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Abstract 

Several approximate procedures for the calculation of the 

intensities of atoms elastically scattered from solids are compared 

with nearly exact quantum calculations from a sinusoidal hardwall 

potential. The quasiclassical method reproduces the qualitative 

features of the "rainbow" envelope of the scattered intensities 

present in the exact results but it does not contain any of the 

quantum interference arising from multiple scattering within a 

single unit cell and thus does not reproduce the rich structure in 

the intensities of individual diffraction beams. CCGM theory 

predicts only specular scattering for the hardwall, independent of 

roughness. Semiclassical theory at normal incidence gives the 

same analytical result as the Kirchoff approximation. This result 

agrees to within 3% of the exact calculations for surface roughness 

from 0.02 to 0.1 of a lattice constant, a, at ka vectors greater 

than 22. At lower ka vectors deviations as large as 60% are 

observed for the 0.1 roughness while at 0.02 roughness deviations 

are still less than 2%. Renormalization of the results from the 

0.1 surface reduces its deviations from the exact calculation to 

less than 10% even at low ka vectors. The Kirchoff result agrees 

with the semiclassical only at normal incidence and can be used 

only for hardwall potentials. 



2 

1. Introduction 

In recent years, many theories have been advanced, which 

attempt to explain the results of diffractive atom surf~ce scattering 

experiments [1]. In an attempt to do the calculations exactly, 

Wolken [2] and Tsuchida [3] numerically integrate coupled channelled 

equations, a procedure that is, in principle, exact (with an infinite 

number of channels), but requires extensiye computation. Beeby [4] 

uses a Greens function technique,which, for a surface of hard 

spheres, reduces to a KKR-like procedure. This method is weakly 

convergent, and in addition, the scattering boundary conditions used 

have been questioned [5]. 

Approximate methods include the Kirchoff (or Eikinol) 

approximation of Levi et ale [6] and Berry [7], the CCGM method of 

Goodman et ale [8], the semiclassical approximation of Doll [9] and 

Masel et ale [10], and the quasiclassical method of Bowman [11]. 

CCGM [8] is essentially a unitarized first order Born 

method. One starts with a weak coupling formalism, and uses an 

a priori unitarization procedure to extend it to a strong coupling 

limit. The procedure can, in principle, be used for any interaction 

potential and inelastic effects can be included fairly simply. The 

major disadvantage is that its range of validity is largely unknown, 

so that the quantitative success of the theory has not been 

demonstrated. Still, the procedure has been used extensively, and 

many (but not all) of the results obtained are at least 

qualitatively reasonable. 
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The Kirchoff approximation used by Levi [6] and Berry [7] 

is an adaptation of a well-established approximation from 

acoustics and optics [12]. It is a useful approximation, for 

J surfaces that are not too rough, with near normal angles of 

'-
incidence. It often gives analytical expressions for the 

scattering distribution. It is, however, limited to surfaces that 

can be approximated as a hard wall. This is a severe limitation 

and as will be discussed later leads to unphysical surface 

morphologies when the surface potential is relatively soft. 

The semiclassical approximation used by Doll [9] and Masel 

et al. [10] is an extension of the methods used by Miller [14] 

and Marcus [15] for scattering of atoms and molecules in the gas 

phase. The approximation is useful when the momentum of the 

incident particles is large and there is not too much classical 

multiple scatterinq. It has not vet been extensivelv testAn for 

surface scattering, but it has.been shown to be in semi-quantitative 

agreement with experimental data [10]. 

The quasiclassical method is similar to the semiclassical method, 

except that phas~ interferences are ignored, and the intensities are 

averaged over a range of scattered angles assigned to each diffracted 

beam. Bowman [11] claims that this procedure is in excellent 

agreement with the coupled channel calculations of Wolken, but such 

agreement is not obvious from the calculations presented. 

This paper is an attempt to assess the utility of the 

approximate methods (CCGM, Kirchoff, semiclassical, and quasi-

classical) for the case of atom surface scattering by comparing 

them to the exact solution [13] for scattering at normal incidence 
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from a sinusoidal hard wall at moderate roughnesses. The results 

show that the CCGM procedure gives qualitatively incorrect re,sults 

for this example, while the Kirchoff and semiclassical approximations 

are in essential quantitative agreement with the exact results, 

except at low energies. The low energy semiclassical results can be 

brought into agreement with the exact results with the use of 

an ad hoc renormalization procedure. Comparison of hard and soft 

wall calculations shows that the major effect of the hard wall 

assumption is to accentuate the surface roughness. Surface 

morphologies deduced from experimental data via the hard wall 

theories would therefore be much smoother than the actual surface. 

It should be noted here that Doll [9] has shown that the semi-

classical calculations are in reasonable agreement with the 

soft wall calculations of Wolken [2], although extensive 

comparison was impractical due to the numerical complexity of 

Wolken's procedure. Doll's results along with the results presented 

here suggest that the semiclassical theory is useful over a wide 

range of interactions while the CCGM and Kirchoff approximations 

seem to fail in either the hard or soft wall limit. 

The quasi-classical approach is devoid of any interference 

phenomena except that artificially imposed to designate which 

of the classical trajectories contribute to each "diffraction 

beam". As a result it does produce qualitatively the basic 

"rainbow structure" of the exact solution, but fails to yield 

any Bragg-maxima in the intensity as a function of energy. 
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2. The Exact Solution 

In an earlier paper [13], we presented a 

,J rigorous calculation of the scattering pattern from a sinusoidal 

'0> 
hard wall.' The derivation is based on the Lippmann-Schwinger 

equation: 

1jJ '( r ) = ¢ I (r) + fdr ' G~' (r , r ' ) V (r ' ) \jJ (r ' ) 

where 

\jJ(r) is the wavefunction 

(1 ) 

¢I(r) is the incident wave 

+ Go(r,r') is the outward-going free particle Green's function and 

V(r) is the potential. 

If the potential is of the form 

V = 0 z > D(x) 

V = 00 z < D(x) 

where 

z = distance above the surface 

x = distance along the surface 

D(x) = the surface contour 

then it can be shown 

V(r)\jJ(r) = f(x)o(Z-D(x» 

where f(x) is a function of x yet to be determined. 

