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Abstract

SOME COUNT TIME SERIES RESULTS

by

Jiajie Kong

Count time series are now widely encountered in practice. This dissertation

contains three projects on count time series.

Our first project uses a recent advance in stationary count time series to de-

velop a general seasonal count time series modeling paradigm. The model constructed

here permits any marginal distribution for the series and the most flexible autocor-

relations possible, including those with negative dependence. Likelihood methods of

inference are explored. The project first develops the modeling methods, which entail

a discrete transformation of a Gaussian process having seasonal dynamics. Properties

of this model class are then established and particle filtering likelihood methods of pa-

rameter estimation are developed. A simulation study demonstrating the efficacy of

the methods is presented and an application to the number of rainy days in successive

weeks in Seattle, Washington is given.

Our second project reviews and compares popular methods that produce count

time series having Poisson marginal distributions. The project begins by reviewing

common ways that count series with Poisson marginal distributions can be produced.

Statistical estimation methods are next discussed for some of the more worthy methods.

Modeling nonstationary series with covariates motivates consideration of methods where

xi



the Poisson parameter depends on time. The methods are illustrated in the analysis

of two series: 1) a count sequence of major hurricanes occurring in the North Atlantic

Basin since 1970, and 2) the number of no-hitter games pitched in major league baseball

since 1893.

Our third project develops a mathematical model and statistical methods to

quantify trends in presence/absence observations of snow cover (not depths) and ap-

plies these in an analysis of Northern Hemispheric observations extracted from satellite

flyovers during 1967-2021. A two-state Markov chain model with periodic dynamics is

introduced to analyze changes in the data in a grid by grid fashion. Trends, converted to

the number of weeks of snow cover lost/gained per century, are estimated for each study

grid. Uncertainty margins for these trends are developed from the model and used to

assess the significance of the trend estimates. Grids with questionable data quality are

explicitly identified. Among trustworthy grids, snow presence is seen to be declining in

almost twice as many cells as it is advancing. While Arctic and southern latitude snow

presence is found to be rapidly receding, other locations, such as Eastern Canada, are

experiencing advancing snow cover.
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Chapter 1

Introduction

This dissertation seeks to further develop flexible methods to model correlated

count time series. Much of the work furthers a recent breakthrough in Jia et al. (2023)

in modeling count series having a particular preset marginal distribution. Having a par-

ticular marginal distribution for the series allows one to make more accurate inferences.

For example, probabilities of the variables at a specific time may be of interest; the

series’ marginal distribution is needed to compute these. As we will see, hundreds of

recent papers have focused on developing strictly stationary time series with a specific

marginal distribution.

The work here is partitioned into three projects. In the first project, we develop

a model for seasonal (periodic) count data and establish some asymptotic theory for the

setup. Our methods are evaluated through simulation studies and application to rainy

day counts recorded in Seattle, Washington. This project has been published in The

Journal of Time Series Analysis.

1



Our second project considers the classical Poisson count distribution, studying

ways that construct count series having a marginal Poisson distribution. Time-varying

dynamics, essentially allowing one to conduct a Poisson regression in correlated settings,

are developed. This paper will be submitted to The Journal of Time Series Analysis

shortly.

Our third project is a case study of snow absence/presence trends in the North-

ern Hemisphere over the last 50 years. This data are recorded weekly, and hence are

highly seasonal with snow cover being absent except at the most mountainous or Arctic

stations. The data are zero-one valued, with one indicating snow cover. As such, the

methods need to account for seasonality and trends in binary data. This study has been

published in The Journal of Hydrometeorology.

1.1 Background

Correlated random phenomena have been widely studied in recent decades.

In time series settings, Gaussian models have dominated the landscape due to their

flexibility and ease of interpretation (Brockwell and Davis (2009); Shumway and Stoffer

(2017); Cressie (2015); Cressie and Wikle (2015); Banerjee et al. (2014) among many

others). Gaussian methods are completely specified by their first and second moments

(we call the second moment the covariance or autocovariance function). Unfortunately,

count series may not be completely specified by their first two moments. Non-Gaussian

issues become particularly important to account for in the case of small counts, the

2



extreme being a binary series supported on {0, 1}. As such, non-Gaussian models are

needed to adequately describe count series.

As the majority of count data are defined on subsets of {0, 1, 2, · · · }, we isolate

to this support set here. For example, the number of rainy days in a week, which is

examined in our first project, must lies in {0, 1, 2, 3, 4, 5, 6, 7}, for example.

While the popular generalized linear modeling methods capably describe in-

dependent count data, they cannot describe scenarios where the counts are correlated.

Researchers began to devise count models having correlation in the 1980s (McKenzie

(1985, 1986, 1988)); the subject has become a very active research area today. We now

briefly review some count time series approaches of the past.

Inspired by the highly successful autogressive moving-average (ARMA) models,

early researchers mimicked the ARMA modeling paradigm to construct count series.

For one example, a first order integer autoregression (INAR(1)) series is built with a

thinning operator ◦ and success parameter p ∈ (0, 1) via the AR(1)-type equation

Xt = p ◦Xt−1 + ϵt.

Here, {ϵt} is an independent and identically distributed (IID) count-valued random

sequence and p ◦ Y is defined as

p ◦ Y =
Y∑
i=1

Bi
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for any count valued random variable Y , where {Bi}∞i=1 is a collection of IID Bernoulli

trials, independent of Y , with success probability p.

The INAR(1) covariance function is known to have the form Corr(Xt+h, Xt) =

ph. Since p ∈ [0, 1] must be non-negative, negatively correlated series cannot be pro-

duced from INAR(1) models. Other authors Franke and Rao Subba (1993); Latour

(1997); Pedeli and Karlis (2013a,b); Scotto et al. (2014) have added higher order au-

toregressive terms and even moving-average components, but negatively correlated series

can still not be produced with this model class (INARMA is the general acronym).

Joe (1996, 2016) quantifies the marginal distributions that can be made from

INARMA models; this is the so-called convolution closed class. Unfortunately, many

common marginal distributions cannot be produced with INARMA models. Perhaps

more problematic, INARMA model likelihoods are largely intractable and parameter

estimation can be challenging.

Discrete autoregressive moving-average (DARMA) methods are another early

count series construction having ARMA features. Unlike INARMAmodels, the marginal

distribution FX(·) of a strictly stationary DAR(1) series {Xt} can be anything desired.

After generating X1 from FX(·), Xt is obtained via the recursion

Xt = BtXt−1 + (1−Bt)Yt, t ∈ {2, · · · , N},

where {Bt} is a collection of IID Bernoulli trials with success parameter p ∈ (0, 1),

and the Yt are independently generated from FX(·). Equivalently, a new observation
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has probability p of equalling the previous observation and probability 1 − p as being

a new independent value drawn from FX(·). The marginal distribution of the DAR(1)

series above is easily shown to be FX(·) via induction. However, DAR(1) series are

likely to remain constant whenever the correlation is high (p is close to unity). As such,

practitioners abandoned DAR and DARMA methods soon after their discovery.

Blight (1989) and Cui and Lund (2009) took a very different approach to con-

struct count time series. Their methods combine correlated binary (Bernoulli) processes

in some manner to achieve the desired marginal distribution.

Consider a Bernoulli series {Bt} taking values in {0, 1} only. One example of

this is a renewal point process in which the distance between consecutive renewals are

IID and supported in {1, 2, . . .}. Specifically, a random walk series {Sn}∞n=0 is defined

from the IID ”lifetimes” {Li}∞i=1 via

Sn = L0 + L1 + L2 + · · ·+ Ln, n ≥ 0

and the binary sequence is given by Bt = 1 if Sn = t for some n ≥ 0. That is, Bt = 1 at

times t that are renewal times. In this setup, each L1, L2, . . . have the same distribution

as L. The distribution of L0 may be different from that of the other Lis. The process is

called non-delayed if L0 = 0; if L0 is chosen to have the first derived distribution from

the tails of L1, then {Bt} will be a stationary sequence. Otherwise, Bt converges to a

stationary setting.

Another method for constructing a correlated Bernoulli series {Bt} clips a sta-
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tionary Gaussian process {Zt} with zero mean and unit variance into zero-one categories.

For example,

Bt = 1A(Zt)

gives a point if Zt lies in the set A.

Both methods allow {Bt} to have negative correlations. In fact, if {Bt} is

stationary, its covariance function is

γB(h) = E[L]−1(uh − E[L]−1),

where uh denotes the probability of obtaining a renewal (point) at time h in the non-

delayed process (u0 = 1).

The count series {Xt} is constructed by combining multiple IID copies of {Bt}

in a way to create the desired marginal distribution. For example, to produce a count

series {Xt} with a marginal binomial distribution, simply set

Xt =

Mt∑
j=1

Bt,j .

Here, Mt = M is the number of trials desired at time t and {Bt,1}, {Bt,2}, · · · , {Bt,M}

are independent. Methods to construct {Xt} from the {Bt,i}s that produce Poisson,

geometric, and other classic count distributions are discussed in Blight (1989), Cui and

Lund (2009), Fralix et al. (2012), Lund and Livsey (2016), Lund et al. (2016), and

Livsey et al. (2018). This method produces flexible correlation structures — negative
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correlations are possible. In fact,

Cov(Xt, Xt+h) =
M

E(L)
(
uh − E(L)−1

)

in the renewal case, which is negative at lag h whenever uh < 1/E[L].

This said, some important marginal distributions, such as generalized Poisson,

are hard to construct via these methods; also, the most negative correlation possible

may not be achieved — see Jia et al. (2023) and our third project for a discussion.

Another mainstream framework for count series modeling involves generalized

state space modeling and dynamic linear modeling. A state space model contains two

parts: a model for the observation Xt that depends on the state of the system at time t

(denoted by αt), and a model that evolves the state process {αt}. A common example

is the hierarchical setup

Xt|αt ∼ Poisson(eαt), αt = ϕ0 + ϕ1αt−1 + ϵt, {ϵt} ∼ IID N(0, σ2), (1.1)

where ϕ0, ϕ1, and σ2 are parameters. The model reduces to a classic GLM when ϕ1 = 0

and σ2 = 0. The observation equation stipulating a Poisson distribution can be changed

to any other conditional probability mass function if desired; the log link expαt is used

to keep the Poisson parameter non-negative. If αt is not affected by Xt−1, such as in

the Gaussian AR(1) setup above, we call this a parameter driven model. The above

setup can be viewed as a Bayesian hierarchical model. A good reference for this tactic
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is Fokianos et al. (2009a).

In contrast, a count model is called an observation-driven model if the state

process is affected by past observations. One example of this mimics the evolution of a

GARCH time series:

Xt|Ft−1 ∼ Poisson(λt), λt = d+ a1λt−1 + b1Xt−1,

where d, a1, and b1 are nonnegative and Ft−1 is the history of observations containing

X1, . . . , Xt−1.

Generalized ARMA (GLARMA) methods also use a state space representation.

See Dunsmuir et al. (2015) for more detail. GLARMA models are easy to work with,

can incorporate covariates, and can have negative correlations. However, the marginal

distribution of the model remains unclear. Elaborating, a Poisson distributed {Xt} is

not constructed via (1.1). Rather, it is Xt|αt that is Poisson distributed. Once the

randomness of αt is taken into account, the marginal distribution of Xt can be far from

Poisson Benjamin et al. (2003).

As such, many previous count modeling classes have some undesirable prop-

erties. In general, there are four features that an analyst needs in a count model:

1) general marginal distributions; 2) a general correlation structure; 3) the ability to

accommodate covariates; 4) numerically stable and feasible methods for likelihood infer-

ence. All of the above mentioned approaches do not permit all of these features; indeed,

some permit only one or none.
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Recently, a different attack to the problem was taken in Jia et al. (2023). These

methods satisfy all four of the above tenets simultaneously. Jia et al. (2023) use a

Gaussian copula/transformation to produce a count time series with flexible correlation

structures and any desired marginal distribution. Indeed, copula count modeling is not

new in the literature. In operations research, Cario and Nelson (1997) and Chen (2001)

call this technique the normal to anything (NORTA) approach. Copula techniques to

model count data are an active research area in spatial statistics for constructing count

fields having an arbitrary marginal distributions Smith and Khaled (2012); Masarotto

and Varin (2012); Han and De Oliveira (2016).

The technical construction of Jia et al. (2023) is now presented. A stationary

latent Gaussian sequence {Zt} with mean zero and unity variance is used to construct

{Xt} via the transformation

Xt = F−1
X (Φ(Zt)),

where Φ is the cumulative standard normal distribution and

F−1
X (u) = inf{t : FX(t) ≥ u}, u ∈ (0, 1)

is the generalized inverse (quantile function) of any discrete distribution FX . Jia et al.

(2023) show that the marginal distribution of Xt is FX(·), that {Xt} is strictly station-

ary, and derive many other properties of the model.

Let γX(h) = Cov(Xt, Xt+h). Jia et al. (2023) derive γZ(h) = Cov(Zt, Zt+h)

from γX(h) via Hermite expansions. The Hermite polynomial basis that we use, {Hk(·)}∞k=0,
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is defined via

Hk(z) = (−1)kez
2/2 dk

dzk

(
e−z2/2

)
.

In particular, Jia et al. (2023) show that

γX(h) =

∞∑
k=1

k!g2kγ
k
Z(h)

and derive

gk =
1

k!
√
2π

∞∑
n=0

e−Φ−1(Qn)2/2Hk−1

(
Φ−1(Qn)

)
where Qn = FX(n). The correlation of Xt and Zt at lag h ≥ 0 are related by

ρX(h) =
∞∑
k=1

k!g2k
γX(0)

γZ(h)
k =: L(ρZ(h)).

Here, L(·) is called the link function and serves to map the correlations of {Zt} to those

of {Xt}. L(·) passes through the point (0, 0), (1, 1) and (−1, L(−1)); notice that L(−1)

is not necessarily −1. Gaussian copula models produce very flexible autocorrelations;

in fact, Jia et al. (2023) prove that the correlation is the most negative possible between

Xt1 and Xt2 when Xt1 and Xt2 have the same marginal distribution FX . Additionally,

copula models can easily handle covariates and any count marginal distribution can be

achieved. Non-Gaussian copulas have also been studied in Biller (2009), Joe (2014),

and Escarela et al. (2006).
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Chapter 2

Seasonal Count Time Series

2.1 Introduction

Count time series is an active area of current research, with several recent

review papers and books appearing on the topic (Fokianos, 2012; Davis et al., 2016;

Weiß, 2018; Davis et al., 2021). Gaussian models, which are completely characterized

by the series’ mean and autocovariance structure, may inadequately describe count se-

ries, especially when the counts are small. This chapter uses a recent advance of Jia

et al. (2023) to develop a very general count time series model with seasonal characteris-

tics. Specifically, a transformation technique is used to convert a standardized seasonal

correlated Gaussian process into a seasonal count time series. The modeling paradigm

allows any marginal count distribution to be achieved, has the most flexible correlation

structures possible (these can be positive or negative), and can be fitted via likelihood

methods. Nonstationary extensions, particularly those involving covariates, are easily
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achieved.

With T denoting the known period of the data, our objective is to model a time

series {Xt} in time t that has a count marginal distribution and periodic properties with

period T . A seasonal notation uses XdT+ν to denote the series during the νth season

of cycle d. Here, ν ∈ {1, 2, . . . , T} is the seasonal index and d ∈ {0, 1, 2, n/T − 1}. We

assume that there are n total observations, taken at the times 1, 2, . . . , n/T . To avoid

trite work with edge effects, we assume that n/T is a whole number.

We seek to construct count series having the cumulative distribution function

Fν(x) = P [XdT+ν ≤ x] for each cycle d — this stipulation imposes a periodic marginal

distribution on the series. In fact, our constructed series will be strictly periodically

stationary: for each k ≥ 1 and all times t1 < t2 < . . . < tk, the joint distribution

of (Xt1 , . . . , Xtk)
′ coincides with that of (Xt1+T , . . . , Xtk+T )

′. We use notations such

as {Xt} and {XdT+ν} interchangeably, the latter being preferred when seasonality is

emphasized.

Some previous seasonal count time series models are now reviewed. The most

widely used seasonal count time series models to date develop periodic versions of dis-

crete integer-valued autoregressions (PINAR models) — see Monteiro et al. (2010);

Santos et al. (2019), and Bentarzi and Aries (2020). For example, a first order PINAR

series {Xt} obeys the difference equation

XdT+ν = p(ν) ◦XdT+ν−1 + ϵdT+ν .
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Here, p(ν) ∈ [0, 1] for each season ν and ◦ denotes the classical thinning operator: for

an independent and identically distributed (IID) sequence of zero-one Bernoulli trials

{Bi}∞i=1 that have probability of success p and a count-valued random variable C that is

independent of {Bi}∞i=1, p◦C :=
∑C

i=1Bi. The noises {ϵdT+ν} are periodic independent

and identically distributed (IID) count-valued random variables having finite second

moments.

The PINAR model class has drawbacks. Even in the stationary case, PINAR

models cannot produce some marginal distributions. Joe (2016) quantifies the issue in

the stationary case, showing that only marginal distributions in the so-called discrete

self-decomposable family can be achieved. Another issue is that PINAR models must

have non-negative correlations. Negatively correlated count series do arise (Kachour

and Yao, 2009; Livsey et al., 2018; Jia et al., 2023). Likelihood inference for PINAR

and INAR models can also be computationally intensive.

A different method for constructing seasonal count series uses a periodic re-

newal point processes as in Fralix et al. (2012) and Livsey et al. (2018). Here, a zero-one

binary sequence {Bt}∞t=1 is constructed to be periodically stationary and {B1,t}, {B2,t}, . . .

denote IID copies of {Bt}∞t=1. The periodic count series is constructed via the superpo-

sition

Xt =

Nt∑
i=1

Bi,t.

Here, {Nt}∞t=1 is a periodic IID sequence of count valued random variables indepen-

dent of the {Bi,t}. For example, to obtain a correlated sequence {Xt} with Poisson
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marginal distributions, {Nt} is taken to be independent in t with Poisson marginal dis-

tributions, with NdT+ν having the mean λν > 0. Then it is easy to see that XdT+ν

is Poisson distributed with mean λνP (Bν = 1). Fralix et al. (2012); Lund and Livsey

(2016), and Livsey et al. (2018) show how to produce the classical count marginal dis-

tributions (Poisson, binomial, and negative binomial) with this setup and consider {Bt}

constructed by clipping Gaussian processes.

While binary-based models typically have negative correlations whenever {Bt}

does, it can be difficult to achieve some marginal distributions. A prominent example of

this is the often sought generalized Poisson marginal. Perhaps worse, likelihood meth-

ods of parameter inference appear intractable — current parameter inference methods

use Gaussian pseudo-likelihoods, which only employ the series’ mean and covariance

structure. See Davis et al. (2021) for additional detail.

Before proceeding, a clarification needs to be made. The models constructed

here posit a particular count marginal distribution for the data a priori. This differs

from dynamic linear modeling goals, where count models are often built from conditional

specifications. For a time-homogeneous first-order autoregressive (AR(1)) example, a

dynamic linear model might employ the state space setup Xt|αt ∼ Poisson(eαt), where

αt = βαt−1 + ηt, |β| < 1, and {ηt} is zero mean Gaussian noise. Such a setup produces

a conditional Poisson distribution, not a series with a Poisson marginal distribution.

In fact, the marginal distribution in the above Poisson state space setup is Poisson

log-normal (Asmussen and Foss, 2014) and can be far from Poisson.

Additional work on periodic count series is contained in Moriña et al. (2011);
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Monteiro et al. (2015); Bentarzi and Bentarzi (2017); Aknouche et al. (2018); Santos

et al. (2021); Aknouche et al. (2018), and Ouzzani and Bentarzi (2019). Most of these

references take one of the above approaches. Motivated by Jia et al. (2023), this chapter

presents a different approach.

The rest of this chapter proceeds as follows. The next section reviews periodic

time series methods, focusing on periodic autoregressive moving-average (PARMA) and

seasonal autoregressive moving-average (SARMA) difference equation structures. Sec-

tion 2.3 clarifies our model and its properties. Section 2.4 narrates parameter estimation

methods and Section 2.5 studies these techniques via simulation. Section 2.6 analyzes

a twenty year segment of weekly rainy day counts in Seattle, Washington. Section 2.7

concludes with comments and remarks.

2.2 Periodic Time Series Background

This section briefly reviews periodic (seasonal) time series. Our future count

construction uses a series {Zt}, standardized to E[Zt] ≡ 0 and Var(Zt) ≡ 1, and having

Gaussian marginal distributions. While the mean of {Zt} is zero, periodic features in

the autocorrelation function (ACF) of {Zt}, which we denote by ρZ(t, s) = Cov(Zt, Zs),

will become paramount.

We call {Zt} a PARMA(p, q) series if it obeys the periodic ARMA(p, q) differ-
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ence equation

ZdT+ν =

p∑
k=1

ϕk(ν)ZdT+ν−k + ηdT+ν +

q∑
k=1

θk(ν)ηdT+ν−k. (2.1)

Here, {ηt} is a zero mean white noise sequence with the periodic variance Var(ηdT+ν) =

σ2(ν) > 0. The autoregressive order is p and the moving-average order is q, which are

taken constant in the season ν for simplicity. The autoregressive and moving-average

coefficients are ϕ1(ν), . . . , ϕp(ν) and θ1(ν), . . . , θq(ν), respectively, during season ν. We

tacitly assume that model parameters are identifiable from the autocovariance function

of the series. This may require more than the classical causality and invertibility con-

ditions (Reinsel, 2003). Gaussian PARMA solutions are strictly stationary with period

T as long as the autoregressive polynomial does not have a root on the complex unit

circle — see Lund and Basawa (1999) for quantification. Not all PARMA parameters

are free due to the restriction Var(Xt) ≡ 1; the following example delves further into

the matter.

Example 3.1 A PAR(1) series with period T obeys the recursion

Zt = ϕ(t)Zt−1 + ηt, (2.2)

where {ηt} is zero mean white noise with Var(ηt) = σ2(t). The quantities ϕ(t) and σ2(t)

are assumed periodic in t with period T . This difference equation is known to have a

unique (in mean squared) and causal solution whenever there is a stochastic contraction
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over an entire cycle, namely |
∏T

ν=1 ϕ(ν)| < 1 (Lund and Basawa, 1999).

To impose Var(Zt) ≡ 1, take a variance on both sides of (2.2) and set Var(Zt) =

Var(Zt−1) = 1 to infer that σ2(t) = 1−ϕ2(t), which we tacitly assume is positive for all

t. This uses Cov(Zt−1, ηt) = 0, which follows from causality. The covariance structure

of {Zt} can now be extracted as

ρZ(t, s) =
t−s−1∏
i=0

ϕ(t− i).

for s < t. ♣.

