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Abstract

We study two reservation deposit policies for a service �rm to increase its revenue through higher

capacity utilization. First, under the �no deposit� policy, the �rm requires no reservation deposit and

imposes no �no show� penalty. Anticipating potential �no shows,� a �rm may overbook; hence, there is

no guarantee that the reserved service will be provided under the no deposit policy. On the contrary,

under the �guarantee deposit� policy, a guarantee deposit is required for each customer to make a

non-cancelable reservation. To honor the reserved service under the guarantee deposit policy, the �rm

will not overbook. We analyze each deposit policy as a Stackelberg game in which the �rm acts as the

leader who selects the booking capacity under the no deposit policy (or the required deposit under the

guarantee deposit policy), and each customer acts as the follower who decides whether to reserve or not.

Our model incorporates rational customer behavior so that each customer will take other customers'

behavior into consideration. Using the �rm's optimal booking capacity (optimal required deposit) in

equilibrium under the no deposit policy (the guarantee deposit policy), we compare the �rm's expected

pro�ts under these two policies in a monopolistic environment. Our results suggest that the �rm should

charge a higher optimal retail price under the no deposit policy, and adopt the no deposit policy when

the demand rate is below a certain threshold. By analyzing a game of duopolistic competition between

two �rms, we develop the conditions under which the �rms will adopt a particular pair of deposit

policies in equilibrium, and we show this game can lead to a Prisoner's Dilemma. Moreover, when

both �rms charge the same retail price, we show the existence of an equilibrium in which both �rms

adopt the no deposit policy.

Keywords: Reservations, Deposit Policies, Revenue Management, Rational Customer Behavior,

Retail Competition.

1



1 Introduction

An important aspect of revenue management is to develop mechanisms that would enable service �rms

with limited capacity to improve their revenues. With limited capacity, capacity utilization is a key

performance measure of a service �rm. That is why hotels measure occupancy rates and car rental

companies track the number of idle cars in their parking lots. In view of limited capacity, customers

often reserve in advance but they may not show up for their reserved service due to a variety of reasons

which include change of plans. �No shows� can be a signi�cant problem in the service industry: 10-15% of

passengers do not show up to claim their reserved seats in the airline industry, and 25% of guests do not

show up for their reserved rooms in the hotel industry (Rothstein (1974), Rothstein (1985) , and USA

Today (1998)). When competition is �erce and pro�t margins are slim, �no-shows� can have detrimental

e�ects on a service �rm's survival.

In this paper we examine the use of two di�erent reservation deposit policies that are intended to reduce

the risk of unused capacity and improve the revenue of a service �rm. Two basic deposit policies observed

in practice are the �no deposit� policy N , and the �guarantee deposit� policy D. Under the no deposit

policy N , there is no required reservation deposit, and there is no penalty for customers not showing up

for the reserved service. Anticipating potential �no shows,� a �rm may �overbook� by accepting more

reservations than his capacity; hence, there is no guarantee that the reserved service will be provided.

However, if a customer shows up and discovers that her reserved service is denied due to overbooking,

then she will receive a compensation for the inconvenience that the �rm has caused. For example, in

the airline industry, the US Department of Transportation (DOT) issues guidelines on the compensation

schemes for passengers who are denied boarding involuntarily due to overbooking. The reader is referred

to http://airconsumer.ost.dot.gov/reports/index.htm for details. Also, in the hotel industry, the US law

courts have ruled that hotels are obligated to compensate guests who are denied service involuntarily due

to overbooking (Rothstein (1974)). Under the guarantee deposit policy D, a guarantee deposit is required

for a customer to make a non-cancelable reservation.1 To honor the reserved service under the guarantee

deposit policy, the �rm will not overbook.

In the United States, the guarantee deposit policy is becoming more common in the hotel industry even

though some hotels do not require deposits. However, the no deposit policy is commonly observed in

car rental companies and restaurants.2 While both policies are commonly observed, it is unclear which

reservation policy (N or D) is more e�ective for a �rm to improve his revenue. To select an e�ective

reservation policy, a �rm needs to examine the following tradeo�s: customers are eager to reserve under

policy N , but their commitment to show up can be low because there is no penalty for not showing up

for the reserved service. On the other hand, customers are more reluctant to reserve when non-refundable

1Without dealing with the issue of service guarantee, Xie and Gerstner (2007) argue that a �rm can obtain a higher
expected pro�t by o�ering cancelable reservations with refund. Their argument is based on the assumption that cancelable
reservations encourage more customers to reserve.

2Some highly acclaimed restaurants in the US such as Chez Panisse in California (www.chezpanisse.com) and Rainbow
Room in New York (www.rainbowroom.com) require customers to pay non-refundable deposits to guarantee their reserva-
tions.
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deposits are required under policy D; however, the non-refundable deposits provide strong incentives for

customers to show up for their reserve service.

Even though both reservation polices N and D are common in practice, there are no formal analytical

models for analyzing the case when: (1) customer demand is uncertain; (2) customers are rational in the

sense that they take other customers' behavior into consideration when deciding whether to reserve; and

(3) market competition is present. As an initial attempt, we �rst examine the monopolistic case in which

a single �rm with a �xed capacity m(≥ 1) who needs to decide on his deposit policy (N or D). We

then extend our model by analyzing a game of duopolistic competition between two identical �rms. Our

model captures the key tradeo�s associated with each deposit policy. We consider the case in which an

uncertain number of customers, with valuation v and show up probability ψ (private information), who

need to decide whether to make a reservation. First, suppose the �rm adopts policy N and charges a

retail price rN (a decision variable).3 Then each rational customer will take the �deny probability� (1−β)

into consideration when deciding on whether to reserve or not, where this deny probability depends on

the rational behavior of other customers in the system. Anticipating customers' reservation behavior, the

�rm can estimate the number of customers who would attempt to reserve under policy N . However, due

to potential �no shows,� the �rm needs to decide on the booking capacity n (n ≥ m); i.e., the maximum

number of reservations to accept. When a customer shows up, she is obligated to pay rN for her reserved

service. However, in the event when the �rm overbooks and denies a customer who shows up for her

reserved service, the �rm will o�er her a compensation c for the inconvenience. The tradeo� under policy

N is captured by the booking capacity n: (a) when n is too large, the risk of compensating too many

denied customers increases; and (b) when n is too small, then the risk of unused capacity increases.

Next, suppose the �rm opts for policy D and charges a retail price rD (a decision variable). Then

the �rm needs to decide on the non-refundable deposit d > θ > 0 (where θ is the minimum deposit)

that each customer is required to pay upfront to ensure her reservation is guaranteed. In this case, the

customer is obligated to pay the remaining amount (rD − d) when she shows up to redeem her reserved

service. However, for any given deposit d, each rational customer will take her show up probability ψ

into consideration when deciding on whether to reserve or not. The customer reservation behavior will

enable the �rm to determine the number of customers who would attempt to reserve under policy D.

Anticipating customers' reservation behavior, the �rm can determine the number of customers who would

attempt to reserve under policy D. E�ectively, the required deposit d captures a key trade-o�: (a) when

d is too small, customers have a lower incentive to show up and the risk of unused capacity increases; and

(b) when d is large, customers are reluctant to reserve and the risk of unused capacity increases.

To analyze the tradeo�s associated with each deposit policy, we model the dynamics between the �rm

and its customers as a Stackelberg game in which the �rm acts as the leader who selects the booking

capacity under the no deposit policy N (or the required deposit under the guarantee deposit policy D),

and each rational customer acts as the follower who decides whether to reserve or not. To deal with the

3To enable us to focus on the issue of reservation policies in the presence of rational customers and competition, we shall
treat the retail price as given �rst and then determine the optimal retail price numerically in Section 3.5.2.
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issue of market competition, we extend our model to capture duopolistic competition between two �rms

by analyzing a non-cooperative game between two �rms on top of the aforementioned Stackelberg game

between each �rm and the customers. Our analysis enables us to answer the following questions:

• For any given retail price, what is the customer's optimal reservation decision under each deposit

policy?

• For any given retail price, what is the �rm's optimal booking capacity n∗ under policy N? What

is the �rm's optimal guarantee deposit d∗ under policy D? Also, what is the �rm's optimal retail

price under each policy?

• What conditions render deposit policy N more pro�table for the �rm?

• In a duopolistic environment, which deposit policy will each �rm adopt in equilibrium?

In a monopolistic environment, we show that the no deposit policy N dominates the guarantee deposit

policy D when the demand rate is below a certain threshold or when the customer valuation is below

a certain threshold. Hence, market condition is a key driver when choosing a deposit policy. Also, our

results suggest that the �rm should always charge a higher optimal retail price under the no deposit policy

N . This result is consistent with a common practice in the hotel industry: the daily rate of a room with

guarantee deposit requirement tends to be lower.

When we examine the issue of market competition, we analyze a game of duopolistic competition between

two �rms. We develop the conditions under which the �rms will adopt a particular pair of deposit policies

in equilibrium, and we show this game can lead to a Prisoner's Dilemma. In addition, we show that the

results obtained in the monopolistic case do not necessarily carry over to the duopolistic case. Moreover,

when both �rms charge the same retail price, we show that there exists an equilibrium in which both

�rms adopt policy N without overbooking. Finally, we show the existence of an asymmetric equilibrium

in which one �rm adopts policy N and the other adopts policy D.

The primary contributions of this paper are four-fold. First, our paper is the �rst to examine the trade-o�

between the no deposit policy N and the guarantee deposit policy D in the presence of rational customers

and market competition. Second, by exploring the underlying mathematical structure, we obtain insights

regarding the optimal booking capacity n∗ under policy N , the optimal guarantee deposit d∗ under policy

D, and the optimal retail price a �rm should charge under each policy. Third, we derive conditions under

which one reservation policy dominates the other. Fourth, we extend our analysis to the case in which two

competing �rms need to determine their reservation policies in equilibrium. We determine the equilibrium

of each subgame analytically and the meta-game equilibrium numerically.

This paper is organized as follows. Section 2 provides a brief review of related literature. Section 3

presents the base model in a monopolistic setting. We determine the optimal booking capacity under

policy N and the optimal deposit under policy D. In section 4, we extend our analysis to the duopolistic

case in which the industry is comprised of two competing �rms. Here, we examine the deposit policy that
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each �rm will adopt in equilibrium. We conclude in Section 5 with a brief summary of our results, and a

discussion of the limitations of our model and potential future research topics. In order to streamline our

presentation, all proofs are given in Appendix 1.

2 Literature Review

Recognizing the fact that unused capacity has no salvage value in the service industry, we witness an

increasing research interest in revenue management recently. Many researchers have examined di�erent

pricing mechanisms to segment the market so that a �rm can extract the surplus from di�erent customer

segments (Talluri and Van Ryzin (2004)). Besides pricing mechanisms, various operations management

researchers have explored other mechanisms that involve opaque selling (Jerath et. al. (2009)), strategic

stockout (Liu and Van Ryzin (2008)), partial inventory information (Yin et. al. (2009)), and reservations

(Alexandrov and Lariviere (2006), Elmaghraby et. al. (2009) and Png (1989)). The reader is referred

toBitran and Caldentey (2003), Netessine and Tang (2009), Philips (2005), Talluri and Van Ryzin (2004),

and Weatherford and Bodily (1992) for di�erent comprehensive reviews on this important research area.

Our paper is related to a research stream in revenue management that deals with the issues of reservations

and overbooking. In the reservation literature, Png (1989) is one of the �rst papers that examines a

monopolistic airline which, in order to increase capacity utilization, takes customer reservations. While

customers with reservations are not obligated to claim their reserved seats, customers with high valuation

will exercise the purchase option (reserve and show up). He shows that overbooking is an e�ective strategy

to reduce the risk of unused capacity. By consider the duopoly case, Lim (2009) is the �rst paper to analyze

the e�ect of overbooking in a competitive environment. She shows that overbooking is a dominant strategy

for both �rms in equilibrium. Recently, Alexandrov and Lariviere (2006) study the role of reservations

in the context of restaurants. They show that a restaurant should never o�er reservations when there

is no demand uncertainty and when customers have identical valuation. However, when competition

is present, it is bene�cial for restaurants to take reservations especially when the number of interested

customers or the number of restaurants in the market is su�ciently large. Instead of examining the value

of reservations and the value of overbooking, we analyze two reservation deposit policies N and D. By

comparing the �rm's expected revenues under these two policies, we establish the conditions under which

one policy dominates the other in a monopolistic environment. Also, we extend our model to deal with

market competition in a duopolistic environment.

Because there is no penalty for �no shows�, it is bene�cial for a �rm to overbook (Png (1989) and

Alexandrov and Lariviere (2006)). Instead of imposing penalty for �no shows�, Biyalogorsky et. al.

(1999) examine a situation in which the market is comprised of two types of customers with low and

high valuations. To reduce the risk of unused capacity, a �rm accepts customer reservations by o�ering

a lower price to the low valuation customers (leisure travelers) who arrive in the �rst period. However,

the �rm reserves the rights to recall (i.e., cancel) these reservations so that it can sell the recalled units

at a higher price to the high valuation customers (business travelers) in the second period. They show

how �callable� reservations can enable the �rm to reduce the risk of unused capacity and to obtain a
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higher expected revenue. By considering more general assumptions, Gallego et. al. (2008) study the

issue of callable products and obtain similar results. In addition, they determine the optimal number of

callable reservations to be allocated for sales in the �rst period. Instead of restricting the case that only

callable units are available for sale in the �rst period and non-callable units are available for sale in the

second period, Elmaghraby et. al. (2009) examine a situation in which the �rm o�ers both callable and

non-callable units at di�erent prices at any point in time. By considering the case when customers with

di�erent valuations arrive at the �rm according to a Poisson process, they show that a �rm can obtain

an even higher pro�t by o�ering customers both options. Their result is due to the fact that, when both

options are available at any point in time, rational customers would feel the competitive pressure among

customers to purchase the non-callable units at a higher price. Our model di�ers from these models in

the following manner. First, instead of focusing on a particular policy, we are interested in comparing

the performance of two common deposit policies (N and D) observed in practice. Second, in addition to

the monopolistic setting, we examine the impact of retail competition on these two reservation policies.