Combining equations 1 and 

\jJ (x , z ) = ¢ I (x, z ) + f dx ' 

An incident plane wave 

3 yields 

+ dz' Go(x,z,x',z')f(x')o[z' - D(x')] 

¢I(r) ~ eik(sinBIx - zCOSB I ) 

(2) 

(3) 

(4) 

(S) 



and a sinusoidal surface 

D(x} = ha cos 2TIX 
a 

are assumed. Expanding f(x} in a Fourier series: 

f(x) =~i(kSineI 
n 

+ 2TIn}x 
a 

and solving for the condition that ~(r) = 

. yields, for Z > ha 

a below the surface 

6 

{6} 

(7) 

~(r) = <PI(r} +~s~<p~(r) {8} 
~ 

where <p~(r} is the eigenfunction corresponding to the ~ th order 

diffraction beam and 
00 

S~ = L enJ~_n (hka cose~) 
n=-oo 

(9) 

The coefficients e are determined by the infinite matrix equation 
n 

coselo~ 0 =LenJn_~ (hka cose~) (10) 
, n 

This is a banded matrix and only the en that satisfYlnl~ N 

were considered in equations 7 and 8. N was increased until 

numerical convergence was obtained. While this is not, in principle, 

an exact procedure, by suitable choice of N, the error can be made 

arbitrarily small, and so, for comparison purposes, the procedure 

can be considered to be exact. 

Some of the results of·the calculations are shown in fig. 1. 

At low incident k vectors, the scattering patterns show a strong 

specular peak and only weak diffraction features. At higher 

incident k vectors, ~ rainbow pattern begins to appear. If the 

surface roughness, h, is increased, the diffraction features 

and the rainbow patterns will appear at a lower energy, and the 

rainbow angles will be further apart. Qualitatively, this is 

the behavior observed in rare gas scattering from metallic and 

alkali halide surfaces [1]. 
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For the purpose of comparison, we will focus on h = 0.02 

(a relatively smooth surface) and h = 0.10 (a relatively rough 

one) . In the flat surface (h = 0) limit, all of the 

~approximate methods converge to the correct result (only specular 

scattering), and so a comparison in the nearly flat surface 

region is not instructive. It should also be noted that all of 

the comparisons are for normal incidence, and that intensities 

in this paper are defined so that they satisfy the normalization 

condition 

LI cose I = 1 
Q, Q,coseQ, 

where the sum goes over all i, satisfying 

Q, < ka 
- 2'1T 

2.1. A reformulation of the exact calculations. 

The exact formulation presented in the last section, 

while very useful for numerical calculations, suffers from the 

defect that it reveals very little of the physics of the 

scattering process. When f(x) is expanded in a Fourier series 

much of the physics is obscured. In this section we will 

reformulate the scattering problem so that the physics is more 

transparent. The reformulation will be used primarily for 

qualitative comparisons, though it could, in principle, be used 

for quantitative calculations also. 

(11) 



The Lippmann-Schwinger equation, equation 1, provides the 

basis for an iterative solution of the scattering problem. 

Starting with an initial trial wave function ~o(r), a 

new approximation ~l(r) can be calculated using 

~n(r) = ¢r(r) + Jfdr'G~(r,r')v(r')~(r')n_l 

where n is the order of the approximation. 

'If such a procedure converges, then it will produce the 

exact result, but it will only converge through a very judicious 

choice of ~. If any~ has a non-zero part below the surface, o n 

the integral becomes infinite, and so the procedure will never 

converge. Notice though that the true wave function is zero 

everywhere on and below the surface. Defining a heavy-sided 

'function, q(Z) in the standard manner 
z 

q(z) = f o(O)dz 

- 00 

with 0, the dirac delta function. For any function r(x,z) the 

relation 

1jJ(x,z) = q(z-D(x» [~(x,Z) + r(x,z)] 

will hold exactly provided r(x,z) = 0 on and above the surface. 

Define a function ~(x,z) by 

~(x,z) = ~(x,z) + r(x,z) 

'-' where r(x,z) is a special function chosen so that ~ and all 

8 

(12) 

(13 ) 

(14) 

(15) 



of its derivatives are continuous in the region z ~ D(x) - ~ and 

+ ~ -+ O. There are an infinite number of r that satisfy this 

condition, one is 

r(x,z) = -lJi(x',z') 

with 

x' = p(x,z) - x 

z' = g(x,z) + 2D(x) - z 

9 

(16) 

(17) 

and p(x,z) and g(x,z) 

o=aljJ(x,z)! 
ax z=D(x)+~ 

are a solution of 

ap(x,z) + aljJ(x,z) I 
ax ax z=D(x)+~ (

ag(x,z) + 
ax 

2dD (X») 
dx 

(18 ) 

·0= a 1/1 (x,z) ! ap(x,z) + ap(x,z) I ag(x,z) 
adx z=D(x)+~ az az z=D{x)+~ az 

with the boundary condition: 

p(x,D(x» = g(x,D(X» = 0 

Starting with the Schroedinger equation 

[ n2 (~ + ~)+ EJlJi = VlJi 
2m ax2 az2 

(19) 

Substituting 12 and 13 into the left hand side yields 

112 [ ( 2 
2m ~(x,z) :zi + a

2q
) + 2 (~ aVi' + ~a'ij)\l+ q a

2
lJi + a

2
lJi + ~= vij;' (20) 

ax2 ax ax az az~ ax2 . az2 . 
The arguments in our previous paper [13] show that VlJi is zero 

everywhere but on the surface. For z = D(x), lJi(x) is identically 

zero, and since all of the derivatives of lJi are continuous, 

Vl/J =-fS.
2

0 (z-D (x) ) [aD (x) .E1 + tfJ (21) m- .. ax ax az 



f(x) in equation 3 

f (x) = 112 (aD (x) 
m ax 

becomes 

.?i + ~) ax az 

Defining the unit surface normal n and arc length sin 

the usual 

_ 1 

~ - (¥S) 

way 

(
aD (x) ) 
ax JCx + JC z 

where u and u are unit vectors in the x and z directions. 
ruX ruZ 

Combining equations 22 and 23 yields 

f(x) =(~I 
a~ z = D (x) ~~ )(~~ ) 

and since all of the derivatives of ~ are continuous, and 

~ = 0 for z > D (x) . 

f(x) =[(~Iz = D(x) + J(~~)] (~~) 
which gives a physical interpretation to f(x). 