Another class of periodic models in use today are the SARMA series. SARMA

series are actually time-stationary models, but have comparatively large autocorrela-

tions at lags that are multiples of the period T . The most basic SARMA(p, q) series

{Zt} obeys a difference equation driven at lags that are multiples of the period T :

Zt =

p∑
k=1

ϕkZt−kT + ηt +

q∑
k=1

θkηt−kT , (2.3)

where {ηt} is zero mean independent noise with a constant variance. In this setup,

ρZ(t, s) = 0 unless t − s is a whole multiple of the period T . As such, many authors

allow {ηt} to have additional correlation, specifically a zero mean ARMA(p∗, q∗) series.

This results in a model that can have non-zero correlations at any lag; however, the

model is still stationary and does not have any true periodic features. Since the model

is stationary, we write ρZ(t, s) = ρZ(t− s).
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Example 3.2 A SAR(1) series with period T and AR(1) {ηt} obeys the difference

equation pair

Zt = ϕZt−T + ηt; ηt = αηt−1 + ϵt, (2.4)

where {ϵt} is zero mean white noise with variance σ2
ϵ , |ϕ| < 1, and |α| < 1. Combining

these two difference equations results in a stationary and causal AR(T + 1) model for

{Zt}.

Imposing Var(Zt) ≡ 1 and taking a variance in the first equation in (2.4) gives

1 = ϕ2 +Var(ηt) + 2ϕCov(Zt−T , ηt).

To proceed, use equation (2.4)’s causal solutions ηt =
∑∞

k=0 α
kϵt−k and Zt−ℓ =

∑∞
m=0 ϕ

mηt−mT−ℓ

to get

Cov(ηt, Zt−ℓ) = σ2
ϵ

αℓ

(1− α2)(1− ϕαT )
(2.5)

for any ℓ > 0. Combining the last two equations, we see that taking

σ2
ϵ =

(1− ϕ2)(1− α2)(1− ϕαT )

1 + ϕαT
(2.6)

indices Var(Zt) ≡ 1.

To extract the covariance structure of {Zt}, multiply both sides of (2.4) by
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Zt−h and take expectations to get the Yule-Walker type equations

ρZ(0) = ϕρZ(T ) + E(Ztηt)

...

ρZ(T ) = ϕρZ(0) + E(Zt−T ηt).

This system can be rewritten in vector form as



1 0 · · · 0 −ϕ

0 1 · · · −ϕ 0

...
...

. . .
...

...

0 −ϕ · · · 1 0

−ϕ 0 · · · 0 1





ρZ(0)

ρZ(1)

...

ρZ(T − 1)

ρZ(T )


=



E(ηtZt)

E(ηtZt−1)

...

E(ηtZt−T+1)

E(ηtZt−T )


. (2.7)

The Appendix shows that the inverse of the matrix in the above linear sys-

tem exists. From this, (2.5), (2.6), and some algebraic manipulations detailed in the

Appendix, one extracts

ρZ(h) =
αh + ϕαT−h

1 + ϕαT
, 0 ≤ h ≤ T.

To identify the model correlations at lags h > T , multiply the first equation in (2.4)

by Zt−h for h > T and take expectations to get the recursion ρZ(h) = ϕρZ(h − T ) +
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E(ηtZt−h). This can be solved with (2.5) to get (see the Appendix)

ρZ(h) = ϕaα
b + ϕαT−b

1 + ϕαT
+

a−1∑
k=0

ϕkαh−Tk 1− α2

1 + ϕα
, h > T,

where a = ⌊h/T ⌋ and b = h− aT . ♣.

PARMA and SARMAmethods are compared in detail in Lund (2011). PARMA

models are usually more applicable since the immediate past of the process is typically

more influential than past process lags at multiples of the period T . Applications in the

environment (Vecchia, 1985; Bloomfield et al., 1994; Lund et al., 1995a; Tesfaye et al.,

2004) tend to be PARMA; SARMA structures are useful in economics (Franses, 1994;

Franses and Paap, 2004; Hurd and Miamee, 2007). PARMA reviews are Gardner and

Franks (1975); Lund and Basawa (1999), and Gardner et al. (2006); statistical inference

for PARMA models is studied in Lund and Basawa (2000); Basawa and Lund (2001);

Basawa et al. (2004); Lund et al. (2006); Shao and Ni (2004), and Shao (2006). SARMA

inference is addressed in Chatfield and Prothero (1973).

2.3 Methodology

Our methods extend the work in Jia et al. (2023) with Gaussian transforma-

tions (copulas) to the periodic setting. Let {Xt} denote the time series to be constructed,

which takes values in the count support set {0, 1, 2, . . .}. Our construction works with

a latent Gaussian series {Zt} with zero mean and a unit variance at all times. Then Xt
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is obtained from Zt via

XdT+ν = F−1
ν (Φ(ZdT+ν)) , (2.8)

where Φ(·) is the cumulative distribution function (CDF) of the standard normal dis-

tribution and Fν(·) is the desired marginal distribution for Xt during season ν. Here,

F−1
ν is the quantile function

F−1
ν (u) = inf {x : Fν(x) ≥ u} . (2.9)

As Jia et al. (2023) shows, this construction leaves XdT+ν with the marginal distribution

Fν for every d and ν. This model is very flexible: any marginal distribution can be

achieved for any desired season ν, even continuous ones. The marginal distribution Fν

can have the same form or be different over distinct seasons ν. Any marginal distribution

whatsoever can be achieved; when count distributions are desired, the quantile definition

in (2.9) is the version of the inverse CDF that produces the desired marginals.

2.3.1 Properties of the Model

Toward ARMA and PARMA model order identification, if {Zt} is an m-

dependent series, then Zt1 and Zt2 are independent when |t1 − t2| > m since {Zt}

is Gaussian. By (2.8), Xt1 and Xt2 are also independent and {Xt} is also m-dependent.

From the characterization of stationary moving averages (Proposition 3.2.1 in Brockwell

and Davis (1991a)) and periodic moving-averages in Shao and Lund (2004), we see that

if {Zt} is a periodic moving average of order q, then {Xt} is also a periodic moving
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average of order q. Unfortunately, analogous results for autoregressions do not hold.

For example, if {Zt} is a periodic first order autoregression, {Xt} may not be a periodic

autoregression of any order.

We now derive the covariance structure of {Xt} via Hermite expansions. Let

γX(t, r) = Cov(Xt, Xr) be the covariance of {Xt} at the times t and r, where r ≤ t.

Then γX(t, r) can be related to ρZ(t, r) via Hermite expansions. To do this, let Gν(x) =

F−1
ν (Φ(x)) and write the Hermite expansion of Gν(·) as

Gν(z) = g0(ν) +

∞∑
k=1

gk(ν)Hk(z). (2.10)

Here, gk(ν) is the kth Hermite coefficient for season ν, whose calculation is described

below, and Hk(z) is the kth Hermite polynomial defined by

Hk(z) = (−1)kez
2/2 dk

dzk

(
e−z2/2

)
. (2.11)

The first three Hermite polynomials are H0(x) ≡ 1, H1(x) = x, and H2(x) = x2 − 1.

Higher order polynomials can be found via the recursion Hk(x) = xHk−1(x)−H ′
k−1(x),

which follows from (2.11). When Gν(·) is discontinuous, the partial sums in (2.10) are

continuous, but converge to a discrete limit.

The polynomials Hk and Hj are orthogonal with respective to the standard

Gaussian measure if k ̸= j: E[Hk(Z)Hj(Z)] = 0 for a standard normal Z unless j = k
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(in which case E[Hk(Z)2] = k!). The Hermite coefficients are computed from

gk(ν) =
1

k!

∫ ∞

−∞
Gν(t)Hk(t)ϕ(t)dt, k = 1, 2, . . . , (2.12)

where ϕ(t) = Φ′(t) = e−t2/2/
√
2π is the standard normal density.

Lemma 2.1 in Han and De Oliveira (2016) shows that

γX(t, r) =
∞∑
k=1

k!gk(s(t))gk(s(r))ρZ(t, r)
k, (2.13)

where s(t) = t− T ⌊(t+1)/T ⌋ denotes the season corresponding to time t. Let σ2
X(t) =

γX(t, t) =
∑∞

k=1 k!g
2
k(s(t)) denote the variance of Xt. Then the ACF of {Xt} is

ρX(t, r) =
γX(t, r)

σX(t)σX(r)
=

∞∑
k=1

k!gk(s(t))gk(s(r))

σX(t)σX(r)
ρZ(t, r)

k =
∞∑
k=1

ℓkρZ(t, r)
k := L(ρZ(t, r)),

(2.14)

which is a power series in ρZ(t, r) with kth coefficient

ℓk :=
k!gk(s(t))gk(s(r))

σX(t)σX(r)
. (2.15)

The quantity L(·) is called a link function and ℓk a link coefficient. When

{Zt} is stationary and Fν does not depend on ν, Jia et al. (2023) show that L(0) = 0,

L(1) = 1, and L(−1) = Corr(G(Z0), G(−Z0)). It is not true that L(−1) = −1 in any

case nor is L(1) = 1 in the periodic case; indeed, stationary or periodically stationary

count processes with arbitrarily positive or negative correlations may not exist. For
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example, the pair (Z,−Z), where Z is standard normal has correlation -1, but two

Poisson random variables, both having mean λ, whose correlation is -1, do not exist.

The model produces the most flexible correlation structures possible in a pair-

wise sense. Specifically, consider two distinct seasons ν1 and ν2 and suppose that Fν1

and Fν2 are the corresponding marginal distributions for these seasons. Then Theorems

2.1 and 2.5 in Whitt (1976) show that the bivariate random pair (Xν1 , Xν2) having the

marginal distributions Fν1 and Fν2 , respectively, with the largest correlation possible has

form Xν1 = F−1
ν1 (U) and Xν2 = F−1

ν2 (U), where U is a uniform[0,1] random variable. To

achieve this largest correlation, one simply takes {Zt} to have unit correlation at these

times; that is, take Zν1 = Zν2 . Since Φ(Zν1) is distributed as uniform[0,1], the claim

follows. For negative correlations, the same results in Whitt (1976) also show that the

most negatively correlated pair that can be produced has the form Xν1 = F−1
ν1 (U) and

Xν2 = F−1
ν2 (1−U). This is produced with a Gaussian series having Corr(Zν1 , Zν2) = −1,

which is obtained by selecting Zν2 = −Zν1 . Then Φ(Zν1) is again uniform[0,1] and

Φ(Zν2) = Φ(−Zν1) = 1− Φ(Zν1), since Φ(−x) = 1− Φ(x) for all real x.

The previous paragraph implies that one cannot obtain more general autocor-

relation functions for count series than what has been constructed above — they do not

exist. Negatively correlated count series do arise (Kachour and Yao, 2009; Livsey et al.,

2018; Jia et al., 2023) and can be described with this model class. In the stationary case

where the marginal distribution Fν is constant over all seasons ν, a series {Xt} with

Cov(Xt, Xt+h) = 1 for all h is achieved by taking Zt ≡ Z, where Z is standard normal.

This unit correlation property will not carry over to our periodic setting. For example, a
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random pair (Xν1 , Xν2) having a Poisson marginal with mean λν1 during season ν1 and

a Poisson marginal with mean λν2 during season ν2 with a unit correlation do not exist

when λν1 ̸= λν2 . This said, the model can produce any correlation structures within

“the range of achievable correlations”. As such, the model class here is quite flexible.

The amount of autocorrelation that {Xt} inherits from {Zt} is now discussed.

An implication of the result below, which establishes monotonicity of the link function

by showing that its derivative is positive, is that the larger the autocorrelations are in

{Zt}, the larger the autocorrelations are in {Xt}. We state the result below and prove

it in the Appendix.

Proposition 3.1: For a fixed t and r, let L(·) denote the link function in (2.14). Then

for u ∈ (−1, 1), the derivative of the link is positive and has form

L′(u) =

∑∞
j1=0

∑∞
j2=0 e

− 1
2(1−u2)

[Φ−1(Cj1
(s(t))2+Φ−1(Cj2

(s(r))2−2uΦ−1(Cj1
(s(t))Φ−1(Cj2

(s(r))]√
σX(t)σX(r)2π

√
1− u2

.

(2.16)

Here,

Cj(ν) = P[Xν ≤ j] = Fν(j) (2.17)

denotes the cumulative probabilities of Xν at season ν. Equation (2.13) shows that

|ρX(t, r)| ≤ |ρZ(t, r)|,

which can also be deduced by the Cauchy-Schwarz inequality. As such, the amount of

autocorrelation in the count series {Xt} is “less than” that for the latent Gaussian {Zt}
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series. For feel, Figure 2.1 plots L(u) for several parameter combinations with Poisson

and binomial distributions. The plots show that L(u) is non-decreasing in u and that the

autocorrelation of the count model is always less than the underlying Gaussian process.

The ”correlation loss” from {Zt} to {Xt} is minor once both λ are larger than unity

for the Poisson case and both p are larger than 0.1 for the binomial case. In contrast

to the stationary analysis in Jia et al. (2023), the link function may not have L(1) = 1

when the two marginal distributions are different.
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Figure 2.1: Left: the link function constructed by two distinct Poisson distributions;
right: the link function constructed by two binomial Poisson distributions with number
of trials equal to 7. Pink dots are points (0, 0) and (1, 1).
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2.3.2 Calculation and Properties of the Hermite Coefficients

An important numerical task entails calculating gk(ν), which only depends on

Fν(·) by (2.12). To do this, rewrite Gν(z) in the form

Gν(z) =

∞∑
j=0

j1[Cj−1(ν)≤Φ−1(z)<Cj(ν)] =

∞∑
j=1

j1[Φ−1(Cj−1(ν)),Φ−1(Cj(ν)))(z), (2.18)

where the convention C−1 = 0 is made. We also take Φ−1(0) = −∞ and Φ−1(1) = ∞.

Then for k ≥ 1, integration by parts yields

gk(ν) =
1

k!

∞∑
j=0

nE
[
1[Φ−1(Cj−1(ν)),Φ−1(Cj(ν)))(Z0)Hk(Z0)

]
=

1

k!

∞∑
j=0

j√
2π

∫ Φ−1(Cj(ν))

Φ−1(Cj−1(ν))
Hk(z)e

−z2/2dz

=
1

k!

∞∑
j=0

j√
2π

∫ Φ−1(Cj(ν))

Φ−1(Cj−1(ν))
(−1)k

(
dk

dzk
e−z2/2

)
dz

=
1

k!

∞∑
j=0

j√
2π

(−1)k
(

dk−1

dzk−1
e−z2/2

) ∣∣∣∣∣
z=Φ−1(Cj(ν))

z=Φ−1(Cj−1(ν))

=
1

k!

∞∑
j=0

j√
2π

(−1)e−z2/2Hk−1(z)

∣∣∣∣∣
z=Φ−1(Cj(ν))

z=Φ−1(Cj−1(ν))

.

Simplifying this telescoping sum gives

gk(ν) =
1

k!
√
2π

∞∑
j=0

e−[Φ−1(Cj(ν))]
2/2Hk−1(Φ

−1(Cj(ν))). (2.19)
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Notice that the summands in (2.19) are zero whenever Φ−1(Cj(ν)) = ±∞. Lemma

2.1 in Jia et al. (2023) shows that the expansion converges whenever E[Xp
t ] < ∞ for

some p > 1. This condition automatically holds for time series, which implicitly re-

quire a finite second moment. For count distributions with a finite support, Cj(ν)

becomes unity for large j. For example, a Binomial marginal distribution with 7 tri-

als is considered in our later application. Here, the summation can be reduced to

j ∈ {0, 1, . . . , 7}. For count distributions on a countably infinite support, approximating

(2.19) requires truncation of an infinite series. This is usually not an issue: numerically,

Cj(ν) quickly converges to unity as j → ∞ for light tailed distributions — or equiva-

lently, e−Φ−1(Cj(ν))
2/2Hk−1(Φ

−1(Cj(ν))) → 0. In addition to (2.19), gk(ν) can also be

approximated by Gaussian quadrature; see gauss.quad.prob in the package statmod in

R. However, the approximation in (2.19) is more appealing in terms of simplicity and

stability (Jia et al., 2023).

2.4 Parameter Inference and Forecasting

2.4.1 Parameter Inference

This subsection develops likelihood methods of inference for the model param-

eters via particle filtering and sequential Monte Carlo techniques. With many count

time series model classes, likelihoods are intractable (Davis et al., 2021). Accordingly,

researchers have defaulted to moment and composite likelihood techniques. However,

if the count distributional structure truly matters, likelihood methods should “feel”
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this structure and return superior parameter estimates. Gaussian pseudo-likelihood

estimates, which are based only on the mean and autocovariance of the series, are de-

veloped in Jia et al. (2023) for stationary series; they present an example where Gaussian

pseudo-likelihood estimates perform well and an example where they perform poorly.

For notation, let θ contain all parameters in the T marginal distributions

F1, . . . , FT and η contain all parameters governing the evolution of {Zt}. The data

{x1, x2, . . . , xn} denote our realization of the series {Xt}nt=1.

The likelihood function L(θ,η) is simply a high dimensional multivariate nor-

mal probability. To see this, use (2.8) to get

L(θ,η) = P(X1 = x1, · · · , Xn = xn) = P (Z1 ∈ (a1, b1], · · · , Zn ∈ (an, bn]) (2.20)

for some numbers {ai}ni=1 and {bi}ni=1 (these are clarified below but are not impor-

tant for the discussion here). The covariance matrix of (Z1, . . . , Zn) depends only on

η, not on θ. Unfortunately, evaluating a high dimensional multivariate normal prob-

ability is numerically challenging for large n. While methods to handle this problem

exist (Kazianka and Pilz, 2010; Kazianka, 2013; Bai et al., 2014), they often contain

substantial estimation bias.

An alternative approach, which is the one taken here, uses simulation meth-

ods to approximate the likelihood. General methods in this category include the quasi-

Monte Carlo methods of Genz and Bretz (2002) and the prominent Geweke–Hajivassiliou–Keane

(GHK) simulator of Geweke (1991) and Hajivassiliou et al. (1996). The performance of
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these methods, along with an additional “data cloning” approach, are compared in Han

and De Oliveira (2020), where the author shows that estimators from these methods are

similar, but that the GHK methods are much faster, having a numerical complexity as

low as order mn. Here, m is the pre-selected number of sample paths to be simulated

(the number of particles). As we will subsequently see, the GHK simulator works quite

well for large m.

Jia et al. (2023) develop a sequential importance sampling method that uses a

modified GHK simulator. In essence, importance sampling is used to evaluate integrals

by drawing samples from an alternative distribution and averaging their corresponding

weights. Suppose that we seek to estimate
∫
D f(x)dx. Then

∫
D
f(x)dx =

∫
D

f(x)

q(x)
q(x)dx,

where f(x)/q(x) is called the weight and the proposed distribution q is called the

importance distribution. Without loss of generality, we assume that q(x) > 0 whenever

x ∈ D and that q(x) = 0 for x ∈ Dc. Then the importance sampling estimate of the

integral is the law of large numbers justified average

∫
D

f(x)

q(x)
q(x)dx ≈ 1

m

m∑
k=1

f(x(k))

q(x(k))
,

where {x(1), . . . ,x(m)} are m IID samples drawn from the proposed distribution q. With
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the notation z1:n = (z1, . . . , zn), notice that the likelihood in (2.20) has form

∫
{zt∈(at,bt],t=1,...,n}

ϕη (z1:n) dz1 . . . dzn =

∫
{zt∈(at,bt],t=1,...,n}

ϕη (z1:n)

q(z1:n)
q(z1:n)dz1 . . . dzn.

(2.21)

Observe that {ai}ni=1 and {bi}ni=1 only depend on θ and the data {x1, x2, . . . , xn}; specif-

ically,

at = Φ−1(Cxt−1(s(t))) and bt = Φ−1(Cxt(s(t))),

where Cn(ν) is defined in (2.17) and s(t) is the season at time t. Here, it is best to

choose a proposed distribution q such that 1) q(z1:n) > 0 for zt ∈ (at, bt] and q(z1:n) =

0 otherwise; 2) the weight ϕη (z1:n) /q(z1:n) is easy to compute; and 3) {Zt} can be

efficiently drawn from q. Our GHK simulator satisfies all three conditions.

To develop our GHK sampler further, we take advantage of the latent Gaus-

sian structure in the PARMA or SARMA series {Zt}. In simple cases, {Zt} may even

be a Markov chain. The GHK algorithm samples Zt, depending on the its previ-

ous history Zt−1, . . . , Z1 and Xt, from a truncated normal density. Specifically, let

pη(t) (zt|zt−1, · · · , z1, xt) denote the truncated normal density of Zt given the history

Zt−1, . . . , Z1 and Xt = xt. Then

pη(t) (zt|zt−1, . . . , z1, xt) =
1

rt

[
ϕ( zt−ẑt

rt
)

Φ( bt−ẑt
rt

)− Φ(at−ẑt
rt

)

]
, at < zt < bt, (2.22)

where ẑt and rt are the one-step-ahead mean and standard deviation of Zt conditioned

on z1, z2, . . . , zn. Again, at and bt only depend on xt. Here, we choose the importance
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sampling distribution

qη(z1:n|x1:n) = pη(1)(z1|x1)
n∏

t=2

pη(t) (zt|zt−1, . . . , z1, xt) . (2.23)

Elaborating further, let N (µ, σ2; a, b) denote a normal random variable with

mean µ and variance σ2 restricted to lie in (a, b], where a < b. Then X1 is first

drawn from N (0, 1; a1, b1). Thereafter, Z2, Z3, . . . , Zn are sequentially sampled from

the distribution in (2.22). The proposed importance sampling distribution is efficient

to sample, has the desired distributional support, and induces an explicit expression for

the weights:

ϕη(t) (z1:n)

qη(t)(z1:n|x1:n)
=

pη(1)(z1)

pη(1)(z1|x1)

n∏
t=2

pη(t)
(
zt
∣∣zt−1, . . . , z1

)
pη(t)

(
zt
∣∣zt−1, . . . , z1, xt

) .
Using (2.22) gives

pη
(
zt
∣∣zt−1, . . . , z1

)
pη
(
zt
∣∣zt−1, . . . , z1, xt

) = Φ

(
bt − ẑt
rt

)
− Φ

(
at − ẑt

rt

)
.

Therefore,

ϕη (z1:n)

q(z1:n)
= [Φ (b1)− Φ (a1)]

n∏
t=2

[
Φ

(
bt − ẑt
rt

)
− Φ

(
at − ẑt

rt

)]
.
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Define the initial weight w1 = Φ(b1)− Φ(a1). We recursively update the weights via

wt = wt−1

[
Φ

(
bt − ẑt
rt

)
− Φ

(
at − ẑt

rt

)]

at time t during the sequential sampling procedure. At the end of the sampling, we

obtain

wn =
ϕη(z1:n)

qη(z1:n|x1:n)
.

In the classic GHK simulator, Ẑt and r2t are obtained from a Cholesky decomposition of

the covariance matrix of {Zt}. Here, they are based on the PARMA or SARMA model

for {Zt}.

Our full sequential importance sampling procedure is summarized below.

