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Abstract

Sevéral approximate prbcedures for the calculation of the
intensities of atoms elastically scattered from solids are compared
with nearly exact quantum calculations from a sinusoidal hardwall
potential. The quasiclassical method reproduces thé qualitative
features of the "rainbow" en&elope of the scattered intensities
present in the e#act results'but it dbes not contain any of the
quantum interference arising from multiple scattering within a
Single unit cell and thus does not reproduce the rich structure in
the intensities of individual diffraction beams. ‘CCGM theory
predicts only specular scattering for the hardwall, independent 6f
roughness. Semiclassical theory at normal'incidence gives the
same énalyticél result as the Kirchoff approximation. This'result
agreés'to within 3% of thé exact calculations for surface roughneés
from 0.02 to 0.1 of a lattiée constant, a, at ka vectors greater
than 22. At lower ka vectors deviations as large as 60% are
observed for the 0.1 roughness while at 0.02 roughness deviations
are still less than 2%? Renormalization of the results from the
0.1 surface reduces its deviations from the exact calculation to
- less thén lo% even at low ka vectors. The'Kirchoff result égreesv
with the semiclassical only at normal incidence and can be used

only for hardwall potentials.



l. Introduction

In recent years, many theories‘have been advanced, which
attempt to explain the results of diffractive atom surface scéttering
experiments [1]. Inban attempt to do the calculations exactly,
Wolken [2] and'Tsuchida‘[3] numerically integrate coupled channelled
equations, a“prqcedure that is, in.principlé,'exact (with an infinite
number of éhannels), but.fequires extensiyé computation. Beeby'[4]
uses a Greens'function technique, which, for a surface of hard
spheres, reduces to a KKR-like procedure. This‘methdd is weakly
cohvergent, and in addition, the scattering boundary conditions uéed
have been questioned tS]. |

Appréximate methods include the Kirchoff (or Eikinol)
'approximation.bf Levi et al. [6] and Berryv[7j, the CCGM methbd-of
Goodman et al. [8],.the semiclassical approximation of Doll [9] and
Masel et al. [10], and the quasiclassical method of Bowman [11].

CCGM [8] is essentially a unitarized first order Born |
method. One starts with a weak coupling formalism, énd uses an
a priori unitarization procédure to extend it to a strong coupling
iiﬁit. The procedure can, in principle, be used for anyvinteractidn
potentiai'and inelastic effects can be includea fairly simply. The
major disadvéntagevis'that its range of vaiidity is largely unknown,
so that the quantitative success of the theory has not been
demonstrated. Still, the procedure has been used extensively, and
man&l(but'not all) of the results obtained are at least

qualitatively reasonable.
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‘The Kirchoff approximation used by Levi [6] and-Berry [7]
is an adaptation of a well-established approximatioﬁ from
acoustics and optics [12]. It is a useful approximation, for
surfaces that are not too rough, with near normal angles-of
incidence. It ofﬁen_gives analytical expressions for the.
,3cattering-distribution. It is, however, limited to su:faces fhat
can be approximéted as a hard wall. This is a severe limitétion
and as will be'discussed latér leads to unphysical surface
morphologies when the surface potential is relétively soft.

The semiclassical approximation used by Doll [9] and Masel
et al. [10] is an extension of the methods'used‘by Miller [14]

‘and Marcus [15] for scattering of atoms and molecules in the gas-
phase. The approximation is useful when the momentum 6f the
incident particles is large and there is not too much classical
multiple'scatterinq. It has not vet_been extensivelv tested for
surface scattering, but it has been shown to be in semi-quantitative
‘agreement with experimental data [10].

The quasiclassical method ié similar to the semiclaséical method,
except that phasé interferences are ignored, and the/intensities a;e
averaged over a range of scatteréd angles assigned to each diffractéd
beam. Bowman [11] claims that this procedure is in excellent
agreement with the coupled channel calculations of Wolken, but such

~agreement is not obvious from the calculations presented.

This paper is én attempt to assess the utility of the

appfoximate methods (CCGM, Kirchoff, semiciassical, and quasi-

classical) for the case of atom surface scattering by comparing

them to the exact solution [13] for scattering at normal incidehde



from a sinusdidal hardeall.at moderate roughnesses. The résﬁlts
show that the CCGM procedure gives qualitatively incorrect results
for this example, while the Kifchoff and semiclassical approximations
are in essential qﬁantitative,agreement with the exact results,
except at low energies. The low energy semiclassical results can be
bfought'into'agreement with the exact results with the use of
an ad hoc renormalization procedure. Comparison of hard and soft
wall calculations shows that the major effect of the hard wall
assumption is to accentuate the surface roughness. Surface
morphologieé deduced from experimental data via thé hard wall
theories would therefore be much smoother than the actuél surface.
It should be'noted here that Doll [9] has shown ﬁhat the semi-
classical calculations‘are in reasonable agreement with the
soft wall calculations of Wolken [2], although extensive
comparison was impractical due to the numerical cbmplexity of
Wolken's procedure. Doll's results along with the results presented
here suggest that the semiclassical theory is useful over a wide
range of interactions while the CCGM and Kirchoff approximations
‘seem to fail in either the hard or soft wall limit.

The quasi-classical approach is devoid of ahy interference
phendmena excep£ that artificially imposed to designate which
of the classical trajectories contribute to each "diffraction
beam". As a result it does produce qualitatively the basic
"rainbow structure" of the exact solution, but fails to yield

any Bragg-maxima in the intensity as a function of energy.
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2. The Exact Solution

In an eariief paper [l1l3], we presented a
rigorous calculation of the scattering pattein from a sinusoidal
hard.wall.' The derivation is baéed on the Lippmann;Schwinger
bequation: S
) = ep(r) # /dr'c_;;<r,r'>v<r'>w(r'> . W
where- ’
Y(r) is the wavefunction
@I(r) is the incident wave -
G;(r,rf) is the outward-going free particle Green's function and
V(r) . is the potential. | |

If the potential is of the form

V=0 z > D(x) | V (2)
V = o z < D(x)
where

z = distance above the surface’

x = distance along the surface

D(x) = the surface contour
then it can be shown

V(r)u(r) = £(x)8(2-D(x)) - (3)
where f(x) is a function of x yet to be determined.
Combining.equations 1 ahd 3 yields