Combining equations 4 

~n(r) = ~I(r) +~dr 
and 24 

G ~ (r ; r ' >[0 ( z - D (X)l apn-ll 
an x=x' 

z=D(x')+l'l 

as 
ax 

10 

(22 ) 

( 23) 

(24) 

(25 ) 

!t I 22.1 an x=x' ax x=x' 
(26 } 

z=D(x')+l'l 

This result can also be derived from the Hemholtz equation 

which can be written 
-1}2 I G) 

~ oCr) = 2m! ds \Go* + ~~n 0 (27 

where ~GoC=(~;2+ E)-I, and~ indicates an integral over any contour 
c 

in free space, and ~ (r) is the wave function in free space. 

-. 
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0+· b For the contour z =D(x) + ~, when ~ ~ , ~ 1S zero y 

continuity and since the surface only generates outward-going 

waves this becomes 

cp +.fG+ dS 21. 
I 0 a~ z = D(x) + ~ 

11 

(28 ) 

which is essentially the same as equation 26. A direct derivation of 

equation 28 from the Lippmann-Schwinger equation is given in Appendix 

D. We note that equation 28 has been used by DeSanto (16), with the 

boundary condition ~ = a on the surface to derive a system of 

equations equivalent to equations 8-10. 

Equation 26 is a prescription for an interative calculation 

of the scattered wave: starting with an initial guess,~o = CPI 

the incident wave, and solving iteratively for ~l' ~2' ••• yields 

(assuming convergence) better and better approximations to the 

wave function. A physical interpretation of the procedure may 

be helpfUl. In going from ~o to ~l' the wave function was 

forced to zero under the surface (via equation 12). The 

scattered waves that are produced during this process are 

calculated via equation 10. In essence then, in going from 

~o to ~l' the wave function undergoes a single reflection, and 

so the name "single scattering approximation" for ~l seems 

appropriate. In going from ~l to ~2' etc., the waves 

may be thought to scatter successively (multiple scattering) 

until convergence. For future reference, this type of multiple 

scattering will be labelled "quantum multiple scattering". 

It occurs even when the surface is flat, and thus the flat 

surface warrants some further discussion. 
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Assuming \jJ , the incident wave, is given by o 
,', = ~ = ei(kxx-kzz) 
~o I 

direct application of equation 21 for D(x) = 0 yields, 

i(k x - k z) 1 i(k x + k Izl) 
\jJl = e x z - ~ x z 

,', = i(k x - k z) 3 i(k x + kzlzl 
~2 e x z -~ x 

and in general 

\jJn = ei(kxx - kzz) - (1 _ (~)n)ei(kxX + kzlzl) 

In the n + 00 limit, the correct result (13) is obtained. 

i(k x - k z) i(k x + k Izl) \jJ = e x z - e x z 

(29) 

(30) 

(31) 

(32) 

(33) 

This procedure can be rationalized by viewing the surface as a 

series of points separated by a differential distance. When 

the incident wave hits one of these points, it acts as though 

it were an isolated pole in the potential and emits the 

spherically symmetric outward-going wave. Since the wave is 

spherically symmetrical, half of the flux scatters away from 

the surface and half of the flux propagates into the surface. 

There are many points on the surface, and so a large 

portion of the spherical wave is destroyed through phase 

cancellation, i.e., these channels are closed. The only thing that 

survives is the part of the spherical wave that satisfies ~k = 0, the x 

only open channel for a flat surface t . 

t This follows directly from the diffraction condition. The flat 
surface can be considered to be a periodic surface with lattice 

~K 

dimension a. The Laue condition implies that the relation 2~ = j/a 

j is an integer must be satisfied for all choices 
of a. The only way that this condition can be satisfied is for 
j = 0, which implies ~k = o. x 

, 
• 
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The wave function is then an inward-going plane wave, and two 

scattered waves, one of which propagates away from the surface in 

the specular direction, and one of which propagates into the surface 

in the incident direction, partially cancelling the incident wave. 

The two scattered waves have the same intensity. Therefore in the 

single scattering approximation, ) 

1/1 ==1/11 = ei(kxx - kzz) - ~(q(z)ei(kxX + kzz) + q(_z)ei(kxx + kzz) (34) 

The minus sign comes in because of the reflection. 

One can verify that this is the same 1/11 as ~"nequation 30. 

For a hard wall, there cannot be any penetration of 

the wave into the surface, and so the wave multiply scatters. 

Again it produces a spherical wave with half of the flux going 

out of the surface and half of the flux moving into the surface. 

After"phase cancellation, the resultant wave function is 1/12. 

In the rough surface case, there is an additional form of 

"quantum multiple scattering" which occurs because the spherical 

wave hits the surface at a point separate from the incident wave. 

This form of multiple scattering is also excluded from 1/11 since 1/1
0 

has been taken to be the incident wave. It is not excluded from 

1/1 2 because ~, the "incident wave" for double scattering, contains 

strong non-specular components. For the purpose of this discussion, 

it will not be necessary to distinguish between these two forms of 

quantum multiple scattering. 

2.2. CCGM calculations 

Goodman and his coworkers IS] use a unitarized first order 

distorted wave Born procedure, called CCGM, to interpret atom 

surface scattering data. Starting with the Schroedinger equation, 

equation 19, the wave function is first expanded in terms of the 
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eigenfunctions of the potential averaged in the x and y (in-plane) 

directions. - The wave function can then be expressed as a Born 

·series, which is summed by assuming that the principle (Le., real) 

part of the Greens function is negligible, except in the single quantum 

scattering limit. 

_ After many manipul~tions, the result is a simple matrix 

equation which relates the amplitude of the various peaks, DG, to 

_~hematrix elements of ~h~Fourier transform of the potential, 
GG' 

-A Q • . a~ - -

i),G. 0 
a g 

with 

AG (1 ~ ) + i ~~AGG'Da = - aO -uG,O ~~ D G G';G a ap _ 
(35) 

AG = a dimensionless energy defined in equation 3.13 of ref. 8a a 

A~' = (constant.) (alvG_G,1 s) 

where 
1 L/2 L/2 

VG =-:2 f 3y f dx V(x,y,z)eiG•r 

r.. -L/2 -L/2 

and a and B are various eigenstates of Vo. 

The intensities of the vari'ous peaks, ~., can -be -ca1cula ted 

from. _ 

-~ = '6F, 0 - 2iD~ 12 
. If none of the diffracted peaks are related by a reciprocal 

lattice vector [8 J ; -then 
2 

~;i0. = 4/~O/ 
R= 1 - 2: ~ O. '. 

