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Abstract

Electric multirotor aerial vehicles are an emerging technology with extensive potential appli-

cations across a wide range of fields, but flight time and range limitations currently impose

significant constraints on the use of such vehicles. Improving the vehicle energy performance

is therefore a critical research topic, and one promising strategy is to optimize operational

energy efficiency through model-based motion planning and control. While there has been

extensive research on the topic and important progress has been made, existing works gener-

ally oversimplify or disregard key vehicle subsystem behaviors, and therefore fail to capture

the complete energy dynamics and exploit the full energy saving potential. To address this

gap in the state of the art, a complete system-level vehicle model is developed and applied

to planning and control, aiming at achieving significant energy performance improvements

in this dissertation.

The model captures all relevant subsystem dynamics related to the vehicle energy per-

formance, including propeller aerodynamics, motor assembly electro-mechanical dynamics,

battery electrical dynamics, and airframe rigid-body dynamics. Through experimental val-

idation, the model demonstrates a high degree of fidelity over a wide range of operating

conditions. The model is then used to demonstrate the importance and necessity of incorpo-

rating individual dynamics into model-based planning and control, highlighting the impact of

battery dynamics on the propulsion limits, the influence of propeller (inflow) aerodynamics

on the energy performance, and the breakdown of vehicle energy efficiency to each subsys-

tem dynamics. An energy-optimal trajectory generation and feedback control framework is

then developed based on this model, and is shown to reduce energy usage significantly rela-
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tive to a baseline controller in both simulations and experimental validation over a range of

waypoint-to-waypoint flight operations. Polynomial approximations of the optimized trajec-

tories are then developed to enable rapid and computationally efficient trajectory generation.

Relative to the true energy-optimal trajectories, these approximations significantly reduce

computational complexity with only a slight increase in energy consumption. Finally, the

framework is extended to mission planning, in which the minimum-energy order for travers-

ing a series of waypoints in 3D space is identified. Of particular interest is to compare with

the minimum-distance order, which is often assumed to be energy optimal according to con-

ventional wisdom and frequently adopted in practice. Over a large number of missions with

randomized waypoint locations, it is found that the minimum energy order differs from the

minimum-distance order in a majority of the cases, and the difference in energy consumption

between the two orders can be substantial among missions of varying ranges and number of

waypoints.
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6.6 Group 2 tX , Ẋ, and Θ Segment End Values, Including Fitted Equations (Red)

and Actual Values from Reference Optimized Trajectories . . . . . . . . . . . 92

6.7 Simulation Results for a Sample Operation (Xf = 60m, Zf = 20m), Including

Optimized State Trajectories (”Optimal Trajectory”) and Feedback Control

Results Using Optimized Trajectories (”Feedback (Optimal)”), Polynomial

Trajectories (”Feedback (Polynomial)”), and Baseline Controller (”Feedback

(Baseline)”); Subplots: (a) Forward Position, (b) Vertical Position, (c) Pitch

Angle, (d) Forward Velocity, (e) Vertical Velocity, (f) Energy Consumption . 94

7.1 Waypoints for a Sample Mission with NW = 8 . . . . . . . . . . . . . . . . . 101

7.2 Reference Table for Optimal Energy Costs between Waypoints over a Range

of Horizontal and Vertical Displacements . . . . . . . . . . . . . . . . . . . . 102

xi



7.3 Histograms of Ratio of Energy Cost of Baseline Orders (Min-XM , ZM , and

DM) over Min-Energy Order for 5000 Randomized Missions, with Varying

Number of Waypoints and Ranges . . . . . . . . . . . . . . . . . . . . . . . . 105

7.4 Minimum-Energy (Solid) and Minimum-Distance (Dashed) Orders for 8-Waypoint

Sample Mission, Including Multiple Viewing Angles. . . . . . . . . . . . . . . 107

7.5 Minimum-Energy (Solid) and Minimum-Distance (Dashed) Orders of 3-Waypoint

Sample Mission, Including Multiple Viewing Angles. . . . . . . . . . . . . . . 110

9.1 Identified (a) R1, (b) C1, (c) R2, (d C2, (e) R3, and (f) C3, versus SOC . . . 132

9.2 Thrust Prediction Error versus Perpendicular Velocity, Planar Velocity, and

Pitch Angle, with Model-Predicted Thrust Calculated under No Inflow, Full

Inflow, and Partial Inflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
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Chapter 1

Introduction

1.1 Introduction

Multirotor aerial vehicles with electric-Vertical-Take-Off-and-Landing (eVTOL) capability

are a technology with significant potential for a wide range of applications, with main ad-

vantages including superior maneuverability [1] and zero emission potential as an electrified

transportation mode [2] compared with the conventional aircraft. Nowadays unmanned

aerial vehicles (UAV)/drones are already seeing increasing military applications including

Intelligence, Surveillance, and Reconnaissance (ISR) missions, and civilian use cases such as

aerial photographing, wireless communication, and monitoring of environmental conditions

[3, 4, 5]. Furthermore, they have also been envisioned as a critical part of the future logis-

tic and transportation networks to supplement the traditional ground transportation mode

[6, 7]. For example, decimeter-scale drones are under development for package delivery over

air [8, 9], and larger eVTOL aircraft are being considered to enable “flying cars” for urban

air mobility (UAM) [10, 11].

Despite the potential of revolutionizing the transportation and logistics networks, the

UAV and UAM technologies also face critical obstacles, including a significant one in energy
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performance. Currently, small scale multirotor drones are subject to major constraints on

flight time (up to approximately 30 minutes for many typical models [12]) and limited payload

[4]. For prospective UAM, the estimated flight time needs to be up to 1 hour with range over

70 miles. Such performance specification requires the energy system to have an energy density

of 350-400Wh/kg (based on the current multirotor system efficiency), while that of the

lithium ion battery technology, which is currently the predominant choice for electrical energy

systems, is only around 150Wh/kg at the system level [11]. Meanwhile, high power is also

required during the vertical take-off and landing periods [11]. These challenges necessitate

the research on promoting the energy performance of multirotors, which can be achieved by

either improving the energy source, e.g. inventing new high-energy-density battery materials,

or enhancing the energy efficiency, e.g. through architecture design and optimization [13, 14],

or motion planning and control [15, 16, 17]. While improvements in battery technology and

vehicle design are expected to mitigate these challenges (with some projections estimating

that batteries with sufficient energy densities may be available in the next decade [18]),

there is a significant need to minimize energy consumption and improve energy performance

through model-based planning, optimization, and control of flight operations and missions.

1.1.1 State of Art: Model-Based Multirotor Trajectory/Mission

Planning and Control

Operational planning and control are widely studied topics in UAV literature [16, 19, 20].

Existing works include both model-free and model-based approaches. The former explores

energy performance optimization without a physical model to maximize flight time and

distance. For example, some works, such as [21, 22, 23], use extreme-seeking to find the
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energy-optimal vehicle velocity and attitude based on real-time measurement of energy con-

sumption in experimental flight. While such approaches are effective for optimizing specific

flight conditions, e.g. the steady-state level flight with varying payload considered in the

aforementioned works, they are not easy to extend to generic operating conditions, such as

dynamic flights involving trajectories and waypoints. Therefore, in this work and the subse-

quent literature review, we focus on the model-based approaches, as a detailed physics-based

understanding of system-level energy performance could enable parametric study of perfor-

mance and design, and more importantly all levels of operation optimization from motion

control, trajectory generation, to mission planning. Many relevant works address the model-

ing, testing, and design optimization of vehicle subsystems and components individually or

as a group. For example, in [24], a UAV ESC is experimentally modeled and tested, and in

[25], a similar approach is used to model and test the efficiency of the combined ESC, motor,

and propeller powertrain. ESC efficiency is mapped experimentally in [26] by measuring the

phase outputs over a range of input voltages and PWM settings. In [13], existing motor,

battery, and propeller designs are examined to evaluate the impact of their parameters on

key vehicle performance metrics, such as the vehicle’s maximum loiter time. The impact of

horizontal wind speed on thrust generation for an octorotor UAV is investigated in [27] using

both wind tunnel testing and computational fluid dynamics, and demonstrating increased

propeller thrust at low wind speeds.

1.1.1.1 Model-Based Operational Planning and Control

Building on modeling of vehicle and subsystem dynamics, many works optimize multirotor

motion to enhance energy efficiency through model-based approaches which exploit some of
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the underlying system dynamics [16, 28, 29]. In particular, some papers focused on planning

and control considering propeller aerodynamics, which govern the thrust and torque gener-

ation for propulsion. For example, the power consumption of a UAV was modeled based

on the propeller blade element momentum (BEM) theory in [30], which was then combined

with optimization algorithms to generate energy-optimal two-dimensional flight trajectories

to reach a destination in [31]. The same model was also used in [28] for optimizing flight

plans to avoid obstacles and minimize energy consumption in a simulated two-dimensional

wind field. Another model, which takes into account the inflow momentum theory and

rigid body dynamics of the UAV airframe, was described in [19] and used to evaluate and

compare the energy performance of a UAV in level forward flight operations under various

existing control approaches, including minimum acceleration, minimum jerk, and minimum

snap control. In [32], a vehicle model including dynamic propeller inflow was used to cal-

culate minimum-time and minimum-energy trajectories for a proposed air-taxi design as it

transitions between hover and cruise conditions, while also taking into account pitch an-

gle and acoustic constraints necessary for practical UAM applications. Some other works

investigated the dynamics of the motor and motor controller and exploited them for energy-

efficient planning and control. In [16], a model was formulated to calculate the vehicle power

consumption based on the motor and airframe rigid body dynamics, and was then applied

to generate trajectories for quadrotor hover-to-hover flight operation, minimizing either the

energy consumption under a fix time budget, or flight time under a fix energy budget. This

model has also been used to optimize energy consumption with either free or fixed end time in

[33], and calculate the minimum-energy trajectory for a hexarotor operation in [34]. Another

quadrotor model which similarly considers motor and airframe dynamics was introduced and
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used to generate energy-optimal trajectories in [35]. This approach was further expanded

to incorporate wind effect and predict the change in battery voltage in [36] and [37]. In a

similar work [3], rigid-body and motor dynamics were considered for trajectory optimization

of a drone used for wireless communication, where communication performance was also

included in optimization. There have also been efforts on accommodating the dynamics of

the power source. For example, a UAV altitude controller has been designed in [38], which

takes into account the battery state of charge (SOC). Additionally, energy-optimal paths for

waypoint-to-waypoint operations were studied in [39, 40] considering vehicle rigid body and

motor dynamics, and battery state-of-health.