Third, while the customer valuation is assumed to follow a two-point distribution in the aforementioned

models, we assume that the customer valuation follows a uniform distribution. With the exception of

Elmaghraby et. al. (2009), these models assume that low valuation customers will only arrive early and

high valuation customers will only arrive late. Instead, we allow customers with di�erent valuations to be

present in the system simultaneously.

While overbooking has been shown to be an e�ective strategy for a �rm to reduce the risk of unused

capacity, it can cause customer disloyalty due to customer dissatisfaction. To mitigate the negative e�ect

of overbooking, some �rms may o�er guaranteed service to their loyal customers at a higher retail price.

For example, Continental Airlines o�er their loyal customers with Gold or Platinum status guaranteed

seats for their reservations if they purchase their tickets at a higher price (e.g. the unrestricted Y class

ticket) at least 48 hours before departure. To guarantee these loyal customers' reservations, the airlines

would need to either reduce its booking capacity or to increase its compensation to customers for being

denied (Biyalogorsky et. al. (2000)). Instead of charging a higher price to ensure that a reservation will

be honored, we consider the case when the �rm charges an upfront guarantee deposit d under policy D.

We show that the �rm should always o�er a lower retail price under the guarantee deposit reservation

policy D. Hence, instead of charging a higher price to guarantee a reservation (Biyalogorsky et. al.

(2000)), a lower retail price is more likely to be welcome by most customers even when a non-refundable

deposit is required.

3 Base Model: The Monopolistic Case

Consider a �rm with a �xed capacity of m ≥ 1 units who needs to specify his reservation policy (N or D)

before customers are present in the system. Let us describe the �rm's decision under each deposit policy.

If he chooses the no deposit policy N, then he needs to decide on his retail price rN and his booking

capacity n (two decision variables), where n ≥ m, so that he will accept no more than n reservations.

Once the �rm accepts a reservation from a customer without a deposit, there are three possible outcomes:

(a) the customer does not show up for her reserved service; (b) the customer shows up and the service is
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available; and (c) the customer shows up and the service is not available (due to overbooking). The �rm

earns nothing when outcome (a) occurs, earns rN when (b) occurs, and pays a penalty c to the customer

whose reserved service is being denied.

If the �rm chooses the guarantee deposit policy D, then he needs to determine his retail price rD and his

guarantee deposit d ≥ θ > 0, where rN , d are decision variables and θ is an exogenously given minimum

deposit. (Because the �rm will not overbook under policy D, it is reasonable to expect the �rm to charge

a minimum deposit to θ to defray some operating cost.) To guarantee that each reserved service will

be honored, the �rm will not overbook so that no more than m reservations will be accepted. Once the

�rm accepts a reservation from a customer who pays an upfront non-refundable deposit d, there are two

possible outcomes: (a) the customer does not show up for her reserved deposit; and (b) the customer

shows up for the reserved service. In the former case, the customer's deposit d is forfeited, and the �rm

earns d. In the latter case, the customer pays the remaining portion (rD − d), and the �rm earns the

entire retail price rD in total.

To model market uncertainty, let A be the number of �potential� customers who are present in the system

after the �rm announces the booking capacity n if policy N is chosen (or the required guarantee deposit

d if policy D is selected), where A is assumed to be a Poisson random variable with rate λ.4 For each

of these A potential customers, her �net valuation� of the service is equal to ψ · v, where v is her gross

valuation and ψ is her �show up� probability for the reserved service. To capture market heterogeneity

and obtain tractable results, we assume that the gross valuation v is �xed, and ψ is uniformly distributed

over [0, 1]. Thus, the net valuation of the service ψ · v ∼ U [0, v]. To eliminate trivial cases, let us assume

that xD , v − rD > 0 so that every customer is a potential customer when the �rm chooses policy

D. Similarly, to eliminate potential arbitrage opportunities, we assume that xN , v − rN > c. This

assumption is reasonable when reservations are non-transferable or when the number of �speculators� in

the market is negligible. Here, the term speculators is referred to those �phantom� customers who do

not care for the service but they have a strong desire to get the compensation c for being denied service.

The reader is referred to Su (2008) for an interesting study that shows speculators can increase a �rm's

expected pro�ts.

In this paper, we assume that the �rm and all customers are endowed with the following knowledge:

the market size is a Poisson random variable with rate λ; the customer's gross valuation is v; and the

customer's show up probability ψ is uniformly distributed over [0, 1]. In this case, the sequence of events

can be described as follows. The �rm �rst decides and announces his retail price rN and his booking

capacity n if policy N is chosen (or retail price rD and guarantee deposit d if policy D is selected). Then

the number of customers in the system is realized. Each customer needs to decide whether to reserve with

the �rm, and the �rm can only accept reservations up to his booking capacity (i.e., n under policy N , or

m under policy D). After that, each customer with a reservation decides to show up or not according to

4Besides the fact that the Poisson assumption enables us to obtain tractable results, Lariviere and Van Mieghem (2004)
argue that Poisson demand is an acceptable assumption for modeling the number of rational customers in a su�ciently large
market.
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her private show up probability ψ, and the �rm determines his revenue based on the number of accepted

reservations and the number of customers who show up for their reserved service.

3.1 Customer Surplus and Reservations

We now examine customers' rational behavior under policies N and D. We �rst conduct our analysis for

any given retail price. Then we determine the optimal retail price numerically in Section 3.5.2.

3.1.1 No Deposit Policy N

Consider a customer who makes a reservation with the �rm who adopts policy N . Given her private show

up probability ψ, she will obtain an expected surplus ψ · β · xN if her reserved service is honored when

she shows up, and she will obtain an expected surplus ψ·(1− β) · c if her reserved service is denied when

she shows up, where (1−β) is the �deny� probability that her reserved service will be not be honored due

to overbooking. Because each customer will take this deny probability (1 − β) into consideration when

deciding whether to reserve or not, the deny probability (1 − β) needs to be determined endogenously.5

Because (1 − β) ≥ 0 and ψ ≥ 0, it is rational for each customer to reserve because her expected surplus

πN≥ 0, where

πN = ψ · [β · xN + (1− β) · c] . (1)

Knowing that all customers are rational and hence they will attempt to reserve, the �rm can estimate the

number of customers who would attempt to reserve under policy N is a random variable AN ∼ Poi(γNλ),

where γN = 1 is the probability that a customer in the system will attempt to reserve with the �rm who

adopts policy N .6

Recognizing the fact that γN = 1 is a common knowledge, we now discuss how customers can infer β

correctly. Suppose the �rm announces his booking capacity n. Then each customer knows that the �rm

will accept RN reservations, where RN = min {n, AN}. For any number of accepted reservations RN = j

and for any show up probability ψ, the number of customers who show up for their reserved service can

be denoted by SN , where (SN |RN , ψ) is a binomial random variable so that Pr {SN = k |RN = j, ψ} =(
j
k

)
ψk (1− ψ)j−k. Because ψ ∼ U [0, 1], the conditional probability of SN = k given RN = j satis�es

Pr {k | j} ≡ Pr {SN = k |RN = j} =

ˆ 1

0

(
j

k

)
ψk (1− ψ)j−k dψ =

1

j + 1
, for 0 ≤ k ≤ j. (2)

5To obtain tractable results, some researchers assume that this kind of information is given exogenously (e.g. Liu and Van
Ryzin (2008) and Cachon and Swinney (2009)). In some cases, the deny probability (1−β) can be deduced from historical
data. For example, in the airline industry, the likelihood of being denied for service is published in the public domain. The
US department of transportation provides detailed statistics about the deny probability of di�erent airlines on a bi-monthly
basis. See: http://airconsumer.ost.dot.gov/reports/index.htm. In this paper, we show that the deny probability can be
determined endogenously with some e�orts.

6It is important for a �rm to take this rational customer behavior into consideration when selecting its booking capacity.
Otherwise, the �rm will not be able to set the right booking capacity, which will result in lower expected revenue. In a
di�erent context, Yin et. al. (2009) show that a �rm's expected revenue can su�er signi�cantly from making decisions
without taking rational customer behavior into consideration.
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Therefore, when a �rm with capacity m announces a booking capacity n, each customer can use the

probability distributions of RN and SN to infer β (m, n) correctly, where

β(m, n) = ERNESN |RN

[
min

{
1,

m

SN

}]
. (3)

By noting that (SN |RN ) is stochastically increasing in any realization of RN , which is stochastically

increasing in γN , it is easy to check from (3), that β (m, n) is stochastically decreasing in γN . This

property will enable us to determine the deny probability for the duopolistic case.

3.1.2 Guarantee Deposit Policy D

Consider the case when the �rm chooses the guarantee deposit policy D. Because the �rm will not

overbook, the �deny� probability 1 − β = 1 (i.e. β = 1). Also because the guarantee deposit d will be

forfeited for not showing up with probability (1− ψ), each customer will obtain an expected surplus πD,

where

πD = (1− ψ) (−d) + ψ · (v − rD) = −d+ ψ (xD + d) (4)

Hence, a customer will attempt to reserve if πD ≥ 0 or equivalently, if ψ ≥ d
xD+d . By noting that

ψ ∼ U [0, 1], the probability that a customer will attempt to reserve, denoted by γD, satis�es

γD = Pr

{
ψ ≥ d

xD + d

}
=

xD
xD + d

. (5)

To guarantee that each reserved service will be honored, the �rm will not overbook. Consequently, the

�rm will accept RD reservations, where RD = min {m, AD}, AD ∼ Poi(γDλ), and γD is given in (5). For

any number of accepted reservations RD = j and for any show up probability ψ, the number of customers

who show up for their reserved service can be denoted by SD, where (SD |RD, ψ) is a binomial random

variable so that Pr {SD = k |RD = j, ψ} =
(
j
k

)
ψk (1− ψ)j−k. By using the fact the show up probability

of each customer who reserves is ψ ∼ U
[

d
xD+d , 1

]
, we can use the same approach as presented in Section

3.1.1 to determine the conditional probability of SD = k conditional on RD = j, where

Pr {k | j} =

ˆ 1

d
xD+d

(
j

k

)
ψk (1− ψ)j−k · xD + d

xD
dψ. (6)

3.2 Optimal Booking Capacity n∗under Policy N

We now determine the optimal booking capacity n∗ for a �rm with capacity m who adopts policy N .

Recall from Section 3.1.1 that SN customers will show up for the reserved service after accepting RN =

min{An, n} reservations. Speci�cally, for any realization SN = k ≥ 1, the �rm's revenue can be expressed

as: ΠN (m ; n| k) , z (k,m) = rN · min {k, m} − c · max {k −m, 0}. By considering the probability

distributions of RN and (SN |RN ) as discussed in Section 3.1.1, one can show that the �rm's expected
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revenue under policy N satis�es:

ΠN (m,n) = ERN
{
ESN |RN {ΠN (m,n |SN = k)}

}
=

n−1∑
j=1

j∑
k=1

z (k,m) Pr {k|j} pj|λ+
n∑
k=1

z (k,m) Pr {k|j} pj≥n|λ

(7)

where Pr {k | j} is given in (2), and pj≥n|λ =
(

1−
∑n−1

j=1 pj|λ

)
.7 Using (2), the expected revenue function

for �rm N can be simpli�ed further as:

ΠN (m,n) =
n−1∑
j=1

[
pj|λ

j + 1
· Z (j,m)

]
+

[
pj≥n|λ

n+ 1
· Z (n,m)

]
, (8)

where Z (j,m) ,
∑j

k=1 z (k,m) =

{
rN · j(j+1)

2

rN ·
[
m(m+1)

2 + (j −m)m
]
− c · (j−m)(j−m+1)

2

if
j ≤ m
j > m

By examining the marginal gain as we increase the booking capacity from n to n + 1, we obtain the

following result:

Proposition 1. Under policy N , it is optimal for a �rm with capacity m to set his booking capacity to

n∗(m) that satis�es

n∗ (m) =


⌊√(

rN
c + 1

)
m (m+ 1)− 1

⌋
if f

(⌊√(
rN
c + 1

)
m (m+ 1)− 1

⌋)
> f (d·e)⌈√(

rN
c + 1

)
m (m+ 1)− 1

⌉
if f

(⌊√(
rN
c + 1

)
m (m+ 1)− 1

⌋)
< f (d·e)

(9)

where f (n) = m
(
rN
c + 1

) (
2n+1−m
n+1

)
−n is a concave function in n and b•c and d•e are the �round-down�

and �round-up� functions, respectively.

Observe from (9) that the optimal booking capacity n∗ (m) is an increasing function in rN
c . This result

is intuitive because the �rm can a�ord to increase his booking capacity when the retail price rN is high

or when the penalty for overbooking c is low. Also, it is easy to see that it is optimal for the �rm to

overbook so that n∗ (m) ≥ m when rN > c.

Notice that the �rm's optimal booking capacity n∗ (m) is the �ideal� booking capacity that is based on its

capacity m and the tradeo� between rN and c, but it is independent of the actual number of customers

AN who attempt to reserve; i.e., it is independent of the demand rate λ and the reserve probability γN . To

elaborate, consider the case when the �rm sets a di�erent booking capacity n, where n < n∗ (m). Suppose

the number of customers who would like to reserve is AN ≤ n. Then the �rm will accept the same number

of reservations and obtain the same expected revenue regardless whether the booking capacity is equal to

n or n∗ (m). Next, suppose n < AN < n∗ (m). Then the �rm will accept a larger number of reservations

for the case when the booking capacity is n∗ (m). Because the �rm's expected revenue ΠN (m,n) given in

7For notational convenience, let pj|ξ = Pr {X = j | ξ} for any random variable X∼ Poi (ξ). For example, when the �rm
o�ers policy N , the number of customers who would attempt to reserve is a Poisson random variable AN ∼ Poi (γNλ).

