρ2g = 1 on ∂M . Let ∆g ≥ 0
be the Laplace–Beltrami operator for the metric g. Since the spectrum is contained
in [0,∞) the operator ∆g − n2/4 − λ2 is invertible on L2(M,d volg) for Imλ > n/2.
Consider the resolvent

R(λ) := (∆g − n2/4− λ2)−1 : L2(M,d volg) → H2(M,d volg), Imλ > n/2.

Let Ċ∞(M) denote functions which are extendable to smooth functions supported in
M . It follows from elliptic regularity that R(λ) : Ċ∞(M) → C∞(M), Imλ > n/2.
R(λ) : Ċ∞(M) → C∞(M) continues meromorphically from Imλ > n/2 to C with poles
of finite rank, see Mazzeo–Melrose [37], Guillarmou [21], Guillopé–Zworski [22], Vasy
[57], [56] and [12, Chapter 5]. We denote the poles by Res(∆g) = {λj}∞j=1. Does
there exist a function f such that the operator ∆g − n2/4 − iεf , ε > 0, has discrete
L2(M,d volg) spectrum {λj(ε)2} and that

λj(ε) → λj, as ε→ 0+?

I would like to mention that for finite volume surface with cusp ends this holds with
f(x) = d(x, x0)

2 where d is the hyperbolic distance – see [61, Example 3], and some
inconclusive and simple results are represented in §5.5.
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1.4.2 Hyperbolic analogues of the complex harmonic
oscillator

In [65], the complex harmonic oscillator ∆− iεx2, ε > 0 plays an important role as it
is an unbounded operator on L2(Rn) with a discrete spectrum given by

{e−iπ/4
√
ε(2|α|+ n) : α ∈ Nn

0}, |α| := α1 + · · ·+ αn,

see §5.1 for more details. It remains an open problem to find an analogue of this
operator in the hyperbolic setting. That is, on a hyperbolic manifold (M, g), I wish
to find a complex-valued function f ∈ C∞(M) such that ∆g + f is an operator on
L2(M,d volg) with discrete spectrum. f should also be unbounded near infinity like
the function −iεx2 in the Euclidean case, which will provide the compactness of the
resolvent (∆g − n2/4 + f − z)−1 : L2(M,d volg) → L2(M,d volg). A candidate f =
ω2 tanh2 r where ω ∈ C, r is the hyperbolic radius, has been studied in [59] or §5.5,
but in this case ∆g + f (the “complex Higgs oscillator”) has both eigenvalues and
resonances.

1.4.3 More general CAPs

A natural question is whether we can use more general complex absorbing potentials
than the quadratic potential x2 for computing resonances. We might expect the com-
plex absorbing potential to have some analyticity. The CAP −iεx2 has been most
commonly used in the field since the CAP-regularized Laplacian, −∆ − iεx2, is well
understood – see §5.1 and it is convenient for numerical experiments.

1.4.4 Generic simplicity of resonances in Neumann obstacle
scattering

The generic simplicity result for resonances in obstacle scattering with Robin boundary
condition (and in particular the Neumann boundary condition) remains an open prob-
lem. The difficulty was overcome by Uhlenbeck [54] in the case of Neumann eigenvalue
problem in a bounded domain Ω by using Transversality Theorem in infinite dimen-
sions and then deriving a contradiction from the equation ∇∂Ωu · ∇∂Ωv = λuv on ∂Ω
where λ > 0, u, v ∈ C2(∂Ω;R) and uv ̸= 0 on an open dense subset of ∂Ω, see also
[25, Example 6.4] for more details. In the case of obstacle scattering with Neumann
boundary condition, this argument does not seem to apply for ∇∂Ωu · ∇∂Ωv = zuv
when u, v are complex-valued and z is a complex resonance.

1.5 Outline

In chapter 2, we briefly review some basic notions and tools in semiclassical analysis
and spectral theory. In §2.3 we introduce the analytic Fredholm theory, which is a
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standard result to show meromorphy of operators; In §2.4 we review the Gohberg–
Sigal theory, which is the central tool for showing convergence of eigenvalues of Pε in
Theorem 1 and 2. The estimate of the decay of Green function in §2.5 is needed in the
proof of Theorem 2. §2.6 is a preparation for the discussion in §5.5.

In Chapter 3, we first review various notions about scattering resonances in the
simplest setting of 1D scattering by compactly supported potentials. In §3.2 we define
the resonances for scattering by exponentially decaying potentials. In §3.3 and §3.4,
we introduce the black box formalisms of scattering, which is used to define resonances
in Theorem 3 and 2 respectively. In §3.5, we review the method of complex scaling,
which is used to characterize resonances in black box scattering as eigenvalues. In §3.6,
we adapt Agmon’s theory to obstacle scattering, in which resonances are realized as
eigenvalues of a operator on an abstractly constructed Banach space. In contrast to
complex scaling, Agmon’s method allows us to capture all resonances on the logarithmic
plane in even dimensions.

In Chapter 4, we first study the deformation of obstacle and introduce the deformed
Laplacian outside the obstacle with Dirichlet boundary condition. The variation of
domain is transferred to the coefficients of the deformed operator. In 4.2, we apply
Agmon’s theory to the case of boundary perturbations. In §4.3 we present the proof
of Theorem 3.

In Chapter 5, we study the Hamiltonians modified by CAPs. In §5.1 we review
the properties of CAP-reularized free Laplacian on Rn (we call it Davies harmonic
oscillator). In §5.2 we prove an estimate for the resolvent of Davies harmonic oscillator
with exponential weights, which is the key estimate in the proof of Theorem 1. In
§5.3 we study review the meromorphy of the resolvent of Pε in Theorem 1. In §5.4 we
study the CAP-regularized black box Hamiltonian – Pε appeared in Theorem 2, and its
complex scaled version. In §5.5, we give a introduction to the complex Higgs oscillator
and represent some numerical results about its spectrum.

In Chapter 6, We represent the proofs of Theorem 1 and Theorem 2. In §6.1 we
complete the proof of Theorem 1 using the estimate obtained in §5.2. §6.2 – §6.6
are devoted to the proof of Theorem 2. In §6.2, an auxiliary obstacle is introduced to
separate the abstract black box from the differential operator outside, we also study the
interior and exterior reference operators associated to the obstacle and the black box
Hamiltonian P . In §6.3, we introduce the Dirichlet-to-Neumann operator associated
to the obstacle, we show that away from a discrete set depending on the obstacle, the
resonances of P and the eigenvalues of Pε can be characterized as the eigenvalues of
the Dirichlet-to-Neumann operator. There is a special subset of the discrete set above,
which consists of the embedded eigenvalues with compactly supported eigenfunctions
of P , this set is discussed in §6.4. In §6.5 we show that the obstacle can be chosen so
that the characterization of Res(P ) and Spec(Pε) through the Dirichlet-to-Neumann
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operator is valid in a neighborhood of Res(P ). The proof of Theorem 2 is completed
in §6.6 by obtaining further estimates on the Dirichlet-to-Neumann operators.
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Chapter 2

Preliminaries

In this chapter we give a brief introduction to basic notions or tools in semiclassical
analysis and spectral theory. We refer the reader to Zworski [66], Gohberg–Sigal [20],
[12, Appendix C], and Shubin [47] for a complete treatment.

2.1 Semiclassical Quantization

2.1.1 Symbol classes

We first review the notion of symbols, which are smooth functions on R2n that can be
quantized to semiclassical pseudodifferential operators.

Definition 2.1.1. A measurable function m : R2n → (0,∞) is called an order function
if there exist constants C and k such that for all z, w ∈ R2n,

m(z) ≤ C⟨z − w⟩km(w).

Examples. The most common examples of order functions are

m(z) ≡ 1, m(z) = ⟨z⟩ = (1 + |z|2)1/2.

We also check that if m1,m2 are order functions, so is m1m2.

Definition 2.1.2. Given an order function m on R2n, the corresponding symbol class
is defined as follows. (N0 denotes the set of nonnegative integers.)

S(m) := {a ∈ C∞(R2n) : for all α ∈ N2n
0 , there exists Cα so that |∂αa| ≤ Cαm}.

Remarks. (i) Symbols a(x, ξ) in S(m) are allowed to depend on the small semiclassical
parameter h, though our notation usually does not show this dependence.
(ii) If a = a(x, ξ;h) ∈ S(m) depends on h, we require that the constants Cα in the
definition be uniform for 0 < h < h0 for some h0 > 0.
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2.1.2 Asymptotic series

Next we review infinite sum of symbols.

Definition 2.1.3. Let aj ∈ S(m) for j = 0, 1, . . . We say that a ∈ S(m) is asymptotic
to the following series:

a ∼
∞∑
j=0

hjaj in S(m),

if for every N = 1, 2, . . .

a−
N−1∑
j=0

hjaj = OS(m)(h
N),

which means that for each α ∈ N2n
0 ,∣∣∣∣∣∂α

(
a−

N−1∑
j=0

hjaj

)∣∣∣∣∣ ≤ CN,α h
Nm.

We call a0 the principal symbol of a.

2.1.3 Quantization of symbol

Let a ∈ S(m), we recall the Weyl quantization formula:

aw(x, hD) : S (Rn) → S (Rn), S ′(Rn) → S ′(Rn),

aw(x, hD)u(x) :=
1

(2πh)n

∫
Rn

∫
Rn

e
i
h
⟨x−y,ξ⟩a(x+y

2
, ξ)u(y) dydξ.

Here S denotes the space of Schwartz functions, and S ′ denotes the space of tempered
distributions.

We recall the following properties:

Proposition 2.1.4. Suppose that a ∈ S(m1) and b ∈ S(m2). Then

aw(x, hD) ◦ bw(x, hD) = (a#b)w(x, hD),

for the symbol a#b ∈ S(m1m2)

a#b(x, ξ) ∼
∞∑
j=0

ijhj

2jj!
(⟨Dξ, Dy⟩ − ⟨Dx, Dη⟩)j(a(x, ξ)b(y, η))

∣∣∣∣y=x
η=ξ

,

where Dxj
= i−1∂xj

.

Proposition 2.1.5. If a ∈ S(1) (we take the order function m ≡ 1), then

aw(x, hD) : L2(Rn) → L2(Rn), ∥aw(x, hD)∥L2→L2 ≤ C
∑

|α|≤Mn

h|α|/2 sup
Rn

|∂αa|,

where M is a universal constant.



CHAPTER 2. PRELIMINARIES 13

2.1.4 Semiclassical ellipticity

Definition 2.1.6. The symbol a ∈ S(m) is called elliptic in S(m) if there exists a
constant γ > 0, independent of h, such that

|a(x, ξ)| ≥ γ m(x, ξ) for all (x, ξ) ∈ R2n.

Proposition 2.1.7. Suppose that a ∈ S(m) and that a is elliptic in S(m).
(i) If m ≥ 1, there exist h0, C > 0 such that for all 0 < h < h0,

∥aw(x, hD)u∥L2 ≥ C∥u∥L2 .

(ii) If m = 1, there exists h0 > 0 such that for 0 < h < h0, a
w(x, hD) has a bounded

inverse on L2(Rn).

To end this section, we explore a concrete example of semiclassical elliptic operator:
−h2∆+ x2 + 1, which will be used in Chapter 5.

Example 2.1.8. (The quantum harmonic oscillator). H = −h2∆+x2 is called
the quantum harmonic oscillator, a closed densely defined operator on L2(Rn), equipped
with the domain

D(H) = {u ∈ L2(Rn) : Hu ∈ L2(Rn)}.
H has a discrete spectrum given by

{(2|α|+ n)h : α ∈ Nn
0 , |α| = α1 + · · ·+ αn}.

Thus −h2∆+ x2 + 1 = H + 1 is invertible. In the following we obtain a semiclassical
asymptotic expansion for the inverse of −h2∆+ x2 + 1.

Let m = 1+x2+ ξ2 be an order function on R2n, we notice that m is also a symbol,
m ∈ S(m), and

mw(x, hD) = −h2∆+ x2 + 1.

Similarly, m−1 ∈ S(m−1), then we compute

(m#m−1)(x, ξ) = 1 + h2b(x, ξ), b(x, ξ) =
2(x2 − ξ2)

(1 + x2 + ξ2)3
∈ S(1).

Thus m#m−1 is elliptic in S(1), by Proposition 2.1.7,

(m#m−1)w(x, hD) = mw(x, hD) (m−1)w(x, hD)

has an inverse on L2, and we have

mw(x, hD) (m−1)w(x, hD)[1 + h2bw(x, hD)]−1 = IL2→L2 .

It follows that

(m−1)w(x, hD)[1 + h2bw(x, hD)]−1 = mw(x, hD)−1 : L2 → D(H).

Therefore, we obtain that mw(x, hD)−1 = qw(x, hD) with q ∈ S(m−1) satisfying

q = m−1 + h2m−1b+OS(m−1)(h
3).
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2.2 Grushin problems

Suppose that
P : X1 → X2, R+ : X1 → X+, R− : X− → X2,

are bounded operators on Banach spaces X1, X2, X+, X−.

Definition 2.2.1. A Grushin problem is a system of equations as follows.(
P R−
R+ 0

)(
u
u−

)
=

(
v
v+

)
(2.2.1)

If (2.2.1) is invertible, we say it is well-posed, and write its inverse as(
u
u−

)
=

(
E E+

E− E−+

)(
v
v+

)
(2.2.2)

where E : X2 → X1, E+ : X+ → X1, E− : X2 → X−, E−+ : X+ → X−.

Remarks. Suppose that the Grushin problem (2.2.1) is well-posed. Then
(i) the operators R+, E− are surjective, the operators R−, E+ are injective;
(ii) the invertibility of P is equivalent to the invertibility of E−+, and

P−1 = E − E+E
−1
−+E−, E−1

−+ = −R+P
−1R−.

We next consider the perturbed Grushin problem. The following result is based on a
Neumann series calculation.

Proposition 2.2.2. Suppose that (2.2.1) is well-posed with the inverse (2.2.2). Let
A : X1 → X2 be a bounded operator satisfying

∥AE∥X2→X2 < 1 and ∥EA∥X1→X1 < 1.

Then (
P + A R−
R+ 0

)
is well-posed with the inverse

(
Ẽ Ẽ+

Ẽ− Ẽ−+

)
,

where

Ẽ−+ = E−+ −
∞∑
j=0

(−1)jE−A(EA)
jE+.
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2.3 Analytic Fredholm theory

Definition 2.3.1. (i) A bounded linear operator P : X1 → X2 is called a Fredholm
operator if

kerP := {u ∈ X1 : Pu = 0}, and cokerP := X2/PX1,

are both finite dimensional.
(ii) The index of a Fredholm operator is

indP := dimkerP − dim cokerP.

Grushin problems and Fredholm operators are connected by the following:

Proposition 2.3.2. (i) Suppose that P : X1 → X2 is a Fredholm operator. Then there
exist finite dimensional spaces X± and operators R− : X− → X2, R+ : X1 → X+ such
that the Grushin problem (2.2.1) is well-posed.

(ii) Conversely, suppose that for some X± and R±, the Grushin problem (2.2.1) is
well-posed. Then P : X1 → X2 is a Fredholm operator if and only if E−+ : X+ → X−
is a Fredholm operator, and we have

indP = indE−+.

Remarks. 1. The set of Fredholm operators is open in L(X1, X2), and the index is
constant in each component of that set.
2. A bounded linear operator P : X1 → X2 is a Fredholm operator if and only if there
exists a bounded linear operator E : X2 → X1 such that

PE = IX2 +K2, EP = IX1 +K1, ‘

where Kj : Xj → Xj are compact operators.

Definition 2.3.3. Suppose that Ω ⊂ C is a connected open set, X and Y are Banach
spaces. Then we say that z 7→ A(z) ∈ L(X, Y ) is analytic in Ω if for any x ∈ X and
y∗ ∈ Y ∗, z 7→ y∗(B(z)x) is an analytic function in Ω.

Definition 2.3.4. We say that z 7→ B(z) is a meromorphic family of operators (with
poles of finite rank) in Ω if for any z0 ∈ Ω there exist finite rank operators Bj, 1 ≤ j ≤
J , and a family of operators z 7→ B0(z), analytic near z0, such that

B(z) = B0(z) +
B1

z − z0
+ · · ·+ BJ

(z − z0)J
, near z0.

B(z) is a meromorphic family of Fredholm operators if for every z0, B0(z) is a Fredholm
operator for z near z0. Away from poles, B0(z) = B(z).

Theorem 4. (Analytic Fredholm Theory). Suppose that Ω is a connected open
subset of C and Ω ∋ z 7→ A(z) is an analytic family of Fredholm operators.

If A(z0) is invertible for some z0 ∈ Ω, then Ω ∋ z 7→ A(z)−1 is a meromorphic
family of operators with poles of finite rank.
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2.4 Gohberg–Sigal theory

In this section we review some important properties of meromorphic families of Fred-
holm operators introduced in [20]. We start with the following factorization theorem.

Theorem 5. Suppose that Ω is a connected open subset of C and that

λ 7→ A(λ), λ ∈ Ω,

is a meromorphic family of operators on a Banach space. If A0 in the Laurent expansion

A(λ) =
∞∑

j=−J

(λ− µ)jAj, near µ

is of index 0, then there exist analytic families of operators E(λ), F (λ), invertible near
µ, such that A(λ) admits a factorization near µ:

A(λ) = E(λ)

(
P0 +

M∑
m=1

(λ− µ)kmPm

)
F (λ), km ∈ Z \ {0}, (2.4.1)

where Pm, 0 ≤ m ≤ M are mutually orthogonal projections, Pm, m ≥ 1 are one
dimensional, and I − P0 is finite dimensional.

Moreover, A(λ)−1 exists as a meromorphic family near µ if and only if
∑M

m=0 Pm =
I, in which case

A(λ)−1 = F (λ)−1

(
P0 +

M∑
m=1

(λ− µ)−kmPm

)
E(λ)−1.

Remark. This shows that if A(λ0)
−1 exists for some λ0 ∈ Ω, by the connectedness,

A(λ)−1 is a meromorphic family of operators in Ω, which generalizes Theorem 4 to the
case where z 7→ A(z) is meromorphic.

The factorization of A(λ) allows one to define the null multiplicity at µ:

Definition 2.4.1. In the notation of Theorem 5,

N(A(µ)) :=


∑
km>0

km, if
M∑

m=0

Pm = I,

∞, otherwise.

If N(A(µ)) <∞, then A(λ)−1 is meromorphic and

N(A(µ)−1) = −
∑
km<0

km.

We call N(A(µ)−1) the polar multiplicity of A(λ) at µ.
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Using Theorem 5, Gohberg and Sigal [20] obtained an operator generalization of
the logarithmic residue theorem for meromorphic functions.

Theorem 6. Suppose that Ω ⊂ C is open and connected, A(λ) and A(λ)−1, λ ∈ Ω are
meromorphic families of Fredholm operators on a Banach space X. Then∮

µ

∂λA(λ)A(λ)
−1 dλ is of finite rank and

1

2πi

∮
µ

∂λA(λ)A(λ)
−1 dλ = N(A(µ))−N(A(µ)−1).

Here the integral is over a positively oriented circle enclosing µ and containing no poles
other than possibly µ.

Another result is an operator generalization of Rouché’s theorem:

Theorem 7. Let Ω be a connected open subset of C. Suppose that A(λ) and B(λ)
satisfy the assumptions of Theorem 6 and that U ⋐ Ω is a simply connected open set
with a C1 boundary on which A(λ) and B(λ) are both invertible. If

∥A(λ)−1(A(λ)−B(λ))∥X→X < 1, ∀λ ∈ ∂U,

then
∑
µ∈U

N(A(µ))−N(A(µ)−1) =
∑
µ∈U

N(B(µ))−N(B(µ)−1).

2.5 Decay of the Green function

Let M be a complete Riemannian manifold, dimM = n and d : M ×M → [0,∞)
be the Riemannian distance. Let expx : TxM → M be the usual exponential geodesic
map. For x ∈M , we define

rx := sup{r : expx |B(0,r)⊂TxM is a diffeomorphism}.

Then the injectivity radius of M is given by rinj = infx∈M rx. The coordinates

B(0, r) ∋ y 7→ expx(y) ∈M

are called canonical coordinates on Ux,r := expx(B(0, r)).

Definition 2.5.1. We say that M is a manifold of bounded geometry if the following
conditions hold:
(i) rinj > 0,
(ii) |∇kR| ≤ Ck, ∀ k, i.e. all covariant derivatives of the curvature tensor are bounded.
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Examples. A trivial example of manifold of bounded geometry is the Euclidean space.
Other examples include Lie groups and covering manifolds of compact manifolds.

Definition 2.5.2. Suppose that A : C∞(M) → C∞(M) is a differential operator of
order m. We say A is C∞-bounded if in any canonical coordinates

A =
∑
|α|≤m

aα(y)∂
α
y , |∂βy aα(y)| ≤ Cαβ, for all β ∈ Nn

0 .

Furthermore, A is called uniformly elliptic if there exists constant C > 0 such that∣∣ ∑
|α|=m

aα(y) η
α
∣∣ ≥ C|η|m, ∀ (y, η) ∈ T ∗M.

We recall the following estimate from [47]:

Proposition 2.5.3. Let M be a manifold of bounded geometry and A : C∞(M) →
C∞(M) be a C∞-bounded uniformly elliptic differential operator. Suppose that λ /∈
Spec(A) (L2 spectrum). Denote by G(λ;x, y) the Schwartz kernel of the resolvent

(A− λ)−1 : L2(M) → L2(M).

Then there exists ε > 0 such that for every δ > 0 and α, β ∈ Nn
0 , ∃Cαβδ > 0 s.t.

|∂αx∂βyG(λ;x, y)| ≤ Cαβδ e
−εd(x,y) if d(x, y) > δ. (2.5.1)

Sketch of proof. One crucial step is to construct a smooth substitute for the Riemannian
distance d. The conditions in Definition 2.5.1 guarantee that for every ρ > 0 we can
construct d̃ ∈ C∞(M ×M ; [0,∞)) satisfying

|d̃(x, y)− d(x, y)| < ρ, ∀x, y ∈M (2.5.2)

and
sup

x,y∈M
|∂αy d̃(x, y)| < Cα, ∀α ∈ Nn

0 , |α| ≥ 1, (2.5.3)

where the derivative ∂αy is taken with respect to canonical coordinates. For a complete
construction, we refer to Kordyukov [34] or [47, Appendix 1].

Next we introduce exponential weights fε,y ∈ C∞(M) for any ε > 0, y ∈M :

fε,y(x) = eεd̃(y,x), (Fε,yu)(x) := fε,y(x)u(x).

It follows from (2.5.3) that

Aε,y := Fε,y ◦ A ◦ F−1
ε,y = A+ εBε,y,
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where Bε,y is a uniformly C∞-bounded differential operator of order m− 1 (defined by
Definition 2.5.2 with uniform constants Cαβ on M). Then for ε > 0 sufficiently small,

Aε,y − λ is invertible and (Aε,y − λ)−1 : Hs(M) → Hs+m(M), ∀ s ∈ R,

where Hs(M) are Sobolev spaces on manifold M . This is obtained by standard elliptic
estimates and the invertibility of A− λ. We notice that

eεd̃(x,y)G(λ;x, y) = [Fε,y(A− λ)−1δy](x) = [(Aε,y − λ)−1(fε,yδy)](x)

where δy is the Dirac function supported at y. For every δ > 0 and x, y ∈ M with
d(x, y) > δ, one can apply the interior elliptic estimate to obtain that

∥fε,y(·)G(λ; ·, y)∥Hs(B(x,δ/2)) ≤ Cδ,s, ∀ s ∈ R.

The Sobolev embedding theorem then shows that

|∂αxG(λ;x, y)| ≤ Cα,δe
−εd̃(x,y) if d(x, y) > δ.

This and (2.5.2) imply (2.5.1) if β = 0; the case where β ̸= 0 follows from the same
arguments with A replaced by At (the transpose of A).

Proposition 2.5.3 can be adapted to some manifolds that are not complete, for
instanceM = Rn\K, whereK is a compact set with smooth boundary such that Rn\K
is connected. In this case for each ρ > 0 we first construct d̃ ∈ C∞(Rn ×Rn; [0,∞)) as
a smooth substitute of d = d(x, y) = |x− y|, then restrict d̃ to Rn \K, thus∣∣d̃(x, y)− |x− y|

∣∣ < ρ, ∀x, y ∈ Rn \K, and

sup
x,y∈M

|∂αy d̃(x, y)| < Cα, ∀α ∈ Nn
0 , |α| ≥ 1.

Therefore, we have

Corollary 2.5.4. Let A : C∞(Rn \K) → C∞(Rn \K) be a C∞-bounded, second order
uniformly elliptic differential operator. A can be viewed as an operator:

A : L2(Rn \K) → L2(Rn \K) with domain H2(Rn \K) ∩H1
0 (Rn \K).

Suppose that λ /∈ Spec(A) and let G(λ;x, y) be the Schwartz kernel of (A−λ)−1. Then
there exists β > 0 such that for each δ > 0, ∃Cδ > 0 s.t.

|G(λ;x, y)| ≤ Cδe
−β|x−y| if |x− y| > δ.
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2.6 Pöschl–Teller potentials

We recall the following definition from Pöschl–Teller [43]: the Pöschl–Teller potential
is defined on R by

Vµ,ν(r) :=
µ(µ+ 1)

sinh2 r
− ν(ν + 1)

cosh2 r
, r ∈ R,

Vµ,ν is a real potential if µ, ν are taken in −1/2 + i(0,∞) ∪ [−1/2,∞). In this section
we will focus on the case in which Vµ,ν is complex-valued and review some properties
of the Hamiltonian D2

r + Vµ,ν(r) on the half line (0,∞)r. The following result is based
on the analysis of D2

r + Vµ,ν(r) in Guillopé–Zworski [23, Appendix]:

Proposition 2.6.1. The Schrödinger operator D2
r + Vµ,ν (respectively D2

r + V0,ν) has
R+ as continuous spectrum. The determinant of the scattering matrix for D2

r + Vµ,ν is
given by the reflection coefficient

sPT
µ,ν (k) = − Γ(ik)Γ((µ+ ν − ik)/2 + 1)Γ((µ− ν − ik + 1)/2)2−ik

Γ(−ik)Γ((µ+ ν + ik)/2 + 1)Γ((µ− ν + ik + 1)/2)2ik
, (2.6.1)

and for D2
r + V0,ν given by

sPT
ν (k) = − Γ(ik)2Γ(ν − ik + 1)Γ(−ν − ik)

Γ(−ik)2Γ(ν + ik + 1)Γ(−ν + ik)
. (2.6.2)

The Schrödinger operator D2
r + Vµ,ν (resp. D2

r + V0,ν) has non-empty discrete spec-
trum if and only if Re(ν − µ) > 1 (resp. Re ν > 0). The discrete spectrum is given
by

σd(D
2
r + Vµ,ν) = {−(ν − µ− 1− 2n)2 : n ∈ N, 2n < Re(ν − µ− 1)},

σd(D
2
r + V0,ν) = {−(ν − n)2 : n ∈ N, n < Re ν}.

Proof. Through a conjugation by sinhµ+1 r coshν+1 r and the change of variable u =
− sinh2 r, the Schrödinger equation

D2
rψ + Vµ,νψ − k2ψ = 0 (2.6.3)

is reduced to the hypergeometric equation

u(1− u)F ′′(u) + [(µ+ 3/2)− (µ+ ν + 3)u]F ′(u)

− [((µ+ ν + 2)/2)2 + (k/2)2]F = 0.

The Schrödinger equation (2.6.3) has the following independent solutions (if µ ̸= −1
2
):

Eµ,ν(k)(r) = sinh1+µ r cosh1+ν r

× 2F1((µ+ ν − ik + 2)/2, (µ+ ν + ik + 2)/2, µ+
3

2
;− sinh2 r),

(2.6.4)
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Fµ,ν(k)(r) = sinh−µ r cosh1+ν r

× 2F1((−µ+ ν − ik + 1)/2, (−µ+ ν + ik + 1)/2,
1

2
− µ;− sinh2 r).

