UC Irvine
ICS Technical Reports

Title

Constructing Bayesian-network models of software testing and maintenance
uncertainties

Permalink
https://escholarship.org/uc/item/0sk8h1wj
Authors

Ziv, Hadar

Richardson, Debra J.

Publication Date
1997

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/0sk8h1wj
https://escholarship.org
http://www.cdlib.org/

SL AR

pe
A9

C.S
ne. 97-232

Constructing Bayesian-network Models of Software Testing and
Maintenance Uncertainties

To appear in ICSM’97 International Conference on Software Maintenance

Hadar Ziv
Debra J. Richardson
Department of Information and Computer Science
University of California, Irvine

Irvine, California 92697-3425 Notlce: ThiS Mater|a|
Pl +1.714-824-4047
FIAO;](8+1.714—824—4056 may be prOteCted
by Copyright Law

zivQics.uci.edu

djr@ics.uci.edu (Tlﬂe 17 USC)

UCI-ICS Technical Report 97-23

Abstract

The lifetime of many software systems is surprisingly long, often far exceeding initial
plans and expectations. During development and maintenance of long-lived software,
requirements are analyzed and specified, designs and code modules are developed, test-
ing is planned, and code is tested many times. Consequently, developers and managers
frequently lose or gain confidence in software artifacts, especially when existing uncertain-
ties are relieved or when new uncertainties are encountered. Fluctuations in developers’
confidences may in turn affect process actions or decisions, for instance determining the
impact of change, the need for regression testing, or when to stop testing. In this paper,
we present an approach that allows for developers’ confidences or “beliefs” regarding
software components to be modeled and updated directly. This approach is part of an
overall strategy that calls for explicit modeling of software engineering uncertainties us-
ing an established technique for uncertainty modeling called Bayesian belief networks.
Here, we present several types of software uncertainty and how they may be modeled
directly. We also introduce Bayesian belief networks and how they may be used to either
confirm, evaluate or predict software uncertainties. We discuss our experiences with con-
structing Bayesian-network models of uncertainty for an existing system developed at
Beckman Instruments. Once constructed, these models may be used by developers and
managers in future software understanding, evolution, and maintenance activities. We
also list factors affecting levels of confidence in system artifacts, identified in interviews
with Beckman developers. Finally, we describe our design and implementation of a Java
program that allows software systems and associated beliefs to be modeled explicitly.

Keywords: Uncertainty modeling, Bayesian belief networks, Software requirements, Software test-
ing, Software maintenance

1 Introduction

Development of complex software is fraught with uncertainties. These uncertainties in turn lead
to various software defects. symptoms of the “software crisis.” and occasionally to harmful failures
such as reported for the Therac-25 medical radiation device [LT93] and the Ariane-5 missile launch
attempt [LB96]. Significant efforts in software engineering research are aimed at relieving and
minimizing uncertainties, though removing them entirely is generally impossible. Despite such
research efforts. many software development activities. including requirements specification. coding.
testing and maintenance, are typically carried out in an ad hoc fashion. especially when restricted
by development budgets, available resources, and time-to-market constraints. In real-life software
projects, testing is often done after coding is complete. does not correspond to original requirements,
and does not provide for adequate coverage nor proper partitioning of the input domain.

Nevertheless, software requirements are specified, designs and source code modules are devel-
oped. test plans are prepared. test suites are created, code is tested and later retested frequently
during system evolution. Because of uncertainties. developers are seldom entirely confident in
their software artifacts. Instead. they typically retain, at least intuitively, some degree of confi-
dence in those artifacts. Developers™ confidence levels tend to fluctuate during development and
maintenance, often when existing uncertainties are relieved or new uncertainties are introduced.
Key software process concerns, such as “Are requirements specified accurately and completely?”
and “When to stop testing?”, are decided, at least partially, based on developers’ confidences in
requirements and test artifacts. respectively.

In this paper. we contend that software managers and developers alike would benefit immensely
from explicit modeling of their confidences in software artifacts. Since confidences decrease and
increase due to uncertainties. we propose that developers’ confidences be captured using tech-
niques for uncertainty modeling. This proposal follows an earlier observation [ZR97a] that software
uncertainties exist, are ubiquitous, are relevant to development steps and process decisions, vet
surprisingly are seldom managed and modeled. Our approach calls for software uncertainties to be
captured as probability values. using an uncertainty-modeling technique known as Bayesian belief
networks (originally described by Pearl [Pea88]). This approach requires only that program source
code, along with related specifications, designs and test information, are known and available, and
that initial confidence levels can be determined. Confidence levels are obtained either objectively.
for instance based on statistical or historical data. or subjectively, for instance by interviewing
domain experts. Explicit modeling of individual software artifacts, relations, and associated uncer-
tainties. is but one example of larger strategy that calls for software uncertainties to be modeled
using Bayesian belief networks. Littlewood and Strigini, for instance. adopt a Bayesian approach
to modeling confidences in program reliability and dependability [LS93]. In its most general form.
therefore. this strategy is applicable to many software situations where uncertainty is present and
its modeling deemed beneficial.

To facilitate future construction of Bayesian models, we have implemented Bayesian-network
capabilities for software systems. We describe our design and implementation of a java program that
allows software systems to be defined as networks, called Software Belief Networks or simply SBNs,
of interrelated artifacts with associated belief values. After initial construction. an SBN becomes
subject to Bayesian updating. as defined by Pearl [Pea88]. To afford Bayesian updating., we employ
an existing system. also implemented in Java and available on the WWW, called JavaBayes [C0z96].
For legacy software, the corresponding SBN is maintained and updated simultaneously with the
svstem itself.

