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Abstract

This paper extends the kernel method that was proposed previously for dynamic PET 

reconstruction, to incorporate anatomical side information into the PET reconstruction model. In 

contrast to existing methods that incorporate anatomical information using a penalized likelihood 

framework, the proposed method incorporates this information in the simpler maximum likelihood 

(ML) formulation and is amenable to ordered subsets. The new method also does not require any 

segmentation of the anatomical image to obtain edge information. We compare the kernel method 

with the Bowsher method for anatomically-aided PET image reconstruction through a simulated 

data set. Computer simulations demonstrate that the kernel method offers advantages over the 

Bowsher method in region of interest (ROI) quantification. Additionally the kernel method is 

applied to a 3D patient data set. The kernel method results in reduced noise at a matched contrast 

level compared with the conventional ML expectation maximization (EM) algorithm.

1. Introduction

Positron emission tomography (PET) is a primary tool in the detection and characterization 

of cancer, neurological disorders and cardiovascular disease (Peller et al 2012). By imaging 

the coincident annihilation photons from an injected radiotracer, PET allows for the 

acquisition of functional information for a wide range of biochemical and physiological 

processes. However, PET suffers from low spatial resolution due to detector blurring effects, 

positron range and photon non-colinearity. The limited photon count in PET data also 

requires spatial smoothing to reduce noise.

In contrast, anatomic imaging modalities such as computed tomography (CT) and magnetic 

resonance tomography (MRI) offer higher spatial resolution and accurate boundary 

information. As of 2006, more than 95% of PET systems sold were dual modality PET/CT 

systems (Townsend 2006) implying that the overwhelming majority of PET systems 

currently in use are as such. The benefit of PET/CT systems has been primarily through 

attenuation correction for PET and image coregistration; how best to further utilize 

anatomical information within PET reconstruction remains an open question. Moreover, a 

large body of recent work has been devoted to developing PET/MRI systems offering 

simultaneous data acquisition (Judenhofer et al 2008, Judenhofer et al 2007, Schwenzer et al 
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2012, Pichler et al 2010, Catana et al 2008, Catana et al 2012). Simultaneous data 

acquisition offers hardware-based image coregistration, reducing artifacts due to patient 

motion (Catana et al 2011) as well as enabling temporally correlated cross-modal data sets 

(Sander et al 2013).

Methods for incorporating anatomical information into PET image reconstruction have 

existed for some time now, e.g., (Leahy and Yan 1991, Fessler et al 1992, Comtat et al 2002, 

Bowsher et al 1996, Sastry and Carson 1997, Hero et al 1999, Rangarajan et al 2000, Baete 

et al 2004, Bataille et al 2006, Ouyang et al 1994, Lipinski et al 1997, Pramuthu and Hero 

1998, Ardekani et al 1996, Alessio and Kinahan 2006, Dewaraja et al 2010, Tang and 

Rahmim 2009b, Tang and Rahmim 2009a, Cheng-Liao and Qi 2011, Somayajula et al 2011, 

Shidahara et al 2012, Nguyen and Lee 2013, Loeb et al 2015). The fact that MRI and CT are 

able to generate images with high resolution and SNR, two areas where PET images may be 

comparatively lacking, combined with the high correlation between PET tracer distributions 

and anatomically delineated regions, makes the pursuit a natural one. Most of the existing 

methods incorporate anatomical information through the penalized likelihood framework. 

One particularly successful example is the Bowsher method (Bowsher et al 2004) which 

computes the neighborhood of each pixel in an anatomically informed penalty function and 

does not require any segmentation. A recent work (Vunckx et al 2012) compared three 

algorithms for incorporating anatomical side information into PET reconstruction. The 

modified Bowsher method (Bowsher et al 2004, Vunckx et al 2010), was shown to offer 

superior quantitative accuracy when compared to post-smoothed maximum likelihood 

expectation maximization (ML EM) reconstruction, MAP reconstruction with a relative 

difference prior, and MAP reconstruction using an anatomy-specific joint entropy prior. The 

Bowsher method is used for comparison in the work presented here.

Wang and Qi proposed an alternative framework for incorporating side information into PET 

reconstruction based upon kernel methods from machine learning (Wang and Qi 2015). The 

kernel method has the advantage of simplicity in its implementation by using the popular 

ML EM algorithm. The original development of the kernel method was primarily focused on 

dynamic PET reconstruction where side information was obtained from temporal data. Here 

we extend the kernel method to anatomically-aided PET image reconstruction. Rather than 

using temporal features as in dynamic PET reconstruction, we employ patch-based MR 

image features to form the kernel matrix. We evaluated the kernel method using both 

computer simulation data and real patient data acquired on a brain PET/MR scanner.