(2.6.5)

The asymptotic expansion of (2.6.4) at infinity is given, if ik is not an integer, by

Eµ,ν(k)(r) ≈
Γ(µ+ 3/2)Γ(ik)

Γ((µ+ ν + ik + 2)/2)Γ((µ− ν + ik + 1)/2)
cothν+1 r sinhik r

× 2F1((µ+ ν − ik + 1)/2, (−µ+ ν − ik + 1)/2, 1− ik;− sinh−2 r)

+
Γ(µ+ 3/2)Γ(−ik)

Γ((µ+ ν − ik + 2)/2)Γ((µ− ν − ik + 1)/2)
cothν+1 r sinh−ik r

× 2F1((µ+ ν + ik + 1)/2, (−µ+ ν + ik + 1)/2, 1 + ik;− sinh−2 r),

(2.6.6)

recalling the definition of reflection coefficient for potential scattering (see for instance
Dyatlov–Zworski [12, §2.4]), we obtain (2.6.1).

The potential V0,ν is smooth on R, the operator D2
r + V0,ν can be decomposed

as the sum of the Dirichlet (HD
ν ) and Neumann (HN

ν ) extensions of D2
r + V0,ν . The

eigenfunctions of the spectral resolution ofHN
ν are the F0,ν(k) from (2.6.5) and a similar

asymptotic expansion at infinity to (2.6.6) gives the reflection coefficient s(HN
ν ). The

scattering coefficient sPT
ν (k) (2.6.2) is then the product sPT

0,ν (k)s(H
N
ν )(k).

The asymptotic properties of the eigenfunctions (2.6.4) and (2.6.5) determine the
discrete spectra.
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Chapter 3

Review of scattering resonances

3.1 Scattering by compactly supported potentials

In this section we review briefly various notions of scattering theory in the simplest
setting of scattering by compactly supported potentials in dimension one, we refer the
reader to [12, Chapter 2] for a full introduction.

We consider the following operator:

P = D2
x + V (x), Dx = i−1∂x acting on L2(R),

V ∈ L∞
comp(R;R), suppV ⊂ [−R,R], R > 0.

Solutions of the stationary equation

(P − λ2)u = 0

admit the following decomposition outside the support of V :

u(x) = uin(x) + uout(x), |x| > R,

where
uin(x) = b−e

iλx, x < −R; uin(x) = b+e
−iλx, x > R,

corresponds to incoming waves: eiλ(x±t), x ≷ 0;

uout(x) = a−e
−iλx, x < −R; uout(x) = a+e

iλx, x > R,

corresponds to outgoing waves: eiλ(x∓t), x ≷ 0.

The scattering matrix is defined by

S(λ) :

(
b−
b+

)
7→
(
a+
a−

)
, λ ∈ R.
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Figure 3.1: Resonances of scattering by a bump potential shown on the top. Resonances
are computed using splinepot.m [5].

It is well known that S(λ) can be meromorphically continued to λ ∈ C – see [12, §2.4].
The poles of the scattering matrix are called scattering resonances.

Another way to define the resonances is using the resolvent of P = D2
x + V

RV (λ) := (D2
x + V − λ2)−1 : L2(R) → L2(R), Imλ > 0.

RV (λ) extends meromorphically to λ ∈ C as a family of operators: L2
comp(R) → L2

loc(R),
see [12, Theorem 2.2]. The resonances are defined as the poles of RV (λ). The multi-
plicity of a resonance λ is given by

m(λ) := rank

∮
λ

RV (ζ) dζ,

where the integral is over a small circle enclosing no other poles than λ.

One important property of resonances is that they capture the frequencies and rates
of decay of solutions of the wave equation

(∂2t + P )u = (∂2t − ∂2x + V (x))u = 0, t > 0, x ∈ R,
u(0, x) = 0, ∂tu(0, x) = φ(x) ∈ L2

comp(R).
(3.1.1)

The solution of (3.1.1) admits a resonance expansion – see [12, Theorem 2.9]. For
simplicity we assume all resonances λj of P are simple, i.e. m(λj) = 1 (this is true for
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a generic potential V by [33]), then for any A > 0, we have

u(t, x) =
∑

Imλj>−A

e−iλjtuj(x) + EA(t),

where the sum is finite and uj are called resonant states satisfying (P − λj)uj = 0,
which can be calculated using residues of RV (λ) at λj:

uj(x) = −ieiλjtResλ=λj
(e−iλtRV (λ)φ).

The error term decays exponentially: for any L such that suppφ ⊂ (−L,L),

∥EA(t)∥H2([−L,L]x) ≤ Ce−At∥φ∥L2 , for some C = C(L,A).

3.2 Scattering by exponentially decaying

potentials

In this section we consider the Schrödinger operator

P := −∆+ V acting on L2(Rn),

where V ∈ L∞(Rn;R) is exponentially decaying

|V (x)| ≤ Ce−2γ|x|, for some C, γ > 0. (3.2.1)

We denote the resolvent of P by

RV (λ) := (P − λ2)−1 = (−∆+ V − λ2)−1 : L2 → L2, Imλ > 0.

To meromorphically continue RV (λ) to the lower half plane, we introduce the weighted
resolvent: √

V RV (λ)
√
V : L2 → L2, Imλ > 0,

where we take the usual branch for the square root such that
√
−1 = +i. Following

Froese [15] and Gannot [19], we will show that the weighted resolvent can be mero-
morphically continued to the strip

{λ ∈ C : Imλ > −γ}. (3.2.2)

Resonances of P are the poles in this meromorphic continuation. In fact, one can show
that Res(P ) are precisely equal to the poles of the scattering matrix, confirming that
our definition is consistent with the standard definition. We refer the reader to [15] for
a detailed presentation.
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Now we introduce the meromorphic continuation of
√
V RV (λ)

√
V from the upper

half plane to the strip (3.2.2) under the assumption (3.2.1). Denote by

R0(λ) := (−∆− λ2)−1 : L2(Rn) → L2(Rn), Imλ > 0

the free resolvent on Rn. For Imλ > 0, the resolvent equation

R0(λ)−RV (λ)−RV (λ)V R0(λ) = 0

implies
(I −

√
V RV (λ)

√
V )(I +

√
V R0(λ)

√
V ) = I.

We recall that
∥R0(λ)∥L2→L2 = O(| Imλ|−1),

thus for Imλ sufficiently large, I +
√
V R0(λ)

√
V is invertible by a Neumann series

argument. Therefore

I −
√
V RV (λ)

√
V = (I +

√
V R0(λ)

√
V )−1, Imλ≫ 1. (3.2.3)

In the following lemma, we show that the right side of (3.2.3) admits a meromorphic
continuation. Some bounds of the free resolvent with exponential weights are used in
the proof, we refer the reader to [19] for a complete treatment.

Lemma 1. For any a > 0 and γ′ < γ,

λ 7→ (I +
√
V R0(λ)

√
V )−1, Reλ > a, Imλ > −γ′,

is a meromorphic family of operators on L2(Rn) with poles of finite rank.

Proof. Choose φ ∈ C∞(Rn) satisfying φ(x) = |x| for large |x|, it is well known that for
each c > 0, the weighted resolvent:

e−cφR0(λ)e
−cφ : L2(Rn) → L2(Rn)

extends analytically across Reλ > 0 to the strip Imλ > −c, see [19, §1] and references
given there. Moreover, Gannot [19, §1] proved that for any a, c, ε > 0 and α ∈ Nn, |α| ≤
2 there exists Cα = Cα(a, c, ε) such that

∥Dα(e−cφR0(λ)e
−cφ)∥L2→L2 ≤ Cα|λ||α|−1, for Imλ > −c+ ε, Reλ > a. (3.2.4)

In particular, for Reλ > a and Imλ > −γ′,

λ 7→ e−γ′φR0(λ)e
−γ′φ

is an analytic family of operators L2 → H2. It follows from (3.2.1) that

lim
|x|→∞

|
√
V (x)eγ

′φ(x)| = 0
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thus we have
√
V eγ

′φ : H2 → L2 is compact. Hence,

λ 7→
√
V R0(λ)

√
V =

√
V eγ

′φ(e−γ′φR0(λ)e
−γ′φ)

√
V eγ

′φ

is an analytic family of compact operators L2 → L2 for Reλ > a, Imλ > −γ′.
Recalling that I +

√
V R0(λ)

√
V is invertible for Imλ≫ 1, then by Theorem 4,

λ 7→ (I +
√
V R0(λ)

√
V )−1 : L2 → L2

is a meromorphic family of operators in the same range of λ.

We shall identify the resonances λj, in the region Ω – see (1.3.1), with the poles of
the meromorphic family of operators

Ω ∋ λ 7→ (I +
√
V R0(λ)

√
V )−1 : L2 → L2

with agreement of multiplicities. In view of Theorem 6, the multiplicity of resonance
λ is given by

m(λ) :=
1

2πi
tr

∮
λ

(I +
√
V R0(ζ)

√
V )−1∂ζ(

√
V R0(ζ)

√
V ) dζ, (3.2.5)

where the integral is over a positively oriented circle enclosing λ and containing no
poles other than λ.

3.3 Black box scattering

In this section we will follow [12, §4] to introduce a general class of compactly sup-
ported self-adjoint perturbations of the Laplacian on Rn, which are called black box
Hamiltonians.

Let H be a complex separable Hilbert space with an orthogonal decomposition:

H = HR0 ⊕ L2(Rn \B(0, R0)), (3.3.1)

where B(x,R) = {y ∈ Rn : |x−y| < R} and R0 is fixed. The corresponding orthogonal
projections will be denoted by

u 7→ u|B(0,R0) and u 7→ u|Rn\B(0,R0),

or simply by the characteristic function 1L of the corresponding set L.

We now consider an unbounded self-adjoint operator

P : H → H with domain D(P ). (3.3.2)
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Assume that
D(P )|Rn\B(0,R0) ⊂ H2(Rn \B(0, R0)), (3.3.3)

and conversely, u ∈ D(P ) if u ∈ H2(Rn \B(0, R0)) and u vanishes near B(0, R0);

1B(0,R0)(P + i)−1 is compact. (3.3.4)

We also assume that,

1Rn\B(0,R0)Pu = −∆(u|Rn\B(0,R0)), for all u ∈ D(P ). (3.3.5)

It is well known that the resolvent (P − λ2)−1, Imλ > 0, λ2 /∈ Specpoint(P ), has a
meromorphic continuation to C when n is odd; to Λ = exp−1(C \ {0}) when n is even:
as an operator (P − λ2)−1 : Hcomp → Dloc, see [49, Theorem 1.1] and [12, Theorem
4.4]. However, we need to meromorphically continue (P−λ2)−1 as an operator between
some Banach spaces to apply Agmon’s method [1] and prove Theorem 3. For that we
define a weighted subspace of H for any large constant A > 0,

HA
0 := HR0 ⊕ e−A|x|L2(Rn \B(0, R0)), (3.3.6)

and a larger space containing H:

HA
1 := HR0 ⊕ eA|x|L2(Rn \B(0, R0)). (3.3.7)

The space DA
1 (P ) is defined using (3.3.7),

DA
1 (P ) := {u ∈ HA

1 : χ ∈ C∞
c (Rn), χ|B(0,R0) ≡ 1

⇒ χu ∈ D(P ), ∆((1− χ)u) ∈ HA
1 }.

(3.3.8)

We also denote the strips in C by

TA := {λ ∈ C : Imλ > −A}, (3.3.9)

and a family of subsets of Λ by

Sm := {λ ∈ Λ : −mπ < arg λ < mπ}, m ∈ N+,

ΛA := {λ ∈ Λ : 0 < arg λ < π} ∪ {λ ∈ S⌊A⌋ : |λ| < A}.
(3.3.10)

We are now ready to state the main result of this section:

Proposition 3.3.1. Suppose that P is a black box Hamiltonian. Then

R(λ) := (P − λ2)−1 : H → D(P ) is meromorphic for Imλ > 0. (3.3.11)

Moreover, when n is odd, the resolvent extends to a meromorphic family

R(λ) : HA
0 → DA

1 (P ), λ ∈ TA. (3.3.12)

When n is even (3.3.12) holds with TA replaced by ΛA.
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The proof is the same as the one of [12, Theorem 4.4]. The only difference is that unlike
the free resolvent R0(λ) := (−∆ − λ2)−1 mermorphically continued as an operator
between L2

comp(Rn) and H2
loc(Rn) there, we have to show that

λ 7→ R0(λ) : e
−A|x|L2(Rn) → eA|x|L2(Rn),

λ 7→ [∆, χ]R0(λ) : e
−A|x|L2(Rn) → L2

comp(Rn), ∀χ ∈ C∞
c (Rn),

(3.3.13)

are meromorphic in λ ∈ TA when n is odd, λ ∈ ΛA when n is even.

Denote by R0(λ, x, y) the Schwartz kernel of the free resolvent R0(λ), which can be
written in terms of the Hankel functions of the first kind:

R0(λ, x, y) = cnλ
n−2(λ|x− y|)−

n−2
2 H

(1)
n
2
−1(λ|x− y|). (3.3.14)

We recall some well known facts about R0(λ, x, y) as follows, see for instance [12, §3.1]
for a detailed account. When n is odd, (3.3.14) admits a finite expansion:

R0(λ, x, y) = λn−2eiλ|x−y|
n−2∑

j=n−1
2

cn,j
(λ|x− y|)j

. (3.3.15)

For x ̸= y this form extends meromorphically to λ ∈ C. When n is even, using the
relation:

R0(e
iℓπλ, x, y)−R0(λ, x, y) = cnℓ(−1)

n−2
2

(ℓ+1)λ
n−2
2 |x− y|−

n−2
2 Jn−2

2
(λ|x− y|), (3.3.16)

where Jd(z) is the Bessel function, we see that R0(λ, x, y), x ̸= y extends to λ ∈ Λ. In
view of (3.3.15), when n is odd we have the upper bounds for λ ∈ C:

|R0(λ, x, y)| ≤

{
C(λ)|x− y|2−n, |x− y| ≤ |λ|−1;

C(λ)e− Imλ|x−y||λ|n−3
2 |x− y| 1−n

2 , |x− y| ≥ |λ|−1.
(3.3.17)

For n even, n ̸= 2, the bounds (3.3.17) hold for −π < arg λ < 2π. This follows from the

asymptotics of H
(1)
d (z), see also Galkowski–Smith [16] for more details. Using (3.3.16)

and the following formulas about Jd(z):

Jd(z) ∼
1

Γ(d+ 1)

(z
2

)d
, as z → 0, when d ∈ Z,

Jd(z) =

√
2

πz

(
cos
(
z − dπ

2
− π

4

)
+ e| Im z|O

(
|z|−1

))
, as |z| → ∞, | arg z| < π.

we can extend (3.3.17) to any λ ∈ Λ, arg λ ≤ −π or arg λ ≥ 2π:

|R0(λ, x, y)| ≤

{
C(λ) |x− y|2−n, |x− y| ≤ |λ|−1;

C(λ) e| Imλ||x−y||λ|n−3
2 |x− y| 1−n

2 , |x− y| ≥ |λ|−1.
(3.3.18)
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In the case that n = 2, |x− y|2−n in (3.3.18) is replaced by − ln |x− y| when |x− y| ≤
|λ|−1. Now we can conclude from (3.3.17) and (3.3.18) that for any (except possible
poles) λ ∈ TA when n is odd, λ ∈ ΛA when n is even,

sup
x

∫
Rn

e−A|x|−A|y||R0(λ, x, y)|dy, sup
y

∫
Rn

e−A|x|−A|y||R0(λ, x, y)|dx <∞.

Using the formula about derivatives of the Hankel functions

d

dz
H(1)

m (z) = H
(1)
m−1(z)−

m

z
H(1)

m (z),

we can also conclude from the bounds (3.3.17) that

sup
x

∫
Rn

|[∆x, χ]R0(λ, x, y)|e−A|y|dy, sup
y

∫
Rn

|[∆x, χ]R0(λ, x, y)|e−A|y|dx <∞.

Hence (3.3.13) follows by the Schur test.

3.4 Long range perturbations of Laplacian

In this section, we introduce long range perturbations of −∆. We modify the black box
formalism in §3.3 and follow [50] to assume that P is a dilation analytic perturbation
of −∆ near infinity. The black box formalism allows an abstract treatment of diverse
scattering problems without addressing the details of specific situations – see Examples
1–3 later in this section. We recall the setup as follows.

Let H be a complex separable Hilbert space with an orthogonal decomposition:

H = HR0 ⊕ L2(Rn \B(0, R0)),

where B(x,R) = {y ∈ Rn : |x − y| < R} and R0 is fixed. We consider an unbounded
self-adjoint operator P satisfying (3.3.2) – (3.3.4). We also assume that,

1Rn\B(0,R0)Pu = Q(u|Rn\B(0,R0)), for all u ∈ D,

Q = −
n∑

j,k=1

∂xj
(gjk(x)∂xk

) + c(x), gjk, c ∈ C∞
b (Rn).

(3.4.1)

Here C∞
b denotes the space of C∞ functions with all derivatives bounded. Note that

if ψ ∈ C∞
b (Rn) is constant near B(0, R0), then there is a natural way to define the

multiplication: H ∋ u 7→ ψu ∈ H, and we have ψu ∈ D if u ∈ D.



CHAPTER 3. REVIEW OF SCATTERING RESONANCES 30

We make the further assumptions on the coefficients of Q: gjk, c are real-valued
functions on Rn satisfying

gjk = gkj, ∀ j, k, |
n∑

j,k=1

gjk(x)ξjξk| ≥ C−1|ξ|2,

n∑
j,k=1

gjk(x)ξjξk + c(x) → ξ2, |x| → ∞.

(3.4.2)

We will use the method of complex scaling – see §3.5 to define the resonances of P .
For that we follow [50] to make the following assumptions:

There exist θ0 ∈ [0, π/8], δ > 0, and R ≥ R0, such that

the coefficients gjk(x), c(x) of Q extend analytically in x to

{sω : ω ∈ Cn, dist(ω,Sn−1) < δ, s ∈ C, |s| > R, arg s ∈ (−δ, θ0 + δ)}
and the second half of (3.4.2) remains valid in this larger set.

(3.4.3)

We define the resonances zj of P in C\e−2iθ0 [0,∞) as the eigenvalues of P on a suitable
contour in Cn, this set consists of the negative eigenvalues of P plus a discrete set in
the sector {z ∈ C \ {0} : −2θ0 < arg z ≤ 0}, see [49] and §3.5.

Example 1. Obstacle scattering. Suppose that O ⊂ B(0, R0) is an open set
such that ∂O is a smooth hypersurface in Rn and that Rn \ O is connected. Let
H = L2(Rn \ O), and P = −∆|Rn\O on the exterior domain realized with any self-
adjoint boundary conditions on ∂O. For instance, the Dirichlet boundary condition

D = {u ∈ H2(Rn \ O) : u|∂O = 0}

or the Neumann/Robin boundary condition

D = {u ∈ H2(Rn \ O) : ∂νu+ ηu|∂O = 0}

where ∂ν is the normal derivative with respect to ∂O and η is a real-valued smooth
function on ∂O. Theorem 2 shows that the eigenvalues of P − iεx2 converge to the
resonances of P (the irrelevance of the missing iεχ(x)x2 term comes from continuity
of resonances under compactly supported perturbations – see Stefanov [52]).

Example 2. Scattering on asymptotically Euclidean space. Let M be a real
analytic manifold which is diffeomorphic to Rn near infinity and equipped with a real
analytic metric g which is asymptotically Euclidean. More precisely, let gij = δij + hij
be the metric tensor then we assume that hij(x) extend analytically in x to

{sω : ω ∈ Cn, dist(ω,Sn−1) < δ, s ∈ C, |s| > R, arg s ∈ (−δ, θ0 + δ)}
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for some θ0 ∈ [0, π/8], δ > 0, R ≥ R0, and that hij → 0 in this larger set. We put P =
−∆g, the Laplace–Beltrami operator with respect to the metric g, then all the black
box assumptions are satisfied. Suppose that χ ∈ C∞

c (M ; [0, 1]) is equal to 1 near some
compact set K and that M \K is diffeomorphic to Rn \ B(0, R0). Then the operator
−∆g − iε(1− χ(x))x2 has a discrete spectrum for ε > 0 and the eigenvalues converge
to the resonances of −∆g uniformly on compact subsets of −2θ0 < arg z < 3π/2+ 2θ0.

Example 3. Scattering on finite volume surfaces. This example was already
discussed in [65] but we will provide a complete proof in the black box setting. Consider
the modular surface

M = SL2(Z)\H2

(or any surfaces with cusps – see [12, §4.1, Example 3]) equipped with the Poincaré
metric g and ∆M ≤ 0 the Laplacian on M . We choose the fundamental domain of
SL2(Z) to be

{x+ iy ∈ H2 : |x| ≤ 1/2, x2 + y2 ≥ 1}

then ∆M in the cusp y > 1 is given by y2(∂2x + ∂2y). Let r = log y, θ = 2πx, then M in
(r, θ) coordinates admits the following decomposition:

M =M0 ∪M1, (M1, g|M1) = ([0,∞)r × S1
θ, dr

2 + (2π)−2e−2rdθ2), S1 = R/2πZ.

We recall the black box setup in this case from [12, §4.1, Example 3]. Let

H = H0 ⊕ L2([0,∞), dr), H0 = L2(M0)⊕H0
0,

where (with Z∗ := Z \ {0})

H0
0 =

{
{an(r)}n∈Z∗ : an ∈ L2([0,∞)),

∑
n∈Z∗

∫ ∞

0

|an(r)|2dr <∞

}
.

We can identify L2(M) with H via the following isomorphism:

ι : L2(M) ∋ u 7→
(
u|M0 , {e−r/2un(r)}n∈Z∗ , e−r/2u0(r)

)
∈ H,

un(r) :=
1

2π

∫
S1
u(r, θ)e−inθdθ, r > 0.

Then P := −∆M − 1/4 is a black box Hamiltonian on H which equals −∂2r on
L2([0,∞), dr) – see [12, §4.1, Example 3]. In the language of Theorem 2 and in (x, y)
coordinates

Pε = −∆M − 1/4− iε(1− χ(y))(log y)2Π0, Π0u(x, y) :=

∫ 1/2

−1/2

u(x′, y) dx′.
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where χ ∈ C∞
c ([0,∞)), χ(y) ≡ 1 for y < 2 and χ(y) ≡ 0 for y > 3. The eigenvalues

of Pε converge to the resonances of P uniformly on compact subsets of arg z > −π/4.
Equivalently if we define

s(ε) ∈ Σε ⇐⇒ s(ε)(1− s(ε))− 1/4 ∈ Spec(Pε),

then the limit points of Σε, ε→ 0+, in Re s < 1/2, arg(s− 1/2) ̸= 11π/8 are given by
the nontrivial zeros of ζ(2s) where ζ is the Riemann zeta function – see [65, Example
2] and [12, §4.4 Example 3].

3.5 The method of complex scaling

In this section we review the method of complex scaling. Complex scaling has been a
standard technique in resonance theory since the works of Aguilar–Combes [2], Balslev–
Combes [3] and Simon [48]. Here we follow rather closely the presentation in [50] since
our assumptions on the operator P is weaker than [49].

A smooth submanifold Γ ⊂ Cn is said to be totally real if TxΓ ∩ iTxΓ = {0} for
every x ∈ Γ, where we identify TxΓ with a real subspace of TxCn ≃ Cn. We say that
Γ is maximally totally real if Γ is totally real and of maximal (real) dimension n, the
natural example is Γ = Rn. Let Γ ⊂ Cn be smooth and of real dimension n, then
locally Γ can be represented using real coordinates: Rn ∋ x 7→ f(x) ∈ Γ. Let f̃ be an
almost analytic extension of f so that ∂̄f̃ vanishes to infinite order on Rn. Let x ∈ Rn,
then since df̃(x) is complex linear, iTf(x)Γ = df̃(x)(iTxRn). Hence Γ is totally real in

a neighborhood of f(x) if and only if df̃(x) is injective, i.e. det df(x) ̸= 0.
Let Ω ⊂ Cn be an open neighborhood of Γ such that Γ is closed in Ω, and let

A(z,Dz) =
∑
|α|≤m

aα(z)D
α
z , Dzj :=

1

i
∂zj , Dα

z = Dα1
z1

· · ·Dαn
zn ,

be a differential operator on Ω with holomorphic coefficients. Define AΓ : C∞(Γ) →
C∞(Γ) by

AΓu = (Aũ)|Γ, (3.5.1)

where ũ is an almost analytic extension of u, that is, a smooth extension of u to a
neighborhood of Γ such that ∂̄ũ vanishes to infinite order on Γ. AΓ is then a differential
operator on Γ with smooth coefficients, and for the principal symbols we have

aΓ = a|T ∗Γ,

where a is the principal symbol of A.

We recall a deformation result from [49, Lemma 3.1]:
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Lemma 2. Suppose that W ⊂ Rn is open and that F : [0, 1]×W ∋ (s, x) 7→ F (s, x) ∈
Cn, is a smooth proper map satisfying for all s ∈ [0, 1]

det ∂xF (s, x) ̸= 0, and x 7→ F (s, x) is injective,

and assume that x ∈ W \K =⇒ F (s, x) = F (0, x) for some compact K ⊂ W .

Let A(z,Dz) be a differential operator with holomorphic coefficients defined in a
neighborhood of F ([0, 1] ×W ) such that for 0 ≤ s ≤ 1 and Γs := F ({s} ×W ), AΓs is
elliptic.

If u0 ∈ C∞(Γ0) and AΓ0u0 extends to a holomorphic function in a neighborhood of
F ([0, 1]×W ), then the same holds for u0.

The lemma will be applied to a family of deformations of Rn in Cn. We aim to
restrict the operators Pε, ε ≥ 0, to the corresponding totally real submanifolds. For
given α0 > 0 and R1 > R0, we can construct a smooth function

[0, θ0]× [0,∞) ∋ (θ, t) 7→ gθ(t) ∈ C,

injective for every θ, with the following properties:

1. gθ(t) = t for 0 ≤ t ≤ R1,

2. 0 ≤ arg gθ(t) ≤ θ, ∂tgθ(t) ̸= 0,

3. arg gθ(t) ≤ arg ∂tgθ(t) ≤ arg gθ(t) + α0,

4. gθ(t) = eiθt for t ≥ T0, where T0 depends only on α0 and R1.

We now define the totally real submanifolds, Γθ, as images of Rn under the maps

fθ : Rn ∋ x = tω 7→ gθ(t)ω ∈ Cn, t = |x|.

Then a dilated operator Pθ can be defined as follows. Let

Hθ = HR0 ⊕ L2(Γθ \B(0, R0)), (3.5.2)

where B(0, R0) denotes the real ball as before. If χ ∈ C∞
c (B(0, R1)) is equal to 1 near

B(0, R0), we put

Dθ = {u ∈ Hθ : χu ∈ D, (1− χ)u ∈ H2(Γθ \B(0, R0))}.

Let Pθ be the unbounded operator Hθ → Hθ with domain Dθ, given by

Pθu := P (χu) +Qθ((1− χ)u), Qθ := −
n∑

j,k=1

(∂zj(g
jk(z)∂zk) + c(z))|Γθ

. (3.5.3)



CHAPTER 3. REVIEW OF SCATTERING RESONANCES 34

These definitions do not depend on the choice of χ.

We recall some properties of the dilated Laplacian from [49, §3]. Let

∆θ := (∆z)|Γθ
, xθ := z|Γθ

.