In this paper. we describe the construction of Bayesian models of software uncertainties. These
models represent developers’ confidences in software artifacts for a system currently under devel-

opment at Beckman Instruments in Fullerton. California. This system. called CEquencer. controls
and communicates with hardware devices used by biologists. chemists. and other scientists to sep-
arate laboratory specimens into molecular constituents to help determine their DNA sequences.
It is important to note that C'Equencer is developed largely by reusing and augmenting previous
designs and implementation of similar systems at Beckman.

This paper is organized as follows: First. relevant aspects of uncertainty modeling in software
engineering are presented. followed by detailed discussion of software requirements and testing un-
certainties. including examples of modeling those uncertainties. We then introduce Bavesian belief
networks and how they can be used to either confirm. evaluate. or predict software uncertainties.
Specific examples of Bayesian-network construction are provided for Beckman’s CEquencer system.
We also introduce the notion of confidence factors. which may influence developers™ confidences
in software artifacts: seven such factors were identified with respect to C'Equencer requirements.
Lastly, we describe our design and implementation of a Java program that supports the construction
of Bavesian-network models of software systems.

2 Software Engineering Uncertainties

Here. we present three aspects of software uncertainty deemed most pertinent to this paper. namely
categories of applying uncertainty modeling. requirements analysis uncertainty, and testing uncer-
tainty. The reader is referred to [ZR97a] for many additional details.

2.1 Uncertainty Modeling in Software Engineering

In [ZR97a]. we claim that uncertainty abounds in software development, stated succinctly as the
Maxim of Uncertainty in Software Engineering (MUSE): “Uncertainty is inherent and inevitable
in software development processes and products.” We also propose, as a corollary to MUSE. that
software uncertainties should be modeled and managed explicitly, preferably using an established
uncertainty-modeling technique such as Bayesian belief networks. This is followed by identifving
three broad categories of applying uncertainty modeling to software engineering tasks. as follows:

I. Confirmation: Certain characteristics or behaviors of software systems would seem reasonable
to most developers and are therefore expected to hold. For instance. confidence in the correct
hehavior of a program is expected to increase if no defects are detected by test case execution
and decrease otherwise. Uncertainty modeling can be used to confirm such expectations (as
in [ZR97a]). For purposes of confirmation. Bayvesian-network models are relatively easy to
construct. vet correspondingly are of limited value to developers.

[V

. Evaluation: Of more interest is evaluation of whether desirable software qualities or properties
are indeed present. One may have, for instance, created regression test suites based on one or
more test adequacy criteria, such as described in [CPRZ89]. Uncertainty still exists, however,
regarding true defect-detection abilities of those regression test suites (cf. [FW93]). This
uncertainty may be modeled using uncertainty-modeling techniques. The resulting model. be
it Bayesian or otherwise, may be used to evaluate the test suite’s defect detection ability.

3. Prediction: Predicting certain qualities or properties of planned development activities or
artifacts is most difficult but also most beneficial to developers. Consider, for example. the
following change management scenario: Given new system requirements and corresponding
new designs. one ultimately wishes to predict the quality of resulting code. Project managers,

for example, like to know in advance which code segments are more time-consuming or error-
prone. This prediction task may be accomplished by means of uncertainty modeling.

2.2 Requirements Analysis Uncertainty

Successful software development is often hindered by the generally poor state of most require-
ments descriptions. Software requirements analysis typically includes learning about the problem
and problem domain, understanding the needs of potential users. and understanding the con-
straints on the solution. Investigations of the software crisis indicate that poor up-front definition
of requirements is one of the major causes of failed software efforts [Pre92]. This hindrance to
successful software development is captured eloquently in Humphrey's requirements uncertainty
principle [Hum95]: “For a new software system. the requirements will not be completely known
until after the users have used it.” In this paper we suggest that. given the inherent uncertainties
of specifying requirements, software analysts will do well to record those uncertainties explicitly.
rigorously and accurately.

Examples of software requirements uncertainties include. among others: Who are the real sys-
tem users?” What precisely are users’ needs and expectations? How well are they represented in
the requirements document? How well is the problem domain understood? How well is it cap-
tured in the requirements document? Additional uncertainty is then introduced in the transition
from requirements specification through design to coding and system integration. Development
of complex software often requires the system to be represented at multiple levels of abstraction.
including requirements specifications. architectural and other design models. and source code imple-
mentations. Transitioning between different levels of abstraction, however smooth. often introduces
uncertainties, including: How well does the design model correspond to the requirements analysis
model? How well does the implementation correspond to the design? How many of the specified
requirements are indeed met?

2.3 Software Testing Uncertainty

Software testing is fraught with uncertainty due primarily to the inherent inability to completely
determine correctness by testing. Testing requires both planning and enactment, where enactment
includes test selection, test execution. and test result checking. Test enactment is inherently un-
certain. since only exhaustive testing in an ideal environment guarantees total confidence in the
testing process and its results. This ideal testing scenario is infeasible for all but the most trivial
software systems. Instead. multiple factors exist that introduce software testing uncertainties.