Hence, pj|γNλ = Pr {AN = j} = eγNλ(γNλ)
j

j!
.
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(8) is concave in n, the �rm will earn a higher expected revenue for the case when the booking capacity

is n∗(m). Finally, suppose AN > n∗ (m) > n. Then we can use the same argument to show that the �rm

will earn a higher expected revenue for the case when the booking capacity is n∗ (m). Hence, the �rm is

worse o� by setting his booking capacity n < n∗ (m). We can use the same approach to argue that the

�rm will be worse o� if he sets a di�erent booking capacity n > n∗ (m) . This explains why the optimal

booking capacity n∗ (m) is independent of the demand rate λ.

We now examine the impact of the capacity m and the ratio rN
c on the optimal booking capacity n∗ (m)

given in (9). Observe from (9) that n∗ (m) is increasing and concave in m so that it exhibits the �pooling�

e�ect of having multiple units of capacity. To examine the pooling e�ect further, we compare the optimal

booking capacity for a single �rm with capacity of m units (i.e. n∗ (m)) and the total optimal booking

capacity for m �independent� �rms, each of which has 1 unit of capacity (i.e., m ·n∗ (1) ). By considering

(9), we establish the following lemma.

Corollary 2. Under policy N , n∗ (m) > m · n∗ (1) if and only if

m <
1

rN
c + 2 + 2

√
2
(
rN
c + 1

) (10)

Moreover, this threshold is decreasing in the ratio rN
c .

The above Corollary suggests that the pooling e�ect is more prominent (i.e., n∗ (m) > m · n∗ (1)) when

capacity m is below a certain threshold and that threshold is decreasing in the ratio rN
c . This result is

intuitive, because when the ratio rN
c is su�ciently small, each of those m independent �rms with single

unit capacity will have to be more cautious when setting their booking capacity in order to avoid the risk

of having to compensate too many customers, whereas when the ratio rN
c is large, then they can be more

aggressive when setting their booking capacity.

Next, let us examine the impact of the demand rate λ on the �rm's optimal expected pro�t ΠN (m, n∗ (m)).

In view of the expressions given in (8), the expression for ΠN (m, n∗ (m)) is complex. However, we are

able to obtain the following result:

Corollary 3. For any given demand rate λ > 0, the �rm's optimal expected revenue ΠN (m, n∗ (m))

under policy N is bounded above by λrN
2 . In addition, limm→∞ΠN (m, n∗ (m)) = λrN

2 .

The result stated in Corollary 3 is intuitive for the following reasons. For a �rm with capacity m, the

�rm cannot earn more than he would have earned under the �best case scenario� in which he accepts all

reservations without paying any penalty to those denied customers. By noting that the �rm will earn

rN · E (A) · E (ψ) = λrN
2 in the best case scenario, we obtain an upper bound on ΠN (m, n∗ (m)) . Also,

Corollary 3 asserts that this bound is tight when the �rm's capacity m→∞.

Because the expression for ΠN (m, n∗ (m)) is complex, analytical comparison between the �rm's optimal

revenue under policy N and under policy D is intractable. For this reason, we shall focus our comparison

for the case when m = 1 in Section 3.4. In preparation, we establish the following Corollary that is

intended to examine the property of the optimal booking capacity n∗ (1) for the case when m = 1.

11



Corollary 4. When m = 1, the optimal booking capacity n∗ (1) for di�erent ranges of the ratio rN
c can

be described in the following table:
rN
c ∈ (0, 2] [2, 5] [5, 9] [9, 14] [14, 20]

n∗(1) = 1 2 3 4 5

Corollary 4 suggests that when m = 1, the �rm should set his optimal booking capacity n∗ (1) at a lower

level so as to avoid paying too much penalty. This observation motivates us to compare the �rm's expected

revenue under policy N (for the case when the capacity m = 1 and the booking capacity n is small) and

the �rm's expected revenue under policy D (for any guarantee deposit d) in Section 3.4. This analytical

comparison will enable us to establish a conjecture to verify numerically in Section 3.5.

3.3 Optimal Deposit d∗ under Policy D

We now determine the optimal deposit d∗ that maximizes the �rm's expected revenue under policy D.

Recall from Section 3.1.2 that the �rm will not overbook; hence, the �rm will accept RD reservations under

policy D, where RD = min {m, AD}, AD ∼ Poi (γDλ), and the reserve probability γD is given in (5).

For any number of accepted reservations RD, the number of customers who show up is denoted by SD. By

noting that the �rm receives d for accepting a reservation and receives (rD − d) for honoring each customer

who shows up for her reserved service, the �rm's revenue satis�es ΠD (m, d) = d ·RD + (rD − d) · SD for

any realization of SD and RD. Also, due to the fact that ψ ∼ U
[

d
xD+d , 1

]
, the conditional probability of

SD = k given RD = j is given by (6). These two observations enable us to determine the �rm's expected

revenue for any deposit d, where

ΠD (m, d) = d

m−1∑
j=1

jpj|λγD +mp≥m|λγD

+

(rD − d)

m−1∑
j=1

j∑
k=1

kPr {k | j} pj|λγD +mpj≥m|λγD

m∑
k=1

kPr {k | j}

 (11)

By noting the fact that

j∑
k=1

kPr {k | j} =

j∑
k=1

k

ˆ 1

d
xD+d

(
j

k

)
ψk (1− ψ)j−k · 1

1− d
xD+d

dψ =
j

2
· xD + 2d

xD + d
,

ΠD (m, d) can be simpli�ed as:

ΠD (m, d) =

[
rDxD + d (rD + v)

2 (xD + d)

]m−1∑
j=1

j · pj|λ·γD +m · pj≥m|λ·γD

 (12)

By di�erentiating (12) with respect to d and by considering the �rst-order condition, we establish the

following result for the case when θ = 0. When θ > 0, we can impose this bound via truncation as

illustrated in Proposition 7.

Proposition 5. Under policy D, it is optimal for a �rm with capacity m to charge a guarantee deposit
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d∗ (m) that satis�es:

[(rD + d) (xD + d) + (rD − d) d] [(xD + d)P2 − ((λ+m)xD +md)P1 + λxDmP0]

= vxD (xD + d) (m+ P1 −mP0) , (13)

where Pk ,
∑m−1

j=0 jk · pj|λγD .

Although there is no explicit closed form expression for the optimal guarantee deposit d∗ (m) and the

corresponding optimal revenue ΠD (m, d∗ (m)), we can develop the following characteristics. First, by

using the implicit function theorem, one can show that d∗ (m) is decreasing in m. Also, it can be seen

from (12) that the �rm's expected pro�t is increasing in its capacity m. In addition, when the capacity

m is su�ciently large, we obtain the following result:

Proposition 6. Under policy D, the optimal deposit d∗(m) is bounded below so that d∗ (m) ≥ (v−rD)2

v+rD
>

0. Also, the �rm's optimal expected revenue ΠD (m, d∗ (m)) is bounded above so that ΠD (m, d∗ (m)) ≤
λ(v+rD)2

8v . Moreover, these bounds are tight when m→∞ so that

lim
m→∞

d∗ (m) =
(v − rD)2

v + rD
> 0 and lim

m→∞
ΠD (m, d∗(m)) =

λ (v + rD)2

8v
(14)

The above Proposition asserts that, regardless of the value of the minimum deposit θ, the �rm should

always charge a positive amount of deposit d∗ (m) > 0 under policy D.

Although we show that the optimal deposit d∗ (m) satis�es (13) in Proposition 5, we were unable to show

its uniqueness. To investigate this matter further, let us consider the special case when m = 1. It follows

from (12) that ΠD (1, d) takes the following simpli�ed form when m = 1, where

ΠD(1, d) =

[
rDxD + d (rD + v)

2 (xD + d)

] [
1− e−

λ·xD
xD+d

]
. (15)

By considering the �rst-order condition associated with (15), we establish the following result:

Proposition 7. Under policyD, it is optimal for a �rm with capacitym = 1 to charge a guarantee deposit

d∗ (1) > 0 that maximizes the �rm's expected pro�t ΠD (1, d) , where d∗ (1) = max
{
θ , min

{
rD , d

′
(1)
}}

and d
′
(1) is the unique solution to the following equation:

λ · e−
λ·xD
xD+d ·

[
rD · xD + d · (rD + v)

xD + d

]
=

(
1− e−

λ·xD
xD+d

)
v (16)

Also, d∗ (1) is increasing in the rate λ and d∗ (1) → rD as λ→∞. Moreover, it is optimal for the �rm to

charge a �partial� deposit (i.e. d∗ (1) < rD ) if and only if 1 + 2λ
(
rD
v

)
> eλ(1− rD

v ).

Proposition 7 can be interpreted as follows. First, when the demand rate λ is small, the �rm needs

to charge a small deposit d to increase the reserve probability γD given in (5) so that the number of

13



reservations RD = min {1, AD} is su�cient. On the contrary, when the demand rate λ is large, the �rm

can a�ord to charge a higher deposit d by taking reservations from those customers with high show up

probability ψ that is uniformly distributed over
[

d
xD+d , 1

]
. This explains why d∗(1) is increasing in the

rate λ and d∗ (1, d)→ rD as λ→∞.

Next, observe that 1 + 2λ
(
rD
v

)
is a strictly increasing function in

(
rD
v

)
, that eλ(1− rD

v ) is a decreasing

function in
(
rD
v

)
, that 1 + 2λ

(
rD
v

)
< eλ(1− rD

v ) when
(
rD
v

)
= 0, and that 1 + 2λ

(
rD
v

)
> eλ(1− rD

v
) when

rD
v = 1, we can conclude that 1 + 2λ

(
rD
v

)
> eλ(1− rD

v ) when
(
rD
v

)
is su�ciently close to 1 so that

d∗ (1) < rD. Intuitively speaking, when
(
rD
v

)
is su�ciently close to 1, customers are more likely to show

up for their service because their show up probability ψ under policy D is uniformly distributed over[
d

xD+d , 1
]

=
[

d
(v−rD)+d , 1

]
. Hence, the �rm can a�ord to o�er partial deposit d∗ (1) < rD without the

fear of losing the the remaining portion of the revenue (rD − d∗ (1)) due to no-shows. On the contrary,

when the the price rD is relatively low in comparison to the customer valuation v, the customer may not

show up for her reserved service. As a way to reduce the potential loss of the remaining portion of the

revenue (rD − d∗ (1)) due to no shows, the �rm should request full deposit so that d∗ (1) = rD.

3.4 Choosing the Reservation Policy: N versus D.

Because analytical comparison of ΠN (m, n∗ (m)) and ΠD (m, d∗ (m)) is intractable, we �rst examine the

case when the capacity m is very large (as m→∞) and then study the case when m is small, say, m = 1.

The results associated with these two special cases will enable us to develop a conjecture for any general

value of m > 1, which we will examine numerically in Section 3.5. To begin, let us consider the case when

m is very large. By using the results stated in Lemmas 3 and 6, we obtain the following result:

Corollary 8. When the capacity m is su�ciently large, say, m → ∞, policy N dominates policy D if

and only if:

rN > rD +
(v − rD)2

4v
.

This corollary suggests that, when capacity is abundant, say m→∞, policy N is preferred if and only if

the �rm can charge a higher retail price rN under policy N .

Next, let us consider the case when m = 1. We now compare ΠN (1, n), the �rm's expected revenue for

any given booking capacity n under policy N , and ΠD (1, d), the �rm's expected pro�t for any guarantee

deposit d under policy D. Because ΠN (1, n) given in (8) is a complex function, we shall compare these

two pro�t functions for small values of n analytically. (We shall compare the optimal expected revenues

ΠN (m, n∗ (m)) and ΠD (m, d∗ (m)) numerically in Section 3.5.) In view of Corollary 4, it is reasonable to

focus on small values of n because the optimal booking capacity n∗ is likely to be small. In preparation,

apply (7) and (2) to show that:

ΠN (1, 1) = rN · Pr {1 | 1} ·
(
1− p0|λ

)
=
rN
2
·
(

1− e−λ
)

, and (17)
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ΠN (1, 2) = rN · Pr {1|1} · p1|λ + [rN · Pr {1|2}+ (rN − c) · Pr {2 | 2}] ·
(
1− p0|λ − p1|λ

)
=
rN
2
λe−λ +

2rN − c
3

(
1− e−λ − λe−λ

)
. (18)

By considering ΠD (1, d) given in (15), we establish the following result:

Proposition 9. For any given d > 0, there exist unique thresholds τ1, τ2 > 0 such that ΠN (1, 1) >

ΠD (1, d) and ΠN (1, 2) > ΠD (1, d) if and only if the demand rate λ < τ1 and λ < τ2, respectively.

Moreover, τ1 = ∞ and τ2 = ∞ if and only if rN ≥ rD + dv
v−rd+d and 2rN ≥ 3

2

[
rD(v−rD)+d(rD+v)

v−rD+d

]
+ c,

respectively.

Proposition 9 can be interpreted as follows. When the retail price rN is su�ciently large in relation to rD,

the �rm can obtain a higher expected revenue under policy N for any demand rate λ. However, when rN

is below a certain threshold, policy N dominates policy D if and only if the demand rate λ is su�ciently

low. This is because, when the number of customers in the system is low, the �rm can use the no deposit

policy N to entice more customers to reserve so as to obtain a higher expected revenue. However, due to

the required deposit d under policy D, the �rm is unable to receive enough reservations from customers

who are willing to pay the upfront deposit d and the remaining amount (rD − d) later. Therefore, deposit

policy N dominates the guarantee deposit policy D when the demand rate λ is small.

By considering the conditions as stated in Corollary 8 (for the case when m→∞) and Proposition 9 (for

the case when m = 1) , we develop the following conjecture that speculates the conditions under which

deposit policy N dominates the guarantee deposit policy D for any general value of m ≥ 1. We shall

examine this conjecture numerically in the next section.

Conjecture 1. For any capacity m, policy N dominates policy D (i.e., ΠN (m, n∗) > ΠD (m, d∗) when

(a) the demand rate λ is su�ciently low; (b) the retail price rN is su�ciently large in relation to rD; (c)

the penalty c is su�ciently low; and (d) the customer valuation v is su�ciently low.