V(x,z) = o (x,2) +/dx' dz' Gl (x,z,x',z")E(x")6[z' - D(x")] (4)
An incident plane wave '

él(r) = eik(sineIx - zcoseI) : _ (5)



and a sinusoidal surface

D(x) = ha cosZ%§ (6)
are assumed. Expanding f(x) in a Fourier series:

£ (x) =Ei(k5in91 + _zzn)x . -

n

and solving for the condition that y(r) = 0 below the surface
~yields, for Z > ha

Y(r) = o (x) + 25,0, (r) o (8)

[

where éz(r) is the eigenfunction corresponding to the % th order
diffraction beam and

o0

S, = 2 c J

g-p (hka cosé ) ' (9)

A= —oo
The coefficients C, are determined by the infiniﬁe matrix equation
cos 8, = n‘Can_Q(hka COSGQ) ‘ _ : (10)
This is a banded matrix end only the Cn that satisfy]n]i N
were considered iﬁ equations 7 and 8. N was increased unfil
numerical convergence was obtained. While this is‘not, in principle,
an exact procedure, by suitable choice of N, the error can be made
arbiﬁrarily small, and so, for comparison pufposes,‘the procedure

can be considered to be exact.

Some of the fesults-ofﬂthe calculations are shown in fig. 1.
At low incident k vectors, the scaftering‘patterns'show a strong
specular peak and only weak diffraction features. At higher
incident k vectors, a rainbow pattern begins to appear. If the
surface roughness, h, is increased, the diffraction features |
and the rainbow pacterns will appear at a lower.energy, and the
rainbow angles:will be further apart. Qualitatively,‘this is
the behavior observed in rare gas scattering from metallic and

alkali halide surfaces [1].



For the‘purposé of comparison, we will focus on-h #>0.02‘
(a felatively smooth surface) and h = 0.10 (a relatiVely rbugh
one); In the flat surface (h = 0) limit, all of the
.approximate methods converge to the cdrrect result (only specular'
scattering), and so a compérison in the néarly flat surface
region is notvinstrdctive. It should also be noted that all of
the comparisons afe for normal incidence, and that intensities
in this paper are defined so that they satisfy the normalization

condition

Z coseI _ '
IILcose =1 | (11)

[ L

where the sum goes over all !, satisfying

ka
L i‘i?

2.1. A reformulation of the exact calculations.

The exact formulation presented.in the last section,
while very useful for numerical calculations, suffers from_the
defect that it reveals very little of the physics of the
scattering process. When f(x) is expanded in a Fourier series
much of the physics is obscured. 1In thié section we will
reformulate the scattering problém so that the physics is more
transparent. The reformulation will be used primariiy for
qualitative comparisons, though it could, in principle, be used

for quantitative calculations also.



The Lippmann—Schwinger equation, equation 1, provides the.
basis for an iterative solution of the scattering problem.
Starting with an initial trial wave function'wo(r), ai
new‘approximation wi(r) can be calculated using

wn(r) = @I(r) +./.dr'G;(r,r')V(r')w(r')n_l | | (12)

where n is the order of the approximation.

If such a proceduré converges, then it will pfoduCe the
exaqt result, but it will only converge through a ﬁery judicious
choice of wo. if any_ﬁn has a non-zero part below the surface,
the integral becomes infinite, and so the procedure will never
converge. ‘Notice though that the true wavé function is zero.
everywhere on and below the surface. Defining a heavy-sided
‘function, q(Z) in the standard manner

2 _
a(z) = [ 8(0)dz - | | (13)

with §, the dirac delta function. For any . function T'(x,2) the

relation
bx,2) = qz-D(x) [¥ix,2) + rx,2)] (14)
will hold exactly provided I'(x,2) = 0 on and above the surface.

Define a function’ﬁ\x,z) by
Plx,z) = v(x,z) + T(x,2) . | (15)

where T (x,z) is a special function chosen so'thatlﬁ\and all
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of its derivatives are continuous in the region z > D(x) - A and
A+ 0+. There are an infinite number of T that satisfy this
condition, one is
T(x,z) = -y(x',z") | . |  (16)
with
x' = p(%,2) - X | o o (17)
z' = g(x,2) + 2D(x) - z
and p(x,z) and g(x,z) are a solution of
0 = p(x,z) dp(x,2z) + Y (x,2) 9g (x,2) + 2dD(x)
3x _ ' 9x X _ ' ax : dx
z=D (x) +A z=D (x)+A
: (18)
o = dlxez) | 9p(x,2) | dY(x,z) 39 (x,2)
odx _ 9z- 02 . az
. z=D(x)+A z=D(x)+A

with the boundary condition:

p(x,D(x)) = g(x,D(X)_) =0

Starting with the Schroedinger equation

2 (.2 2 - |
gl 9 9~ _ (19
X 02

Substituting 12 and 13 into the left hand side yields

2 . >.2 2 —_ - 2 2

gl s 3 85°g 3q 8% , 8g a9 3%0 % o

{w(x,Z)(;—% +——7)+ 2(3:353?4'?;1 ot @ —5 + == + E¥= V§ (20)
z X ax .92 »

The arguments in our previous paper [13] show that Vy is zero
evérywhere.but on the surface. For z = D(x), y(x) is identically
zero, and since all of the derivatives of Y are continuous,

vy =ﬁ_26(z_—n<x)>'[g—§‘-’9- LI ﬁ] . . (21)

m X 0Z
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f(x) in equation”3 becomes

2 . o |

Ix ax
Defining the unit surface normal n and arc length s in

the usual way'

1 3D (x) N | ~
n —(5§) (ax Rx * Bz) o - (23)

35 _4f1 +{30&x)
X X

where u  and u, are unit vectors in the x and z directions.

Combining equations 22 and 23 yields

_ a/‘\ /ﬁ

and since all of the derivatives of y are contlnuous, and

g =0 for z > D(x)

£(x) = (ﬂ A)(%%) (’ﬁ_z_)
z = D(x) + 2m

oR
which gives a phySical interpretation to £(x).

Combining equations 4 and 24

C_ n-1 3s . '
wn(r) = @I(r) +;/ér G (r;r )E(z D(xﬂ 5%———|X=XI Tx (25)
’ z=D(x"')+A
2 ' ‘
- ., A 1t . ' ' - ' ) oS
= @I(r)+§§/éx Go(x,z, x',z2' = D(x")) 5% eyt §§-X=X' (26)
z=D(x"')+A

This result can also be derived from the Hemholtz equation

which canébe written
. “h G ,
¥ (r) ‘meds <G 3 “’an ) (27
fv? -1 | A
where JrGo = Eﬁ'+ E , and indicates an 1ntegral over any contour

in free space, and y (r) is the wave function in free space.