1.1.1.2 Energy-Efficient Mission Planning

On top of trajectory and motion control, planning of complete vehicle missions (i.e., the

optimal order of visiting waypoints in a mission) has also been considered as an opportunity

for further improving energy performance [41, 42]. Existing research on this topic dates

back to the classic Traveling Salesman Problem (TSP), which aims at minimizing the total

distance of covering a series of waypoints [43, 44]. Many works have explored the problem of

minimizing distance in UAV missions, often with the intuitive assumption that the energy

cost is simply proportional to the distance. For example, in [42, 45, 41], the waypoint

coverage plan is optimized for a single UAV with the goal of finding the shortest path. In

[46, 47, 48], similar works are performed for multiple UAVs or UAV swarms. In addition, [49]

and others study the optimal route planning for the joint operation of a UAV and a ground

vehicle for environment coverage. Other works take energy dynamics into consideration, but

typically predict energy consumption in a given operating condition based on empirical data
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rather than physics-based system-level modeling. For example, a black-box approach based

on empirical measurements of energy use in specific operating conditions is used in [50] to

predict mission energy cost. In [51], minimum-time paths are calculated for a UAV to visit

a set of waypoints. The vehicle in this work takes off from and returns to a moving ground

vehicle for multiple flights, with flight duration limited by energy consumption dynamics

predicted as a function of vehicle velocity. Quadrotor mission trajectories are planned in [52]

using heuristic-based acceleration objectives to reduce flight time as well as a defined effort

metric, which is based on thrust but does not directly capture vehicle energy dynamics. In

[15, 53], energy-efficient paths are planned for a UAV to cover a defined area, with power

consumption predicted based on experimental measurements. Power is specifically modeled

as a function of speed in cruise, acceleration, and deceleration, with the constraint that

acceleration and deceleration rates are maximized. The energy modeling and path planning

approach used in these papers is further applied to irregularly-shaped areas in [54], and to

spiraling trajectories in [55].

1.1.2 Gaps in Current Research

While existing works have made important contributions towards improving the multirotor

energy performance, a major deficiency is that they only consider part of the governing

multi-physical dynamics of the full vehicle. The complete dynamics include the subsys-

tem dynamics of all related components, i.e. the aerodynamics of the propeller assembly,

electro-mechanical dynamics of the motor and the electronic speed controller (ESC), electri-

cal dynamics of the battery, and rigid body dynamics of the airframe, and more importantly,
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their mutual impact and coupling effect on energy performance. Negligence or oversimplifi-

cation of the complete dynamics would cause incorrect projection of system behavior, and

lead to motion planning and control that is non-optimal in performance or even unachiev-

able/unsafe, as to be discussed in detail in Chapter 4 of this dissertation. For example,

we will show that when propeller aerodynamics are neglected, the energy-optimal velocity

for steady forward flight, which is the target to control in various UAV research literature

[22, 15, 23], will be significantly overestimated. Specifically, the optimum of the energy cost

per meter travelled, which is a key energy efficiency index determined by four tradeoff factors

involving multiple subsystem dynamics, is off by 67.8% when the propeller aerodynamics are

not considered. Meanwhile, battery dynamics can significantly affect the vehicle propulsion

performance [56, 57]. Specifically, the propeller thrust and torque production will decrease

when the battery voltage drops due to energy depletion, and the amount can be as much

as 26% over the battery operation range [58, 59] (to be discussed in details in Chapter 4).

This reduction in the available thrust can reduce the vehicle operation limits (e.g., maximum

velocity and acceleration), potentially making it unsafe to perform the planned maneuvers

if the impact of battery dynamics is not considered in planning and control beforehand [60].

These facts demonstrate the critical need for multirotor planning and control research based

on integrated full system dynamics. It is also noted that individual subsystem dynamics do

not affect the vehicle performance independently, but rather through the coupling with each

other. For example, the propeller inflow aerodynamics are coupled with the airframe rigid

body dynamics as vehicle motion will result in relative velocity that affects inflow, while the

impact of battery voltage on propulsion could only be captured through the dynamics of the

motor and motor controller [59].
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On the other hand, at the mission level, an open question remains to be answered - is it

really true that minimum distance always means minimum energy consumption? Especially,

what if the waypoints are in the more complicated 3D environment, which involves both

horizontal and vertical motion? In reality, energy consumption is more complicated than

just distance, as UAV motion could have major impacts on the aerodynamic efficiency of

the propeller due to change in inflow [59, 61]. Therefore, different combinations of motion

to cover the same set of waypoints could result in different energy consumption. There

have been some works in literature aiming at minimizing the energy consumption instead of

just the distance for path and/or mission planning [62, 16, 39]. However, they are subject

to major oversimplications of the critical UAV energy dynamics, including assuming power

consumption among hovering, horizontal, and vertical flights as equal, or a constant propeller

thrust/torque and angular velocity relationship (hence neglecting the impact of motion on

propeller efficiency).

1.1.3 Research Objectives

To address the gaps in the state of the art, this research work first proposes a complete

system-level multirotor dynamic model, which is then applied to the development of a frame-

work for energy-optimal trajectory generation, feedback control, and mission-planning. This

work is the first to consider fully-integrated subsystem dynamics for multirotor motion plan-

ning and control, with results validated by simulation and experimental testing and inter-

preted by correlating to the underlying multi-physical dynamics.

The overall model captures the propeller aerodynamics, motor and electronic speed con-
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troller (ESC) electro-mechanical dynamics, battery electrical dynamics, and vehicle frame

rigid-body dynamics, with each subsystem parameterized using experimental data. Incorpo-

rating each of these subsystem dynamics, as well as their coupling, allows for comprehensive

modeling of the complete energy performance of the vehicle. The model is used to enable

detailed analysis of key system characteristics governing the energy performance, including

(1) the relationship between propeller angular velocity and efficiency, (2) the relationship

between vehicle cruising velocity and energy cost per meter, and (3) the effect of wind on

vehicle energy efficiency in forward flight among others.

The model is then used for energy-optimal trajectory generation over a range of waypoint-

to-waypoint flight operations, and a feedback control architecture is developed for real-

time trajectory following. The developed planning and control framework is first tested

in simulation, showing significant improvement in energy consumption over the baseline

controllers commonly used for UAV control. Leveraging the model-based energy dynamics

analysis, numerous features of the trajectory and maneuver are identified, which explain

the substantial reduction in energy consumption achieved by the model-based optimization.

Experimental validation of the developed framework is also performed using an octorotor

platform under real-world operating conditions, showing similar significant energy saving over

the baseline observed in simulation. Nevertheless, trajectory optimization based on the full

physical model is computationally intensive and not tractable for online mission planning and

flight control, which may require fast trajectory generation and re-generation. To facilitate

the computation, polynomial approximations of energy-optimal trajectories were further

investigated [59, 61]. The approximations are fitted and calibrated based on the optimized

trajectories, and capture key energy-saving features. The simple polynomial representations
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would enable efficient trajectory generation in real time with great flexibility and minimal

loss of energy performance.

Finally, the optimization of UAV energy performance is extended to the mission level,

with the goal of finding the optimal ordering of multiple waypoints in 3D space yielding

the minimum total energy consumption. The waypoint-based mission planning problem is

first formulated, where the (optimal) energy consumption between any two waypoints can

be computed using the previous modeling and trajectory generation works. Optimization is

then performed over a large number of missions with randomized waypoint locations. The

energy consumption of the minimum-energy order is evaluated and compared with that of the

minimum-distance order. Detailed analysis of two sample missions are performed to identify

and explain the features of the minimum-energy order by correlating to the underlying energy

dynamics, giving valuable insights on the heuristics of energy-optimal mission planning.

1.1.4 Dissertation Organization

The remainder of this dissertation is organized as follows. The system-level vehicle model

is described in Chapter 2, which includes the modeling of each subsystem as well as their

integration into the complete vehicle model. In Chapter 3, a method for parameterizing

the model based on laboratory test bench experiments is formulated, and the parameterized

model is validated in real-world flight testing. In Chapter 4, key flight behaviors and features

which impact the energy performance are analyzed and discussed based on the model and

test results. The model is then applied to the development of an energy-optimal trajec-

tory generation and feedback control framework in Chapter 5, with simulation testing and
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experimental validation of the energy performance compared to a baseline. To reduce the

computational complexity of the framework, a set of polynomial approximations are designed

in Chapter 6, which capture the features of the energy-optimal trajectories while allowing

fast and efficient trajectory generation. Based on these foundational works, the waypoint-

based mission planning is studied in Chapter 7. Finally, Chapter 8 gives a summary of this

work, followed by references and an appendix (Chapter 9) containing supplemental equations

and results.

For reference purpose, the modeling, parameterization, and validation parts of the works

in Chapters 2-4 have been published in [58, 59]; the energy-optimal trajectory generation and

control works in Chapter 5 have been published in [60, 63, 61]; the polynomial approximation

of the energy-optimal trajectory generation in Chapter 6 has been published in [63]; and the

mission planning part in Chapter 7 has been submitted and is now under review.
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Chapter 2

Modeling of Integrated Multirotor

System Dynamics

A system-level model is first developed in this work to properly capture the complete physical

dynamics of the multirotor UAV. This model considers the dynamics of all critical subsys-

tems, including the aerodynamics of the propeller [64], the electro-mechanical dynamics of

the motor and the Electronic Speed Controller (ESC) [13, 65], electrical dynamics of the

battery [66, 67], and the rigid body dynamics of the vehicle airframe [68]. This chapter first

presents each of these subsystem models, and then describes their integration into the full

vehicle model.

2.1 Modeling of Subsystem Dynamics

2.1.1 Propeller Aerodynamics

A model of the propeller aerodynamics is needed to calculate the forces generated for propul-

sion. Using the blade element momentum theory [64], this model can be established in two

parts. First, to calculate the thrust T and torque Q generated by the propeller, the blade

element theory is adopted using inputs including the propeller angular velocity ω, horizontal
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and vertical velocities vx and vz (with respect to the multirotor body frame), and induced

air velocity vi. Meanwhile, the momentum theory is used to capture the propeller inflow dy-

namics and calculate the induced air velocity based on the (looped-back) thrust and aircraft

velocities.

Fig. 2.1, shows a cross section of the propeller and defines the velocities, forces, and

angles involved in the model. Specifically, the cross section is inclined at a twist angle θ

relative to the propeller disk plane, which is equivalent to the element pitch angle of the

blade section per design. Air flows onto the propeller section at an inflow velocity u with

components ux in the disk plane direction and uz perpendicular to it, which define the inflow

angle ϕ. This inflow generates a lift force perpendicular to the inflow and a drag force parallel

to it, and these forces produce the thrust and torque perpendicular and parallel to the plane

of rotation. Based on the blade element theory, for an infinitesimal segment of the propeller

blade at a distance r from the motor hub (perpendicular to the cross-section plane shown in

Fig. 2.1), the lift and drag forces are

dL = 0.5ρu2ccldr

dD = 0.5ρu2ccddr

dT = N(dL cosϕ− dD sinϕ)

dQ = Nr(dL sinϕ+ dD cosϕ).

(2.1)

where ρ is the air density, c is the chord length, and cl and cd are the lift and drag coefficients

[64]. While cd is often treated as a constant over the typical range of operation, cl is usually

modeled as proportional to the aerodynamic angle of attack α, which is the angle between
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Figure 2.1: Geometries of a Blade Cross-section

the blade section zero-lift line and the inflow as shown in Fig. 2.1,

cl(r) = aα(r) = a(θ(r)− ϕ(r)), (2.2)

where a is the linear coefficient. Here, the measured chord line is treated as matching the

zero-lift line. Since both the twist angle θ and inflow angle ϕ vary with r, α and cl are

denoted as functions of r. The inflow angle and velocity can be computed from the planar

and perpendicular inflow components as

upl(r, ψ) = ωr + vxsin(ψ)

upr(r) = vi + vz

u(r, ψ) =
√
upl2 + upr2

ϕ(r, ψ) = tan−1(upr/upl).