1 Initialize the process by sampling Z1 from the N (0, 1;Cx1(s(1)), Cx1(s(1))) distri-

bution. Define the weight w1 by

w1 = Φ−1(Cx1(s(1)))− Φ−1(Cx1−1(s(1))) (2.24)

2 Now iterate steps 2 and 3 over t = 2, 3, . . . , n. Conditioned on Z1, . . . , Zt−1,

generate

Zt
D
= N

(
Ẑt, rt; Φ

−1(Cxt(s(t))),Φ
−1(Cxt−1(s(t)))

)
. (2.25)

For example, in the PAR(1) model, Ẑt = ϕ(t)Zt−1 for t ≥ 1, with the startup

condition Ẑ1 = 0; rt = 1− ϕ2(t) for t > 1 with the startup condition r1 = 1.
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3 Define the weight wt for t > 1 via

wt = wt−1

[
Φ

(
Φ−1(Cxt(s(t)))− Ẑt

rt

)
− Φ

(
Φ−1(Cxt−1(s(t)))− Ẑt

rt

)]
(2.26)

The above procedure generates a fair draw of a single “particle path” {Zt} with

the property that {Xt}nt=1 generated from {Zt}nt=1 yields the observations x1, . . . , xn.

Repeating this process m independent times gives m simulated process trajectories.

Let {Z(1), . . . ,Z(m)} denote these trajectories and denote their corresponding weights

at time n by {w(k)
n }mk=1.

The importance sampling estimate is given by

L̂GHK (θ,η) =
1

m

m∑
k=1

w(k)
n .

A large m provides more accurate estimation.

The popular “L-BGSF-B” gradient step and search method is used to opti-

mize the estimated likelihood L̂GHK(θ,η); other optimizers may also work. However,

L̂GHK(θ,η) is “noisy” due to the sampling. One popular fix to this smooths the es-

timated likelihood by generating a set of random quantities in the particle filtering

through transformation and keeps them constant across the computations for differ-

ent sets of parameters. This method, called common random numbers (CRNs), makes

the simulated likelihood L̂GHK(θ,η) relatively smooth in its parameters; see Klein-

man et al. (1999) and Glasserman and Yao (1992) for more on CRNs. In practice, the
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CRN point estimator behaves similarly to those for regular likelihoods; moreover, the

Hessian-based covariance matrix, which is based on the derivative of L̂GHK(θ,η), be-

haves much better numerically when CRNs are used. As the next section demonstrates,

this procedure will yield standard errors that are very realistic.

Particle filtering methods are known to suffer from a phenomena called particle

degeneracy when n gets large. Methods to combat particle degeneracy are discussed

in Djurić and Bugallo (2013), Naesseth et al. (2015), and Rebeschini and Van Handel

(2015) and typically involve some sort of resampling of the particles. As our simulations

in the next section did not degrade for series lengths of up to a thousand, we will not

detour into this issue here.

2.4.2 Residuals and Model Diagnostics

Turning to residuals, many definitions are possible. A simple residual used

here starts by computing Ẑt = E[Zt|Xt]:

E[Zt|Xt] =
exp(−Φ−1(Cxt−1)

2/2)− exp(−Φ−1(Cxt)
2/2)√

2π(Cxt − Cxt−1)
(2.27)

We then use the underlying ARMA, PARMA, or SARMA difference equation to turn

the {Ẑt} into one-step-ahead prediction residuals. For example, with an AR(1) {Zt},

the residual at time t, denoted by Rt, is the customary

Rt = Ẑt − ϕ̂Ẑt−1, t > 1.
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No adjustments are made for variances since it is assumed that Var(Zt) ≡ 1.

As the conditional expectation in (2.27) does not contain Xt−1, . . . , X1 in the

predicting variables (only Xt), more exotic residual definitions can be formulated and

pursued. This said, these residuals are easy to compute and are sufficient for our

purposes.

For additional model diagnostics, the probability integral transform (PIT) can

be used as a tool to evaluate model fitness. PIT methods, proposed in Dawid (1984),

check the statistical consistency between probabilistic forecasts and the observations.

Under the ideal scenario that the observations are drawn from the prediction distri-

bution and the predictive distribution is continuous, PIT residuals are uniformly dis-

tributed over [0, 1]. PIT histograms tend to be U -shaped when the observations are

over-dispersed. Unfortunately, the above themes do not hold for discrete count data.

To remedy this, Czado et al. (2009) propose a nonrandomized PIT residual where uni-

formity still holds.

Quantifying this, write the conditional cumulative distribution function of Xt

as

Pt(y) := P (Xt ≤ y|X1 = x1, . . . , Xt−1 = xt−1) , y ∈ {0, 1, . . .} . (2.28)

Then the nonrandomized mean PIT residual is defined as F̄ (u) = n−1
∑n

t=1 Ft(u|xt),
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where

Ft(u|y) =



0, if u ≤ Pt(y − 1)

u− Pt(y − 1)

Pt(y)− Pt(y − 1)
, if Pt(y − 1) < u < Pt(y)

1, if u ≥ Pt(y)

. (2.29)

The quantity Pt(y) can be approximated during the particle filtering algorithms; specif-

ically,

P̂t(y) =

y∑
i=0

wi,t(Ẑt), (2.30)

where

wi,t(z) = Φ

(
Φ−1(Ci (s(t)))− z

rt

)
− Φ

(
Φ−1(Ci−1 (s(t)))− z

rt

)
.

The weight wi,t(z) can be obtained at time t during the particle filtering algorithm.

2.4.3 Forecasting

Particle filtering methods can also be used to forecast. From Jia et al. (2023),

the expectation of the one-step-ahead prediction of the next data point Xn+1 from

X1, . . . , Xn is

E [Xn+1 | Hn] =

∫
R
∫
{zt∈(at,bt],t=1,...,n)}Gθ,s(t+1)(zt+1)ϕη(z1:(n+1))dz1 . . . dzn+1∫

{zt∈(at,bt],t=1,...,n)}ϕη(z1:n)dz1 . . . dzn
, (2.31)

where Hn = {X1 = x1, . . . , Xn = xn} is the process history. In the particle filtering,

the denominator of (2.31) is the same as that in (2.21), which is used in obtaining

likelihood estimators. For the numerator in (2.31), m independent “particle paths”
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{Z(1), . . . ,Z(m)} were drawn and can be used to make the one-step-ahead samples Z
(k)
n+1

for k ∈ {1, . . . ,m}. These are then used to approximate the mean of G
(k)
θ,s(n+1)(Z

(k)
n+1).

Specifically, the forecast of Xn+1 via (2.31) is

Ê[Xn+1 | Hn] =

1
m

∑m
k=1G

(k)

θ̂,s(n+1)

(
Z

(k)
n+1

)
w

(k)
n

1
m

∑m
k=1w

(k)
n

=

∑m
k=1G

(k)

θ̂,s(n+1)

(
Z

(k)
n+1

)
w

(k)
n∑m

k=1w
(k)
n

.

(2.32)

Here, θ̂ contains parameter estimates for the marginal distributions and are computed

from the data history Hn.

Following the same arguments, forecasting j steps ahead can be done by sam-

pling Zn+1, . . . , Zn+j sequentially. For example, Zn+1 is drawn from the distribution of

Zn+1 | (Z1:n, η̂), Zn+2 is drawn from the distribution of Zn+2 | (Z1:(n+1), η̂), etc.. The

formula for the j-step-ahead prediction is

Ê[Xn+j | Hn] =

∑m
k=1G

(k)

θ̂,s(n+j)

(
Z

(k)
n+j

)
w

(k)
n∑m

k=1w
(k)
n

. (2.33)

Our next section illustrates forecasting capabilities further.

2.5 Simulations

This section presents a simulation study to evaluate the performance of our es-

timation methods. Periodic time series models often have a large number of parameters.

One way of consolidating these parameters into a parsimonious tally involves placing

Fourier parametric constraints on the model parameters (Lund et al., 2006; Anderson

38



et al., 2007), as is done below.

2.5.1 Poisson Marginals

Our first simulation examines the classical Poisson count distribution with the

PAR(1) {Zt} in Example 2.1. Here, Fν is taken as a Poisson marginal with mean λ(ν),

where the first-order Fourier constraint

λ(ν) = a1 + a2 cos

(
2π(ν − a3)

T

)

is imposed to consolidate the T mean parameters into three. Here, |a2| < a1 is imposed

to keep λ(ν) non-negative. The periods T = 10 and T = 50 are studied, the latter taken

to roughly correspond to our future application to weekly rainy day counts. Our {Zt}

process obeys

Zt = ϕ(t)Zt−1 + ϵt
√
1− ϕ(t)2,

with the AR coefficient ϕ(ν) also being constrained by a first-order Fourier series that

induces a causal model:

ϕ(ν) = b1 + b2 cos

(
2π(ν − b3)

T

)
. (2.34)

These specifications ensure that {Zt} is a standard normal process (E[Zt] ≡ 0 and

Var(Zt) ≡ 1). The parameters chosen must have λ(ν) positive for each ν and the

PAR(1) model must be causal. A six-parameter scheme that obeys these constraints is
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a1 = 10, a2 = 5, a3 = 5; b1 = 0.5, b2 = 0.2, and b3 = 5, which is now studied.

The first row in Figure 2.2 displays quantities for this series when T = 10 and

n = 100. The leftmost plot displays the raw data. Sample means (denoted by X̄ν) and

standard deviations (denoted by Sν , which were computed with a denominator of 9 for

each season) of the series were then computed and used to seasonally standardize the

series, forming

UnT+ν :=
XnT+ν − X̄ν

Sν
. (2.35)

The middle and rightmost plots in 2.2 display the sample correlations and partial au-

tocorrelations of {Ut} (while {Ut} is not necessarily stationary, we provide the plots for

feel). Note the large correlations at lag one in both plots.
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Figure 2.2: Top: A Poisson+PAR(1) realization with n = 100 and T = 10 and the sam-
ple autocorelations and partial autocorrelations of its seasonally standardized versions.
Bottom: the same quantities for a Poisson+SAR(1) realization.
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Moving to particle filtering parameter estimation, for each simulated series,

m = 500 independent particles were used along with the series lengths n = 100, 300

and 1000. CRN techniques are used to the ensure that the likelihood is relatively

smooth with respect to its parameters. This is an essential step — see Masarotto et al.

(2017) and Han and De Oliveira (2018) for more on CRNs. Identifiability issues with

the phase shift Fourier parametrizations arise since a cos(π/2 − b) = −a cos(b − π/2);

because of this, we impose a3, b3 ∈ [0, T ). Finally, the popular quasi-Newton method

L-BFGS-B is implemented to optimize the likelihoods (Steenbergen, 2006). The true

model parameters were used as initial guesses in our optimizations. Similar results were

obtained when other initial values were used. It takes, on average, 15s, 45s, and 270s in

the coding language R on a Macbook Pro to complete one simulation analysis for time

series of lengths of n = 100, 300, and 1000, respectively.

Figure 2.3 shows boxplots of parameter estimators aggregated from 500 in-

dependent series of various lengths and periods. The sample means of the parameter

estimators are all close to their true values. When T = 50 and n = 100, there are only

two complete cycles of data to estimate parameters. The phase shift parameters seem

to be the hardest to accurately estimate. For standard errors of these estimators, Table

2.1 reports two values: 1) sample standard deviations of the parameter estimators over

the 500 runs (denominator of 499), and 2) the average (over the 500 runs) of standard

errors obtained by inverting the Hessian matrix at the maximum likelihood estimate

for each run (denominator of 500). Additional simulations (not shown here) with larger

sample sizes with T = 50 show that any biases recede as n increases; we did not do any
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resampling with the particle filtering methods.
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Model 1: Poisson(λ(v))+PAR(1)

Figure 2.3: Box plots of parameter estimators for a Poisson marginal distribution with
a PAR(1) {Zt}. All estimators appear approximately unbiased — the dashed lines
demarcate true parameter values.

We next consider the same Poisson marginal case, but now change {Zt} to the

SAR(1) series in Example 2.2. The a1, a2, and a3 parameters chosen for this simulation

are the same as above. The SAR(1) parameters chosen are ϕ = 0.5 and α = 0.3. The

bottom row in figure 2.2 shows a simulated trajectory of this series along with sample

autocorrelations and partial autocorrelations of its seasonally standardized values as

computed from (2.35). Notice the large autocorrelations at lag 10, which coincides with

the period. Figure 2.4 shows boxplots of the parameter estimators akin to those in

Figure 2.3. The overall performance is again very good — interpretations of the results

are similar to those for the above PAR(1) model. Table 2.2 shows our two types of

standard errors and again reveals nice agreement.
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Model 1

n T â1 â2 â3 b̂1 b̂2 b̂3
mean 9.98375 5.00087 5.00443 0.49213 0.23474 4.98639

100 10 SD 0.60068 0.63494 0.18490 0.07818 0.09896 0.90434

Ê(I ′(θ)2) 0.57199 0.60025 0.17375 0.07720 0.10282 0.90060

mean 9.98127 5.05051 5.01370 0.46899 0.25285 5.24743
100 50 SD 0.58975 0.79520 1.14622 0.08861 0.11470 3.50616

Ê(I ′(θ)2) 0.59190 0.76871 1.11326 0.08268 0.11469 4.51175

mean 9.98652 5.01761 5.00714 0.49608 0.20812 4.98741
300 10 SD 0.33694 0.36520 0.10039 0.04173 0.05550 0.48356

Ê(I ′(θ)2) 0.32824 0.35012 0.09958 0.04151 0.05569 0.45228

mean 9.97370 4.98609 5.00089 0.49386 0.20998 4.89220
300 50 SD 0.33449 0.45038 0.62028 0.04188 0.05726 2.09052

Ê(I ′(θ)2) 0.34588 0.45153 0.65046 0.04156 0.05584 2.33228

mean 9.99549 4.99661 4.99529 0.49862 0.20155 4.99082
1000 10 SD 0.18216 0.20010 0.05275 0.02250 0.03078 0.23884

Ê(I ′(θ)2) 0.17989 0.19258 0.05480 0.02216 0.02971 0.23532

mean 9.99779 5.00452 5.01565 0.49721 0.20500 5.05659
1000 50 SD 0.19145 0.25633 0.35310 0.02239 0.03188 1.15546

Ê(I ′(θ)2) 0.19065 0.24916 0.35300 0.02220 0.02975 1.16491

Table 2.1: Standard errors for the parameter estimators for a Poisson marginal distribu-
tion with a PAR(1) {Zt}. The results show the sample standard deviation (SD) of the
parameter estimators from 500 independent series, and the average of the 500 standard
errors obtained by inverting the Hessian matrix (Ê(I ′(θ)2)) at the maximum likelihood
estimate over these same runs.

2.5.2 A Markov Chain Induced Marginal Distribution

Another marginal distribution that we consider is derived from a two-state

Markov chain (TSMC) model. This distribution will fit our weekly rainy day counts

well in the next section. Consider a Markov transition matrix Q on two states with

form

Q =

 α 1− α

1− β β

 .
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Model 2: Poisson(λ(v))+SAR(1)

Figure 2.4: Box plots of parameter estimators for the Poisson marginal distribution
with a SAR(1) {Zt}. All estimators appear approximately unbiased — the dashed lines
demarcate true parameter values.

Here, α ∈ (0, 1) is interpreted as the probability that day t+1 is dry given that day t is

dry; analogously, β ∈ (0, 1) is the probability that day t+ 1 is rainy given that day t is

rainy. Let {Mt}7t=0 be a Markov chain with these transition probabilities. The marginal

distribution that we consider for {Xt} has the form

P(Xt = k) = PM0

(
7∑

t=1

Mt = k

)
, k ∈ {0, 1, 2, 3, 4, 5, 6, 7},

where M0 ∈ {0, 1}. Here, M0 = 0 signifies that the day before the week started was

dry and M0 = 1 signifies that the day before the week started was rainy. The exact

probability distribution of Xt is given in Theorem 4.1 of Minkova and Omey (2014),

but is unwieldy and not particularly important to give here. This marginal distribution

tends to be over-dispersed (Minkova and Omey, 2014).

To allow for periodicites in the TSMC structure, we parametrize α and β as
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Model 2

n T â1 â2 â3 ϕ α

mean 9.94650 5.07987 4.99206 0.47876 0.28482
100 10 SD 0.66096 0.87087 0.26175 0.08455 0.10242

Ê(I ′(θ)2) 0.65459 0.80021 0.25874 0.08242 0.09947

mean 9.96430 5.07165 4.99623 0.49003 0.27121
100 50 SD 0.51019 0.71742 1.16749 0.11527 0.09630

Ê(I ′(θ)2) 0.50809 0.68786 1.10774 0.10345 0.09874

mean 9.99120 5.06420 4.99278 0.49535 0.29260
300 10 SD 0.41347 0.50127 0.15764 0.04399 0.05155

Ê(I ′(θ)2) 0.40803 0.50201 0.15827 0.04269 0.05426

mean 9.99133 5.01493 5.01603 0.49874 0.29189
300 50 SD 0.37005 0.49076 0.78444 0.04674 0.05392

Ê(I ′(θ)2) 0.36755 0.49687 0.79666 0.04543 0.05403

mean 9.99023 5.01476 4.99412 0.49789 0.29760
1000 10 SD 0.23726 0.27841 0.08863 0.02371 0.03056

Ê(I ′(θ)2) 0.22981 0.28191 0.08943 0.02281 0.02930

mean 9.99384 5.01830 4.99809 0.49863 0.29815
1000 50 SD 0.22794 0.29628 0.47654 0.02124 0.03018

Ê(I ′(θ)2) 0.22244 0.30013 0.47752 0.02323 0.02926

Table 2.2: Standard errors for the parameter estimators for the Poisson marginal dis-
tribution with a SAR(1) {Zt}. The results show the sample standard deviation (SD)
of the parameter estimators from 500 independent series, and the average of the 500
standard errors obtained by inverting the Hessian matrix (Ê(I ′(θ)2)) at the maximum
likelihood estimate over these same runs.

short Fourier series again:

α(ν) = c1 + c2 cos

(
2π(ν − c3)

T

)
; β(ν) = d1 + d2 cos

(
2π(ν − d3)

T

)
.

Our first TSMC simulation considers the PAR(1) {Zt} in (2.34). This is a nine

parameter model. The parameter values considered are c1 = 0.4, c2 = 0.2, c3 = 5; d1 =

0.5, d2 = 0.2, d3 = 0.3, b1 = 0.2, b2 = 0.1, and b3 = 5, which induce a causal {Zt} and

legitimate Markov chain transitions (all transitions have non-negative probabilities).
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Plot of simulated trajectories and its respective ACF and PACF are given by top row

in figure (2.5).
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Figure 2.5: Top: A TSMC+PAR(1) realization with n = 100 and T = 10 and sample
autocorelations and partial autocorrelations of its seasonally standardized {Ut}. Bot-
tom: the same quantities for a TSMC+SAR(1) realization.

Figure 2.6 shows boxplots of estimated parameters over 500 independent series

of various lengths and periods. Table 2.3 shows standard errors computed from the two

methods previously described. For the most part, the results are satisfying. Some of the

phase shift parameter’s ”Hessian inverted” standard errors are larger than the sample

standard deviation standard errors. The phase shift parameter is the argument where

its associated cosine wave is maximal and lies in [0, T ]. Owing to its larger possible

range, this parameter will have more variability than say parameters supported in (-

1,1). Also, when n = 100 and T = 50, there are only two complete cycles from which to
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estimate the location of this maximum — this will be statistically difficult. Additional

simulations (not reported) show that these discrepancies recede as the sample size gets

larger.
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Model 3: TSMC(α,β)+PAR(1)

Figure 2.6: Box plots of parameter estimators for the TSMC marginal distribution with
a PAR(1) {Zt}. All estimators appear approximately unbiased — the dashed lines
demarcate true parameter values.

Finally, we consider the TSMC marginal distribution with a SAR(1) {Zt}. The

parameters ϕ = 0.5 and α = 0.3 were used in this simulation study. The bottom row in

Figure 2.5 shows a simulated trajectory and its respective sample autocorrelations and

partial autocorrelations. Figure 2.7 shows boxplots of the estimated parameters over

500 independent series of various lengths and periods. Table 2.4 shows standard errors

computed by our two methods. Again, the performance is good — the interpretation

of the results is analogous to that given above.