Parametrizing Γθ by [0,∞)× Sn−1 ∋ (t, ω) 7→ gθ(t)ω, we obtain

−∆θ = (g′θ(t)
−1Dt)

2 − i(n− 1)(gθ(t)g
′
θ(t))

−1Dt + gθ(t)
−2D2

ω, (3.5.4)

where Dt = −i∂t and D2
ω = −∆Sn−1 . If ω∗2 denotes the principal symbol of D2

ω and we
let τ be the dual variable of t, then the principal symbol of −∆θ is

σ(−∆θ) = g′θ(t)
−2τ 2 + gθ(t)

−2ω∗2,

so pointwise on Γθ, −∆θ is elliptic and the principal symbol takes values in an angle of
size ≤ 2α0, while globally, σ(−∆θ) takes values in the sector −2θ − 2α0 ≤ arg z ≤ 0.
The basic result based on ellipticity at infinity is

−2θ + δ < arg z < 2π − 2θ − δ, |z| > δ =⇒

(−∆θ − z)−1 = Oδ(|z|
j−2
2 ) : L2(Γθ) → Hj(Γθ), j = 0, 1, 2.

(3.5.5)

This follows from [49, Lemmas 3.2–3.5 and §4] applied with P = −∆.

Pθ, as a perturbation of −∆θ, is also elliptic – see [50, §5]. More precisely, choosing
R1 large enough, it follows from the assumptions (3.4.2) and (3.4.3) that

In Γθ \B(0, R0), Pθ is an elliptic differential operator whose principal

symbol pointwise on Γθ takes its values in an angle of size ≤ 3α0,

and globally in a sector −2θ − 3α0 ≤ arg z ≤ α0.

(3.5.6)

The coefficients of Pθ − e−2iθ(−∆) tend to zero when Γθ ∋ x→ ∞,

where we identify Γθ and Rn, by means of fθ.
(3.5.7)

We recall some basic results about Pθ from [50, §5]:

Lemma 3. If z ∈ C \ {0}, arg z ̸= −2θ, then Pθ − z : Dθ → Hθ is a Fredholm operator
of index 0. In particular the spectrum of Pθ in C \ e−2iθ[0,∞) is discrete.

Proof. The first part of the lemma is the same as Lemma 7.3 in the lecture notes by
Sjöstrand [51], the corresponding proof can be found there. It remains to show that
Pθ has a discrete spectrum in C \ e−2iθ[0,∞). For that, let z0 = iL, L ≥ 1, we put

E(z0) = χ̃1(P − z0)
−1χ1 + (1− χ0)(−∆θ − z0)

−1(1− χ1), (3.5.8)
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where χ1 ∈ C∞
c (B(0, R1)) is equal to 1 near suppχ0 and χ0 = 1 on B(0, R1 − δ), for

some δ > 0 small. Then we have

(Pθ − z0)E(z0) = I +K(z0) +K1(z0),

where
K(z0) = [P, χ̃1](P − z0)

−1χ1 + [∆θ, χ0](−∆θ − z0)
−1(1− χ1),

K1(z0) = (Pθ − (−∆θ))(1− χ0)(−∆θ − z0)
−1(1− χ1).

Choosing R1 sufficiently large, we may assume by (3.5.5) and (3.5.7) that

∥K1(z0)∥Hθ→Hθ
≤ 1/2, ∀ z0 = iL, L ≥ 1.

Then we get

(Pθ − z0)E(z0)(I +K1(z0))
−1 = I +K(z0)(I +K1(z0))

−1.

It follows from (3.5.5) that K(iL) = O(L−1/2) : Hθ → Hθ, then for z0 = iL, L≫ 1,

∥K(z0)(I +K1(z0))
−1∥Hθ→Hθ

≤ 1/2,

thus Pθ − z0 has a right inverse:

E(z0)(I +K1(z0))
−1(I +K(z0)(I +K1(z0))

−1)−1,

which implies that Pθ − z0 is surjective. Since Pθ − z0 is a Fredholm operator of index
0, it must also be injective. Hence by the inverse mapping theorem, Pθ−z0 is invertible
and we have

(Pθ − z0)
−1 = E(z0)(I +K1(z0))

−1(I +K(z0)(I +K1(z0))
−1)−1. (3.5.9)

Theorem 4 then shows that Pθ has a discrete spectrum.

Lemma 4. Assume that 0 ≤ θ1 < θ2 ≤ θ0 and let z0 ∈ C \ e−2i[θ1,θ2][0,∞). Then

dimker(Pθ1 − z0) = dimker(Pθ2 − z0).

This is identical to [49, Lemma 3.4] and the proof is the same as there using Lemma
2.

Lemma 4 shows that the spectrum in the sector −2θ0 < arg z ≤ 0 is independent
of θ in the following sense: We say that z ∈ C \ {0}, −2θ0 < arg z ≤ 0 is a resonance
for P if and only if z ∈ Spec(Pθ) with −2θ < arg z ≤ 0 for some θ ∈ (0, θ0]. For such
a resonance z0 ∈ e−2i[0,θ)(0,∞), the spectral projection

Πθ(z0) =
1

2πi

∮
z0

(z − Pθ)
−1dz, (3.5.10)

where the integral is over a positively oriented circle enclosing z0 and containing no
resonances other than z0, is of finite rank. The restriction of Pθ − z0 to RanΠθ(z0) is

nilpotent. If θ̃ ∈ [0, θ0] is a second number with z0 ∈ e−2i[0,θ̃)(0,∞), then since Lemma
4 can be extended to dimker(Pθ−z0)k = dimker(Pθ̃−z0)k for all k, Πθ(z0) and Πθ̃(z0)
have the same rank, which by definition is the multiplicity of the resonance z0:

m(z0) := rankΠθ(z0), −2θ < arg z0 ≤ 0. (3.5.11)
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3.6 Agmon’s perturbation theory of resonances

In this section we adapt Agmon’s perturbation theory of resonances [1] to study res-
onances in obstacle scattering, in which resonances are realized as eigenvalues of a
non-self-adjoint operator on an abstractly constructed Banach space. We remark that
the method of complex scaling is also capable of characterizing resonances in C in
odd dimensions and resonances in the logarithmic plane Λ in even dimensions with
small argument, but Agmon’s method allows us to prove the generic simplicity of all
resonances in the whole Λ in even dimensions.

Let O ⊂ Rn be an obstacle and ∆O be the corresponding self-adjoint Dirichlet
Laplacian on Rn \ O, see §1.3.3 for the definitions. We note that −∆O is a black box
Hamiltonian reviewed in §3.3, whose resolvent admits a meromorphic continuation by
Proposition 3.3.1. More precisely, for any obstacle O and constant A > 0 let

B0 := e−A|x|L2(Rn \ O), B1 := eA|x|L2(Rn \ O),

the resolvent of −∆O extends to a meromorphic family

(−∆O − λ2)−1 : B0 → D1(O) ⊂ B1, λ ∈ TA when n odd, λ ∈ ΛA when n even,

where D1(O) is the same as (3.3.8) except that B1 replaces H1 there:

D1(O) = {u ∈ B1 ∩H2
loc(Rn \ O) : u|∂O = 0, ∆u ∈ B1}, (3.6.1)

and TA, ΛA are given by (3.3.9), (3.3.10). The poles in this meromorphic continuation
are called scattering resonances for the obstacle O.

We recall the following facts from [12, Theorem 4.19] (for n odd) and Christiansen
[7, §6] (for n even) that:

0 is not a resonance when n is odd;

0 is not a limit point of resonances when n is even.
(3.6.2)

Therefore, resonances lie in TA \ i[0,∞) when n is odd. We consider the map:

TA \ i[0,∞) ∋ λ = reiθ 7→ z = r2e2iθ = λ2 ∈ Λ,

which is invertible. Throughout this section, we will replace parameter λ by z with
z = λ2 defined above. We introduce the image of TA \ i[0,∞) or ΛA under this map:

D+ :=

{
{λ2 ∈ Λ : λ ∈ TA \ {0}, −3π

2
< arg λ < π

2
} when n is odd;

{z : 0 < arg z < 2π} ∪ {z ∈ S2⌊A⌋ : |z| < A2} when n is even.
(3.6.3)

We write the resolvent of ∆O as follows:

R(z) := (−∆O − z)−1 : B0 → B1, z ∈ D+,
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which is a meromorphic family by Proposition 3.3.1. We denote by Res(O), the poles
of R(z), z ∈ D+, which is also the image of the resonances under the map λ 7→ z = λ2.

We note that −∆O as an operator acting on B1 is closable. Denote by P1 the
closure of −∆O in B1, by (3.6.1) we have

P1 = −∆ : B1 → B1 with domain D1(O). (3.6.4)

Let us take B = L2(Rn \ O), D = {z ∈ C : Im z > 0}. Then one can check that
P := −∆O satisfies the abstract hypotheses of Agmon’s theory:

Hypothesis 3.6.1. (i) P is a closed, densely defined operator acting in some Ba-
nach space B;

(ii) The resolvent (P −z)−1 is a meromorphic family of operators in L(B) for z ∈ D;

(iii) There are two reflexive Banach spaces B0 and B1 such that B0 ⊂ B ⊂ B1;

(iv) P as an operator on B1 is closable, and denoting the closure of P in B1 by P1,
the resolvent (P1 − z)−1 exists for some z ∈ D as an operator in L(B1);

(v) The resolvent (P − z)−1 admits a meromorphic continuation from D to D+ as an
operator in L(B0, B1).

(iv) can be seen from the following calculation

e−A|x|(−∆− z)eA|x| = −∆− 2Ax

|x|
· ∇ − (n− 1)A

|x|
− A2 − z,

which is invertible as an operator from D(∆O) to L
2(Rn \ O) for z ∈ D, Im z ≫ A2.

Now we fix a resonance z0 ∈ Res(O) ⊂ D+, z0 ̸= 0 then choose Σ, a bounded
domain containing z0, with a C1 boundary Γ, satisfying

(i) Σ ⊂ D+; (ii) Γ ∩ Res(O) = ∅; (iii) Σ ∩D ̸= ∅. (3.6.5)

Having chosen Σ we denote by BΓ, the subspace of B1 consisting of elements f , ad-
mitting a representation of the form:

f = g +

∫
Γ

R(ζ)φ(ζ)dζ, g ∈ B0, φ ∈ C(Γ;B0), (3.6.6)

We recall [1] that BΓ is a Banach space with the norm

∥f∥BΓ
:= inf

g,φ
(∥g∥B0 + ∥φ∥C(Γ;B0)) (3.6.7)
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where the infimum is taken over all g ∈ B0 and φ ∈ C(Γ;B0) which verify (3.6.6).
Then B0 ⊂ BΓ ⊂ B1 are continuous inclusions. Agmon [1] also introduced a linear
operator RΓ(z) on BΓ associated to any z ∈ Σ \ Res(O),

RΓ(z)f := R(z)g +

∫
Γ

(ζ − z)−1(R(ζ)−R(z))φ(ζ)dζ, (3.6.8)

where f ∈ BΓ is given by (3.6.6). Under Hypothesis 3.6.1, Agmon [1] showed that RΓ(z)
is a well-defined operator in L(BΓ), which is actually the resolvent of an operator PΓ

acting on BΓ:
RΓ(z) = (PΓ − z)−1 for z ∈ Σ \ Res(O), (3.6.9)

where PΓ is closed linear operator in BΓ defined as follows:

D(PΓ) = RanRΓ(w0), PΓu = w0u+ f (3.6.10)

for u = RΓ(w0)f ∈ D(PΓ), f ∈ BΓ. Here w0 is a fixed point in Σ ∩D. Moreover, P1

extends PΓ in the sense that

D(PΓ) ⊂ D1(O), PΓu = P1u for u ∈ D(PΓ), (3.6.11)

where D(PΓ) ⊂ D1(O) is continuous if they are equipped with the graph norms:

∥u∥D(PΓ) := ∥u∥BΓ
+ ∥PΓu∥BΓ

; ∥u∥D1(O) := ∥u∥B1 + ∥∆u∥B1 .

We recall from [1] the following properties that relate PΓ to −∆O:

Proposition 3.6.2. PΓ has a discrete spectrum in Σ, given by Res(O) ∩ Σ. Fur-
thermore, let z0 ∈ Res(O) ∩ Σ be an eigenvalue of PΓ, EΓ(z0) denote the generalized
eigenspace of PΓ at z0, then

EΓ(z0) :=
(∮

z0

(PΓ − ζ)−1dζ

)
(BΓ) =

(∮
z0

R(ζ)dζ

)
(B0), (3.6.12)

where the integral is over a circle containing no other resonance than z0. In particular,
the multiplicity of z0 ∈ Spec(PΓ) satisfies

mΓ(z0) := dim EΓ(z0) = mO(λ0), with z0 = λ20. (3.6.13)

Let us turn to the perturbation theory for resonances. Let Ω be an open neighbor-
hood of the origin in C. We assume the following:

Hypothesis 3.6.3. There exists a family of linear operators V (t) : D1(O) → B0,
t ∈ Ω, with V (0) = 0, such that

1. ∥V (t)u∥B0 = O(t)∥u∥D1(O), ∀u ∈ D1(O) as Ω ∋ t→ 0;
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2. Ω ∋ t 7→ V (t)u is an analytic B0-valued function, for any u ∈ D1(O).

Then we consider a family of operators on BΓ:

PΓ(t) = PΓ + V (t), with domain D(PΓ(t)) := D(PΓ). (3.6.14)

Since PΓ is closed, it follows from the bound in Hypothesis 3.6.3 and a well-known result
by Kato [32] that PΓ(t) is also closed in BΓ provided |t| sufficiently small. Shrinking
Ω if necessary, we assume from now on that PΓ(t) is a closed operator for all t ∈ Ω,
then we can apply analytic perturbation theory to the eigenvalues of PΓ(t) – see [32,
Chapter VII, §1] for a full treatment.

Fixing a resonance z0 ∈ Res(O) ∩ Σ, we choose Σ′ ⋐ Σ with z0 ∈ Σ′, z0 is also an
eigenvalue of PΓ by Proposition 3.6.2. We recall the following perturbation result from
[1, Theorem 7.4]:

Proposition 3.6.4. There exists an open neighborhood of 0 ∈ C, Ω0 ⊂ Ω, such that

(i) for each t ∈ Ω0, PΓ(t) has a discrete spectrum in Σ′;

(ii) the spectrum of PΓ(t) depends analytically on t in the following sense: for each
t ∈ Ω0, there exist a polynomial qΓt (z), of degree independent of t, with coefficients
analytic in t, such that the zeros of qΓt (z) in Σ′ coincide with the eigenvalues of
PΓ(t) in Σ′, with agreement of multiplicities.

Shrinking Ω0 if necessary, we may assume by Hypothesis 3.6.3 that

R(z, t) := (−∆O + V (t)− z)−1 : B0 → D1(O)

exists for Im z > c > 0 for all t ∈ Ω0. It was shown in [1, Theorem 7.5] that for any
t ∈ Ω0, R(z, t) admits a meromorphic continuation with poles of finite rank to z ∈ Σ′

given by

R(z, t)f = (PΓ(t)− z)−1f, ∀ f ∈ B0, z ∈ Σ′ \ Spec(PΓ(t)).

The connection between the poles of z 7→ R(z, t) and the eigenvalues of PΓ(t) was
established in [1, Theorem 7.7], which shows that these two discrete sets are identical,
more precisely, the multiplicity of zt as an eigenvalue of PΓ(t) equals its rank as a pole
of R(z, t). This correspondence and Proposition 3.6.4 yield the following perturbation
result for resonances – see [1, Proposition 8.1]:

Proposition 3.6.5. Suppose that the multiplicity of resonance z0 equals m. Let K ⊂
Σ′ be any disc centered at z0 containing no other resonances. Then there exists a
neighborhood of 0 ∈ C, Ω′

0 ⊂ Ω0, such that for any t ∈ Ω′
0,

(i) The total rank of the poles of R(z, t) in K is equal to m.
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(ii) Denote by z1(t), . . . , zm(t) the poles of R(z, t) in K, each repeated with respect to
its rank. Then zj(t) → z0 as t→ 0, j = 1, . . . ,m.

(iii) The average ẑ(t) := m−1
∑m

j=1 zj(t) is an analytic function of t in Ω′
0.
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Chapter 4

Boundary perturbation in obstacle
scattering

4.1 Deformation of obstacle

In this section we study the deformation of obstacle and the corresponding deformed
Dirichlet Laplacian. To describe the deformation of obstacle, we follow Pereira [42]
and introduce a set of Ck-smooth mappings (k ≥ 2) which deforms the obstacle O:

Diff(O) :=

{
Φ ∈ Ck(Rn;Rn) is a Ck-diffeomorphism : Φ(∂O) = ∂ Φ(O),

and Φ(x) = x, ∀ |x| > R, for some R > 0.

}
. (4.1.1)

For every Φ ∈ Diff(O), Φ(O) is a deformed obstacle satisfying all the requirements
in §1.3.3, thus we can define the Dirichlet Laplacian ∆Φ(O). We conjugate ∆Φ(O) by
the pullback Φ∗. This will transform the deformed domain Rn \ Φ(O) to the original
one. As a result, the variation is transferred to the coefficients of the newly-defined
differential operator. For O, an obstacle, and Φ ∈ Diff(O) given in (4.1.1), the pullback
Φ∗ is a bounded operator from L2(Rn \ Φ(O)) to L2(Rn \ O), which is invertible with
the inverse (Φ−1)∗. In view of (1.3.2), the restricted map Φ∗ : D(∆Φ(O)) → D(∆O)
is also invertible with the inverse (Φ−1)∗, since Φ∗ preserves the Dirichlet boundary
condition. Hence we can define the deformed operator ∆Φ

O of ∆O associated to the
deformation Φ:

∆Φ
O := Φ∗∆Φ(O)(Φ

−1)∗ : L2(Rn \ O) → L2(Rn \ O), with domain D(∆O). (4.1.2)

Let J ij
Φ (x) denote [DΦ(x)−1]ij, by a direct calculation we have

Φ∗∆(Φ−1)∗ =
∑
ijℓ

J iℓ
ΦJ

jℓ
Φ ∂

2
xixj

+
∑
ijℓmq

(∂2xixℓ
Φm)J jm

Φ J iq
Φ J

ℓq
Φ ∂xj

,
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where Φm(x) is the m-th component of Φ(x) = (Φ1(x), · · · ,Φn(x)). Now we define

V := ∆− Φ∗∆(Φ−1)∗ =
∑
i,j

aij(x)∂
2
xixj

+
∑
j

bj(x)∂xj
,

where aij = δij −
∑
ℓ

J iℓ
ΦJ

jℓ
Φ , bj = −

∑
iℓmq

(∂2xixℓ
Φm)J jm

Φ J iq
Φ J

ℓq
Φ ,

(4.1.3)

then by (4.1.1) we obtain that for all 1 ≤ i, j ≤ n,

aij ∈ Ck−1
c (Rn), bj ∈ Ck−2

c (Rn), ∥aij∥∞, ∥bj∥∞ ≤ C∥Φ− id ∥C2 . (4.1.4)

We note that −∆Φ(O) is a self-adjoint black box Hamiltonian, whose resolvent admits
a meromorphic continuation by Proposition 3.3.1. More precisely,

(−∆Φ(O) − λ2)−1 : e−A|x|L2(Rn \ Φ(O)) → D1(Φ(O)),

is a meromorphic family of operators for λ ∈ C when n is odd, λ ∈ Λ when n is even.
Here D1(Φ(O)) is defined as in (3.6.1). Since Φ∗ gives isomorphisms between

D1(Φ(O))
Φ∗
∼= D1(O), e−A|x|L2(Rn \ Φ(O))

Φ∗
∼= e−A|x|L2(Rn \ O)

respectively, it follows from (4.1.2) that the resolvent of −∆Φ
O also has a meromorphic

continuation given by

(−∆Φ
O − λ2)−1 = Φ∗(−∆Φ(O) − λ2)−1(Φ−1)∗ = Φ∗RΦ(O)(λ)(Φ

−1)∗, (4.1.5)

whose poles, denoted by Res(−∆Φ
O), coincide, with agreement of multiplicities, with

the resonances of Φ(O).

4.2 Agmon’s theory and boundary perturbation

In this section we consider Agmon’s theory for the deformed operators −∆Φ
O. It follows

from (4.1.2) and (4.1.3) that −∆Φ
O is also closable on B1 with the closure

PΦ
1 := Φ∗(−∆)(Φ−1)∗ = −∆+ V : B1 → B1 with domain D1(O). (4.2.1)

Thus −∆Φ
O also satisfies the abstract hypotheses of Agmon’s theory reviewed in §3.6.

For a fixed domain Σ with boundary Γ satisfying (3.6.5), by Proposition 3.3.1 we
can assume that

sup
ζ∈Γ

∥R(ζ)∥L(B0,D1(O)) < CΓ for some constant CΓ > 0, (4.2.2)
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where D1(O) is equipped with the graph norm:

∥u∥D1(O) = ∥u∥B1 + ∥∆u∥B1 .

Since V defined in (4.1.3) is a second order differential operator with compactly sup-
ported coefficients, it can be viewed as an operator in L(D1(O), B0) satisfying

∥V ∥L(D1(O),B0) ≤ C∥Φ− id ∥C2 , (4.2.3)

there exists δΓ > 0 sufficiently small such that for all ζ ∈ Γ,

∥Φ− id ∥C2 < δΓ =⇒ ∥VR(ζ)∥L(B0,B0) < 1/2, (4.2.4)

which guarantees that I+VR(ζ) : B0 → B0 is invertible by a Neumann series argument.
Thus we have

RΦ(ζ) := (−∆Φ
O − ζ)−1 = R(ζ)(I + VR(ζ))−1, ζ ∈ Γ, (4.2.5)

which can be justified first for ζ near Γ∩{z : 0 < Im z < π} and then by meromorphic
continuation. In particular, Γ ∩ Res(−∆Φ

O) = ∅. Hence for the same domain Σ with
boundary Γ, we can define BΓ,Φ, RΓ,Φ and PΓ,Φ for the deformed operator −∆Φ

O, as in
(3.6.6), (3.6.8) and (3.6.10) with R(ζ) replaced by RΦ(ζ).

Now we explore the relationships between BΓ,Φ, RΓ,Φ, PΓ,Φ and BΓ, RΓ, PΓ. As-
suming that ∥Φ− id ∥C2 < δΓ, by (4.2.5) we have for any f ∈ BΓ,

f = g +

∫
Γ

R(ζ)φ(ζ)dζ = g +

∫
Γ

RΦ(ζ)(I + VR(ζ))φ(ζ)dζ.

Since (I + VR(ζ))φ(ζ) ∈ C(Γ;B0), f ∈ BΓ,Φ thus we have BΓ ⊂ BΓ,Φ. Furthermore,
(4.2.4) implies that

∥g∥B0 + ∥(I + VR(ζ))φ(ζ)∥C(Γ;B0) ≤
3

2
(∥g∥B0 + ∥φ∥C(Γ;B0)),

by taking the infimum as in (3.6.7), we obtain that ∥f∥BΓ,Φ
≤ 3/2 ∥f∥BΓ

. Similarly,
for f ∈ BΓ,Φ we have

f = g +

∫
Γ

RΦ(ζ)φ(ζ)dζ = g +

∫
Γ

R(ζ)(I + VR(ζ))−1φ(ζ)dζ ∈ BΓ,

and again by (4.2.4) we can deduce that ∥f∥BΓ
≤ 2 ∥f∥BΓ,Φ

. Therefore,

BΓ,Φ = BΓ, ∥ · ∥BΓ,Φ
and ∥ · ∥BΓ

are equivalent, if ∥Φ− id ∥C2 < δΓ. (4.2.6)
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Henceforth, we identify BΓ,Φ with BΓ. Suppose that f = g+
∫
Γ
RΦ(ζ)φ(ζ)dζ ∈ BΓ,

then for w0 chosen in (3.6.10), in view of (3.6.8) and (4.2.5) we have

RΓ,Φ(w0)f = RΦ(w0)g +

∫
Γ

(ζ − w0)
−1(RΦ(ζ)−RΦ(w0))φ(ζ)dζ

= R(w0)g1 +

∫
Γ

(ζ − w0)
−1(R(ζ)−R(w0))φ1(ζ)dζ,

where φ1(ζ) := (I + VR(ζ))−1φ(ζ) ∈ C(Γ;B0) and

g1 := (I + VR(w0))
−1g +

∫
Γ

(I + VR(ζ))−1 − (I + VR(w0))
−1

ζ − w0

φ(ζ)dζ ∈ B0.

Thus RΓ,Φ(w0)f = RΓ(w0)f1 for f1 := g1 +
∫
Γ
R(ζ)φ1(ζ)dζ ∈ BΓ, which implies that

RanRΓ,Φ(w0) ⊂ RanRΓ(w0). We can also derive that RanRΓ(w0) ⊂ RanRΓ,Φ(w0) by
similar arguments. Therefore, recalling (3.6.10) we obtain that

D(PΓ,Φ) := RanRΓ,Φ(w0) = RanRΓ(w0) = D(PΓ).

We recall [1] that PΦ
1 extends PΓ,Φ as in (3.6.11), then for any u ∈ D(PΓ), (4.2.1) and

(3.6.11) imply that

PΓ,Φu = PΦ
1 u = P1u+ V u = PΓu+ V u (4.2.7)

Hence PΓ,Φ and PΓ are related as follows

PΓ,Φ = PΓ + V : BΓ → BΓ with domain D(PΓ). (4.2.8)

Now we substitute PΓ by PΓ,Φ in Proposition 3.6.2 and recall (4.1.5) to conclude:

Proposition 4.2.1. Let Σ with boundary Γ be chosen as in (3.6.5) and suppose that
Φ ∈ Diff(O) satisfies ∥Φ − id ∥C2 < δΓ for some δΓ > 0 in (4.2.4), then PΓ,Φ has a
discrete spectrum in Σ, given by Res(Φ(O)) ∩ Σ.

Furthermore, let z ∈ Res(Φ(O))∩Σ be an eigenvalue of PΓ,Φ, denote by EΓ,Φ(z) the
generalized eigenspace of PΓ,Φ at z, then

EΓ,Φ(z) :=
(∮

z

(PΓ,Φ − ζ)−1dζ

)
(BΓ) =

(∮
z

RΦ(ζ)dζ

)
(B0) (4.2.9)

where the integral is over a circle containing no other resonance than z. In particular,
the multiplicity of z ∈ SpecPΓ,Φ satisfies

mΓ,Φ(z) := dim EΓ,Φ(z) = mΦ(O)(λ), with z = λ2. (4.2.10)



CHAPTER 4. BOUNDARY PERTURBATION IN OBSTACLE SCATTERING 45

4.3 Generic simplicity of resonances in obstacle

scattering

We will follow the strategy of [33] and [6] in the case of potential perturbations to
prove Theorem 3. However we have to overcome the additional difficulties produced
by boundary perturbations using the results obtained in §4.1 and §4.2. For simplicity
we identify C \ i[0,∞) with {λ ∈ Λ : −3π/2 < arg λ < π/2} when n is odd. Let X
be the class of obstacles diffeomorphic to a fixed obstacle O0 – see (1.3.3), that is for
some k ≥ 2,

X := {Φ(O0) : Φ ∈ Diff(O0)},

with Diff(O0) defined by (4.1.1). We introduce a topology in this set by defining a
sub-basis of the neighborhoods of any O ∈ X by

Vε(O) := {Φ(O) : Φ ∈ Diff(O), ∥Φ− id ∥Ck < ε with ε sufficiently small}.

For any θ1, θ2 ∈ R and r > 1, we define

Sr
θ1,θ2

:= {λ ∈ Λ : θ1 < arg λ < θ2, 1/r < |λ| < r},
Er

θ1,θ2
:= {O ∈ X : mO(λ) ≤ 1, ∀λ ∈ Sr

θ1,θ2
}.

(4.3.1)

To prove Theorem 3 it suffices to show that for each θ1, θ2 and r, Er
θ1,θ2

is open and
dense in X, since we can then obtain the generic set X by taking

X :=
∞⋂

m=1

∞⋂
N=1

EN
−mπ,mπ when n is even; X :=

∞⋂
N=1

EN
− 3π

2
,π
2
when n is odd.