(2.3)

Here, ω represents the angular velocity of the propeller, vx and vz are the planar and per-

pendicular airspeed components relative to the vehicle (including wind and aircraft motion),

vi is the induced velocity of the propeller disk (which will be determined by the momentum

theory subsequently), and ψ represents the angular position of the blade along its rotating

direction. The thrust and torque can be obtained based on dL and dD and the geometry

shown in Fig. 2.1 as

dT (r, ψ) = N(dL cosϕ− dD sinϕ)

dQ(r, ψ) = Nr(dL sinϕ+ dD cosϕ)

(2.4)
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where N is the number of blades in the propeller. The total thrust and torque of the blade

are then computed as the integral of dT and dQ over r from the base of the blade R0 and

averaged over one rotation cycle,

T =

∫ .97R

R0

∫ 2π

0

0.5Nρcu(aαupl−cdupr)dψdr/(2π)

Q =

∫ R

R0

∫ 2π

0

0.5Nρcur(aαupr+cdupl)dψdr/(2π).

(2.5)

It is noted that the element thrust is only integrated to 97% of the blade tip R to approximate

the tip loss [64].

Since upl is typically much larger than upr, the small angle approximation

u ≈ upl

sinϕ ≈ ϕ

cosϕ ≈ 1

ϕ = tan−1(upr/upl) ≈ upr/upl

dD sinϕ≪dL cosϕ

(2.6)

is often introduced to simplify the computation. Consequently, the drag component of dT in

Eqn. 2.4 is also typically disregarded, as drag is generally significantly smaller than lift, and,

at small ϕ, is nearly perpendicular to the direction of thrust. With these approximations,

Eqn. 2.5 simplifies to

T =

∫ .97R

R0

∫ 2π

0

0.5Nρupl
2ca(θ − upr/upl)dψdr/2π

Q =

∫ R

R0

∫ 2π

0

0.5Nrρupl
2c(ϕa(θ − upr/upl) + cd)dψdr/2π.

(2.7)

For calculating upr in Eqn. 2.3, the induced air velocity vi needs to be obtained from the

momentum theory. As shown in Fig. 2.2, air flows into the propeller air stream at point 1
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Figure 2.2: Schematic of a Propeller Flow Stream for Momentum Theory

with a relative velocity v equal to the total aircraft airspeed

v =
√
vx2 + vz2. (2.8)

Note that this figure represents a propeller moving both parallel with (vx) and perpendicular

to (vz) its plane of rotation, but is also valid for axial (vx = 0), edgewise (vz = 0), and

hovering (vx = vz = 0) flight conditions. The air flow is then accelerated along the direction

perpendicular to the propeller disk plane, giving an induced velocity vo at the stream outlet

(point 3) and vi at the disk (point 2), which are both assumed to be uniform over the

appropriate cross sections. By combining the conservation of momentum and kinetic energy,

vo is found to be twice vi. Next, the relationship between the air mass flow rate ṁ at the

propeller, thrust T , and induced velocities can be established based on the conservation of

momentum as

ṁ = ρπR2

√
vx2 + (vz + vi)

2

T = ṁvo = 2ṁvi = 2ρπR2vi

√
vx2 + (vz + vi)

2.

(2.9)

Rearranging Eqn. 2.9 gives

vi
4 + 2vzvi

3 + v2vi
2 = (T/2ρπR2)2, (2.10)

which can then be solved to obtain vi [64].
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It should also be noted that when integrating the propeller aerodynamics to the vehicle

system model, it was found based on vehicle testing data that the effect of propeller inflow

modeled in this section, based on a single propeller, would be slightly overestimated. This

discrepancy is likely due to the inflow interference between propellers, as well as the obstruc-

tion of air flow by the vehicle airframe. It was determined that a scaling factor can be applied

to the inflow velocities to correct for these effects with sufficient accuracy. Specifically, for

the octorotor considered in this work, vx is corrected with a 80% scaling factor, while a factor

of 70% is used for vz. As described in Appendix 9.3, these values were empirically selected

based on the data collected and discussed in Chapter 3.2.2, and found to compensate for a

significant portion of the error between the predicted and measured thrust at varying vehicle

velocities and pitch angles.

2.1.2 Motor Assembly Electro-Mechanical Dynamics

A model of the motor-ESC (electronic speed controller) subsystem is needed to capture

the electro-mechanical dynamics of the rotating machinery. The ESC regulates the voltage

supply to the brushless DC (BLDC) motor based on the PWM control command and the

voltage supply from the battery. The BLDC motor responds with the angular velocity of

the propeller ω and current Iin under the influence of the torque load Q. It is noted that

a DC-DC power converter module could also be added to improve the quality and stability

of the battery voltage supply. Such a module is not used for the considered multirotor

but could be adopted for larger systems with higher payload requirement. The motor-ESC

subsystem is modeled based on the circuit diagram shown in Fig. 2.3. The ESC is considered
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as transmitting a certain percentage of the battery voltage Vb to the motor circuit according

to the PWM command,

Vin = VbFESC%(PWM), (2.11)

where FESC%(PWM) is a function relating PWM to the proportion of voltage transmitted.

The BLDC motor is then modeled based on the commonly used 3-parameter model [13, 69,

70]. In this model, the three phases of the motor are modeled as one equivalent circuit,

and transient effects are not considered due to the rapid response time of the motor used.

The motor current Im is determined based on the torque load Q (which is calculated in the

Figure 2.3: Circuit Diagram of Motor-ESC Model

propeller model) as

Im =
Q

KT

= QKV , (2.12)

where the motor torque constant KT is equal to the inverse of the motor velocity constant

KV . The motor voltage (back-emf) is hence

Vm = Vin − ImRm (2.13)

where Rm is the resistance of the motor (winding). Finally, the motor speed ω, which is also

the angular velocity of the propeller, can be calculated as

ω = VmKV . (2.14)
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Meanwhile, the battery current Ib is determined based on the power balance of the ESC,

VbIbηESC = VinIin, (2.15)

which gives

Ib = Vin(Im + I0)/
(
VbηESC

)
, (2.16)

where ηESC is the ESC efficiency as a function of Vb and PWM. In this model, other motor

losses, such as friction and magnetic losses, are included in the motor zero-load current I0,

which is defined as the current drawn when the torque load is zero [70].

2.1.3 Battery Electrical Dynamics

A battery model is needed to capture the evolution of battery voltage and internal states

over time driven by the current (power) load. Battery voltage serves as an input to the ESC,

affecting the ESC output voltage to the motor and eventually the propulsion performance

including thrust, torque, and propeller speed. In this work, the battery is modeled using an

equivalent circuit model (ECM) [56] as shown in Fig. 2.4, which is one of the most popular

approaches for modeling macroscopic battery behavior [57].

Figure 2.4: Schematic of Battery Equivalent Circuit Model

Based on the circuit diagram, the total current load of the battery, ΣIb,j, which is the

sum of the current drawn by each of the Np motor ESCs (indexed by subscript j), affects
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the battery terminal voltage Vb according to

Vb = VOCV (SOC)−
Np∑
j=1

Ib,jRs −
n∑

k=1

VRC,k. (2.17)

The first term on the right hand side of the equation is the open circuit voltage (OCV),

which is the electrochemical equilibrium voltage of the battery under no current. The value

of OCV is a function of the energy stored in the battery, which is usually measured by the

state of charge (SOC). The SOC is defined as the ratio of the remaining charge (measured

in Ah) in the battery and the capacity of the battery Cbat, and hence its dynamics can be

calculated by integrating the current over time,

dSOC

dt
= − 1

Cbat

Np∑
j=1

Ib,j. (2.18)

It is noted that SOC is one of the most important battery internal states [57, 66], as it directly

correlates to the remaining flight time/range of the electric aircraft. The second term ΣIb,jRs

accounts for the ohmic voltage drop due to the internal resistance of the battery Rs. The

last term of the equation captures the transient dynamics of the battery, e.g., lithium ion

diffusion and charge transfer, using equivalent resistor-capacitor (RC) pairs [67]. The voltage

of each RC pair is characterized by the following equation,

dVRC,k

dt
= − 1

RkCk

VRC,k +
1

Ck

Np∑
j=1

Ib,j. (2.19)

The resistance Rk and capacitance Ck of the RC pairs often vary with SOC and tempera-

ture [56]. The optimal number of RC pairs, n, are typically determined by balancing the

model fidelity and complexity. A thermal sub-model can be conveniently integrated with the

equivalent circuit model to capture the battery temperature variation during operation, and

the effects on battery behavior if necessary [71, 72]. The resultant electro-thermal model
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could enable battery thermal management, which is expected to be of significant interest to

passenger-scale eVTOL aircraft due to the high power requirement [11].

2.1.4 Airframe Rigid Body Dynamics

Finally, a model of the rigid body dynamics of the airframe is needed to predict the transla-

tional and rotational motion of the multirotor. This subsystem uses the thrusts and torques

calculated by the propeller model as inputs, and in return computes the vehicle velocities,

which are needed to calculate the propeller velocities as inputs of the propeller model. Two-

dimensional dynamics are described here, which is adequate for simulating the vehicle in

forward and vertical flight without lateral motion. Standard equations for three-dimensional

dynamics are given in Appendix 9.1, and were used for the analysis of the vehicle’s perfor-

mance in real-world operation discussed in Chapter 3.2.2.

Using the Newton’s second law, the linear and angular accelerations of the multirotor are

calculated as

Ẍ =

Np∑
j=1

Tjsin(−Θ)/m− CBDẊ|Ẋ|/m

Z̈ =

Np∑
j=1

Tjcos(Θ)/m− g

Θ̈ = τΘ/JΘ =

Np∑
j=1

LΘ,jTj/JΘ

(2.20)

which are then solved over time to obtain the velocity, position, and orientation of the UAV.

Specifically, X and Z are the horizontal and vertical positions of the vehicle center of mass in

the global frame, and Θ is the vehicle pitch angle. In addition, ΣTj is the sum of thrusts of

all propellers computed by the propeller model (with each propeller indexed by subscript j,

and total number of propellers Np), CBDẊ|Ẋ| is the body drag force with CBD as the body
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Figure 2.5: Layout of Propellers, Axes, and Torques (Inset: Axis Orientations)

drag coefficient, JΘ is the moment of inertia about the pitch axis, τΘ is the total pitch-axis

torque on the multirotor, and LΘ,j is the arm length of each propeller thrust to the pitch axis.

Notably, as the body drag is proportional to the velocity squared and the forward velocity

tends to be significantly larger than the vertical velocity, vertical drag is not considered. The

inflow velocities can then be calculated for each propeller as

vx,j =Ẋ cosΘ + Ż sinΘ

vz,j =− Ẋ sinΘ + Ż cosΘ + Θ̇xj

(2.21)

where xj is the x position of the propeller relative to the vehicle center of mass.