Figures 2.8 demonstrate the forecasting capabilities of our methods. Sample

series were first simulated from the Poisson+PAR(1) and TSMC+PAR(1) models. The

parameters chosen are those in Sections 5.1 and 5.2. The first n = 100 data points were
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Model 3

n T ĉ1 ĉ2 ĉ3 d̂1 d̂2 d̂3 b̂1 b̂2 b̂3
mean 0.389 0.205 4.997 0.490 0.307 4.985 0.199 0.105 4.963

100 10 SD 0.041 0.060 0.472 0.036 0.048 0.295 0.076 0.134 1.221

Ê(I ′(θ)2) 0.043 0.059 0.550 0.035 0.045 0.280 0.108 0.178 2.275
mean 0.391 0.199 5.009 0.490 0.302 5.109 0.192 0.072 5.994

100 50 SD 0.040 0.057 1.876 0.032 0.050 1.137 0.072 0.153 4.153

Ê(I ′(θ)2) 0.044 0.065 3.210 0.036 0.049 1.603 0.112 0.195 4.718
mean 0.394 0.200 5.013 0.496 0.301 5.002 0.194 0.114 4.969

300 10 SD 0.024 0.033 0.306 0.021 0.026 0.159 0.052 0.084 1.095

Ê(I ′(θ)2) 0.025 0.033 0.291 0.020 0.026 0.159 0.060 0.087 1.376
mean 0.395 0.201 4.989 0.495 0.304 5.017 0.191 0.108 5.989

300 50 SD 0.024 0.035 1.269 0.020 0.026 0.733 0.053 0.085 4.130

Ê(I ′(θ)2) 0.025 0.034 1.506 0.020 0.027 0.823 0.060 0.097 8.054
mean 0.399 0.201 5.008 0.499 0.301 5.004 0.198 0.106 4.995

103 10 SD 0.013 0.020 0.151 0.011 0.015 0.085 0.032 0.045 0.794

Ê(I ′(θ)2) 0.014 0.018 0.155 0.011 0.014 0.086 0.033 0.046 0.888
mean 0.398 0.198 4.949 0.499 0.300 4.985 0.195 0.109 5.337

103 50 SD 0.014 0.018 0.743 0.011 0.014 0.432 0.032 0.042 3.477

Ê(I ′(θ)2) 0.014 0.018 0.799 0.011 0.015 0.445 0.033 0.047 4.111

Table 2.3: Standard errors for the parameter estimators for the TSMC marginal dis-
tribution with a PAR(1) {Zt}. The results show the sample standard deviation (SD)
of the parameter estimators from 500 independent series, and the average of the 500
standard errors obtained by inverting the Hessian matrix (Ê(I ′(θ)2)) at the maximum
likelihood estimate over these same runs.
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Figure 2.7: Box plots of parameter estimators for the TSMC marginal distribution with
a SAR(1) {Zt}. All estimators appear approximately unbiased — the dashed lines
demarcate true parameter values.
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Model 4

n T ĉ1 ĉ2 ĉ3 d̂1 d̂2 d̂3 ϕ α

mean 0.372 0.200 4.995 0.480 0.299 5.010 0.447 0.260
100 10 SD 0.061 0.068 0.605 0.050 0.056 0.356 0.107 0.111

Ê(I ′(θ)2) 0.055 0.063 0.624 0.046 0.053 0.335 0.102 0.109

mean 0.378 0.199 4.890 0.482 0.299 5.106 0.469 0.250
100 50 SD 0.049 0.060 2.807 0.044 0.048 1.564 0.123 0.104

Ê(I ′(θ)2) 0.049 0.062 3.602 0.040 0.050 1.572 0.121 0.107

mean 0.388 0.201 5.006 0.493 0.302 5.004 0.477 0.289
300 10 SD 0.033 0.038 0.317 0.030 0.032 0.202 0.056 0.063

Ê(I ′(θ)2) 0.033 0.038 0.335 0.028 0.032 0.193 0.054 0.060

mean 0.390 0.199 5.030 0.492 0.302 5.016 0.483 0.281
300 50 SD 0.033 0.040 1.689 0.027 0.031 1.061 0.055 0.059

Ê(I ′(θ)2) 0.032 0.038 1.706 0.027 0.032 0.960 0.056 0.060

mean 0.395 0.198 4.992 0.497 0.299 4.998 0.484 0.286
1000 10 SD 0.019 0.021 0.183 0.016 0.019 0.112 0.028 0.035

Ê(I ′(θ)2) 0.018 0.021 0.181 0.016 0.018 0.107 0.029 0.032

mean 0.395 0.196 5.060 0.498 0.299 4.989 0.486 0.286
1000 50 SD 0.019 0.022 0.898 0.017 0.020 0.553 0.030 0.034

Ê(I ′(θ)2) 0.018 0.022 0.947 0.015 0.019 0.555 0.029 0.032

Table 2.4: Standard errors for the parameter estimators for the TSMC marginal dis-
tribution with a SAR(1) {Zt}. The results show the sample standard deviation (SD)
of the parameter estimators from 500 independent series, and the average of the 500
standard errors obtained by inverting the Hessian matrix (Ê(I ′(θ)2)) at the maximum
likelihood estimate over these same runs.

used to fit the model and a period of T = 10 additional observations were both simulated

and forecasted from the fist 100 series values. In the Figure 2.8 plots, the forecasts track

the simulated data reasonably well. Confidence intervals for the predictions could be

found by finding the quantile of the sample z
(k)
n+j , k ∈ {1, · · · ,m} of Section 4.3, but we

do not pursue this issue further here.
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Figure 2.8: Top: A forecasting simulation for the Poisson+PAR(1) model. The param-
eters chosen are a1 = 10, a2 = 5, a3 = 5; and b1 = 0.5, b2 = 0.2, b3 = 5 and T = 10.
Bottom: A forecasting simulation for the TSMC+PAR(1) model. The parameters cho-
sen are c1 = 0.4, c2 = 0.2, c3 = 5, d1 = 0.5, d2 = 0.2, d3 = 0.3, b1 = 0.2, b2 = 0.1, b3 = 5,
and T = 10. The number of TSMC trials chosen is 10. In both plots, the blue dots are
the observations and the red dots are the predictions. The last 10 data points were not
used to fit the model. The forecasted observations reasonably track the simulated data.

2.6 Application

This section applies our techniques to a series of weekly rainy day counts in

the Seattle, Washington area recorded from 01-Jan-2000 to 31-Dec-2019. The data

were collected at the Seattle Tacoma airport weather station and are available at http:
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//www.ncdc.noaa.gov. Here, any day receiving a non-zero amount of precipitation is

counted as a rainy day. As such, Xt ∈ {0, 1, 2, 3, 4, 5, 6, 7} for each t. For convenience,

we only analyze the first 364 days in a year, inducing a period of T = 52 in the series.

Any inaccuracies incurred by neglecting these days is minimal. Figure 2.9 summarizes

our data. The top plot graphs the weekly rainy day counts from the last four years

of the series only (for visual clarity), from the first week in 2016 to the 52nd week in

2019. One sees a clear seasonal cycle with summer weeks experiencing significantly

less rain than winter weeks. The middle plot in the figure displays the sample mean

and variance of the weekly counts over the entire 20 year data period, aggregated by

week of year. For example, the mean and variance for the 1st week in January are the

sample means and variance (denominator of 19) over all 20 1st weeks occurring from

2000 to 2019. The sample mean and variance have roughly sinusoidal structures and

are minimal during the summer months. The bottom plots in the figure show sample

autocorrelations (ACF) and partial autocorrelations (PACF) of the series. The pattern

in the ACF is indicative of a periodic mean in the series that has not been removed.

Several marginal distributions for this series merit exploration. The binomial

distribution with seven trials is a classic structure for such data. However, this distri-

bution is underdispersed (variance is smaller than the mean), which does not jibe with

the data patterns seen in the middle plot of Figure 2.9. Another distribution considered

is the TSMC distribution of the last section. This distribution can be overdispersed,

and as we will subsequently see, fits our series quite well. Other two ideal marginal

distributions considered are the generalized Poisson marginal truncated to the support
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Figure 2.9: Top: The Seattle weekly rainy day counts from 2016-2019 only; Middle:
Weekly sample means and variances for the rainy day counts from 2000-2019; Bottom
left and bottom right: Sample ACF and PACF of all observations.

set {0, 1, 2, 3, 4, 5, 6, 7} and the beta-binomial distribution. For clarity, the generalized
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Poisson marginal we use has distribution

P(Y = k) =
e−(λ+ηk)λ(λ+ ηk)k−1

k!
, k = 0, 1, . . . ;

E(Y ) = µ =
λ

1− η
;

Var(Y ) = σ2 =
λ

(1− η)3

for a count variable Y , with λ > 0 and η ∈ [0, 1). When η = 0, Y is Poisson(λ) and is

equi-dispersed. The beta-binomial distribution we use has the form

P(Y = k) =

r

k

 B(k + α, r − k + β)

B(α, β)
, k = 0, 1, . . . , r;

E(Y ) =
rα

α+ β
,

Var(Y ) =
rαβ(α+ β + r)

(α+ β)2(α+ β + 1)
,

where B(x, y) = Γ(x)Γ(y)/Γ(x+ y) is the beta function and r = 7 denotes the number

of trials. First order Fourier cosine constraints are placed on the mean and variance

pair (µ(ν), σ2(ν)) for both cases and then mapped back to parameter pair (λ(ν), α(ν))

and (β(ν), α(ν)).

For structures of {Zt}, we consider PAR(1), AR(1), and SAR(1) models (see

Section 2). The PAR(1) structure uses the first order Fourier cosine consolidation in

(2.34) for {Zt}. The AR(1) {Zt} is simply a standard AR(1) series with a unit variance.

The SAR(1) form for {Zt} is the two parameter model in Example 2.2. For parameters
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in the marginal distributions, the success probabilities are

p(ν) = a1 + a2 cos

(
2π(a3 − ν)

T

)

in the binomial fits;

α(ν) = a1 + a2 cos

(
2π(a3 − ν)

T

)
, β(ν) = b1 + b2 cos

(
2π(b3 − ν)

T

)
,

for the TSMC fits,

µ(ν) = a1 + a2 cos

(
2π(a3 − ν)

T

)
, σ2(ν) = b1 + b2 cos

(
2π(b3 − ν)

T

)
,

λ(ν) = 1−

√
µ(ν)

σ2(ν)
, α(ν) = µ(ν)

√
µ(ν)

σ2(ν)

in the truncated generalized Poisson fit, and

µ(ν) = a1 + a2 cos

(
2π(a3 − ν)

T

)
, σ2(ν) = b1 + b2 cos

(
2π(b3 − ν)

T

)
,

β(ν) =
r[r − µ(ν)]σ2(ν)− rµ(ν)[r − µ(ν)]2

µ(ν)r[r − µ(ν)]− r2σ2(ν)
, α(ν) =

β(ν)µ(ν)

r − µ(ν)

in the beta-binomial fits. We have used the letters a and b and subscripts in all marginal

distribution parameterizations. Do not confuse these with the parameters in the {Zt}

process of the last section; indeed we will see that a stationary {Zt} suffices in our latent

model.

Table 2.5 displays BIC and AIC scores for various fitted {Zt} structures and
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marginal distributions. The best marginal distribution is the TSMC; the truncated

generalized Poisson and marginal distribution is a close second and the beta-binomial

distribution is third. The generalized Poisson marginal distribution (non-truncated) is

known to be a very flexible count distribution (Ver Hoef and Boveng, 2007) that fits

many observed series well. Of note is that an AR(1) latent {Zt} is preferred to either

a PAR(1) or SAR(1) structure. This does not mean that the end fitted model is non-

periodic; indeed, the parameters in the marginal distribution Fν will depend highly on

the week of year ν. However, any seasonality in the PAR(1) and SAR(1) {Zt} do not

make an appreciable difference — a stationary AR(1) {Zt} is sufficient.

Marginal Distribution Model WN AR(1) PAR(1) SAR(1)
Binomial AIC 4278.628 4227.775 4229.708 4229.458

BIC 4293.469 4247.563 4259.39 4254.193
Two State Markov Chain (TSMC) AIC 3888.114 3853.589 3856.244 3855.624

BIC 3917.796 3888.218 3900.766 3895.200
Truncated Overdispersed Poisson AIC 3885.032 3853.840 3856.995 3855.672

BIC 3914.714 3888.469 3901.518 3895.248
Beta-Binomial AIC 3902.095 3864.795 3866.964 3906.130

BIC 3931.777 3899.424 3911.487 3945.706

Table 2.5: AIC and BIC statistics for models with binomial, TSMC, truncated Poisson,
and beta-binomial marginal distributions. The lowest AIC/BIC for each marginal dis-
tribution are bolded. The TSMC marginal distribution with an AR(1) {Zt} is judged
optimal.

Table 2.6 shows the estimated parameters in the fitted model, along with our

initial guesses for the parameters (the routines converged to the same parameter esti-

mates for all initial parameter guesses tried — this was not an issue in our likelihood

optimizations). Based on asymptotic normality, which is expected but has not been

proven, all parameters except b3 appear to be significantly non-zero. Here, a zero b3 is

plausible: b3 = 0 implies that the maximal variability of the weekly rainy day counts
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start at the beginning of the calendar year, which roughly corresponds to the mete-

orological height of winter. Standard errors were estimated by inverting the Fisher

information matrix at the likelihood estimates. For completeness, Tables 2.7 and 2.8

show initial guesses, parameter estimates, and standard errors for the truncated gener-

alized Poisson and beta-binomial fits. The interpretation of these results are similar to

that for Table 2.6.

Table 2.6: Estimates and standard errors of the TSMC AR(1) model. The L-BFGS-B
algorithm was used to optimize particle filtering likelihoods.

Parameters a1 a2 a3 b1 b2 b3 ϕ

Initial Guess 0.500 0.000 3.000 0.500 0.150 3.000 0.000
Point Estimates 0.737 -0.163 4.687 0.648 0.132 1.660 0.198
Standard Error 0.011 0.014 0.674 0.013 0.018 1.039 0.032

Table 2.7: Estimates and standard errors of the generalized Poisson-AR(1) fit. The
L-BFGS-B algorithm is used to optimize particle filtering likelihoods.

Parameters a1 a2 a3 b1 b2 b3 ϕ

Initial Guess 5.000 3.000 4.500 7.000 5.000 3.000 0.000
Point Estimates 3.999 2.975 3.977 8.155 6.926 3.955 0.195
Standard Error 0.263 0.298 0.448 1.586 1.685 0.926 0.033

Table 2.8: Estimates and standard errors of the beta-binomial AR(1) model. The L-
BFGS-B algorithm was used to optimize particle filtering likelihoods.

Parameters a1 a2 a3 b1 b2 b3 ϕ

Initial Guess 4.000 1.000 3.000 3.000 0.500 0.300 0.000
Point Estimates 2.996 1.504 3.427 3.109 0.503 0.339 0.205
Standard Error 0.066 0.085 0.495 0.124 0.174 2.548 0.032

Moving to a residual analysis, Figure 2.10 shows diagnostics for the TSMC

marginal with an AR(1) {Zt}. The top left plot shows the raw residuals and the bottom

left and right plots show sample ACFs and PACFs of these residuals. No major issues

are seen. The top right graph shows a QQ plot of these residuals for a standard normal
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distribution. Some departure from normality is noted in the two tails of the plot.

Figure 2.11 shows PIT histograms of the residuals for the binomial, TSMC,

and beta-binomial fits with AR(1) {Zt}. There are obvious departures from uniformity

for the binomial marginal — this marginal distribution does not seem to describe the

data well. The histogram for the two-state Markov chain marginal is roughly uniform;

hence, we have a good fitting model and the slight lack of normality in {Zt} in Figure

2.10 does not appear overly problematic. The beta-binomial PIT histogram also looks

reasonable.

Finally, to get a feel for the correlation level in our fitted model. Let us define

the average autocorrelation at lag h over all seasons: ρ̂X(h) =
∑52

ν=1 ρX(ν, ν + h)/52,

where ρX(ν, ν + h) is as in 2.14, Table 2.6 shows that the average autocorrelation of

the count model is slightly lower than that of the latent model. No periodic pattern

is observed in the ACF since the latent model is simply AR(1). This result suggests

that the connection between two variables can be attributed to seasonal elements in the

data.

lag h 0 1 2 3 4 5 6 7

ϕ̂h 1 0.1950 0.0380 0.0074 0.0014 0.0003 0.0001 0.0000
ρ̂X(h) 0.9687 0.1811 0.0351 0.0068 0.0013 0.0003 0.0001 0.0000

Table 2.9: Average autocorrelation of the fitted TSMC AR(1) model.
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Figure 2.10: Top left: TSMC + AR(1) residuals. Top right: A QQ plot of these
residuals. Bottom left: The sample ACF of these residuals. Bottom right: The sample
PACF of these residuals.

2.7 Concluding Comments

The above chapter constructs a very general model for seasonal count time

series through a latent Gaussian process transformation. Any marginal distribution

can be achieved and the correlations are as flexible as possible and can be negative.

Estimation of the model parameters through likelihood techniques can be conducted

by particle filtering techniques. The methods were shown to to work well on simulated

data and capably handled a periodic count sequence supported on {0, 1, 2, 3, 4, 5, 6, 7}.

There, we found that the latent Gaussian process did not need to be periodic, but the
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Figure 2.11: Left: a binomial marginal PIT histogram. Middle: a TSMC marginal PIT
histogram. Right: a beta-binomial marginal PIT histogram. The binomial marginal
does not fit as well as the TSMC and beta-binomial marginals.

marginal distribution of the data contained periodicities. The fitted model was very

parsimonious, containing only seven parameters.

Extensions of the above techniques to handle covariates merit exploration.

For this, we suggest allowing θ to depend on the covariates as in Jia et al. (2023).

Modifying the latent Gaussian process to handle covariates generally causes trouble.

Another extension of the methods would consider periodic series supported on all inte-

gers: {. . . ,−2,−1, 0, 1, 2, . . .}; see Barreto-Souza and Bourguignon (2015) and Cui et al.

(2021) and the references within for more on the stationary case. Multivariate versions

of the methods are also worth studying.
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Chapter 3

Poisson Count Time Series

3.1 Introduction

Gaussian time series have a long and storied development in time series model-

ing (Box et al., 2015; Brockwell and Davis, 1991a; Shumway et al., 2000). Indeed, most

time series connoisseurs regard Gaussian theory as essentially complete now. Less devel-

oped, but now currently heavily researched, are methods that describe autocorrelated

series for count data; that is, the series Xt at time t is supported on some subset of the

non-negative integers {0, 1, . . .}. This chapter reviews, compares, and contrasts several

popular methods that produce Poisson distributed series, arguably the quinessential

count distribution. In particular, discrete and integer autoregressions, superpositioning

methods, and copula methods are considered here.

Some caveats are worth mentioning at the onset. First, techniques exist that

produce count models having a conditional Poisson distribution. One such technique,
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which is essentially the GLARMA paradigm of Davis et al. (2005); Dunsmuir et al.

(2015), starts with a nonnegative {λt} process that is stationary and posits that the

conditional distribution of Xt|λt is Poisson with mean λt. While this can often lead

to a convenient autoregressive representation of the counts (Fokianos et al., 2009b), Xt

will not be left with a Poisson marginal distribution. Indeed, should X|Λ = λ be a

Poisson distributed with mean λ, then the marginal distribution of this structure must

be overdispersed:

Var(X) = E[Var(X|Λ)] + Var(E[X|Λ]) = E[Λ] + Var(Λ) > E[Λ] = E[X].

We refer the reader to the review in Davis et al. (2021) and the references within for

more on these issues. In particular, this chapter focuses on models having a true Poisson

count marginal distribution.

As a second caveat, some results for stationary Gaussian time series do not hold

in the Poisson setting. For one example, if {γ(h)}∞h=−∞ is a symmetric (γ(h) = γ(−h)

for all integers h) and non-negative definite sequence on the integers, then there exists a

Gaussian distributed sequence {Xt} with Cov(Xt, Xt+h) = γ(h). No such result carries

over to the Poisson case. Indeed, (−1)h is symmetric and non-negative definite. While

a Gaussian sequence with this autocovariance exists — take Xt = (−1)tZ, where Z is

standard normal — it is not possible to achieve this in the Poisson setting. To see this,

it is enough to show that one cannot have two Poisson variables X1 and X2 having the

same mean λ and correlation −1 (the reader is challenged to prove this).
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The rest of this chapter proceeds as follows. The next section reviews meth-

ods that generate count series having a Poisson marginal distribution. There, discrete

and integer autoregressions, superpositioning methods, and copula techniques are con-

sidered. The pros and cons of these model classes are outlined; much of this material

constitutes a review. Section 3.3 moves to estimation issues. There, likelihood estima-

tion techniques are developed if possible. Unfortunately, the joint distribution needed

in the likelihood is not tractable for some model classes. Particle filtering and quasi-

likelihood techniques such as linear prediction arise here. Simulations show that the

methods work quite well. Section 3.4 analyzes series of annual North Atlantic Basin

strong hurricanes and no-hitter games pitched in major league baseball. Section 3.5

concludes the chapter with comments.

3.2 Methods

This section reviews methods producing a stationary series with Poisson marginal

distributions. Some of this material has appeared elsewhere, but some new insights are

offered in our discourse.

As some of the models classes reviewed cannot have negative autocorrelations,

flexibility and completeness of the autocovariances becomes an issue. Before proceeding,

we first investigate the most negatively correlated Poisson variables existing, providing

some intuition en route.

Let Fλ(·) be the Poisson cumulative distribution function (CDF) with mean
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λ:

Fλ(n) =

n∑
k=0

e−λλk

k!
, n = 0, 1, . . .

The most negatively correlated pair of random variables X and Y , both having the

marginal cumulative distribution function (CDF) Fλ, are known to have form X =

F−1
λ (U) and Y = F−1

λ (1 − U), where U is uniformly distributed over [0,1] and F−1
λ is

the inverse CDF:

F−1
λ (u) = inf{t : Fλ(t) ≥ u}

(Whitt, 1976) (this inverse version coincides with the quantile function). Such an (X,Y )

pair can be produced from a Gaussian copula via

X = F−1
λ (Φ(Z)), Y = F−1

λ (Φ(−Z)).

Here, Φ(·) is the standard normal CDF and Z is a standard normal random variable.

This is because U := Φ(Z) is uniformly distributed over [0,1] by the probability trans-

formation theorem and Φ(−Z) = 1 − Φ(Z) has the same distribution as 1 − U due to

the symmetry of the standard normal distribution about zero.

To obtain an expression for the most negative correlation possible, let cn =

Fλ(n) denote the Poisson λ CDF at index n and note that the inverse has form

F−1
λ (u) =

∞∑
n=1

n1[cn−1,cn)(u),
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where 1A(x) denotes an indicator function over the set A. Converting this to a tail sum

gives

F−1
λ (u) =

∞∑
n=1

n∑
k=1

1[cn−1,cn)(u) =

∞∑
k=1

∞∑
n=k

1[cn−1,cn)(u) =

∞∑
k=1

1[ck−1,1)(u). (3.1)

Simple algebraic manipulations now give

E[F−1
λ (U)F−1

λ (1−U)] =
∞∑
k=1

∞∑
ℓ=1

E[1ck−1,1)(U)1cℓ−1,1)(1−U)] =
∞∑
k=0

∞∑
ℓ=0

(1−cℓ−ck)1[cℓ+ck<1],

An expression for the most negative autocorrelation, which we denote by NB(λ), now

follows simply as

NB(λ) =

∑∞
k=0

∑∞
ℓ=0(1− cℓ − ck)1[cℓ+ck<1] − λ2

λ
. (3.2)

A plot of NB(λ) as a function of λ is provided in Figure 3.1. As λ → ∞, this correlation

tends to -1; however, for small λ, there are significant restrictions on what correlations

can be made. An interesting feature of Figure 3.1 lies with the slight non-monotonicity

of NB(λ) in λ for some λ ≤ 3. This is not computational roundoff; indeed, the Hermite

coefficients gk below, discussed in Subsection 2.4, are not monotonic in λ. This fact can

be inferred from the plots in the supplementary material in Jia et al. (2023).
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Figure 3.1: Lower Curve: Plots of the most negative achievable autocorrelation, NB(λ),
for various λ. Bottom Curve: Plot of the most negative autocorrelations possible with
the superpositioned model class of Section 3.2.3.

3.2.1 Discrete Autoregressions

Discrete autoregeressions (DARs), the original attempt to devise stationary

series having a particular marginal distribution (Jacobs and Lewis, 1978a,b,c), work by

mixing past series values. In the Poisson case, the construction begins with the sequence

{At}∞t=1 of IID Poisson variables with mean λ > 0. A sequence {Bt}∞t=1 of IID Bernoulli

trials is needed that is independent of {At} and has success probability P (Bt = 1) = p.

In the first-order case, the construction starts by taking X1 = A1. For t ≥ 2,

series values are mixed via

Xt = BtXt−1 + (1−Bt)At.

Here, if Bt = 1, Xt is taken as Xt−1; should Bt = 0, Xt = At is a “new independent
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Poisson draw”. Schemes extending the paradigm to higher autoregressive (AR) orders

r are achievable with additional Bernoulli sequences, but the DAR class has drawbacks

that make it unsuitable for use. Foremost, DAR models cannot have any negative

autocorrelations. In the first order case, one can show that Corr(Xt, Xt+h) = ph for

h ≥ 0, which cannot be negative since p ∈ (0, 1) must be a probability. Perhaps worse,

series values are often repeated: P [Xt+1 = Xt] ≥ p. In the heavily correlated case where

p is close to unity, the series becomes almost constant. Because of these properties, DAR

series were essentially abandoned. See Möller and Weiß (2020) for recent attempts to

remedy these issues. We will not consider this class further.