We proceed the proof of Theorem 3 in steps:

Proof of Theorem 3. Step 1. As in §3.6, for O ∈ X we write Res(O) for the image
of resonances under the map λ 7→ z = λ2, and for any z the multiplicity is given by
mO(z) := mO(λ) provided z = λ2. Then

Er
θ1,θ2

= {O ∈ X : mO(z) ≤ 1, ∀ z ∈ Sr2

2θ1,2θ2
}.

In view of (3.6.3), we can choose A > 0 large enough, such that Sr2

2θ1,2θ2
⋐ D+ (when n

is odd, we only need to check for θ1 = −3π/2, θ2 = π/2). Suppose that there is exactly
one resonance z0 in B(z0, 2δ) ⊂ Sr2

2θ1,2θ2
, where B(z0, r) denotes the disc in C centered

at z0 with radius r. For Ω := B(z0, δ) we then define

ΠO(Ω) := − 1

2πi

∫
∂Ω

(−∆O − ζ)−1dζ, mO(Ω) := rankΠO(Ω). (4.3.2)



CHAPTER 4. BOUNDARY PERTURBATION IN OBSTACLE SCATTERING 46

Now we choose a bounded domain Σ containing B(z0, 2δ) with boundary Γ satisfying
(3.6.5). We also assume that Σ ⋐ Sr2

2θ1,2θ2
. By Proposition 3.6.2, elements in Res(O)

coincide with the eigenvalues of PΓ in Σ. In view of (3.6.13), we have the relationship:

ΠΓ(Ω) := − 1

2πi

∫
∂Ω

(PΓ − ζ)−1dζ, then mΓ(Ω) := rankΠΓ(Ω) = mO(Ω). (4.3.3)

Let Uε(O) be a set of deformations defined for small ε > 0,

Uε(O) := {Φ ∈ Diff(O) : ∥Φ− id ∥Ck < ε}.

Assuming that ε < δΓ for constant δΓ given in (4.2.4), then for every Φ ∈ Uε(O)
Proposition 4.2.1 implies that

ΠΓ,Φ(Ω) := − 1

2πi

∫
∂Ω

(PΓ,Φ − ζ)−1dζ, mΓ,Φ(Ω) := rankΠΓ,Φ(Ω) = mΦ(O)(Ω). (4.3.4)

We recall (4.2.8) that PΓ,Φ = PΓ + V with V defined in (4.1.3), then by (4.2.3) we
obtain that if ε is sufficiently small, then for ζ ∈ ∂Ω and Φ ∈ Uε(O),

(PΓ,Φ − ζ)−1 = (PΓ − ζ)−1(I + V (PΓ − ζ)−1)−1

and supζ∈∂Ω ∥(PΓ,Φ − ζ)−1 − (PΓ − ζ)−1∥BΓ→BΓ
< C(Ω)ε. Then we can derive that

ΠΓ(Ω) and ΠΓ,Φ(Ω) have the same rank for any Φ ∈ Uε(O) if ε is sufficiently small. We
restate this as follows:

mΦ(O)(Ω) is constant for Φ ∈ Uε(O) if ε is sufficiently small. (4.3.5)

Hence O ∈ Er
θ implies that {Φ(O) : Φ ∈ Uε(O)} ⊂ Er

θ for some ε sufficiently small, in
other words, Er

θ is an open subset of X.

Step 2. It remains to show that Er
θ is dense in X, which is equivalent to:

∀O ∈ X and ε > 0, ∃Φ ∈ Uε(O) such that Φ(O) ∈ Er
θ . (4.3.6)

Since the number of resonances for the obstacle O in Sr
θ1,θ2

is finite, it is enough to prove
a local statement as it can be applied successively to obtain (4.3.6) (once a resonance
is simple it stays simple under small deformations due to (4.3.5)). We will define Ω for
any given O and z0 ∈ Res(O) as in Step 1, thus to obtain (4.3.6) it suffices to prove
that for

∀O ∈ X, z0 ∈ Res(O) and ε > 0, ∃Φ ∈ Uε(O) s.t. mΦ(O)(z) ≤ 1, ∀ z ∈ Ω. (4.3.7)

To establish (4.3.7) we proceed by induction. We note that for each O ∈ X, z0 ∈
Res(O), one of the following cases has to occur:

∀ ε > 0, ∃Φ ∈ Uε(O) s.t. 1 ≤ mΦ(O)(z) < mΦ(O)(Ω), ∀ z ∈ Ω, (4.3.8)
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or

∃ ε > 0, s.t. ∀Φ ∈ Uε(O), ∃z = z(Φ) ∈ Ω, mΦ(O)(z) = mΦ(O)(Ω) > 1. (4.3.9)

The first possibility means that by applying an arbitrarily small deformation Φ to O
we can obtain at least two distinct resonances for Φ(O) in Ω. The second possibility
means that under any small deformations the maximal multiplicity persists.

Step 3. Assuming (4.3.8) we can prove (4.3.7) by induction on mO(z0). If mO(z0) = 1
there is nothing to prove. Assuming that we proved (4.3.7) in the case mO(z0) < M ,
we now assume that mO(z0) = M . We note that for any Φ1 ∈ Diff(O) and Φ2 ∈
Diff(Φ1(O)), there exists C = C(k, n) such that

∥Φ2 ◦ Φ1 − id ∥Ck ≤ C
(
∥Φ2 − id ∥Ck + ∥Φ1 − id ∥Ck

)
.

In view of (4.3.8) we can find Φ0 ∈ Diff(O) with ∥Φ0 − id ∥Ck < ε/(2C)M such that
mΦ0(O)(Ω) = mO(Ω) (using (4.3.5)) and that all resonances in Ω, denoted by z1, · · · , zℓ,
satisfy mΦ0(O)(zj) < M . We now find rj such that

B(zj, 2rj) ⊂ Ω, {zj} = B(zj, 2rj) ∩ Res(Φ0(O)), B(zj, 2rj) ∩B(zi, 2ri) = ∅.

We put Ωj := B(zj, rj) and apply (4.3.7) successively to Φj−1 ◦ · · · ◦Φ0(O), j = 1, . . . , ℓ
with ∥Φj − id ∥Ck < ε/(2C)ℓ+1−j (by (4.3.5) we can assume that Φj is sufficiently close
to the identity map such that resonances in Ω0, · · · ,Ωj−1 that are already simple stay
simple while total multiplicities in Ωj+1, · · · ,Ωℓ are invariant). Then we obtain the
desired Φ = Φℓ ◦ · · · ◦ Φ0 ∈ Uε(O) since (note that ℓ < M)

∥Φℓ ◦ · · · ◦ Φ0 − id ∥Ck <
ℓ∑

j=1

Cℓ+1−j ε

(2C)ℓ+1−j
+ Cℓ ε

(2C)M
≤ ε.

Step 4. It remains to show (4.3.9) is impossible. For that, we shall argue by contra-
diction. Suppose that there exist an obstacle O ∈ X and a resonance z0 ∈ Ω with
some disc Ω = B(z0, r) containing no other resonances, such that (4.3.9) holds. In fact
we may assume further that O has C∞-boundary since we can deform O to a smooth
obstacle Õ through some Φ̃ ∈ Diff(O) with ∥Φ̃− id ∥Ck ≪ ε, decreasing ε if necessary,
then (4.3.9) still holds with Õ and z̃0 = z(Φ̃) replacing O and z0. Hence we assume in
the following that O is a smooth obstacle.

Let M = mO(Ω). Suppose that Σ and Γ are chosen as in Step 1. Using (4.3.3) and
(4.3.4) we obtain an equivalent statement to (4.3.9):

∃ ε > 0, s.t. ∀Φ ∈ Uε(O), ∃ z = z(Φ) ∈ Ω, mΓ,Φ(z) = mΓ,Φ(Ω) > 1. (4.3.10)

For Φ ∈ Uε(O), we define

q(Φ) := min{q ∈ N : (PΓ,Φ − z(Φ))qΠΓ,Φ(Ω) = 0},
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then 1 ≤ q(Φ) ≤ M . It follows from (4.2.8) and (4.1.3) that if ∥Φj − Φ∥C2M → 0 and
(PΓ,Φj

− z(Φj))
qΠΓ,Φj

(Ω) = 0, then (PΓ,Φ − z(Φ))qΠΓ,Φ(Ω) = 0. We now define

q0 := max{q(Φ) : Φ ∈ Uε/2(O)},

and assume that the maximum is attained at Φ0 i.e. q(Φ0) = q0, then there exists
ε′ > 0 such that

∥Φ− Φ0∥C2M < ε′ =⇒ q(Φ) = q0.

Therefore, we can choose a Φ̃0 ∈ Diff(O) that is in C∞(Rn;Rn) with ∥Φ̃0 − Φ0∥ ≪ ε′.
Replacing O in (4.3.10) by Φ̃0(O) and decreasing ε such that ε≪ ε′, we assume in the
following that

∀Φ ∈ Diff(O), ∥Φ− id ∥C2M < ε, ∃ z(Φ) and 1 ≤ q0 ≤M such that

mΓ,Φ(z(Φ)) = rankΠΓ,Φ(Ω) =M > 1,

(PΓ,Φ − z(Φ))q0ΠΓ,Φ(Ω) = 0, (PΓ,Φ − z(Φ))q0−1ΠΓ,Φ(Ω) ̸= 0.

(4.3.11)

φh
t

•Vh x0O φh
t (O)

Figure 4.1: Deformation φh
t in Diff(O) acting near a fixed point on ∂O, which is used

in Step 5 of the proof of Theorem 3.

Step 5. Before proving (4.3.11) is impossible we introduce a family of deformations in
Diff(O) acting near a point on ∂O. For any fixed x0 ∈ ∂O, we consider the normal
coordinates near x0, that is there is some U = BRn(x0, 2r0) such that for each x ∈ U
there exist unique (x′, xn) ∈ ∂O × R with x = x′ + xnν(x

′), where ν(x′) is the normal
vector at x′ pointing to the interior of O. Let ρ ∈ C∞

c (R; [0, 1]) be a bump function
such that ρ(0) = 1 and supp ρ ⊂ (−r0, r0). Fixing h0 > 0 small, we choose a family of
functions χh ∈ C∞(∂O; [0,∞)) depending continuously in h ∈ (0, h0] such that∫

∂O
χh(x

′)dS(x′) = 1, suppχh ⊂ B∂O(x0, h) ⊂ U, ∀h ∈ (0, h0], (4.3.12)
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where B∂O(x0, h) is a geodesic ball on ∂O with center x0 and radius h. For each
h ∈ (0, h0], we construct a smooth vector field Vh ∈ C∞

c (Rn;Rn) as follows

Vh(x) = χh(x
′)ρ(xn)ν(x

′), for x = x′ + xnν(x
′) ∈ U,

and Vh(x) = 0 for all x ∈ Rn \ U.
(4.3.13)

Then we introduce a family of smooth deformations produced by Vh:

φh
t ∈ C∞(Rn;Rn), φh

t (x) := x+ tVh(x). (4.3.14)

It follows from (4.3.13) that for every h ∈ (0, h0] there is t0 = t0(h) ≪ 1 such that

∀ t ∈ (−t0, t0), φh
t ∈ Diff(O), ∥φh

t − id ∥C2M < ε.

Step 6. To show that (4.3.11) is impossible we first assume the case q0 > 1. We recall
(3.6.12) that ΠΓ(Ω)(BΓ) = ΠΓ(Ω)(B0), let

C∞
c (Rn \ O) := {f ∈ C∞

c (Rn) : supp f ⊂ Rn \ O}

then RanΠΓ(Ω) = ΠΓ(Ω)(C∞
c (Rn \ O)) since ΠΓ(Ω) is finite rank and C∞

c (Rn \ O) is
dense in B0. Thus by (4.3.11) we can find w ∈ C∞

c (Rn \ O) such that

u := (PΓ − z0)
q0−1ΠΓ(Ω)w ̸= 0, here z0 = z(id). (4.3.15)

Fixing x0 ∈ ∂O and h ∈ (0, h0], we define φt
h as in Step 5 and write Φt := φt

h,
t ∈ (−t0, t0). If we set

u(t) := (Φt
−1)∗v(t), v(t) := (PΓ,Φt − z(t))q0−1ΠΓ,Φt(Ω)w, z(t) := z(Φt). (4.3.16)

Then by (4.3.11) we have for any

∀ t ∈ (−t0, t0), mΓ,Φt(z(t)) = rankΠΓ,Φt(Ω) =M, (PΓ,Φt − z(t))v(t) = 0. (4.3.17)

Recalling (4.2.1) and (4.2.7), we obtain the equation for u(t):

(−∆− z(t))u(t) = 0 on Rn \ Φt(O), (4.3.18)

in the sense of L2
loc functions.

We next aim to show that z(t) is differentiable at 0. For that we extend (4.3.14) to
Φt ∈ C∞(Rn,Cn), t ∈ C:

Φt(x) := x+ tVh(x), t ∈ C
We set t1 = t1(h) sufficiently small such that for all |t| < t1 and x ∈ Rn, DΦt(x) = I +
tDVh(x) is invertible. Denoting by J ij

Φt
(x) = [DΦt(x)

−1]ij, Φ
m
t (x) the m-th component

of Φt(x), we replace Φ by Φt in (4.1.3) to define

V(t) :=
∑
i,j

aij(t, x)∂
2
xixj

+
∑
j

bj(t, x)∂xj
,
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where aij = δij −
∑
ℓ

J iℓ
Φt
J jℓ
Φt
, bj = −

∑
iℓmq

(∂2xixℓ
Φm

t )J
jm
Φt
J iq
Φt
J ℓq
Φt
.

Repeating the calculation that yields (4.1.4), we also have for some C = C(h) > 0,

aij(t, ·), bj(t, ·) ∈ C∞
c (Rn

x), ∥aij(t, ·)∥∞, ∥bj(t, ·)∥∞ < C|t|.

It follows that V(t), |t| < t1 satisfies Hypothesis 3.6.3. For t ∈ C, |t| < t1, we follow
(3.6.14) to define

PΓ(t) = PΓ + V(t), with domain D(PΓ(t)) := D(PΓ).

Recalling Propositions 3.6.4 and 3.6.5, decreasing t0 if necessary, for any t ∈ C, |t| < t0,
PΓ(t) has a discrete spectrum in some neighborhood K of z0 and the total multiplicity
of the eigenvalues of PΓ(t) in K equals M . Moreover, if we denote by z1(t), . . . , zM(t)
the eigenvalues of PΓ(t) in K, repeated with multiplicity, then ẑ(t) = M−1

∑M
j=1 zj(t)

is an analytic function in t ∈ C, |t| < t0. On the other hand, if we consider real t,
t ∈ (−t0, t0), then (4.1.3) and (4.2.8) imply that

PΓ(t) = PΓ + V(t) = PΓ,Φt , −t0 < t < t0.

It follows from (4.3.17) that for t ∈ (−t0, t0) the eigenvalues of PΓ(t) near z0 don’t
split, i.e. zj(t) = z(t), j = 1, . . . ,M . Thus z(t) = ẑ(t) when t is real, t ∈ (−t0, t0). The
analyticity of ẑ(t) gives the smoothness of z(t) on (−t0, t0). As a consequence, u(t)
and v(t) defined in (4.3.16) also depend smoothly on t ∈ (−t0, t0).

Since Φt(O) ⊂ O for t ≥ 0, we can restrict (4.3.18) to the region Rn \ O then
differentiate the equation in t, by taking t = 0, we obtain that

(−∆− z0)∂tu(0, x) = z′(0)u(x) on Rn \ O. (4.3.19)

We recall (4.3.16) that u(t, x) = v(t,Φ−1
t (x)), using u(0, x) = v(0, x) = u(x) and

(4.3.14) we can calculate the derivative in t:

∂tu(0, x) = ∂tv(t,Φ
−1
t (x))|t=0 = ∂tv(0, x)− ∂xu · Vh(x).

In view of (3.6.12) and (4.3.15), u ∈ EΓ(z0) is a resonant state of −∆O at z0, thus we
recall [12, Theorem 4.7] that u ∈ C∞(Rn \ O). Then by (4.3.13) we conclude that

(−∆− z0)(∂tv(0, x)− f) = z′(0)u(x) on Rn \ O,
f := ∂xu · Vh(x) ∈ C∞

c (Rn \ O), f |∂O = χh∂νu.
(4.3.20)

It follows from v(t, x) ∈ D(PΓ), t ∈ (−t0, t0) that ∂tv(0, x) ∈ D(PΓ), thus the first
equation in (4.3.20) reduces to

(PΓ − z0)∂tv(0, x) = (−∆− z0)f + z′(0)u on Rn \ O. (4.3.21)
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We introduce the bilinear form on B0 ×B1 (no complex conjugation),

⟨u, v⟩ :=
∫
Rn\O

uv dx, u ∈ B1, v ∈ B0.

We now apply the projection ΠΓ (omitting Ω) to both sides of (4.3.21), pair with
(PΓ − z0)

q0−1w ∈ B0 (since w ∈ C∞
c (Rn \ O)), use the fact that (PΓ − z0)ΠΓg =

ΠΓ(PΓ − z0)g, ∀ g ∈ D(PΓ) to obtain that

⟨(PΓ − z0)ΠΓ∂tv(0, x), (PΓ − z0)
q0−1w⟩

= ⟨ΠΓ(−∆− z0)f, (PΓ − z0)
q0−1w⟩+ z′(0)⟨u, (PΓ − z0)

q0−1w⟩.

By Green’s formula, ⟨PΓg1, g2⟩ = ⟨g1, PΓg2⟩ for any g1 ∈ D(PΓ), g2 ∈ C∞
c (Rn \ O). It

then follows from (4.3.11) and (4.3.15) that

⟨(PΓ − z0)ΠΓ∂tv(0, x), (PΓ − z0)
q0−1w⟩ = ⟨(PΓ − z0)

q0ΠΓ∂tv(0, x), w⟩ = 0,

and that
⟨u, (PΓ − z0)

q0−1w⟩ = ⟨(PΓ − z0)u, (PΓ − z0)
q0−2w⟩ = 0.

Since ⟨ΠΓf1, f2⟩ = ⟨ΠΓf2, f1⟩ for any f1, f2 ∈ B0, we conclude that

0 = ⟨ΠΓ(−∆− z0)f, (PΓ − z0)
q0−1w⟩

= ⟨(−∆− z0)f, (PΓ − z0)
q0−1ΠΓw⟩ = ⟨(−∆− z0)f, u⟩.

Now we apply Green’s formula and recall (4.3.20) and u∂O = 0 to obtain

0 = ⟨(−∆− z0)f, u⟩ =
∫
∂O
f ∂νu dS =

∫
∂O
χh(x

′)(∂νu(x
′))2dS(x′).

Since the above equation holds for any h ∈ (0, h0], (u is independent of x0 and h)
sending h to 0+, by (4.3.12) we can derive that ∂νu(x0) = 0. We note that x0 ∈
∂O can be chosen arbitrarily, thus ∂νu|∂O ≡ 0. However, it follows from (4.3.11)
and (4.3.15) that u ∈ D1(O) satisfying (−∆ − z0)u = 0 on Rn \ O. Extending u
into O by u|O = 0, it then follows from (4.3.18) and the boundary values u|∂O = 0,
∂νu|∂O = 0 that u ∈ H1

loc(Rn) is a weak solution of (−∆− z0)u = 0 on Rn. The unique
continuation property of second order elliptic differential equations shows that u ≡ 0,
which contradicts (4.3.15).

Step 7. It remains to consider the case q0 = 1 in (4.3.11). Let {wj}Mj=1 be a set of

vectors in C∞
c (Rn\O) such that {ΠΓwj}Mj=1 is a basis for RanΠΓ. Since ΠΓ is symmetric

with respect to the bilinear form ⟨·, ·⟩ on B0 × B0, the matrix A, Aij := ⟨ΠΓwi, wj⟩ is
a complex symmetric matrix. To see A is nondegenerate, we suppose that

∃x ∈ CM , ⟨ΠΓwi,
∑
j

xjwj⟩ = 0, i = 1, · · · ,M.
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Since {ΠΓwi}Mi=1 spans RanΠΓ, we have ⟨ΠΓw,
∑
xjwj⟩ = 0 for all w ∈ B0, which

implies that ⟨
∑
xjΠΓwj, w⟩ = 0, ∀w ∈ B0. Hence

∑
xjΠΓwj = 0 ⇒ x = 0. We apply

the Takagi factorization to the matrix A to obtain that

A = UT Diag(r1, · · · , rM)U, where U is unitary, r2j are the eigenvalues of AA∗.

We remark that UT is the real transpose. Then we can write A = BTB, B nonde-
generate due to the nondegeneracy of A. Transforming {wj}Mj=1 by the matrix B and
putting uj := ΠΓwj, we may assume now that

RanΠΓ = span{uj}Mj=1, ⟨uj, wi⟩ = δij.

For any fixed x0 ∈ ∂O and h ∈ (0, h0], we define the evolution of each uj as in (4.3.16):

uj(t) := (Φ−1
t )∗vj(t), vj(t) := ΠΓ,Φt(Ω)wj, z(t) := z(Φt). (4.3.22)

We note that (4.3.21) still holds with ∂tv(0, x), u, f replaced by ∂tvj(0, x), uj and fj
defined as in (4.3.20). The same arguments as in Step 6 show that

⟨(PΓ − z0)ΠΓv
′
j(0), wi⟩ = ⟨ΠΓ(−∆− z0)fj, wi⟩+ z′(0)⟨uj, wi⟩.

Since (PΓ − z0)ΠΓ = 0 by (4.3.11) with q0 = 1, it then follows that

⟨(−∆− z0)fj, ui⟩ = −z′(0)δij.

We apply Green’s formula with boundary value of fj like (4.3.20) to obtain that

−z′(0)δij = ⟨(−∆− z0)ui, fj⟩+
∫
∂O
fj∂νui dS =

∫
∂O
χh(∂νui)(∂νuj) dS.

Since M ≥ 2, for any x0 ∈ ∂O and h ∈ (0, h0] we have∫
∂O
χh(∂νu1)

2dS =

∫
∂O
χh(∂νu2)

2dS,

∫
∂O
χh∂νu1∂νu2 dS = 0.

Sending h→ 0+, it follows from (4.3.12) that

(∂νu1(x0))
2 = (∂νu2(x0))

2, ∂νu1(x0)∂νu2(x0) = 0,

thus ∂νu1(x0) = ∂νu2(x0) = 0. Since x0 ∈ ∂O is arbitrary, ∂νu1 ≡ 0. Hence the same
arguments as in the end of Step 6 show that u1 ≡ 0, which gives a contradiction.
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Chapter 5

The CAP-regularized operator

In this chapter we study the Hamiltonians modified by the complex absorbing potan-
tials.

5.1 The Davies harmonic oscillator

The operator
Hε,θ := −e−2iθ∆− iεe2iθx2, ε > 0, 0 ≤ θ ≤ π/8,

was used by Davies [9] to illustrate properties of non-normal differential operators.
Some known facts about Hε,θ and its resolvent have been reviewed in [65], we recall
those facts here:

Proposition 5.1.1. Hε,θ is a closed densely defined operator on L2(Rn) equipped with
the domain H2(Rn) ∩ ⟨x⟩−2L2(Rn). The spectrum is given by

Spec(Hε,θ) = {e−iπ/4
√
ε(2|α|+ n) : α ∈ Nn

0}, |α| := α1 + · · ·+ αn. (5.1.1)

If Ω ⋐ {z : −π/2 + 2θ < arg z < −2θ} \ e−iπ/4[0,∞), then there exist constants
C1 = C1(Ω) and C2 = C2(Ω) such that

C1e
C1ε

− 1
2 ≤ ∥(Hε,θ − z)−1∥L2→L2 ≤ C2e

C2ε
− 1

2 , z ∈ Ω. (5.1.2)

In addition for any δ > 0 we have uniformly in ε > 0,

(Hε,θ − z)−1 = Oδ(|z|
j−2
2 ) : L2(Rn) → Hj(Rn), j = 0, 1, 2,

for − 2θ + δ < arg z < 3π/2 + 2θ − δ, |z| > δ.
(5.1.3)

Proof. By rescaling y =
√
εx, Hε,θ can be viewed as a semiclassical Weyl quantization

of a complex-valued quadratic form, with h =
√
ε,

Hε,θ = qw(y, hD), q : Rn
y × Rn

η → C, (y, η) 7→ e−2iθη2 − ie2iθy2,



CHAPTER 5. THE CAP-REGULARIZED OPERATOR 54

which shall be viewed as a closed densely defined operator on L2(Rn) equipped with the
domain D(Hε,θ) := {u ∈ L2(Rn) : Hε,θu ∈ L2(Rn)}. For the analysis of the spectrum
for general quadratic operators see Hitrik–Sjöstrand–Viola [27] and references given
there, in particular we obtain (5.1.1).

Then we show D(Hε,θ) = H2(Rn) ∩ ⟨x⟩−2L2(Rn). For u ∈ C∞
c (Rn), let f = Hε,θu,

we integrate by parts to obtain:

⟨f, u⟩L2 = e−2iθ∥Du∥2L2 − iεe2iθ∥xu∥2L2 , (5.1.4)

where ⟨f, u⟩L2 =
∫
Rn f(x)u(x)dx. We also have

∥f∥2L2 = ∥∆u∥2L2 + ε2∥x2u∥2L2 − iεe−4iθ⟨∆u, x2u⟩L2 + iεe4iθ⟨x2u,∆u⟩L2

= ∥∆u∥2L2 + ε2∥x2u∥2L2 + 2ε sin 4θ∥xDu∥2L2 + 4ε Im(e4iθ⟨xu,Du⟩L2).
(5.1.5)

Thus we can conclude a priori estimate from (5.1.4), (5.1.5), that is

∥u∥H2 + ε∥x2u∥L2 ≤ C(∥u∥L2 + ∥Hε,θu∥L2), ∀u ∈ C∞
c (Rn). (5.1.6)

It then follows that

u ∈ L2 and Hε,θu ∈ L2 =⇒ u ∈ H2 and x2u ∈ L2.

In other words, D(Hε,θ) = H2(Rn) ∩ ⟨x⟩−2L2(Rn).

The lower bound in (5.1.2) follows from general arguments for operators with ana-
lytic coefficients – see Dencker–Sjöstrand–Zworski [10]. The upper bound in (5.1.2) is
obtained and shown to be sharp in [27].

To obtain the bounds (5.1.3), we recall (5.1.4) to write

⟨(Hε,θ − z)u, u⟩L2 = e−2iθ∥Du∥2L2 − iεe2iθ∥xu∥2L2 − z∥u∥2L2 .

Since −2θ + δ < arg z < 3π/2 + 2θ − δ, |z| > δ, we have

|z|∥u∥2L2 ≤ Cδ|⟨(Hε,θ − z)u, u⟩L2| =⇒ ∥u∥L2 ≤ Cδ|z|−1∥Hε,θ − z)u∥L2 , (5.1.7)

which proves (5.1.3) for j = 0. Combining (5.1.6) we conclude that

∥u∥H2 ≤ C(∥u∥L2 + |z|∥u∥L2 + ∥(Hε,θ − z)u∥L2) ≤ Cδ∥(Hε,θ − z)u∥L2 ,

which proves (5.1.3) for j = 2, then the case j = 1 follows by interpolation.
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5.2 An estimate of the weighted resolvent

In this section we show how exponential weights dramatically improve the estimate
(5.1.2) for the resolvent:

(−∆− iεx2 − λ2)−1, λ ∈ Ω

for Ω defined in (1.3.1). This will be crucial in the proof of Theorem 1.

Using the Fourier transform Fu(ξ) = û(ξ) = (2π)−n/2
∫
e−ix·ξu(x) dx, we have

−∆x − iεx2 = F−1(ξ2 + iε∆ξ)F .

Inspired by [31] and the earlier work by Nakamura [38], first we introduce a family of
spectral deformations in the Fourier space as follows.