F;O GO 2 

It. .. 1 + 2:/A
FO

/
2 

+ i.E .E~g 
F;Q . . ,"~Q - m: _ -~m ~ 

(36) 

(37) 
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In order to calculate the A matrix elements, it is necessary to 

redefine the potential in 2. For algebraic simplicity, the 

following potential was assumed. 

v 0 ha 2rrx = Z > cos (a-) 

V wrr 
ha 2rrx = -1 -B < z < cos (Z-) 

cos (z/B) 

V = W z < -ha 

where eventually the limit as w ~ 00 will be taken. 

Admittedly this potential is unusual, but it is continuous 

everywhere but on the boundary, and it does approach the 

potential given by equation 2 in the limit that w ~ 00. In the 

derivation of equations 4 and 5, it was not necessary to know 

how the potential approached infinity, and so they should apply 

to the potential given by 38 as well as the potential in 2. 

Further it is not at all unreasonable to have poles in an 

otherwise finite potential (e.g., at the positions of the ion 

cores). 

The potential averaged in the y and z directions is 

Vo = 0 z > ha 

V = 0 
W z < ha 

Its eigenvalues" can be found by inspection. 

={~~ 
ik ·z 

¢k 
z e 

z z 

z > ha / 

z < ha 

where the constants c k are determined by a box normalization 
z 

condition. 

(38) 

(39) 

(40) 



n2k
2 

one should verify that for w > ~ 

ck = L for k real z z 

ik Bi 1 c k = e z 
z rmw - k

Z 
+ ikz h2 z 

i~Zl 

16 
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In order to calculate the A matrix elements, terms of the form 

(Kp IvHIKG ) 
z z 

must be calculated. In Appendix A, 

i[G 
-~ z 20H Ohawe Be 

y' 

with 

E, ~haW2mw 
112 

and rr 
B = f dU sinjg sin jU e cos U 

o 

which can 
00 

be evaluated as 

B-= Lbn cr(j,n} 

n=O 

with b = 2 I (0 n n . 

b = Io (0 
0 

and rr 

cr[j,n] =f dU sin U sin jU cos 
jU 

0 

for j ~ 0, this is 

nU 

it is shown 

- P*] ha z 

Hxa 
j = 2iT 

cr[j,n] = ~[cin(ln + j + llrr} + Cin(lj + 1 - nlrr} -

Cin ( In - j - llrr) - Cin ( In + j - llrr)] 

(42) 

(43 ) 

(44) 

(45) 

(46) 

(47) 

• 
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One is referred to p. 244 in Abramowitz [17] for a definition 

and numerical table of the Cin fUnction. 

Using Abromowitz [18] 9.7.1, one can easily show that for 

large w 

I [a [j , 01 

OR Oe 
y' 

i(G - F*)B z z 

+ 2 L a [j ,n]]w 3/
4 + 

n 

[8~ J[j'Ol + 2~a[j'Nl [4n2 
- IJ]wl/4 + O(W-

1/4
>! 

More details are given in Appendix A. 

In the limit w ~ 00 , all of the A matrix elements 

will approach infinity (or zero, it does not matter which) • 

From equation 39, one can show that all of the D matrix elements 

approach zero, so that only specular scattering is .a110wed*, 

independent of h. A very unphysical ,result. 

* This result is more obvious from equation 37, although 

strictly speaking equation 37 is not applicable to this case. 

17 

(48 ) 
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In retrospect this result is not surprising. With an infinite 

hard wall, the average potsntial, Vo(z) is infinite for z < ha. 

The eigenfunctions of V are therefore zero for z < ha and so o 

they do not sample the potential, except at z = ha. At this point 

the hard wall is flat, and so only specular scattering is predicted. 

2TrX Of course the real wave function is not zero for z > ha cos---, a 

and so there is also non-specular scattering. 

This effect is not limited to the hard wall. Whenever 

there are strong variations of the potential in the x and y 

directions, the wave function will also vary rapidly in these 

directions. CCGM uses a wave function based on the average potentia~ 
which cannot 

reproduce these variations. Effectively, CCGM smooths out the 

potential, which leads toa more specular scattering pattern. 

It is interesting to note, that unless some adjustment factor is 

used (e.g., surface steps), the CCGM procedure seems to predict 

greater specular scattering than is normally observed. Goodman 

[8] suggests that this is because of problems with the experimental 

data. We suggest that it may be that the CCGM basis set is not 

appropriate whenever the variations in the potential in the x 

and y directions are large. 

This, however, is not the only problem with CCGM in the 

strong interaction limit. In the derivation of equation 35, 

it was necessary to ignore the principle part of the Greens 

function. In the case of a hard wall, the principle part of the 

Greens function is infinite, so it is difficult to see how it 

could be ignored. Rabitz [18] has shown that for atom-diatom 
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scatteririg, a unitarized Born procedure, using appropriate 

wave functions does not give physically meaningful results in 

the strong interaction limit. For an interaction of intermediate 

strength, it does give qualitatively useful results. Unitarized 

Born, if done correctly, is slightly better than a simple Born 

procedure, but it should not be expected to produce quantitative 

results except where the potential is weak. 

2.3. The semiclassical approximation 

Another approximation that has been successful 

is the semiclassical approximation used by Doll et ale [9] and 

Masel et ale [10]. It is based on a similar approximation 

developed for gas phase scattering by Miller [14] and Marcus 

[15]. To understand the approximation physically, one must 

recall the discussion of the multiple scattering process 

in section 2.1. When the incident wave hits the surface, 

scattered waves originate from every point on the surface, and 

propagate in every direction. In order to obtain discrete beams, 

most of the waves must interfere destructively. When these 

interferences are included, only those beams that satisfy the 

diffraction condition are allowed. Each point on the surface 

can be thought of as generating a series of beams in the 

allowed directions. Closer examination however reveals that 

due to additional interference, each point on the surface does 

not radiate equally; some of the beams are stronger than others, 

and some points on the surface produce a strong contribution to 

the scattering profile while other points contribute weakly. 



One can show that those points on the surface that lie on a 

classical path through phase space connecting the incident beam 

to a diffracted state have the largest effect on the scattering 

profile. In the semiclassical approximation only those points 

that lie on the classical path are included. One can show 

that this will be a good approximation whenever the classical 

action of the path is large compared to ~, which means it will 

be best at high energies and with massive particles (in atomic 

units). It should be valid for all potentials, but since it 

is a generalization of the WKB approximation it should work 

best when the potential is soft. The hard wall, then, is a 

good test of the semiclassical approximation, because if the 

approximation is successful here, it should work 

on most real potentials. 