The configuration of the specific multirotor airframe used in this work is shown in Fig.

2.5, which includes propeller numbering and positions. For this octorotor (Np = 8) vehicle

configuration, τΘ can be calculated based on the thrust of each propeller (for an octorotor)

as

τΘ = Larm((T5 + T1 − T2 − T4) cos(π/8) + (T7 + T3 − T6 − T8) sin(π/8)). (2.22)
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Figure 2.6: Block Diagram of Integrated System Model

2.2 Integration of System-level Model

With the dynamics of each subsystem defined, the overall system-level model can be inte-

grated as shown in Fig. 2.6. The control inputs are the PWM commands for each motor,

which instruct each ESC to regulate the corresponding motor’s input voltage as a fraction of

the battery voltage. The motor responds with a current draw and a rotational speed, which

also depends on the torque load from the propeller. The motor rotation drives the propeller

to generate the thrust and torque per blade element theory. Thrust and torque are then

used in the rigid body dynamics model to calculate the motion of the UAV, which affects

the horizontal and vertical velocities of each propeller for both blade element and momentum

theories. The torque is looped back to the motor to determine the motor speed and current,

which is further looped back to ESC to determine the current drawn from the battery. Fi-

nally, the voltage output by the battery varies in response to the total current load, which

influences the voltage output from each ESC to the corresponding motor, completing the

loop of coupled dynamics. It should also be noted that this model can be easily augmented

by modifying or expanding individual subsystem models. For instance, as noted in Chapter

2.1.3, the battery model could be augmented to further incorporate thermal dynamics. Such

modifications would not require changes to the other subsystems, and could enable future
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work on battery thermal management, which is more relevant and significant for applications

such as passenger-scale eVTOL vehicle [11].
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Chapter 3

Model Parameterization and

Validation

This chapter discusses the methodology and experimental results for parameterization and

validation of the vehicle model. Each of the subsystems is parameterized individually, while

laboratory test bench data is used to validate the combined ESC, motor, and propeller

models, and vehicle test flights are used to validate the complete integrated model.

3.1 Model Parameterization

In this section, the processes used to parameterize the propeller, motor and ESC, and battery

subsystem models are described. Most of the identified parameters are listed in Table 3.1,

while the ones that are state-dependent and subject to variation, e.g. the ESC FESC% and

ηESC , and battery Rs, Ri, and Ci, are described in the corresponding subsections. The

results are given in this section for the specific octorotor used as a test vehicle, which is

described in more detail in Chapter 3.2.2. Without loss of generality, the same methodology

can be applied to other multirotor designs and components.
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Parameter Value Unit

c(r) 0.056− 0.23r m

θ(r) 0.42− 1.7r rad

R0 0.051 m

R 0.19 m

a 7.12 rad−1

cd 0.0334

Rm 0.10 Ω

I0 1.19 A

Kv 406.5 RPM/V

Cbat 15.66 Ah

Table 3.1: Identified Propeller, Motor, and Battery Parameters

3.1.1 Propeller Model

For the propeller model discussed in Chapter 2.1.1, the parameters that need to be de-

termined can be categorized as geometric parameters and aerodynamic parameters. The

geometric parameters include the chord length c, the blade twist angle θ, and the blade base

and tip positions R0 and R shown in Fig. 3.1, which are directly measured and listed in

Table. 3.1. The aerodynamic parameters, which are used to resolve the equations for blade

Figure 3.1: Blade Geometries
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element theory, include the lift (slope) coefficient a and drag coefficient cd, which need to be

determined by system identification based on experiment data. The basic idea is to fit for

the coefficients so that the model prediction could match the thrust and torque data mea-

sured from experiments. An RCbenchmark 1580 dynamometer, shown in Fig. 3.2, which

can measure the motor/propeller angular velocity (RPM) with an optical sensor and the

propeller torque and thrust with load cells [73], is used for testing in this work. One set of

ESC, motor, and propeller assembly of the multirotor is mounted in the vertical orientation,

as shown in Fig. 3.2. Because the dynamometer is stationary, the propeller operates as if

under the hovering condition. Under such circumstance, the thrust and torque at each blade

element remain constant as the propeller rotates, and the integration over the rotational

angle in Eqn. 2.7 can be easily performed to compute the total thrust and torque measured

by the dynamometer. The equations can then be rearranged to calculate or fit for a and cd

using the measurement data. In such setup, we have airspeed v = vx = vz = 0, and hence

Figure 3.2: Dynamometer used for propeller, motor, and ESC testing. Labels: (1) DC
voltage supply, (2) optical RPM probe 5V input, (3) ESC, (4) ESC power and PWM input,
(5) motor power input, (6) load cells, (7) motor, (8) optical RPM probe, and (9) propeller
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the upr and upl in Eqn. 2.3 and the induced velocity vi in Eqn. 2.10 are reduced to

upr,h = vi,h =
√
T/(2ρπR2), upl,h = ωr. (3.1)

As a result, the thrust equation in (2.7) can be simplified to

T = ρa(ω2

∫ 0.97R

R0

cr2θdr − ω
√
T

∫ 0.97R

R0

√
1/(2ρπR2)crdr), (3.2)

which can be rearranged to calculate a from T and ω as

a = (C1
ω2

T
+ C2

√
ω2

T
)−1

C1 =

∫ 0.97R

R0

ρcr2θdr, C2 = −
∫ 0.97R

R0

ρ0.5cr

20.5π0.5R
dr.

(3.3)

Similarly, the torque equation in (2.7) can be simplified to

Q = a

∫ R

R0

(cθr2
√
ρ/(2πR2) · ω

√
T − (cr/(2πR2)) · T )dr + cd

∫ R

R0

ρcr3drω2. (3.4)

Rearranging Eqn. 3.4 gives the equation for calculating cd,

cd =
1

C5

Q

ω2
+
C3

C5

T

ω2
+
C4

C5

√
T

ω2

C3 =

∫ R

R0

acr

2πR2
dr, C4 = −

∫ R

R0

aρ0.5cθr2

20.5π0.5R
dr, C5 =

∫ R

R0

ρcr3dr.

(3.5)

The dynamometer is used to generate the thrust, torque, and propeller angular velocity

data under a series of PWM commands and input voltage Vb, which are then used to fit for

the lift and drag parameters. As shown in Fig. 3.3, the obtained two coefficients are fairly

constant over the PWM range, with average values of 7.12 rad−1 for a and 0.0334 for cd, and

standard deviations of 0.13 rad−1 and 0.0015 respectively. Based on the consistency of these

results, it can be concluded that the assumptions made to simplify the equations above are

valid, and the coefficients a and cd are appropriately modeled as constants, particularly with

respect to the propeller angular velocity.
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Figure 3.3: Identified Values of a and cd under Different PWM Inputs

3.1.2 Motor and ESC Model

The motor parameters that need to be identified include the motor resistance Rm, motor zero-

load current I0, and motor constantKv, and the ESC parameters are the voltage transmitting

ratio function FESC%(PWM) and the efficiency ηESC . The motor resistance Rm is measured

as half of the phase-to-phase resistance of the motor at 0.10 Ω. The motor constant, Kv =

ω/Vm, can be obtained from the motor voltage and speed measurement. When no propeller is

attached, the motor torque (and therefore current) is close to zero, giving Vm = Vin according

to Eqn. 2.13. If the PWM is set to maximum, the full input DC voltage will be transmitted

to the motor, yielding Vin = Vb = Vm. In the test bench, the battery voltage Vb is emulated

by an adjustable constant voltage source. The Vb and ω measured under this condition

are then used to calculate the value of Kv = 406.5 RPM/V . This value is very close to

the nominal value of 400 RPM/V given by the manufacturer. The data collected with no

propeller attached is also used to determine I0, under the assumption that the current output

from ESC is equal to the input current at full PWM (or close to 100% ESC efficiency at full

PWM as reported in [69, 26]). Under this condition, the zero-load current can be found as

I0 = Ib −QKv. (3.6)
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Over the range of voltage tested, the value was found to be approximately constant at I0 =

1.19 A.

With known motor parameters, the ESC voltage ratio function FESC%(PWM) can be

determined accordingly. Using the torque and propeller angular velocity data generated by

the dynamometer, the motor circuit input voltage Vin can be computed under each pair of

known PWM and Vb as

Vin = Vm + ImRm = ω/Kv +QKvRm, (3.7)

and FESC%(PWM) can then be determined as

FESC%(PWM) = Vin/Vb. (3.8)

The obtained FESC% is plotted in Fig. 3.4 (a), showing a nonlinear relation with PWM that

is approximately invariant under different Vb.
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Finally, the ESC efficiency ηESC can be computed under different PWM and Vb as

ηESC(Vb, PWM) = VinIin/VbIb

= FESC(PWM)(QKv + I0)/Ib,

(3.9)

where the DC input current Ib is measured on the test bench. The obtained ηESC map is

presented in Fig. 3.4 (b), showing significant variation, i.e. 82% to 91%, over the operating

range of PWM and input voltage. These results are generally in agreement with those found

in literature for comparable ESC hardware [26], [24].
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3.1.3 Battery Model

Battery parameters that need to be identified include the open circuit voltage (OCV) as a

function of SOC, battery capacity Cbat, series resistance Rs, and Ri and Ci of the RC pairs.

The methodology developed in [56] is adopted to perform the parameter identification. The

battery considered is a Tattu Lithium Cobalt Oxide Polymer battery pack with a nominal

capacity of 16 Ah consisting of 6 cells in series. The focus here is to parameterize a single

cell with a nominal voltage of 3.7 V, which can be scaled up to represent the whole pack.

The maximum continuous discharge rate of the battery is 15 C, where C-rate is defined as

the ratio between the current and the battery capacity i.e. 1C = 16A. An Arbin LBT 21084

battery cycler with single channel specifications of 10 V and 30 A (max) is used for testing.

To identify the OCV and Cbat, the battery cell is discharged with a low constant current

rate (C/10), under which the measured terminal voltage is close to VOCV . The results are

shown in Fig. 3.5 (a), where the x-axis denotes the charge throughput in Ah, which is the

integration of the discharge current over time. The battery capacity is measured as the

amount of charge between 3.5 V and 4.2 V , which is found to be 15.67 Ah. This value

is slightly lower (-2.1%) than the nominal value given by the manufacturer. A number of

possible causes, including manufacturer variability and battery degradation, could contribute

to this discrepancy. The VOCV (SOC) function can then be obtained by normalizing the x-

axis of the OCV curve in Fig. 3.5 (a) with the capacity.