_ N . _
For the contour z = D(x) + A, when A - 0 , ¥ is zero by
continuity and since the surface only generates outward-going

waves this becomes

+ 3
v =6, +[G as &£ , (28)
= “/‘.o afT\]z=D(x)+A

which is essehtially the same as equation 26. A direct‘derivation of
equation 28 from the Lippmann-Schwinger equation is given in Appendix
D. = We note that equation 28 has been used by DeSanto (16), with the
boundary conditidn Y = 0 on the surface to derive a system of

equations equivalent to equations 8-10.

Equation 26 is a prescription for aﬁ.interative calculation
6f the scattered wave: starting.with an initial guess,w0 = @I
the incident wave, and solving iteratively for wl, wz; .o Yields
(assuming,convergence) better and better approximations to the
wave function. A physical interpretation of the procedure may
‘be helpful. 1In going from wo to wl, the wave function was
forced to zero under the surface (via equation 12). The
scattered waves that are produced during this process are
caléuléted via equation 10. In essence then, in going from
wo tO‘er the.wave functién undergoes a single reflection, ahd
so the name "single scattering approximation" for wl seems
appropriate. In going from ¥y to ¥,, etc., the waves
may be‘thought to scatter successively (multiple scattering)
untii convergence. For future referencé, this type of multiple.
scattering will.be labelled "quantum multiple scattering".
it occurs even when the surface is flat, and thus tﬁe flat

surface warrants some further discussion.
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Assuming wo’ the incident wave, is given by
i(k_x-k_z).
e X z

N

o~ %1 = (295
direct application of equation 21 for D(x) = 0 yields,
.w1.= ik x - k z) _ %ei(kxx + kzlz[) ' (30)
v, = ei(kxx - kzz) —%ei(kxx + kz|z]| | (31)
and. in general
v, = ik x = k_2) - - (%)n)ei(kxx + kzlzl) (32)
In the n » « limit, the correct result (13) is obtained.
b= el = ko) ilkx + K, lz]) | (33)

This procedure can be rationalized by viewing the surface as a
series of points sepafated by a differential distance. When
the incident wave hits one of these points; it acts as though’
it were an isolated pole in the potential and emits the
'spherically symmetric outward-going wave. Since the wave is
spherically symmetrical, half of the flux scatters away from
- the surface and half of the flux propagates into the surface.

There are many points on the surface, and so a large
portion of the spherical wave is destroyed through phase
cancellation, i,e., these channels are closed. The only thing that
survives is the part of the spherical wave that satisfies Akx = 0, the

only open channel for a flat surfaceT-

g

1"I‘his follows directly from the diffraction condition. The flat
surface can be considered to be a periodic surface with lattice
: AK

dimension a. The Laue condition»implies that the relation —3% = j/a

j is an integer must be satisfied for all choices
of a. The only way that this condition can be satisfied is for
'jJ = 0, which implies Akx = 0. '
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The wave function is then an inward-going plane wave, and two
Scattefed waves, one of which propagates away from the surface in
the specular direction, and one of which propagates into the surface
. in the iﬂcident difection, partially cancelling the incident wave.
The two scattered waves have the same ihtensity; Therefore in the
single scattering approximation, ) .

V=g, = ei(kxx - kzz) a % q(z)ei(kxx + kzz) + q(-z)ei(kxx + kzz)) (34)
The minus sign comes in because of the reflection.
One can Qerify that this is the same ¥, as in equation 30.

For a hard wall, there cannot be any peneﬁration of
the wave into the surface, and so the wave multiply scatters.
Again it produces a spherical wave with half of the flux going
out of the surface and half of the flux ﬁoving into the surface.
Aftér-phasé cancellation, the resultant wave function is wz.

In the rough surface case, there is an additional form of

"quantum muitiple scattering" which occurs because the spherical
wave hits the surface at a point separate from the incident wave.
This fprm of multiple.scattering is also excluded from wl since wo
has been taken to be the incident wave. It is not excluded from
wz becausé “i' the "incident wave" for double scattering, contains

strong non-specular components. For the purpose of this discussion,

it will not be necessary to distinguish between these two forms of

quantum multiple scattering.

2.2. CCGM calculations

Goodman and his coworkers [8] use a unitarized first order
distorted_wave Born procedure, called CCGM, to interpret atom
surface scattering data. Starting with the Schroedinger equation,

equation 19, the wave function is first expanded in terms of the
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eigenfunctions of the potential averaged in the x and y (in-plane)
directions.  The wave function can then be expfessed as a Born
-series, which is summed by assuming that the principle (i.e., real)
part of the Greens function is negligible, except in the single quantum
-gscattering limit. |
_After many manipulations, the result is a simple matrix
equation which relates the amplitude of the various peaks, bé, to

_the_matrix'elemeﬁts of the Fourier transform of the potential,

¢1G G L Ge' 8
iA>-Db_= -A" (1-6 ) + 4 ZZA D : (35)
a0 G,O. G'#G B of 'G |
with

G

Aa = a dimensionless energy defined in equation 3.13 of ref. 8a

GGI
AaB

where N L2 L/2
Ve ='_5 3y dx V(x,y,z)eiG'
Ly Zuy2

f (éopstant)(aIVG_G.IB)

r

and o anavs‘are various eigenstates of Voo
The intensities of the various peaks, Rps can. be calculated
from ' '
A : F 2 ; :
R, = l“r,o - ZiDF, | | | (36)
"If none of the diffracted peaks are related by a reciprocal

lattice vector [8], then

Resto, = 4|5Fz£|2 I an
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In order to calculate the A matrix elements, it is necessary to
redefine the potential in 2. For algebraic simplicity, the

following potential was assumed.

V=20 _ Z > ha cos(ggﬁ)

vV = _Y" -B < z < ha 005(2%5) o (38)
cos ~(z/B) :

V=W z < -ha

where evéntually'the lihit as w > « will bé taken.