In the semiclassical approximation the amplitude of a 

given beam, 8£ is calculated as a sum of amplitudes 8 p of 

the various classical paths p connecting the incident wave to 

a diffracted state*. 

20 

8 =" 8 (49) £ L..J p 
P 

*Note that the normalization condition on the 8£ is 

L 18 £1
2 

= 1 
1 £ I<ka 

-2 
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In order to use this equation, one 

must first find the classical paths. More precisely, given a 

classical particle with a momentum equal to the momentum of 

the in~ident wave, one must find the scattered angle as a function 

of the initial position. It is convenient to represent this 

information in the form of a classical deflection function; 

i.e., a plot of the final direction of the particle as a function 

~ of x, the projection of its initial position onto the 

xy-plane. 

For a 

~ _ lim 
z+oo 

two-dimensional 
k O 

x - z x 

k O 
z 

system 

where k~ and k~ are the initial x and z components of the 

particles's momentum. 

The deflection function can be calculated in a number of 

ways. The most exact way is to integrate numerically the 

classical trajectories. This, however, does not yield an 

analytic expression for the deflection function (and therefore 

the scattering profile). An analytic expression for the 

scattering profile can be obtained, however, if the incident 

particle only undergoes one classical reflection from the 

surface during the scattering process. This approximation, 

which we shall use here, is not inherent in the theory 

and is only necessary because an analytic expression is desired. 

In Appendix C, the validity of the approximation is examined. 

(50) 



Generally, it is valid if the scattering angle a obeys 

lal ~ larc cos (2h) I 

and the surface roughness h satisfies 
(1 -lsinaII) 

h<h*(aI)=cl----~a------cos I 

where c l is a constant between .130 and .143. 

We note that the single classical scattering approximation 
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( 51) 

(52) 

is a much less severe approximation than the assumption of single 

scattering in the quantum sense, i.e., ~ = ~l (see equation 30), 

and is exact for a flat surface. 

In the single classical scattering limit, the scattered angle can 

be calculated in terms of the x component of the point where 

the trajectory hits the surface x*, as follows 

a (x*) = 2 tan-
l 

[2'ITh sin(2'IT:*)J+ a I 

" x is related to x* by 

~ = x* -
k O 

x 

kO 
z 

D(x*) 

For normal incidence, equation 54 may easily be inverted 

analytically, and we will restrict our discussion to that case. 

At normal incidence, 

x = x* 

which fixes the deflection function. 

Once the deflection function is known, it is a simple 

matter to calculate the intensities, following the procedures 

outlined in our previous paper [10]. Appendix B shows that the 

(53 ) 

(54 ) 

(55) 

uniformized intensity, P t , of the ~th diffraction peak is given by 
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where the intensities are normalized as in equatiori 11 and J 1 is 

the 1th order Bessel function. 

It should be noted that equation 56 is in qualitative 
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(56) 

agreement with our exact calculations. A quantitative comparison 

will follow after a discussion of the Kirchoff approximation, 

which gives similar results to the semiclassical approximation 

for hard wall scattering. 

2.4. The Kirchoff approximation 

Levi et ale [6] and Berry [7] use a very standard 

approxmiation from acoustics and optics called the "Kirchoff 

Approximation". It essentially assumes that the potential is 

hardwall-like, and that the semiclassical approximation applies. 

In addition, it assumes that (1) there is no classical multiple 

scattering (i.e., the deflection function in equation 53 is valid 

independent of the hand 01 and (2) the condition 

x = x* ( 57) 

holds at all incidence angles 

When these approximations are made, an analytical expression 

for the scattering intensities can easily be derived using the 

same methods used to derive equation 56. The result is 

P1 = J~[kha(COS 01 + cos 01)] (58) 

which is identical to equation 56 at normal incidence. It may be 

shown, however, that there is a systematic difference between the 

phase of the scattered wave given by Levi's derivation of the Kirchoff 

approximation and that given by the complete semiclassical theory. 
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Levi, et ale [6] have derived equation 58 in a somewhat 

different manner.· They start with the Rayleigh equation and then 

make a single scattering (in the quantum sense) approximation, to 

get a diagonal matrix. Semiclassical methods are used to evaluate 

the matrix elements to give equation 58 for the intensities. 

Superficially, one would expect these assumptions to limit the 

Kirchoff approximation to high energies and small values of h,but 

we shall see, that the final result, equation 58, works very well 

(better than the Rayleigh solution). The reason is due to a gross 

cancellation of errors. The Rayleigh equation itself is not the 

unique solution of the scattering problem [5] and is, in fact, 

divergent when h > .0714 [19]. The single scattering approximation 

to the Rayleigh equation is a better result in that it is no 

longer divergent and, in fact, is analytically identical to the 

true quantum single scattering limit, except for phase. The 

semiclassical methods used to evaluate the matrix elements restores 

most of the quantum multiple scattering. The final result, 

equatio~ 58, works very well, then, provided: (1) the single 

classical scattering limit applies; (2) shadowing is unimportant; 

and (3) the hardwall potential applies. 

Bothassumptions (1) and (2), above, hold fairly well 

when the conditions in equations 51 and 52 are satisfied for 

all of the prominent beams (with 8r replaced by 8~, the scattering 

angle). But assumption (3) is not generally valid. Doll has 

derived an analytical expression, which can be used to estimate the 

surface roughness, provided the potential can be approximated by a 

hard wall [9]. Good agreement is obtained for helium scattering 

from a stiff potential such as that of He/LiF. However, when 

this equation is applied to a softer potential such as He/W<112>, 
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the predicted surface roughness is about a factor of 3 too small. 

There is a major difference between the two potentials. It is 

best seen by looking at a comparison of the classical trajectories 

for He scattering from a hard (stiff) and soft potential shown 

schematically in fig. 2. 

In the case of a stiff potential, the trajectory hits the 

repulsive wall and turns around very quickly, so it only samples a 

small portion of the potential. In the case of the softpotential, 

the trajectory penetrates deeply and samples much of the unit cell, 

which has the effect of averaging the potential over a large portion 

of the unit cell. Of course, the averaged potential is much smoother 

than the real potential t • When/the potential is assumed to be hard 

wall-like, this averaging process is ignored. If a hardwall theory 

is used to deduce the amplitude of the surface periodicity from 

scattering data from a soft potentIal, it leads to a prediction of 

amplitudes which are too small, and therefore-to an unreal surface 

morphology. The Kirchoff approximation assumes a hardwall potential, 

and so can predict unphysical surface morphologies. The semiclassical 

method is not limited to hardwall potentials. 