3.5 Numerical Analysis

In this section, we �rst develop numerical experiments to test Conjecture 1 established in the last section.

Then we examine the characteristics of the optimal retail prices r∗N and r∗D.

3.5.1 The Dominance of Policy N for any capacity m ≥ 1

We examine the conditions under which policy N dominates policy D for any general capacity m ≥ 1,

we construct our numerical experiments as follows. In each of the experiments, we set m = 5, rD = 80,

and we vary the demand rate λ from 0.1 to 20. First, we investigate the e�ect of the price rN on the

dominance of policy N . To do so, we vary rN from 80 to 130, but we �x the value of v and c so that

v = 150 and c = 20. Figure 1 (a) (below) reports the region in which policy N dominates policy D so

that ΠN (1, n∗) > ΠD (1, d∗). Speci�cally, when rN is high in relation to rD, policy N dominates policy
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D regardless of the demand rate λ. This result is consistent with the �rst statement of Proposition 9.

Also, when rN is in the medium range, policy N dominates policy D if and only if the demand rate λ is

below a certain threshold. The result is consistent with the second statement of Proposition 9. Overall,

our results support statements (a) and (b) of Conjecture 1.

Figure 1 (a) Figure 1 (b) Figure 1 (c)

Figure 1. The dominance of Policy N

Second, to examine the e�ect of the penalty c on the dominance of policy N , we vary c from 0.5 to 50, but

we �x the value of rN and v so that rN = 80, and v = 150. Figure 1b reports the region in which policy

N dominates policy D so that ΠN (1, n∗) > ΠD (1, d∗). Observe from Figure 1 (b) that, for any penalty

c, policy N dominates policy D when the demand rate λ is below a certain threshold, and this threshold

increases as c decreases. This result is intuitive because, as the penalty c decreases, the �rm can a�ord

to overbook more. This observation is based on the fact that the optimal booking capacity n∗ (m) given

in Proposition 1 is decreasing in c. Hence, as the penalty c decreases, policy N becomes more attractive.

Therefore our numerical result supports statement (c) of Conjecture 1.

Next, to investigate the e�ect of the valuation v on the dominance of policy N , we vary v from 125 to

175, but we �x the value of rN and c so that rN = 80, and c = 20. Figure 1 (c) reports the region in

which policy N dominates policy D so that ΠN (1, n∗) > ΠD (1, d∗). As shown in Figure 1 (c), for any

demand rate λ, policy N dominates policy D if and only if the valuation v is su�ciently low. This result

can be explained as follows. When the valuation v is su�ciently high, customers are more willing to pay

a guarantee deposit (even if d∗ is high) and more likely to show up for the reserved service under policy

D. Because the �rm can obtain a higher expected revenue under policy D, policy D dominates when

customer valuation v is su�ciently high. This result supports statement (d) of Conjecture 1.

Finally, to investigate the impact of capacity m on the dominant policy, we conduct the same set of

experiments as described above by varying m from 1 to 10, and we obtain similar results as before except

that the threshold curve decreases as m decreases. The pattern of this e�ect is indicated by the arrow

associated with m ↓(decreasing in m) as shown in Figures 1 (a), 1 (b) and 1 (c) (To reduce repetition, the

detailed �gures are omitted). Hence, Conjecture 1 continues to hold for di�erent values of m. In addition,

as capacity m decreases, policy N becomes less desirable. This result is intuitive because, as capacity m

decreases, the �e�ective� demand rate per unit of capacity λ′ =
(
λ
m

)
increases. Hence, as the �e�ective�
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demand rate increases, statement (a) of Conjecture 1 hinted that policy D will become more desirable

because there will be more customers with high show up probability ψ who are willing to pay a guarantee

deposit and show up for the reserved service under policy D. Hence, policy D becomes more desirable as

capacity m decreases.

3.5.2 Optimal Retail Price

We have conducted our analysis for the case when the retail prices rN and rD are given. We now determine

the optimal retail price under each deposit policy. First, let us analyze the optimal retail price r∗N that

maximizes the �rm's expected revenue under policy N . Recall from Section 3.1.1 that all customers will

attempt to reserve as long as the retail price rN ≤ v. Therefore, it is always optimal for the �rm to set

his optimal retail price r∗N = v under policy N so that the �rm can extract the entire surplus from the

customers.

We now analyze the optimal retail price r∗D that maximizes the �rm's expected revenue under policy D.

As one can observe from Propositions 5 and 7, it is extremely di�cult to analyze r∗D analytically. For this

reason, we shall compute the optimal price r∗D, the optimal deposit d∗, and the �rm's optimal revenue

ΠD (m, d∗) numerically. To examine the e�ect of capacity, demand, and minimum deposit, we determine

r∗D, d
∗, and ΠD (m, d∗) for di�erent combinations of m, λ and θ in a succinct manner. By considering

the case when customer valuation v = 150, we obtain our numerical results as summarized in Table 1

below. Observe from Table 1 that, in all cases, the optimal retail price r∗D < 150 = v = r∗N . This result

suggests that, relative to policy N , a �rm should charge a lower retail price r∗D under policy D. This

result is consistent with common practice: most hotels o�er rooms with non-refundable deposits at lower

daily rates.

m = 1 m = 5

λ = 2 λ = 8 λ = 2 λ = 8

θ = 5

r∗D = 142.75

d∗ = 5

Π∗D = 70.76

 147.6

5

115.18


 135.2

8.62

128.9


 142.2

15.88

408.26


θ = 10

r∗D = 137.55

d∗ = 10

Π∗D = 68.48

 145.35

10

114.09


 128.1

13.34

119.91


 136.35

28.12

393.65


Table 1. Optimal retail price, optimal deposit, and optimal expected revenue under policy D .

Let us examine the results reported in Table 1. First, by comparing the results reported in columns

1 and 2 (and columns 3 and 4), we can examine the impact of demand rate λ for any given capacity

m and minimum deposit θ. Observe that the optimal price r∗D, the optimal deposit d∗, and the �rm's

optimal expected revenue are non-decreasing in the demand rate λ. This result is intuitive because, as

more customers are present in the system, the �rm can a�ord to charge a higher retail price and a higher

deposit without the fear of not getting enough reservations.
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Next, by comparing the results reported in columns 1 and 3 (and columns 2 and 4), we can evaluate

the e�ect of capacity m. Clearly, the �rm can always obtain a higher expected revenue as the capacity

increases. However, the impact of capacity m on the optimal price r∗D and the optimal deposit d∗ is

unclear. Our comparisons suggest that, as capacity m increases, it is optimal for the �rm to reduce his

optimal price r∗D and to increase his optimal deposit d∗. Intuitively speaking, when the �rm has more

capacity, he is more concerned about the reserve probability γD given in (5), where γD = v−rD
d+v−rD . By

noting that γD is decreasing in the deposit d and the retail price rD, the �rm can increase the reserve

probability γD by reducing the deposit and/or the retail price. However, to mitigate the potential loss of

revenue due to �no shows,� our numerical examples suggest that it is advantageous for the �rm to reduce

the retail price and to increase the deposit as capacity becomes more abundant. This result is consistent

with the way policy D is implemented in practice: during the low season (i.e., when the capacity is large

in relation to customer demand), most �rms tend to reduce the retail price but they often command a

guarantee deposit.

Finally, by comparing the results reported in rows 1 and 2, we can examine the impact of the minimum

deposit requirement θ. In this case, it is quite clear that the optimal deposit d∗ is increasing in θ.

However, to ensure that the reserve probability γD given in (5) does not decrease too much, the �rm

needs to compensate this increase in the minimum deposit by o�ering a lower retail price.

In summary, our numerical results support Conjecture 1 established in Section 3.4 that policyN dominates

policy D (i.e., ΠN (m, n∗) > ΠD (m, d∗)) when (a) the �e�ective� demand rate λ
m is su�ciently low; (b)

the retail price rN is su�ciently large in relation to rD; (c) the customer valuation v is su�ciently low; and

(d) the penalty c is su�ciently low. Also, our numerical analysis enables us to gain a better understanding

about how capacity m, customer demand rate λ, and the minimum deposit θ a�ect the optimal retail

price r∗D and optimal deposit d∗ under policy D. Speci�cally, our numerical analysis suggests that it is

optimal for the �rm to set a higher price under policy N so that r∗N > r∗D. In view of this result, we shall

examine the duopolistic case in the next section by focusing our attention on the case when rN >rD.

4 Duopolistic Case

We now extend our analysis for the monopolistic case presented in Section 3 to the duopolistic case in

which 2 identical �rms compete in the same market with customer demand A ∼ Poi (λ). We consider the

case when the customer will behave in the following manner: (a) each customer will attempt to reserve

with the �rm that yields the higher expected surplus that is non-negative; (b) each customer will leave

the system if the higher expected surplus is negative; and (c) each customer will leave the system if her

attempt to reserve with the chosen �rm is unsuccessful. The sequence of events is the same as described

in the monopolistic case. Speci�cally, prior to the presence of customers in the system, both �rms will

announce their deposit policies simultaneously; i.e., a �rm will announce his booking capacity n if policy

N is chosen and the required deposit d if policy D is selected. Then, for each customer who is present

in the system, she would infer the deny probability (1− β) when she evaluates the expected surplus for
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reserving with a �rm who adopts policy N . Figure 2 depicts the sequence of events, where d = 0 when a

�rm adopts policy N and β = 1 when a �rm adopts policy D.

Figure 2. The sequence of events.

This section is organized as follows. In Sections 4.1-4.3 we examine the equilibria associated with the

following three subgames: (1) (N,N): both �rms adopt the no deposit policy N ; (2) (D,D): both

�rms adopt the guarantee deposit policy D; and (3) (N,D): one �rm adopts policy N , while the other

adopts policy D. By using the �rm's expected revenue obtained in equilibrium for di�erent subgames, we

characterize the Nash equilibrium of the meta-game in Section 4.4. To identify the conditions under which

a particular pair of deposit policies (N,N), (D,D), (N,D) or (D,N) will constitute an equilibrium in the

meta-game, we report our extensive numerical analysis in Section 4.5. We show that, in most cases, both

�rms will choose the same deposit policy in equilibrium (i.e., either (N,N) or (D,D) in equilibrium). In

addition, we show the Prisoner's Dilemma can occur in this meta-game. Also, when both �rms charge

the same retail price, we show the existence of an equilibrium in which both �rms adopt the no deposit

policy. Because each subgame involves the analysis of a competitive game between two �rms within

which a separate Stackelberg game is played between each �rm and the customers, the analysis of each

subgame is non-trivial and the analysis of the meta-game is highly complex. To obtain tractable results,

we shall limit our analysis to the case when the capacity of each �rm m = 1 and when the retail price is

policy-dependent (but �rm-independent) so that rN >rD.
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4.1 Subgame 1: Both Firms Adopt Policy N

Consider the case when both �rms adopt policy N and charge the same retail price rN . If a customer makes

a reservation with �rm i, i = 1, 2, then we can apply (1) to show that her expected surplus is equal to:

πNi = ψ [βixN + (1− βi) c], where i = 1, 2. We now establish the subgame equilibrium. In preparation,

let us make the following observations: (1) the expected surplus πNi is increasing in βi because of our �no

arbitrage� assumption xN = v − rN > c; (2) all customers will attempt to reserve with the �rm that has

a lower deny probability (1− βi); and (3) each �rm i can always guarantee that the reserved service will

be honored (i.e. β = 1) by setting his booking capacity to ni = 1. By using these three observations, it is

easy to check that there exists a Nash equilibrium in which neither �rm will overbook (i.e. (n1, n2) = (1, 1)

is an equilibrium). To identify other equilibria, let us establish the following Lemma:

Lemma 10. Consider the case when both �rms adopt policy N . Then the service probability of �rm 1

will be equal to the service probability of �rm 2 (i.e. β1 = β2) and each �rm will have the same reserve

probability γN1 = γN2 = 1
2 in equilibrium.

Because Lemma 10 suggests that the subgame (N, N) may have multiple equilibria, which are symmetric,

let us consider the case when n1 = n2 = n. By using the fact that the show up probability ψ ∼ U [0, 1],

we can apply (8) to show that each �rm's expected revenue can be expressed as8:

ΠN,N (n ; n) =
n−1∑
j=1

pj|γNiλ

j + 1

[
j · rN −

j (j − 1)

2
· c
]

+
pj≥n|γNiλ

n+ 1

[
n · rN −

n (n− 1)

2
· c
]
. (19)

The following result establishes the Nash equilibria for this subgame and the conditions under which one

equilibrium dominates the other:

Proposition 11. Suppose both �rms adopt policy N . Then (i) there exists an equilibrium in which both

�rms will set their booking capacity to nN,N = 1 and (ii) if ΠN

(
n∗; λ2

)
> rN

2

(
1− e−λ

)
, then there exists

a payo�-dominant equilibrium in which both �rms set their booking capacity to nN,N = n∗, where n∗ and

ΠN (·) are given by (9) and (8), respectively.

The result stated in Proposition 11 complements the result presented in Lim (2009). Speci�cally, when

low valued customers only arrive early and high valuation customers only arrive late, Lim (2009) shows

that it is a dominant equilibrium policy for both �rms to overbook so that nN,N > 1. Our results

di�ers from her's slightly, because allows customers with di�erent valuations to be present in the system

simultaneously. Therefore, Proposition 11 identi�es the condition (i.e., ΠN

(
n∗; λ2

)
> rN

2

(
1− e−λ

)
) under

which both �rms should overbook in equilibrium.

8In the duopolistic case, we use the notation ΠX,Y,(x, y) to denote a �rm's expected revenue when he adopts policy X
with decision x given that his competitor adopts policy Y with decision y. For example, ΠD,N (d, n) represents a �rm's
expected revenue when he adopts policy D with a required deposit d given that the other �rm adopts policy N with a
booking capacity n.
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To investigate the condition under which one equilibrium dominates the other, let us consider the case

when n∗ = 2. This case is interesting because it captures the case when 2 ≤ rN
c ≤ 5 as reported in

Corollary 4 in Section 3.2.