2.3.1 Test Planning

We identify three aspects of test planning where uncertainty is present: the artifacts under test,
the test activities planned. and the plans themselves. Software systems under test include. among
others. requirements specifications. produced by requirements elicitation and analysis; design rep-
resentations. produced by architectural and detailed design; and source code, produced by coding
and debugging. Since uncertainty permeates these processes and products, plans for their testing
will inevitably carry those uncertainties forward. In section 3 we show that Bayesian modeling of
testing uncertainties supports their forwarding by way of Bayesian updating.

In addition to requirements, design, and coding uncertainties, software testing is also human-
intensive and thus introduces its own uncertainties. These uncertainties may in turn affect the
development effort and should therefore be accounted for in the test plan. In particular, many
testing activities. such as test result checking, are highly routine and repetitious and thus are likely

to be error-prone if done manually. which introduces additional uncertainty. Test planning activities
are carried out by humans at an early stage of development. thereby introducing uncertainties into
the resulting test plan. Also. test plans are likely to reflect uncertainties that are. as described above.
inherent in software artifacts and activities. During planning. probability values that correspond
to testing uncertainties are typically estimated either based on prior, historical data. or by experts’
subjective assessments.

2.3.2 Test Selection

Test selection is the activity of choosing a finite set of elements (e.g.. requirements. functions. paths.
data) to be tested out of a typically infinite number of elements. Test selection is often based on
an adequacy or coverage criterion that is met by the elements selected for testing. The fact that
only a finite subset of elements is selected inevitably introduces a degree of uncertainty regarding
whether all defects in the system can be detected. One can therefore associate a probability value
with a testing criterion that represents one’s belief in its ability to detect defects. An example of
assigning confidence values to path selection criteria is given below.

Substantial efforts in software testing research have been devoted to defining testing techniques
and later evaluating their relative merits in detecting software defects. These efforts can be classified
roughly into experimentation, simulation, and analysis, including evaluation and analysis of random
testing [DN84] and partition testing [RC85, WJ91, JW89, HT90]: subsumption hierarchies for
data flow testing criteria [CPRZ89. FW88a, FW88b., WWH91]: and subsequent improvements to
subsumption. Particularly unsettling are Hamlet and Taylor’s results that “partition testing does
not inspire confidence™ [HT90] and Frankl and Weyuker's results that a subsumption relations
among test criteria do not necessarily guarantee superior defect detection abilities [FW93].

2.3.3 Example: Path Selection Testing Criteria

To model the uncertainties associated with test criteria. we associated confidence levels with the
path selection criteria in [(CPRZ85, CPRZR89]. There. the authors present a subsumption hierarchy
that suggests a partial order of data flow path selection criteria regarding their ability to provide
adequate coverage of a given program. Subsumption implies relative strength of test criteria, which
may be recast as confidences. as follows: If criterion A subsumes criterion B, then A is viewed
as superior to B with respect to defect detection. As a result, a higher level of confidence would
typically be associated with A’s defect detection abilities than those of B. Note that. as discussed
in [CPRZR89]. even if A subsumes B. uncertainty still remains whether A is in fact better than
B. since demonstrating A’s superior defect detection abilities would require that empirical data
be collected to substantiate the graph theoretic proofs of subsumption. This is discussed further
in [FW93]. where it is shown that subsumption does not necessarily guarantee superior defect
detection abilities.

Confidence in defect detection abilities of a given testing criterion may be quantified by means of
a probabilistic belief value between 0 and 1. We use “belief” rather loosely here, but later we distin-
guish between “confidence”. referring to a subjective, typically from a human perspective, measure.
and “belief.” referring to terminology used specifically in Bayesian-network modeling. A plausible
assignment of probabilistic confidence values to a dozen path selection criteria from [CPRZ89].
based on input from a domain expert. was given in [ZR97a]. These confidence values were then
used to confirm developers™ expectations for an elevator control system. Here, assigned confidence
values are summarized in Table 1.

Noticeably, in this example, confidence values assigned to path selection criteria are relatively
low. Low confidence values indicate that even “strong” path selection criteria do not necessarily

Path Selection Criterion | Confidence Value
All-Paths .65

All-DU-Paths .59

Ordered Context Coverage+ .61
Context Coverage+ 55
Reach Coverage+ 45
All-Uses 45
All-C-Uses/Some-P-Uses 33
All-P-Uses/Some-C-Uses 33
All-Defs 25

All-P-Uses 2

All-Edges , A5

All-Nodes ol

Table 1: Confidence Values for Data Flow Path Selection Criteria

incur high degree of confidence in their defect detection abilities. This is because. in addition to
subsumption uncertainties discussed above, path selection does not take into account. for instance,
data value selection. Some defects are only revealed by certain data values, but not by others. Low
confidence values for path selection criteria therefore reflect the criteria’s inability to guarantee
superior defect detection capabilities.

2.3.4 Test Execution

Test execution involves actual execution of system code on some input data. Test execution may
introduce uncertainties, as follows: the system under test may be executing on a host environment
different from the target execution environment, thereby introducing uncertainty. Also, in cases
where the target environment is simulated on the host environment, testing accuracy can only be
as good as simulation accuracy. Furthermore, observation may affect testing accuracy with respect
to timing. synchronization, and other dynamic issnes. Finally, test executions may not accurately
reflect the operational profiles of real users or real usage scenarios.