For the remaining parameters, a series of pulse tests have been conducted for identification

as shown in Fig. 3.5 (b). The battery was first charged to 100% SOC under 1 C current

using the Constant Current-Constant Voltage (CC-CV) protocol, and relaxed under zero
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Figure 3.5: Identification of Battery Parameters: (a) Battery Voltage versus Charge Mea-
sured Under C/10 Constant Current for Identifying Capacity and OCV, (b) Voltage Profile
During Pulse Discharge Test for Identifying Rs, Ri, and Ci, (c) Comparison of Fitted Vrex
with 1, 2 and 3 RC Pairs, (d) Identified Rs versus SOC

current for 2 hours to reach voltage equilibrium. It was then discharged to 90% SOC using 1

C current, after which the current was cutoff for 2 hours. This process was repeated until the

battery reached 0% SOC. The obtained voltage data are used to identify the series resistance

and the RC circuit parameters at the respective SOC. Specifically, the series resistance Rs is

correlated with the instantaneous voltage jump after the current cutoff, and can be calculated

as

Rs =
∆Vs
I
, (3.10)

where I is the current applied during the pulse. It is noted that the Rs identified here is
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the ohmic resistance of a single cell. When scaling up to the battery module consisting of

multiple cells connected in series, the total resistance needs to be adjusted to include the

wiring/connection resistance and potential variability among cells based on module testing

data. For example, for the UAV testing data shown in Fig. 3.8, an additional 17.6 mΩ

is added to account for the extra resistance of the battery pack. The voltage profile Vrex

during the ensuing relaxation period tr (shown in the inset of Fig. 3.5 (b)) is dictated by

the dynamics of RC pair and are hence used to identify Ri and Ci. Specifically, Vrex can be

solved based on Eqn. 2.19 as [56],

Vrex(tr) =
n∑

i=1

IRi(1− e−tp/(RiCi))(1− e−tr/(RiCi)) (3.11)

where tp is the pulse duration preceding the current cutoff. The values of Ri and Ci are

then fitted to minimize the sum of square errors between the model prediction and the

measurement data over the discrete time instant k’s,

J = minRi,Ci

∑
k

(Vrex(k)− Vrex,data(k))
2. (3.12)

To determine the optimal number of RC pairs n, Vrex fitting has been performed with n = 1,

2 and 3 as shown in Fig. 3.5 (c) (at 50% SOC). It was found that for this battery, 3 RC pairs

yield acceptable accuracy. The identified series resistance Rs at various SOCs are shown in

Fig. 3.5 (d), and the results for other parameters are shown in Appendix 9.2 as Fig. 9.1.

3.2 Experimental Validation of Model

In this section, in order to evaluate the model fidelity under various operating conditions,

the developed multirotor system model is validated using both the dynamometer and a

retrofitted UAV platform.

34



3.2.1 Validation on Dynamometer

By using the aforementioned dynamometer shown in Fig. 3.2, a major portion of the system

model, including the coupled motor, ESC, and propeller dynamics, can be validated under the

ideal hovering condition for a single propeller. Specifically, the PWM command and battery

voltage Vb (emulated by a voltage source) are varied over the normal operation range to

measure the resultant thrust, torque, and propeller/motor angular velocity. The tolerances

of measurement are 0.5%±0.05 N for thrust and 0.5%±0.005 Nm for torque, according to

the manufacturer datasheet. The results are compared against the values predicted by our

model, as shown in Fig. 3.6. It is seen that the model matches the experimental results

with high accuracy over the complete range of PWM settings and input voltage tested, with

statistics given in table 3.2. The relationship between motor speed and PWM is modelled

properly, which appears to be composed of two piece-wise linear segments. Meanwhile, thrust

and torque show more prominent nonlinear dependency since they are proportional to the

square of the propeller angular velocity as shown in our previous derivation. Furthermore,

all three quantities decrease significantly at low battery voltage, which will be analyzed in

detail in Chapter 4.1.

Error Thrust (N) Torque (mNm) Angular Velocity (RPM)

Maximum 0.57 (6.4%) 8.8 (8.6%) 71 (1.9%)

Mean 0.075 (0.29%) 1.6 (1.2%) -4.8 (-0.080%)

RMS 0.20 (2.4%) 3.9 (2.8%) 30 (0.80%)

Table 3.2: Maximum, Mean, and RMS Errors of Propeller Thrust, Torque, and Angular
Velocity in Test Bench Validation
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Figure 3.6: Comparison of Measured and Predicted T , Q, and ω using Dynamometer Data

3.2.2 Validation on Octorotor UAV Platform

In order to validate the complete system dynamics under actual flight conditions, a test

vehicle, shown in Fig. 3.7, has been built by using the airframe and propulsion system

(including propellers, motors, and ESC) of a DJI Spreading Wings S1000+ octorotor, and

retrofitting the control and sensing systems with a Pixhawk 2.1 Flight Controller, a Piksi

Multi GNSS receiver, a 3DR uBlox GPS with compass, a battery current transducer, and a

voltage sensor. These components and the vehicle’s physical parameters are listed in table

36



3.3.

Vehicle Components:

Airframe DJI Spreading Wings S1000+

(Incl. Propellers, Motors, and ESCs)

Battery Tattu Lipo (22.2V, 6S, 16000 mAh)

GNSS Receiver Piksi Multi

GPS 3DR UBlox

Vehicle Parameters:

m 7.6 kg (incl. battery)

Larm 0.5225 m

CBD 0.16

JΦ 0.4 kg m2

JΘ 0.4 kg m2

JΨ 0.6 kg m2

Table 3.3: List of Vehicle Components and Parameters

With this setup, the multirotor can be controlled to perform different flight maneuvers

and operations with data measured and recorded for model validation. Specifically, the

measured aircraft velocity, attitude, and angular velocity are used to compute the airspeed

vx and vz, which along with the PWM commands constitute the inputs to the system model.

The focus of vehicle testing is to validate the model prediction of system-level propulsion

and energy performance, and hence the variables to be validated include the total thrust,

which is derived from the measured aircraft acceleration and attitude, and battery current
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Figure 3.7: Left: Octorotor Testing Vehicle; Right: UAV Testing at Woodland-Davis Aero-
modelers Test Site

and voltage, which combine to give the system power consumption. The measured thrust is

obtained from the measurement data by balancing the forces along the vehicle body z axis

as

Tmeas = mgcos(Φ)cos(Θ)−maz (3.13)

where Φ and Θ are the measured Euler roll and pitch angles, and az is the measured acceler-

ation along the body z direction. To identify the body drag coefficient CBD, a similar force

balance along the direction of motion in level forward flight gives

CBD = (Tmeassin(−Θ)−mẌ)/(Ẋ|Ẋ|). (3.14)

Based on test flight results, a value of 0.16 for CBD was found to accurately match measured

behavior over a range of forward velocities and accelerations. Regarding the measurement

accuracy, according to the manufacturer datasheet, the current transducer has an error of

±0.70%. The primary measurement error for the voltage comes from the voltage divider,

which has a tolerance of 0.1%. The accelerometer has a listed RMS noise of 8 mg, which

translates to a contribution of 0.6 N of noise to the thrust measurement error based on Eqn.

3.13. The measurement accuracy is adequate for experimental validation. The predicted

thrust, current, and voltage are obtained from the integrated model, calculated at each time

interval using the recorded PWM inputs and vehicle airspeed vx and vz derived from onboard
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measurements of vehicle attitude and velocity. The model predicted thrust is the sum of the

thrust of all propellers, which may differ from each other due to different PWM commands.

The predicted current is obtained as the total current drawn by all ESCs, which feeds to the

battery model to compute the single cell voltage, and the predicted total battery voltage is

obtained as the single cell voltage multiplied by the number of cells.

Two sets of data are demonstrated for experimental validation. The first set includes

a full flight from takeoff to landing as shown in Fig. 3.8. According to the model, the

battery state of charge depletes from 83.5% to 28.8% over this duration, as plotted in Fig.

3.8 (c). The predicted voltage matches the measured voltage well over the flight duration as

indicated by Fig. 3.8 (a), with an error mean of 0.02 V and standard deviation of 0.18 V, out

of the total voltage range between 20.0 V and 24.2 V. This flight includes rapid maneuvers

with relatively high vehicle pitch and roll angles, causing large and significantly varying

power demand. Consequently, Fig. 3.8 (b) illustrates the highly variable discharge rates

that occur in such maneuvers, with a measured current rate averaging 2.51 C, and peaking

at 3.39 C during takeoff and 4.69 C over the flight. It is seen that the model predicts the

current accurately, with an error mean of 0.06 C and standard deviation of 0.22 C, out of the

total current range between 0 and 4.69 C. Noted that the current C rates in this section are

calculated as the battery current Ib (in A) divided by the measured battery capacity (15.67

Ah) identified in Chapter 3.1.3 and used in the model.
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Figure 3.8: Experimental Validation of Model Over a Full Flight with Battery SOC variation
from 83.5% to 28.8%: (a) Voltage, (b) Discharge Current Rate, and (c) State of Charge

To better examine the performance of the model under a range of typical operating

conditions, a second set of data is presented in Fig. 3.9. This flight consists of clearly

separated segments of typical operations, enabling the analysis of the performance of the

model and the vehicle under different operating conditions in detail. Specifically, three

segments of hovering, vertical, and horizontal flight are marked in Fig 3.9 (a) respectively

and discussed in this section. The battery depletes from 95.5% to 54.0% SOC in this flight,

and both the voltage and current predictions match well over the duration, with an error

mean of 0.11 V and a standard deviation of 0.15 V for voltage (out of the total range between

21.5 V and 24.8 V), and an error mean of -0.009 C and a standard deviation of 0.039 C for

current (out of the total range between 0 C and 3.00 C). It can be observed that the predicted

voltage is slightly higher than the measured voltage early in the flight (during vertical and

horizontal flight), but decreases slightly faster, and becomes lower than the measured value

40



during later part of the flight (e.g. hovering). One possible explanation for this discrepancy

is that the capacity value used in the battery model may be slightly lower than the capacity

of the actual battery used in this flight, causing the predicted voltage to drop more rapidly

than the measured voltage. As the model parameterization data was obtained by testing

a single cell, some variation in the results is expected due to manufacturing variability and

varying levels of degradation between units. Finally, the thrust prediction for this flight,

shown in Fig. 3.9 (d), also matches the measured results accurately, with an error mean of

2.0 N and a standard deviation of 2.4 N, out of the thrust range between 0 N and 87.7 N. It

should also be noted that the current and power demand (with respect to the battery size) is

consistent with that of the passenger-scale eVTOL aircraft, which is expected to have similar

maximum current upwards of 3 C under certain operating conditions [11]. Therefore, the

model developed in this work and the UAV platform could potentially be used for preliminary

research on eVTOL aircraft design and control.

The second set of data is further analyzed in terms of the three flight segments. Fig. 3.10

shows the validation of battery voltage, battery discharge current rate, battery electrical

power, and total thrust under the hovering condition. It is seen that the model prediction

matches very well with the experiment measurement. Specifically, the current error has

a mean of 0.011 C (0.41%) and a standard deviation (SD) of 0.018 C (0.66%); those of

the voltage error are 0.13 V (0.56%) and 0.08 V (0.33%); and those of the thrust error

are 1.71 N (2.27%) and 1.87 N (2.50%). All error statistics are summarized in Table 3.4.