Corollary 12. Suppose 2 ≤ rN
c ≤ 5 so that n∗ = 2. Then there exists a threshold λcrit so that the

equilibrium (n∗, n∗) = (2, 2) dominates the equilibrium (1, 1) when demand rate λ > λcrit.

In view of Corollary 12, we establish the following Conjecture, which we shall examine numerically in

Section 4.6.

Conjecture 2. When both �rms adopt policy N, the equilibrium (n∗, n∗) dominates (1, 1) if and only if

the demand rate λ is su�ciently large.

4.2 Subgame 2: Both Firms Adopt Policy D

We now consider the subgame in which both �rms adopt policy D so that �rm i requires a non-refundable

deposit di ≥ θ for i = 1, 2. Without loss of generality, consider the case when d2 > d1. For any customer

with show-up probability ψ, it is easy to check from (4) that πD (d1) = −d1 + ψ · (xD + d1) > −d2 + ψ ·
(xD + d2) = πD (d2). Combine this observation with the requirement that πD (d1) ≥ 0, we can conclude

that every customer with ψ ≥ d1
xD+d1

will attempt to reserve with �rm 1. Also, every customer with

ψ < d1
xD+d1

will leave the system because her expected surplus is negative. Hence, to compete for customer

reservations under policy D, both �rms will undercut each other's required deposit. Consequently, in

equilibrium, both �rms will set their deposits at the minimum value d1 = d2 = θ, because no �rm can

obtain a higher expected revenue by setting his deposit above θ. Moreover, it is easy to check that this

equilibrium is unique. This proves the following Proposition:

Proposition 13. When both �rms adopt the guarantee deposit policy D, both �rms will require the same

deposit d∗D,D ≡ θ in equilibrium.

Because both �rms require deposit θ in equilibrium and because both �rms are identical, customers will

attempt to reserve with each �rm with the same probability γD, where

γD =
1

2
· Pr {πD(θ) ≥ 0} =

1

2
· Pr

{
ψ ≥ θ

xD + θ

}
=

xD
2 · (xD + θ)

(20)

Observe that the reserve probability γD < 1
2 for any θ > 0. Because the show up probability ψ of each

customer who reserves with either �rm satis�es ψ ∼ U
(

θ
xD+θ , 1

)
, one can apply (12) to show that each

�rm's expected revenue is equal to:

ΠD,D (θ, θ) =
rDxD + θ (rD + v)

2 (xD + θ)
·
[
1− e

− λxD
2(xD+θ)

]
(21)

By using the fact that ΠD,D (θ, θ) → 0 as λ → 0, that ΠD,D (θ, θ) is strictly increasing λ, and that

ΠD,D (θ, θ) → rD·xD+θ·(rD+v)
2·(xD+θ) when λ → ∞, the expected pro�t of each �rm in equilibrium ΠD,D (θ, θ)
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is bounded above by rD·xD+θ·(rD+v)
2·(xD+θ) ; (i.e. ΠD,D (θ, θ) ≤ rD·xD+θ·(rD+v)

2·(xD+θ) ) and this bound is tight when the

demand rate λ→∞.

4.3 Subgame 3: One �rm adopts Policy N , while the other �rm adopts Policy D.

We now examine the subgame in which one �rm adopts policy N , while the other adopts policy D. (For

ease of exposition, we shall refer to the �rm who adopts policy N as �rm N and the other �rm as �rm

D.) In this case, each customer has to decide whether to reserve and which �rm to reserve with. First,

recall from (1) that each customer can obtain an expected surplus πN = ψ · [β · xN + (1− β) · c] ≥ 0 by

reserve with �rm N . As a result, we can infer that all customers will always attempt to reserve with �rm

N unless they can obtain a higher surplus by reserving with �rm D. Also, recall from (15) that each

customer can obtain an expected surplus πD = −d + ψ · (xD + d) by reserving with �rm D. Hence, we

can conclude that each customer will attempt to reserve with �rm D if πD > πN ≥ 0 and reserve with

�rm N , otherwise. By comparing πD with πN , it is easy to check that a customer will attempt to reserve

with �rm D if her show-up probability ψ > d
d+(rN−rD)+(xN−c)·(1−β) and will attempt to reserve with �rm

N , otherwise. Because the show-up probability ψ ∼ U [0, 1], the probability that a customer attempts to

reserve with �rm D is γD (d) , where

γD (d) = Pr

{
ψ >

d

d+ (rN − rD) + (xN − c) · (1− β)

}
=

(rN − rD) + (xN − c) · (1− β)

d+ (rN − rD) + (xN − c) · (1− β)
> 0. (22)

Conversely, the probability that a customer will attempt to reserve with �rm N is equal to α ≡ γN =

1− γD (d), where

α = Pr

{
ψ <

d

d+ (rN − rD) + (xN − c) · (1− β)

}
=

d

d+ (rN − rD) + (xN − c) · (1− β)
> 0. (23)

In this case, we can interpret the probability α and γD (d) as the �market share� of �rm N and �rm D,

respectively. Thus, the number of customers who will attempt to reserve with �rm N and �rm D are

Poisson random variables with rates λα and λγD (d), respectively.

Observe from (23) that the reserve probability α ≡ γN = 1 − γD (d) depends on the probability β given

in (3), where β depends on the following elements: (i) the booking capacity n selected by �rm N ; and

(ii) α = 1 − γD (d), which depends on the the deposit d that chosen by �rm D. Therefore, we need to

use these circular relationships to estimate α = 1− γD (d) in equilibrium. In preparation, we �rst analyze

�rm D's expected revenue for any given β. Then we analyze �rm N 's expected revenue for any given α.

First, let us consider the �rm that adopts policy D. We now determine ΠD,N (d , n|β), the expected

revenue for �rm D who imposes a deposit d given any β (when �rm N sets his booking capacity to

n). Recall from (22) that each customer will attempt to reserve with �rm D if her show-up probability

ψ > d
(xN−c)·(1−β)+(rN−rD)+d . Therefore, the �e�ective� show-up probability of those who reserve with �rm
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D is uniformly distributed over
[

d
(xN−c)·(1−β)+(rN−rD)+d , 1

]
. Because m = 1, one can apply (15) to show

that:

ΠD,N (d, n|β) =

[
1− e

−λ (rN−rD)+(xN−c)·(1−β)
d+(rN−rD)+(xN−c)·(1−β)

]
·
[
d+

(
1 +

d

d+ (rN − rD) + (xN − c) · (1− β)

)
· rD − d

2

]
(24)

By considering the �rst-order condition associated with the expected revenue ΠD,N (d , n|β) given in (24),

we establish the following result:

Lemma 14. For any given β ≤ 1, there exists an optimal deposit dD,N (β) that maximizes ΠD,N (d , n|β),

where dD,N (β) = max
{
θ , min

{
d
′
(β) , rD

}}
and d

′
(β) satis�es:

(
e
λ

(rN−rD)+(xN−c)(1−β)
d+(rN−rD)+(xN−c)(1−β) − 1

)
[rN + (xN − c) (1− β)] =

λ

[
2d+

(
1 +

d

d+ (rN − rD) + (xN − c) · (1− β)

)
(rD − d)

]
(25)

Furthermore, dD,N (β) is a decreasing, continuous function of β.

Next, let us consider the �rm that adopts policy N . We now determine ΠN,D (n , d|α); i.e. the expected

revenue for �rm N for any given reserve probability γN = α. Recall from (23) that each customer will

attempt to reserve with �rm N if her show-up probability ψ < α. Therefore, the �e�ective� show up

probability of those who reserve with �rm N is uniformly distributed over [0, α]. When one �rm adopts

policy N and the other �rm adopts policy D, one can use (7) and (2) to show that ΠN,D (n , d|α) satis�es

ΠN,D(n , d|α) =

n−1∑
j=1

[
(rN + c)

(
j + (1− α)j+1

α (j + 1)

)
− cjα

2

]
·pj|λα+

[
(rN + c)

(
n+ (1− α)n+1

α (n+ 1)

)
− cnα

2

]
·pj≥n|λα

(26)

By using the same approach as in Proposition 1, we can obtain the following result:

Lemma 15. For any given reserve probability α ∈ [0, 1], there exists a unique booking capacity nN,D for

�rm N that maximizes ΠN,D (n , d|α), where nN,D (α) satis�es:

nN,D (α) = arg max
n∈N

f̂ (n;α) , (27)

where f̂ (n;α) =
(
rN
c + 1

)
· n+(1−α)n+1

α(n+1) − nα
2 is a quasi-concave function of n.

Using the results stated in Lemmas 14 and 15, we can compute the optimal booking capacity nN,D(α)

and the optimal deposit dN,D (β) for any given values of β and α. It remains to show how to compute β
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and α. To do so, let us review the aforementioned circular relationships among these quantities. First,

recall from (3) that β is a function of γN = α and nN,D, where nN,D can be expressed as a function of α

by using Lemma 15. Given β (α, nN,D), we can express dD,N (β) as a function of α and nN,D by applying

Lemma 14. It follows immediately from (23) that the reserve probability α must satisfy:

α =
dD,N (β (α, nN,D (α)))

dD,N (β (α, nN,D (α))) + (rN − rD) + (xN − c) [1− β (α, nN,D (α))]
. (28)

Hence, by solving the �xed point (i.e. the reserve probability α∗ ∈ (0, 1]) that satis�es (28), we can

retrieve other quantities as follows: we �rst compute the booking capacity n∗N,D = nN,D (α∗) for �rm

N by using Lemma 15, then compute β∗ = β
(
α∗, n∗N,D

)
using (3), and �nally compute the guarantee

deposit d∗D,N = dD,N (β∗) for �rm D by using Lemma 14.

The following proposition establishes existence of a Nash equilibrium in this subgame:

Proposition 16. There exists a Nash equilibrium in this subgame where �rm N sets his booking capacity

to n∗N,D and �rm D requires deposit d∗D,N , where
(
n∗N,D , d

∗
D,N

)
and the associated (α∗ , β∗) satisfy (28).

4.4 Analysis of Equilibria in the Meta-Game

By using the equilibrium outcomes (i.e. the booking capacity selected by �rm N and the guarantee deposit

chosen by �rm D) as stated in Propositions 11, 13, and 16, associated with subgames (N, N), (D, D)

and (N, D); respectively, we can determine the payo� of each �rm in each of the three subgames. Table

2 provides a summary of the payo� function associated with each subgame, which constitutes the payo�

function in the meta-game.

Firm 2

Policy N Policy D

Firm 1 Policy N (ΠN,N (nN,N , nN,N ) , ΠN,N (nN,N , nN,N ))
(

ΠN,D

(
n∗N,D

)
, ΠD,N

(
d∗N,D

))
Policy D

(
ΠD,N

(
d∗N,D

)
, ΠN,D

(
n∗N,D

))
(ΠD,D (θ, θ) , ΠD,D (θ, θ))

Table 2. Payo� Function in the Meta-Game.

By examining the payo�s associated with the di�erent subgames, we can establish the necessary and

su�cient conditions for a particular pair of policy (i.e. {N, N}, {D, D} or {N, D}) to be the equilibrium
policy that the �rms will adopt in the meta-game.

4.4.1 Equilibrium Policy {N, N} in the Meta-Game

We now establish the necessary and su�cient condition for {N, N} to be the equilibrium policy in the

meta-game. First, let us examine the subgame {N, N} in which both �rms will set their equilibrium

booking capacity in accord to nN,N stated in Proposition 11. By applying (19), we can compute each

�rm's expected revenue ΠN,N (nN,N , nN,N ). Thus, policy {N, N} will be the equilibrium policy in the

meta-game if and only if neither �rm can improve his expected revenue from a unilateral move by deviating
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from the adopted policy N with booking capacity nN,N . By symmetry, it su�ces to analyze this condition

associated with one �rm who makes a unilateral move (while the other �rm's policy is �xed at policy N

with booking capacity nN,N ). First, observing that nN,N is the equilibrium booking capacity in subgame

{N, N}, it is clear that this �rm cannot improve his expected revenue if he makes a unilateral move by

changing his booking capacity. Second, suppose this �rm changes his policy from N to D. Then we can

utilize the same approach as presented in Section 4.3 for the subgame {N, D} to determine this �rm's

�best response� under policy D (denoted by guarantee deposit d̃), given that the other �rm's policy is �xed

at policy N with booking capacity nN,N . By making this unilateral move, this �rm's expected revenue

is equal to ΠD,N

(
d̃ ; nN,N

)
. Hence, we can conclude that this �rm cannot improve his expected revenue

via a unilateral move if and only if ΠN,N (nN,N , nN,N ) ≥ ΠD,N

(
d̃ ; nN,N

)
. More formally, we have:

Proposition 17. Suppose both �rms adopt policy N and set the same booking capacity nN,N . Then

{N, N} will be an equilibrium policy in the meta-game if and only if ΠN,N (nN,N , nN,N ) ≥ ΠD,N

(
d̃ ; nN,N

)
,

where d̃ = dD,N (β (α̃)) and α̃ is the solution to (28).

4.4.2 Equilibrium Policy {D, D} in the Meta-Game

We now establish the necessary and su�cient condition for {D, D} to be the equilibrium policy in the

meta-game. First, let us examine the subgame {D, D} in which both �rms will set their equilibrium

deposit to θ as stated in Proposition 13 so that each �rm's expected revenue is equal to ΠD,D (θ, θ) as

given in (21). Thus, policy {D, D} will be the equilibrium policy in the meta-game if and only if neither

�rm can improve his expected revenue from a unilateral move by deviating from the adopted policy D

with a required deposit θ. By symmetry, it su�ces to analyze this condition associated with one �rm

who makes a unilateral move (while the other �rm's policy is �xed at policy D with a required deposit

θ). First, observing that θ is the equilibrium deposit in subgame {D, D}, it is clear that this �rm cannot

improve his expected revenue if he makes a unilateral move from changing his required deposit. Second,

suppose this �rm changes his policy from D to N . Then we can utilize the same approach as presented

in Section 4.3 for the subgame {N, D} to determine this �rm's �best response� under policy N (denoted

by booking capacity n̂), given that the other �rm's policy is �xed at policy D with a required deposit

θ. By making this unilateral move, this �rm's expected revenue is equal to ΠN,D (n̂ ; θ). Hence, we

can conclude that this �rm cannot improve his expected revenue via a unilateral move if and only if

ΠD,D (θ, θ) ≥ ΠN,D (n̂ ; θ). More formally, we have:

Proposition 18. Suppose both �rms adopt policy D and charge the same guarantee deposit θ. Then

{D, D} will be an equilibrium policy in the meta-game if and only if ΠD,D (θ, θ) ≥ ΠN,D (n̂ ; θ), where

n̂ = nN,D (α̂) and α̂ is the solution to (28).