2.3.5 Test Result Checking

lest result checking is likely to be error-prone. inexact. and uncertain. Test result checking is
afforded by means of a test oracle. that is used for validating results against stated specifications.
Test oracles can be classified into five categories [RAO92]. offering different degrees of confidence,
ranging from human oracles (lower confidence) to specification-based oracles (higher confidence).
Even specification-based oracles, though inspiring high confidence. are susceptible to uncertainties
due to discrepancies between the specification and customer’s actual needs and expectations.

3 Bayesian Models of Uncertainty

3.1 Introduction to Bayesian Belief Networks

Bayesian belief networks [Pea88, Nea90] have been used in artificial intelligence research as frame-
work for modeling and reasoning with uncertainty. Several applications of Bayesian (or closely

6

related) techniques are currently in use. including interpretation of live telemetry data. power
generation monitoring. real-time weapons scheduling. medical diagnosis systems. and many other
diagnostics applications (see [IAA96. HNMWO95]). Of particular relevance are successful applications
of Bayesian networks to large text and hypertext search databases in the domain of information re-
trieval [Fri88. Cro93] and to validation of ultrahigh dependability for safety-critical svstems [LS93].

Generally, a Bavesian belief network offers a graphical presentation of causal. probabilistic
relationships among variables. The graphical depiction is a Directed Acyclic Graph (DAG). where
graph nodes represent variables whose values come from discrete or “enumerated™ domains. In the
following. we use “nodes™ when discussing structural aspects of Bayvesian networks and “variables™
when discussing probabilities.

Directed edges between nodes represent causal influence. Each edge has an associated matrix
of probabilities to indicate beliefs in how each value of the cause (i.e.. parent) variable affects the
probability of each value of the effect (i.e.. child) variable. The structure and probability values
for a Bavesian network are determined by the application domain and guided by consultation
with experts. Edge-matrix probabilities can either be estimated by experts or compiled from
statistical studies. An important assumption of Bavesian networks is variable independence: a
variable depends (in the probabilistic sense) only on its parents.

Bavesian updating occurs whenever new evidence arrives. Here, we follow Pearl’s original
updating algorithm [Pea88], based on a message passing model. where probability vectors are sent
as messages between network nodes. Bayesian updating proceeds by repeatedly sending messages,
both “up”™ the network from a child node to its parent and “down™ the network from a parent node
to its child, until all nodes are visited and their belief values. if needed. revised. As discussed in
section 5, this message-passing updating scheme is conducive to distributed implementation.

A Bayesian belief network is defined formally as a triplet (N. E. P), where N is a set of nodes.
E C N x N a set of edges. and P a set of probabilities. Each node in N is labeled by a random
variable v;, where 1 < ¢ < |N|. Each variable v; takes on a value from a discrete domain and
is assigned a vector of probabilities, labeled Bel(v;) (for Belie f(v;)). Each probability in Bel(v;)
represents belief that v; will take on a particular value. D = (N. E)is a DAG such that a directed
edge e =< s;.1; >€ E indicates causal influence from source node s; to target node t;. For each node
t;. the strengths of causal influences from its parent s; are quantified by a conditional probability
distribution p(t;|s;). specified in an m x n edge matrix, where m is the number of discrete values
possible for ¢; and n is the number of values for s;. For complete coverage of Bayesian networks.
their definition and use. updating algorithms, and complexity analysis. see [Pea88. Nea90, HMW95].

3.2 Modeling Software Uncertainties

There are many compelling reasons for using Bavesian networks for modeling software uncertainties:
First. Bavesian networks offer a mathematically-sound computational model for uncertain reason-
ing. Also, their graph structure seems to match. at least conceptually. that of software systems.
Thus. one should be able to construct a Bayesian model of a software system simply by annotat-
ing software artifacts with belief values representing developers™ confidences and. correspondingly.
software relations with conditional probability matrices (as is done here and in [ZR97a]). We note
that the resulting network has to be sensible and sound (in the probabilistic sense), i.e., one should
be able to interpret software relations as causal relationships among software artifacts. We also
note that the notion of Bayesian belief corresponds to our earlier notion of degree of confidence.
In the following. we use “belief” specifically to refer to a Bayesian value, whereas “confidence” is
used more generally to indicate subjective assessment of a software entity.

It should also be noted that software artifacts, relations, and associated beliefs change frequently

in all but the most trivial development processes. Bayesian networks may prove instrumental in
capturing the dvnamics of software change (with respect to confidence and uncertainty) by means of
Bavesian updating. Furthermore, one’s beliefs in software artifacts are typically influenced by many
factors. This is easily accommodated in Bayesian networks since evidence from multiple sources
can be combined to determine the probability that a variable has a certain value. Thus. Bavesian

networks allow developers™ confidences to be continuously updated during software maintenance.

Finally. we believe that by using Bavesian networks one can address real problems of software en-
gineering. including. among others, effective hypertext navigation of large software spaces [ZR97b.
7095], determining ultrahigh dependability of svstems [L593]. and identifving performance bottle-
necks and high-risk modules. Our choice of Bavesian networks, however justified. does not preclude
the application of other techniques for modeling uncertainties. Instead. other approaches. including
fuzzy. monotonic and non-monotonic logics. should be investigated and their relative strengths and
weaknesses compared against those of Bayesian networks. This investigation is currently underway.
its outcome to be reported in [Ziv9T7al.