2. Theory

2.1. Kernel Based Anatomically-Aided Reconstruction

PET data are commonly modeled as independent Poisson random variables with log 

likelihood,

(1)
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where the data vector y has expectation ȳ. The expectation is a function of the image vector 

x through the following affine transform,

(2)

where P ∈ ℝM × N is the system matrix with pij denoting the probability of detecting an 

event originating in voxel j in detector pair i, and r a vector encompassing random and 

scattered events. M and N represent the number of detector bins and voxels, respectively.

Many existing works on anatomically-aided PET image reconstruction have focused on 

incorporating anatomical information through the use of a penalty or prior function that 

encourages smoothness within anatomical regions while allowing sharp transition between 

anatomical regions (Bai et al 2013). Here we present a different approach that encodes 

anatomical information in the image representation by using the kernel trick. The basic idea 

is to represent the PET image x by a linear function of transformed anatomical features in a 

high-dimensional space. This can be accomplished by defining a kernel function on every 

pair of anatomical pixels j and k. The PET image at pixel j can then be written as (Wang and 

Qi 2015)

(3)

where fj and fk are anatomical feature vectors for pixels j and k, respectively. In this work, 

each feature vector consists of pixel intensity values in a patch extracted from the high-

resolution MR image. The vector α is referred to as the coefficient image. There are a 

variety of choices of the kernel function κ. A common choice in many applications is the 

radial Gaussian kernel,

(4)

where the parameter σ controls the edge sensitivity. Figure 1 depicts the kernel feature 

extraction process.

The above kernel representation can be written in a matrix-vector form as

(5)

where the (j, k)th element of the kernel matrix K is equal to κ(fj, fk). The column vectors of 

the kernel matrix K can also be viewed as a set of basis functions for the image 

representation. For computational efficiency, a k-nearest-neighbor (kNN) search is carried 

out for each pixel based on the Euclidean distance between fk and fj. A search neighborhood, 

nb, as well as number of neighbors, k, are specified beforehand. Only those pixels as 
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determined by the kNN search are allowed to contribute, resulting in the following 

definition,

(6)

This ensures that the kernel matrix K is sparse. For the purpose of reconstructing an image, 

we found that a large value of σ yielded more accurate results quantitatively, as determined 

by bias-variance analysis. Consequently, κ(fj, fk) was set to 1 in this study. In order to ensure 

that the kernel transformation preserves counts, K is row normalized.

By substituting (5) into (2), the kernelized forward projection model is obtained

(7)

The optimization problem for image reconstruction then becomes

(8)

and may be solved by the well-known expectation-maximization (EM) algorithm. The 

update equation is

(9)

where the vector multiplication and division are performed element by element. The update 

equation share the same form as that was used in PET image reconstruction with 

supervoxels (Jiao et al 2015) by replacing the kernel matrix with the proper basis functions. 

Once the coefficient image estimate α̂ is obtained, the final image estimate x̂ is given by

(10)

Comparison with inter-iteration nonlocal mean filtering—Equation (10) can be 

viewed as an anatomical based nonlocal mean (NLM) post-filtering operation. Naturally one 

may consider performing the NLM filtering inside the standard ML EM iteration, which 

would result in the following update equation:

(11)
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In comparison, the kernel method in (9) guarantees convergence to an ML solution, but the 

inter-iteration NLM filtering algorithm in (11) does not.

2.2. The Bowsher Method

For comparison, we implemented the Bowsher method, which incorporates anatomical 

information through a prior function. The Bowsher method was found to perform very well 

in a previous study (Vunckx et al 2012). With regard to feature extraction, the modified 

Bowsher method treats the anatomical image in a manner similar to the kernel method. The 

difference lies in how the information is further incorporated into image reconstruction. In 

the Bowsher method, the k-nearest neighbors of pixel j form the set j and a penalty 

function is defined as

(12)

By specifying the penalty function this way, the inter-pixel smoothing is restricted to those 

pixels that are anatomically similar.

The PET image is estimated using the penalized likelihood framework

(13)

where β is the parameter that controls the strength of the regularization. We used De Pierro’s 

algorithm (De Pierro 1995), which guarantees convergence to a global optimum, to find the 

penalized likelihood estimate.