Admittedly this potential is unusual, but it is continuous.
- everywhere but on the boundary, and it does approach the
potential given by equation 2 in the limit that w - «». 1In the
derivation of equations 4 and 5, it was not necessary to know
how the potentiai approachéd infinity, and so they should apply
to the potential given by 38 as well as the potential in 2.
Further it is not at all unreasonable to have poles'in an
otherwise finite potential (e.g., at the positions of the ion
cores). |

The potential averaged in the y and z directions is

v, =0 z > ha v (39)
Vo =W | z < ha

Its eigenvalues  can be found by inspection.

[z ke . /

(Dk =d’a———e z _>_ha

z k

Z
Jomw

. ' 2 : .
2 - k” (z - ha)+ ik_ha
=dc2 exp N ol z z z < ha
k : -

Z

where the constants c are determined by a box normalization -

X,
condition. _
L/2 . _
§,.1 .2 = .1 6,2 dz " (40)
kz’kz J;/Z kz_ kz :



ﬁ2k2
one should verify that for w > >m
J
¢, =1L for kz real
z
- 1kZB 1 _ 1

c e . :
kz 2mw z . lkz
W— - k® + ik
h A z

In order to calculate the A matrix elements, terms of the
(Kp IVHIKG )
z z
must be calculated. 1In Appendix A, it is shown

: £ i[Gz - F;] ha
26H ’ohawe Be

= Y
(Kp lvHIKG ) =

k°F

with

c -nlyfL - 62 (T 2 ; - B2
A A
and
™

B = j.dU Slnjg smn;;U e cos U

which can be evaluated as

. n=0 ‘ :

2 1 (E)

with b_ =
n
b, = I (¢)
and -
'c[j,n].=.[ gy sin U sgg_lU cos nU
0 _

for j # 0, this is
olj,n] = Z%[Cin(|n +3 + 1|m) + Cin(|j + 1 - n|m) -

Cin(|ln - j = 1|n) - Cin(|n + j - llﬂﬂ

16

(41)

form

(42)
(43)
(44)

(45)

(46)

(47)
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One is referred to p. 244 in Abramowitz [17] for a definition -
and numerical table of the Cin function. -

Using Abromowitz [18} 9.7.1, one can easily show that fdr

T large W _
v i(G_, - F*)B
N s z z
e
- . HX, 0

(Kp |VylKg ) ={-
z z

{C

k°F

013,01 + 2 T ot3,n1]w?/* +
' n .

L lorj, 01 + zz :o[j,N] [4n2 - 1]‘-w”1-/4 + o /4 (48)
8‘[_71; ~ o

Yh .
More details are given in Appendix A.

In the limit y - «» , all of the A matrix elements

will approach infinity (or zero, it does not matter-which).
From equation 39, one can show that all of the D matrix elements
approach zero, so that only specular scattering is allowed¥*,

-independent of h. A very unphysical result.

. ' ' '
© This result is more obvious from equation 37, although

strictly speaking equation 37 is not applicable to this case.
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- In retrospect this result is not surprising. With an infinite
hard wall, the‘average’potential, Vo(z) is infiniﬁe-for z < ha.
The eigenfunctions of Vo are therefore zero for z < ha and so
they do not sample the potential, except at z = ha.. At this point
the hard wéll is flat, and so only specular scattéring is predicﬁed.
Of course the real wave function is not zero for z > ha cbsggﬁ,
and so there is also non-specular scattering.

This effect is not limited to the hard wall. Whenever
there are strong yariations of the potential in the x and y
directions, the wave function will also vary fapidly in these
directions. CCGM uses a wave function based on the average potential.

, . which cannot

reproduce these variations. Effectively, CCGM smooths out the
potential, which leads to 'a more specular scattering'pattern;
It is interesting to note, that unless some adjustment factof is
used (e.g., surface steps), the CCGM procedure seems to predict
greater s?ecular scattering than is normally observed. Goodman
[8] suggests that this is because of problems with.the experimental
data. We suggest that it may be that the CCGM basis set is not
appropriate whehever the variations in the potential in the x
and y directions are large. |

This, however, is not the only problem with CCGM in the
_strong interaction limit. 1In tHe derivation of equation 35,
it was necessary fo ignore the principle part of the Greens
function. In the case of a hard wall, the principle part,of the

Greens function is infinite, so it is difficult to see how it

could be ignored. Rabitz [18] has shown that for atom-diatom
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scattering, a unitarized Born procedure, using appropriate

wave functions doeé not give physically meaningful results in

the strong interaction limit. For an interaction of intermediate
strength, it does give qualitatively useful results. Uniﬁarized
.Born, if done'cdrrectly, is slightly better than a simple Born
procedure, but it should not be expected to produce quantitative

results except where the potential is weak.
2.3. The semiclassical approximation

Another approximation that has been successful
is the semiclassical approximation used by Doll et al. [9] and
Masel et al. [10]. It is based on a similar approximation
developed for gas phase scattering by Miiler [14] and Marcus
[15]. To ﬁnderstand the approximation physically, one must
recall the discussion of the multiple scattering process
in section 2.1. When the incident wave hits the.surface,.
scattered waves originate from every point on‘the surface, and
propagate in every direétion. In order to obtain discrete beams,
most of the waves must interfere destructively. When these
interferences are included, only those beams tﬁat satisfy the
diffraction condition are allowed. Each point on the surfaée i
_caﬁ be thought of as generating a series of beams in the
allowed directions. Closer examination however reveals that
due to additional interference, each point on the surface does
‘not radiate equally; some of the beams are stronger than others,
andvsome points on the surface produce a stronglcontributionvto

the scattering profile while other points contribute weakly.
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One cén show that thbse points on the surface that lie'Snva
classical path through phase space connecting the incidentvbeam
- to a diffracted state have the largest effect bn the scattefing )
profile. 1In the semiclassical approximation only those points
that lie on the classical path are»included. One can show
that this will be a good approximation whenever the classical
action of the path is large compared to ¥, which means it will
be best at high energies and with massive particles (in atomic
units). It should be valid for all potentials, but siﬁce it
is a generalization of the WKB approximation it should work
best when the potential is soft. The hard wall, then, is.a
good test of the semiclassical approximation, because if the
approximation is successful here, it should work
on most real potentials.

In the semiclassical approximation the amplitude of a
given beam, Sz is calculated as a sum of amplitudes Sp of

the various classical paths p connecting the incident wave to

a diffracted state*.