3.2.2 Integer Autoregressions

Steutel and van Harn (1979) introduced binomial thinning in an attempt to

mimic AR recursions to construct count series. If X is a count-valued variable, define

α◦X =
∑N

i=1Bi, where {Bi} are IID Bernoulli trials with success probability α ∈ (0, 1)

that are independent of X; ◦ is called a binomial thinning operator.

Integer autoregressions (INARs) are based on thinning operators. In the first-

order case, a strictly stationary series with Poisson marginal distributions with mean λ

is governed by the difference equation

Xt = α ◦Xt−1 + ϵt, (3.3)

where {ϵt} is IID with a Poisson marginal distribution with mean λ(1− α) (McKenzie,
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1985; Alzaid and Al-Osh, 1990; Weiß, 2018).

A well-known property of solutions to (3.3) is that any discrete self-decomposable

marginal distribution (these include Poisson, negative binomial, and generalized Pois-

son) can be produced by this recursion; this said, our focus remains on Poisson marginals.

The autocorrelation function of an INAR(1) series can be shown to have the form

Corr (Xt, Xt+h) = αh; (3.4)

in particular, negative autocorrelations cannot be produced since α ∈ (0, 1).

Higher order schemes, dubbed INAR(r) for order r, have been investigated;

however, producing series with Poisson marginals in these schemes has been problematic.

Be wary of issues with the literature here; specifically, the methods in Alzaid and Al-Osh

(1990) and Du and Li (1991) will not achieve Poisson marginals; see the discussion in

Scotto et al. (2015). To circumvent this problem, Zhu and Joe (2003) propose CINAR

models. A CINAR(r) series of order r follows the recursion

Xt = Dt,1 (α ◦Xt−1) + · · ·+Dt,r (α ◦Xt−r) + ϵt. (3.5)

The IID time t “decision vector” is Dt = (Dt,1, . . . , Dt,r) ∼ Mult(1;ϕ1, . . . , ϕr) and is

independent of {ϵt} and {Xs}s<t. The decision vector Dt chooses which of the past r

series values is used to thin, enabling the scheme to keep a Poisson marginal distribution.

Here, the innovation ϵt and the thinning of Xt−j for the chosen j ∈ {1, . . . , r} are always
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conducted independently.

Zhu and Joe (2003) show that the marginal distribution of any CINAR(r)

series must also be self-decomposable. As with the Poisson INAR(1) model in (3.3),

the CINAR(r) model has a marginal Poisson distribution with mean λ when {ϵt} is

IID Poisson with mean λ(1 − α), regardless of the order of r. Weiß (2008) derives the

autocovariance of a CINAR(r) series from (3.5); from the resulting expression, one can

show that this covariance must be non-negative. As such, CINAR(r) models cannot

have any negative autocorrelations. Again, this model class fails to span the range of

all possible autocovariances.

3.2.3 Superposition Techniques

Poisson distributions can be built by adding IID copies of Bernoulli random

variables. Indeed, if {Bi}∞i=1 are IID Bernoulli variables with success probability p =

P [Bt = 1] and N is Poisson, independent of {Bi}∞i=1 and with mean λ, then
∑N

i=1Bi has

a Poisson distribution with mean pλ. Blight (1989) and Cui and Lund (2009) use this

construction to produce correlated count series having Poisson marginal distributions.

Elaborating, suppose that {Bt,i}∞t=1 are IID copies of the autocorrelated Bernoulli

trial sequence {Bt}. Clarifying, for each fixed i, {Bt,i}∞t=1 is autocorrelated in time t

— say Cov(Bt,i, Bt+h,i) := γB(h) — but {Bt,i}∞t=1 and {Bt,j}∞t=1 are independent when

i ̸= j. A series with Poisson marginals can be built via the superpositioned form

Xt =

Nt∑
i=1

Bt,i.
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where {Nt} is IID Poisson(λ). Then Xt has a Poisson distribution with mean λp. The

autocovariances of {Xt} are

γX(h) := Cov(Xt, Xt+h) = E[min(N1, N2)]γB(h) (3.6)

for h > 0, where N1 and N2 are independent Poisson variables with mean λ. Note

that γX(h) will be negative whenever γB(h) is negative; hence, this model class can

produce negatively correlated series. One can show that

E[min(N1, N2)] := κ(λ) = 2λ
[
1− e−4λ{I0(4λ) + I1(4λ)}

]
, (3.7)

where the Ijs are modified Bessel functions:

Ij(x) =
∞∑
n=0

(x/2)2n+j

n!(n+ j)!
, j = 0, 1

(Jia et al., 2021). The above construct essentially builds the correlated Poisson series

{Xt} from the independent Poisson series {Nt}.

Several ways to construct a correlated sequence of Bernoulli trials exist. One

way uses a stationary renewal sequence built from the IID lifetimes {Li}∞i=1 supported

on {1, 2, . . .} and an initial delay L0 supported on {0, 1, 2, . . .} as follows. Define the

random walk Sn = L0 + L1 + · · ·+ Ln for n ≥ 0 and set Bt = 1 when a renewal occurs

at time t (i.e., when Sn = t for some n ≥ 0) and zero otherwise. When the initial delay

L0 is chosen as the first derived distribution of one of the Lis for i ≥ 1 (a generic copy
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of these is denoted by L), viz.

P [L0 = k] =
P [L > k]

µL
, k = 0, 1, 2, . . . ,

the Bernoulli sequence is stationary in that E[Bt] ≡ 1
µL

and

γB(h) =
1

µL

(
uh −

1

µL

)
. (3.8)

Here, the notation uses µL = E[L] and uh as the probability of a time h renewal in

a non-delayed renewal process (L0 = 0). When L is aperiodic and E[L] < ∞ (which

we henceforth assume), uh −→ µ−1
L as t −→ ∞ by the elementary renewal theorem

(Smith, 1958). One can show that {Xt} has long memory (absolutely non-summable

autocovariances over all lags) when E[L2] = ∞ (Lund et al., 2016); Jia et al. (2021)

derive further properties of superpositioned series and investigate non-Poisson count

marginal distributions.

Another way to produce a stationary but correlated Bernoulli sequence clips a

Gaussian sequence as in Kedem (1980). Elaborating, let {Zt} be a standard stationary

Gaussian sequence with E[Zt] ≡ 0, Var(Zt) ≡ 1, and Corr(Zt, Zt+h) = ρZ(h). Define

Bernoulli trials as

Bt = 1A(Zt),
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where A is some fixed set. In this case, autocovariances are

γB(h) = P (Zt ∈ A ∩ Zt+h ∈ A)− P (Zt ∈ A)2. (3.9)

As an example, when A = (0,∞), P (Zt ∈ A) = 1/2 and classic bivariate normal orthant

probability calculations give

γB(h) =
arcsin(ρZ(h))

2π
.

Notice that the autocovariances in (3.8) and (3.9) can be negative. Specifically, for

a renewal {Bt}, γB(h) < 0 whenever uh < µ−1
L ; for a Gaussian clipped {Bt} with

A = (0,∞), γB(h) < 0 whenever ρZ(h) < 0.

While the autocovariance function in (3.6) can be decisively negative, it does

not achieve the minimum possible in (3.2). To see this, note from (3.6) and (3.7) that

ρX(h) := Corr(Xt, Xt+h) =
κ(λ/p)

λ
γB(h).

The smallest γB(h) that can be made from a binary pair of random variables can be

shown to be -p2 for any lag h. Thus, the most negative lag h correlation that can be

built from this model for any h is −p2κ(λ/p)/λ.

Figure 3.1 displays this most negative correlation. Again, the correlation ap-

proaches −1 as λ increases and there are significant restrictions for λ close to zero. To

find these values, a numerical search was used to find the p ∈ (0, 1) that minimizes
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−p2J(λ/p)/λ for each fixed λ. These most negative correlations are uniformly worse

(bigger) than the optimal ones identified earlier. This brings us to our best Poisson

model, which will be able to achieve the full spectrum of achievable autocorrelations.

3.2.4 Gaussian Copulas

A recent class of very parsimonious and general count models developed in

Jia et al. (2023) has been demonstrated to have remarkable flexibility. This model

starts with a stationary standard Gaussian sequence {Zt} and transforms it to the

desired count. Standardized means that E[Zt] ≡ 0, Var(Zt) ≡ 1, and γZ(h) = ρZ(h) =

Corr(Zt, Zt+h). The construction transforms Zt at time t via

Xt = F−1
λ (Φ(Zt)). (3.10)

Here, Φ(·) is the standard normal CDF. By the probability integral transformation

theorem, Φ(Z) has a uniform distribution over [0,1] and Xt has a Poisson marginal

distribution with mean λ.

The form of the autocovariance function of {Xt} is unwieldy, but can be quan-

tified through several expansions. With G(x) = F−1
λ (Φ(x)), arguing as in (3.1) gives

G(z) =
∞∑
n=1

n1[Fλ(n−1)≤Φ(z)<Fλ(n)] =
∞∑
ℓ=0

1[Fλ(ℓ−1),1)(Φ(z)) =
∞∑
ℓ=0

1[Φ−1(Fλ(ℓ)),∞)(z).
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One expression for the autocovariances now follows as

γX(h) =
∞∑
j=0

∞∑
k=0

P
(
Zt ∈ [Φ−1(Fλ(j)),∞) ∩ Zt+h ∈ [Φ−1(Fλ(k)),∞)

)
,

which is computationally intensive to evaluate.

A more tractable expansion works through the Hermite polynomials {Hk(x)}∞k=0

defined by

Hk(x) = (−1)kez
2/2 dk

dzk

(
e−z2/x

)
.

The first three Hermite polynomials are H0(x) ≡ 1, H1(x) = x, and H2(x) = x2 − 1.

Higher order polynomials obey the recursion

Hk(x) = xHk−1(x)−H ′
k−1(x), k ≥ 1.

Expanding G in a Hermite basis, viz.

G(x) =

∞∑
ℓ=0

gℓHk(x)

produces the key relationship

γX(h) = L(ρZ(h)), |u| ≤ 1,
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where L(·), called a link function in Jia et al. (2023), has the power series expansion

L(u) =
∞∑
k=1

k!g2k
γX(0)

uk =
∞∑
k=1

ℓku
k,

where ℓk = k!g2k/γX(0). It is known that L(u) is differentiable in u, that L(0) = 0, and

that L(1) = 1 (Jia et al., 2023). The quantity ℓk is called a link coefficient. Figure

3.2 plots ℓk for a few values of k as a function of λ. While these coefficients behave

erratically, they decrease quickly as k and/or λ increase. The value limu↓−1 L(u) is the

most negative pairwise correlation that can be made. The inequality |γZ(h)| ≤ |γX(h)|,

established in (Jia et al., 2023) (see also Tong (2014)), shows that correlation will always

be lost in the transformation from Zt to Xt, but many times, this loss is not substantial.

Figure 3.2: Plot of log(ℓk) versus λ for k ∈ {1, 2, 3, 4, 5}.

With the conventions Φ−1(0) = −∞ and Φ−1(1) = ∞, the Hermite coefficients
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can be computed as

gk =
1

k!

[
1− e−λ +

∞∑
ℓ=1

Hℓ−1(Φ
−1(Fλ(ℓ)))ϕ(Fλ(ℓ))

]
.

Other forms for gk are derived in Jia et al. (2023). Figure 3.3 plots L(u) against u for

various values of λ. Notice that when λ = 10, L(u) ≈ u and very little autocorrelation

is lost in the transformation of Zt to Xt.
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Figure 3.3: The link function L(u) for λ ∈ {0.1, 1, 10}.

3.3 Inference

In the stationary case where Xt ∼ Poisson(λ), the traditional estimate of λ is

the sample mean

λ̂ =
X1 + · · ·+Xn

n
.
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The variance of this estimate is

Var(λ̂) =
λ

n

1 + 2
n−1∑
j=1

(1− j/n)γX(j)

 ,

which is consistent whenever {Xt} has short memory autocorrelations (
∑∞

j=1 |ρX(j)| <

∞). One can get estimators of λ with smaller variances than the sample mean with

generalized least squares methods, but any improvements are negligible as n → ∞ (see

the discussion in Chipman (1979); Lee and Lund (2004)).

In practical modeling scenarios, {Xt} is usually non-stationary, possibly due to

trends, periodicities, covariates, etc. To study estimation for Poisson count series with

such structures, we need to develop time-varying versions of our techniques. Hence, our

immediate goal is to develop time-varying models where Xt ∼ Poisson(λt) and there is

correlation between observations.

To develop models where Xt ∼ Poisson(λt), we first revisit INAR(1) models.

Here, complications arise. To see this, if X1 ∼ Poisson(λ1) and the process obeys (3.3),

then we must have ϵ2 ∼ Poisson(λ2 − pλ1). Unfortunately, there is no guarantee that

λ2 − pλ1 is non-negative, suggesting that the INAR(1) paradigm might not be a good

way to handle time-varying dynamics. Should it be known that λt is nondecreasing

in t, then one could explore this model class further; see Bentarzi and Souakri (2023)

for additional comments on process existence. Because of this issue, we move to other

methods.
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3.3.1 Time-varying Superpositioned Series

In the superpositioned model class, time-varying models having the desired

marginal properties are easy to construct. For this, let {Nt} be a sequence of inde-

pendent Poisson variables with Nt ∼ Poisson(λt/p). Here, p = P [Bt,i = 1] is the

success probability of the Bernoulli trials in the construction. Then it is easy to see

that Xt ∼ Poisson(λt) as required. In this case, the derivation associated with 3.6 gives

Cov(Xt, Xt+h) = E(min(Nt, Nt+h))γB(h),

where Nt and Nt+h are independent Poisson variables with parameters λt and λt+h,

respectively. Note that

E(min(Nt, Nt+h)) =

∞∑
n=1

P (min(Nt, Nt+h) ≥ n)

=
∞∑
n=1

P (Nt ≥ n ∩Nt+h ≥ n)

=
∞∑
n=1

P (Nt ≥ n)P (Nt+h ≥ n)

=

∞∑
n=1

[1− Fλt/p(n− 1)][1− Fλt+h/p(n− 1)],

where Fλt(n−1) and Fλt+h
(n−1) are the Poisson CDFs at the times t and t+h. There

does not seem to be a simplification of this formula as in (3.7) unless λt = λt+h.

To estimate parameters in superpositioned schemes, we will use linear predic-

tion methods. Unfortunately, the model’s likelihood function and conditinal expecta-
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tions E[Xt|X1, . . . , Xt−1] appear to be intractable. Also, how to simulate the likelihood

accurately, as we will do for the Gaussian copula case below with particle filtering

methods, is also unclear. A bivariate composite likelihood is indeed tractable as an

alternative to linear prediction; however, we will see that linear prediction works quite

well.

Linear prediction works by first calculating Cov(Xt, Xs) := ΓX(t, s) for each

1 ≤ t, s ≤ n. Estimators are found by minimizing the simple sum of squares

n∑
t=1

(Xt − X̂t)
2, (3.11)

where

X̂t = λt +
t−1∑
j=1

wj,t(Xj − λj)

is the best one-step-ahead predictor of Xt made from linear combinations of a constant

and X1, . . . , Xt−1. The coefficients {wj,t} satisfy the prediction equations



ΓX(1, 1) ΓX(1, 2) · · · ΓX(1, t− 2) ΓX(1, t− 1)

ΓX(2, 1) ΓX(2, 2) · · · ΓX(2, t− 2) ΓX(2, t− 1)

...
...

. . .
...

...

ΓX(t− 2, 1) ΓX(t− 2, 2) · · · ΓX(t− 2, t− 2) ΓX(t− 2, t− 1)

ΓX(t− 1, 1) ΓX(t− 1, 2) · · · ΓX(t− 1, t− 2) ΓX(t− 1, t− 1)





w1,t

w2,t

...

wt−2,t

wt−1,t


=



ΓX(1, t)

ΓX(2, t)

...

ΓX(n− 2, t)

ΓX(n− 1, t)


.

(3.12)

To obtain parameter estimators, the sum of squares is numerically minimized

in the parameters appearing in {λt}. In this scheme, we only minimize the sum of
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squares in (3.11) about the mean parameters appearing in λt; the parameters appearing

in the covariance structure of {Bt} are held to their true values during this optimization.

Future work will consider how to estimate these parameters in tandem; here, a Cochrane-

Orcutt recursion seems developable (Cochrane and Orcutt, 1949). One complication is

that some parameters in {Bt} (namely p) arise in both the mean and autocovariance

structure of the linear predictors. One may also wish to consider weighted least squares

to accommodate the changing variances of the series.

Solving the linear system in (3.12) requires a O(t3) computational cost; as

such, the computational burden can be expensive for large n. We recommend doing a

Cholesky decomposition of the covariance matrix on the left hand side of (3.12) and then

using backwards/forward substitution to obtain {wt,k}. The classic Durbin-Levinson

recursion is not suitable here since {Xt} is not stationary. In our future computations,

the “Nelder–Mead” optimization method was used to minimize the sum of squares in

(3.11).

3.3.2 Time-varying Gaussian Copula Series

In the Gaussian copula case, the process construction carries through as before;

specifically, we set

Xt = F−1
λt

(Φ(Zt)). (3.13)

The Hermite expansion of the time homogeneous case is simply allowed to vary with

time now.
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For notation, let θ contain all parameters appearing in {λt}nt=1 and η denote all

parameters governing {Zt}. We do not suggest trying to incorporate time dependence

into the dynamics of {Zt} as process existence issues then arise. The covariance matrix

of (Z1, . . . , Zn)
′ depends only on η (and not on θ).

The model’s likelihood function, denoted by L(θ,η), is simply a high dimen-

sional multivariate normal probability. To see this, use (3.13) with the data X1, . . . , Xn

to get

L(θ,η) = P(X1 = x1, · · · , Xn = xn) = P (Z1 ∈ (a1, b1], · · · , Zn ∈ (an, bn]) , (3.14)

where {at}nt=1 and {bt}nt=1 are

at = Φ−1(Fλt(xt − 1)), bt = Φ−1(Fλt(xt)).

While this probability is not intractable, it is infeasible to accurately evaluate

for large n. A likelihood can, however, be quite accurately simulated by particle filtering

methods (Douc et al., 2014). Particle filtering simulation methods can be used to

reliably approximate the model’s likelihood and even compute standard errors. The

current preferred methods of multivariate normal probability evaluation are argiably

the Geweke–Hajivassiliou–Keane (GHK) simulators of Geweke (1991) and Hajivassiliou

et al. (1996). Here, we develop an adaptive version of this simulator.

Particle filtering methods, which are classic importance sampling techniques,
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aim to evaluate integrals by drawing samples from an alternative distribution and av-

eraging their corresponding weights. Should we need to estimate the integral
∫
f(x)dx

over some domain D, then we use

∫
D
f(x)dx =

∫
D

f(x)

q(x)
q(x)dx,

where f(x)/q(x) is the weight and q is called the importance distribution. The impor-

tance sampling estimate of the integral is

∫
D

f(x)

q(x)
q(x)dx ≈ 1

m

m∑
k=1

f(x(k))

q(x(k))
,

where x(1), . . . ,x(m) are m IID samples drawn from q. We require that q satisfies

q(z1:n) > 0 for zt ∈ (at, bt] and q(z1:n) = 0 otherwise; our notation uses z1:k = (z1, . . . , zk)

and x1:k = (x1, . . . , xk).

We take advantage of the Markov chain properties of the latent AR {Zt}.

The GHK algorithm samples Zt, depending on the its previous history Zt−1, . . . , Z1

and Xt, from a truncated normal density. Specifically, let pη(t) (zt|z1:t−1;xt) denote the

truncated normal density of Zt given the history Z1, . . . , Zt−1 and Xt. Then

pη(t) (zt|zt−1, . . . , z1, xt) =
1

rt

[
ϕ( zt−ẑt

rt
)

Φ( bt−ẑt
rt

)− Φ(at−ẑt
rt

)

]
, at < zt < bt, (3.15)

where ẑt and rt are the one-step-ahead mean and standard deviation of Zt conditioned

on Z1:t−1. Note that at and bt only depend on xt. Here, we choose the importance
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sampling distribution

qη(z1:n|x1:n) = pη(1)(z1|x1)
n∏

t=2

pη(t) (zt|z1:t−1;xt) . (3.16)

After some cancellation, we arrive at

ϕη (z1:n)

q(z1:n)
= [Φ (b1)− Φ (a1)]

n∏
t=2

[
Φ

(
bt − ẑt
rt

)
− Φ

(
at − ẑt

rt

)]
.

Here, ϕθ(z1:n) denotes the multivariate normal distribution with mean zero and covari-

ance matrix that of Z1:n. See Kong and Lund (2023) for derivation details.

Define the initial weight w1 = Φ(b1) − Φ(a1). The weights are recursively

updated via

wt = wt−1

[
Φ

(
bt − ẑt
rt

)
− Φ

(
at − ẑt

rt

)]

at time t during the sequential sampling procedure. At the end of the sampling, we

obtain

wn =
ϕη(z1:n)

qη(z1:n|x1:n)
.

In the classic GHK simulator, Ẑt and rt are obtained from the covariance matrix of

{Zt}. When {Zt} is the causal autoregression of order r, viz.,

Zt = ϕ1Zt−1 + · · ·+ ϕpZt−r + ϵt

where {ϵt} is Gaussian white noise with variance σ2
ϵ that makes Var(Zt) = 1, the one-
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step-ahead predictors and their mean squared errors obey

Ẑt = ϕ1Zt−1 + . . . ϕrZt−r, t > r

and rt = σϵ for t > r. See Brockwell and Davis (1991a) for computing these quantities

when t ≤ r.

The above procedure generates a fair draw of a single “particle path” {Zt} with

the property that {Xt}nt=1 generated from {Zt}nt=1 yields the observations x1, . . . , xn.

Repeating this process m independent times gives m simulated process trajectories.

Let {Z(1), . . . ,Z(m)} denote these trajectories and denote their corresponding weights

at time n by {w(k)
n }mk=1.

The importance sampling estimate is given by

L̂ (θ,η) =
1

m

m∑
k=1

w(k)
n .

A large m of course provides more accurate estimation. The popular “BGSF” gradient

step and search method is used to optimize the estimated likelihood L̂(θ,η); other

optimizers may also work.

Common random numbers (CRNs), techniques that use the same random

quantities across differing parameter values in particle filtering, are used to produce

a “smooth” estimated likelihood function. With CRNs, Hessian-based standard errors

derived from the likelihood function’s derivatives at the likelihood estimate are much
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more reliable; see Kleinman et al. (1999) and Glasserman and Yao (1992) for more on

CRNs.

3.3.2.1 A Simulation Study

This section studies parameter estimators of the superpositioned and Gaussian

copula Poisson count series through simulation. To illustrate the techniques in a simple

setting, our simulations consider a single trend and covariate parameter:

λt = exp{µ+ β1t+ β2Ct}.