3. Computer Simulations

3.1. Simulation Data

Computer simulation was performed to assess the performance of the proposed kernel 

method. A MRI data set was obtained from the BrainWeb project (Cocosco et al 1997) with 

256×256 voxels in the axial plane and 1-mm isotropic voxel size. A suitable axial slice 

displaying regions of grey and white matter was chosen. The skull and cerebral spinal fluid 

were then removed using a region growing algorithm. To generate a simulated PET image, 

the remaining interior tissue was segmented into grey matter and white matter and resized to 

128×128, with 2-mm pixels. Intensity values of 4 and 1 were assigned, respectively. A 

circular lesion with diameter of 5 pixels and intensity of 8 was then added to the grey matter 

in the PET image. In addition to the original MR image, another anatomical prior image was 

generated by adding a hypointense lesion with 1:2 contrast with regard to the surrounding 

tissue at the same location as that of the PET data. The lesion was smoothed using a 

Gaussian filter to avoid an artificially sharp boundary. Both MR prior images were then 

resized to 384×384 pixels so that each PET pixel corresponded to a 3×3 patch in the MR 

images. The prior image containing the lesion will be referred to as the lesion prior and the 

Hutchcroft et al. Page 5

Phys Med Biol. Author manuscript; available in PMC 2017 September 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



unmodified MR prior as the lesion-less prior. Figure 2 shows the simulated PET image along 

with the two prior images.

For the simulation reconstructions, we modeled a GE Discovery ST PET/CT scanner in two-

dimensional mode (Mawlawi et al 2004). Each detector ring of the scanner consists of 420 

crystals. Each crystal face is 6.3 mm wide. The 2D sinogram contains 249 radial bins and 

210 angular projections. The PET phantom image was forward projected using the system 

matrix to generate the noise-free projection data. A uniform sinogram with value equal to 

20% of the mean of the noise-free sinogram was added to simulate background events 

(randoms and scatters). Finally, a set of 100 noisy realizations was generated by introducing 

poisson noise to the sinogram with the expected total number of events set to 500k.

3.2. Parameter Optimization

Images were reconstructed using the ML EM algorithm and the two anatomically-aided 

methods with a broad parameter range. In both methods, kNN search was performed in a 

local window for each pixel in the PET image. Four search window sizes were studied, with 

a variant number of included neighbors for each. The search window size, along with the 

corresponding number of neighbors, were: 3 × 3 window with 2 to 9 neighbors, 5 × 5 

window with 4 to 24 neighbors, 7 × 7 window with 4 to 48 neighbors, 9 × 9 window with 5 

to 80 neighbors.

3.3. Region of Interest Quantification

3.3.1. Bias-Variance Analysis—The lesion in the grey matter shown in Figure 2(a) was 

chosen as the region of interest (ROI). Standard deviation percentage vs. bias percentage 

curves were generated for each reconstruction. The mean ROI intensity of the ith realization, 

, was first calculated and the mean ROI intensity was averaged over all noisy 

realizations as,

(14)

The bias percentage was calculated by,

(15)

where  is the true ROI mean. The standard deviation percentage was calculated by,

(16)
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For the ML EM and kernel methods, the standard deviation percentage vs. bias percentage 

curves were plotted by varying iteration number from 30 to 300. For the Bowsher method, 

the curves were generated by varying the penalty parameter β and with a fixed iteration 

number of 300.

3.3.2. Lesion Contrast Recovery Coefficient—Lesion quantification was studied 

through the contrast recovery coefficient (CRC). For the ith realization, the CRC was 

calculated by

(17)

where  is the mean intensity of the background and  is the true background 

intensity. The CRC was averaged over realizations and plotted against its standard deviation 

to obtain a CRC vs. SD curve. As in ROI quantification, the ML EM and kernel method 

were controlled by iteration number, while the Bowsher method was regularized by β. For 

the Bowsher method, 300 iterations were used to ensure convergence. The background 

region was chosen in the white matter as shown in Figure 3.

3.4. Image Signal-to-Noise Ratio

In addition to the above methods in ROI quantification, overall image quality was assessed 

by the image signal-to-noise ratio (SNR) defined as,

(18)

where ‖‖ denotes the Euclidean norm and xrecon and xtrue are the reconstructed image and 

ground truth, respectively.