Sz-=§sp - o . . ‘(49>

*Note that the normalization condition on the S2 is

Z ISQII'2= 1

|2 <£2



In order to use this equation, one
must first find the classical paths. More precisely, given a

classical particle with a momentum equal to the momentum of

21

the incident wave, one must find the scattered angle as a function

of the initial position. It is convenient to represent this

information in the form of a classical deflection function;

i.e., a plot of the final direction of the particle as a function

of'?, the projection of its initial position onto the
Xy-plane.

For a‘two—dimgnsional system

'k
X=lim x - z =X

Z>o ko
A

where kg and kz are the initial x and z components of the

articles's momentum.
P

The'deflection function can be calculated in a number of
ways. The most exact way is to integrate numerically the
classical trajectories. This, however, does not yield an
analytic expression for the deflection function (and therefore
the scattering profile). An analytic expression for the
scattering profile can be obtained, however, if the incident
particle only undergoes one classical reflection from the
surface during the scattering process. This approximation,

" which we shall use here, is not inherent in the theory

and is only necessary because an analytic expression is desired.

In Appendix C, the validity of the approximation is examined.

(50)
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Generally, it is valid if the scattering angle 6 obeys
|6| < |arc cos (2h)| , (51)

and the surface roughness h satisfies
‘ ' (1 -lsin61|) '

h<h*(6,)=c, (52)

coseI

where c, is a constant between .130 and .143.

We note that the single classical scattering approximation
is a much less severe'approximation than the assUmptidn bf_single
scattering in the gquantum sense, i.e., VY = wl (see equation 30),
and is exact for a flat surface. ‘
In the single classical scattering limit, the scaftered'angle can

be calculated in terms of the x component of the point where

the trajectory'hits the surface x*, as follows

- * . :
B (x*) = 2 tan l[ZWh sin(znz )]+ eI : | (53)
X is related to x* by
N X5 ,
X = x* - —= D(x*) S (54)
: ) , . )
z.

- For normai incidence; equation 54 may easily be invertéd

analytically, and we will restrict our dichssion'to that case.
At normal incidence,

X = x* _ ' . : (55) .
which fixes the deflection function.

Once the deflection function is known, it is a simple
matter to calculate the intensities, following the procedures
outlined in our previous paper [10]. Appendix B shows that the

uniformized ihtensity, Pl’ of the 2th diffraction peak>is given by
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, : 2 2
o =5 |knaf1 wft - ZEY ~ (56)
2 2 k : ‘
a ‘ _
where the intensities are normalized as in equation 11 and Jo is
the #%th order Bessel function.

It should be noted that equation 56 is in qualitative
agreement with our exact calculations. A quantitative comparison
will follow after a discussion of the Kirchoff approximation,
which gives similar results to the semiclassical approximation -

for hard wall scattering.
2.4. The Kirchoff approximation

Levi et al. [6] and Berry [7] use a very standard
approxmiation from acoustics and optics called the "Kirchoff
Approximation". It essentially assumes that the potential is
hardwall-like, and that the semiclassical approximation applies.
In addition, it assumas that (1) there is no classical multiple
scattering (i.e., the deflection function in equation 53 is valid
indépendent of the h and 6I and (2) the condition

X = x* | | | ' (57)
holds at all iacidence angles

When .these apéroximations are made, an analytical expression
for the scattering intensities can easily be derived using the
same methods used to derive equation 56. The result is

2
PQ = Jz[%ha(cos eI_+ cos 62)] | (58)

which is identical to equation 56 at normal incidence. It may be
shown, however, that there is a systematic difference between the

phase of the scattered wave given by rLevi's derivation of the Kirchoff

approximation and that given by the complete semiclassical theory.
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Levi, et al. [6 ] have derived equation 58 in a somewhat
different manner. They start with the Rayleigh equation and then
make a single scattering (in the quantum sense) approkimation, to
get a diagonal matrix. Semiclassical methods ére used to evaluate
the matrix elements to give equaﬁion 58 for the intensities. |
Superficially, one would expect these assumptions to limit'the
Kirchoff approximation to high energies and small values of h, but
We shall see that the final result, equation 58, works very well
(béttervthan the Rayleigh solution). The reason is due to a gfoss
Acancellation of'errors. The Rayleigh equation itself is not the
unique solution of the scattering problem [5] and is, in fact,
divergent when h > .0714 [19]. The éihgle scattering approximation
to the Rayleigh equation is a better result in that it is no
longer divefgent and, in fact, is analytically identical fq the
trﬁe quantum single scattering limit, except for phase. The
- semiclassical methods used to evaluate the matrix elements restores
most of the quantum multiple scattering. The final result,
equation 58, works very well, then, provided: = (1) the single
classical scattering limit applies; (2) shadowing is unimportant;
and (3) the hardwall potential applies.

Bothaésumptions (1) and (2), above, hold‘fairly well
when the conditions in equations.51 and 52 ére satisfied‘fér
all of the prominent beams (with eI replaced by ez,bthe scattering
angle). But assumption (3) is not generally valid. Doll has
aerived ah,analytical expression, which can be used to estimate the
surface roughness, provided the potential can be approximated by a
hard wall [9]. Gbod agreement'is obtained for helium scattering.
from a stiff potential such as that of He/LiF. However, when

this equation is applied to a softer potential such as He/W<1l1l2>,
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the predicted surface roughness is about a factor of 3 too small.
There is a major difference between the two potentials. It is
best séen‘by looking at‘a comparison of the classical trajectofies
fqr He scattering from a hard (stiff) and soft poténtial éhown
schematically in fig. 2. |

In the case of a stiff potential,'the trajectory hits the
repulsive wall and turns around very quickly, so.it only samples a
small portion of the potential. 1In the case of the soft potential,
the trajectory penetrates deeply and samples much of thé unit cell,
which has the effect of averaging the pbtential.over a large pbrtion
"of the unit cell. Of course, the averaged potential is much smoother
than the reél potential+. When” the potential is assumed to be hard
wall-like, this averaging process is ignored. If a hardwall theory
is used to deduce the ampiitude of the surface periodicity from
scattering data from a soft potential, it leads to a prediction of
amplitudes which are too small, and therefore'to an unreai surface
morphology. The Kirchoff approximation assumes a hardwall potential,
and so can predict unphysical surface morphologies. The semiclassical
method is not limited to hardwall potentials.
2.5. Comparison of the quantum results to the semiclassical

and Kirchoff approximations

In figs. 3-5, the semiclassical approximation to the scattering
intensity, of the specular, first and second order diffracted beams,
at normal incidence, with h = 0.02 is compared to the exact quantum

results. The agreement between the two sets of curves is very good.
The average difference between the two curves is less than 2%. This

is certainly within the accuracy of any published scattering experiment.

tThis is one reason why metal surfacés have always appeared
to be much smoother than alkali-halide surfaces.
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Even so, £here are some discernable differences between
the two sets of curves. The most obvious difference is that the
semiclassical curve is shifted slightly with respect to the
quantum curve. While we have no physical explanation of this
shift, it is most easiiy seen when the surface roughness is
small, and is not noticeable when hka > 1.3; Of course, when’
hka is small, fhe stationary phase approximation is |
the poorest and so it is hdt-entirely surprising that.thé
semiclassical approximation is not exact in this region.