For any fixed Ω given in (1.3.1), we choose ρ ∈ C∞([0,∞);R) with ρ ≡ 0 near 0
and ρ(t) ≡ 1 for t≫ 1 such that

0 ≤ ρ′(t) < γ−1 tan
π

8
, ∀ t ≥ 0; Ω ⋐ {x+ iy : x > 0, y > −γρ(x)}, (5.2.1)

and define the map
ψ : Rn → Rn, ψ(ξ) = |ξ|−1ρ(|ξ|) ξ, (5.2.2)

then ψ is smooth with the Jacobian:

Dψ(ξ) = |ξ|−1ρ(|ξ|)I + (|ξ|−2ρ′(|ξ|)− |ξ|−3ρ(|ξ|)) ξ · ξT . (5.2.3)

Let A be an orthogonal matrix with n-th column |ξ|−1ξ, then we have

ATDψ(ξ)A = diag[ |ξ|−1ρ(|ξ|), · · · , |ξ|−1ρ(|ξ|), ρ′(|ξ|) ]. (5.2.4)

For θ ∈ R, we consider a family of deformations:

φθ(ξ) = ξ + θψ(ξ), (5.2.5)

and the corresponding unitary operators Uθ, θ ∈ R defined by

Uθu(ξ) := (detDφθ(ξ))
1
2u(φθ(ξ)). (5.2.6)

Using (5.2.4), we can compute detDφθ(ξ) explicitly, i.e.

Jθ(ξ) ≡ detDφθ(ξ) = det(I + θDψ(ξ)) = (1 + θρ′(|ξ|) ) (1 + θ|ξ|−1ρ(|ξ|) )n−1, (5.2.7)

then by (5.2.1), Uθ is invertible as detDφθ(ξ) ̸= 0 for θ ∈ R, |θ| < γ, the inverse is
given by

U−1
θ v(ξ) = (detDφθ(φ

−1
θ (ξ)))−

1
2v(φ−1

θ (ξ)). (5.2.8)



CHAPTER 5. THE CAP-REGULARIZED OPERATOR 56

Now we consider the deformed operators of ξ2 + iε∆ξ:

Qε,θ := Uθ(ξ
2 + iε∆ξ)U

−1
θ

= φθ(ξ)
2 − iεJθ(ξ)

− 1
2DξlJ

lj(ξ)Jθ(ξ)J
kj(ξ)DξkJθ(ξ)

− 1
2

(5.2.9)

where Dξk = −i∂ξk , Jθ(ξ) = detDφθ(ξ), J
lj(ξ) = [Dφθ(ξ)

−1]jl. To extend Qε,θ to
θ ∈ C, we define

Dγ := {θ ∈ C : |Re θ|+ | Im θ| < γ}. (5.2.10)

Dγ

Re θ

Im θ

In view of (5.2.1) and (5.2.7), Dφ−1
θ and detDφθ extend analytically to θ ∈ Dγ. ,

we obtain that Qε,θ, given by the second equation in (5.2.9), extends analytically to
θ ∈ Dγ.

Then we introduce some preliminary results about the spectrum of Qε,θ :

Proposition 5.2.1. There exists constant ε0 = ε0(Ω, γ) such that for all 0 < ε < ε0
and θ ∈ Dγ,

Spec(Qε,θ) ∩ {z ∈ C : |z| > 1, π/2 < arg z < π} = ∅.

Proof. We note that for θ ∈ Dγ, by (5.2.1),

1− tan
π

8
< 1− |θ||ρ′(t)| ≤ |1 + θρ′(t)| ≤ 1 + |θ||ρ′(t)| < 1 + tan

π

8
, ∀ t ≥ 0.

Thus, (5.2.7) implies that C−1 < |Jθ(ξ)| < C for some constant C > 0. Since

[Dφθ(ξ)]jl =

(
1 + θ

ρ(|ξ|)
|ξ|

)
δjl +

θ|ξ|ρ′(|ξ|)− θρ(|ξ|)
|ξ|3

ξjξl

by (5.2.3), and ρ′ ∈ C∞
c ((0,∞)), together with (5.2.7), we conclude that

Jθ, J
−1
θ , J lj ∈ C∞

b (Rn), 1 ≤ j, l ≤ n. (5.2.11)
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Here C∞
b (Rn) := {u ∈ C∞(Rn) : |∂αu| ≤ Cα for all α ∈ Nn

0}. Hence we have

Qε,θ = φθ(ξ)
2 − iεJkj(ξ)J lj(ξ)DξkDξl + εaj(ξ)Dξj + εb(ξ), (5.2.12)

where aj, b ∈ C∞
b (Rn). Let h =

√
ε, then Qε,θ = qwθ (ξ, hDξ) is a semiclassical differential

operator with the full symbol:

qθ(ξ, ξ
∗;h) = φθ(ξ)

2 − i(Dφθ(ξ)
−2ξ∗) · ξ∗ + haj(ξ)ξ

∗
j + h2b(ξ), (5.2.13)

where (ξ, ξ∗) are coordinates of T∗Rn,

Dφθ(ξ)
−2 = (Dφθ(ξ)

−1)T (Dφθ(ξ)
−1)

as Dφθ(ξ) is a symmetric matrix. Choose m(ξ, ξ∗) = 1+ ξ2 + ξ∗2 as an order function,
we recall the symbol class S(m):

S(m) := {a ∈ C∞ : |∂αa| ≤ Cαm for ∀α ∈ N2n
0 }. (5.2.14)

Then by (5.2.1), (5.2.5) and (5.2.11), we have qθ ∈ S(m). In view of §2.1.4 and Example
2.1.8, we aim to show that there exists constant h0 > 0 such that for h < h0,

qθ − z is elliptic in S(m) for |z| > 1, π/2 < arg z < π.

Using (5.2.2) we calculate:

φθ(ξ)
2 = (ξ + θψ(ξ)) · (ξ + θψ(ξ)) = (|ξ|+ θρ(|ξ|))2. (5.2.15)

Then for θ ∈ Dγ, by (5.2.1), we have

− π/4 < argφθ(ξ)
2 < π/4, |φθ(ξ)

2| >
(
1− tan

π

8

)2
|ξ|2. (5.2.16)

To obtain similar bounds for the argument and modulus of (Dφθ(ξ)
−2ξ∗) · ξ∗, we recall

(5.2.4) to compute

(Dφ−2
θ ξ∗) · ξ∗ = (1 + θρ(|ξ|)|ξ|−1)−2(η∗1

2 + · · ·+ η∗n−1
2) + (1 + θρ′(|ξ|))−2η∗n

2, (5.2.17)

where η∗ = AT ξ∗ ∈ Rn with the same orthogonal matrix A as in (5.2.4). By (5.2.1),
for θ ∈ Dγ, we have

± Im θ ≥ 0 =⇒ 0 ≤ ± arg(1 + θρ(|ξ|)|ξ|−1), ± arg(1 + θρ′(|ξ|)) < π/8,

Hence, for all θ ∈ Dγ,

± Im θ ≥ 0 =⇒ 0 ≤ ∓ arg (Dφ−2
θ ξ∗) · ξ∗ < π/4, (5.2.18)



CHAPTER 5. THE CAP-REGULARIZED OPERATOR 58

and by applying the following basic inequality with (5.2.1) to (5.2.17),

|r1eiθ1 + r2e
iθ2|2 = r21 + r22 + 2r1r2 cos(θ1 − θ2) ≥

1− | cos(θ1 − θ2)|
2

(r1 + r2)
2, (5.2.19)

we also obtain that for all θ ∈ Dγ,

|(Dφ−2
θ ξ∗) · ξ∗| ≥ C|η∗|2 = C|ξ∗|2. (5.2.20)

Since arg(φθ(ξ)
2 − z) ∈ (−π/2, π/4) for π/2 < arg z < π and arg−i(Dφ−2

θ ξ∗) · ξ∗ ∈
(−3π/4,−π/4) by (5.2.18), using (5.2.19) together with (5.2.16) and (5.2.20), we have

|φθ(ξ)
2 − z − i(Dφ−2

θ ξ∗) · ξ∗| ≥ C|φθ(ξ)
2 − z|+ C| − i(Dφ−2

θ ξ∗) · ξ∗|
≥ C|φθ(ξ)

2|+ C|z|+ C|ξ∗|2

≥ C(1 + |ξ|2 + |ξ∗|2) = Cm.

(5.2.21)

Then by (5.2.13), we conclude that there exists h0 > 0 such that for all 0 < h < h0,
|z| > 1, π/2 < arg z < π, we have |qθ − z| ≥ Cm.

Recalling Example 2.1.8 that the principal symbol of mw(ξ, hD)−1 is m−1, we have

(qwθ (ξ, hD)− z)mw(ξ, hD)−1 = awz (ξ, hD), az is elliptic in S(1).

By Proposition 2.1.7, awz (ξ, hD) has an inverse on L2, thus for ε small enough,

(Qε,θ − z)−1 = mw(ξ, hD)−1awz (ξ, hD)−1, h =
√
ε,

which completes the proof.

Proposition 5.2.2. For any β ∈ (γ′, γ) satisfying

Ω ⋐ {x+ iy : x > 0, y > −βρ(x)}, (5.2.22)

there exists ε0 = ε0(Ω, γ, β) such that for all 0 < ε < ε0,

Spec(Qε,−iβ) ∩ {λ2 : λ ∈ Ω} = ∅.

Proof. Let m = 1 + ξ2 + ξ∗2, as in the proof of Proposition 5.2.1, it suffices to show
that there exists h0 = h0(Ω, γ, β) such that for 0 < h < h0,

q−iβ(ξ, ξ
∗;h)− λ2 is elliptic in S(m) for λ ∈ Ω.

For a numerical illustration, see Figure 5.1.

Recalling (5.2.18) that

arg−i(Dφ−2
−iβξ

∗) · ξ∗ ∈ [−π/2,−π/4),
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in order to apply (5.2.19), we claim that for all λ ∈ Ω, ξ ∈ Rn,

∃ δ > 0 s.t. arg(φ−iβ(ξ)
2 − λ2) ≤ π/2− δ or ≥ 3π/4 + δ. (5.2.23)

In view of (5.2.15) We have for |ξ| ≫ 1,

φ−iβ(ξ)
2 = (|ξ| − iβ)2 =⇒ arg(φ−iβ(ξ)

2 − λ2) ∈ (−π/4, 0),

in other words, there exists some large R such that (5.2.23) holds for |ξ| > R with
δ = π/2. It remains to show that (5.2.23) holds for all |ξ| ≤ R and λ ∈ Ω. We
argue by contradiction: if it does not hold, there must exist λ ∈ Ω, ξ ∈ Rn such that
arg(φ−iβ(ξ)

2 − λ2) ∈ [π/2, 3π/4], i.e.

0 ≤ −Re ((|ξ| − iβρ(|ξ|))2 − λ2) ≤ Im ((|ξ| − iβρ(|ξ|))2 − λ2),

which immediately implies Imλ ≤ 0. Let t = |ξ| and write λ = x− iy, then we have

x2 − y2 − t2 + β2ρ(t)2 ≤ 2xy − 2βtρ(t) (5.2.24)

βtρ(t) ≤ xy (5.2.25)

Since x > 0 and 0 ≤ y < βρ(x) by (5.2.22), then (5.2.24) implies that

x2 − 2βxρ(x)− β2ρ(x)2 < t2 − 2βtρ(t)− β2ρ(t)2.

Let S(x) = x2 − 2βxρ(x)− β2ρ(x)2, by (5.2.1),

S ′(x) = 2x

(
1− β

ρ(x)

x
− βρ′(x)− β

ρ(x)

x
· βρ′(x)

)
> 2x

(
1− 2 tan

π

8
− tan2 π

8

)
= 0,

thus S(x) < S(t) =⇒ x < t. Recalling that ρ is non-decreasing, we have βtρ(t) ≥
βxρ(x) > xy, which contradicts (5.2.25). Hence (5.2.23) holds, using (5.2.19) and
(5.2.20), we obtain that

|φ−iβ(ξ)
2 − λ2 − i(Dφ−2

−iβξ
∗) · ξ∗| ≥ C(δ)(|(|ξ| − iβρ(|ξ|))2 − λ2|+ |ξ∗|2).

Since for |ξ| ≫ 1,

|(|ξ| − iβρ(|ξ|))2 − λ2| = |(|ξ| − iβ)2 − λ2| ≥ |ξ|2 − β2 − |λ|2,

there exists R = R(Ω, β) > 0 such that |(|ξ| − iβρ(|ξ|))2 − λ2| ≥ (1 + |ξ|2)/2 whenever
|ξ| > R. We also note that, by (5.2.22),

dist ({t− iβρ(t) : t ≥ 0}, ±Ω) ≥ C = C(Ω, γ, β) > 0,
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thus for |ξ| ≤ R,

|(|ξ| − iβρ(|ξ|))2 − λ2| ≥ C2 ≥ C2(1 +R2)−1(1 + |ξ|2).

Hence for some constant C > 0 determined by Ω, γ, β,

|φ−iβ(ξ)
2 − λ2 − i(Dφ−2

−iβξ
∗) · ξ∗| ≥ C(1 + |ξ|2 + |ξ∗|2).

Then by (5.2.13), we conclude that there exist h0 = h0(Ω, γ, β) and C = C(Ω, γ, β) > 0
such that

for all 0 < h < h0, λ ∈ Ω, |q−iβ(ξ, ξ
∗;h)− λ2| ≥ Cm. (5.2.26)

Let b = m/(q−iβ − λ2) ∈ S(1), then there exists r ∈ S(1) such that

(qw−iβ(ξ, hD)− λ2)mw(ξ, hD)−1bw(ξ, hD) = I + hrw(ξ, hD).

We may assume that h0(Ω, γ, β)∥rw∥L2→L2 < 1/2, then for all 0 < h < h0,

(qw−iβ(ξ, hD)− λ2)−1 = mw(ξ, hD)−1bw(ξ, hD)(I + hrw(ξ, hD))−1,

which completes the proof.

Now we state the main result of this section:

Lemma 5. For any 0 < a′ < a < b and γ′ < γ such that the rectangle

Ω := (a′, a) + i(−γ′, b) ⋐ {λ ∈ C : −π/8 < arg λ < 7π/8},

there exist constant C = C(Ω, γ) > 0 and ε0 = ε0(Ω, γ) > 0 such that uniformly for
0 < ε < ε0,

∥e−γ|x|(−∆− iεx2 − λ2)−1e−γ|x|∥L2→L2 ≤ C, ∀λ ∈ Ω.

Proof. We consider the matrix element

Bε
f,g(λ) := ⟨e−γ|x|(−∆− iεx2 − λ2)−1e−γ|x|f, g⟩L2

x
, for f, g ∈ L2(Rn),

where ⟨u, v⟩L2
x
=
∫
Rn uv̄ dx is the standard L2 inner product. It suffices to show that

there exist C, ε0 such that uniformly for 0 < ε < ε0,

|Bε
f,g(λ)| ≤ C∥f∥L2∥g∥L2 , for all f, g ∈ L2, λ ∈ Ω. (5.2.27)

Recalling (5.1.1), both −∆x − iεx2 − λ2 and ξ2 + iε∆ξ − λ2 are invertible for λ ∈ Ω.
Then we have

Bε
f,g(λ) = ⟨ (−∆x − iεx2 − λ2)−1e−γ|x|f, e−γ|x|g⟩L2

x

= ⟨F−1(ξ2 + iε∆ξ − λ2)−1Fe−γ|x|f, e−γ|x|g⟩L2
x

= ⟨ (ξ2 + iε∆ξ − λ2)−1F(e−γ|x|f)(ξ), F(e−γ|x|g)(ξ)⟩L2
ξ
.

(5.2.28)
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Figure 5.1: An illustration of the ellipticity of the deformed operator in the case of
dim = 1, β = 0.4, which shows that the numerical range of the principal symbol of
ih2∆ξ+|ξ|2 is compressed to avoid the region {λ2 : λ ∈ Ω}. We choose ρ(·) = 0.4 tanh(·)
for calculation.

Let Fγ(ξ) := F(e−γ|x|f)(ξ) and Gγ(ξ) := F(e−γ|x|g)(ξ), recalling the formula

F(e−|x|)(ξ) = cn(1 + ξ2)−
n+1
2 , cn = (2π)

n
2Γ((n+ 1)/2)π−n+1

2 ,

then Fγ = Kγ ∗ f̂ and Gγ = Kγ ∗ ĝ, where Kγ(ξ) = cnγ (γ
2 + ξ2)−

n+1
2 .

First we consider, for θ ∈ R, |θ| < γ and Uθ defined by (5.2.6), the integral kernel
of the map Uθ ◦ (Kγ ∗ ):

K(ξ, η; θ) := (detDφθ(ξ))
1
2Kγ(φθ(ξ)− η), ξ, η ∈ Rn.

We claim that K(ξ, η; θ) has an analytic extension to θ ∈ Dγ. Since Kγ extends
analytically to the strip {ξ ∈ Cn : | Im ξ| < γ}, it suffices to show that | Im(φθ(ξ)−η)| =
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| Im θψ(ξ)| < γ, which is a direct consequence of θ ∈ Dγ and |ψ(ξ)| ≤ 1 by (5.2.2).
Then for θ ∈ Dγ, using (5.2.1) and (5.2.7), we can estimate K(ξ, η; θ) as follows:

|K(ξ, η; θ)| ≤ Cγ |γ2 + (ξ + θψ(ξ)− η)2|−
n+1
2

≤ Cγ |γ2 − | Im θ|2|ψ(ξ)|2 + (ξ − η +Re θψ(ξ))2|−
n+1
2

≤ Cγ (γ2 − | Im θ|2 + (|ξ − η| − |Re θ|)2)−
n+1
2

thus

max { sup
ξ∈Rn

∫
Rn

|K(ξ, η; θ)|dη, sup
η∈Rn

∫
Rn

|K(ξ, η; θ)|dξ }

≤ Cγ

∫
x∈Rn

(γ2 − | Im θ|2 + (|x| − |Re θ|)2)−
n+1
2 dx ≤ C(γ, θ).

(5.2.29)

Hence, by Schur’s criterion, Uθ ◦ (Kγ ∗ ), first defined for θ ∈ Dγ ∩R, with the integral
kernel K(ξ, η; θ), extends to θ ∈ Dγ as an analytic family of operators L2 → L2. In
particular,

Dγ ∋ θ 7→ UθFγ = Uθ(Kγ ∗ f̂) and UθGγ = Uθ(Kγ ∗ ĝ),

are two analytic families of functions in L2(Rn).

Now we define
Bε

f,g(λ; θ) = ⟨ (Qε,θ − λ2)−1UθFγ, Uθ̄Gγ⟩

for θ ∈ Dγ, with Qε,θ given by (5.2.9), where we write Uθ̄Gγ instead of UθGγ. Then by
Proposition 5.2.1, there exists ε0 = ε0(Ω, γ) such that for all 0 < ε < ε0, and |λ| > 1
with π/4 < arg λ < π/2,

Dγ ∋ θ 7→ Bε
f,g(λ; θ) is analytic.

However, for θ ∈ Dγ ∩ R, since Uθ is unitary, by (5.2.28) we have

Bε
f,g(λ; θ) = ⟨Uθ(ξ

2 + iε∆ξ − λ2)−1U−1
θ UθFγ, UθGγ⟩

= ⟨Uθ(ξ
2 + iε∆ξ − λ2)−1Fγ, UθGγ⟩

= ⟨ (ξ2 + iε∆ξ − λ2)−1Fγ, Gγ⟩ = Bε
f,g(λ).

Thus by analyticity, Bε
f,g(λ; θ) ≡ Bε

f,g(λ), ∀ θ ∈ Dγ whenever |λ| > 1, π/4 < arg λ <
π/2. In particular, for fixed β ∈ (γ′, γ) satisfying (5.2.22),

Bε
f,g(λ) = Bε

f,g(λ;−iβ) whenever |λ| > 1, π/4 < arg λ < π/2.

In view of Proposition 5.2.2 and (5.1.1), both Bε
f,g(λ) and B

ε
f,g(λ;−iβ) are analytic in

Ω. Without loss of generality, we may assume that a > 1 in (1.3.1), then

Ω ∩ {λ : |λ| > 1, π/4 < arg λ < π/2} ≠ ∅,
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where Bε
f,g(λ) and Bε

f,g(λ;−iβ) coincide. Hence by analyticity, we conclude that for
each 0 < ε < ε0,

Bε
f,g(λ) = Bε

f,g(λ;−iβ) = ⟨ (Qε,−iβ − λ2)−1U−iβFγ, UiβGγ ⟩, ∀λ ∈ Ω. (5.2.30)

By the elliptic theory of semiclassical differential operators introduced in §2.1, (5.2.26)
implies that there exists ε0 = ε0(Ω, γ, β) such that for all 0 < ε < ε0,

∥(Qε,−iβ − λ2)−1∥L2→L2 ≤ C(Ω, γ, β), ∀λ ∈ Ω. (5.2.31)

Recalling (5.2.29), by Schur’s criterion, we obtain that

∥U−iβFγ∥L2 = ∥U−iβ ◦ (Kγ ∗ f̂)∥L2 ≤ C(γ, β)∥f̂∥L2 = C(γ, β)∥f∥L2

∥UiβGγ∥L2 = ∥Uiβ ◦ (Kγ ∗ ĝ)∥L2 ≤ C(γ, β)∥ĝ∥L2 = C(γ, β)∥g∥L2

(5.2.32)

Combining (5.2.30), (5.2.31) and (5.2.32), also noticing that β can be determined by
Ω, γ, we obtain (5.2.27) with C = C(Ω, γ), which completes the proof.

5.3 The regularized operator with exponentially

decaying potential

In this section we study the regularized operator

Pε = −∆+ V − iεx2,

where |V (x)| ≤ Ce−2γ|x| for some constants C, γ > 0.

We will review the meromorphy of the resolvent

RV,ε(λ) := (Pε − λ2)−1, ε > 0,

in a similar form to the meromorphic continuation of
√
V RV (λ)

√
V given by (3.2.3).

First we write Rε(λ) := (−∆− iεx2 − λ2)−1 then

(Pε − λ2)Rε(λ) = I + V Rε(λ), −π/8 < arg λ < 7π/8. (5.3.1)

Since Rε(λ) : L2 → H2 is analytic in {λ : −π/8 < arg λ < 7π/8}, see (5.1.1), V :
H2 → L2 is compact by (3.2.1), we have

λ 7→ V Rε(λ) : L
2 → L2, −π/8 < arg λ < 7π/8,

is an analytic family of compact operators. Using (5.1.3) (with θ = 0), I + V Rε(λ) is
invertible for π/4 < arg λ < π/2, |λ| ≫ 1. By Theorem 4,

λ 7→ (I + V Rε(λ))
−1 : L2 → L2, −π/8 < arg λ < 7π/8,
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is a meromorphic family of operators. Using (5.3.1), we conclude that

RV,ε(λ) = Rε(λ)(I + V Rε(λ))
−1

is meromorphic for −π/8 < arg λ < 7π/8 (in fact RV,ε(λ) is meromorphic for λ ∈ C by
Theorem 5). The poles of RV,ε(λ) are {λj(ε)}∞j=1 where

Spec(Pε) ∩ C \ e−iπ/4[0,∞) = {λj(ε)2}∞j=1, −π/8 < arg λj(ε) < 7π/8. (5.3.2)

Then we have

Lemma 6. For each ε > 0,

λ 7→ (I +
√
V Rε(λ)

√
V )−1, −π/8 < arg λ < 7π/8,

is a meromorphic family of operators on L2(Rn) with poles of finite rank. Moreover,

mε(λ) :=
1

2πi
tr

∮
λ

(I +
√
V Rε(ζ)

√
V )−1∂ζ(

√
V Rε(ζ)

√
V ) dζ, (5.3.3)

where the integral is over a positively oriented circle enclosing λ and containing no
poles other than possibly λ, satisfies

mε(λ) =
1

2πi
tr

∮
λ

(ζ2 − Pε)
−12ζ dζ. (5.3.4)

Remark. The multiplicity of an eigenvalue λ2 of Pε can be defined by the right side
of (5.3.4), thus Lemma 6 implies that the poles of (I +

√
V Rε(λ)

√
V )−1 coincide with

{λj(ε)}∞j=1 given in Theorem 1, with agreement of multiplicities.

Proof. Following the above argument, it easy to see that λ 7→
√
V Rε(λ)

√
V is an

analytic family of compact operators for −π/8 < arg λ < 7π/8. Then

λ 7→ (I +
√
V Rε(λ)

√
V )−1, −π/8 < arg λ < 7π/8,

is a meromorphic family of operators, since I +
√
V Rε(λ)

√
V is invertible for π/4 <

arg λ < π/2, |λ| ≫ 1 by (5.1.3). In this range of λ, I + V Rε(λ) is also invertible by
the Neumann series argument, thus we have

(Pε − λ2)−1 = Rε(λ)(I + V Rε(λ))
−1

= Rε(λ)
∞∑
j=0

(−1)j(V Rε(λ))
j

= Rε(λ)(I −
√
V

∞∑
j=0

(−1)j(
√
V Rε(λ)

√
V )j

√
V Rε(λ))

= Rε(λ)[ I −
√
V (I +

√
V Rε(λ)

√
V )−1

√
V Rε(λ) ].

(5.3.5)
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Since both sides of (5.3.5) are meromorphic for −π/8 < arg λ < 7π/8, by meromorphy,
we conclude that (5.3.5) holds for all −π/8 < arg λ < 7π/8, as an identity between
meromorphic families of operators.

To obtain the multiplicity formula, we fix any λ with −π/8 < arg λ < 7π/8, then
there exists a neighborhood λ ∈ U in this half plane and finite rank operators Aj,
1 ≤ j ≤ J such that

(I +
√
V Rε(ζ)

√
V )−1 −

J∑
j=1

Aj

(ζ − λ)j
is analytic in ζ ∈ U.

Let Cλ ⊂ U be a positively oriented circle enclosing λ and containing no poles of
(I+

√
V Rε(ζ)

√
V )−1 other than possibly λ, thus it also contains no poles of (ζ2−Pε)

−1

other than possibly λ as a consequence of (5.3.5). On the one hand, we can compute

mε(λ) =
1

2πi
tr

∫
Cλ
(I +

√
V Rε(ζ)

√
V )−1

√
V Rε(ζ)

2
√
V 2ζdζ

=
1

2πi
tr

∫
Cλ

J∑
j=1

Aj

√
V Rε(ζ)

22ζ
√
V

(ζ − λ)j
dζ

=
J∑

j=1

j−1∑
k=0

1

k!(j − 1− k)!
trAj

√
V ∂kζRε(ζ) ∂

j−1−k
ζ (Rε(ζ)2ζ)

√
V .

(5.3.6)

On the other hand, by (5.3.5), we have

1

2πi
tr

∮
λ

(ζ2 − Pε))
−12ζdζ

=
1

2πi
tr

∫
Cλ

J∑
j=1

Rε(ζ)2ζ
√
V Aj

√
V Rε(ζ)

(ζ − λ)j
dζ

=
J∑

j=1

j−1∑
k=0

1

k!(j − 1− k)!
tr ∂j−1−k

ζ (Rε(ζ)2ζ)
√
V Aj

√
V ∂kζRε(ζ).

(5.3.7)

Now we compare (5.3.6) and (5.3.7), since each Aj has finite rank, we can apply cyclicity
of the trace to obtain the multiplicity formula (5.3.4).

5.4 The regularized black box Hamiltonian and its

analytic distortion

In this section we study the CAP-regularized black box Hamiltonian. We take P to be
a long range perturbation of −∆ introduced in §3.4, that is

P : H → H with domain D(P ),
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which satisfies (3.3.2) – (3.3.4) and (3.4.1) – (3.4.3). Let

Pε = P − iε(1− χ(x))x2, ε > 0, (5.4.1)

where χ ∈ C∞
c (Rn) is equal to 1 near B(0, R0), x

2 = x21 + · · ·+ x2n. We show that Pε is
an unbounded operator on H with a discrete spectrum and that the spectrum of Pε is
invariant under complex scaling.