2.5. Comparison of the quantum results to the semiclassical 

and Kirchoff approximations 

In figs. 3-5, the semiclassical approximation to the scattering 

intensity, of the specular, first and second order diffracted beams, 

at normal incidence, with h = 0.02 is compared to the exact quantum 

results. The agreement between the two sets of ' curves is very good. 

The average difference between the two curves is less than 2%. This 

is certainly within the accuracy of any published scattering experiment. 

tThis is one reason why metal surfaces have always appeared 
to be much smoother than alkali-halide surfaces. 



Even so, there are some discernable differences between 

the two sets of curves. The most obvious difference is that the 

semiclassical curve is shifted slightly with respect to the 

quantum curve •. While we have no physical explanation of this 

shift, it is most easily seen when the surface roughness is 

small, and is not noticeable when hka > 1.3. Of course, when 

hka is small, the stationary phase approximation is 

the poorest and so it is not entirely surprising that the 

semiclassical approximation is not exact in this region. 

One should note that at low energies, the semiclassical 
I 

approxmiation does not satisfy the normalization condition 

equation 11, while the quantum result satisfies it (to within 

.0001) everywhere. This is a problem that was noted in our 

previous paper {10]. To correct it, all of the intensities 

in the previous paper were renormaliz~d via an ad hoc procedure 
It 

""' cos 81 
L.-J li =os 8 n 

Itl< ka )(, 
- 2n 

R where 1£ equals the renormalized intensities. 

Renormalized curves are also presented in figs. 3-5. At 

_ roughnesses this low, renormalization makes little difference 
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(59 ) 

in the intensity profile. It does, however, correct some errors 

when k is small. 

Fig. 6 is a plot of the intensity of the specular beam as 

a function of the k vector for a much rougher surface (h = 0.10). 

For ka greater than 21, the simple semiclassical theory works 

very well, but at k-vectors less than 20, deviations start to 
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become significant. Fortunately, most of the errors are 

corrected by renormalization, but there still are some residual 

errors for ka between 17 and 21. This is a very unusual 

• region in the figure. Semiclassically, the first Bragg maximum 

in the specular peak occurs at ka = 19.2. The second order 

diffraction feature moves through the rainbow angles at ka = 19.1. 

The competition between these two events, we believe, causes 

the cusp in the curve. In the simple semiclassical theory, 

the competition between the two events is ignored entirely, 

so the cusp is not reproduced. 

2.6. Quasiclassical calculations 

Bowman [11] has suggested that the intensity of the various 

diffraction beams can be obtained by assuming that the incident 

beam behaves classically, and calculating the fraction of trajectories 

that scatter to within 1/2 a diffraction order of each diffraction maxima. 

I 
n 

where 

For the hard wall surface, then, 
L pJ (n+l/2) db 

p --b
J

(n-l/2) 
= a 

I = the intensity of the nth order beam n 

b J 0,) = the impact parameter that leads to scattering at 

diffraction order t 

(60 ) 

p = an index that allows for the fact that there may be more than 

one classical trajectory that scatters in any direction. 
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For a hard wall surface, for h < .13, the single scattering 

detection function derived in the appendix applies. 

Putting this in equation 60 and noting that there are two 

classical trajectories that scatter at any angle yields: 

=-;1 arc (1 -~1 ((2~:1) nj2) ] I sin [ ka 1 
n (2n+l)'IT 2'ITh 

[ 2;h (1 ~l - C2~~1) nJ 2)] - arc sin ka 
(2n-l) 'IT 

where the argument of the arc sin is assumed to be no greater than 

1 in absolute value. 

A plot of this function for n = 0 and h = .10 

function of ka is shown in fig. 7 for conditions identical to figure 

6. It is monotonically decreasing and does not reproduce the 

bragg-like intensity profile seen in the semiclassical and quantum 

calculations 

Though Bowman [11] claims reasonable agreement with 

Wolken's results [2] it is obvious that none of the quantum 

interference structure is present in the quasiclassical method, 

and it is not at all clear how the simplistic averaging of the 

deflection function over a finite momentum window associated 

with each diffraction channel could approach the accuracy of 

the semiclassical calculations. It certainly does not for 

hard wall scattering. 
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3. Conclusion 

In this paper, various approximate theories for atom-surface 

scattering were compared to the quantum results for scattering 

off a sinusoidal hard wall. When applied to an infinite step 

potential, the CCGM model predicts only specular scattering, 

independent of roughness. This unphysical result occurs because 

the CCGM approximation assumes that the wavefunction can be 

expanded in terms of the eigenfunctions of the average potential. 

In the hard wall case, it is obvious that this assumption is 

incorrect. In addition, CCGM assumes that the principle part 

of the Greens function is negligible. This assumption is 

not valid in the hard wall case where the principle part can be 

infinite. 

In general CCGM can only be applied quantitatively to a 

"weak coupling" system. In surface scattering, it is not 

obvious what constitutes "weak coupling". One should note that 

with h ~ 0+, all of the diffraction peaks will be very small, 

and yet this does not constitute "weak coupling" in the sense 

of the CCGM approxmmation. 

The quasiclassical approximation has the correct qualitative 

rainbow structure but lacks any vestige of quantum interference 

which results from mUltiple scattering within a single unit cell 

and does not predict the correct intensities. 

In contrast to these rather poor approximations, the Kirchoff 

and semiclassical approximations give near quantitative results 

for scattering from a sinusoidal hard wall, except at low k­

vectors. These errors are corrected partially by renormalization. 



The Kirchoff approximation, however, is only usable when the 

potential can be approximated by a hard wall and only classical 

single scattering trajectories contribute to the major 

scattering intensities. The semiclassical approximation is not 

limited to these situations, though difficulties arise here 

30 

also for strong multiple scattering in the classical trajectories. 

Nevertheless the semiclassical approximation seems to be by 

far the most generally applicable approximate formalism of those 

in current use. 
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APPENDIX A 

Calculation of (KF IvHIKG ) 
Z Z 

In the CCGM procedure, it is necessary to calculate matrix 

elements of the Fourier components of the potential. This appendix 

outlines the details of this calculation. 

Starting with the potential defined previously 

·V = 0 z > ha cos (2rrx/a) 

V 
w -ha < < ha 2rrx = -1 z cos --

cos (z/ha) a 

V = w z < -ha 

where eventually w ~ 00. 