One should note that at low energies, the semiclassical
approxmiation daes not satisfy the hormalization condition
equation 11, while the quantum result satisfies it (to within
.0001) everywhere. This is a problem that was noted in our
previous paper [10]. To correct.it, all of the inténsities

in the previous paper were renormalized via an ad hoc procedure

I :
R _ 2 )
Il - cos 0_ (59)
L Zo5 b
ka ~ "°8 Yy
el ==

whefe I? equals the renormalized intensities.
Renormalized curves are also presented in figs. 3-5. At
roughnesses this low,irenormalization makes little differenceA
in the intensity prdfile. It does, however, correct some errors
when k is small. |
Fig. 6 is a plot of the intensity of the specular beam as
a function of the k vector for a much'rougher surface (h = 0.10).

For ka greater than 21, the simple semiclassical theory works

very well, but at k-vectors less than 20, deviations start to
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becomé significant. Fortunately, most of the errors>are
corrected by renormalization, but there still are some residﬁal
errors for ka between 17 and 21. This is a very unusual
region in the figure. Semiclassically, the first Bragg maximum
in the specular peak_occurs at ka = 19.2. The second ofder
diffractionvfeature moves through the rainbow angles at ka = 19.1.
The competition between these two events, we believe, causes

the cusp in the curve. 1In the simple.sémiclassical theory,

the competition between the two events is ignofed éntirely,»

- so the cusp is not reproduced.

"2.6. Quasiclassical calculations

Bowman [li] hés suggested that the intensity of the various
diffraction beams can be obtained by assuming that the incident
beam behaves classically, and calculating the fraction of trajectories
that scatter to within i/2 a diffraction order of each diffraction maxima;

For the hard wall surface, then,

(n+1/2)
EEJ ab
_ P 5

(n-1/2)
I (60)
n a
where
In = the intensity of the nth order beam
bJ(Q) = the impact parameter that leads to scattering at

diffraction order 2
o = ah index that allbws for the fact that there may be more than

one classical trajectory that scatters in any direction.



28

For a hard wall surface, for h < .13, the single scattering
detection function derived in the appendix applies.
Putting this in equation 60 and noting that there are two

classical trajectories that scatter at any angle yields:
1 =—1 arcvs'n | ka L 1 1 - L2ntl)m ?
n T S1 (2n+1) 7™ 27mh ka

2
- : ka 1 _ _ ((2n-1)7
arc sin | —37-7y7 77h (.l ‘/1 ( Xa > )

where the argument of the arc sin is assumed to be no greater than

1 in absolute value.

A plot of this function for n = 0 and h = .10 |
function of ka is shown in fig. 7 for conditions identical to figure
6. It is monotonically decreasing and does not reproduce the
bragg-like intensity profile seen in the semiclassical and quantum
calculations

Thouéh Bowman [11] claims reasonable agreement with
Wolken's results [2] it is obvious that none of the quantumv
interference structure is present in the quasiclassical method,
and it is not at all clear how the simplistic averaging of the
deflection function over a finite momentum window associated
with each diffraction channél could-approach the accuracy of
the semiclassical calculations. It certainly doeé not for

hard wall scattering.
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3. Conclusion

In this paper, various approximate theories for atom-surface
scattering were compared to the quantum results for scattering
off a sinusoidal hard wall. When applied to an infinite step
potential, the CCGM model predicts only specular scattering,
independent of roughness. This unphysical result occurs because
the CCGM approximation assumes that thé wavefunction . can be
expanded in terms of the eigenfunctions of the averaée potential.
In the hard wall case, it is obvious that this assumpﬁion is
incorrect. In addition, CCGM assumes that the principle part
of the Greens function is negligible. This assumption is
not valid in the hard wall case where the principle part can.be
infinite.

In general CCGM can only be applied quantitatively‘to a
"weak coupling" éystem. In surface scattering, it is not
dbvious what constitutes "weak coupling“.' One shodld note that
“with h - 0+, all of the diffraction peaks will be very small,‘
and yet this does not constitute "weak coupling"\in the sense
of the CCGM approximation. |

| The quasiclassical approximation has the correct qualitative

rainbow structure but lacks any vestige of quantum interference

which results from multiple scattering within a single unit celi
and does not predict the correct intensities.

In contrast to these father poor_approximations, the Kiréhoff
and semiclassical approximations give near quantitative results
for scattering from a sinusoidal hard wall, except at low k-

vectors. These errors are corrected partially by renormalization.
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The Kirchoff approxiﬁation, however, is only usable when the
potential can be approximated by a hard wall and only_classical
single scattering trajectories contribute to the major

scattering intensities. The semiclassical approximation is not
limiﬁed to these situations, though difficulties arise here

also for strong multiple scattering in the classical trajectories.'
Nevertheless the semiclassical apprqximation seems to be by

far the most generally applicable approximate formalism of those

in current use.
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APPENDIX A

Calculation of_(KFZ|VH|KGZ)

In the CCGM procedure, it is necessary to calculate matrix
elements of the Fourier components of the potehtial, This appendix
outlines the details of this calculation.