4. Simulation Results

4.1. Lesion Prior

4.1.1. Reconstructed Images—Figure 4 contains reconstructed images for all 

algorithms. For the Bowsher and kernel methods, four different search window sizes were 

investigated. The reconstruction parameters (iteration number for ML EM, iteration number 

and number of neighbors for the kernel method, and number of neighbors and β for the 

Bowsher method) were chosen to maximize the average image SNR. In all cases, β = 1 was 

found to give the best result with regard to SNR. Both anatomically aided methods show 

superior overall image quality and SNR to that of the ML EM algorithm. The Bowsher 

method was shown to yield slightly higher image SNR than the kernel method for a given 

search window size.
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4.1.2. Bias-Variance Analysis—Bias percentage and standard deviation percentage were 

calculated as described in section IV D. Figure 5 shows performance plots for all 

neighborhood sizes. In each case, the number of neighbors were selected to achieve the best 

performance. Both anatomically aided methods give better bias-variance performance than 

the ML EM algorithm. In comparison, the kernel method achieved lower variance at a given 

bias level than the Bowsher method for all neighborhood sizes. The curved, oscillatory shape 

seen in the curves for the kernel method is representative of pixel coupling within the 

reconstruction. By tracking the intensity values of individual pixels through many iterations, 

it was seen that pixels within and just outside of the lesion display dampened oscillations 

that are of a similar frequency but out of phase with one another as the intensity values 

converge to a final value.

4.1.3. Contrast Recovery—Figure 6 displays the CRC vs. standard deviation curves for 

all three methods. As was done for the ROI quantification, the curves displayed for each 

window size correspond to the number of neighbors that yields the best performance for 

each. All methods yield similar performance in terms of CRC value, as expected. Both the 

kernel and Bowsher methods demonstrate improved performance over the ML EM 

algorithm.

4.2. Lesion-less Prior

In this section, anatomically aided images were reconstructed using the lesion-less prior 

image. It is expected that ROI quantification performance may suffer when no information 

on the ROI is included in the prior image. This case presents an interesting and realistic 

challenge. For all but the smallest search window size (3 × 3), this task proves too difficult 

for both the kernel and Bowsher methods. Larger window sizes yield poor performance 

when compared to the ML EM algorithm for both ROI quantification metrics. This result is 

expected as there is no information in the prior image to distinguish the lesion from its 

surrounding tissue and a large search window results in more erroneous coupling between 

pixels outside and inside the lesion. In this case, a smaller neighborhood size decreases the 

rate of such occurrence. In practice, a user would need to tailor the neighborhood size and 

number of chosen neighbors to select the desired level of anatomical influence. If a high 

level of confidence in correspondence between anatomical and functional information exists, 

then a larger neighborhood and number of neighbors will yield better performance. Figure 7 

displays the best quantification performance for each algorithm. For the hot-lesion ROI 

quantification, the kernel method is able to achieve a reduction in noise compared to the EM 

algorithm. In the case of CRC vs. SD, the kernel method shows performance that closely 

mirrors that of the ML EM algorithm, while the Bowsher method shows slightly higher 

noise for CRC values between 0.7 and 0.9. For both methods of quantification, the use of all 

neighbors in the Bowsher method yields the best performance. For this level of inclusivity, 

the method gives no anatomically specific smoothing and is reduced to the standard 

penalized likelihood reconstruction with a quadratic penalty.

Figure 8 shows sampled reconstructed images at a matched bias level of the lesion ROI. The 

reconstructed hot lesions appear similar in all three images. The fact that the grey and white 

matter in the Bowsher reconstruction appears noisier than the EM reconstruction is because 
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noise is more uniform spatially in penalized maximum likelihood reconstruction (Qi and 

Leahy 1999), whereas it is more proportional to the image intensity in EM-based methods 

(Barrett et al 1994). If we were to compare images at a matched bias level of a cold region, a 

Bowsher reconstruction would appear less noisy than a EM reconstruction.

5. Clinical Patient Data

To further validate the kernel method, the algorithm was applied to a clinical patient data set 

acquired on a Siemens BrainPET insert operating inside the Siemens MAGNETOM 3-T 

MRI scanner. The PET insert consists of 32 detector cassettes, each consisting of 6 detector 

blocks. Each individual detector block is composed of a 12×12 array of lutetium 

oxyorthosilicate crystals (2.5×2.5×20 mm). Magnetic field insensitive avalanche 

photodiodes are used for readout purposes. For data processing, raw PET data was rebinned 

into the sinogram space using span 9 compression and a maximum ring difference of 67, 

resulting in a total of 1,399 sinograms. The sinogram dimensions are 192 angular projections 

and 256 radial bins. The tracer used was 18F-FDG.

The clinical patient data was reconstructed using both the kernel method and ML EM, with 

300 iterations for each. Correction factors for randoms, scatters, attenuation and detector 

normalization were estimated using the standard software provided by the manufacturer and 

included in the forward model in both reconstructions (Byars et al 2005, Watson 2000, 

Izquierdo-Garcia et al 2014). Figures 9 and 10 show coronal and axial images, respectively, 

for the two methods at iteration 50.