4.4.3 Equilibrium Policy {N, D} in the Meta-Game

We now establish the necessary and su�cient conditions for {N, D} to be the equilibrium policy in the

meta-game. First, let us examine the subgame (N, D) in which �rm N will set his booking capacity to

n∗N,D and �rm D requires deposit d∗N,D as stated in Proposition 16. By applying (26) and (24), one can

determine �rm N 's expected revenue is equal to ΠN,D

(
n∗N,D, d

∗
N,D

)
and �rm D's expected revenue is
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equal to ΠD,N

(
d∗N,D, n

∗
N,D

)
. Thus, policy {N, D} will be the equilibrium policy in the meta-game

if and only if the following conditions hold: (1) �rm N cannot improve his expected revenue from a

unilateral move by deviating from his booking capacity at n∗N,D; and (2) �rm D cannot improve his

expected revenue from a unilateral move by deviating from his require deposit d∗N,D. By using the same

approach as presented above, we can establish these two conditions formally in the following Proposition:

Proposition 19. Suppose the two �rms adopt di�erent policies. Then {N , D} will be an equilibrium

policy in the meta-game if and only if (i) ΠN,D

(
n∗N,D, d

∗
N,D

)
≥ ΠDev,D ; and (ii) ΠD,N

(
d∗N,D, n

∗
N,D

)
≥

ΠDev,N , where:

ΠDev,D =

 ΠD

(
d̂ ; λ

)
if d∗N,D > θ

ΠD

(
d̂ ; λ

2

)
otherwise

and ΠDev,N =

{
ΠN (n̄ ; λ) if n∗N,D ≥ 2 and n̄ = 1

ΠN

(
n̄ ; λ

2

)
otherwise.

(29)

And the term d̂ =

{
min

{
d∗ , d∗N,D − ε

}
if d∗N,D > θ

θ otherwise
and n̄ =

{
nN,N if n∗N,D ≥ 2

1 otherwise

where ε > 0 is an in�nitesimally small number. Also, the functions ΠN (•) and ΠD (•) are given in (8)

and (15); and d∗ , nN,N , d
∗
D,N and n∗N,D are stated in Propositions 7, 11, 16 and 16, respectively.

By using the results stated in Propositions 17, 18, and 19, we develop Table 3 that summarizes the

necessary and su�cient condition(s) for a particular pair of policies (i.e. {N, N} ,{D, D} or {N, D}) to
be the equilibrium policy that the �rms will adopt in the meta-game.

Firm 2

Policy N Policy D

Firm 1 Policy N ΠN,N (nN,N , nN,N ) ≥ ΠD,N

(
d̃|nN,N

) ΠN,D

(
n∗N,D

)
≥ ΠDev,D

ΠD,N

(
d∗D,N

)
≥ ΠDev,N

Policy D
ΠN,D

(
n∗N,D

)
≥ ΠDev,D

ΠD,N

(
d∗D,N

)
≥ ΠDev,N

ΠD,D (θ, θ) ≥ ΠN,D (n̂, θ)

Table 3. Necessary and Su�cient Condition(s) for a pair of policy to be an equilibrium in the meta-game.

4.5 A Special Case: Policy-Independent Retail Price rN = rD

We now examine a special case in which both �rms charge the same retail price regardless of the deposit

policy so that rN = rD. By using the fact that a �rm who adopts policy N can set his service probability

β = 1 by setting his booking capacity to n = 1 (i.e. no overbooking), (1) asserts that all customers will

attempt to reserve with this �rm unless the other �rm follows suit and also adopts policy N and sets his

booking capacity to n = 1. This observation enables us to establish the following proposition:
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Proposition 20. Suppose the retail price is both policy- and �rm-independent so that rN = rD = r. Then

there exists an equilibrium in the meta-game in which both �rms adopt policy N and set their booking

capacity nN,N = 1.

Although Proposition 20 suggests that there exists an equilibrium in the meta-game in which both �rms

adopt policy N and set their booking capacity n = 1, we learn from Propositions 11 and 17 that it is

possible for another, payo�-dominant equilibrium to exist. This observation motivates us to develop the

following conjecture.

Conjecture 3. A Prisoner's Dilemma can occur when the retail prices are policy-independent; i.e. when

rN = rD.

4.6 Numerical Examples

To determine the equilibrium deposit policies associated with the meta-game that captures duopolistic

competition and to examine Conjectures 2 and 3 as established in Section 4.4 and 4.5, we conduct numerical

experiments by �xing the value rD = 80, θ = 10 and v = 150. In each experiment, we vary the demand

rate λ from 0.1 to 20 and vary the retail price rN from 80 to 130. Figures 3 (a), 3 (b) and 3 (c) report

the regions in which {N , N} or {D , D} is the unique pure-strategy equilibrium and the regions in which

both {N , N} are {D , D} are pure-strategy equilibria when c = 5, c = 10 and c = 20, respectively.9

(The region highlighted in bold corresponds to the region in which {N , N} is the equilibrium when both

�rms set their booking capacity to nN,N = 1. By noting the fact that this occurs when rN = rD = 80,

we verify Proposition 20. Also, the region with the �no equilibrium� label represents the region in which

no pure-strategy equilibrium exists). As shown in Figures 3 (a), 3 (b) and 3 (c), {D , D} appears to be

the common equilibrium policies that both �rms will adopt, followed by the equilibrium policies {N , N}.
With this set of parameter values, we noticed that policy {N , D} is never an equilibrium. However, we

discover, in some rare instances, that policy {N , D} is a Nash equilibrium. For ease of exposition, we

shall discuss these rare instances in Appendix 2.

Figure 3 (a) Figure 3 (b) Figure 3 (c)

Figure 3. Equilibrium Deposit Policies for the Meta-Game.

9We have also conducted numerical experiments to examine the e�ect of the minimum deposit θ on the equilibrium
policies when θ = 1, θ = 10 and θ = 20, respectively. By setting the penalty c = 10, we obtain similar results as reported in
Figures 3 (a), 3 (b) and 3 (c). To reduce repetition, we omit the details.
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Although we have shown analytically in Section 3.4 and numerically in Section 3.5 (Figure 1 (a)) that

policy N dominates policy D when the retail price rN is su�ciently larger than rD in the monopoly

case, when the �rms enter a duopolistic competition using the same set of parameter values, we observe

in Figure 3 that, when rN � rD, this results holds only when the penalty c and the demand rate λ

are su�ciently small. However, in contrast to the monopolistic case, we �nd that {N , N} is the unique
equilibrium policy only when the retail price rN is su�ciently close to rD (and when the demand rate λ is

su�ciently low). To understand why the equilibrium policy in the duopoly case di�ers from the monopoly

case in this occasion, let us examine the case when rN is much larger than rD. In this case, Proposition

9 and Figure 1 (a) suggest that policy N dominates policy D in the monopolistic environment. However,

in the duopolistic environment, we need to account for the interplays between the �rms. To examine the

dynamics of each �rm, let us suppose �rst that both �rms adopt policy N and set their booking capacity

to nN,N as given in Proposition 11. Because rN � rD, one can observe from (22) that: (1) a �rm can

obtain a high market share of customers by switching to policy D unilaterally; and (2) overbooking is less

bene�cial when the compensation c is large. Hence, policy D is more attractive. As one �rm switches

to policy D and obtains a high market share, the other �rm may have to follow suit to ensure su�cient

market share (if the penalty c or the demand rate λ are relatively large). Therefore, even when rN � rD,

both �rms may adopt policy D in the meta-game as shown in Figure 3. These �rms dynamics explain

why the results obtained in the duopoly case can be opposite from the results obtained in the monopoly

case.

Next, let us examine the case when no pure-strategy equilibrium exists as shown in the �no equilibrium�

region in Figure 3 (b). Let us consider a speci�c instance in which rD = 80, rN = 90, v = 150, c = 10,

θ = 10 and demand rate λ = 20. First, suppose both �rms adopt policy N in equilibrium. Then one

can apply Proposition 11 to show that each �rm will set his booking capacity nN,N = 4 and enjoy an

expected revenue ΠN,N (4, 4) = 59.98. Because the demand rate is large and the retail price rN is not

much larger than rD, one can check from (24) that a �rm can obtain a higher expected revenue (i.e.

ΠD,N (d = 80 , n = 4) > ΠN,N (4, 4)) if he unilaterally switches from policy N to policy D and charges a

deposit d̃ = 80 = rD. Consequently, {N , N} is not a Nash equilibrium. Second, suppose both �rms adopt
policy D in equilibrium. Then one can apply Proposition 13 and (21) to show that both �rms will require

the same deposit d∗D,D = θ = 10 and enjoy an expected revenue ΠD,D (10, 10) = 49.37. In this case, one

can check from (26) that one of the �rms can switch unilaterally from policy D to policy N by setting

his booking capacity to n̂ = 12 and enjoy a higher expected revenue (i.e. ΠN,D (n̂ = 12 , d = 10) = 49.47

> 49.37 = ΠD,D (10, 10). Therefore, policy {D , D} is not a Nash equilibrium either. It remains to

check to see if policy {N , D} is a Nash equilibrium. By applying (26) and (24), we can determine the

expected revenues for �rms N and D as ΠN,D

(
n∗N,D = 5, d∗N,D = 80

)
and ΠD,N

(
d∗N,D = 80, n∗N,D = 5

)
,

respectively. In this case, one can also check that policy {N , D} cannot be an equilibrium, because �rm

N can make a unilateral switch to policy D and obtain a higher expected revenue by undercutting the

other �rm D's required deposit. Based on this argument, we can conclude that there are instances in

which no pure-strategy equilibrium policy exists.

Finally, let us examine Conjectures 2 and 3 as established in Sections 4.2 and 4.5, respectively. Speci�cally,
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we consider the following instance: rN = rD = 100, c = 20, v = 150 and θ = 10. First, our numerical

analysis shows that in the subgame (N, N), both �rms will set their booking capacity to nN,N > 1 if and

only if the demand rate λ > 3. Therefore, our result supports Conjecture 2. Also, our numerical result

suggests that in this instance, there exists a unique Nash equilibrium in the meta-game in which both

�rms adopt policy N and set up their booking capacity to nN,N = 1 when the demand rate λ ≤ 3. This

result veri�es Proposition 20.

We now examine Conjecture 3 that speculates the existence of a Prisoner's Dilemma situation when

rN = rD. Consider the following instance: rN = rD = 100, c = 20, v = 150, θ = 10, and λ = 3. For

this particular instance, it can be shown that the set Pareto e�cient actions is for each �rm to adopt

policy D, require deposit d∗ = 29.79, and enjoy expected revenue ΠD,D (d∗, d∗) = 47.53. Because of the

undercutting dynamics between both �rms as exhibited in the subgame (D, D), Proposition 13 states

that both �rms will set their required deposits at θ = 10 and enjoy expected revenue ΠD,D (θ, θ) = 44.59.

However, a �rm can increase his expected revenue by making a unilateral switch from policyD to policyN .

By setting his booking capacity to n̂ = 4, this �rm can obtain a higher expected revenue: ΠN,D (n̂ , θ) =

45.19 > 44.59 = ΠD,D (θ, θ). As one �rm switches to policy N , the other �rm would follow suit. As both

�rms adopt policy N , one can check from Proposition 11 that both �rms will set their booking capacity

to nN,N = 1 in equilibrium and both �rms will obtain an expected revenue equal to ΠN,N (1, 1) = 38.84.

It is interesting to note that, had each �rm sets its booking capacity to n∗ = 3, they would have obtained

a higher expected revenue equal to ΠN,N (n∗, n∗) = 43.26 > 38.84 = ΠN,N (1, 1). Thus, we can conclude

that a Prisoner's Dilemma occurs in this instance, which supports Conjecture 3 as established in Section

4.5.

5 Discussion

We have examined how two common deposit policies (i.e. the no deposit policy N and the guarantee

deposit policy D) a�ect a rational customer's reservation decision and a �rm's optimal expected revenue.

In a monopolistic environment, we have analyzed each deposit policy as a Stackelberg game in which

the �rm acts as the leader who selects the booking capacity n under the no deposit policy N (or the

required deposit d under the guarantee deposit policy D) and each customer acts as the follower who

decides whether to reserve or not. By solving these two Stackelberg games, we have determined the

optimal booking capacity n∗ under the no deposit policy N and the optimal guarantee deposit d∗ under

the guarantee deposit policy D. In addition, we have shown that policy N dominates policy D when

when (a) the �e�ective� demand rate λ
m is su�ciently low; (b) the retail price rN is su�ciently large in

relation to rD; (c) the customer valuation v is su�ciently low; and (d) the penalty c is su�ciently low.