Starting with the potential defined previously

V=0 z > ha cos(2mx/a)

vV = _lW ' -ha < z < ha cos 325
cos ~(z/ha)

V=w z < -ha

where eventually w » o,

.One can verify that Vo’ the average potential, is given by

v. =0 z > ha
o
V.= W z < ha
o —
The eigenfunctions of V_,
- ° £k 2
@k can be calculated by inspection, for w > 5m

ik_-2z

- for k, = ilk,|

Q
w
N
1l
[}
5
R
W
N
+
;
N
=
N
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The Fourier‘components of the potential VH are also easily found

v. = x| vir)etB ta2,
Vu T
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surface
1/2
X ina(g)
= GH - d(x/a) V(;,z) e
Y0 i/ |
= WGH,O o z < -ha
= 0 _ . z > ha
22 co™ta/ma)
_ 2n6H ’Ow sin|—=— cos (z/ha)
= - |z|< ha
H,a cos (z/ha) '
It is necessary to calculate matrix élements like
(Rp |VylKg )
z b
H a
. . X
letting j = -
. 1
_ - %
,2ha6H Owel (GZ FZ>ha
' _ v’ d(z/ha)
(KF IVHIKG ) = .
-2 Z J\}chF -1
sin[jcos—l(z/haﬂ ei[(z_/ha) - 1]0 .
cos_l(a/ha)
2mw G2 2mw _ o2
letting U = cos T (z/ha)
3 2B6H ohawe-Q
’ 3 - *
(KF IVHIKG ) = v e1[Gz Fz]ha ‘.(A2)
Z c.C
G'F

where F7 = the complex conjugate of F,



'rr .
with B = | au s8in u sin ju o1Q cos u.
ju
0

one can easily show

0o -

iQ cos u E :
elQ o= bn cOsS nu

n=0
_ oi\D
where b= 2(i)"J_[Q]
b, = J,l0]

substituting into the integral

oo}

B = z ;bnc[j'n]

=0

with ™

sin u sin ju cos nu
du

O[jln]_= ju

0

Direct evaluation gives

olj,n] = %? Cin[|n - j + lIW]Y+ cin[|j +.

Jj#0
o
"2"(6|

in the limit w » «

. 2mw i
Q » 2ihal—x + O] =
J £ (\/7)

since |Q| » » (from Abramowitz 9.2.1, 17)

<

T (@ = >

cos(Q - Lor - %ﬂ) + 0|o

34

(A3)

(A4)

(A5)

(a6)

1 -n|n] - Cin[ln‘+ j - 1}m]



and since

ix -ix
cos x = & ; =
: 3
_ o1 _.yn 10 2
Jn(Q) = Y3ro (-i)" e™™ + 0(Q %)

Combining equations A2-A7 yields

. § haw
i -F*] ""H._ 0
gl 1= ot CoFEIR B O T —
H Gz : \/cgcf 4nh#7—m¥
4
so that 3
4

(Rp [VylKRg ) = v
V4 Z

which approaches © for large w,

follows:
Define & by
£ = 1iQ
agtel = g [-ig] = (1)1 (E)

Notice that as w > o

' ( 2 2)ﬁ2
[ F°" -G
2mw 1 + zZ . Z + 0(w'2)

£~ qugf ‘_ 8mw

which ié large, real and positive.

For large £, Abromowitz (9.7.1) [l7] gives

35

(A7)

| 1
(013,01 + 2% oli,nD) + omh
T

An approximation valid for smaller values of w can be obtained as

o E 2 _ 2 2 _ 2
I [g] = —2 (_(4n8€l)+(4n 1%) (4n
Vare 21 (8E)

Combining A2-6 and A8 yields

. - . * '
1[GZ Fz]ha

(Kp |VylKg ) =
z z

V<gCt

2 2 \
=37 ... ) (A8)
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2
<Ffz - Gg A -2 1 %2 '
X |1 Témw + O(w 7) 0(3,0) | 1 + —— - — >
' _ ' Pmw ~ 256mwh”a
8ha 22X
. : ‘ﬁZ
-3 "« 2 2 2 2. . 2 2,2
+ Bw 21+ 2 o(j,n) |1 - @n -1 ) + [4n” -1 ][4nz.; 3°1A
n=1 8ha £2mw 256mw h”a
ﬁ2 .
3 ,
+ 0(w?) - | (A9)
' Combining terms
. + .
' - By,0 1 . : I,
(K IVHIKG ) = L - [%(3,0) + 2 o(j,m)|}(w’).
' c c 2m n -
z 2 g f ham{e_ =
: A
. .- * )
GH e1(G F )ha
* Y. 0 U(J o) + 220(] n) [4n -l]]
\/C C "2“‘m 2m
g f Tha 5 eh«
B |
+ o 4 P | (A10)
Therefore the A matrices3are either (for large w)
" 1. proportional to w4
' 1 approach infinity
4

2. proportional to w
3. approach zero

The CCGM method predicts that there will be only’spedular‘scattering

whenever the A matrix elements are infinte or zero. -
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APPENDIX B

Semiclassical calculations for scattering at normal incidence from

.a sinusoidal hardwall, assuming only one classical scattering event.

Starting with the surface contour
D(x) = ha cos(2w§)' | _ (B1)

One can show that in the clas51cal single scatterlng llmlt,

0 (x*) =2 tan [Zﬂh 51n(2TTX Y] + e : (B2)
For normal incidence (GI = Q)
X'= x*,

Defining a quantum number function by:

Akxa
L= 2T .(B3)
one can show Py
2kah sin e . ' .
LX) = = ' (B4)
1 + (2nh)%sin 2IX |
the change in phase due to the collision ¢(x), defined as
¢ (x) = -fdt(zpz + xp.) ' (B5)
is given by .
2
6@ /b = 28 pya cos <.2:f_>s)< (%) ) e

For any %, there are two trajectories, and therefore two values of

X, that satisfy equation B4, they are

, _
a _. =1/ ka) 1 28T —_—
1~ 27 S0 _[(Zn'rr)Z'rrh (1 o/ ka) )] - (B’”‘

/i\ -
N o
X, = a/2 X3

In the primitive semiclassical approximation the intensity, IQ, of

the fth order diffraction peak is*

*the factor cos 62 comes because the Pz's are normalized via\

equation 9.
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{(cos 92)

where p 'is an index of paths scattering in the direction defined
by the index &.
which becomes
A2 L 2T '3
Py = Po 2 sin"\z + 2ﬁ‘)cos %

with

' : 2
2 278 218
P = -t 22 l - -
o (Zmr) ( \[ a)J (ka)
a ' T
J21rh) mL) (l _Vl ‘i kaj)