More complicated scenarios are dealt with similarly. Here, Ct is the value of the covariate

at time t, generated as zero-one IID Bernoulli(0.3) draws under the R seed “1234”. The

covariate sequence {Ct}nt=1 is fixed throughout all simulations. A log link has been

used to keep the Poisson parameter non-negative, with eµ being the baseline value of

λ. The quantity β1 is the “trend” parameter and β2 measures the contribution of the

covariate to the mean. In general, we do not look to conduct inferences about the

location parameter µ. In practice, λt can be any non-negative function, making the

model flexible.

In our simulations below, we set the parameters to µ = 1, β1 = 0.01, and

β2 = 1 and consider series lengths of 50, 100, and 300. Five hundred independent

simulation replicates are studied in every simulation scenario.

For the superposition scheme, the {Bt} process used to generate our series is
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obtained from a clipped AR(1) {Zt} series. The AR(1) parameters are set to ϕ = 1/2

and σ2 = 3/4 so that a unit variance Gaussian series is clipped. Here p is forced to

1/2 by setting Bt = 1(0,∞)(Zt). During estimation, the autocovariance parameters are

fixed to their true values in the linear prediction scheme and we examine estimates of

the three parameters appearing in the mean λt. The true model parameters were used

as initial guesses in our optimizations. Similar results were obtained when other initial

values were used.

Figure 3.4 displays parameter estimator boxplots for each mean parameter.

The dotted red line demarcates the true parameter value. All boxplots are centered

around their true parameter values and the distributional shape seems approximately

normal. For standard errors of these estimators, Table 3.1 reports the sample standard

deviations of the parameter estimators over the 500 runs. As expected, estimation

accuracy increases as the series length increases. Overall, the estimators seem accurate.
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Figure 3.4: Boxplots of parameter estimators for a superpositioned Poisson count series
with {Bt} constructed by clipping an AR(1) {Zt}. Both ϕ and p are set to 1/2, their
true values, during estimation. The other three mean parameter estimators appear
approximately unbiased; dashed lines demarcate true parameter values.
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Superposition Poisson AR(1) Model

n µ̂ β̂1 β̂2
50 mean 1.00805 0.00914 1.00887

SD 0.24117 0.00733 0.14888

100 mean 0.99380 0.01003 1.00240
SD 0.14921 0.00210 0.08668

300 mean 1.00271 0.00999 1.00012
SD 0.08064 0.00031 0.03107

Table 3.1: Mean and standard deviation (SD) of estimators for the superpositioned
Poisson count series with {Bt} constructed via a clipped AR(1). True values of the
parameters are µ = 1, β1 = 0.01, and β2 = 1. The results report the sample mean and
standard deviation (denominator of 499) of the parameter estimates from the 500 runs.

Moving to the Gaussian copula scheme, we again use AR(1) errors with ϕ = 1/2

and σ2 = 3/4 to generate the latent process {Zt}. The settings for µ, β1, and β2 used

above are repeated. In this scheme, all parameters are estimated via particle filtering

methods, even the AR(1) parameter ϕ. The true model parameters were used as initial

guesses in our optimizations. Similar results were obtained when other initial values

were used.

Figure 3.5 shows boxplots of all estimators and series lengths. The dotted red

line again indicates true parameter values. All boxplots are centered around the true

parameter values and look approximately normal, with perhaps one exception being

ϕ̂ under the shortest series length n = 50. For standard errors, Table 3.2 reports

two values: 1) the sample standard deviation of the parameter estimators over the

500 runs (denominator of 499), and 2) the average (over all runs) of standard errors

obtained by inverting the Hessian matrix at the maximum likelihood estimate for each

run (denominator of 500). The difference between these two values are quite small,
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implying that Hessian-based standard errors obtained from one sample path are indeed

accurate. Standard errors again decrease with increasing n. Again, the performance

appears good.
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Figure 3.5: Boxplots of parameter estimators for Gaussian copula estimates of a Poisson
count series with an AR(1) {Zt} with ϕ = 0.5. All estimators appear approximately
unbiased; dashed lines demarcate true parameter values.

Gaussian Copula Poisson AR(1) Model

n µ̂ β̂1 β̂2 ϕ̂

mean 0.98419 0.01012 0.99880 0.48945
50 SD 0.22609 0.00610 0.11068 0.13010

Ê(I ′(θ)2) 0.22640 0.00644 0.10701 0.11412

mean 0.99550 0.01004 0.99716 0.49222
100 SD 0.13941 0.00200 0.06520 0.07693

Ê(I ′(θ)2) 0.14720 0.00206 0.06642 0.07498

mean 1.02786 0.00988 1.00020 0.50182
300 SD 0.05987 0.00025 0.01896 0.03320

Ê(I ′(θ)2) 0.06410 0.00027 0.02219 0.04144

Table 3.2: Standard errors for the parameter estimators for the Poisson marginal dis-
tribution with an AR(1) {Zt}. The results show the sample standard deviation (SD)
of the parameter estimators from 500 independent series (denminator of 499), and the
average of the 500 standard errors obtained by inverting the Hessian matrix (Ê[I ′(θ)2)]
at the maximum likelihood estimate over these same runs.

In comparing superpositioned and Gaussian copula results, we see that stan-

dard errors for the Gaussian likelihood estimators are slightly smaller than their su-

perpositioned counterparts. This is expected: likelihood estimators are generally the
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asymptotically most efficient estimators. This said, the calculations needed to produce

the likelihood estimators are more intensive than those for linear prediction. Finally,

we did study higher order autoregressions; results are again impressive and similar to

the above. For brevity’s sake, figures and tables of these simulations are not presented

here.

3.4 Applications

This section considers two count series that we fit with Poisson marginal dis-

tributions: Atlantic Basin tropical storm counts and the number of no-hitters games

pitched annually in Major League Baseball. Both series are comprised of small counts,

where the marginal distribution becomes important. Because the superpositioned linear

prediction estimation performs slightly worse than Gaussian copula likelihood estima-

tion, we concentrate on the latter estimation technique in this section.

3.4.1 Atlantic Tropical Cyclones

Our first series contains the annual number of tropical cyclones observed in

the North Atlantic Basin since 1970. This series is plotted in the top plot of Figure

3.6. Poisson marginal distributions have been previously advocated for these and other

tropical cyclone counts (Robbins et al., 2011; Solow and Beet, 2008; Mooley, 1980).

There is concern that the number of North Atlantic Basin cyclones has been

increasing in recent years, with researchers pointing to 1995 as a year where the North

Atlantic warmed and tropical storm activity increased; see the changepoint analyses
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in Robbins et al. (2011) and Fisher et al. (2020). Because of this, we will allow for a

linear trend as one covariate (a changepoint mean shift structure is also worthy of con-

sideration). A strong El-Nino, which is a measure of equitorial warming in the Pacific

Ocean, is thought to impede Atlantic tropical cyclone development (Gray, 1984; Gold-

enberg and Shapiro, 1996) through its influence on the southern jet stream: a strong

El-Nino produces a strong southern jet stream, which produces wind shear at strato-

spheric levels, shearing the tops off of developing thunderstorm clouds and hindering

tropical cyclone development. As a second covariate, annual values of El-Nino 3, which

are shown in the bottom plot of Figure 3.6, are used.
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Figure 3.6: Top: the yearly number of North Atlantic Basin tropical storms recorded
from 1970-2022. Bottom: the annual El-Nino covariate (ElNino3) over the same period.
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While the North Atlantic Basin tropical cyclone record goes back to 1851,

some of the earliest data is thought to be incomplete. Specifically, there is concern that

some weak storms formed over the open Atlantic waters in the record’s earliest years,

lived their entire lives over open water, and were never detected. As such, we start our

analysis at 1970. This is approximately when the GOES satellites were launched; no

storms should have evaded detection thereafter. While one could use indicator variables

as additional covariates to quantify undetected storms, we will simply start the record

at 1970; see Robbins et al. (2011) and Fisher et al. (2020) for an analysis of the full

record.

The level of correlation in this count series is not extreme. In fact, many

authors believe that these annual counts to be approximately independent (Robbins

et al., 2011). Certainly, if significant year-to-year autocorrelation existed, they would

be easier to forecast a year in advance. (Annual forecasting competitions are conducted

in May for this series, where Poisson regression methods are typically used with various

covariates to predict counts for the upcoming June-November season. Forecasts even

a year in advance have generally shown little predictive power). Our model fits below

confirm that there is minimal autocorrelation in these counts.

The results are as expected. First, there is little autocorrelation in these counts.

Here, we fitted white noise, AR(1), and AR(2) autocorrelation structures in the latent

Gaussian process, but both AIC and BIC model selection criteria in Table 3.3 prefer the

white noise model. With this white noise structure, the estimated positive trend in the

model is β̂1 = 0.0154 (0.0025), which translates to a hurricane season that will be some
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Model: λt = eµ+β1t+β2Ct

µ̂ β̂1 β̂2 ϕ̂1 ϕ̂2 AIC BIC

WN Est. 2.0699 0.0154 -0.2830 NA NA 283.4695 289.3803√
E(I ′(θ̂)2) 0.0872 0.0025 0.0658 NA NA

AR1 Est. 2.0699 0.0154 -0.2831 -0.0018 NA 285.4694 293.3506√
E(I ′(θ̂)2) 0.0874 0.0025 0.0660 0.1623 NA

AR2 Est. 2.0598 0.0158 -0.2839 -0.0456 -0.2326 286.6195 296.471√
E(I ′(θ̂)2) 0.0760 0.0022 0.0673 0.1628 0.1553

Table 3.3: Summary of the tropical cyclone Poisson count fit. The AIC and BIC criteria
prefer white noise errors and the annual El-Nino covariate appears significant.

four and a half times more active in 2070 than it was in 1970. The standard error of

this estimator produces a z-score of about 6.2, indicating a significant increasing trend

in the counts and trouble for coastal residents. The estimated coefficient of the El-Nino

covariate is β̂2 = −0.2830 (0.0658) and is significantly negative, with a z-score of about

-4.3. Indeed, an active El-Nino appears to impede tropical cyclone development.

3.4.2 Baseball No-Hitters

Our second series contains the number of annual no-hitter games pitched in

major league baseball from 1893 - 2022. A no-hitter occurs when a pitcher (or multiple

pitchers) do not allow the opposing team to get any hits over the course of a game. It

is usually indicative of a dominant pitching performance.

There has never been more than nine no-hitters pitched in a season; some years

do not see any non-hitters thrown. Figure 3.7 shows the no-hitter counts along with two

explanatory covariates: the total number of games played in the major league baseball

season and the height of the pitching mound. The total number of games played in a
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season has changed as more teams have been added to the league; also the number of

games team play in a season has varied. Strikes and the Covid-19 pandemic have forced

cancellation of some games in a few sporadic years. Of course, the more games played,

the more likely it is to have a no-hitter pitched. Our second covariate is the height of

the mound. A higher pitching mound is thought to give pitchers an advantage. The

height of the pitching mound was reduced from 15 inches to 10 inches in 1969; hence,

this covariate could be viewed as a breakpoint or intervention.

Our model here takes

λt = exp{µ+ β1C1,t + β2C2,t},

where C1,t is the number of games played in year t and C2,t is the height of the pitching

mound in year t. As we will see, there is some autocorrelation in these counts.

Table 3.4 shows the results of the Gaussian copula model fit with white noise,

AR(1), and AR(2) errors for {Zt}. First, both AIC and BIC model selection statistics

prefer an AR(1) {Zt}. The estimated AR(1) coefficient here is ϕ̂ = 0.3199, which is

more autocorrelation than we perhaps expected (no-hitters are extreme performances

and rare, which are often modeled as independent; see the peaks over threshold theory

in Pickands III (1975)). While we do not consider eliminating the mean µ in the model,

the estimates and standard errors for β2 suggest that pitching mound height does not

significantly influence no-hitter counts, but that more no-hitters occur when more games

are played.
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Figure 3.7: Top: Major League baseball annual no hitter counts from 1893-2022. Mid-
dle: The number of games played during each year. Bottom: The height of the pitching
mound in inches during each year.

Table 3.5 refits the model with the no-hitter covariate eliminated and AR(1)

errors. The estimators, standard errors, and conclusions do not change appreciably from

the last table.
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Model: λt = eµ+β1C1,t+β2C2,t

µ̂ β̂1 β̂2 ϕ̂1 ϕ̂2 AIC BIC

WN Est. -1.5367 0.0008374 0.0697988 NA NA 491.6805 500.2831√
E(I ′(θ̂)2) 1.1982 0.0002743 0.0590602 NA NA

AR1 Est. -1.7639 0.0008968 0.0803000 0.3199 NA 486.4131 497.8832√
E(I ′(θ̂)2) 1.3005 0.0002958 0.0646546 0.0710 NA

AR2 Est. -1.6198 0.0008709 0.0726532 0.2792 0.1531 486.7636 501.1013√
E(I ′(θ̂)2) 1.3288 0.0003008 0.0664830 0.0719 0.0750

Table 3.4: Summary of the No-hitter Poisson count fit. The AIC and BIC criteria prefer
AR(1) errors and the pitching mound height covariate appears insignificant.

Model: λt = eµ+β1C1,t

µ̂ β̂1 ϕ̂1 AIC BIC

AR1 Est. -0.1851 0.0005687 0.3152 485.9015 494.5041√
E(I ′(θ̂)2) 0.2419 0.0001284 0.0706

Table 3.5: A refit of the model in the last table with the pitching mound height covariate
eliminated.

3.5 Concluding Comments

This chapter reviewed and developed methods that produce time series of

Poisson distributed counts. Both stationary and non-stationary settings were considered

and inference methods for some of the well-performing model classes were developed.

Many of the methods have deficiencies in what they can handle. An implication of

the chapter is that the Gaussian copula transformation technique is the most flexible

paradigm considered as it produces the most general autocovariances structures possible,

easily accommodates covariates, and likelihood methods of inference can be conducted

via particle filtering methods. The popular INAR model class was judged deficient in

several manners.
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Additional research is needed on several fronts. First, ways to generate Poisson

counts beyond those discussed here exist. Worthy of mention are structured mixture

models (Zheng et al., 2022) and shot noise methods (Jang and Oh, 2021), the latter being

related to our superpositioning techniques here. Given the flexibility of the Gaussian

copula paradigm, it seems pedantic to investigate these classes further unless they can

be shown to be flexible, parsimonious, accommodate covariates, and have analyzable

likelihood functions. Second, asymptotic normality of the parameter estimators was

not proven here, but needs to investigated. We are unsure how to do this when the

likelihood function is intractable as in the Gaussian copula setting. Third, multivariate

versions of the methods are worthy of development. Here, one needs to settle on a

definition of multivariate Poisson — many are possible (Teicher, 1954; Kocherlakota

and Kocherlakota, 2017; Inouye et al., 2017). Finally, extensions of the methods to

the zero inflated case, which frequently arises with Poisson analyses (Lambert, 1992;

Fernando et al., 2022), are worth considering.
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Chapter 4

Trends in Northern Hemispheric Snow

Presence

4.1 Introduction

Snow cover plays a critical role in the Earth’s hydrological processes and its

impact on the broader global climate is of great interest (Barnett et al., 2005; Karl

et al., 2009; Goudie, 2018; Van Mantgem et al., 2009). Snow greatly influences the

global energy balance due to its high albedo and insulating characteristics and is there-

fore a prominent indicator of climate change (Liston and Hiemstra, 2011; Mote, 2003;

Lawrence and Slater, 2010; Callaghan et al., 2011). On a regional scale, the spatial con-

sistency (patchiness) of snow cover can influence surface temperatures via horizontal

variations in absorbed solar radiation. Continental-scale snow cover acts to maintain

thermal stability in the Arctic and subarctic regions, possibly inducing changes in global
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circulation patterns attributable to large-scale releases of carbon and methane gas (Zona

et al., 2016). While the amount of water available in the snowpack is quantified in snow

depths and/or snow water equivalents (SWE), areal snow presence/coverage defined

by snow cover extent (SCE) is often used to estimate the location and availability of

regional water resources (Mote et al., 2018; Serreze et al., 2000; Robinson et al., 1993).

Remotely sensed satellite images are common sources of SCE data; these

images provide spatial and temporal observations that can be used in regional and

continental-scale analyses. Satellite data is used here to estimate SCE trends, allowing

us to assess SCE changes over time and space. The Satellite-derived SCE data product

investigated here is binary, with snow presence being recorded as unity and snow free

ground being assigned zero.

Some mid-latitude locations have sporadic snow coverage, with snow cover typ-

ically lasting only a few weeks at a time, even during the height of winter. The majority

of our work lies with introducing a mathematical model and developing the statistical

methods needed to analyze trends in autocorrelated and binary-valued sequences. The

model is flexible enough to adapt to the data from many of our study cells.

Statistical analysis of snow data has been debated in the climate literature,

especially in regard to trend and uncertainty assessment — see (Yue et al., 2002) and

the references therein. Here, a flexible mathematical model and rigorous accompanying

statistical methods are used to estimate trends and accurately assess their uncertainity

margins. Some nuances arise in this pursuit. First, as our SCE data are recorded weekly,

annual periodicity needs to be taken into account. Second, since SCE data is correlated,

97



with snow presence in a week making snow presence in adjacent weeks more likely,

serial autocorrelation needs to be accounted for in trend uncertainity quantifications.

Finally, previous authors have noted data quality issues (Bormann et al., 2018; Estilow

et al., 2015) in some cells that need to be addressed, without pinpointing the specific

problematic cells. We carefully address this issue below. The general pattern of results

found here agrees with trends found in other studies using more rudimentary statistical

approaches (Brown and Robinson, 2011a; Lemke et al., 2007; Notarnicola, 2022).

The rest of this chapter proceeds as follows. Section 2 describes the SCE

data used in this study and its nuances. Section 3 introduces the mathematical model

and statistical methods needed to quantify the problem, including the all-important

uncertainty calculations for our trend estimates. Section 4 presents a simulation study,

showing that model parameters can be accurately estimated from a half-century of

weekly observations. Section 5 presents two case studies, analyzing observations from

a cell in North Dakota that is actually experiencing increasing snow coverage. We also

give an example of data from a cell having poor data quality. Section 6 presents results

for the entire Northern Hemisphere (NH) and discusses our general findings and their

implications. Section 7 concludes with comments and remarks.

4.2 Data

The data studied here were aggregated from daily satellite flyovers, with SCE

values being estimated manually weekly by meteorologists for each studycell. Specifi-
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cally, this study uses the Northern Hemisphere Weekly Visible Satellite Charts data from

the Climate Data Record as developed by the National Oceanic and Atmospheric Ad-

ministration (NOAA) (Robinson et al., 2012). The data are available at https://www.

ncei.noaa.gov/access/metadata/landing-page/bin/iso?id=gov.noaa.ncdc:C00756.

The Rutgers University Snow Lab at http://climate.rutgers.edu/snowcover/

was an integral part of the construction of the data product studied here and is a useful

repository for literature and links to this and other SCE data sets. This study examines

the time period August 1967 - July 2021. For cell structure, the data use NOAA’s

89 × 89 Cartesian grid that overlies a polar stereographic projection of the NH. The

product contains 88× 88 = 7, 744 cells with a resolution of 190.4km at 60◦N. The SCE

data during the first week in December 2020 is plotted in Figure 4.1.

Thorough descriptions of the data are provided in Dye (2002) and Estilow et al.

(2015). Early discussion of the data’s production is found in Wiesnet et al. (1987) and

Robinson et al. (1993). Before June of 1999, NOAA used the first clear-sky day during

each week to estimate the SCE. If the cell contains at least 50 percent snow coverage,

its SCE was assigned as unity; otherwise, it is assigned zero.

With the introduction of the Interactive Multisensor Snow and Ice Mapping

System (IMS), the methods used to estimate SCE changed in June 1999. These methods

use different data and a refined grid partition of 24km covering the NH to estimate snow

presence/absence on the 190.4km resolution grid, these changes are detailed in Estilow

et al. (2015). Brown et al. (2007) did not find evidence of inhomogenities over Northern

Canada before and after the 1999 change; however, Déry and Brown (2007) claim that
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pre-1999 methods overestimate snow presence in mountainous regions during Spring

ablation. An analysis of the 1999 changes are provided later.

There are other changes in the data construction procedure (Estilow et al.,

2015) for the data product studied here. In June of 1977, the Defense Meteorological

Satellite Program data supplemented the data record. Next, Geostationary Meteoro-

logical Satellite imagery was introduced to the data construction in February of 1988

and January 1989. In May of 1999, the IMS system was introduced into the data con-

struction process. Finally, NOAA took over responsibility of data construction in June

of 2008.

Ten years of observations for a cell located near Napoleon, ND (46.4309◦N,

99.8852◦W), from August 1967- July 1976 are displayed in Figure 4.2. This cell will

be analyzed in detail in Section 5. The graph reveals the ephemeral nature of snow

processes here, starting each year circa November and typically lasting through early

April. Once snow cover is present, it usually stays through Spring ablation; however,

years exist when snow is absent mid-winter (1967-1968 and 1973-1974, for examples).

The data in this study contain 7,744 NH cells, 3,011 of which are deemed to

be over land. See the metadata for the key to this partition, or to obtain cell areas.

Winter centered years are used here so that the first week of any year corresponds to

the first week of August. This scaling prevents a single winter’s snow record from lying

within two distinct calendar years. Shifting in this manner is done for convenience only

— the scaling does not influence any trends.
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4.2.1 Data Preprocessing

Before beginning any analysis, each land cell was categorized into four sub-

groups, depending on its data. Group 1 includes all cells that reported 10 or fewer

weeks of snow cover during the 1967-2020 period of record (2,808 weeks). This group

also contains any cell that reported 10 or fewer weeks of bare ground over the record

period. Group 1 cells primarily lie in the southerly latitudes of the NH, which rarely

experience snow, or the interior Greenland icecap, which is almost always under snow

cover. All 1,131 Group 1 cells were excluded as any trends computed from these records

lack sufficient information/variability to fit our model (there are more model parameters

than changes in snow presence/absence).

Group 2 contains 72 cells that were insufficiently fitted by our model (our model

is the subject of the next section). While these cells all had more than 10 snow/bare

ground weeks during the 2,808 week study period, they typically did not have many

more. While one can theoretically obtain trend estimates for cells in Group 2, error

margins obtained are so large that any trend estimates would essentially be meaningless.

These cells were primarily located in Southern China, the Southern United States, and

Coastal Greenland. While one could combine Group 1 and Group 2 together into a

single “insufficient information” group, we keep the groups separate on this technical

distinction: trend error margins do not exist in Group 1, and while they exist for Group

2, they are too large to make any conclusions.

Several studies (Bormann et al., 2018; Estilow et al., 2015) discuss the unre-
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liable snow presence/absence estimates in mountainous regions in the pre-1999 data.

Figure 4.3 plots the data from an example Group 3 cell located in the Chinese Hi-

malayan Mountain Range near 27.9682◦N, 97.7094◦E. Several issues are apparent. The

top plot shows that some of the earlier years in the record have no snow cover in winter

weeks, but some snow cover during summer weeks. The bottom plot reveals that the

pre-1999 years report very little snow cover compared to the post-1999 years. While the

methodological revisions in 1999 may render the post-1999 data believable, this cell is

best excluded in a trend analysis. As such, our immediate objective is to construct a

quality control method to be applied to all cells before trend analysis.