Although all errors are generally low, the thrust prediction is the least accurate compared

with that of current and voltage. Higher thrust error is partially due to accelerometer noise,

but also caused by disturbances, particularly wind. Specifically, the predicted thrust is
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Figure 3.9: Experimental Validation of Model Over a Full Flight with Battery SOC variation
from 95.5% to 54.0%: (a) Voltage, (b) Discharge Current Rate, (c) State of Charge, and (d)
Thrust

computed based on the model without considering the wind, i.e. the airspeeds vx and vz fed

to the propeller model only consider vehicle motion, but not the potential wind contribution.

As described in Eqn. 2.3, these airspeed terms dictate the angle of attack α of each blade

element, and therefore influence the lift coefficient cl. The thrust and lift vectors are typically

closely aligned, meaning such changes in cl can significantly affect thrust in sufficiently strong

wind. The current and voltage predictions, on the other hand, do capture the wind effect

indirectly. During the flight, the vehicle on-board controller would adjust PWM commands

to maintain steady thrust in the presence of wind disturbances. Therefore, by using PWM
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as the inputs for current and voltage prediction, the effect of wind is implicitly included to

a certain degree. Notably, the current drawn from the battery is primarily dictated by the

mechanical power required for each motor to counter the propeller drag. Unlike cl, the drag

coefficient cd is constant, so the current drawn can be more accurately predicted than thrust

using only the battery voltage and the PWM command without precise values for vx and

vz. A gradual decline in battery voltage is also observed due to the consumption of battery

energy.
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Figure 3.10: Experimental Validation of Model during Hovering: (a) Voltage, (b) Battery
Discharge Rate, (c) Battery Electrical Power, and (d) Thrust

During vertical flight, the aircraft is subject to the velocity profile shown in Fig. 3.11 (a),

which primarily consists of a slow descent followed by a more rapid climb. The validation

results for battery voltage, battery discharge rate, battery electrical power, and thrust are

also included in the figure to demonstrate the good model fidelity. Specifically, for discharge
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Discharge Rate (C) Voltage (V) Thrust (N)

Error Mean SD Mean SD Mean SD

Hover
0.011 0.018 0.13 0.08 1.71 1.87

(0.41%) (0.66%) (0.56%) (0.33%) (2.27%) (2.50%)

Vertical
0.021 0.022 -0.12 0.08 2.16 2.13

(0.82%) (0.89%) (-0.50%) (0.32%) (2.9%) (2.82%)

Horizontal
0.016 0.036 -0.07 0.08 2.78 2.32

(0.61%) (1.34%) (-0.29%) (0.36%) (3.7%) (3.07%)

Table 3.4: Error Means and Standard Deviations of Current, Voltage, and Thrust Prediction
in Vehicle Testing of Each Flight Mode

rate prediction, the error has a mean of 0.021 C (0.82%) and a standard deviation of 0.022

C (0.89%); for voltage, the mean and SD are −0.12 V (-0.50%) and 0.08 V (0.32%); and

for thrust, those are 2.16 N (2.9%) and 2.13 N (2.82%). It is also noted that the model

not only predicts the aircraft behavior well during the steady descent and climb period, but

also captures the instantaneous spikes in thrust and current at acceleration/deceleration,

indicating good fidelity during transient as well.
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Figure 3.11: Experimental Validation of Model during Vertical Flight: (a) Velocity, (b)
Voltage, (c) Battery Discharge Rate, (d) Battery Electrical Power, and (e) Thrust

During horizontal flight, the multirotor velocity profile is shown in Fig. 3.12 (a), which

covers a range of velocity variation and includes various acceleration and deceleration seg-

ments, along with validation of battery voltage, battery discharge rate, battery electrical

power, and total thrust presented in the rest of the figure. For current prediction, the error

has a mean of 0.016 C (0.61%) and a standard deviation of 0.036 C (1.34%); for voltage,

the mean and SD are −0.07 V (-0.29%) and 0.08 V (0.36%); and for thrust, those are 2.78
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N (3.7%) and 2.32 N (3.07%). It is seen that the model still performs well in predicting

all key system variables, while the accuracy degrades minimally compared to the hovering

and vertical flights. This is primarily because of the disruptions to the propeller inflow and

flow interference among propellers due to forward motion, which could make the momentum

theory less accurate for horizontal flight.
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Figure 3.12: Experimental Validation of Model during Horizontal Flight: (a) Velocity, (b)
Voltage, (c) Battery Discharge Rate, (d) Battery Electrical Power, and (e) Thrust
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Chapter 4

Model-Based Multirotor Performance

Analysis

In this chapter, the developed system-level model is used to demonstrate the impacts of

individual dynamics on flight performance, including propulsion, power consumption, energy

efficiency, and energy-optimal and maximum cruising velocities. The results and analysis

highlight the importance and benefits of accommodating the integrated system dynamics in

the efforts to improve the multirotor energy and flight performance.

4.1 Impact of Battery Dynamics on Propulsion

The model informs the impact of the battery dynamics on the multirotor propulsion per-

formance. The relationship between battery voltage and key propulsion metrics, i.e. pro-

peller thrust, torque, and angular velocity, under different PWM actuation commands are

generated based on the model as in Fig. 4.1, which also shows the comparison with the

dynamometer test data.
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Figure 4.1: Propeller Thrust, Torque, and Angular Velocity versus Battery Voltage

It is seen that when the battery voltage drops across the operating range from 25 V to 21

V , the propulsion performance degrades considerably (under the same PWM). Specifically,

over the whole PWM range, there is an average decrease of 24.8%, 23.5%, and 13.4% in

propeller thrust, torque, and propeller angular velocity respectively, with maximum decreases

of 26.5%, 26.2%, and 14.4% in each. This effect can be explained by the coupling between

the dynamics of battery, ESC, motor, and propeller. Specifically, as the battery voltage Vb
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drops, the ESC and motor voltages Vin and Vm will decrease accordingly based on Eqns.

2.11 and 2.13, which will further reduce the motor/propeller angular velocity ω according

to the motor voltage-velocity relationship in Eqn. 2.14. The reduction of ω will lead to the

decrease of propeller inflow velocity u based on Eqn. 2.3, and therefore decrease element lift

dL and drag dD according to Eqn. 2.1. Subsequently, both element thrust dT and torque

dQ decrease according to Eqn. 2.4, and the total decrease in propeller thrust and torque can

be calculated from Eqn. 2.7.

These results indicate the significant impact of battery dynamics on the multirotor

propulsion performance, which has not been adequately addressed in UAV control and plan-

ning literature. Most existing works propose to control the thrust/torque using the propeller

angular velocities as inputs by assuming a constant coefficient between the former and (the

square of) the latter, but disregard the effect of changing battery voltage on the propeller

angular velocity through the motor dynamics [35, 16, 19]. However, over the course of a

flight, battery voltage will drop as the energy depletes according to the nonlinear OCV-SOC

relationship. As a result, the maximum attainable thrust for a stationary vehicle is reduced

by 27.0% from 25 V to 21 V , which leads to roughly an equal amount of drop in the hor-

izontal acceleration limit and a 36.0% drop in the vertical acceleration limit. Meanwhile,

the maximum constant horizontal cruising velocity drops by 11.4%, which will be discussed

further in Chapter 4.3. Consequently, the control and planning routine calibrated under the

nominal condition without considering the impact of varying battery voltage could poten-

tially lead to non-optimal/achievable performance when the battery energy is low, especially

in ascending flight and high-speed forward flight.
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4.2 Energy Efficiency Analysis of System and Compo-

nents

Computation of the power consumption and energy efficiency of the components and the

whole system can be performed based on the model as

Pb = IbVb

PESC = VinIin = Qω +K2
vQ

2Rm + VinI0, ηESC = PESC/Pb

Pm = Qω, ηm = Pm/PESC =
Qω

Qω +K2
vQ

2Rm + VinI0
=

1

1 + K2
vQRm

ω
+ VinI0

Qω

.

(4.1)

Specifically, the battery output electrical power Pb is computed based on the battery voltage

Vb and current Ib, which is also the input electrical power to ESC; the ESC output electrical

power PESC (which is also the motor input electrical power) is calculated based on the

motor input voltage Vin and current Iin, and can be decomposed further to the motor output

mechanical power, motor ohmic loss, and zero-load loss; and the motor output mechanical

power Pm is the product of torque Q and angular velocity ω. The efficiency of the ESC

and motor is obtained by dividing the input power by the output power, while that of the

propeller is quantified as the thrust to power ratio in Newton per Watt (T/Pm) as a common

practice [64], [74], [75]. The system efficiency is computed as the ratio between the total

thrust and the battery output power (T/Pb).

The efficiencies have been computed under various conditions including hovering, vertical,

and horizontal flights, for the components and the overall system. During the process, the

model is used to simulate flights under a sequence of velocities, i.e. 0 m/s for hovering, 0 to

19 m/s forward for horizontal flight, and -5 to 14 m/s vertical for descending and ascending

flights, at a constant battery voltage of 25 V . Table 4.1 summarizes the efficiency variation
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across flight modes, and Fig. 4.2 shows the evolution of velocity, power consumption, and

efficiency for the horizontal flight as an example.
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Figure 4.2: Evolution of (a) Velocity, (b) Subsystem Output Powers, (c) Subsystem Efficien-
cies, and (d) Propeller Thrust Per Watt in Forward Flight with Increasing Velocity

Mode ESC Motor Combined T/Pm (N/W) T/Pb (N/W)

Hover 90.1% 81.4% 73.3% 0.101 0.074

Descent 90.1-90.9% 79.8-81.4% 72.5-73.3% 0.101-0.133 0.074-0.097

Climb 88.7-90.1% 81.4-84.9% 73.3-75.3% 0.042-0.101 0.031-0.074

Horizontal 88.9-90.7% 80.6-84.6% 73.1-75.2% 0.054-0.118 0.041-0.086

Table 4.1: Energy Efficiencies in Hover, Vertical (-5 to 14 m/s), and Horizontal (0 to 19
m/s) Flights
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It is seen that the ESC efficiency remains relatively constant at 88.7-90.9% under all

flight conditions. Even though it drops below 70% when the PWM command is under 1150

according to Fig. 3.4, the actual PWM during operation is typically in the high-efficiency

range above. The motor efficiency undergoes more significant variation, namely at 81.4%

under hovering and between 80.6-84.9% under forward and vertical flights. The efficiency

increases with horizontal and ascending velocity, and decreases with descending velocity,

which can be explained by the ratio between the motor output power and the two power

loss terms in the denominator of the ηm formula in Eqn. 4.1. Specifically, the motor output

power Pm = Qω is approximately a cubic function of the PWM input, as the torque Q

and the propeller angular velocity ω are roughly quadratic and linear with respect to PWM

respectively, according to Fig. 3.6. Meanwhile, the motor zero-load loss VinI0 is linear w.r.t.