One can verify that V , the average potential, is given by o 

= 0 z > ha 

= w z < ha 

The eigenfunctions 

1\2k 2 
can be calculated by inspection, for w >~ 

= 

where 

c k = 
z 

c k = 
z 

ik ·z e z 

~2/CkZ exp~2~ -

L 

ikzhl 1 
e ~2mw k 2 

i"l2 z 

z > ha 

k 2 
+ ikzhaJ (z - hal z 

for k z real 

J;] for 
+ k z 

z < ha 

k ilkzl = z 
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The Fourier components of the potential VH are also easily found 

V 1 Iv ( ) iH· td2 
H = .~ r e r 

L 

surface 

1/2 
iH a (~) f V (~, z) °H d (x/a) x a = e 

y,O 
-1/2 

= woH,O z < -ha 

_. 
0 z > ha 

It is necessary to calculate matrix elements like 

letting j 
H a 

x 
= 27f 

i (G - F*z)ha 1 
2hao H Owe z I = y' d(z/ha) 

j~cGcF -1 

sin[jcos-l(z/haD ei[(z/ha) - l]Q 

cos- l (a/ha) 

[
.2mw _ G2 

iQ = ha 112 z 

letting U = cos-l(z/ha) 

where F* = z 

2Bo hawe-Q 

Hy'O i[G - F*]ha 
------------- e z z 

~CGCF 

the complex conjugate of F z. 

1 z 12 ha 

(AI) 

(A2 ) 



'IT 

= f du 
sin u sin ju with B ju 

0 

one can easily show 

00 

iQ cos u ~ e = ~ bn cos nu 

n=O 

where bn = 2(i)nJn [Q] 

bo = Jo[Q] 

eiQ cos u 

substi tuting into the integr'a1 

00 

with 

a[j,n] sin u sin ju cos nu 
ju 

Direct evaluation gives 
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(A3) 

(A4) 

(AS) 

(A6) 

a[j,n] = ~j Cin[ln - j + 11'IT] + Cin[lj + 1 - nl'IT] - Cin[ln + j - 11'IT] 

j 'I 0 

'IT = -2 (8 I I 1 + 8 ) j = 0 n , n,o 

in the limit w + 00 

Q + 2ihat;; + 0(;) 
since IQI + 00 (from Abramowitz 9.2.1, 17) 

J (Q) = 
n 

2 
'lTQ 



.' 

and since 

e ix -ix + e cos x = 2 

3 
(_i)n e iQ + O(Q-2) 

Combining equations A2-A7 yields 

so that 
3 

(KF I V H I KG ) 0: w
4 

z z 

which approaches 00 for large w. 
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(A7) 

1 

+ 2 L a [j ,n]) + 0 (W4) 
n 

An approximation valid for smaller values of w can be obtained as 

follows: 

Define t; by 

t; :: iQ 

J [Q] = J [-it;] = (-i)nr [t;] n n n 
Notice that as w + 00 

2~·(1 
~~2 '\ 

which is large, real and positive. 

For large t;, Abromowitz (9.7.1) [17] gives 

Combining A2-6 and A8 yields 

) (AS) 



[ 
.~~ _ G~)112+ 

X 1 - -l6mw 

+ .0(3)] + 2 

+ o)J 
Combining terms 

00 

[1 E(j,n) 

n=l 

1: i(G 
u H e z 

y, ° 
_f"CC: 
., g f 

cr(j,O) [1 + 1 -
8ha~2mw 

112 

_ (4n
2 

- 12) + [4n
2 

- 12] [4n~2 
8haJfmw 256mw h a 

1\2 

- Ft)ha 

z -j 1 ra (j , 0 ) + 2 En cr (j ,n)] 
haV!f L 
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(A9) 

+ 

1: i(G 
U H e z 

y,O 

- F*)ha z 

~ 
1 rcr{j,o) + 

~h~2m e~ 2m L 

1 

2 E cr (j ,n) [4n2 -1]] w4" 
n 

Therefore the A matrices
3
are 

1. proportional to w 4" 

1 
4" 2. proportional to w 

3. approach zero 

n2 ~2 

(AlO) 

either (for large w) 

I· approach infinity 

TheCCGM method predicts that there will be only specular scattering 

whenever the A matrix elements are infinte or zero. 



APPENDIX B 

Semiclassical calculations for scattering at normal incidence from 

a sinusoidal hardwall, assuming only one classical scattering event. 

Starting with the surface contour 

x D(x) = ha cos (2TIi) 

One can show that in the classical single scattering limit, 

8 (x*) = 2 tan- l [2TIh sin(2TIx*)] 8 a + I 

For normal incidence (8
1 

= 0) 

'X'= x*. 

Defining a quantum number function by: 
~kxa 

Q, = ~ 

one can show 2TIX 
2kah sin a Q, (x') = 
1 + (2TIh)2sin --a 

the change in phase due to the collision <I>(x), defined as 

<I> (x) = -Jrdt(ZPz + xPx) 

is given by 

HiI)/n = -2;~SC' hka cos (2;X) (1 + ~1 -C~~) 2) 

(Bl) 

(B2 ) 

(B3) 

(B4) 

(BS) 

(B6 ) 

For any Q" there are two trajectories, and therefore two values of 

'X',~th:t :a:::~~r.(e::)at~on(:4 ~ _/:e~(~)2 )] 
xl 2TI ~2nTI 2TIh ~ ka 
'X'2 = a/2 - 'Xl . 

(B7) 

In the primitive semiclassical approximation the intensity, IQ,' of 

the Q,th order diffraction peak is* 

*the factor cos 8Q, comes because the PQ,'s are normalized via\ 

equation 9. 
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where p 'is an index of paths scattering in the direction defined 

by the index ~. .. 
which becomes 

P t ~ P~ 2 Sin2(~ 
with 

~ =. ka (1 _11 _(2rr~)2\ll _(2rr~)2 
PC~ (2nrr) 2 ~ ka~· ka 

{<;'h)2 -(~2(1-t -r~!j) 

To be consistant with our previous work (13), Bessel function 

uniformization will be used. 

Following the prescription of Marcus, et al., ~ will be 

determined by 

~~2 _ ~ 2 ~cos -l( ~ ) = (B8 ) 

one can verify that 

~ = hka(l + cos e ~) (B9) 

p~ becomes 
1 

p~ 
rr 

= Pc~'2 
2 

(~ - 2 '2 2 
Q,) J ~ ( ~ ) co s e ~ (BIO) 

Combining equations B9 and BIO yields the result quoted in the 

main text 

p~ = J~[hka(l + cos e~)]2 (BIO) 
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APPENDIX e 

In Appendix B we assumed that the trajectory only undergoes one 

classical scattering event. In this section, the validity of that 

'- approximation will be examined. 