Choosing R1 such that suppχ ⊂ B(0, R1) when we construct the complex contours
Γθ in §3.5, the CAP −iε(1−χ(x))x2 can be analytically extended to Γθ, thus it defines
a multiplication on the following subspace of Hθ (with Hθ given by (3.5.2)):

Ĥθ := HR0 ⊕ |xθ|−2L2(Γθ \B(0, R0)),

where xθ := fθ(x) denotes the parametrization of Γθ.

We now introduce the analytic distortion of Pε on Γθ, θ ∈ [0, θ0):

Pε,θ := Pθ − iε(1− χ(xθ))x
2
θ, with the domain D̂θ := Dθ ∩ Ĥθ. (5.4.2)

It follows from (3.5.7) that Pε,θ near infinity is close to the Davies harmonic oscillator
introduced in §5.1,

Hε,θ = −e−2iθ∆− iεe2iθx2.

Using Proposition 5.1.1 we show that Pε,θ is a Fredholm operator for z /∈ e−iπ/4[0,∞).

Lemma 7. If z ∈ C \ {0}, arg z ̸= −π/4, then for each ε > 0 and 0 ≤ θ < θ0,

Pε,θ − z : D̂θ → Hθ is a Fredholm operator of index 0. In particular the spectrum of
Pε,θ in C \ e−iπ/4[0,∞) is discrete.

Proof. We choose χj ∈ C∞
c (Γθ), j = 0, 1, 2, 3, such that χj = 1 near suppχj−1 and

that χ0(gθ(t)ω) = 1 for any t ≤ T0, thus 1 − χj are supported in the region where
Γθ ∋ xθ = eiθx, x ∈ Rn. Lemma 5.1.1 then shows that if arg z ̸= −π/4,

(1− χ0)(Hε,θ − z)−1(1− χ1) : Hθ → D̂θ.

Now we fix z ∈ C \ {0} with arg z ̸= −π/4. Using (3.5.7) we may assume that suppχ0

is large enough so that

∥(Pε,θ −Hε,θ)(1− χ0)(Hε,θ − z)−1(1− χ1)∥Hθ→Hθ
≤ 1/2.

Then we choose z0 = iL, L≫ 1 using (3.5.9) such that

ε∥(χ3 − χ)x2θ(Pθ − z0)
−1∥Hθ→Hθ

≤ 1/2,

thus I − iε(χ3 − χ)x2θ(Pθ − z0)
−1 is invertible and

(Pθ − iε(χ3 − χ)x2θ − z0)
−1 = (Pθ − z0)

−1(I − iε(χ3 − χ)x2θ(Pθ − z0)
−1)−1 (5.4.3)
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exists. We put

E(z) = χ2(Pθ − iε(χ3 − χ)x2θ − z0)
−1χ1 + (1− χ0)(Hε,θ − z)−1(1− χ1).

Then we get
(Pε,θ − z)E(z) = I +K(z) +K1(z),

where
K(z) = ((z0 − z)χ2 + [Pθ, χ2])(Pθ − iε(χ3 − χ)x2θ − z0)

−1χ1

+[e−2iθ∆, χ0](Hε,θ − z)−1(1− χ1)

K1(z) = (Pε,θ −Hε,θ)(1− χ0)(Hε,θ − z)−1(1− χ1).

Recalling that ∥K1(z)∥Hθ→Hθ
≤ 1/2, we obtain that I +K1(z) is invertible, thus

(Pε,θ − z)E(z)(I +K1(z))
−1 = I +K(z)(I +K1(z))

−1.

Since (Pθ − z0)
−1 : Hθ → Dθ, we conclude that K(z) is compact: Hθ → Hθ. Hence

E(z)(I +K1(z)) is an approximate right inverse of Pε,θ − z.

As an approximate left inverse, we put

F (z) = χ1(Pθ − iε(χ3 − χ)x2θ − z0)
−1χ2 + (1− χ1)(Hε,θ − z)−1(1− χ0).

Then
F (z)(Pε,θ − z) = I + L(z) + L1(z),

where
L(z) = χ1(Pθ − iε(χ3 − χ)x2θ − z0)

−1((z0 − z)χ2 − [Pθ, χ2])

−(1− χ1)(Hε,θ − z)−1[e−2iθ∆, χ0]

L1(z) = (1− χ1)(Hε,θ − z)−1(1− χ0)(Pε,θ −Hε,θ).

We may assume again by (3.5.7) that ∥L1(z)∥D̂θ→D̂θ
≤ 1/2, then

(I + L1(z))
−1F (z)(Pε,θ − z) = I + (I + L1(z))

−1L(z).

Using (3.3.3), we see that [e−2iθ∆, χ0] is compact: D̂θ → Hθ, thus L(z) is compact:

D̂θ → D̂θ, (I + L1(z))
−1F (z) is an approximate left inverse.

In view of the remarks after Proposition 2.3.2, Pε,θ − z : D̂θ → Hθ is a Fredholm
operator. This operator depends continuously on (θ, z), thus the index is constant
under deformation in (θ, z). Deforming z into i and θ down to 0, we see that the index

of Pε,θ − z is equal to the index of Pε − i : D̂ → H (where we omit the subscript 0).
Repeating the arguments above, we can also show that for every γ ∈ [0, π/2],

P + e−iγε(1− χ(x))x2 − i : D̂ → H is a Fredholm operator.
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Deforming γ from π/2 (that is for Pε) to 0, it follows that the index of Pε − i is equal

to the index of P + ε(1− χ(x))x2 − i, which is 0 since P + ε(1− χ(x))x2 : D̂ → H is
self-adjoint, see [27, §1]. Hence we conclude that Pε,θ − z is of index 0.

It remains to show that Pε,θ has a discrete spectrum in C \ e−iπ/4[0,∞). Recalling
first (5.4.3) and then (3.5.8), (3.5.9), ∥K(z0)∥Hθ→Hθ

can be controlled by

∥(−∆θ − z0)
−1∥L2(Rn)→H1(Rn), ∥(Hε,θ − z0)

−1∥L2(Rn)→H1(Rn),

and ∥(1− χ0)(P − z0)
−1∥H→H1(Rn).

It then follows from (3.5.5) and (5.1.3) that K(iL) = O(L−1/2) : Hθ → Hθ. Hence for
z0 = iL, L≫ 1, I +K(z0)(I +K1(z0))

−1 is invertible and we have

(Pε,θ − z0)E(z0)(I +K1(z0))
−1(I +K(z0)(I +K1(z0))

−1)−1 = I,

which implies that Pε,θ − z0 is surjective. Since Pε,θ − z0 is a Fredholm operator of
index 0, it must also be injective. Thus Pε,θ − z0 is invertible by the inverse mapping
theorem. Theorem 4 then shows that Pε,θ has a discrete spectrum.

Lemma 8. For each 0 ≤ θ < θ0 and ε > 0, let ψ ∈ C∞
c (B(0, R1); [0, 1]) be equal to 1

near B(0, R0) so that ψ is a function on Γθ and defines a multiplication on Hθ. Then
we have, meromorphically in the region −π/4 < arg z < 7π/4,

ψ(Pε − z)−1ψ = ψ(Pε,θ − z)−1ψ. (5.4.4)

Proof. We modify the proof of [65, Lemma 2]. It is sufficient to show that for 0 ≤ θ1 <
θ2 < θ0, |θ1 − θ2| ≪ 1,

ψ(Pε,θ1 − z)−1ψ = ψ(Pε,θ2 − z)−1ψ. (5.4.5)

It is also enough to establish this for z ∈ ei(−2θ1+π/2)(1,∞) as then the result follows
by analytic continuation. For that we show that for any

f ∈ HR0 ⊕ L2(B(0, R1) \B(0, R0)) ⊂ Hθj , j = 1, 2,

there exists U holomorphic in a neighborhood Ωθ1,θ2 of⋃
θ1≤θ≤θ2

(Γθ \B(0, R0)) ⊂ Cn

such that
U |Γθj

(x) = [(Pε,θj − z)−1ψf ](x), ∀x ∈ Γθj \B(0, R0). (5.4.6)

To show the existence of U such that (5.4.6) holds we apply Lemma 2 to a modified
family of deformations, which is obtained as follows. Let ρ ∈ C∞

c ((1, 6); [0, 1]) be equal
to 1 near [2, 4], and put for T ≥ 1,

gθ1,θ2,T (t) := gθ1(t) + ρ(t/T )(gθ2(t)− gθ1(t)),

Γθ1,θ2,T := {gθ1,θ2,T (t)ω : t ∈ [0,∞), ω ∈ Sn−1} ⊂ Cn.
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We can apply Lemma 2 to the family of totally real submanifolds interpolating between
Γθ1 and Γθ1,θ2,T , [0, 1] ∋ s 7→ Γθ1,(1−s)θ1+sθ2,T . It follows that there exists a holomor-
phic function UT defined in a neighborhood of the union of these submanifolds which
restricts to u1 := (Pε,θ1 − z)−1ψf ∈ Hθ1 . Varying T we obtain a family of functions
agreeing on the intersections of their domains and that gives a holomorphic function
U defined in the neighborhood Ωθ1,θ2 .

It remains to show that U restricts to u2 ∈ Hθ2 (the equation (Pε,θ2 − z)u2 = ψf is
automatically satisfied). For T large we put

Ω1(T ) = {z ∈ Cn : T ≤ |z| ≤ 6T} ∩ Γθ1,θ2,T ⊃ Γθ1,θ2,T \ Γθ1 ,

Ω2(T ) = {z ∈ Cn : T/2 ≤ |z| ≤ 8T} ∩ Γθ1,θ2,T , Ω2(T ) \ Ω1(T ) ⊂ eiθ1Rn,

and choose χT ∈ C∞(Ω2(T ); [0, 1]) such that χT = 1 on Ω1(T ) with derivative bounds
independent of T . We recall the following estimate from the proof of [65, Lemma 3]:
for u ∈ C∞(Γθ1,θ2,T ), τ > 1,

| ⟨(−∆|Γθ1,θ2,T
− iε(x|Γθ1,θ2,T

)2 − ie−2iθ1τ)u, u⟩ | ≥ (∥u∥2L2 + ∥Du∥2L2)/C,

with C > 0 independent of τ, T , here ⟨·, ·⟩ is the L2 inner product on Γθ1,θ2,T . Writing

Pε,θ1,θ2,T := P |Γθ1,θ2,T
− iε(x|Γθ1,θ2,T

)2,

it then follows from (3.4.1) that

⟨(Pε,θ1,θ2,T − (−∆|Γθ1,θ2,T
− iε(x|Γθ1,θ2,T

)2))u, u⟩ =
∫
Γθ1,θ2,T

(gjk − δjk)∂ku∂jū+ c|u|2.

In view of (3.4.2) and (3.4.3), we obtain that for T sufficiently large,

| ⟨(Pε,θ1,θ2,T − ie−2iθ1τ)χTU, χTU⟩ | ≥ (∥χTU∥2L2 + ∥D(χTU)∥2L2)/C,

thus ∥χTU∥L2 ≤ C∥(Pε,θ1,θ2,T − ie−2iθ1τ)χTU∥L2 . We note that

(Pε,θ1,θ2,T − ie−2iθ1τ)UT = 0 =⇒ (Pε,θ1,θ2,T − ie−2iθ1τ)χTU = [Pε,θ1,θ2,T , χT ]U,

which is supported on Ω2(T ) \ Ω1(T ) ⊂ Γθ1 . Hence,

∥12T≤|z|≤4T u2∥2L2(Γθ2
) ≤ C∥[Pε,θ1,θ2,T , χT ]U∥2L2 ≤ C∥1T/2≤|z|≤8T u1∥2H1(Γθ1

).

We now take T = 2j and sum over j, it follows that u2 ∈ Hθ2 .

Lemma 9. For 0 ≤ θ < θ0, ε > 0, the spectrum of Pε,θ is independent of θ. More
precisely, for any z0 ∈ C \ e−iπ/4[0,∞) we have

mε,θ(z0) := rank

∮
z0

(Pε,θ − z)−1dz = rank

∮
z0

(Pε − z)−1 dz, (5.4.7)

where the integral is over a positively oriented circle enclosing z0 and containing no
poles other than possibly z0.
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Proof. Lemma 7 shows that

Πε,θ(z0) := − 1

2πi

∮
z0

(Pε,θ − z)−1dz, (5.4.8)

is a finite rank projection which maps Hθ to the generalized eigenspace of Pε,θ at z0.
In view of Lemma 8, it suffices to show that for each 0 ≤ θ < θ0,

rankΠε,θ(z0) = rankψΠε,θ(z0)ψ.

First we show that rankΠε,θ(z0) = rankΠε,θ(z0)ψ, which is equivalent to show that
rankψΠε,θ(z0)

∗ = rankΠε,θ(z0)
∗, since the adjoint of a finite rank operator is of finite

rank with the same rank. For that we shall argue by contradiction. Suppose that
rankψΠε,θ(z0)

∗ < rankΠε,θ(z0)
∗, there would exist 0 ̸= ṽ ∈ RanΠε,θ(z0)

∗ satisfying
ψṽ = 0. Note that Πε,θ(z0)

∗ is also a projection of the form (5.4.8) except that P∗
ε,θ

and z̄0 replace Pε,θ and z0 there, we may assume

(P∗
ε,θ − z̄0)

kṽ = 0, ũ := (P∗
ε,θ − z̄0)

k−1ṽ ̸= 0, for some k ≥ 1.

But that would mean that ũ can be identified with an element of H2(Γθ) satisfying

(Q∗
ε,θ − z̄0)ũ = 0, ũ|B(0,R0) ≡ 0, Qε,θ := Qθ − iε(1− χ(xθ))x

2
θ.

Since Q∗
ε,θ is elliptic, unique continuation results for second order elliptic differential

equations – see Hörmander [28, Chapter 17] show that ũ ≡ 0, thus a contradiction.

It remains to show that rankψΠε,θ(z0)ψ = rankΠε,θ(z0)ψ. Otherwise there would

exist solutions v ∈ D̂θ to (Pε,θ − z0)
ℓv = 0, u := (Pε,θ − z0)

ℓ−1v ̸= 0 with ψv = 0. It
follows that u can be identified with an element of H2(Γθ) satisfying

(Qε,θ − z0)u = 0, u|B(0,R0) ≡ 0.

Again by the unique continuation results for second order elliptic differential equations,
we obtain that u ≡ 0, thus a contradiction.

The next lemma shows that the spectrum of Pε,θ must stay close to the spectrum
of Pθ when ε is sufficiently small:

Lemma 10. Suppose that 0 ≤ θ < θ0 and that Ω ⋐ {z : −2θ < arg z < 3π/2 + 2θ} is
disjoint with Spec(Pθ), then there exist ε0 = ε0(Ω) and C = C(Ω) such that, uniformly
in 0 < ε < ε0, Spec(Pε,θ) ∩ Ω = ∅ and

∥(Pε,θ − z)−1∥Hθ→Dθ
≤ C, z ∈ Ω.
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Proof. We follow closely the proof of [65, Lemma 5] except that Pθ replaces −∆θ there.
Let χj ∈ C∞

c ([0,∞); [0, 1]) be equal to 1 on [0, R0] and satisfy χj = 1 near suppχj−1,
j = 1, 2. Parametrizing Γθ by fθ : [0,∞) × Sn−1 ∋ (t, ω) 7→ gθ(t)ω ∈ Γθ, we define
functions χh

j ∈ C∞
c (Γθ) by

χh
j (gθ(t)ω) := χj(th), 0 < h ≤ 1.

For z ∈ Ω we put

Eh
ε,θ(z) := χh

2(Pθ − z)−1χh
1 + (1− χh

0)(Hε,θ − z)−1(1− χh
1),

so that (Pε,θ − z)Eh
ε,θ(z) = I +Kh

ε,θ(z), where

Kh
ε,θ(z) :=− iε(1− χ)x2θχ

h
2(Pθ − z)−1χh

1 + [Pθ, χ
h
2 ](Pθ − z)−1χh

1

+ (Pε,θ −Hε,θ)(1− χh
0)(Hε,θ − z)−1(1− χh

1)

− [Pθ, χ
h
0 ](1− χh

0)(Hε,θ − z)−1(1− χh
1).

Using (3.5.7) and (5.1.3) we see that for h small enough,

∥(Pε,θ −Hε,θ)(1− χh
0)(Hε,θ − z)−1(1− χh

1)∥L2(Γθ)→L2(Γθ) < 1/4.

Noticing that

∥[Qθ, χ
h
j ]∥H1(Γθ)→L2(Γθ) = O(h) and ∥x2θχh

2∥L2(Γθ)→L2(Γθ) = O(h−2),

we can first choose h sufficiently small then take ε0 = ε0(h,Ω) small enough so that
for all ε < ε0(h,Ω) and z ∈ Ω, ∥Kh

ε,θ(z)∥Hθ→Hθ
< 1/2, thus I +Kh

ε,θ(z) has a uniformly
bounded inverse and

(Pε,θ − z)−1 = Eh
ε,θ(z)(I +Kh

ε,θ(z))
−1.

It follows from (5.1.3) that there exists C = C(Ω) independent of ε such that for z ∈ Ω,
∥Eh

ε,θ(z)∥Hθ→Dθ
≤ C, which completes the proof.

5.5 Complex Higgs oscillators

The Higgs oscillator [26] (see also Pallares-Rivera–Kirchbach [41]) is considered as an
analogue of the quantum harmonic oscillator on the hyperbolic plane. In this section
we discuss its complex version, in analogy to the complex harmonic oscillator in the
Euclidean space studied by, among others, Davies [9].

As discussed in §1.4.2, for a hyperbolic manifold (M, g), we aim to find a complex-
valued function f ∈ C∞(M) such that ∆g + f is an operator on L2(M,d volg) with
discrete spectrum. Ideally, we should also require f to be unbounded near infinity like
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the function −iεx2 in the Euclidean case, which would provide the compactness of the
resolvent (∆g − n2/4 + f − z)−1 : L2(M,d volg) → L2(M,d volg). However, it is hard
to find a function f satisfying all the requirements above. We will explore a candidate
f = ω2 tanh2 r where ω ∈ C, r is the hyperbolic radius. The operator ∆g+ω

2 tanh2 r is
called the Higgs oscillator in the hyperbolic space, whose spectrum and resonances can
be explicitly computed, see [41] for more details. The drawback of this candidate is the
boundedness of f thus we lose the compacteness of the resolvent (∆g−n2/4+f−z)−1.
We remark that it is still an open problem to find an ideal analogue of the complex
harmonic oscillator in the hyperbolic setting. We hope that the following introduction
could popularize this natural problem.

5.5.1 Complex Higgs Oscillator on the Hyperbolic Plane

We consider the hyperbolic plane

H := {(x, y) ∈ R2 : y > 0}

with the Poincaré metric y−2(dx2 + dy2). Instead of coordinates (x, y), we will use the
geodesic normal coordinates for hyperbolic metrics. These are coordinates (r, φ) for
which the r-coordinate curves are unit speed geodesics and the φ-coordinate curves are
geodesic circles. The Laplacian is given by

∆H2 = y2(D2
x +D2

y) = D2
r − i coth rDr + sinh−2 rD2

φ,

where Dx = i−1∂x. ∆H is through conjugation by sinh1/2 r, equivalent to

D2
r + sinh−2 r(D2

φ − 1/4) + 1/4.

Now we define the complex version of Higgs Oscillator by

∆H2 + ω2 tanh2 r, ω ∈ C,

which is through the same conjugation as above, equivalent to the operator

D2
r +

D2
φ − 1/4

sinh2 r
− ω2

cosh2 r
+ ω2 +

1

4

on L2((0,∞)r × S1
φ, drdφ). We can expand this in terms of the eigenfunctions on S1

φ

to obtain ⊕
m∈Z

D2
r +

m2 − 1/4

sinh2 r
− ω2

cosh2 r
+ ω2 +

1

4
.

This decomposition leads to the one-dimensional Schrödinger operator with Pöschl–
Teller potential – see §2.6, as follows.

D2
r + Vµ,ν , µ = |m| − 1/2, ν =

√
ω2 + 1/4− 1/2.
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It follows from Proposition 2.6.1 that

Spec(D2
r + Vµ,ν) = {(ν − µ− 1− 2n)2 : n ∈ N, 2n < Re(ν − µ− 1)}.

Hence we obtain the eigenvalues of ∆H2 + ω2 tanh2 r:{
ω2 +

1

4
−
(√

ω2 +
1

4
−m− 1− 2n

)2
: m,n ∈ N, 2n < Re

√
ω2 +

1

4
−m− 1

}
.

The scattering matrix (2.6.1) gives the resonances of ∆H2 + ω2 tanh2 r:{
ω2 +

1

4
−
(√

ω2 +
1

4
−m− 1− 2n

)2
: m,n ∈ N

}
.

5.5.2 Complex Higgs Oscillator with an Eckart barrier

We consider the one-dimensional Eckart barrier V = α cosh−2 r, α > 0. The complex
Higgs oscillator with an Eckart barrier is given by

D2
r + V + ω2 tanh2 r = D2

r + (α− ω2) cosh−2 r + ω2, ω ∈ C.

This can be viewed as a Schrödinger operator with Pöschl–Teller potential

D2
r + V0,ν , ν =

√
ω2 − α +

1

4
− 1

2
.

It follows from Proposition 2.6.1 that the discrete spectrum of the complex Higgs
oscillator with a Eckart barrier is given by{

ω2 −
(√

ω2 − α +
1

4
− 1

2
− n

)2
: n ∈ N, n < Re

√
ω2 +

1

4
− 1

2

}
.

And the scattering matrix (2.6.2) gives the resonances in this case:{
ω2 −

(√
ω2 − α +

1

4
− 1

2
− n

)2
: n ∈ N

}
.

5.5.3 Complex Higgs Oscillator on hyperbolic half-cylinder

Another interesting example is the hyperbolic half-cylinder

Y0l ≃ (0,∞)r × (R/lZ)θ,
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Figure 5.2: The spectrum of the complex Higgs osicllator on the hyperbolic plane. The
red dots are the eigenvalues of ∆H2 + ω2 tanh2 r with ω2 = −100i while the black dots
are the resonances. We also plot the resonances of ∆H2 , which are the blue dots on the
real axis. This shows the deformation of resonances.

with the metric
g = dr2 + cosh2 rdθ2.

The Laplacian with Dirichlet boundary condition on {r = 0} is given by

∆Y0l
= D2

r − i tanh rDr + cosh−2∆R/lZ,

which is, through a conjugation by cosh1/2 r, equivalent to the operator

D2
r +

∆R/lZ + 1/4

cosh2 r
+

1

4
.

Using the same conjugation, the complex Higgs oscillator

∆Y0l
+ ω2 tanh2 r, ω ∈ C,
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is equivalent to the operator

D2
r −

ω2 −∆R/lZ − 1/4

cosh2 r
+ ω2 +

1

4
,

which admits the following expansion:⊕
m∈Z

D2
r −

ω2 − (2πm/l)2 − 1/4

cosh2 r
+ ω2 +

1

4
.

The corresponding one-dimensional one-dimensional Schrödinger operator is D2
r + V0,ν

on (0,∞) with Dirichlet boundary condition, where we put ν =
√
ω2 − (2πm/l)2−1/2.

Hence by Proposition 2.6.1 the discrete specrtum of ∆Y0l
+ ω2 tanh2 r is

{ω2 + 1/4−
(√

ω2 − (2πm/l)2 − 2n− 3/2
)2

: m ∈ Z,

n ∈ N, 2n < Re
√
ω2 − (2πm/l)2 − 3/2},

while the analysis of (2.6.1) gives the resonances:

{ω2 + 1/4−
(√

ω2 − (2πm/l)2 − 2n− 3/2
)2

: m ∈ Z, n ∈ N}.

Remark. The explicit formulae and the figures show that the resonances in all cases
are deformed and some do become eigenvalues. However, in this setting we cannot
obtain the original resonances for ω = 0 by taking limits of these eigenvalues as ω → 0,
as one would want for the CAP method. In fact, for ω ∈ C with small modulus there
are no eigenvalues for the complex Higgs oscillators at all.
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Figure 5.3: The spectrum of the Higgs osicllator on hyperbolic half-cylinder with pa-
rameter l = 2π and ω2 = −100i. We only plot the spectrum with respect to the Fourier
modes m = 0, 10, 20 for illustration. Here the red dots are eigenvalues and the black
dots are resonances. We also plot resonances for ω = 0 (blue dots) with respect to the
same Fourier modes to show the deformation of resonances.
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Chapter 6

Resonances as viscosity limits

6.1 The CAP method for exponentially decaying

potentials

In this section, we prove Theorem 1. The proof is mainly based on Lemma 1, Lemma
6, with an application of Theorem 7. We first state a more precise version of Theorem
1 involving the multiplicities given in (3.2.5) and (5.3.3) as follows:

Theorem 8. For any Ω given in (1.3.1), there exists δ0 = δ0(Ω) satisfying the follow-
ing: for any 0 < δ < δ0, there exists εδ > 0 such that for any λ ∈ Ω with m(λ) > 0,

# {λj(ε)}∞j=1 ∩B(λ, δ) = m(λ), for all 0 < ε < εδ,

where {λj(ε)}∞j=1 given in (5.3.2) is counted with multiplicity, B(λ, δ) := {z ∈ C :
|z − λ| < δ}.

Proof. In view of Lemma 1, the poles of (I+
√
V R0(λ)

√
V )−1 are isolated in the region

{λ ∈ C : Reλ > 0, Imλ > −γ}, thus there are finitely many λ ∈ Ω with m(λ) > 0,
denoted by λ1, . . . , λJ . We choose δ0 > 0 such that B(λj, δ0), j = 1, . . . , J are disjoint
discs in Ω, then for any fixed 0 < δ < δ0 and each λ ∈ Ω with m(λ) > 0, we have

∥(I +
√
V R0(ζ)

√
V )−1∥L2→L2 < C(δ), ∀ ζ ∈ ∂B(λ, δ),

for some constant C(δ) > 0.

In order to apply the Theorem 7, we need to estimate :

∥
√
V Rε(ζ)

√
V −

√
V R0(ζ)

√
V ∥L2→L2 , for any ζ ∈ Ω.
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1. Choose χ ∈ C∞
c (Rn) satisfying χ ≡ 1 in BRn(0, 1) and suppχ ⊂ BRn(0, 2), here

BRn(0, r) := {x ∈ Rn : |x| < r}, we define χR(x) = χ(R−1x) and write

√
V Rε(ζ)

√
V −

√
V R0(ζ)

√
V

= (
√
V Rε(ζ)

√
V − χR

√
V Rε(ζ)χR

√
V )

+
√
V χR(Rε(ζ)−R0(ζ))χR

√
V

− (
√
V R0(ζ)

√
V − χR

√
V R0(ζ)χR

√
V ).

(6.1.1)

2. The first term can be written as

(1− χR)
√
V Rε(ζ)

√
V + χR

√
V Rε(ζ)(1− χR)

√
V .

Let γ̃ = (γ + γ′)/2, then

(1− χR)
√
V Rε(ζ)

√
V = (1− χR)

√
V eγ̃|x|(e−γ̃|x|Rε(ζ)e

−γ̃|x|)
√
V eγ̃|x|,

(3.2.1) implies that |
√
V (x)eγ̃|x|| ≤ Ce(γ̃−γ)|x| = Ce−(γ−γ′)|x|/2. By Lemma 5, there

exists ε0 = ε0(Ω, γ) such that

∥e−γ̃|x|Rε(ζ))e
−γ̃|x|∥L2→L2 ≤ C(Ω, γ̃), for any 0 < ε < ε0.

We conclude that

∥(1− χR)
√
V Rε(ζ)

√
V ∥L2→L2 ≤ C(Ω, γ)e−(γ−γ′)R/2, for any 0 < ε < ε0.