4 Example: Uncertainties in CEquencer Software

4.1 CEquencer Requirements Uncertainties

In the following., we present the results of eliciting confidence levels or “belief values™ from require-
ments analysts for the CEquencer system. To this end, the following steps were carried out:

o First we studied CEquencer requirements documentation, for example [Bec97]. Though the
requirements for CEquencer were determined and specified prior to our study. we found the
documentation commensurate with a REquirements BUilding process we have been using
in research and classroom situations, called REBUS [SZH*91]. This enabled us to capture
("Equencer requirements as a DAG of REBUS nodes. explained next.

e REBUS allows for software requirements to be captured as a hierarchical DAG of requirements
elements. For C'Equencer. the top levels of its requirements DAG are:

l. The root node represents the entire C'Equencer system.

2. The main subcomponents of the system include Run (for running a method or sample
table), Edit (for editing a method or sample table), Data analysis, Data management,
and Help.

3. Here. the main subcomponents above are decomposed into their respective subrequire-
ments. The Run component is the most complex of the five. and includes File manage-
ment. Direct control. Run menu operations. Tools. Log operations, and Replenish.

Additional levels of decomposition exist, but space does not permit their inclusion here. In-
stead. a graphical depiction of the topmost levels of CEquencer’s REBUS DAG. detailing Run
requirements, is shown in Figure 1.

e Upon capturing the structure of requirements elements, probabilistic “belief values™ for those
elements were established. This was done by interviewing CEquencer’s requirements analyst
to record her confidence levels in those requirements. Her confidences are summarized in
Table 3. Note that the third column of Table 3 cites those factors that have influenced and
contributed to each belief. The notion of influential factors is discussed next.

Applet started

Figure 1: A REBUS DAG of CEquencer Requirements

4.2 Confidence Factors

In interviewing C'Equencer’s requirements analyst, it be bacame apparent that several factors affect
her levels of confidence in requirements elements. We identify seven such Confidence Factors (CFs)
below. Before listing the C'Fs, we make the following observations:

o CFs vary in degree of objectivitv. For example, the analyst typically has more confidence
in requirements that have already been addressed successfully in the past (e.g.. in previous
versions of C'Equencer or similar Beckman projects). Based on this prior experience. the
analyst more objectively obtains a higher level of confidence. On the other hand, when a
requirements is less familiar, confidence levels regarding whether this requirement is likely to
change or to be difficult to implement are attained more subjectively.

e ('Fs may increase or decrease developers’ confidences. For example. a more complex require-
ment or one that is likely to change would tend to decrease confidence. On the other hand, the
analyst would typically be more confident of requirements that are constrained, for instance.
by the laws of physical and biological sciences.

e Multiple ('Fs may influence a single requirement. for instance, when a requirement is perceived
as complex, likely to change, and restricted by laws of nature. The analyst’s confidence level
in this case is influenced by multiple factors and would decrease or increase accordingly.

We have identified C'Fs for CEquencer requirements. CFs are shown in Table 3. where the
rightmost column is indexed by CF numbers. defined next.

1. Incomplete or ambiguous requirements. Developer or expert confidence in a require-
ments artifact tends to decrease if there exist concerns regarding the artifact’s completeness
(i.e.. whether all aspects of the requirement are captured fully) and/or ambiguity (i.e.. whether
the requirement description is ambiguous).)

9

2. Anticipated changes. CEquencer requirements, like those of most ongoing software projects.
are in constant flux and undergo many changes. In cases where changes are anticipated
or imminent for one or more requirements artifacts, expert confidence in those artifacts is.
expectedly. reduced.

3. Prior experience with a required capability. Similar to most other systems. CEquencer
designs and code modules are not developed from scratch. Rather, CEquencer improves upon
as well as reuses elements of previously developed software. When existing components are
reused, especially ones for which past experiences have been favorable, developer confidence
is high. Conversely., when little or no experience exists. the degree of uncertainty increases
and. correspondingly, confidence drops.

4. Real world concerns and constraints. These are problem domain issues that exist in
the real world. specifically in CEquencer’s physical operational environment. Generally. when
laws of nature restrict operational behavior, expert confidence tends to increase.

5. Hardware and firmware interface uncertainties. These uncertainties typically arise at
points of interface to hardware and firmware elements. An example is sending and receiv-
ing information to hardware components; this typically reduces confidence due to hardware
uncertainties and, most importantly, interface uncertainties.

. Perceived complexity. Requirements whose provision appears trivial or at least straightfor-
ward tend to increase developer confidence. Conversely, confidence is reduced for requirements
that specify complex behaviors or interactions.

. Derived versus directly available data. Is the information readily obtained from, for
example. a device or an instrument, versus getting the information through some additional
transfer and/or mathematical computation. There is typically additional uncertainty caused
by computations and levels of indirection.

4.3 Bayesian Models of CEquencer Artifact Uncertainties

This section includes an example Bavesian network for two requirements elements, two test suites,
and ten modules. together representing a small but meaningful “slice™ of CEquencer. This slice is
meaningful in that its constituent artifacts are largely reused or reworked from previous incarna-
tions of ('Equencer. thereby comprising a typical maintenance scenario. A Bayesian network was
constructed for the following elements:

o Test suite FSM-TP-Unit-Test-Plan tests code modules FsmStatus, FsmData, FsmTmProg.
and FsmMethod against requirements Start-Method and Start-Sample-Table. Similarly, test
suite FSAM-Unit-Test-Plan tests code modules FsmRun, FsmConfig. FsmStatus, FsmDala,
FsmDirCtrl, FsmCmdResp, and FsmVaxDIf against the same two requirements elements.