From the previous section, we know that a particle incid~nt 

on the surface at 

8 = 2 tan- l [2TIh 

a point x* will 

. 2TIx* '] + 8 sJ.n - a I 

scatter at an angle 8. 

z = 

The trajectory of the particle is given by 

D(x*) + nk t cos 8 
m 

x = x* + nk t sin 8 
m 

where k is the incident particles's k vector, m is their mass and 

t is time measured from the impact. 

Defining a function n by 

n(x*,t) = z - D(x) 
1'lkt 

m 

one can observe that if n is positive for all real t > 0, the 

trajectory will only scatter once. 

A convenient way to tell if multiple scattering is important 

in a given range of x* is to examine the function 

Min [n(x*,t)] w = t,x* 

If w is positive, there will not be any classical multiple 
r 

scattering. If w is negative, classical mUltiple scattering 

will occur. 

The necessary range of x* still has to be determined. In 

principle, a semiclassical calculation must include all values of 

x*, both real and complex. Physically, the trajectories 

corrdsponding to real values of x* are the classically allowed 

(el) 

(e2 ) 

(e3) 

(e4) 



trajectories, while the trajectories corresponding to complex 

values of x* are the classically unallowed, or tunneling, 

trajectories. The classically unallowed trajectories only have 

a significant effect on the scattering intensity oustide of the 

classical rainbow angles. Most of the scattering occurs between 

the classical rainbow angles. For the moment, we will restrict 

our attention to those trajectories that scatter between these 

angles. For this purpose, x* can be assumed to be real. w can 

be calculated using a search procedure. 

A plot of w as a function of h at constant 81 can then be 

constructed. At any given 81' the value of h that satisfies w = 0 

can then be calculated. It will be denoted by h*. If h < h*, 

classical mUltiple scattering should be unimportant. At higher 

roughnesses, classical multiple scattering occurs. Table 1 
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gives values of h* as a function of 81' determined via this procedure. 

If we assume that the range of x*/a's that will minimize n for all 8 

is known, then h* can be bounded. One can show 
(l-\sin 811) 

h* = ho cos 81 

where ho = the critical value at h, calculated at normal incidence, 

assuming that the given value of x*/a is correct. 

(C5) 

For normal incidence, x*/a = .2958 so that ho = .130. At grazing 

incidence, x*/a < .2651, and ho = .143. (It is slightly higher in this 

case because x*/a is away from the minimum for normal incidence.) 

Table 1 also gives values of h* calculated for ho = .130 and .143. 

One can see that they bound the numerical calculations. 

This is the basis of equation 52 in the main text. 
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This, of course, has only considered scattering between the 

classical rainbow angles, where x* can be assumed to be real. 

Beyond these angles, complex x* must be included. The definition 

of classical multiple scattering in the classically unallowed region 

is unclear, and so we have not defined any criterion for it. We 

note that if a trajectory scatters at an angle S, so that 

8 < tan-l (1/4h) 

it cannot mUltiply scatter. This is the second criterion in the 

main text. 

(C6 ) 
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APPENDIX D--AN ALTERNATE DERIVATION OF EQUATION 28 

Starting with the Lippmann-Schwinger equation 

00 00 

14J <PI + f dx' f dz' + (Dl) = GO(X,Z;X' ,z')V(x' ,z')14J(x' ,z') 
_00 -00 

and substituting for vl4J from the Schroedinger equation yields 

00 00 

14J = <PI + f dx'f dz' G~'(x,z;x' ,z') (V
2l4J + E14J) (D2 ) 

_00 -00 

The arguments in our previous paper (i.e., that v14J=0 except 

infinitesimally near the surface) show that the only contribution to 

the integral comes at the surface so that the limits on the integral 

can be changed to 

00 D(x)+t:-

14J = <PI + J dx' J + 2 dZ' Go(x,z;x' ,z') (v 14J + E14J) (D3) 

-00 D(x)-t:-

where t:- is a positive infinitesimal. 

The El4J term vanishes since 14J=0 in this region. Applying Greenes' 

2 first theorem to the V 14J term yields 

00 

d 14J = <PI + f 
-00 

D(x)+t:­

~'Z=D(X)+t:-dS+ f ~~IZ=D(X)_t:-dS + fdx'J 
-00 -00 D(x)-t:-

00 00 

The second integral vanishes since p~ is zero everywhere below the an 
surface. The third integral vanishe~ as t:- + 0+ since it is the 

integral of a finite function over 'an infinitesimaL area. Q.E.D. 

"'.i 
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Figure Captions 

Figure 1: The scattering intensity as a function of angle for the 

"exact" calculations with: a) h=O.02, Ka=30; b) h=O.02, 

Ka=40; c) h=O.02, Ka=60; d) h=O.04, Ka=40; e) h=O.10, K~= 20. 

Figure 2: Typical trajectories f~om hard (2a) and soft (2b) 

surface potentials. 

Figure 3: The intensity of the specular beam at normal incidence 

with h=O.02 as a function of k-vector, calculated by the 

"exact" (-), uniform semiclassical (x), and renormalized 

semiclassical (0) methods. 

Figure 4: The first order beam for the same conditions as in Fig. 3. 

Figure 5: The second ord~r beam for the same conditions as in Fig. 3. 

Figure 6: Intensity of the specular beam at normal incidence with 

h=O.lO, calculated by the "exact" (-), renormalized 

uniform semiclassical (x), and uniform semiclassical 

(0 and ¢) methods. Two symbols are used for the uniform 

semiclassical to emphasize the change in scale. 

Figure 7: Quasiclassical calculations for the same conditions 

as in Fig. 6. 
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Figure 2b,. 
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.----_____ LEGAL NOTICE---------....... 

This report was prepared as an account of work sponsored by the 
United States Government. Neither the United States nor the United 
States Energy Research and Development Administration, nor any of 
their employees, nor any of their contractors, subcontractors, or 
their employees, makes any warranty, express or implied, or assumes 
any legal liability or responsibility for the accuracy, completeness 
or usefulness of any information, apparatus, product or process 
disclosed, or represents that its use would not infringe privately 
owned righ ts. 
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