Also, our numerical analysis enabled us to gain additional insights about the impact of the capacity m,

the customer demand rate λ, and the minimum deposit θ on the optimal retail price r∗D, and optimal

deposit d∗ under policy D. More importantly, our numerical analysis suggested that it is optimal for the

�rm to charge a higher retail price under policy N so that r∗N >r∗D. This result may have helped us to

explain formally why it is commonly observed in practice that �rms tend to charge lower retail prices

when guarantee deposits are required.
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To understand how market competition a�ects the way a �rm selects his deposit policy, we have analyzed

a game of duopolistic competition between two �rms. For any given pair of policies adopted by the

�rms (i.e. (N, N), (D, D), (N, D) and(D, N) ), we have examined each subgame between two �rms by

incorporating the underlying Stackelberg game that is played between each �rm and its customers. By

analyzing a non-cooperative game with an embedded Stackelberg game, we have highlighted the interplays

between the two �rms and developed the subgame equilibrium that speci�es each �rm's decision for any

given pair of policies. By comparing the payo�s associated with di�erent pairs of policies, we have

developed conditions under which a particular pair of policies constitutes the equilibrium policy to be

adopted by both �rms in the meta-game. Our numerical analysis enabled us to obtain the following

insights: (1) policy {D , D} is the most common equilibrium policy that both �rms will adopt in the

meta-game; (2) policy {N , N} is a unique equilibrium policy for the meta-game when the demand rate

λ and the retail price rN is su�ciently small; (3) policy {N , D} can be the equilibrium policy in rare

occasions; (4) equilibrium policy are not necessarily unique; (5) a pure-strategy equilibrium may not exist

in some cases; and (6) the Prisoner's Dilemma can certainly occur in the meta-game. Finally, when both

�rms charge the same retail price, we have shown that there exists an equilibrium in which both �rms

adopt the no deposit policy N .

There are various research opportunities for addressing the limitations of the model presented in this

paper. First, it would be of interest to examine other deposit policies including cancelable reservations

with partial refunds. Second, we have assumed that all customers are present simultaneously in the system.

It would be of interest to analyze the case when customers arrive dynamically over time according to a

certain stochastic process and when the �rm can adjust its retail price dynamically over time. Third, our

model assumes that all parties are risk-neutral. It would be of interest to examine the case when �rm

and customers are risk-averse. Fourth, our model assumes that each customer will leave the system if

her attempt to reserve with a �rm fails. It would be of interest to extend our model to the case when

each customer would consider reserving with the other �rm after a failed attempt before she leaves the

system. Fifth, our model does not incorporate the existence of speculators in the system who do not care

for the service but they have a strong desire to get the compensation c for being denied. For instance,

in the airline industry, there are passengers who are eager to give up their seats voluntarily in order to

receive compensations. Sixth, our model assumes common knowledge. It would be of interest to examine

a situation in which customers do not know the �rm's booking capacity under policy N . Finally, another

potentially interesting extension could be the extension of the duopolistic model to a K-�rm oligopolistic

model.
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Appendix 1: Proofs

Proposition 1:

Proof. Let ∆ (n) , (ΠN (m,n+ 1)−ΠN (m,n)) be the marginal gain for increasing the booking capacity

from n to (n+ 1). By using (7) and by rearranging various terms, one can show that ∆ (n) can be

re-expressed as: ∆ (n) = (ΠN (m,n+ 1)−ΠN (m,n)) = [f (n+ 1)− f (n)] c2 · p≥n+1|λ , where

f (n) = 2
(rN
c

+ 1
) m∑
k=1

kPr {k|n}+ 2m
(rN
c

+ 1
) n∑
k=m+1

Pr {k|n} − 2
n∑
k=1

kPr {k|n} (30)

By using the fact that p≥n+1|λ = Pr {A ≥ n+ 1} > 0, we can conclude that the optimal n∗ that maximizes

the �rm's expected revenue ΠN (n) is equal to the optimal n∗ that maximizes the function f(n) given in

(30). Hence, it remains to determine the optimal n∗ that maximizes the function f(n). By using (2), the

function f(n) can be simpli�ed as: f (n) = m
(
rN
c + 1

) (
2n+1−m
n+1

)
−n. Since the function f(n) is concave

in n, we can use the di�erence equation de�ned by ∆f (n) , f (n+ 1)− f (n) =
(
rN
c + 1

) m(m+1)
(n+1)(n+2) − 1,

to show that n∗ ∈
{⌊√(

rN
c + 1

)
m (m+ 1)− 1

⌋
, d•e

}
. This completes our proof.

Corollary 2:

Proof. Let ξ , rN
c + 1. Observe from (9) that n∗ (m) > m · n∗ (1) if and only if

√
ξm (m+ 1) >(√

2ξ − 1
)
m + 1. Squaring both sides, re-arranging terms, this condition can be simpli�ed as: m <

1

(ξ−2
√

2ξ+1)
. Our result follows immediately by using the fact that ξ = r

c + 1.

Corollary 3:

Proof. Observe from (8) that ΠN (m, n∗ (m)) is increasing in the capacity m. To establish an upper

bound on ΠN (m, n∗ (m)) , it su�ces to examine the case when m → ∞. As m → ∞, (9) suggests that

n∗ (m) → ∞. This implies that the �rm has enough capacity to accept and to serve all customers who

attempt to reserve so that the �rm will not deny service to any customer. Hence, (7) suggests that the

�rm's expected revenue can be re-written as: limm→∞ΠN (m,n∗ (m)) =
∑∞

j=1

∑j
k=1 krN Pr {k | j} pj|λ =∑∞

j=1
rN
j+1pj|λ

∑j
k=1 k = λrN

2 . This completes the proof.

Corollary 4:

Proof. Observe that the di�erence equation ∆f (n) , f (n+ 1)− f (n) =
(
rN
c + 1

) m(m+1)
(n+1)(n+2) − 1, where

the function f(n) is given in Proposition 1. When m = 1, the di�erence equation reduces to ∆f (n) =(
rN
c + 1

)
2

(n+1)(n+2) − 1. Since f (n) is concave, it follows that n∗ = k if and only if ∆f (k − 1) ≥ 0 and

∆f (k) ≤ 0. The result follows immediately by substituting k = 1, ..., 5 into ∆f (k).

Proposition 5:

Proof. First di�erentiate (12) with respect to d and solve for ∂
∂dΠD (m, d) = 0. By re-arranging the terms,

de�ning Pk ,
∑m−1

j=0 jkpj|λγD , it is easy to show that the �rst order condition satis�es (13).
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Proposition 6:

Proof. Because d∗ (m) is decreasing in m and ΠD (m, d∗ (m)) is increasing in m, it su�ces to ana-

lyze the case when m → ∞. Using the results in corollary 5, observe that as m → ∞, P0 → 1,

P1 → λxD
xD+d and P2 → λxD

xD+d

(
λxD
xD+d + 1

)
. Substituting into (13) the �rst order condition reduces to

λxD
2

[
x2D−(xD+2rD)d∞

(xD+d∞)3

]
= 0, which implies that d∗ (m) =

x2D
xD+2rD

as m → ∞. Noting that (11) can be re-

written as ΠD (m, d) =
[

(rD+d)(xD+d)+d(rD−d)
2(xD+d)

]
(m+ P1 −mP0), substituting d∗ (m) =

x2D
xD+2rD

we obtain

limm→∞ΠD (m, d∗ (m)) = λ(xD+2rD)2

8(xD+rD) . Finally, substituting v = xD+rD we obtain the desired result.

Proposition 7:

Proof. First, we di�erentiate (15) with respect to d, getting ∂
∂dΠD(1, d) =−1

2
λxD

(xD+d)2
e
− λ·xD
xD+d ·

[
rD·x+d(rD+v)

xD+d

]
+

1
2

(
1− e−

λxD
xD+d

)
xDv

(xD+d)2
. Then solving for ∂

∂dΠD (1, d) = 0 we obtain the �rst-order condition in (16). By

noting that ∂
∂d

[
e
− λ·xD
xD+d

]
> 0 and ∂

∂d

[
rDxD+d(rD+v)

xD+d

]
> 0, we can conclude that the LHS of (16) is strictly

increasing in d the the RHS is strictly decreasing in d. By observing that λ ·e−λ ·r <
(
1− e−λ

)
v, it is easy

to check from (16) that the LHS is strictly less than the RHS when d = 0. Combine this observation with

the fact that the LHS is strictly increasing and the RHS is strictly decreasing in d, we can conclude that

the �rst-order condition has a unique solution d
′
(1) > 0. Because ΠD (1, d) is concave in d, the optimal

deposit satis�es d∗ (1) = max
{
θ , min

{
rD , d

′
(1)
}}

. Next, by considering ∂
∂dΠD(1, d) given above, one

can check that ∂
∂dΠD (1, d) |d=rD < 0 if and only if 1 + 2λ

(
rD
v

)
> e

λxD
v . Hence, we can conclude that

d∗ < rD if and only if 1 + 2λ
(
rD
v

)
> eλ(1− rD

v ). To complete the proof, di�erentiate (16) with respect to

λ, apply the implicit function theorem to show that ∂d
′
(1)

∂λ > 0 and it follows by monotonicity that d∗ (1)

is increasing in λ.

Corollary 8:

Proof. The result follows immediately from comparing the �rm's expected revenue reported in Lemma 3

and from Lemma 6. We omit the details.

Proposition 9:

Proof. First, let us examine the case when n = 1. De�ne h1 (λ) , 2 [ΠD (1, d)−ΠN (1, 1)] =
[
rDxD+d(rD+v)

xD+d

]
·(

1− e−
λ·xD
xD+d

)
− rN

(
1− e−λ

)
. It is easy to check that h1 (0) = 0 and h1 (λ) → rD + dv

v−rd+d − rN as

λ → ∞. Di�erentiating h1 we obtain d
dλh1 (λ) = e−λ

[
rD·xD+d·(rD+v)

(xD+d)2
xD · e

λd
xD+d − rN

]
. First note that

e−λ > 0 ∀λ and the term inside the bracket is increasing in λ. Then for any given d, it is easy to check

from d
dλh1 (λ) that there exists some threshold κ such that the function h1 (λ) �rst decreases and then

increases if and only if λ > κ. It is easy to check that there exists a threshold τ1 such that h1 (λ) < 0

if and only if λ < τ1. Moreover, one can show that τ1 = ∞ if and only if rD + dv
v−rd+d < rN . Thus, we

can conclude that such that ΠN (1, 1) < ΠD (1, d) if and only if λ < τ1. This proves the statement for the
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case when n = 1. By using the same approach, we can complete the proof for the case when n = 2. We

omit the details.

Lemma 10:

Proof. We have already established the equilibrium n1 = n2 = 1 in which case β1 = β2 = 1 holds. This

implies that πN1 = πN2 and therefore customers are indi�erent as to which �rm to reserve with. Therefore,

each �rm enjoys the same reserve probability γN = 1
2 in equilibrium. Since n1 = n2 = 1 is an equilibrium,

it su�ces to check β1 , β2 for n1, n2 ≥ 2. We aim for a contradiction. Without loss of generality, suppose

that β1 > β2. Then our observation (2) asserts that all customers will attempt to reserve with �rm 1,

while no customer will attempt to reserve with �rm 2. Consequently, β1 < 1 = β2, contradicting the

assumption. Hence we must have β1 = β2 in equilibrium. Combining this observation with the fact that

the customer's expected surplus πNi = ψ [βixN + (1− βi) c] ≥ 0 , we can conclude that all customers will

attempt to reserve and all customers are indi�erent about these two �rms. Consequently, both �rms have

the same reserve probability so that γN1 = γN2 = 1
2 .

Proposition 11:

Proof. First, we have already shown that nN,N = 1 is a Nash equilibrium. Next, it follows from Lemma

10 that γN1 = γN2 = 1
2 and from Proposition 1 that the optimal booking capacity n∗ given in (19) is

independent of its demand rate, so we can conclude that n∗ is the same as the optimal booking capacity

given in (9). To proceed, consider the case when both �rms set n1 = n2 = n∗ ≥ 2 (the case when

n∗ = 1 is trivial), so that each �rm has the same reserve probability. Observe that a �rm cannot increase

his reserve probability (and thus his expected revenue) unless he unilaterally sets ni = 1. By noting

that the expected revenue is equal to ΠN (1;λ) = rN
2

(
1− e−λ

)
, (n∗, n∗) is an equilibrium if and only if

ΠN

(
n∗; λ2

)
≥ rN

2

(
1− e−λ

)
. Noting that each �rm will have the same reserve probability in equilibrium, it

follows from Proposition 1 that ΠN

(
n∗; λ2

)
> ΠN

(
1; λ2

)
∀λ > 0 and as a result if (n∗, n∗) is an equilibrium,

then it payo�-dominates the equilibrium (1, 1). This completes our proof.

Corollary 12:

Proof. First note that ΠN (1;λ) = rN
2

(
1− e−λ

)
and rN

c ≥ 2. Next de�ne h
(
rN
c , λ

)
, 6

c

[
ΠN

(
n∗; λ2

)
− rN

2

(
1− e−λ

)]
.

It is easy to check from (18) that: h
(
rN
c , λ

)
=
(
4 rNc − 2

) (
1− e−

λ
2

)
−
(
rN
c − 2

)
λ
2 e
−λ

2 − 3 rNc
(
1− e−λ

)
and di�erentiating with respect to λ we obtain

∂h( rNc ,λ)
∂λ = e−

λ
2

[(
rN
c + 1

)
− 3 rNc e

−λ
2 + λ

4

(
rN
c − 2

)]
. To

proceed, note that e−
λ
2 > 0 and let us de�ne ĥ

(
rN
c , λ

)
, e

λ
2
∂h( rNc ,λ)

∂λ =
(
rN
c + 1

)
− 3 rNc e

−λ
2 + λ

4

(
rN
c − 2

)
.

Noting that (i) ĥ
(
rN
c , λ = 0

)
= −

(
2 rNc − 1

)
< 0 , (ii) ĥ

(
rN
c , λ→∞

)
> 0, (iii) ĥ

(
rN
c , λ

)
is increasing in

λ and (iv) h
(
rN
c , λ→∞

)
= rN

c − 2 ≥ 0, we can conclude by the mean-value theorem that there exists

some λcrit such that ΠN

(
n∗; λ2

)
≥ rN

2

(
1− e−λ

)
∀λ > λcrit. This completes the proof.