¢ Confidence levels for requirements elements have been established earlier, in Table 3. Ad-
ditional confidence levels for test artifacts (elicited from C'Equencer testers). code modules
(elicited from CEquencer programmers). and their relations were collected and are summa-
rized in Table 2. Figure 2 is a graphical depiction of artifacts. their relations, and associated
belief values. Figure 2 reflects a Java applet, developed in conjunction with the program in
section 3 and made available on the World Wide Web [Ziv97b]. This applet was shared with
C'Equencer developers to both receive their feedback as well as enhance their understanding
of and insight into artifact relationships.

10

FouConfig (935%) Foxbate (75%) FomMathed (70%) FomDirCord (90%) FoieDlf (30%)

Applet started

Figure 2: Example Bavesian-network Model for CEquencer Artifacts

5 Design and implementation

We used object-oriented (OO) techniques to design and implement Bayesian networks for software
systems. Our design. shown schematically in Figure 3. includes an abstract base class Graph, itself
an aggregate of two additional abstract classes. Node and Edge. Two classes, Software System
and Belief Network are derived from Graph. Like Graphs. Software Systems are aggregations of
Software Artifacts and Software Relations. while Belief Networks are aggregations of Belief Nodes
and Belief Edges. Finally, using multiple inheritance, Software Belief Networks are derived from
both Software Systems and Belief Networks; Software Belief Nodes from Software Artifacts and
Belief Nodes: and Software Belief Edges from Software Relations and Belief Edges. This OO model
is depicted in Figure 3 using Rumbaugh’s Object Modeling Technique [RBP*91]. All classes and
aggregation relations are shown but some obvious inheritance relations are left out to maintain
clarity and readability.

The inheritance hierarchy of our model is arguably simple and may be elaborated further. A
new class Directed (Graph may be inserted between Graph and Belief Network. Also. class Software
Avrtifact may be further specialized into kinds of software artifacts. such as requirements specifi-
cations. designs. test cases and test results: class Software Relation may be similarly specialized.
These extensions, albeit useful, are bevond the scope of this paper: for our purposes, the model in
Figure 3 is sufficient. Our design model is further simplified by a single-inheritance implementation.
Multiple inheritance, though conceptually appropriate, may lead to implementation difficulties, in-
cluding. among others, name clash resolution (cf. [Str94]). Indeed Java. the programming language
chosen for implementation, allows multiple inheritance of interfaces only, but not of classes. Our
Java program therefore implements a single inheritance scheme, from Graph to Software System to
Software Belief Network.

Java was chosen for several reasons:

e It is an OO programming language. thereby offering smooth transition from an 00 design

11

Artifact | Confidence/Belief Value Elicited From

Start/ Run Sample Table 97% Requirements Analyst
Start/ Run Method T0% Requirements Analyst
FSM TP Unit Test Plan 55% Run Module Tester
FSM Unit Test Plan 35% Run Module Tester
FsmRun 75% | Run Module Programmer

FsmConfig 95% | Run Module Programmer

FsmStatus 85% | Run Module Programmer

FsmData 75% | Run Module Programmer

FsmTmProg 85% | Run Module Programmer
FsmMethod 70% | Run Module Programmer
FsmSampleTable 70% | Run Module Programmer
FsmDirCtrl 95% | Run Module Programmer
FsmCmdResp 90% { Run Module Programmer
FsmVxDIf 50% | Run Module Programmer

Table 2: Example Software Belief Network for CEquencer

model to implementation. Specifically, our conceptual notion that software systems and
Bayesian networks share common attributes is still visible and traceable in the code.

e It offers several advantages over other OO languages. including dynamic code linking. au-
tomatic garbage collection, and support for creation and management of execution threads.
Support for multiple threads is particularly appealing for Bayesian network implementation,
since Pearl’s algorithm can be implemented by message passing among network nodes, where
each node executes in its own thread '.

e Our implementation interacts with an existing implementation of Bayesian updating that was
developed using Java and made available on the WWW/, called JavaBayes [('0z96].

Our implementation allows for software artifacts. relations. and associated belief values, to be
defined and entered. Bayesian updating. as implemented in JavaBayes. is then used for accepting
new evidence and for propagating revised belief values throughout the software network. This im-
plementation was used in [ZR97a] for Bayesian-network confirmation of developers’ expectations for
an elevator control system. Here, it is used for Bayvesian-network modeling of requirements and test-
ing uncertainties in ('Equencer software. Additional modeling of Beckman software uncertainties
is currently underway. to be reported elsewhere [Ziv97al.

6 Summary

In this paper we presented three related concepts:

1. MUSE: The Maxim of Uncertainty in Software Engineering, stating that uncertainties are
abundant in software development.

2. SBNs: Software belief networks, combining software systems with Bayesian networks by anno-
tating software artifacts and relations with belief values representing developers’ confidences.

"Multiple threads are not supported in the current implementation.

12

3.

Graph

Node Edge

— =l I .

Software System | Belief Network

|
———] S —_—
Software Artitact Software Relation Beliel Node Belie! Edge

Software Belief Network

0 Q

Software Beliel Node Software Beliel Edge

Figure 3: An Object Oriented Model of Software Belief Networks

C'Fs: Confidence Factors, which may decrease or increase developers’ levels of confidence in
software artifacts and relations.