PWM as the motor input voltage Vin is roughly proportional to ω and hence PWM, and

the motor ohmic loss K2
vQ

2Rm is quadruple w.r.t. PWM due to the Q2 factor. Therefore,

for horizontal and ascending flights under which the PWM increases with velocity, the ratio

between the zero-load loss and the motor output power will decrease, while that of the ohmic

loss will increase. Since zero-load loss is the dominant loss term, the overall motor efficiency

improves with higher velocity. For descending flight, the trend is opposite as PWM decreases

with higher velocity. The propeller efficiency, in terms of thrust per power, is subject to much

more significant fluctuations, namely at 0.101 N/W under hovering, between 0.054 and 0.118

N/W under horizontal flight, and between 0.042 and 0.133 N/W under vertical flight. It

is also interesting to note that the propeller efficiency decreases with velocity for vertical

flight, but is non-monotonic for horizontal flight as the maximum T/P is attained at around

7 m/s. Due to the major impact of propeller efficiency, the overall system efficiency (in
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Figure 4.3: Propeller Efficiency (Output Thrust per Unit Input Power from Motor) versus
Propeller Angular Velocity at Vb = 25V

terms of thrust per battery power) also takes a similar trend. To further clarify the variation

in propeller efficiency, the relationship between thrust generated per unit input power and

angular velocity ω for a stationary vehicle is shown in Fig. 4.3. According to Eqn. 2.3 and

Eqn. 2.7, both T andQ are approximately proportional to the square of ω [58]. Consequently,

the mechanical power output from the motor to the propeller, which is computed as Qω and

hence cubic of ω, increases with ω more rapidly than thrust, and propeller efficiency decreases

as angular velocity increases. This effect is especially pronounced at high angular velocities,

where a small increase in thrust demand can cause a disproportionately larger increase in

power consumption, hence reducing the energy efficiency.

These results show that efficiency is dynamic at both the component and system level,

varying considerably under different flight conditions. Our model provides physics-based ac-

curate and detailed computation and analysis, and could greatly benefit the efforts on UAV

energy consumption and efficiency evaluation. The current practice often needs to assume

a constant lumped efficiency for certain components or even the whole system [19, 22], or

disregard the effect of certain subsystem (such as the ESC) entirely [39, 16]. In addition,
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the model could also enable system-level optimization of multirotor design (including struc-

tures, configuration, and components) and operation (e.g. motion planning and real-time

control) to maximize the flight range and time. It is important to accommodate all relevant

component dynamics and their interaction in an integrated manner for such practice, as we

will demonstrate in the next section that overlooking the complete dynamics will lead to

substantially degraded performance.

4.3 Energy-Optimal and Maximum Cruising Velocities

To demonstrate the benefit of using the proposed model for multirotor motion planning

and control, the energy consumption per unit distance traveled is generated under different

constant horizontal cruising velocities. This is an important metric of the UAV energy

performance that has been investigated and optimized in literature through experiment-

based techniques [15, 22], while we provide theoretic prediction and physical explanation of

the trend and the underlying tradeoff factors based on the model.
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Figure 4.4: Energy Consumption per Meter Traveled versus Forward Cruising Velocity

Fig. 4.4 shows the relationship derived using the full model at 25 V battery voltage
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(blue solid curve), at 21 V battery voltage (red dash curve), and that using a simplified

model without considering the propeller inflow dynamics (yellow solid curve). It is seen

that in general the energy consumed per meter is non-monotonic w.r.t. the forward velocity,

starting from the maximum at low velocity, decreasing to the minimum at a certain optimal

velocity, and increasing in the high velocity range. However, the detailed profiles and the

optimal and/or maximum velocities are different when considering full multirotor dynamics

compared with the cases when battery or inflow dynamics are neglected.

According to the full dynamics, there are four tradeoff factors that define the trend. First,

as the forward velocity goes up, the increase of distance traveled over unit time reduces the

per-meter energy consumption. Second, forward motion will induce an aerodynamic effect

on the propeller inflow that improves energy efficiency. Specifically, the forward velocity

creates a relative motion between the air and the propeller that increases the inflow velocity

component in the rotation plane direction, i.e. ux in Fig. 2.1, which according to Eqn. 2.7

will add to the thrust production. This effect is prominent under small multirotor pitch

angle as the contribution of the horizontal velocity to the respective inflow component is

large. Third, as velocity increases, the airframe body drag force will grow quadratically

according to Eqn. 2.20, which negatively impacts the energy efficiency especially at high

velocity. Finally, forward motion is also associated with another aerodynamic effect which

would reduce the energy efficiency. This is because the forward velocity has a component

that increases the inflow velocity perpendicular to the propeller rotation plane, i.e. uz in

Fig. 2.1, which according to Eqn. 2.7 will reduce the thrust production. This effect is

prominent under large pitch angle. It is also interesting to note the coupling between these

factors. Specifically, as the velocity goes up, the pitch angle of the multirotor needs to be
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increased to balance the rising body drag. As a result, the positive aerodynamic effect will

be suppressed while the negative effect will be enhanced. It is the interaction of these factors

that determine the energy consumption-velocity profile and the resultant optimal cruising

velocity.

If the model is simplified to not include the full dynamics, the multirotor performance

versus velocity relationship will change considerably. For example, when the inflow dynamics

are not considered, as shown by the yellow solid curve in Fig. 4.4, the profile becomes

significantly flattened, with the energy consumption overestimated in the low velocity range

and substantially underestimated at high velocity. More importantly, the predicted energy-

optimal velocity of 18.2 m/s deviates remarkably from the 12.1 m/s predicted by the full

model, and the actual energy consumption per meter travelled is 36.6% higher than that at

the true optimal velocity (106.4 J/m vs. 77.9 J/m). In addition, the simplified model also

overpredicts the maximum attainable velocity, which is constrained by the thrust limit, by

57.5% (39.7 m/s vs. 25.2 m/s). The main reason for the large prediction discrepancy is the

negligence of the aforementioned two aerodynamic effects related to the inflow dynamics,

which are critical tradeoff factors at low and high velocity respectively. Meanwhile, battery

dynamics also have a significant impact on the propulsion performance. By comparing the

profiles under 25 V and 21 V in Fig. 4.4, it is seen that while the shape of the curve does

not change notably, the maximum attainable velocity decreases by 14% from 25.2 m/s to 22

m/s due to the reduction of thrust caused by the lowered motor voltage.

These results demonstrate the importance of accommodating the multiple physical dy-

namics in multirotor planning and control. First, it is shown that the optimal energy perfor-

mance is achieved by striking a delicate balance between various trade-off factors underlying
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different dynamics. Negligence of certain factors will lead to substantially degraded energy

performance in the shown example of identifying the optimal constant cruising velocity. Sec-

ond, the operation range of the multirotor is defined by different dynamics. As discussed,

neglecting inflow or battery dynamics would yield incorrect upper limit of cruising velocity.

Using such limit for planning and control could lead to unachievable performance or even

safety issues in practice. It is also noted that individual dynamics do not affect the flight

performance independently, but rather through the coupling with each other. For example,

regarding the pitch-angle dependent effects of the inflow dynamics on thrust generation, the

airframe rigid body dynamics need to be considered to accurately compute the pitch angle,

and the impact of battery voltage could only be captured through the dynamics of the motor

and ESC. Therefore, all relevant dynamics need to be accommodated and integrated in order

to correctly represent the system behavior.

Finally, the effect of wind on energy performance can be analyzed, which is shown in Fig.

4.5. Although in this work wind speed is not assumed as known for trajectory generation

and UAV control, understanding of wind effect could help explain the experimental results,

which are inevitably affected by wind. Considering only the horizontal wind, a hypothetical

or measured wind speed can be easily incorporated into the model as an input. This is

achieved by including the wind speed in Ẋ to calculate the body drag in Eqn. 2.20 as

well as vx,j and vz,j in Eqn. 2.21. With this correction, results are re-calculated using the

airspeed instead of the ground speed. The blue dashed curve in Fig. 4.5 shows the adjusted

efficiency-velocity relationship under 5 m/s of wind opposite vehicle motion (headwind), and

the yellow dashed curve shows that under wind along vehicle motion (tailwind). Based on the

tradeoff factors previously described, the effect of wind is intuitive at high velocities, where
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Wind at Vb = 23V

wind opposing the direction of vehicle motion increases energy consumption by increasing

the drag resistance, forward pitch angle, and vz. Similarly, wind in the direction of vehicle

motion has the opposite effect. Consequently, the energy-optimal velocity and energy cost

per meter vary significantly under wind as shown in the figure. With a headwind of 5 m/s,

the minimum energy consumption increases 59% to 121.6 J/m at 9.3 m/s, while a tailwind

reduces this energy cost 29.4% to 58.8 J/m at 16.3 m/s. It should also be noted that at low

velocities, headwind could actually reduce energy consumption, as it increases vx and hence

thrust production while the growth in drag resistance is minimal. Again, the opposite effect

is observed for the tailwind, as the wind in this case reduces vx. However, low-velocity effects

are generally less significant, particularly as the energy-optimal velocities are primarily at

the high-velocity region previously discussed.
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Chapter 5

Trajectory Optimization and

Feedback Control

In this chapter, the system-level dynamic model of the UAV presented in the previous chap-

ters is used to develop an energy-optimal trajectory planning and feedback control frame-

work. Optimization is first performed to generate minimum-energy trajectories for waypoint-

to-waypoint flight operations, and PID feedback controllers are then designed for trajectory

following in implementation. The performance of the framework is evaluated in simulation

and in real-world test flights, and the results are used to discuss key features and behaviors

of energy-optimal UAV performance and behaviors.

5.1 Energy-Optimal Trajectory Generation

To generate the energy-optimal trajectories, an optimization problem is formulated with an

objective function

Ec =

∫ tf

0

(VbIb)dt =

∫ tf

0

(Vb

8∑
j=1

Ib,j)dt (5.1)
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to minimize the total energy cost of the operation Ec. To calculate this value, the total

electrical power drawn from the battery is calculated as battery voltage Vb times the battery

current Ib, which is the sum of all ESC input currents Ib,j. The power is then integrated from

t = 0 to the operation end time t = tf to obtain the total energy consumption. Additionally,

due to the relatively short duration of each operation considered in this work, the battery

voltage is treated as a constant for trajectory generation. The system is defined in the form of

state-space equations, with the state vector considered for control as q = [X, Ẋ, Z, Ż,Θ, Θ̇]⊺.

The operation begins with the vehicle in stationary hover at the origin, and ends in hovering

at the targeted endpoint with final horizontal position Xf and vertical position Zf ,

X(tf ) = Xf , Z(tf ) = Zf , Θ(tf ) = 0,

Ẋ(tf ) = 0, Ż(tf ) = 0, Θ̇(tf ) = 0.

(5.2)

The control inputs u1 through u4 are defined as

u1 =Z̈ =
8∑

j=1

Tj cos (Θ)/m− g, u2 = Θ̈ = τΘ/JΘ

u3 =T3/7 −
8∑

j=1

Tj/8, u4 = T6/8 −
8∑

j=1

Tj/8.