Proposition 13:

Proof. Omitted.
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Lemma 14:

Proof. Showing that equation (25) satis�es the �rst order conditions for ΠD,N (d;β) involves a simple

di�erentiation of (24) with respect to d and the proof is omitted. To simplify the analysis, we de�ne

y (d, β) , LHS − RHS of (25). Letting d = 0, it is easy to check that for �xed β, y (d = 0, β) =(
eλ − 1

)
[rN + (xN − c) (1− β)] − λrD > 0 as long as rN − rD ≥ 0. Letting d → ∞, it is easy to check

that y (d→∞, β) = −∞. Moreover, y (d, β) is strictly decreasing and continuous in d. We can therefore

conclude by the mean value theorem that given �xed β, there exists some unique d
′
(β) that maximizes

ΠD,N (d ; β). Because ΠD,N (d ; β) is concave in β, it follows that dD,N (β) = max
{
θ , min

{
d
′
(β) , rD

}}
maximizes ΠD,N (d ; β) on [θ, rD].

Now we �un�x� β. It is easy to check that for any �xed d, y (d, β) is strictly decreasing in β, since the

LHS is strictly decreasing in β, while the RHS is strictly increasing in β. Therefore ∀β1 > β2 it follows

that for any �xed d ≥ 0, y (d, β1) < y (d, β2).

We can thus conclude that ∃d1 , d2 that satisfy y (d1, β1) = y (d2, β2) = 0 and d1 < d2. Therefore d
′
(β)

is strictly decreasing in β. Since y (d, β) is continuously di�erentiable in both d, β, we can also conclude

that d
′
(β) is continuous in β.

By monotonicity it follows that dD,N (β) is a decreasing, continuous function of β and this completes the

proof.

Lemma 15:

Proof. Let ∆N,D (n) , ΠN,D (n+ 1;α) − ΠN,D (n;α) be the marginal gain for increasing the booking

capacity from n to (n+ 1). By using (26) and rearranging various terms, one can show that ∆N,D (n)

can be re-expressed as: ∆N,D (n) =
[
f̂ (n+ 1;α)− f̂ (n;α)

]
· c · pj≥n+1|λα, where f̂ (n;α) =

(
rN
c + 1

)
·

n+(1−α)n+1

α(n+1) − nα
2 . By noting that pj≥n+1|λα > 0, we can conclude that the optimal n∗N,D that maximizes

�rm N 's expected revenue ΠN,D (n;α) is equal to the n∗ that maximizes f̂ (n;α).

As a result, it su�ces to show that f̂ (n;α) is a quasi-concave function of n. Observe that ∂
∂n

(
−nα

2

)
=

−α
2 < 0 and ∂

∂n

(
n+(1−α)n+1

α(n+1)

)
=

1+[ln(1−α)n+1−1](1−α)n+1

α2(n+1)2
≥ 0 . To prove the last inequality, observe

that it su�ces to show that: 1 +
[
ln (1− α)n+1 − 1

]
(1− α)n+1 ≥ 0. Rearranging the terms in the

above inequality, it is easy to check that it reduces to: (1− α)n+1 ln (1− α)n+1 ≥ (1− α)n+1 − 1 .

By properties of the natural logarithm, the above inequality holds for all (1− α)n+1 > 0. Furthermore:

limn→∞
∂
∂n

(
n+(1−α)n+1

α(n+1)

)
= 0 and limn→∞ f̂ (n;α) = −∞. This implies that n+(1−α)n+1

n+1 is increasing with

a slope that diminishes to 0 as n grows large, while −nα
2 is decreasing with a constant slope. Therefore

f̂ (n;α) is a quasi-concave function of n and this completes our proof.

Proposition 16:

Proof. For �xed n ∈ N de�ne the function q (αn) , dD,N (β(αn,n))
dD,N (β(αn,n))+(rN−rD)+(xN−c)[1−β(αn,n)] . Note that

β (αn, n) is a continuous function conditional on n being �xed and by lemma 14, dD,N (•) is also a

continuous function, so q (αn) is a continuous function. Noting that q : [0, 1] → [0, 1], where [0, 1] is a

compact set, it follows by Brouwer's �xed point theorem that for every n ∈ N, the exists some αn ∈ [0, 1]

that satis�es αn = q (αn). So far, we have established that ∀n ∈ N, there exists some αn that satis�es
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q (αn) = αn. Since by assumption there exists some upper bound N̄ ∈ N, the sequence {αn}n∈{1,...,N̄}
is �nite and as a result, there exists some n∗N,D that satis�es n∗N,D = arg maxn∈{1,...,N̄} f̂ (n;αn), where

f̂ (n;αn) was given in (27). Finally, note that such n∗N,D trivially satis�es n∗N,D = nN,D

(
αn∗N,D

)
and this

completes the proof.

Proposition 17:

Proof. Recall from Lemma 14 that, in the subgame (N,D), it is optimal for �rm D to charge a deposit

dD,N (β) in equilibrium. Also, recall from 3.1.1 that β can be expressed as a function of the reserve

probability γN = α and the booking capacity n. Therefore, �rm D's best response is to set his guarantee

deposit d̃ = dD,N (β (α̃)), where α̃ satis�es (28) for the case when �rm N sets his booking capacity to

nN,N , getting α̃ = d̃
d̃+(rN−rD)+(xN−c)(1−β(α̃,nN,N))

. Similarly to above, existence of such α̃ follows from

the �rst part of the proof of Proposition 16 and is omitted here. Therefore, policy {N , N} will be an

equilibrium when a unilateral move is undesirable; i.e., when ΠD,N

(
d̃ ; nN,N

)
≤ ΠN,N (nN,N , nN,N ). This

completes the proof.

Proposition 18:

Proof. Recall from Lemma 15 that, in the subgame (N, D), it is optimal for �rm N to set his booking

capacity nN,D (α) in equilibrium. Also, recall from 3.1.1, β can be expressed as a function of the reserve

probability γN = α and the booking capacity n. Therefore, �rm N 's best response is to set its booking

capacity to nN,D (α̂), where α̂ satis�es the reserve probability α̂ = θ
θ+(rN−rD)+(xN−c)(1−β(α̂,n̂)) as given in

(28) for the case when d = θ. Existence of such α̂ and n̂ follows by the same arguments as in the proof

for Proposition 16 and are therefore omitted here. Trivially, the associated expected revenue for the �rm

deviating to policy N will be equal to ΠN,D (n̂ ; θ). Therefore {D , D} is an equilibrium policy if and

only if such optimal deviation is not desirable ; i.e. when ΠD,D (θ, θ) ≥ ΠN,D (n̂ ; θ). This completes the

proof.

Proposition 19:

Proof. First, let us examine the optimal deviation strategy for �rm N . It follows from Proposition 16

that a �rm cannot increase his expected revenue by requiring a deposit di�erent than d∗D,N . As a result,

it su�ces to check only strategies in which the �rm switches to policy D. By the same argument used for

Proposition 13, the �rm cannot capture any market share if he requires deposit d̂ > d∗D,N . To proceed,

�rst suppose that d∗D,N > θ. Then the �rm can enjoy market share γD = xD
2·(xD+d∗D,N)

by setting d̂ = d∗D,N

or γD = xD
xD+d̂

by setting d̂ < d∗D,N . Noting that there exists some d∗ ≥ θ that maximizes the �rm's

expected revenue when it operates in a monopoly, it is easy to check that the �rm's optimal strategy is

to set d̂ = min
{
d∗ , d∗D,N − ε

}
, where ε > 0 is an in�nitesimally small number 10. Now suppose that

10Technically, if d∗ > d∗N,D then a best response does not exist, because any response that yields a positive expected
revenue must lie in interval

[
d∗N,D − ε, d∗N,D

)
and this interval is not compact. As a result, for every response, a better

response exists and at the limit d̂→ d∗N,D, which is clearly not a best response. This issue can be resolved easily by letting
the deposit d only take values on a discrete grid (i.e. d ∈ {θ, θ + ε, ..., rD − ε, rD}, where ε > 0 is �xed). Because this
technicality has negligible e�ect for ε su�ciently small, we choose to omit it for tractability.
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d∗D,N = θ and noting that the �rm cannot capture any market share by requiring deposit d̂ > d∗D,N , we

can conclude that the optimal strategy is to set d̂ = d∗D,N = θ.

Now let us examine the optimal deviation strategy for �rm D. As before, it follows by Proposition 16 that

a �rm cannot increase his expected revenue by setting his booking capacity to any value other than n∗N,D.

As a result, it su�ces to check only strategies in which the �rm switches to policy N . First, suppose that

n∗N,D ≥ 2. Then it follows by lemma 10 that the �rm can capture 1
2 of the market share if it sets its

booking capacity to n̄ ≥ 2 or the entire market share if it sets his booking capacity to n̄ = 1. It follows by

Proposition 11 that the optimal strategy is to set n̄ = nN,N , where nN,N = n∗ if ΠN

(
n∗; λ2

)
> 1

2

(
1− e−λ

)
and nN,N = 1 otherwise. Now suppose that n∗N,D = 1 and note that the associated service probability

β = 1 as a result. Because the �rm cannot capture any market share unless it also sets n̄ = 1, we conclude

that the optimal strategy is to set his booking capacity to n̄ = 1.

Finally, using (8) and (15) it is easy to check that the expected revenue associated with the optimal

deviation strategies satisfy (29). This completes our proof.

Proposition 20:

Proof. Suppose both �rms adopt policy N and set their booking capacity to nN,N = 1. It follows from

4.1 that (1, 1) is an equilibrium for the subgame (N ,N). Using (23) it follows from (i) the fact that

nN,N = 1⇒ β = 1 and (ii) the assumption that rN = rD, that the reservation probability for �rm N and

for �rm D is γN = 1 and γD = 0 ∀d > 0, respectively. As a result a �rm cannot capture any market share

by deviating to policy D and we can thus conclude that there exists an equilibrium in the meta-game in

which both �rms adopt policy N and set their booking capacity to nN,N = 1.

Appendix 2: The Existence of Asymmetric Equilibrium Policy {N , D}

As reported in Section 4.6, {D , D} appears to be the most common equilibrium policies that both �rms

will adopt, followed by the equilibrium policies {N , N}. Because both �rms are identical, one would

expect all equilibria for the meta-game to be symmetric. As it turns out, there are rare instances in which

policy {N , D} is the unique Nash equilibrium for the meta-game. In this appendix, we �rst establish

the existence of this asymmetric equilibrium policy {N , D} using a speci�c numerical example. Then we

provide some basic intuition to explain why such an asymmetric equilibrium exists.

Consider the case when rN = rD = 100, v = 150, c = 5, θ = 20, and λ = 3.5. First, in the subgame

(N, N), one can check from Proposition 11 that both �rms will set their booking capacity to nN,N = 6

in equilibrium so that each �rm can obtain an expected revenue ΠN,N (nN,N , nN,N ) = 51.05. In this case,

one can check from Proposition 17 that ΠN,N (nN,N , nN,N ) = 51.05 < 52.86 = ΠD,N

(
d̃ = θ = 20; nN,N

)
,

where d̃ is the best response in the event when one of the �rms makes a unilateral move to adopt policy D.

As the condition for {N , N} to be an equilibrium policy in the meta-game as stated in Proposition 17 is

violated, we can conclude that {N , N} is not an equilibrium for the meta-game in this speci�c instance.
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Next, us examine the (D, D) subgame. Proposition 13 claims that both �rms will require deposit d∗D,D =

θ = 20 in the subgame equilibrium, and each �rm can obtain an expected revenue ΠD,D (θ, θ) = 50.96.

It follows from Proposition 18 that ΠD,D (θ, θ) = 50.96 < 53.89 = ΠN,D (n̂ = 8 ; θ), where n̂ is the best

response in the event when one of the �rms makes a unilateral move to adopt policy N . As the condition

for {D , D} to be an equilibrium policy in the meta-game as stated in Proposition 18 is violated, we can

conclude that {D , D} is not an equilibrium for the meta-game in this speci�c instance.

It remains to examine the (N, D) subgame as discussed in Section 4.3. One can check from Proposition

16 that, in the subgame equilibrium, �rm N will set n∗N,D = 8 and �rm D will require deposit d∗D,N = 20.

As a result, �rm N and D will obtain an expected revenue ΠN,D

(
n∗N,D = 8, d∗D,N = 20

)
= 53.89 and

ΠD,N

(
d∗D,N = 20, n∗N,D = 8,

)
= 52.95, respectively. To check if {N , D} is an equilibrium policy in the

meta-game, it su�ces to check if there exists a pro�table unilateral move for each �rm. In this case,

we can apply Proposition 19 to show that both conditions (i) and (ii) hold; hence we can conclude that

{N , D} is the unique Nash equilibrium in the meta-game in this instance.

After establishing the existence of an asymmetric equilibrium policy{N , D} as the unique Nash equilib-

rium in the meta-game, we now provide the basic intuition to explain why such an symmetric equilibrium

policy{N , D} exists. When both �rms adopt the same policy (i.e. under (N, N) or (D, D)), they com-

pete for customers in the same segment (with the same show up probability distribution) by undercutting

each other's booking capacity under policy(N, N) (or each other's required deposit under policy (D, D)).

Consequently, one can check from the equilibrium outcomes from Propositions 11 and 13 that a Prisoner's

Dilemma situation can occur under policy (N, N) or (D, D). On the contrary, under policy (N, D), one

can observe from (21) and (22) that �rm N and �rm D compete in di�erent customer segments: �rm N

focuses on customers whose show up probability ψ < d
d+(rN−rD)+(xN−c)·(1−β) , �rm D focuses on customers

whose show up probability ψ > d
d+(rN−rD)+(xN−c)·(1−β) , and both �rms capture the entire market. Hence,

policy (N, D) appears to be more e�cient in terms of market segmentation. However, our numerical

experiments reveal that policy (N, D) serves as the unique Nash equilibrium in the meta-game on rare

occasions, which tend to occur when the demand rate is medium because policy (N, N) (policy (D, D))

tends to be the Nash equilibrium when the demand rate λ is low (high) as observed in Figure 3 and

speculated in Conjecture 1.
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