Let {Xt} denote the two-state snow presence/absence series in time. Here,

Xt = 1 means that snow cover is present at time t and Xt = 0 means that snow is

absent at time t. Let Sn be the number of weeks of snow on the ground during year n:

Sn =

T∑
ν=1

1[X(n−1)T+ν=1],

where 1A denotes the indicator of the event A and T = 52 is the period of the data.

As a quality control measure, a traditional cumulative sum (CUSUM) test

statistic is applied to {Sn} from each land cell not in Groups 1 or 2. The CUSUM

statistic has been widely used for statistical quality control for more than 50 years

(Bissell, 1969). The CUSUM method checks for structural breaks in the {Sn} data

series. The significance level for the test was set to 1 × 10−5. If the CUSUM statistic

for the cell has a p-value less than this significance level, the cell is deemed corrupted
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and is classified as belonging to Group 3.

Group 3 contains 190 cells. These cells overwhelmingly reside in the moun-

tainous regions of the NH (Rockies, Alps, Caucasus, Scandinavia, and Himalayas) and

are omitted from further analysis. The discarded cells largely align with the regions

discussed in Bormann et al. (2018). Our CUSUM analysis addresses a point raised in

Estilow et al. (2015): “More research is needed to determine whether SCE analysis in

mountainous regions (e.g., the Tibetan Plateau) shows systematic change during this

time period.” We concur with Bormann et al. (2018): the analysis in the Tibetan and

other high mountain regions changed with the implementation of the IMS based product

in May of 1999. The data before 1999 is unreliable in many high mountain regions.

Figure 4.4 depicts the Group category of all cells; there are 1,618 violet-shaded

cells where our model fit was deemed reliable. These cells cover most areas of the

NH where snow is seasonally persistent. A spreadsheet containing the group numbers

of our cells, and all code used for this project, is available at https://github.com/

JiajieKong/Snow-Presence-Trends.

Several previous studies of this data exist. Déry and Brown (2007) studies the

data from January 1972 - December 2006. Déry and Brown (2007) report significant

temporal autocorrelation in the data, at both weekly and annual scales. Autocorrelation

makes some statistical methods such as Sen’s slope troublesome for trend analysis as

uncertainties are extremely difficult to estimate with such a non-parametric method

(Yue et al., 2002). Negative trends in SCE area are reported in Déry and Brown (2007)

from March through June. Figure 4.3 in Lemke et al. (2007) shows March-April snow
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cover departures by subtracting the percentage coverage (by cell) of weeks with snow

cover from 1988-2004 minus the same percentage coverage during 1967-1987. While it

is not clear how to interpret such a statistic as any type of smooth trend, the largest

reductions in that study occurred roughly between the 0◦C and 5◦C isotherms.

4.3 Model and Estimation

4.3.1 The Model

Our methods use a two-state Markov chain model on the states {0, 1} to de-

scribe the series for a fixed cell. This model can accurately quantify trend uncertainty as

shown below. State zero indicates lack of snow and state one signifies snow cover. The

transition probability matrix of this chain from week t−1 to week t is parameterized as

P(t) =

 p0,0(t) p0,1(t)

p1,0(t) p1,1(t)

 .

Here, p0,1(t) is the probability that snow cover is present at time t given that it is absent

at time t−1. The other three elements in the matrix are similarly interpreted. There are

only two free quantities in P(t) at any t since p0,0(t) = 1−p0,1(t) and p1,0(t) = 1−p1,1(t).

The marginal probability distribution of Xt at time t will be denoted by

π(t) = (π0(t), π1(t)) = (P (Xt = 0), P (Xt = 1)). Because the chain commences with an

observation in August, the startup condition π(1) = (1, 0) is taken, signifying that the
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chain starts with bare ground. With this initial distribution, π(t) is computed via

π(t) = π(1)
t∏

k=2

P(k). (4.1)

For each pair of times t1 < t2 in {1, . . . , N}, the transition matrix

P∗(t1, t2) =

t2∏
t=t1+1

P(t)

contains the four transition probabilities of snow cover/absence from time t1 to time t2.

Since p0,1(t) and p1,0(t) are probabilities, they take values in [0, 1]. Hence,

these quantities are modeled with the logistic-type link

p0,1(t) =
1

1 + exp(−mt)
, p1,0(t) =

1

1 + exp(−m∗
t )
,

where mt and m∗
t contain seasonal effects and trend parameters. These quantities are

posited to have the additive form

mt = µt + αt, m∗
t = µ∗

t + α∗t,

where the parameters are clarified as follows. For the weekly observations analyzed here,

the period T = 52 weeks is forced to the data by omitting any observations that occur

at the end of July (one day during non leap years and two days during leap years). This

tactic results in little loss of precision, see (Lund et al., 2006) for similar tactics. The

105



parameters µt and µ∗
t contain seasonal effects that are sinusoidaly parametrized as

µt = A0 +A1

[
cos

(
2π(t− τ)

T

)]
, µ∗

t = A∗
0 +A∗

1

[
cos

(
2π(t− τ∗)

T

)]
.

Observe that µt and µ∗
t are periodic with period T = 52 weeks and obey µt+T = µt

and µ∗
t+T = µ∗

t . The quantities A0 and A∗
0 govern the length of the snow season. For

example, when A0 > 0, the season where snow is present tends to last longer than

the snow free season (and vice versa). The parameters A1 and A∗
1, which are assumed

positive for mathematical identifiability of the cosine waves, control how fast snow to

bare ground transitions take place (and vice versa). The parameters τ and τ∗ are phase

shifts. Since p0,1(t) and/or p1,0(t) are maximized when mt and/or m∗
t is maximized,

and the cosine function is maximized when its argument is zero, p0,1(t) is maximized at

week τ , which is typically in the late Fall or early winter, and p1,0(t) is maximized at

week τ∗, which typically occurs in the late winter or early spring. The parameters α and

α∗ are linear trend parameters and govern how fast snow cover changes are happening.

While the above model has a linear time trend and a simple cosine seasonal cycle, other

forms of trends and seasonality could be used if needed.

Our periodic Markov chain model allows Xt to be autocorrelated in time t.

Indeed, week to week SCE data exhibits correlation: if snow is present/absent at week

t, it is more likely to be present/absent at week t + 1. Good models for snow depth

processes are also correlated in time. Indeed, Woody et al. (2009b) argues for a Markov

structured storage model for daily snow depths: the snow depth today is the snow depth
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yesterday, plus any new snowfall, minus any meltoff or compaction between yesterday

and today. Our model is not a classical Probit count time series model as these are

typically used for uncorrelated data; see Chib and Greenberg (1998) for more on probit

modeling. A Markov model for binary data is parsimonious in that there are only two

free parameters in P(t) for each fixed t. While seasonal and trend features need to be

incorporated into P(t) to handle the periodic nature of snow, the overall model is very

parsimonious. Comparing further, a time homogeneous Markov model for categorical

sequences taking on S distinct categories has S(S − 1) free parameters, which is quite

large for a large S. Additional parameters would be needed to make this model periodic.

Figure 4.5 shows a simulation of ten years of a binary snow presence process.

The parameters chosen for p0,1(t) are A0 = 3, A1 = 10, τ = 25, α = 0, and those

for p1,0(t) are A∗
0 = 0, A∗

1 = 10, τ∗ = 5, α∗ = 0; specifically, there is no trend in the

simulated data. One sees that each and every year, snow presence begins in the Fall

and stays on the ground until Spring. Oscillations between seasonal snow presence

and bare ground occur in the Fall, and snow vanishes completely during the summer.

Additional simulations show that this simple Markov chain model produces a flexible

suite of snow presence/absence series.

4.3.2 Parameter Estimation

Suppose that the data sample X = (X1, . . . , XN )′ is available for a cell. We

assume that N is a multiple of T to avoid trite work with fractional portion of years;

this said, the methods are easily modified to accommodate fractional parts of years if
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needed. Let d = N/T denote the total number of years of observations; we work with

observations indexed as the years 1, 2, . . . , d

Let Θ denote all model parameters contained in mt and m∗
t . These include

A0, A1, τ, α and their starred counterparts. The statistical likelihood of Θ, denoted by

L(Θ|X), can be derived from the Markov property and is

ln(L(Θ|X)) =
N∑
t=2

ln
(
pXt−1,Xt(t)

)
. (4.2)

The quantities pi,j(t) depend on Θ. Numerically maximizing this likelihood is the

classical statistical way of estimated the components in Θ; that is, likelihood estimates

model parameters as those that make the observed data most likely. These estimates

will be used later in assessing variability (uncertainty) margins of the trends. The data

X1, . . . , XN is held fixed in this maximization. While explicit forms for the estimators

of the components in Θ do not exist, likelihood estimates can be obtained numerically.

The R programming language version 4.1.2 was used for all statistical coding in this

study, the numerical routine “optim” was employed for optimization in this study.

4.3.3 Trend Estimation and their Uncertainties

Trends will be phrased in the number of snow days lost/gained per decade.

For example, future trends will be phrased as a loss of one day of annual snow cover

over a decade. Trends are estimated directly from the data product for all Group 4
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cells. The linear rate of SCE change is quantified by β̂ defined by

β̂ =

∑d
k=1 Sk(k − k̄)∑d
k=1(k − k̄)2

=

∑d
k=1 Sk(k − k̄)

Q
, (4.3)

where k̄ = (d + 1)/2 is the average time index and the denominator can be verified as

Q = d(d + 1)(d − 1)/12. While the units of β are weeks of snow cover gained/lost per

year, we will scale β̂ to days of snow cover gained/lost per decade for interpretability;

this simply multiplies raw trends and their standard errors by 70.

Our next objective is to obtain a standard error for β̂. Taking a variance in

(4.3) gives

Var(β̂) =

∑d
k=1

∑d
ℓ=1(k − k̄)(ℓ− k̄)Cov(Sk, Sℓ)

Q2
.

This computation requires Cov(Sn, Sn+h) for every h > 0 and n in {1, . . . , d−h}. Details

for this computation are provided in the Appendix. The standard error of β̂ accounts

for any correlation in the SCE data.

To statistically test whether or not SCE is changing, we want to test the null

hypothesis that β = 0 against the alternative that β ̸= 0. Invoking asymptotic normality

of the estimator β̂, this is assessed through the Z-score statistic

Z =
β̂

Var(β̂)1/2
,

which is compared to the standard normal distribution to make conclusions. One typi-

cally reports a p-value for the test to assess significance of the trends; this is illustrated
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further in Section 6.

4.4 A Simulation Study

This section studies our model and estimation procedure via simulation, illus-

trating the model’s capabilities and how parameters are estimated.

To demonstrate the model’s flexibility, Figure 4.6 provides ten year sample

plots of snow presence/absence series generated by models for five sets of parameter

values. Only ten years of data are shown as it becomes visually difficult to see data

features with longer series (the plot becomes “compressed”). Table 4.4 lists all param-

eters considered. The unstarred parameters govern p0,1(t), which controls transitions

from bare ground to snow cover; the starred parameters govern p1,0(t), which controls

transitions from snow cover to bare ground.

Sample Simulated Series
Model A0 A1 τ α A∗

0 A∗
1 τ∗ α∗

I 0 30 25 0 0 30 0 0
II 0 30 25 0 0 30 42 0
III 0 30 20 0 0 30 0 0
IV -30 30 25 0 30 30 0 0
V 30 30 25 0 -30 30 0 0

Table 4.1: Model 1 is the base case: equal transitions from no snow to snow in both Fall
and Spring. Model II allows for more variability in the Spring snow presences. Model
III allows more variability in the Fall snow presences. Model IV is for a cell that rarely
experiences snow; Model V describes a very snowy cell.

Models I - V have no trend. Models with trends will be considered below. The

parameters for Model I were chosen to represent a scenario that is seasonally regular,
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with snow cover becoming present in the late Fall and staying until Spring ablation. The

parameters A0 and A∗
0 are set to zero, making the winter “snow season” last roughly

half the year. Model II has the same parameters as Model I, except that τ∗ was changed

from 0 to 42, shifting the cosine wave governing p1,0(t) from its Model I settings. This

change makes both p0,1(t) and p1,0(t) relatively large during the Spring months, which

induces a Spring SCE season that oscillates more frequently between bare ground and

snow cover. Model III has the same parameters as Model I, except that τ was changed

from 25 to 20, making both p0,1(t) and p1,0(t) large during the Fall. This makes bare

ground to snow cover oscillations more common in the Fall. While we do not illustrate

it here, increasing A1 or A
∗
1 makes “transitions” from winter to summer (and vice versa)

shorter (sharper). The parameters in Model IV are set to a lower latitude setting where

snow only occurs sporadically during the middle of winter. This was done by decreasing

the A0 parameter from 0 to -30 for p0,1(t) and increasing A∗
1 from 0 to 30 (compared to

Model I). Model V’s parameters correspond to a high latitude case where snow cover is

present most of the year. This was done by increasing A1 from 0 to 30 and decreasing

A∗
1 from 0 to -30 (compared to Model I). These and other simulations show that the

model can generate a wide range of SCE patterns.

To illustrate trend features, we choose parameters that bring Model IV above

to a very snowy setting, and Model V above to a non-snowy scenario. These are done

over a 1000 year time period. These scenarios are not climatologically realistic, but
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were chosen to demonstrate the overall flexibility of the approach. Figure 4.7 plots

1

T

T∑
ν=1

X(k−1)T+ν

against the annual index k. This quantity is the proportion of days of year k where

snow cover is present. The top graphic in Figure 4.7 corresponds to Model IV, except

that α was changed from zero to 0.001 and α∗ is changed from zero to -0.001. Here,

the proportion of snow covered days rises from almost zero to approximately 80%. The

antipodal scenario is illustrated in the bottom graphic of this figure. This moves a very

snowy location to one with infrequent snow cover. This was done by taking Model V’s

parameters, but changing α from 0 to -0.001 and α∗ from 0 to 0.001.

Turning to estimation, our first simulation case studies a 100-year series (N =

5200), which is roughly double the length of the data studied here. The parameters

chosen for this simulation are those for Model I - V above; there is no trend in these

simulations. These parameters were chosen to correspond to fitted parameters in some

of our cells.

The true parameters serve as the initial values in all simulation studies. Dif-

ferent initial values were used in each case and usually don’t influence convergence of

the algorithm. In a few sporadic cases, the log likelihood function is “somewhat flat”

and convergence is an issue. While one should try multiple initial guesses in practice,

these issues decay as the series length increases. Figure 4.8 shows boxplots of the eight

parameter estimators aggregated from 1000 independent simulations for Model I - V.
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The solid line in each boxplot demarcates the median of the 1000 estimators for that

parameter. One sees little bias in the estimators. Specifically, the estimation procedure

was able to discern that there was no trend in the series. Additional simulations (not

shown here) indicate that any estimator bias recedes with increasing series length.

Estimation of the eight model parameters by likelihood appears to work well

in this case.

Our second simulation moves to a case with trends. This simulation takes

the same series length and parameters as the above simulation, but modifies the trend

parameters to α = 0.001 and α∗ = −0.001. All parameters are fixed for the duration

of the series. Figure 4.9 shows boxplots of the estimates of each parameter for modified

Model I - V and the results look quite good; importantly, trend parameters are accu-

rately estimated. While the trend parameters are small in magnitude in this simulation,

they will be converted to days of snow cover gained/lost per decade later for ease of in-

terpretability. Overall, the model parameters are reasonably accurately estimated with

100 years of weekly data.

4.5 A Sample Cell

This section analyzes snow coverage in a cell near Napoleon, ND (46.4309◦N,

99.8852◦W). This cell contains a region studied in (Woody et al., 2009b).

In the ensuing analysis, our null hypothesis is that the snow presence/absence
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series is not changing. This corresponds to the null hypothesis

H0 : α = α∗ = 0,

with the alternative hypothesis being that SCE is changing.

Table 4.2 below shows the maximum likelihood estimates of the parameters

in the Section 3 model along with a single standard error. All estimated parameters

appear significantly non-zero except for the α parameters (one does not usually assess

whether or not the phase shift parameters τ and τ∗ are zero). Statistical significance is

assessed using asymptotic normality. There is no statistical evidence to conclude that

α is different from zero with a p-value of 0.7708, and we conclude that p0,1(t) is not

changing. As p0,1(t) governs transitions from bare ground to snow cover, this implies

that the snow season is starting about the same time and has not changed over the

study. In contrast, α∗ is concluded to be significantly negative with a p-value of 0.0001.

A negative α∗ makes p1,0(t) smaller, which makes it harder for snow to disappear when

it is on the ground. This translates to a later Spring ablation.

Table 4.2: Model parameter estimates and their standard errors for a cell containing
Napoleon, ND.

Parameter A0 A1 τ α

Estimate -3.2016 4.1499 24.3492 0.0000382
Standard Error 0.2538 0.2936 0.26460 0.0001315

Parameter A∗
0 A∗

1 τ∗ α∗

Estimate 1.7258 3.7889 49.8375 -0.0004935
Standard Error 0.3774 0.4139 0.3800 0.0001273
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To assess changes in the snow presences, the β̂ statistic in (4.3) is β̂ = 0.038613

and Var(β̂)1/2 = 0.0247. This translates to an additional 2.702 days of SCE over a

decade. The test statistic for changing SCE is Z = 1.5633, which has a two-sided p-value

of 0.1180. This p-value is insignificant for a standard 5% test, but is borderline significant

for a 10% test. Conclusions may change further if one-sided alternative hypotheses are

considered. The Napoleon cell is experiencing increasing (and not decreasing) SCE

changes.

The top panel of Figure 4.2 displays a 10 year plot of weekly snow pres-

ence/absence values at the Napoleon cell. The bottom panel depicts data simulated

from our model with the parameter estimates displayed in Table 4.2. Both series are

of length 10 years, starting on August 1, 1967 and continuing through July 31 1976.

Visual inspection of the top and bottom panes of Figure 4.2 indicate the simulated data

appears to model the real data quite well.

A rudimentary goodness-of-fit tests can be performed by comparing the pro-

portion of observed unit series values to average values from the model. Note that

E(Xt|Xt−1) = pXt−1,1(t).

Hence, the mean number of unit values can be obtained via

1

N

N∑
t=2

pXt−1,1(t).
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Our fitted model has a long-term average of 0.300, which is extremely close to the

proportion of observed unit values, which was 0.299. We do not develop goodness-of-fit

tests further here.

4.6 Results

This section reports results for the 1,618 cells where our model fit was deemed

reliable. Figure 4.10 spatially portrays the trends β̂ over all analyzed cells. The corre-

sponding Z-scores for the trend statistics are displayed in Figure 4.11. In totality, 573

of the cells (35.41 %) report a positive β̂ (increasing snow), while 1045 cells (64.58 %)

show a negative β̂. This is almost a 2 to 1 margin preference for declining to advancing

snow cover. The average trend over the 1,618 analyzed cells has lost 1.522 days of snow

cover per decade.

Examination of the spatial structure in Figures 4.10, 4.11, and 4.15 reveals

regions of increasing and decreasing snow presence. Decreasing snow presence in the

Arctic, particularly in Russia and Western Canada and Alaska, is seen, agreeing with the

findings of Bormann et al. (2018); Estilow et al. (2015). Increasing snow is encountered

in Eastern Canada, the Kamchatka Peninsula, and Japan. Other regions experiencing

positive trends can be seen in Figure 4.10. The Figure 4.11 Z-scores are deemed signifi-

cantly non-zero should they exceed 2.0 in absolute value (the exact two-sided confidence

level is 0.9544). Red colored Z-scores demarcate cells where snow cover is declining with

at least 97.72% confidence and blue colors depict increasing snow with at least 97.72%
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confidence. Overall, a general declining snow presence is seen along coastal areas and

the periphery of the continental snowpack, with some inland increases in SCE, especially

within North America. This pattern could be associated with a deeper snowpack within

continental interiors and a shallower or patchier snowpack along its edges, leading to

more rapid retreat of the snowpack and a longer duration of its center. This coincides

with the finding of the 4th IPCC report in (Lemke et al., 2007).

The left panel in Figure 4.12 shows a histogram of the trend estimates β̂ over

all analyzed cells. The estimated trends β̂ are approximately normally distributed with

a mean of -.02174 (the loss of 1.522 days of SCE per decade alluded to above). The

center and right panels in Figure 4.12 show histograms of the α̂ and α̂∗ parameters,

respectively, over these same cells. The average α is -0.0004168 and the average α∗ is

-0.0001431.

We now move to an investigation of temporal changes in the total SCE area.

Figure 4.13 plots the total snow covered area in each week of the study over all analyzed

cells. Areas were obtained by adding the area of all snow covered cells; cell areas are

included with meta data (Robinson et al., 2012).

The seasonal cycle of SCE is evident, with winter weeks having the most

prevalent snow cover. While interannual variability is apparent, changes in this series

are not visually evident in a visual inspection.

Let {Gt} denote the snow cover area lost/gained per decade by season. This

series is plotted in Figure 4.13 and is now analyzed with a simple linear regression in a

periodic environment. More on periodic regression analyses can be found in Lund et al.
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(1995b) and Lund (2006). Our regression model for the snow cover areas at week ν is

GnT+ν = µν + βν(nT + ν) + ϵnT+ν , n = 0, 1, . . . , d− 1. (4.4)

The parameter βν quantifies the linear rate of change in data during the νth week, for

1 ≤ ν ≤ 52; µν is a location parameter for week ν. The trend slope βν is allowed to

depend on the week of year ν, enabling us to investigate changes within a calendar year.

The regression errors {ϵt} are only assumed to have a zero mean for every week ν — no

other structure is needed.

The week ν trend βν can be estimated by ordinary least squares via

β̂ν =

∑d
n=1(GnT+ν − Ḡν)(nT + ν)∑d

n=1(nT + ν − t̄ν)2
(4.5)

(Lund et al., 1995b). Here, t̄ν = d−1
∑d

n=1(nT + ν) = (d + 1)T/2 + ν and Ḡν =

d−1
∑d

n=1GnT+ν . The denominator in (4.5) can be worked out as T 2d(d + 1)(d −

1)/12. We will not delve into standard error computations for β̂ν ; these would require

estimating the correlation structure of {ϵnT+ν}. One could use weighted least squares

estimates that take into account this correlation; however, since ordinary and weighted

least squares have the same asymptotic efficiency, this is not needed. We refer the

interested reader to Lund et al. (2001) and Lee and Lund (2004) for more on these

issue.

Figure 4.14 plots estimates of βν against ν for each week of year; see Lund
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et al. (1995b) for the equations to fit this model. Increasing SCE is evident in the Fall

(late October through early December), with a corresponding decrease in late Winter

through Summer. While increases span only a few months and include brief peaks above

0.5 million km2, the decrease spans February - September, with losses below 0.5 million

km2 from May through July. This implies that while the snow season is experiencing a

shift toward an earlier onset and ablation period, there is a more pronounced decrease

in snow cover through the warm season that is not being offset by increased snow in the

Fall and early Winter. Implications of this finding include a change in seasonal water

availability.