For quantitative comparison, we used the volume segmentations derived by FreeSurfer to 

define 3D ROI’s. The white matter region in the left hemisphere was eroded to serve as the 

background region. Two regions of clinical interest, the hippocampus and the caudate, were 

used as targets of interest. These regions are displayed in Figure 11. Only one transaxial 

slice is shown for each region, but all the regions were defined in 3D.

The background noise was computed as the standard deviation of the white matter region, 

normalized by its mean activity. Similarly, mean contrast was computed within the target 

regions and normalized by the background mean. Quantification curves were generated by 

plotting these metrics over iteration and are shown in Figure 12. In comparison, the kernel 

method results in a 53% and 26% reduction in noise at a matched contrast level (95% of the 

maximum contrast achieved by ML EM) compared to the ML EM algorithm, in the caudate 

and hippocampus, respectively.

6. Conclusion

We proposed a kernel method to incorporate anatomical information in PET reconstruction. 

The computer simulation study showed that the kernel method can achieve better ROI 

quantification performance when compared to the ML EM algorithm, as well as the 

Bowsher method that utilizes the same anatomical information. The kernel method was also 

applied to real patient data acquired on a brain PET/MR scanner. The results showed that the 

kernel method achieves a significant reduction in noise at matched contrast, when compared 

to the ML EM algorithm.
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While our work considers the case of features present in the PET data yet missing from the 

anatomical prior, other types of signal mismatch will likely exist in certain imaging 

scenarios. As an example, non-concurrent PET/MRI acquisition presents an increased 

likelihood of boundary mismatch between the two datasets. Under these conditions, care 

must be taken to maximize alignment between PET and MRI boundaries before applying an 

anatomically informed reconstruction. This will be addressed in the future work.
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Figure 1. 
Kernel feature extraction. The radial Gaussian kernel function computes the patch-wise 

similarity between two voxels in the anatomical image.
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Figure 2. 
PET image and MR image priors used for computer simulations.
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Figure 3. 
The chosen lesion ROI (yellow) and background regions (red) for the CRC calculation.
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Figure 4. 
Reconstructed images of the simulated data. The number of iterations (EM and kernel 

methods) and the number of neighbors (Bowsher and kernel methods) were selected to yield 

the highest average image SNR. The anatomically-aided reconstructions displayed here used 

the lesion prior.
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Figure 5. 
Bias-variance trade-off curves for each neighborhood size. For both anatomical methods and 

for a given neighborhood size, the number of neighbors yielding the best bias-variance 

performance is shown. The anatomically-aided reconstructions used the lesion prior.
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Figure 6. 
CRC-SD trade-off curves for each neighborhood size. For both anatomical methods and for 

a given neighborhood size, the number of neighbors yielding the best CRC-SD performance 

is shown. The anatomically-aided reconstructions used the lesion prior.
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Figure 7. 
ROI quantification performance given the lesion-less prior. Curves of the best performance 

are shown for each algorithm. (a) Bias-variance plot. (b) CRC-SD plot.
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Figure 8. 
Sample reconstructions at a fixed bias ≃ −8.2% for the lesion ROI quantification. 

Anatomically aided reconstructions were generated using the lesion-less prior.

Hutchcroft et al. Page 20

Phys Med Biol. Author manuscript; available in PMC 2017 September 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 9. 
A coronal slice of the reconstructed patient images. (a) ML EM reconstruction with 50 

iterations. (b) The kernel method with 40 neighbors from a 7 × 7 × 7 search window. (c) MR 

image of the same slice.
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Figure 10. 
A transaxial slice of the reconstructed patient images. (a) ML EM reconstruction with 50 

iterations. (b) The kernel method with 40 neighbors from a 7 × 7 × 7 search window. (c) MR 

image of the same slice.
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Figure 11. 
Target and background regions used for quantification. The region edge, as determined from 

Freesurfer, is overlaid on the MRI image. In the case of the white matter background, the 

region was eroded to increase the separation between the background intensity and the 

uptake in surrounding structures. (a) white-matter background, (b) right caudate, (c) left 

hippocampus. All the regions are in 3D.
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Figure 12. 
Contrast vs. background noise curves for the ROIs in the patient images. (a) right caudate, 

(b) left hippocampus. In the legend, KER3-10 denotes a search window size of 3 × 3 × 3 

with 10 chosen neighbors.
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