Similarly, we can bound ∥χR

√
V Rε(ζ)(1−χR)

√
V ∥L2→L2 by the right side above. Hence

there exists C = C(Ω, γ) such that for any 0 < ε < ε0,

∥
√
V Rε(ζ)

√
V − χR

√
V Rε(ζ)χR

√
V ∥L2→L2 ≤ Ce−(γ−γ′)R/2, ∀ ζ ∈ Ω. (6.1.2)

3. We can estimate the third term in (6.1.1) by a similar argument. It follows from
(3.2.4) that

∥e−γ̃|x|R0(ζ)e
−γ̃|x|∥L2→L2 ≤ C(Ω, γ), ∀ ζ ∈ Ω.

Hence, arguing as above, we obtain that

∥
√
V R0(ζ)

√
V − χR

√
V R0(ζ)χR

√
V ∥L2→L2 ≤ Ce−(γ−γ′)R/2, ∀ ζ ∈ Ω. (6.1.3)

4. We note that

χR(Rε(ζ)−R0(ζ))χR = iε χR(−∆− iεx2 − ζ2)−1x2(∆− ζ2)−1χR,

and recall [65] that there exists C = C(Ω, χR) (independent of ε) such that

∥χR(−∆− iεx2 − ζ2)−1x2(∆− ζ2)−1χR∥L2→L2 ≤ C, ∀ ζ ∈ Ω, ε > 0,
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which is proved using the method of complex scaling – see §3.5. Hence

∥
√
V χR(Rε(ζ)−R0(ζ))χR

√
V ∥L2→L2 ≤ C(Ω, χR) ε, ∀ ζ ∈ Ω, ε > 0. (6.1.4)

By (6.1.2) and (6.1.3), we can first fix R sufficiently large such that

∥
√
V Rε(ζ)

√
V − χR

√
V Rε(ζ)χR

√
V ∥L2→L2 ≤ 1/(3C(δ)), ∀ ζ ∈ Ω, 0 ≤ ε < ε0.

Then by (6.1.4), there exists εδ > 0 such that for all 0 < ε < εδ,

∥
√
V χR(Rε(ζ)−R0(ζ))χR

√
V ∥L2→L2 ≤ 1/(3C(δ)), ∀ ζ ∈ Ω.

We may assume that εδ < ε0, thus by (6.1.1), we conclude that for each 0 < ε < εδ,

∥(I +
√
V R0(ζ)

√
V )−1( I +

√
V Rε(ζ)

√
V − (I +

√
V R0(ζ)

√
V ) )∥L2→L2 < 1,

on ∂B(λ, δ).

Now we apply Theorem 7 to obtain that

m(λ) =
1

2πi
tr

∫
∂B(λ,δ)

(I +
√
V R0(ζ)

√
V )−1∂ζ(

√
V R0(ζ)

√
V ) dζ

=
1

2πi
tr

∫
∂B(λ,δ)

(I +
√
V Rε(ζ)

√
V )−1∂ζ(

√
V Rε(ζ)

√
V ) dζ,

for each 0 < ε < εδ. Denote by λ1(ε), . . . , λK(ε) the distinct poles of

B(λ, δ) ∋ ζ 7→ (I +
√
V Rε(ζ)

√
V )−1,

then we have

m(λ) =
K∑
k=1

1

2πi
tr

∮
λk(ε)

(I +
√
V Rε(ζ)

√
V )−1∂ζ(

√
V Rε(ζ)

√
V ) dζ

=
K∑
k=1

mε(λk(ε)).

Therefore, with Lemma 6 and (5.3.4), we obtain that

# {λj(ε)}∞j=1 ∩B(λ, δ) = m(λ), ∀ 0 < ε < εδ,

which completes the proof.
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B(0, R0)

complex scaled region

∂O

∂B(0, R1)

Figure 6.1: An auxiliary obstacle separating the black box from the differential operator
outside.

6.2 An auxiliary obstacle problem

To prove Theorem 2 (the black box case) we cannot use the strategy of [65] which
covers the case P = −∆+V , V ∈ L∞

comp. Instead we introduce an auxiliary obstacle to
separate the abstract black box from the differential operator outside. By an obstacle
we mean a bounded open set O in Rn with smooth boundary, that is ∂O is a C∞-
hypersurface in Rn. We shall assume that B(0, R0) ⊂ O ⊂ B(0, R1), where B(0, R0)
denotes the black box and B(0, R1) lies in the flat region of the complex contour Γθ –
see §3.5. We also assume that the cutoff function χ in (5.4.1) be equal to 1 near O.

We first introduce a reference operator PO associated with the obstacle O. In the
notation of (3.3.1), we put

HO := HR0 ⊕ L2(O \B(0, R0)). (6.2.1)

The corresponding orthogonal projections are denoted by

u 7→ 1B(0,R0) u = u|B(0,R0), u 7→ 1O\B(0,R0) u = u|O\B(0,R0).
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Let P be a long range perturbation of −∆ introduced in §3.4, that is

P : H → H with domain D(P ),

which satisfies (3.3.2) – (3.3.4) and (3.4.1) – (3.4.3). Then we define

DO := {u ∈ HO : ψ ∈ C∞
c (O), ψ = 1 near B(0, R0) ⇒

ψu ∈ D(P ), (1− ψ)u ∈ H2(O) ∩H1
0 (O)}

(6.2.2)

and, for any ψ with the property (6.2.2),

PO : DO → HO,

POu := P (ψu) +Q((1− ψ)u).
(6.2.3)

It follows from assumptions (3.3.3), (3.4.1) that these definitions are independent of
the choice of the cutoff function ψ.

We recall some basic properties of the reference operator from [49, §7]:

Proposition 6.2.1. Suppose that O ⊂ Rn is an open set containing B(0, R0) such
that ∂O is a smooth hypersurface in Rn. Let PO be the reference operator defined in
(6.2.3). Then, with HO given by (6.2.1),

PO : HO → HO,

is a self-adjoint operator with domain DO defined in (6.2.2). Furthermore, the resolvent
(PO + i)−1 is compact and thus PO has discrete spectrum which is contained in R.

For the proof we refer to [12, Lemma 4.11] and we remark that the arguments there
is still valid if we replace the assumption there: P = −∆ in Rn \ B(0, R0), by the
assumption (3.4.1).

Let Pθ be the complex scaled P defined in (3.5.3). In parallel with the reference
operator, we now introduce the restriction of Pθ to Γ \ O with Dirichlet boundary
condition. Outside the black box, Pθ is equal to a differential operator – see (3.5.3),

Qθ = −
n∑

j,k=1

(∂zj(g
jk(z)∂zk) + c(z))|Γθ

.

We define

QO
θ : L2(Γθ \ O) → L2(Γθ \ O), with D(QO

θ ) = H2(Γθ \ O) ∩H1
0 (Γθ \ O),

QO
θ u := Qθu, ∀u ∈ D(QO

θ ).
(6.2.4)
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And the CAP-regularized version is defined by

QO
ε,θ : L

2(Γθ \ O) → L2(Γθ \ O), with D(QO
ε,θ) = D(QO

θ ) ∩ |xθ|−2L2(Γθ \ O),

QO
ε,θu := QO

θ u− iε(1− χ)x2θu, ∀u ∈ D(QO
ε,θ).

(6.2.5)

We remark that QO
θ can be viewed as QO

0 (θ = 0) being complex scaled, while QO
0 being

a long range perturbation of −∆ introduced in §3.4. Similarly, QO
ε,θ is the complex

scaled version of QO
ε,0, which is QO

0 being CAP-regularized – see §5.4. Therefore, we
conclude from Lemma 3 and Lemma 7 that

QO
ε,θ : L

2(Γθ \ O) → L2(Γθ \ O), ε ≥ 0,

has a discrete spectrum in the range {z ∈ C : −2θ < arg z < 3π/2 + 2θ}.

6.3 Dirichlet-to-Neumann operator

In this section we use a different method from [65] and §5.3 to characterize the eigen-
values of Pε,θ, ε ≥ 0. We introduce the Dirichlet-to-Neumann operator associated with
the obstacle O – see Figure 6.1. For that let ν(x) be the Euclidean normal vector of
∂O at x pointing into O, we put

νg(x) := (gjk(x))n×n · ν(x), x ∈ ∂O, (6.3.1)

where gjk are the coefficients of Q satisfying (3.4.1) – (3.4.3).

First we introduce the interior Dirichlet-to-Neumann operator of P :

N in
P (z)φ :=

∂u

∂νg
, where u solves

(P − z)u = 0 in O
u = φ on ∂O

. (6.3.2)

The boundary value problem in (6.3.2) has a unique solution if z is not an eigenvalue
of PO introduced in §6.2. More precisely, if we set Ein : H3/2(∂O) → H2(O) as a linear
bounded extension operator such that

Einφ|∂O = φ and suppEinφ ⊂ O \B(0, R0), ∀φ ∈ H3/2(∂O),

then for z /∈ Spec(PO), the unique solution to (6.3.2) can be written as

u = Einφ− (PO − z)−1(Q− z)Einφ.

It follows that
N in

P (z)φ = ∂νg(E
inφ− (PO − z)−1(Q− z)Einφ), (6.3.3)

thus z 7→ N in
P (z) : H3/2(∂O) → H1/2(∂O) is a meromorphic family of operators on C

with poles contained in Spec(PO).
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Similarly, we can define the exterior Dirichlet-to-Neumann operator of Pε,θ for every
0 ≤ θ < θ0 and ε ≥ 0:

N out
ε,θ (z)φ :=

∂u

∂νg
, where u solves

(Qε,θ − z)u = 0 in Γθ \ O
u = φ on ∂O

. (6.3.4)

The existence and uniqueness of the solution to the exterior boundary value problem
in (6.3.4) follows if z is not an eigenvalue of QO

ε,θ defined in (6.2.5) with −2θ < arg z <

3π/2 + 2θ. In fact let Eout : H3/2(∂O) → H2(Γθ \ O) be a linear bounded extension
operator such that

Eoutφ|∂O = φ and suppEoutφ ⋐ Γθ \ O, ∀φ ∈ H3/2(∂O).

Then we have a more explicit expression for N out
ε,θ (z):

N out
ε,θ (z)φ = ∂νg(E

outφ− (QO
ε,θ − z)−1(Qε,θ − z)Eoutφ). (6.3.5)

Hence z 7→ N out
ε,θ (z) : H

3/2(∂O) → H1/2(∂O) is a meromorphic family of operators in
the region −2θ < arg z < 3π/2 + 2θ, with poles contained in Spec(QO

ε,θ).

Now we put
Nε,θ(z) := N out

ε,θ (z)−N in
P (z). (6.3.6)

The following lemma shows that Nε,θ(z) is a Fredholm operator for suitable z.

Lemma 11. Suppose that 0 ≤ θ < θ0, ε ≥ 0 and that −2θ < arg z < 3π/2 + 2θ
with z /∈ Spec(PO) ∪ Spec(QO

ε,θ), then Nε,θ(z) : H
3/2(∂O) → H1/2(∂O) is a Fredholm

operator of index 0.

Proof. Let QO
in and N in

Q (z) be the the reference operator and the interior Dirichlet-
to-Neumann operator associated with Q, defined as in (6.2.3) and (6.3.2) respectively
except that Q replaces P there. Suppose that

z0 /∈ Spec(QO
in) ∪ Spec(QO

ε,θ) ∪ Spec(Qε,θ). (6.3.7)

Then N out
ε,θ (z0) and N in

Q (z0) are well-defined. We claim that

N out
ε,θ (z0)−N in

Q (z0) : H
3/2(∂O) → H1/2(∂O) is invertible. (6.3.8)

To show injectivity, we argue by contradiction. Suppose that 0 ̸= φ ∈ H3/2(∂O)
satisfies N out

ε,θ (z0)φ = N in
Q (z0)φ, it follows from (6.3.2) and (6.3.4) that

∃ u1 ∈ H2(O) and u2 ∈ H2(Γθ \ O) (|xθ|2u2 ∈ L2(Γθ \ O) when ε > 0) such that

(Q− z0)u1 = 0 in O
u1 = φ on ∂O

and
(Qε,θ − z0)u2 = 0 in Γθ \ O

u2 = φ on ∂O
, (6.3.9)
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and that ∂νgu1 = ∂νgu2. Let
u = 1O u1 + 1Γθ\O u2,

we aim to show that u ∈ H2(Γθ). For that it suffices to show the regularity of u near
∂O. For any x0 ∈ ∂O, we choose Bx0 := B(x0, r) ⊂ B(0, R1) such that Qε,θ = Q in
Bx0 and put v ∈ C∞

c (Bx0). Then we integrate by parts to obtain:∫
Bx0

(
n∑

j,k=1

gjk∂xk
u ∂xj

v + cuv

)
dx

=

∫
Bx0∩O

(
n∑

j,k=1

gjk∂xk
u1∂xj

v + cu1v

)
dx+

∫
Bx0\O

(
n∑

j,k=1

gjk∂xk
u2∂xj

v + cu2v

)
dx

=

∫
Bx0∩O

v Qu1dx−
∫
∂O∩Bx0

v ∂νgu1dS(x) +

∫
Bx0\O

v Qu2dx+

∫
∂O∩Bx0

v ∂νgu1dS(x)

=

∫
Bx0∩O

z0u1v dx+

∫
Bx0\O

z0u2v dx =

∫
Bx0

z0uv dx.

Hence u is a weak solution of (Q − z0)u = 0 in Bx0 , the regularity results for second
order elliptic differential equations show that u is H2 near x0, thus u ∈ H2(Γθ). It then
follows from (6.3.9) that u solves the equation (Qε,θ − z0)u = 0, thus z0 ∈ Spec(Qε,θ),
which contradicts (6.3.7).

To show surjectivity, we first choose a linear bounded operator Lg : H1/2(∂O) →
H2(O) satisfying the following:

Lgφ̃ := v, where v ∈ H2(O) ∩H1
0 (O) satisfies

supp v ⊂ O \B(0, R0) and ∂νgv = φ̃, φ̃ ∈ H1/2(∂O).
(6.3.10)

For any φ̃ ∈ H1/2(∂O), let v := Lgφ̃, f := (QO
in − z0)v ∈ L2(O). By (6.3.7) we can

define
u := (Qε,θ − z0)

−1ıf and φ := u|∂O ∈ H3/2(O),

where ı : L2(O) ↪→ L2(Γθ) denotes the extension by zero. Then

u1 := 1Ou− v satisfies
(Q− z0)u1 = 0 in O

u1 = φ on ∂O
;

u2 := 1Γθ\O u satisfies
(Qε,θ − z0)u2 = 0 in Γθ \ O

u2 = φ on ∂O
.

Hence we have

N out
ε,θ (z0)φ−N in

Q (z0)φ = ∂νg1Γθ\O u− ∂νg(1Ou− v) = ∂νgv = φ̃.
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After proving (6.3.8), we now show that N out
ε,θ (z)−N out

ε,θ (z0) and N in
P (z)−N in

Q (z0)

are compact: H3/2(∂O) → H1/2(∂O). Using (6.3.5) we have for any φ ∈ H3/2(O),

N out
ε,θ (z)φ−N out

ε,θ (z0)φ

= ∂νg((Q
O
ε,θ − z0)

−1(Qε,θ − z0)− (QO
ε,θ − z)−1(Qε,θ − z))Eoutφ

= (z − z0)∂νg(Q
O
ε,θ − z0)

−1(I − (QO
ε,θ − z)−1(Qε,θ − z))Eoutφ ∈ H5/2(∂O),

thus N out
ε,θ (z) − N out

ε,θ (z0) : H3/2(∂O) → H5/2(∂O) ⊂ H1/2(∂O) is compact since the
last inclusion map is compact. It remains to show that

N in
P (z)−N in

Q (z0) : H
3/2(∂O) → H1/2(∂O) is compact.

For that let ψ ∈ C∞
c (O) be equal to 1 near B(0, R0), φ ∈ H1/2(O), there exist u and v

satisfying:
(P − z)u = 0 in O
u = φ on ∂O

and
(Q− z0)v = 0 in O

v = φ on ∂O
,

recalling (6.2.2) that (1− ψ)u ∈ H2(O), thus we have

(N in
P (z)−N in

Q (z0))φ = ∂νg((1− ψ)u− (1− ψ)v).

Using (3.4.1) we can show that (1− ψ)u− (1− ψ)v ∈ H2(O) ∩H1
0 (O) satisfies:

Q((1− ψ)u− (1− ψ)v) = (1− ψ)Pu− [P, ψ]u− (1− ψ)Qv + [Q,ψ]v

= z(1− ψ)u− z0(1− ψ)v − [P, ψ]u+ [Q,ψ]v ∈ H1(O),

then we conclude from the regularity results for second order elliptic differential equa-
tions that (1 − ψ)u − (1 − ψ)v ∈ H3(O), thus (N in

P (z) − N in
Q (z0))φ ∈ H3/2(∂O).

Therefore, N in
P (z)−N in

Q (z0) : H
3/2(∂O) → H3/2(∂O) ⊂ H1/2(∂O) is compact.

So far we have shown that there exists a compact operator

K(z) := N out
ε,θ (z)−N out

ε,θ (z0)− (N in
P (z)−N in

Q (z0)) : H
3/2(∂O) → H1/2(∂O),

such that Nε,θ(z) = N out
ε,θ (z0)−N in

Q (z0) +K(z). Using (6.3.8) we can write

Nε,θ(z) = (N out
ε,θ (z0)−N in

Q (z0))(I + (N out
ε,θ (z0)−N in

Q (z0))
−1K(z)),

it is a product of an invertible operator and a Fredholm operator of index 0, thus
Nε,θ(z) is also a Fredholm operator of index 0.

Remark. The compactness of N out
ε,θ (z) − N out

ε,θ (z0) and N in
P (z) − N in

Q (z0) can also be
proved using the facts that the principal symbols of N out

ε,θ (z) and N out
ε,θ (z0) are identical,

same forN in
P (z) andN in

Q (z0) – see for instance Lee–Uhlmann [35] for a detailed account.
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In order to work on a single Hilbert space, we introduce

N̂ε,θ(z) := ⟨D∂O⟩−1Nε,θ(z) : H
3/2(∂O) → H3/2(∂O), (6.3.11)

where ⟨D∂O⟩ = (1 − ∆∂O)
1/2 is the standard isomorphism between Sobolev spaces

Hs(∂O) and Hs−1(∂O). The following lemma shows that the eigenvalues of Pε,θ, ε ≥ 0,

can be characterized as the poles of z 7→ N̂ε,θ(z)
−1, with agreement of multiplicities.

Lemma 12. Suppose that 0 ≤ θ < θ0, ε ≥ 0 and that

Ω ⋐ {z : −2θ < arg z < 3π/2 + 2θ} is disjoint from Spec(PO) ∪ Spec(QO
ε,θ).

Then
z 7→ N̂ε,θ(z)

−1, z ∈ Ω,

is a meromorphic family of operators on H3/2(∂O) with poles of finite rank. Moreover,

nε,θ(z) :=
1

2πi
tr

∮
z

N̂ε,θ(w)
−1∂wN̂ε,θ(w) dw = mε,θ(z), (6.3.12)

where the integral is over a positively oriented circle enclosing z and containing no poles
other than possibly z and mε,θ(z) is given by (5.4.7) (and by (3.5.11) when ε = 0).

Proof. 1. Suppose that z ∈ Ω is an eigenvalue of Pε,θ, we choose u ∈ ker(Pε,θ − z) and
let φ = u|∂O, then by (6.3.2) and (6.3.4),

N out
ε,θ (z)φ−N in

P (z)φ = ∂νg(1Γθ\O u)− ∂νg(1O u) = 0.

We note that φ ̸= 0 otherwise 1O u ∈ D(PO), (PO − z)1Ou = 0, implies that z ∈
Spec(PO). Thus 0 ̸= φ ∈ ker N̂ε,θ(z).

On the other hand, suppose that 0 ̸= φ ∈ ker N̂ε,θ(z), the same arguments as in the
proof of Lemma 11 show that z ∈ Spec(Pε,θ). Hence

z ∈ Spec(Pε,θ) ⇐⇒ ker N̂ε,θ(z) ̸= {0}, (6.3.13)

and we conclude from Lemma 11 that N̂ε,θ(z) is invertible for z ∈ Ω \ Spec(Pε,θ).

Theorem (4) then shows that Ω ∋ z 7→ N̂ε,θ(z)
−1 is a meromorphic family of operators

on H3/2(∂O) with poles of finite rank.

2. Since (6.3.13) proves (6.3.12) in the case mε,θ(z) = 0, we now assume that
mε,θ(z) =M ≥ 1, and that Pε,θ has exactly one eigenvalue z in

D(z, 2r) := {ζ ∈ C, |ζ − z| < 2r}.

We note that z is not a compactly supported embedded eigenvalue of P , by which we
mean an eigenvalue admitting a compactly supported eigenfunction – see (6.4.1). This
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is because if (P−z)u = 0 for some 0 ̸= u ∈ Dcomp, then umust vanish identically outside
B(0, R0) by unique continuation results for second order elliptic differential equations,
thus u ∈ DO. It follows that z ∈ Spec(PO) which contradicts our assumption on Ω.
Then we claim that for any δ > 0 there exists V ∈ C∞(O\B(0, R0);R) with ∥V ∥∞ < δ
such that

rank

∫
∂D(z,r)

(Pε,θ + V − w)−1dw =M,

and that all the eigenvalues of Pε,θ+V inD(z, r) are of multiplicity 1. This follows from
the results of [33] (see also [12, Theorem 4.39]) and we omit the proof here. Replacing

P by P + V in (6.3.2), we can define N̂ V
ε,θ for Pε,θ + V as in (6.3.6) and (6.3.11). Note

that N̂ε,θ has no kernel except at z in D(z, 2r) by (6.3.13), using (6.3.3) we can choose
δ small enough such that for ∥V ∥∞ < δ,

∥N̂ε,θ(w)
−1(N̂ε,θ(w)− N̂ V

ε,θ(w))∥H3/2(O)→H3/2(O) < 1, ∀w ∈ ∂D(z, r).

It then follows from Theorem 7 that

1

2πi
tr

∫
∂D(z,r)

N V
ε,θ(w)

−1∂wN V
ε,θ(w) dw = nε,θ(z).

Hence it is enough to prove (6.3.12) in the case mε,θ(z) = 1 with Pε,θ replaced by
Pε,θ + V .

3. Now we assume that mε,θ(z) = 1. In view of (6.3.13), N̂ε,θ(w)
−1 has a pole at z,

it remains to show that z has polar multiplicity 1 – see Theorem 6. For any w near z
and φ̃ ∈ H1/2(∂O), we recall (6.3.10) that Lgφ̃ ∈ DO, then (PO − w)Lgφ̃ ∈ HO. Now
we put

u := (Pε,θ − w)−1ı(PO − w)Lgφ̃, φ := u|∂O,

where ı : HO ↪→ Hθ is the extension by zero. Following the arguments in the proof of
Lemma 11 while P replacing Q there, we can show that Nε,θ(w)φ = φ̃, thus

N̂ε,θ(w)
−1φ̃ = ((Pε,θ − w)−1ı(PO − w)Lg(⟨D∂O⟩φ̃))|∂O, ∀φ̃ ∈ H3/2(∂O).

We note that z is a pole of w 7→ (Pε,θ−w)−1 with polar multiplicity 1 due tomε,θ(z) = 1.
It follows from the expression above that nε,θ(z) ≤ 1, but (6.3.13) andmε,θ(z) = 1 imply
that nε,θ(z) > 0, thus nε,θ(z) = 1.

6.4 Compactly supported embedded eigenvalues

It has been shown that by introducing an auxiliary obstacle O, we can characterize
the eigenvalues of Pε,θ, ε ≥ 0, as the poles of z 7→ N̂ε,θ(z)

−1. The drawback of

this characterization is that N̂ε,θ(z) can only be defined away from Spec(PO) and
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Spec(QO
ε,θ). Therefore, we wish that we can always choose the obstacle O carefully

according to the location of resonances of P , so that Spec(PO) and Spec(QO
ε,θ) stay away

from the resonances. This is almost true except the fact that there is a special subset
of resonances lying in Spec(PO) for any O containing B(0, R0), that is Speccomp(P ) –
the compactly supported embedded eigenvalues of P , defined by

Speccomp(P ) := {λ ∈ C : ∃ 0 ̸= u ∈ Dcomp such that (P − λ)u = 0}, (6.4.1)

where Dcomp := {u ∈ D(P ) : u|Rn\B(0,R0) ∈ H2
comp(Rn \B(0, R0))}.

Remark. Since Q(u|Rn\B(0,R0)) = 0, by the unique continuation results for second
order elliptic differential equations, u in (6.4.1) must vanish on Rn \ B(0, R0), thus
u ∈ DO for any O containing B(0, R0), which implies that Speccomp(P ) ⊂ Spec(PO).

Now we introduce a strategy to overcome the difficulty caused by Speccomp(P ).
Suppose that Ω ⋐ {z : −2θ < arg z < 3π/2 + 2θ}. We define

V0 := {u ∈ Dcomp : (P − z)u = 0 for some z ∈ Ω}, (6.4.2)

V0 consists of compactly supported eigenfunctions corresponding to eigenvalues in Ω,
thus V0 is finite dimensional. By the remark above, V0 is a subspace of HR0 given in
(3.3.1), H admits the following orthogonal decomposition:

H = V0 ⊕ H̃R0 ⊕ L2(Rn \B(0, R0)). (6.4.3)

Let Π0 : H → V0 be the orthogonal projection, Π0 is also a spectral projection for P ,
thus PΠ0 = Π0P . If we replace H by

H̃ := H̃R0 ⊕ L2(Rn \B(0, R0)),

and define

P̃ : H̃ → H̃, with domain D̃ := (I − Π0)D, P̃ u = (I − Π0)Pu,

then we have (P̃ + i)−1 = (I−Π0)(P + i)−1(I−Π0) and the assumptions (3.3.3), (3.3.4)
and (3.4.1) are still satisfied. We remark that

Speccomp(P̃ ) ∩ Ω = ∅.

Let P̃θ be the complex deformed P̃ on the contour Γθ, with

H̃θ := H̃R0 ⊕ L2(Γθ \B(0, R0)),

then for any z /∈ Spec(Pθ),

(P̃θ − z)−1 = (I − Π0)(Pθ − z)−1 : H̃θ → H̃θ. (6.4.4)

In addition, let P̃ε := P̃ − iε(1− χ(x))x2, then

(P̃ε − z)−1 = (I − Π0)(Pε − z)−1 : H̃ → H̃. (6.4.5)
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6.5 Eigenvalues and obstacle deformation

In this section we show that the eigenvalues of QO
θ and PO other than Speccomp(P ) can

be moved by deforming the obstacle O while we always assume that B(0, R0) ⊂ O ⊂
B(0, R1). To describe the deformations of obstacles, we modify (4.1.1) to define

Diff(O) :=

{
Φ ∈ C∞(Rn;Rn) is a diffeomorphism : Φ(∂O) = ∂ Φ(O),

Φ(x) = x, for all |x| ≤ R0 or |x| ≥ R1.

}
(6.5.1)

We note that Φ ∈ Diff(O) only deforms the region {x ∈ Rn : R0 < |x| < R1}, then
it also defines a diffeomorphism of Γθ, 0 ≤ θ < θ0. The pullback Φ∗ gives an isomor-
phism between L2(Γθ \ Φ(O)) and L2(Γθ \ O), which also restricts to an isomorphism

between D(Q
Φ(O)
θ ) and D(QO

θ ) given in (6.2.4) since it preserves the Dirichlet boundary
condition. Hence we can define

QO
θ,Φ := Φ∗Q

Φ(O)
θ (Φ∗)−1, with D(QO

θ,Φ) = D(QO
θ ), (6.5.2)

which is considered as the deformed operator of QO
θ under the deformation Φ. The

Fredholm properties of Q
Φ(O)
θ −z immediately show that QO

θ,Φ−z is a Fredholm operator
of index 0 for −2θ < arg z < 3π/2 + 2θ, and (6.5.2) implies that the spectrum of QO

θ,Φ

in this region is identical to the spectrum of Q
Φ(O)
θ . Moreover, QO

θ,Φ can be viewed as
a restriction of Qθ,Φ := Φ∗Qθ(Φ

∗)−1 to Γθ \ O with Dirichlet boundary condition. A
direct calculation shows that

AΦ := Φ∗Qθ(Φ
∗)−1 −Qθ = Φ∗Q(Φ∗)−1 −Q =

∑
|α|≤2

aα(x)∂
α
x , (6.5.3)

where the coefficients aα are supported in B(0, R1) \ B(0, R0) ⊂ Γθ. We note that
∥aα∥∞ ≤ C∥Φ− id ∥C2 , thus AΦ = O(∥Φ− id ∥C2) : H2(Γθ) → L2(Γθ).