We provided several examples of software uncertainties. constructed several SBNs. implemented
SBNs in Java. and presented seven factors that have influenced levels of confidence in ('Equencer
requirements. Several impediments and limitations of our approach were observed. including the
upfront cost of obtaining prior belief values, the need to ensure that software belief networks retain
causality and variable independence. and the assumption that software developers. domain experts.
and related project information are available and accessible.

More encouragingly. however. our preliminary experience with the Bayesian-network approach

indicates that:

The conceptual view of both software systems and Bayesian networks as interrelated “wehs™
of nodes and links seems to offer a convenient metaphor that also maps well into subsequent
design and implementation. Specifically, early depictions of C'Equencer artifact webs were
developed as Java applets and placed on the World Wide Web (see [ZivOTh]); these applets
were then viewed and reviewed by Beckman developers for accuracy and relevancy.

The CEquencer system. like most other software, proved to be fraught with uncertainties,
thereby confirming our suspicions for at least one real-life system. Specifically. CEquencer
software embodies many, often subtle, problem domain uncertainties. including uncertainties
stemming from laws of physics and chemistry in the software’s operational environment as
well as from vaguelv defined boundaries between software versus hardware components.

Finally. our notion of software uncertainties was well received by Beckman developers. offering
convenient means in which to describe their confidences and beliefs regarding C'Equencer

13

software. This in turn contributed to increased “confidence”™ in our approach and our ability
to model and manage additional uncertainties in the future.

We plan to further pursue Bavesian-network modeling of software uncertainties. especially with
repsect to evolution and maintenance. where uncertainties are most abundant. Specifically, we wish
to explore how Bayesian-network models may affect and guide future development steps.

References

[BecHT]
[Coz96]

[CPRZ85)]

[CPRZ8Y]

[(Cro93]
[DN84]
[Frisg]
[FWs8a]
[FWSSb]
(F\W3)
[HMWU5)
[HT90]
[Hum95)]
[IAA96]

[IW89)

(LBY6G]

Beckman Instruments. CEQUENCE DN A Analysis System Software Requirements, January 1997,
Company Confidential.

Fabio Cozman. Javabayes version 0.2: Bayesian networks in Java, 1996. WWW Document
http://www.cs.cmu.edu/ fgecozman/Research/JavaBayes/Home /index. html.

L. A. Clarke, A. Podgurski, D. J. Richardson, and S. J. Zeil. A comparison of data flow path
selection criteria. In Proceedings of the Eighth International Conference on Software Engineering,
pages 244-251, London, August 1985. ACM SIGSOFT.

Lori A. Clarke, Andy Podgurski. Debra J. Richardson, and Steven J. Zeil. A formal evaluation
of data flow path selection criteria. [EEE Transactions on Software Engineermg, SE-15(11),
November 1989.

Bruce W. Croft. Knowledge-based and statistical approaches to text retrieval. [EEE Expert,
8(2):8-12. April 1993.

J. W. Duran and S. Ntafos. An Evaluation of Random Testing. IEFE Transactions on Software
Engineering, SE-10(4):438-444, July 1984.

Mark E. Frisse. Searching for information in a hypertext medical handbook. Communications of
the ACM, 31(7):880-886, July 1988.

Phyllis Frankl and Elaine Weyuker. An Applicable Family of Data Flow Testing Criteria. IEEE
Transactions on Software Engineering. SE-14(10):1483-1498, October 1988.

Phylhis G. Frankl and Elaine J. Weyuker. An applicable family of data flow testing criteria. IEEE
Transactions on Software Engineering. 14(10):1483-1498, October 1988.

Phyllis G. Frankl and Elaine J. Weyuker. A formal analysis of the fault-detecting ability of testing
methods. [EFE Transactions on Software Engineering, 19(3):202-213, March 1993.

David Heckerman, Abe Mamdani, and Michael P. Wellman. Real-world applications of bayesian

networks. Communications of the ACM. 38(3), March 1995. Special Issue on Uncertainty in Al

Dick Hamlet and Ross Taylor. Partition testing does not inspire confidence. IEEE Transactions
on Software Engineering, 16(12):1402-1411, December 1990.

Watts 5. Humphrey. A Discipline for Software Engineering. SEI Series in Software Engineering.
Addison-Wesley, 1995.
Uncertainty in Al Association. Deployved bayesian-nets systems in routine use. October 1996.

WWW Document http://www.auai.org/BN-Routine.html.

Bingchiang Jeng and Elaine J. Weyuker. Some observations on partition testing. In Proceedings
of the ACM SIGSOFT 89 Third Symposium on Software Testing, Analysis. and Verification
(TAV3), pages 38-47, Key West, Florida. December 1989. ACM SIGSOFT. Published as ACM
SIGSOFT Software Engineering Notes 14(8).

Jacques-Louis Lions and The Inquiry Board. Ariane-5 flight 501 failure, July 1996. WWW
Document http://www.esrin.esa.it:80/htdocs/tidc/Press/Press96 /ariane5rep html.

14

[LS93]
[LT93]
[Nea90]
[Peags]
[Pre9?]