To be consistant with our previous work (13), Bessel function

[ o

uniformization will be used.
Following the prescription of Marcus, et al., ¢ will be

determined by

2 _ 2 . _ -1\ _ A¢ |
L [ Lcos (C) = 3% , (B8)
one can verify that
z = hka(l + cos 6,) i (39)

P_ becomes
L

1

2

-9 Ji(c)cose (B10)

L
Combining equations B9 and Bl0 yields the result quoted in the

main text

PQ JR[hka(l + cos 62)] . (B10)
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APPENDIX C
In Appendix B we assumed that the trajectory only undergoes one
classical scattering event. In this section, the validity of that
approximation will be examined.
From the previous section, we know that a particle incident
on the surface at a point x* will scatter at an angle 6. |

- * o
6 = 2 tan l[th sin 27X ]+ oy | (C1)

The trajectory of the particle is given by

hk

D(x*) + —5 t cos 6 ‘ o (c2)

N
It

X = x* +‘§E t sin 6
_ m
~where k is the incidehtvparticles's'k vector, m is their mass and
t is time measured from the impact.
Defihihgla function 9 by
g{x*,t) _ 2z - D(x) | (C3)

hkt
m

one can observe that if Q is positive for all real t > 0, the
trajectory will only scatter once.
A convenient way to tell if multiple scattering is important

in a given range of x* is to examine the function

- Min
t,x

. [2(x*,t)] (e
If w is positive,lthere will not be any classical mﬁltiple
scattering. If w is negative, classical multiple scattering
will occur.
The neceséary range.pf x* still has to be'détermined. In
principlé, a semiclassical calculation must include all valueé of

x*, both real and complex. Physically, the trajectories

'corrdsponding to real values of x* are the classically allowed
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trajectories, while the trajectories corresponding to complex
‘vaiues of x* are the classically unallowed, ér tunneling,
trajectories. The classically unallowed trajectories only have
a significant effeét on the scattering intensity oustide of the
classical rainbow angles. Most of the scattering occurs between
the classical rainbow angles. For the moment, we willvrestrict
our attention to those trajectories that scatter betWéen these
angles. For this purpose; x* can be assumed to be real. w can
be calculated using a search procedure.

A plot of w as a function of h at constant eI can then be

constructed. At any given 6 the value of h that satisfies w = 0

II
can then be calculated. It will be denoted by h*. If h < h¥*,

classical multiple scattering should be unimportant. At higher
roughnesses, classical multiple scattering occurs. Table 1

gives values of h* as a function of 6 determined via this procedure.

II
If we assume that the range of x*/a's that will minimize Q for all 6
is known, then h* can be bounded. One can show
: (1- |sin GID . o
h* = h ‘ '
e cos GI

(C5)

where ho = the critical value at h, calculated at,normgl incidéhce,
assuming that the given value of x*/a is correct. \

For normal incidencé, x*/a = .2958 so that ho = .130. At grazigg
incidence, x*/a < .2651, and ho = .143. (It is slightly higher in this
~case because x*/a is away from the minimum for normél-incidencg.) .
Table 1 also gives values of h* calculated for ho =,.130 and .143.

One can see that they bound the numerical calculations.

This is the basis of equation 52 in the main text.
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This, of course,‘has only considered scattering between. the’

classical rainbow angles, where x* can be assumed to be real.

‘Beyond these angles, complex x* must be included. The definition

of classical multiple scattering in the classically unallowed region
is unclear, aﬁd so we have not defined any criterion for it. We
note that if a trajectory scatters at an angle 6, so that

6 < tan l(1/4h) o (C6)
it cannotvmultiply scatter. This is the second criterion in the

main text.
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APPENDIX D--AN ALTERNATE DERIVATION OF EQUATION 28

Starting with the Lippmann-Schwinger equation
o] [~
Y=o, 4+ .I dx' -[ dz' G;(x,z;x',z')V(x',z')w(x',zf) | (D1) B

‘and substituting for VY from the Schroedinger equation'yieids
/ v

P = @I + .I dx" ;f dz' GZ(x,z;x',z')(vzw + Ew) : ' (D2)

The arguments in our previous paper (i.e., that V¥=0 except
infinitesimally near the surface) show that the only contribution to
the integral comes at the surface so that the limits on the integral

can be changed to
— ] ] + [ [] 2 )
b= o, + f dx f dz' G_(x,zix",z') (v7y + EY) (D3)
o D
where A is a positive infinitesimal.

The EY tefm‘vanishes since Y=0 in this region. Applyihg Greenes'

first theorem to the Vzw term yields

oo © o D(x)+A
ay =0+ f -g-!k ds + J%— ds + fdx'f dz' vGwy (D4)
R A 1z=D (x)+A g N |z=D(x)-A e Dx) -4

The second integral vanishes since %% is zero everywhere below the
surface. The third integral vanishes as A -+ ot since it is the

integral of a finite function over an infinitesimal area. Q.E.D.
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Figure Captions

Figure 1:

Figure 2:

Figure 3:

Figure 4:

Figure 5:

Figure 6:

Figure 7:

The scattering intensity as a function of angle for the
"exact" calculations with: a) h=0.02, Ka=30; b) h=0.02,

Ka=40; c) h=0.02, Ka-_-Go; d) h=0,04,vKa=40; e) h=0.10, K;a=.20.

Typical trajectories from hard (2a) and soft (2b)

surface potentials.

The intensity of the specﬁlar beam at normal incidence
with h=0.02 as a function of k-vector, calculated by the
"exact" (—), uniform semiclassical (x), and renormalized

semiclassical (¢) methods.
The first order beam for the same conditions as in Fig. 3.
The second order beam for the same conditions as in Fig. 3.

Intensity of the specular beam at normal incidence with
h=0.10, calculated by the "exact" (—), renormalized

uniform semiclassical (x), and uniform semiclassical

(0 and ¢) methods. Two symbols are used for the uniform

semiclassical to emphasize the change in scale.

‘Quasiclassical calculations for the same conditions

i

as in Fig. 6.
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‘Figure v2b,, L
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LEGAL NOTICE

This report was prepared as an account of work sponsored by the
United States Government. Neither the United States nor the United
States Energy Research and Development Administration, nor any of
their employees, nor any of their contractors, subcontractors, or
their employees, makes any warranty, express or implied, or assumes
any legal liability or responsibility for the accuracy, completeness
or usefulness of any information, apparatus, product or process
disclosed, or represents that its use would not infringe privately
owned rights.
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