Now we show that Spec(QO
θ ) can be moved by deforming the obstacle:

Lemma 13. Suppose that the obstacle O ⊂ B(0, R1) contains B(0, R0) and that −2θ <
arg z0 < 3π/2 + 2θ, then for any δ > 0 there exists Φ ∈ Diff(O) with ∥Φ − id ∥C2 < δ

such that z0 /∈ Spec(Q
Φ(O)
θ ).

Proof. We may assume that z0 ∈ Spec(QO
θ ), otherwise we can take Φ = id. Suppose

that QO
θ has exactly one eigenvalue in D(z0, 2r). For D := D(z0, r) we define

ΠO(D) := − 1

2πi

∫
∂D

(QO
θ − ζ)−1dζ, mO(D) := rankΠO(D), (6.5.4)

then mO(D) = mO(z0), where mO(z0) denotes the multiplicity of z0 ∈ Spec(QO
θ ).
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For δ > 0 small, we put

Uδ(O) := {Φ ∈ Diff(O) : ∥Φ− id ∥C2(Rn\O) < δ}.

It follows from (6.5.3) that QO
θ,Φ − QO

θ = O(∥Φ − id ∥C2) : H2(Γθ \ O) → L2(Γθ \ O),
thus for Φ ∈ Uδ(O) with δ sufficiently small,

(QO
θ,Φ − ζ)−1 = (QO

θ − ζ)−1(I + (QO
θ,Φ −QO

θ )(Q
O
θ − ζ)−1)−1, ζ ∈ ∂D,

exists and supζ∈∂D ∥(QO
θ,Φ − ζ)−1 − (QO

θ − ζ)−1∥L2(Γθ\O)→L2(Γθ\O) < C(Ω)δ. We define

ΠΦ(D) := − 1

2πi

∫
∂D

(QO
θ,Φ − ζ)−1dζ, mΦ(D) := rankΠΦ(D), (6.5.5)

then ΠΦ(D) and ΠO(D) have the same rank for any Φ ∈ Uδ(O) if δ is sufficiently small.
Since mΦ(D) = mΦ(O)(D) by (6.5.2), we conclude that

mΦ(O)(D) is constant for Φ ∈ Uδ(O) if δ is sufficiently small. (6.5.6)

We note that for every O and z0, one of the following cases has to occur:

∀ δ > 0, ∃Φ ∈ Uδ(O) such that mΦ(O)(z0) < mΦ(O)(D), (6.5.7)

or
∃ δ > 0, such that ∀Φ ∈ Uδ(O), mΦ(O)(z0) = mΦ(O)(D). (6.5.8)

The first possibility means that by deforming O under an arbitrarily small Φ, we can
obtain at least one eigenvalue of Q

Φ(O)
θ other than z0. The second possibility means

that under any small deformation Φ, z0 is the only eigenvalue of Q
Φ(O)
θ in D and the

maximal multiplicity persists.

Assuming (6.5.7) we can prove the lemma by induction on mO(z0). If mO(z0) = 1,
(6.5.6) shows that mΦ(O)(D) = 1 for Φ ∈ Uδ(O) with δ small. It then follows from

(6.5.7) that we can find Φ ∈ Uδ(O) such that mΦ(O)(z0) < 1, i.e. z0 /∈ Spec(Q
Φ(O)
θ ).

Assuming that we proved the lemma in the case mO(z0) < M , we now assume that
mO(z0) =M . We note that for any Φ1 ∈ Diff(O) and Φ2 ∈ Diff(Φ1(O)),

∥Φ2 ◦ Φ1 − id ∥C2 ≤ C(∥Φ1 − id ∥C2 + ∥Φ2 − id ∥C2),

where C is a constant depending only on the dimension n. For any δ > 0, (6.5.7) implies
that we can find Φ1 ∈ Diff(O) with ∥Φ1 − id ∥C2 < δ/2C such that mΦ1(O)(z0) < M .
It then follows from our induction hypothesis that there exists Φ2 ∈ Diff(Φ1(O)) with

∥Φ2 − id ∥C2 < δ/2C such that z0 /∈ Spec(Q
Φ2(Φ1(O))
θ ). We now take Φ = Φ2 ◦ Φ1, then

Φ ∈ Uδ(O) and z0 /∈ Spec(Q
(Φ(O)
θ ).



CHAPTER 6. RESONANCES AS VISCOSITY LIMITS 91

It remains to show that (6.5.8) is impossible. For that, we shall argue by contra-
diction, assume that mO(D) =M and that (6.5.8) holds. For Φ ∈ Uδ(O), we define

k(Φ) := min{k : (QO
θ,Φ − z0)

kΠΦ(D) = 0},

then 1 ≤ k(Φ) ≤ M . It follows from (6.5.2) and (6.5.5) that if ∥Φj − Φ∥C2M → 0 and
(QO

θ,Φj
− z0)

kΠΦj
(D) = 0, then (QO

θ,Φ − z0)
kΠΦ(D) = 0. We now put

k0 := max{k(Φ) : Φ ∈ Uδ/2(O)},

and assume that the maximum is attained at Φ0 ∈ Uδ/2(O) i.e. k(Φ0) = k0, then there
exists δ′ > 0 such that ∥Φ − Φ0∥C2M < δ′ ⇒ k(Φ) = k0. Henceforth, we can replace
our original obstacle O with Φ0(O), decrease δ and then assume by (6.5.8) that

(QO
θ,Φ − z0)

k0ΠΦ(D) = 0, (QO
θ,Φ − z0)

k0−1ΠΦ(D) ̸= 0,

mΦ(z0) = rankΠΦ(D) =M, ∀Φ ∈ Diff(O), ∥Φ− id ∥C2M < δ.
(6.5.9)

Before proving that (6.5.9) is impossible we introduce a family of deformations in
Diff(O) acting near a fixed point on ∂O. For any fixed x0 ∈ ∂O and some h0 > 0 small
we can choose a family of functions χh ∈ C∞(∂O; [0,∞)) depending continuously in
h ∈ (0, h0] with∫

∂O
χh(x)dS(x) = 1, suppχh ⊂ B∂O(x0, h), ∀h ∈ (0, h0], (6.5.10)

where B∂O(x0, h) denotes the geodesic ball on ∂O with center x0 and radius h. For
each h ∈ (0, h0], we construct a smooth vector field Vh ∈ C∞

c (Rn;Rn) with some small
constant δh = O(h2M+n−1) such that

Vh(x) = δhχh(x)νg(x), ∀x ∈ ∂O, ∥Vh∥C2M < ε/2,

suppVh ⊂ BRn(x0, Ch) for some C > 0,
(6.5.11)

where νg(x) is defined by (6.3.1). Let φt
h : Rn → Rn be the flow generated by the

vector field Vh. It follows from (6.5.11) that for every h ∈ (0, h0] there exists t0 > 0
such that

φt
h ∈ Diff(O), ∥φt

h − id ∥C2M < δ, ∀ t ∈ (−t0, t0).

Assuming (6.5.9) we can find w ∈ L2(Γθ\O) so that u := (QO
θ −z0)k0−1ΠO(D)w ̸= 0.

For any fixed x0 ∈ ∂O and h ∈ (0, h0], we take Φt := φt
h, t ∈ (−t0, t0) and put

u(t) := (Φt
−1)∗v(t), v(t) := (QO

θ,Φt
− z0)

k0−1ΠΦt(D)w.

In view of (6.5.2), (QO
θ,Φt

− z0)v(t) = 0 implies that

(Qθ − z0)u(t) = 0 in Γθ \ Φt(O). (6.5.12)
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Since Φt(O) ⊂ O for t ≥ 0, we can restrict (6.5.12) to the region Γθ\O then differentiate
it in t, by taking t = 0, we obtain that

(Qθ − z0)u
′(0) = 0 in Γθ \ O. (6.5.13)

Recalling that u(t, x) = v(t, φ−t
h x) and u(0) = v(0) = u, we conclude from the flow

equation that u′(0) = v′(0)− ∂xu · Vh, thus by (6.5.11) we have

u′(0) = −δhχh(x)∂νgu, on ∂O. (6.5.14)

We now multiply (6.5.13) by u then integrate it on Γθ \ O, then

0 =

∫
Γθ\O

u (Qθ − z0)u
′(0)

=

∫
Γθ\O

u′(0) (Qθ − z0)u+

∫
Γθ\O

∑
j,k

∂j(u
′(0)gjk∂ku− ugjk∂ku

′(0))

=

∫
∂O

(u′(0) ∂νgu− u ∂νgu
′(0)) dS.

(6.5.15)

It then follows from u|∂O = 0 and (6.5.14) that

0 =

∫
∂O
χh(x)(∂νgu(x))

2dS(x),

sending h → 0+, we conclude from (6.5.10) that ∂νgu(x0) = 0. We note that x0 ∈ ∂O
can be chosen arbitrarily, thus ∂νgu|∂O ≡ 0. Putting ũ := 1O · 0 + 1Γθ\O · u, the same
arguments as in the proof of Lemma 11 show that ũ ∈ H2(Γθ) and (Qθ − z0)ũ = 0
on Γθ. But unique continuation results for second order elliptic differential equations
show that ũ ≡ 0, thus a contradiction.

Now we consider the behavior of Spec(PO) under the deformations of O. In the
notation of §6.2, for Φ ∈ Diff(O), the pullback Φ∗ gives an isomorphism between HΦ(O)

and HO, which also restricts to an isomorphism between DΦ(O) and DO. Like (6.5.2)
we define the deformed operator of PO associate with Φ:

PO
Φ := Φ∗PΦ(O)(Φ∗)−1, with domain DO. (6.5.16)

Since (PΦ(O) + i)−1 is compact by Proposition 6.2.1, the same holds for PO
Φ , it fol-

lows that PO
Φ has a discrete spectrum. Moreover, Spec(PO

Φ ) must be identical to
Spec(PΦ(O)), which lies in R due to the self-adjointness of PΦ(O).

The next lemma shows that any eigenvalue of PO other than those compactly
supported embedded eigenvalues of P can still be moved by deforming the obstacle:
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Lemma 14. Suppose that the obstacle O ⊂ B(0, R1) contains B(0, R0) and z0 ∈
Spec(PO)\Speccomp(P ), then for any δ > 0 there exists Φ ∈ Diff(O) with ∥Φ− id ∥C2 <

δ such that z0 /∈ Spec(PΦ(O)).

Proof. The proof is similar to Lemma 13 except that we need a different approach from
(6.5.15) since the integration by parts is not available inside the black box. Suppose
that z0 ∈ Spec(PO) with multiplicity mP

O(z0) and that PO has exactly one eigenvalue
in D(z0, 2r). For D := D(z0, r) we put

ΠP
O(D) := − 1

2πi

∫
∂D

(PO − ζ)−1dζ, mP
O(D) := rankΠP

O(D).

Using (6.2.3) and (6.5.3) we can deduce that ∂D ∋ ζ 7→ (PO
Φ −ζ)−1 exists for Φ ∈ Uδ(O)

with δ small enough, then we define

ΠP
Φ(D) := − 1

2πi

∫
∂D

(PO
Φ − ζ)−1dζ, mP

Φ(D) := rankΠP
Φ(D) = mP

Φ(O)(D).

We remark that mP
O(D) is also invariant under small deformations of obstacles:

mP
Φ(O)(D) is constant for Φ ∈ Uδ(O) if δ is sufficiently small. (6.5.17)

In view of the proof of Lemma 13, it is enough to exclude the following case:

∃ δ > 0, such that ∀Φ ∈ Uδ(O), mP
Φ(O)(z0) = mP

Φ(O)(D). (6.5.18)

Again we argue by contradiction, assume that (6.5.18) holds and mP
O(D) = M ≥ 1.

We remark that unlike the proof of Lemma 13, the self-adjointness of PΦ(O) implies
that (PΦ(O) − z0)Π

P
Φ(O)(D) = 0 thus (PO

Φ − z0)Π
P
Φ(D) = 0 for any Φ ∈ Uδ(O). We now

choose w ∈ HO such that u := ΠP
O(D)w ̸= 0. For any fixed x0 ∈ ∂O and h ∈ (0, h0],

we set Φt := φt
h where φt

h is the flow generated by Vh given in (6.5.11), there exists
t0 > 0 such that Φt ∈ Uδ(O) for all −t0 < t < t0. Let

v(t) := ΠP
Φt
(D)w ∈ DO, u(t) := (Φ−1

t )∗v(t),

we have (PO
Φt

− z0)v(t) = 0, thus (PΦt(O) − z0)u(t) = 0. Recalling (6.2.3) we obtain

that for some ψ ∈ C∞
c (O), ψ = 1 near B(0, R0) and t0 > 0 small enough,

∀ t ∈ (−t0, t0), P (ψu(t)) +Q((1− ψ)u(t))− z0u(t) = 0 in Φt(O). (6.5.19)

Since Φt(O) ⊃ O for t ≤ 0, we can restrict (6.5.19) to O and differentiate it in t, by
taking t = 0, we have

P (ψu′(0)) +Q((1− ψ)u′(0))− z0u
′(0) = 0 in O. (6.5.20)
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Next we compute the inner product of the left hand side and u on the Hilbert space
HO defined by (6.2.1). For that, choose ψj ∈ C∞

c (O), ψj = 1 near B(0, R0), so that

ψ1 = 1 near suppψ, ψ = 1 near suppψ2. (6.5.21)

Then we have, using the self-adjointness of P ,

⟨P (ψu′(0)), u⟩HO = ⟨P (ψu′(0)), ψ1u⟩H = ⟨ψu′(0), P (ψ1u)⟩H,

and
⟨Q((1− ψ)u′(0)), u⟩HO = ⟨Q((1− ψ)u′(0)), (1− ψ2)u⟩L2(O).

Recalling (6.5.14), integration by parts as in (6.5.15) shows that

⟨Q((1− ψ)u′(0)), (1− ψ2)u⟩L2(O) − ⟨(1− ψ)u′(0), Q((1− ψ2)u)⟩L2(O)

=

∫
O

∑
j,k

∂j((1− ψ)u′(0)gjk∂k((1− ψ2)ū)− (1− ψ2)ūg
jk∂k((1− ψ)u′(0)))

=

∫
∂O

−u′(0)∂νg ū+ ū∂νgu
′(0) =

∫
∂O
δhχh|∂νgu|2.

It follows from (6.2.3) and (6.5.21) that

⟨ψu′(0), P (ψ1u)⟩H = ⟨u′(0), ψ(POu−Q((1− ψ1)u))⟩HO = ⟨u′(0), ψPOu⟩HO ;

and that

⟨(1− ψ)u′(0), Q((1− ψ2)u)⟩L2(O) = ⟨u′(0), (1− ψ)(POu− P (ψ2u))⟩HO

= ⟨u′(0), (1− ψ)POu⟩HO .

We now conclude from (6.5.20) and all the calculation above that

0 = ⟨u′(0), (PO − z0)u⟩HO +

∫
∂O
δhχh|∂νgu|2 =

∫
∂O
δhχh|∂νgu|2.

It follows that ∂νgu(x0) = 0. Since x0 ∈ ∂O can be chosen arbitrarily, we obtain that
∂νgu|∂O ≡ 0. Putting ũ := 1Ou+1Rn\O ·0, the same arguments as in the proof of Lemma
11 show that ũ ∈ D and (P − z0)ũ = 0, which would imply that z0 ∈ Speccomp(P ), a
contradiction.
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6.6 The CAP method for black box scattering

Before proving the convergence of eigenvalues of Pε to resonances as ε→ 0+, we recall
the decay of the Green function of QO

θ off the diagonal {(x, x) : x ∈ Γθ \ O}.

Lemma 15. Suppose that the obstacle O ⊂ B(0, R1) contains B(0, R0) and that z0 /∈
Spec(QO

θ ) with −2θ < arg z0 < 3π/2 + 2θ. The Schwartz kernel of the resolvent
(QO

θ − z0)
−1 : L2(Γθ \ O) → L2(Γθ \ O) is denoted by G(z0;xθ, yθ), where xθ = fθ(x)

is the parametrization on Γθ. Then there exists β > 0 such that for every δ > 0 there
exists Cδ > 0 such that

|G(z0; fθ(x), fθ(y))| ≤ Cδ e
−β|x−y| if |x− y| > δ.

Proof. Identifying Γθ and Rn by means of fθ, the pullback f ∗
θ gives an isomorphism

between L2(Γθ \ O) and L2(Rn \ O) since there exists C > 0 such that

C−1 < | det dfθ(x)| = |x|1−n|gθ(|x|)|n−1|g′θ(|x|)| < C, for all x.

Let Q̃O
θ := f ∗

θQ
O
θ (f

∗
θ )

−1 : L2(Rn \ O) → L2(Rn \ O) then Q̃O
θ is uniformly elliptic – see

Definition 2.5.2, and equipped with the domain H2(Rn \ O) ∩H1
0 (Rn \ O). Moreover,

(Q̃O
θ − z0)

−1 exists and we denote its Schwartz kernel by G̃(z0;x, y), x, y ∈ Rn \ O, i.e.
G̃(z0;x, y) = [(Q̃O

θ − z0)
−1δy(·)](x) where δy is the Dirac function supported at y.

Corollary 2.5.4 shows that there exists β > 0 such that for every δ > 0 there exists
Cδ > 0 such that

|G̃(z0;x, y)| ≤ Cδ e
−β|x−y| if |x− y| > δ.

Using (Q̃O
θ − z0)

−1 = f ∗
θ (Q

O
θ − z0)

−1(f ∗
θ )

−1 we obtain that

G(z0; fθ(x), fθ(y)) = (det dfθ(y))
−1G̃(z0;x, y), x, y ∈ Rn \ O,

the desired estimate of G(z0;xθ, yθ) then follows from the estimate of G̃(z0;x, y).

Now we state a more precise version of Theorem 2:

Theorem 9. Suppose that Ω ⋐ {z : −2θ0 < arg z < 3π/2 + 2θ0}. Then there exists
δ0 = δ0(Ω) > 0 such that ∀ 0 < δ < δ0, ∃ εδ > 0 such that

0 < ε < εδ =⇒ Spec(Pε) ∩ Ωδ ⊂
J⋃

j=1

D(zj, δ), (6.6.1)

where Ωδ := {z ∈ Ω : dist(z, ∂Ω) > δ} and z1, · · · , zJ are the resonances of P in Ω.
Furthermore, for each resonance zj with the multiplicity m(zj) given by (3.5.11),

# Spec(Pε) ∩D(zj, δ) = m(zj), ∀ 0 < ε < εδ, (6.6.2)

where the eigenvalue in Spec(Pε) is counted with multiplicity defined in (5.4.7).
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Proof. First we put δ0 =
1
2
min1≤j≤J dist(zj, ∂Ω) and fix θ ∈ [0, θ0) such that Ω ⋐ {z :

−2θ < arg z < 3π/2 + 2θ}. To prove (6.6.1) we argue by contradiction. Suppose that
there exist some δ < δ0 and a sequence εk → 0+ such that

∃ zk ∈ Spec(Pεk) ∩ Ωδ \
J⋃

j=1

D(zj, δ), k = 1, 2, · · ·

Then there exists a subsequence znk
→ z0, as k → ∞, for some z0 ∈ Ωδ \

⋃J
j=1D(zj, δ).

Since z0 ∈ Ω, we see that z0 is not a resonance, thus Pθ − z0 is invertible by definition.
We may assume that D(z0, r) is disjoint with Spec(Pθ) for some r > 0, it then follows
from Lemma 10 that Spec(Pε,θ)∩D(z0, r) = ∅ for ε small enough. However, Lemma 9
shows that

znk
∈ Spec(Pεnk

,θ), while znk
→ z0 as εnk

→ 0+

which gives a contradiction.

It remains to prove (6.6.2). For each resonance zj, let

Vj := {u ∈ Dcomp : (P − zj)u = 0},

then we have for V0 defined by (6.4.2),

V0 := V1 ⊕ · · · ⊕ VJ .

Let P̃ and P̃θ be defined as in §6.4. Recalling (3.5.10) and (3.5.11), it follows from
(6.4.4) that

m(zj) = rank

∮
zj

(z − P̃θ)
−1dz + dimVj.

Note that Vj ̸= {0} implies that zj ∈ Spec(Pε) for every ε > 0. For P̃ε defined in §6.4,
(6.4.5) implies that

# Spec(Pε) ∩D(zj, δ) = # Spec(P̃ε) ∩D(zj, δ) + dimVj, ∀ ε > 0,

while both sides are counted with multiplicities. Hence it is enough to establish (6.6.2)
for P̃ . In other words, it suffices to prove (6.6.2) in the case that P has no compactly
supported embedded eigenvalues in Ω.

Now we assume that Speccomp(P ) ∩ Ω = ∅. Lemma 13 and Lemma 14 show that

there exists an obstacle O ⊂ B(0, R1) containing B(0, R0) such that χ in (5.4.1) is
equal to 1 near O and that zj /∈ Spec(PO) ∪ Spec(QO

θ ), j = 1, · · · , J . Then we can

decrease δ0 such that Spec(PO) and Spec(QO
θ ) are disjoint with

⋃J
j=1D(zj, 2δ0). For

each δ ∈ (0, δ0), we can also decrease εδ in (6.6.1) such that

∀ 0 ≤ ε < εδ,

J⋃
j=1

D(zj, 2δ) ∩ Spec(QO
ε,θ) = ∅.
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This follows from Lemma 10 applied with Pθ = QO
θ and Ω =

⋃J
j=1D(zj, 2δ). Hence

the Dirichlet-to-Neumann operators N̂ε,θ(z), 0 ≤ ε < εδ introduced in §6.3, are well-

defined for z ∈
⋃J

j=1D(zj, 2δ). In view of (6.6.1), Lemma 9 and Lemma 12 imply
that

∂D(zj, δ) ∋ w 7→ N̂ε,θ(w)
−1 exists,

and that for all 0 < ε < εδ, j = 1, · · · , J ,

# Spec(Pε) ∩D(zj, δ) =
1

2πi
tr

∫
∂D(zj ,δ)

N̂ε,θ(w)
−1∂wN̂ε,θ(w)dw. (6.6.3)

In order to apply Theorem 7, we need the estimate:

∀ 0 < ε < εδ, ∥N̂ε,θ(w)− N̂θ(w)∥H3/2(∂O)→H3/2(∂O) < 1, w ∈ ∂D(zj, δ), (6.6.4)

here we write N̂θ(·) = N̂0,θ(·) for simplicity. To obtain this estimate, we first choose
Eout in (6.3.5) such that

χ = 1 near suppEoutφ, ∀φ ∈ H3/2(∂O),

then (6.3.5) reduces to

N out
ε,θ (z)φ = ∂νg(E

outφ− (QO
ε,θ − z)−1(Q− z)Eoutφ).

Therefore,

(N̂ε,θ(w)− N̂θ(w))φ = ⟨D∂O⟩−1∂νg((Q
O
θ − w)−1 − (QO

ε,θ − w)−1)(Q− w)Eoutφ.

Choosing ψ ∈ C∞
c (Γθ \ O) such that ψ = 1 near suppEoutφ, ∀φ ∈ H3/2(∂O) and that

χ = 1 near suppψ, (6.6.4) then follows from the following estimate: for w ∈ ∂D(zj, δ),

((QO
θ − w)−1 − (QO

ε,θ − w)−1)ψ = Oδ(ε) : L
2(Γθ \ O) → H2(Γθ \ O). (6.6.5)

To obtain (6.6.5), we denote the Schwartz kernel of the operator (1−χ)x2θ(QO
ε,θ−w)−1ψ

by K(w;xθ, yθ). In the notation of Lemma 15, we have

K(w; fθ(x), fθ(y)) = (1− χ(x))fθ(x)
2G(w; fθ(x), fθ(y))ψ(y).

It follows from Lemma 15 that there exists βδ > 0 such that for all w ∈ ∂D(zj, δ),
j = 1, · · · , J , |K(w; fθ(x), fθ(y))| ≤ C|x|2e−βδ|x−y|ψ(y), thus

sup
xθ

∫
Γθ\O

|K(w;xθ, yθ)||dyθ| ≤ Cδ, sup
yθ

∫
Γθ\O

|K(w;xθ, yθ)||dxθ| ≤ Cδ.

The Schur test shows that (1−χ)x2θ(Q
O
ε,θ −w)−1ψ = Oδ(1) : L

2(Γθ \O) → L2(Γθ \O).
Hence we can write

((QO
θ − w)−1 − (QO

ε,θ − w)−1)ψ = −iε(QO
ε,θ − w)−1(1− χ)x2θ(Q

O
θ − w)−1ψ.
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It remains to show that for εδ > 0 small enough,

(QO
ε,θ − w)−1 = Oδ(1) : L

2(Γθ \ O) → H2(Γθ \ O), w ∈
J⋃

j=1

∂D(zj, δ), 0 < ε < εδ.

This follows from Lemma 10 with Pθ = QO
θ and Ω =

⋃J
j=1 ∂D(zj, δ). Using (6.6.5) we

can decrease εδ such that (6.6.4) holds for j = 1, · · · , J . Now we apply the Gohberg–
Sigal–Rouché theorem to conclude that for all 0 < ε < εδ and j = 1, · · · , J ,

1

2πi
tr

∫
∂D(zj ,δ)

N̂ε,θ(w)
−1∂wN̂ε,θ(w)dw =

1

2πi
tr

∫
∂D(zj ,δ)

N̂θ(w)
−1∂wN̂θ(w)dw.

Finally, using Lemma 12, (6.6.3) and the equation above, we obtain (6.6.2).



99

Bibliography

[1] Shmuel Agmon. “A perturbation theory of resonances”. In: Communications on
Pure and Applied Mathematics: A Journal Issued by the Courant Institute of
Mathematical Sciences 51.11-12 (1998), pp. 1255–1309.

[2] Jacques Aguilar and Jean-Michel Combes. “A class of analytic perturbations
for one-body Schrödinger Hamiltonians”. In: Communications in Mathematical
Physics 22.4 (1971), pp. 269–279.

[3] Erik Balslev and Jean-Michel Combes. “Spectral properties of many-body Schrödinger
operators with dilatation-analytic interactions”. In: Communications in Mathe-
matical Physics 22.4 (1971), pp. 280–294.

[4] Jean-Pierre Berenger. “A perfectly matched layer for the absorption of electro-
magnetic waves”. In: Journal of computational physics 114.2 (1994), pp. 185–
200.

[5] David Bindel and Maciej Zworski. “Theory and computation of resonances in 1d
scattering”. In: url: http://www. cims. nyu. edu/dbindel/resonant1d (2006).

[6] David Borthwick and Peter Perry. “Scattering poles for asymptotically hyperbolic
manifolds”. In: Transactions of the American Mathematical Society 354.3 (2002),
pp. 1215–1231.

[7] TJ Christiansen. “Lower bounds for resonance counting functions for obsta-
cle scattering in even dimensions”. In: American Journal of Mathematics 139.3
(2017), pp. 617–640.

[8] Nguyen Viet Dang and Gabriel Rivière. “Pollicott–Ruelle spectrum and Wit-
ten Laplacians”. In: Journal of the European Mathematical Society 23.6 (2021),
pp. 1797–1857.

[9] E Brian Davies. “Pseudo–spectra, the harmonic oscillator and complex reso-
nances”. In: Proceedings of the Royal Society of London. Series A: Mathematical,
Physical and Engineering Sciences 455.1982 (1999), pp. 585–599.
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