As a final task of this section, we analyze possible issues induced by the method-

ological changes used to extract the SCE data (these are called breakpoint times or

interventions). As noted in Section 2, there are five potential breakpoints in the data

(Estilow et al., 2015).

Breakpoints are discontinuity features in time series that occur at known times.

Breakpoints (also called interventions) often take place when measuring conditions

change, such as station relocations or updates to gauge sensors. We will investigate

possible breakpoints in June 1977, February 1988, January 1989, May 1999, and June

of 2008, all times where the methods to extract the zero-one SCE data changed. It

would require more work to find and adjust the data for undocumented breakpoint

times (called changepoints when the time of the discontinuity is unknown). Future

work will assess changepoint features and homogenize the data in the individual cells.

A caveat: while Lu et al. (2010) is one changepoint reference for approximately normally
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distributed temperature data, methods to homogenize zero-one count data have not yet

to be developed (or have not matured) in the statistics literature.

This will be done for the total SCE only; a deeper analysis exploring the effects

on the individual cells is omitted. To conduct this analysis, shifts are allowed during

June 1977, February 1988, January 1989, May 1999, and June 2008. The setting is

quantified through the regression

GnT+ν = µν + βν(nT + ν) +
5∑

i=1

∆i1[nT+ν≥bi] + ϵnT+ν , n = 0, 1, . . . , d− 1. (4.6)

Here, b1 = 515, b2 = 1069, b3 = 1117, b4 = 1654, and b5 = 2126 are the week time indexes

of the June 1977, February 1988, January 1989, May 1999, and June 2008 breakpoint

times and ∆i is the associated shift size of the ith breakpoint time. We do not allow ∆i

to depend on ν, but could do so if desired.

Next, a backward elimination regression procedure at level 95% was conducted

to eliminate insignificant breakpoint times. This procedure found the June 1977 and

June 2008 breakpoints to be insignificant. The regression model was refitted with the

other three breakpoints, ∆2, ∆3, and ∆4. Estimates of these three shift sizes are

shown in Table 4.6. The listed p-values for these shift sizes indicate high confidence

that the methodological changes impacted observations, essentially making observations

“snowier”. In fact, the only positive trend slopes occur from October - December after

the breakpoints are taken into account.
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∆̂2(Feb 1988) ∆̂3(Jan 1989) ∆̂4(May 1999)

Est. -1.871 1.196 0.407

S.E. 0.291 0.291 0.144

p-value 1.48× 10−10 4.06× 10−5 0.0047

Table 4.3: Estimates, standard errors, and p-values for the breakpoints in February
1988, January 1989, and May 1999.

4.7 Summary and Comments

This chapter estimated Northern Hemispheric SCE trends over the last 54

(winter-centered) years. A flexible model was developed to quantify trends in periodic

presence/absence data and assess their uncertainty margins. The SCE data were col-

lected weekly and is count valued, taking the value of unity if snow is present and zero if

snow cover is absent. The data is periodic, with snow being more prevalent in the winter

weeks. A contribution of this chapter is the development of a model that adequately

captures the data’s periodicities and count structure. Uncertainty margins of the trend

estimates were developed. The model is highly flexible and could be fitted to most cells

in Europe, North America, and Asia that report snow. In the most of the contigu-

ous United States, trends could be reliably assessed down to latitudes of Prescott, AZ,

Carlsbad, NM, and Knoxville, TN (the exception being some questionable SCE data

from cells in mountainous area).

The results show that snow cover is declining overall, by a margin of almost

2 to 1 in terms of cell numbers. Arctic localities are showing heavy snow cover loss;

however, some regions are experiencing increasing snow coverage, most notably Central

and Eastern Canada and the Kamchatka and Japan vicinity. Along with this general
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decline, a shift in the snow season towards an earlier onset and an earlier ablation period

was seen, with the onset trending toward more snow in November and the ablation

period showing declines from February through late Spring and early Summer. The

increased ablation in the warm season is not offset by the increased snow cover in the

late Fall, possibly implying an overall change in the timing and distribution of water

availability to regions that rely on spring snowmelt.

Statistical improvements can be made to this analysis. There is undoubtedly

some non-zero spatial correlation between neighboring cells. Accounting for spatial cor-

relation would potentially lower uncertainty margins in the trend estimates; correlation

usually does not appreciably change trend estimates, but accounting for correlation in

multiple similar cells could reduce uncertainty margins in the trends. Given the data

quality issues present, the authors felt it more prudent to analyze the cells one by one

and report which ones were ”unusable”, which a spatial analysis would not do (at least

initially). It is also possible to smooth the Figure 4.10 trends and/or their Z-scores in

Figure 4.11 in a spatial manner. We did not pursue this here due to length concerns.

The reader may note that our trend estimates are based on the data only and

do not depend on the model (as it should be). This said, one can also extract a trend

estimate from the model. One model-based trend is

E[Sn]− E[S1]

n− 1
. (4.7)

Both E[Sn] and E[S1] are computed from the estimated model parameters, say com-
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puted ignoring the breakpoint. Figure 4.15 shows a plot of these trends, converted to

days of SCE gained/lost per decade. The graphic naturally resembles Figure 4.10. Dif-

ferences in the estimated and modeled trends are shown in Figure 4.15 and are very

small overall.

While most cells report what appears to be high quality data, the green-colored

cells in Figure 4.4 contain suspect data. The hope is that the data from these cells can

be reexamined/fixed in the future for inclusion in studies such as this.
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Figure 4.1: NH snow coverage reported by the NH Weekly Visible Satellite Charts
(Robinson et al., 2012) for the week of December 1-7, 2020.
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Figure 4.2: Top: ten years of snow presences/absences (August 1967 - July 1976) for
a cell near Napoleon, ND (46.4309◦N, 99.8852◦W). Bottom: ten years (August 1967-
July 1976) of simulated data. This simulation is discussed in Section 5 below. In both
graphics, the yearly tickmarks refer to August 1st of each calendar year, employing a
winter centered year paradigm.
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Figure 4.3: A cell from the Himalayas (27.9682◦N, 97.7094◦E) with untrustable data.
Top: Ten years of snow presence/absence from August 1996 - July 2006. Tickmarks are
placed at August 1 of each calendar year. Bottom: The number of snow covered weeks
during the 1967-2020 period. Tickmarks are placed at August 1 of each calendar year.
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Figure 4.4: A graphical partition of this studies’ cell groups. The violet colored cells
(Group 4) were deemed analyzable. Group 1 cells are excluded because there are not
enough changes from presence to absence (or visa versa) to fit our model. Group 3 cells
were excluded as their data were deemed unreliable by our quality control methods,
which agrees with the findings of other authors. Group 2 contains a small number cells
whereby the standard errors of the trend estimates are so large as to make any trend
estimates untrustable.
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Figure 4.5: A simulated 10-year snow absence/presence series with plots of the transition
probabilities p0,1(t) and p1,0(t). The parameters are A0 = 3, A1 = 10, τ = 25, α = 0,
and A∗

0 = 0, A∗
1 = 10, τ∗ = 5, α∗ = 0 (no trend).
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Figure 4.6: Ten year sample SCE series generated from Models I-V.
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Figure 4.7: Annual proportions of snowy days from Models IV and V with non-zero
trends.
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Â1

24
.7

24
.9

25
.1

25
.3

τ̂

−
2e

−
04

0e
+

00
2e

−
04 α̂

28
29

30
31

32

Â0
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Figure 4.8: Boxplots of the parameter estimates from 1000 independent simulations.
The red lines demarcate the true parameter values. Rows 1 to 5 denote estimators
obtained from Model I - V, respectively.
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Figure 4.9: Boxplots of the parameter estimates aggregated from 1000 independent
simulations. The red lines demarcate the true parameter values. Rows 1 to 5 denote
estimators obtained fromModel I - V with trend parameters α = 0.001 and α∗ = −0.001.
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Figure 4.10: Raw trends in the SCE data converted to days gained/lost per decade. Red
and blue depict SCE losses and increases, respectively. Declining SCE cells outnumber
advancing SCE cells by roughly a two to one ratio.
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Figure 4.11: Z scores of the SCE trends. Trends in around half of the cells are not
significantly changing (non-zero). Red indicates declining SCE and blue increasing
SCE, with one-sided confidence of at least 97.5%.
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Figure 4.12: Histograms over all 1,618 analyzed cells of (left) the estimated SCE trends
β̂, (center) the α̂ estimates, and (right) the α̂∗ estimates. All histograms appear roughly
unimodal (normally distributed). The mean of the left histogram is slightly negative.
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Figure 4.13: Total SCE area by week over the period of record. Trends are not visually
obvious.
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to area/gained lost per decade. Trends are larger when the Feb 1988, Jan 1989, and
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Figure 4.15: Model-based trends estimated via (4.7) and converted to days gained/lost
per decade. Red and blue depict SCE losses and increases, respectively. Declining SCE
cells outnumber advancing SCE cells by roughly a two to one ratio. The graphic is
similar to Figure 4.10.
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Figure 4.16: Raw trend (Figure 4.3) and the model-based trend (Figure 4.15) differences.
The differences are small in most of the cells.
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Appendix A

Appendix

Calculations in Example 3.2 The matrix on the left hand side of (2.7) can

be rewritten as

IT+1 − ϕPT+1, (A.1)

where PT+1 is the (T + 1)× (T + 1) permutation matrix

PT+1 = P−1
T+1 =



0 0 · · · 0 1

0 0 · · · 1

...
...

. . .
...

...

0 1 · · · 0 0

1 0 · · · 0 0


(A.2)

and IT+1 is the (T + 1) × (T + 1) identity matrix. The inverse of the matrix in (A.1)
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can be verified to be

[IT+1 − ϕPT+1]
−1 =

1

1− ϕ2
[IT+1 + ϕPT+1] .

Hence, the Yule-Walker equations (2.5) and (3.12) can be rewritten as



ρZ(0)

...

ρZ(h)

...

ρZ(T )


=

1

1− ϕ2
[IT+1 + ϕPT+1]



α0σ2
ϵ

(1−α2)(1−ϕαT )

...

αhσ2
ϵ

(1−α2)(1−ϕαT )

...

αT σ2
ϵ

(1−α2)(1−ϕαT )


. (A.3)

Thus,

ρZ(h) =
1

1− ϕ2

[
αhσ2

ϵ

(1− α2)(1− ϕαT )
+ ϕ

αT−hσ2
ϵ

(1− α2)(1− ϕαT )

]
=

σ2
ϵ

(1− ϕ2)(1− α2)(1− ϕαT )

[
αh + ϕαT−h

]
, for 0 ≤ h ≤ T. (A.4)

In our case, equation (2.6) shows that

σ2
ϵ =

(1− ϕ2)(1− α2)(1− ϕαT )

1 + ϕαT
,

which gives Var(Zt) ≡ 1. Substituting this back into equation (A.4) gives

ρZ(h) =
αh + ϕαT−h

1 + ϕαT
, 0 ≤ h ≤ T. (A.5)
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For h > T , define a = ⌊h/T ⌋ and b = h− aT . Then Zt can be rewritten as

Zt = ϕaZt−aT +
a−1∑
k=0

ϕkηt−kT (A.6)

and hence

Cov(Zt, Zt−h) = Cov(ϕaZt−aT +

a−1∑
k=0

ϕkηt−kT , Zt−h)

= ϕaCov(Zt−aT , Zt−h) +
a−1∑
k=0

ϕkCov(ηt−kT , Zt−h).

Since the index difference between Zt−aT and Zt−h is less than T , (A.5) applies; using

this and (2.5) and (2.6) produces

ρZ(h) = ϕaα
b + ϕαT−b

1 + ϕαT
+

a−1∑
k=0

ϕkαh−Tk 1− α2

1 + ϕα
, h > T. (A.7)

as claimed.

Proof of Proposition 3.1: We follow similar reasoning to Pipiras and Taqqu

(2017) and Jia et al. (2023). We begin with a generalization of the Price Theorem

(Theorem 5.8.5 in Pipiras and Taqqu (2017)), stated as follows and easily proven. Let

Gν1 and Gν2 be two continuous differentiable functions. Then their link function has a

derivative with form

L′(u) =
1√

Var(X1)Var(X2)
E[G′

ν1(Z1)G
′
ν2(Z2)]

∣∣∣
Corr(Z1,Z2)=u

. (A.8)

141



Here, Z1 and Z2 are a correlated Gaussian pair, each component standardized, and with

Corr(Z1, Z2) = u.

In our application, Gν1 and Gν2 are non-negative and non-decreasing since

they are cumulative distribution functions. But because our data are counts, Gν1 and

Gν2 are step functions and not necessarily differentiable on the integers. To remedy

this, we approximate Gν1 and Gν2 by differentiable functions and take limits in the

approximation.

To do this, let U
N
= N (0, 1). For any ϵ > 0 and ℓ ∈ {1, 2},

Gϵ,νℓ(x) := E[Gνℓ(x+ ϵU)] =

∫ ∞

−∞
Gνℓ(z)

e−
(x−z)2

2ϵ2

√
2πϵ

dz

=

∞∑
j=0

j

∫ Φ−1(Cj(νℓ))

Φ−1(Cj−1(νℓ))

e−
(x−z)2

2ϵ2

√
2πϵ

dz

=

∞∑
j=0

j

∫ Φ−1(Cj(νℓ))−x

Φ−1(Cj−1(νℓ))−x

e−
w2

2ϵ2

√
2πϵ

dw. (A.9)

The “kernel”

e−
(x−z)2

2ϵ2

√
2πϵ

(A.10)

acts like Dirac’s delta function δ{x}(z) at z = x as ϵ ↓ 0. Note that Gϵ,νℓ(x) is non-

decreasing and differentiable with first derivative

G′
ϵ,νℓ

(x) =
1√
2πϵ

∞∑
j=0

j
[
e−

(Φ−1(Cj−1(νℓ))−x)2

2ϵ2 −e−
(Φ−1(Cj(νℓ))−x)2

2ϵ2

]
=

1√
2πϵ

∞∑
j=0

e−
(Φ−1(Cj(νℓ))−x)2

2ϵ2 ,

(A.11)
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and define X
(ϵ)
ℓ = Gϵ,νℓ(Zℓ) for ℓ ∈ {1, 2}. Equation (2.16) gives

L′
ϵ(u) =

1√
Var(X

(ϵ)
1 )Var(X

(ϵ)
2 )

E[G′
ϵ,ν1(Z1)G

′
ϵ,ν2(Z2)]

∣∣∣
Corr(Z1,Z2)=u

=
1√

Var(X
(ϵ)
1 )Var(X

(ϵ)
2 )

∫ ∞

−∞

∫ ∞

−∞
G′

ϵ,ν1(Z1)G
′
ϵ,ν2(Z2)

× 1

2π
√
1− u2

e
− 1

2(1−u2)

(
z21+z22−2uz1z2

)
dz1dz2

=
1√

Var(X
(ϵ)
1 )Var(X

(ϵ)
2 )

∞∑
j1=0

∞∑
j2=0

∫ ∞

−∞

∫ ∞

−∞

1√
2πϵ

e−
(Φ−1(Cj1

(ν1))−z1)
2

2ϵ2

× 1√
2πϵ

e−
(Φ−1(Cj2

(ν2))−z2)
2

2ϵ2
1

2π
√
1− u2

e
− 1

2(1−u2)

(
z21+z22−2uz1z2

)
dz1dz2.

Noting again that the quantity in (A.10) acts like a Dirac’s delta function δ{x}(z), the

limit as ϵ ↓ 0 should be

L′(u) =
1√

Var(X1)Var(X2)

∞∑
j1=0

∞∑
j2=0

1

2π
√
1− u2

×

e
− 1

2(1−u2)

(
Φ−1(Cj1

(ν1))2+Φ−1(Cj2
(ν2))2−2uΦ−1(Cj1

(ν1))Φ−1(Cj2
(ν2))

)
,(A.12)

which is always non-negative. The existence and form of L′(u) stems from the fact that

we are differentiating a power series with absolutely convergent coefficients inside its

radius of convergence. That
∑∞

k=0 |ℓk| < ∞ follows from (2.15), the Cauchy-Schwarz

inequality, and the finiteness of
∑∞

k=0 k!gk(ν1)
2 and

∑∞
k=0 k!gk(ν2)

2.

We now show that L′
ϵ(u) converges to L′(u). For this, we first need an expres-

sion for the Hermite coefficients of Gϵ,νℓ(·), denoted by gϵ,k(νℓ) for ℓ ∈ {1, 2}. These will

be compared to the Hermite coefficients gk(νℓ) of Gνℓ .
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Taylor expanding the Hermite polynomial Hk(x + y) =
∑k

d=0

(
k
d

)
yk−dHd(x)

implies

Gϵ,νℓ(x) = E[Gνℓ(x+ ϵU)] = E

[ ∞∑
k=0

gk(νℓ)Hk(x+ ϵU)

]

= E

[ ∞∑
k=0

gk(νℓ)

k∑
d=0

(
k

d

)
(ϵU)k−dHd(x)

]

=

∞∑
d=0

Hd(x)

∞∑
k=d

gk(νℓ)ϵ
k−d

(
k

d

)
E[Uk−d].

After changing summation indices and using that E[Up] = 0 if p is odd, and equal to

(p− 1)!! if p is even, where k!! = 1× 3× · · · × k when k is odd, we get

gϵ,k(νℓ) = gk(νℓ)+

∞∑
q=1

gk+2q(νℓ)ϵ
2q

(
k + 2q

k

)
(2q−1)!! = gk(νℓ)+

∞∑
q=1

gk+2q(νℓ)ϵ
2q (k + 2q)!

k!2qq!
.

(A.13)

Then

|gk(ν1)gk(ν2)− gϵ,k(ν1)gϵ,k(ν2)| ≤

|gk(ν1)|
∞∑
q=1

|gk+2q(ν1)|ϵ2q
(k + 2q)!

k!2qq!
+ |gk(ν2)|

∞∑
q=1

|gk+2q(ν2)|ϵ2q
(k + 2q)!

k!2qq!

+
( ∞∑

q=1

|gk+2q(ν1)|ϵ2q
(k + 2q)!

k!2qq!

)( ∞∑
q=1

|gk+2q(ν2)|ϵ2q
(k + 2q)!

k!2qq!

)
. (A.14)

Use the Cauchy-Schwarz inequality to obtain the bounds

∞∑
q=1

|gk+2q(νℓ)|ϵ2q
(k + 2q)!

k!2qq!
≤

 ∞∑
q=1

g2k+2q(νℓ)(k + 2q)!

1/2 ∞∑
q=1

ϵ4q
(k + 2q)!

(k!)2(2qq!)2

1/2
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≤
Mk,ℓ

(k!)1/2

 ∞∑
q=1

ϵ4q
(k + 2q)!

k!(2q)!

1/2

∀ℓ ∈ {1, 2},

where Mk,ℓ is some finite constant that converges to zero as k → ∞. Since Var(Xℓ) =∑∞
k=1 k!g

2
k(νℓ) is finite and (2qq!)2 is of the same order as (2q)!,

∑∞
q=1 g

2
k+2q(νℓ)(k+2q)! →

0 as k → ∞. We use the fact that
∑∞

p=0 x
p
(
k+p
p

)
= (1− x)−k−1 for |x| < 1 to obtain a

bound for
∑∞

p=1 ϵ
2p
(
k+p
p

)
. Then (A.14) gives

|gk(ν1)gk(ν1)−gϵ,k(ν1)gϵ,k(ν2)| ≤
2∑

ℓ=1

Mk,ℓ|gk(νℓ)|
(k!)1/2

[
(1− ϵ2)−k−1 − 1

]1/2
+
Mk,1Mk,2

k!
[(1−ϵ2)−k−1−1].

(A.15)

Now take the first derivative of the link function in (2.14) to obtain

L′(u) =
1√

Var(X1)Var(X2)

∞∑
k=1

gk(ν1)gk(ν2)k!ku
k−1,

where the series converges absolutely for u ∈ (−1, 1) since the “extra” k gets dominated

by uk−1. Similarly,

L′
ϵ(u) =

1√
Var(X1)Var(X2)

∞∑
k=1

gϵ,k(ν1)gϵ,k(ν2)k!ku
k−1.

The above expression agrees with Theorem 5.1.10 in Pipiras and Taqqu (2017). To show
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that the difference between L′
ϵ(u) and L′(u) converges to zero as ϵ ↓ 0, use

|L′(u)− L′
ϵ(u)| ≤

∣∣∣ 1√
Var(X1)Var(X2)

− 1√
Var(X

(ϵ)
1 )Var(X

(ϵ)
2 )

∣∣∣ ∞∑
k=1

gk(ν1)gk(ν2)k!k|u|k−1

+
1√

Var(X
(ϵ)
1 )Var(X

(ϵ)
2 )

∞∑
k=1

|gk(ν1)gk(ν2)− gϵ,k(ν1)gϵ,k(ν2)|k!k|u|k−1. (A.16)

From (A.15), we see that |gk(ν1)gk(ν2)−gϵ,k(ν1)gϵ,k(ν2)| → 0 as ϵ ↓ 0. Hence,
∑∞

k=1 |gk(ν1)gk(ν2)−

gϵ,k(ν1)gϵ,k(ν2)|k!k|u|k−1 converges to zero by the dominated convergence theorem as

ϵ ↓ 0. Using (2.13), we concluded that Var(X
(ϵ)
1 ) → Var(X1) and Var(X

(ϵ)
2 ) → Var(X2)

as ϵ ↓ 0. Therefore,

∣∣∣∣∣∣ 1√
Var(X1)Var(X2)

− 1√
Var(X

(ϵ)
1 )Var(X

(ϵ)
2 )

∣∣∣∣∣∣→ 0 as ϵ ↓ 0

follows by continuity of the function x−1/2 away from x = 0 (the limiting variances are

tacitly assumed positive to avoid degeneracy).
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Möller, T. A. and C. H. Weiß, 2020: Generalized discrete autoregressive moving-average

models. Applied Stochastic Models in Business and Industry , 36, no. 4, 641–659.

Monitoring, A. et al., 2017: Snow, Water, Ice and Permafrost in the Arctic (SWIPA)

2017.

Monteiro, M., M. G. Scotto, and I. Pereira, 2010: Integer-valued autoregressive processes

with periodic structure. Journal of Statistical Planning and Inference, 140, no. 6,

1529–1541.

— 2015: A periodic bivariate integer-valued autoregressive model. Dynamics, Games

and Science: International Conference and Advanced School Planet Earth, DGS II,

Portugal, August 28–September 6, 2013 , J.-P. Bourguignon, R. Jeltsch, A. A. Pinto,

and M. Viana, Eds., Springer, 455–477.

Mooley, D., 1980: Severe cyclonic storms in the Bay of Bengal, 1877–1977. Monthly

Weather Review , 108, no. 10, 1647–1655.
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