[RAO92]

[RBP*91]
[RC85]
[Str94]

[SZH*91)

[WJ91]

[WWH9I]

[Ziv9Ta]
[Ziv9Th]

[2095]

[ZR97a]

[ZR9Th]

Bev Littlewood and Lorenzo Strigini. Validation of ultrahigh dependability for software-hased
svstems. Communications of the ACM, 36(11):69-80. November 1993,

Nancy G. Leveson and Clark S. Turner. An investigation of the Therac-25 accidents. [EEE
Computer, 26(7):18-41, July 1993.

Richard E. Neapolitan. Probabilistic reasoning i erpert systems: theory and algorithms. Wiley.
New York, New York. 1990.

Judea Pearl. Probabilistic reasoning in intelligent systems: Networks of plausible infere nce. Mor-
gan Kaufmann Publishers, San Mateo. CA, 1988.

Roger S. Pressman. Software Engineering: A Practitioner’s Approach. McGraw Hill, New York.
New York, third edition, 1992.

Debra J. Richardson, Stephanie Leif Aha, and T. Owen O'Malley. Specification-based test oracles
for reactive systems. In Proceedings of the Fourteenth International Conference on Software
Engineering, pages 105-118. Melbourne, Australia. May 1992.

James Rumbaugh. Michael Blaha. William Premerlani. Frederick Eddy. and William Lorenson.
Object-Oriented Modeling and Design. Prentice-Hall, Inc., Englewood Cliffs, New Jersey. 1991.

Debra J. Richardson and Lori A. Clarke. Partition analysis: A method combining testing and
verification. JEEE Transactions on Software Engineering, SE-11(12):1477-1490, December 1985,

Bjarne Stroustrup. The C++ programming language. Addison-Wesley., Reading, Mass., second
edition, 1994.

Stanley M. Sutton, Jr.. Hadar Ziv, Dennis Heimbigner, Harry E. Yessayan, Mark Mayvbee, Leon J.
Osterwell, and Xiping Song. Programming a software requirements-specification process. In
Proceedings of the First International Conference on the Software Process, pages 68-89, Redondo
Beach, CA, October 1991. IEEE Computer Society Press.

Elaine J. Weyuker and Bingchiang Jeng. Analyzing partition testing strategies. I[EEF Transac-
tions on Software Engimeering, 17(7):703-711, July 1991.

Elaine J. Weyuker. Stewart N. Weiss, and Dick Hamlet. Comparison of program testing strategies.
In Proceedings of the Symposium on Software Testing. Analysis, and Verification (TAVY), pages
1-10. Victoria, British Columbia, October 1991. ACM SIGSOFT. ACM Press.

Hadar Ziv. Bayesian-network Modeling of Software Uncertainties. PhD thesis, University of
California. Irvine, 1997. Working Title, In Preparation.

Hadar Ziv. Java applets for Beckman CEquencer software, March 1997. WWW Document
http://www.ics.uci.edu/ ziv/java/bayesian_example html.

Hadar Ziv and Leon J. Osterweil. Research issues in the intersection of hypertext and software
development environments. In Richard N. Taylor and Joélle Coutaz. editors, Software Engineering
and Human-Computer Interaction. volume 896 of Lecture Notes in Computer Science, pages 268
279. Springer-Verlag, Berlin Heidelberg, 1995.

Hadar Ziv and Debra J. Richardson. Bayesian-network confirmation of software testing uncertain-
ties. Technical report, University of California, Irvine, January 1997. submitted to ESEC'/FSE'97.

Hadar Ziv and Debra J. Richardson. Lost and found in SoftwareSpace: A Bayesian approach.
In John Tabor. editor, Multimedia Technology and Applications (MTAC 97), Irvine, California.
March 1997,

JUL 211998

Requirement | Confidence/Belief Value | Related C'Fs

Run Module General Requirements 97T% 2.3
Restore Default Data Monitor Display 98% 3
Save Data Monitor Display 98% 3
System Preferences 85% 1

Load/ Unload Trays 50% 2.5

Direct Coontrol Tray position 50% 2,5
Setting capillary temperature 80% 5
Denature Samples 85% 3

Denature Samples Tray position 50% 3,5
Capillary Alignment 97% 3

Inject 95% 3

Injection Tray position 80% 2.5

Separate 5% 2.5

Separation Tray position 50% 2,5

| Gel Capillary Fill 60% 3.6
| Start/ Run Sample Table 97% 3
Start/ Run Method 0% 2
Configuration Confirmation 97% 3

| Pause 85% 6
Stop System T0% 152 3

Monitor Baseline 95% 3

Diagnostics 45% 128, 8

Auto scale 98% 3

Pause Data 90% 3

Unzoom/ Unzoom all 98% 3

Display options 98% 3

Log options 90% 5

Freeze Log 80% 5

Capillary information 90% 5

Release/ Install Capillary Array 40% 3,6.7
Gel/ Buffer information 90% 5

Release Gel Cartridge 65% 3,5

Run About Box (Help) 99% 3
Instrument information 95% 5

Status monitor 85% 2,5

Activity 99% 3

Progress or Active 87% 3.5

Method 90% 3,5

Voltage 90% 3.5

Total Averaged Current T0% 3,5, 7

Gel level T0% o

Gel life 98% 3

Capillary usage 80% 3.5

Capillary life 5% 7

Device position 90% 3

Interpreting capillary temperature 70% 4.5
Laser 1 Hours 97% 5

Laser 2 Hours 97% 5

Sample 98% 3D

micro-Amps 80% 3,4,5

Viewing data 98% 3.5

Table 3: CEquencer Requirements. Beliefs, and Confidence Factors
16