(5.3)

Noted that the control design is presented here using the octorotor architecture shown in

Fig. 2.5 as an example, and T3/7 and T6/8 are the thrusts of the middle-front and middle-

rear propellers, respectively. Without loss of generality, the methodology can be applied to

other multirotor configurations. The first two inputs emulate a typical piloted flight control

mode, where the accelerations of vertical and pitching motion are set explicitly. The third

and fourth inputs are used to balance the thrust across the propellers. For two-dimensional

operations (along x and z), the propeller thrusts are paired to be symmetric across the x-axis,
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as

T1/5 = T1 = T5, T2/4 = T2 = T4

T3/7 = T3 = T7, T6/8 = T6 = T8

(5.4)

with zero total torque along the vehicle y- and z-axis. Under this simplification, any arbitrary

combination of four input values corresponds to a unique set of thrust values for each of the

four propeller pairs. This configuration also allows us to directly impose constraints on the

inputs, e.g.

− 2m/s2≤u1≤2m/s2, −9rad/s2≤u2≤9rad/s2,

− 1.5N≤u3≤1.5N, −1.5N≤u4≤1.5N,

(5.5)

in order to ensure safe and achievable trajectories. Specifically, the constraints on u1 and

u2 are calibrated to ensure that the optimized trajectories do not require excessive/unsafe

thrust from any propeller, particularly at extreme pitch angles and high climb rates. The

constraints on u2 are relatively loose, as the vehicle is capable of fast rotational adjustments.

At the limit of ±9rad/s2, this allows the vehicle to rotate from Θ = 0 to ±0.6 rad and stop

rotating within 0.52 s. Next, the constraints for u3 and u4 are set to allow efficient PWM

combinations. In optimal solutions, T3/7 and T6/8 were found to remain fairly close to the

average thrust, as they are closer to the center of the vehicle and therefore can provide less

angular acceleration than the outer propellers. With these inputs, the derivative of the state

vector can be calculated from Eqns. 2.20 and 5.3 as

q̇ = [Ẋ, (u1 + g) tan (Θ)− CBDẊ|Ẋ|/m, Ż, u1, Θ̇, u2]⊺, (5.6)

for projecting the state evolution.

Finally, in order to calculate the current of each propeller, the thrust required from each

propeller pair must be found. From Eqn. 5.3, ΣTj is dictated by u1 and Θ, meaning T3/7
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and T6/8 can be determined for any combination of state (Θ) and control inputs within the

defined constraints. Then, based on Eqn. 2.20, a unique pair of values for T1/5 and T2/4

exists which corresponds to ΣTj set by u1 and τΘ set by u2. To facilitate the solution of the

optimization problem, tables of propeller Tj and Ib,j as dependent on PWMj, Vb, vx,j, and

vz,j

Tj =Ttable(PWMj, Vb, vx,j, vz,j)

Ib,j =Itable(PWMj, Vb, vx,j, vz,j),

(5.7)

are first obtained by resolving the equations in Section 2.1 that are related to the propeller,

motor, and ESC dynamics. By using the tables, optimized solutions can be found without

repeatedly resolving the loop in Fig. 2.6 at each time step of the iterative optimization pro-

cess, significantly reducing the computational intensity of the problem while still providing

accurate results.

In this chapter, solutions are examined for a variety of operations. These operations

include forward flights with distance of 50 m, 70 m, and 100 m, as well as diagonal climbing

flights with the endpoints set at 50 m, 70 m, and 100 m ahead of and 10 m and 20 m

above the starting position. Due to the computational load of solving the optimization

problem, generating optimized trajectories on demand for real-time vehicle operation may

not be feasible, especially if using a vehicle flight controller with limited processing power.

Consequently, optimized solutions are determined off-board for the selected operations prior

to testing, and the target states are interpolated from these solutions each time the control

signal is updated during operation, providing accurate trajectories with minimal real-time

computational load. To facilitate the computation, a more flexible and efficient approach

for trajectory generation using polynomial approximations has been developed, and will be
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discussed in Chapter 6

5.2 Feedback Controller for Trajectory Following

In order to implement the generated target trajectories for real-world UAV operation, a

PID control architecture is used for trajectory following as shown in Fig. 5.1. This control

architecture consists of a high-level PID controller and a low-level one.

The high-level controller emulates a common manual flight control mode by using a set

of PID controllers to generate commands (denoted with the subscript C) for the pitch angle

Θ, roll angle Φ, yaw rate Ψ̇, and vertical velocity Ż. The commands are generated based

on the error between the optimized target trajectories for these vehicle rigid-body states,

denoted with the subscript t, and the real-time feedback of the corresponding states. For

instance, forward motion is controlled using the pitch angle command ΘC generated based

on the target values for X, Ẋ, and Θ. The trajectories of Θ and Ẋ are needed due to

their significant impact on energy performance, and are supplemented with the X trajectory

to ensure that the vehicle reaches and stabilizes at the correct end state. The roll angle

command ΦC is similarly regulated using the target Φ, Y , and Ẏ to control horizontal

movement perpendicular to the forward axis. As vertical and angular accelerations can

be controlled more directly than horizontal motion, the vertical velocity command ŻC is

regulated based on only Z and Ż, while the yaw rate command is regulated based on Ψ and

Ψ̇.

The low-level controller contains another set of PID controllers, which receive the com-

mands from the high-level controller and regulate based on the feedback of the corresponding
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Figure 5.1: Two-level Feedback Control Architecture, including High-Level PID Control to
Generate Intermediate commands, and Low-Level PID Control to Generate Throttle and
Angular Acceleration Commands

vehicle states. These controllers regulate the acceleration of the pitch, roll, and yaw as well

as the throttle command TC . Based on these commands, a mixer equation is used to calcu-

late the PWM for each propeller ESC, which are the lowest-level actuation inputs applied to

the UAV. The throttle command dictates the average PWM across all propellers, which is

then modified for each motor to provide the desired angular accelerations of each propeller.

Each PID controller in this architecture is calibrated to closely follow the optimized state

trajectories with good disturbance rejection.

As benchmark for quantifying the improvement in energy performance, commonly used

way-point based controllers are also designed and implemented for comparison. These base-

line controllers are constructed using the Auto Mode of the ArduPilot Mission Planner soft-

ware. In this flight mode, the target horizontal and vertical velocities are set to be linearly

proportional to the remaining distance along each direction. The yaw angle is controlled

to orient the vehicle towards the waypoint, while the pitch and roll angles are regulated to

provide the horizontal acceleration required to match the desired velocity. To ensure that
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the vehicle remains stable and the commands are within the operational range of the vehi-

cle, user-defined constraints are imposed on the velocity and acceleration. Specifically, the

vertical velocity, vertical acceleration, and horizontal acceleration constraints were set at 5.0

m/s, 1.0 m/s2, and 4.5 m/s2 respectively, and two horizontal velocity constraints, namely

18.0 and 12.5 m/s, were tested. The higher velocity limit (18m/s) of the first controller,

which is referred to as the high-velocity baseline (HVB) controller, allows the vehicle to reach

the endpoint as quickly as possible, while avoiding the risk of failing to maintain altitude at

higher velocities under adverse wind conditions. The velocity limit (12.5m/s) of the second

controller, which is referred to as the low-velocity baseline (LVB) controller, is the energy-

optimal cruising velocity identified previously from Fig. 4.5 under no wind condition. With

this limit, the slower baseline controller is expected to complete operation with lower energy

consumption than the faster baseline controller, which operates at more aggressive but less

energy-efficient velocity.

5.3 Simulation Testing and Result Analysis

In order to evaluate the performance of the proposed control framework under nominal con-

ditions, the optimal trajectory following and baseline controllers are first implemented and

tested in simulation based on the developed multirotor system model. The time and energy

required for each controller to complete a series of operations, with target final horizontal

position Xf ranging from 50 to 100 m and vertical position Zf from 0 to 20 m, are obtained

and summarized in Table 5.1. It should be noted that it could take a long time for the vehi-

cle to come to a complete stop at the exact end position, due to overshoot and oscillation.
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HVB LVB OTF

Xf , Zf (m) Time (s) Energy (kJ) Time (s) Energy (kJ) Time (s) Energy (kJ)

(50, 0) 6.8 6.7 6.8 (+0.0%) 6.6 (-1.5%) 5.8 (-14.7%) 5.8 (-13.4%)

(70, 0) 8.2 8.4 8.5 (+3.7%) 8.2 (-2.4%) 7.5 (-8.5%) 7.4 (-11.9%)

(100, 0) 10.3 10.9 11.0 (+6.8%) 10.6 (-2.8%) 10.5 (+1.9%) 9.9 (-9.2%)

(50, 10) 6.9 7.7 6.8 (-1.4%) 7.6 (-1.3%) 5.7 (-17.4%) 6.7 (-13.0%)

(70, 10) 8.2 9.4 8.5 (+3.7%) 9.3 (-1.1%) 7.3 (-11.0%) 8.4 (-10.6%)

(100, 10) 10.3 12.0 11.0 (+6.8%) 11.7 (-2.5%) 9.8 (-4.9%) 10.8 (-10.0%)

(50, 20) 6.9 8.6 6.9 (+0.0%) 8.5 (-1.2%) 5.6 (-18.8%) 7.8 (-9.3%)

(70, 20) 8.2 10.4 8.5 (+3.7%) 10.3 (-1.0%) 7.4 (-9.8%) 9.4 (-9.6%)

(100, 20) 10.3 13.1 11.0 (+6.8%) 12.7 (-3.1%) 9.5 (-7.8%) 11.9 (-9.2%)

Mean +3.3% -1.9% -10.1% -10.7%

Table 5.1: Evaluation of Energy Performance in Simulation for 3 Controllers, namely
Optimized-Trajectory-Following (OTF), High-Velocity Baseline (HVB), and Low-Velocity
Baseline (LVB) over a series of Operations

Therefore, the results are calculated at the moment the vehicle moves within a 3 m radius

of the target end position. Since the cutoff radius is relatively small and applied equally to

each controller, the effect of truncating the operations is minimal and similar, allowing for a

fair comparison.

As shown in Table 5.1, the optimized-trajectory-following (OTF) controller reduces the

energy consumption significantly over the baseline controllers in all cases, while the low-

velocity baseline consistently provides a slight improvement over the high-velocity baseline.

Specifically, the OTF controller use an average of around 10.7% and 8.8% less energy than

the HVB and LVB controllers, respectively. The optimized trajectories demonstrate distinct

patterns from those under the baseline controllers, as shown in Fig. 5.2, which compares

the evolution of key vehicle states under each controller and in two sample operations.
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Specifically, the first column of the subplots, i.e. Fig. 5.2 (a)-(e), shows the trajectories

of X (horizontal) position, X velocity, pitch angle, Z (vertical position), and cumulative

energy consumption for the 100 m forward flight, and the second column, i.e. Fig. 5.2

(f)-(j), shows those for the diagonal flight with 50 m horizontal and 20 m vertical motion.

In general, the optimized trajectories can be approximately divided based on the forward

velocity profile into 3 segments as shown in Fig. 5.2 (b), including an initial period of

acceleration to the peak forward velocity, a middle period of cruise and gradual deceleration,

and a final braking period when the vehicle rapidly decelerates to stop at the endpoint. The

optimized trajectories are shown to include behaviors that improve energy performance in

each of these flight segments, as well as effectively balancing the simultaneous horizontal and

vertical motion.

First, the improvements in the initial acceleration period are achieved by reaching a steep

(negative) pitch angle at the start of the operation to provide high forward thrust. Note that

from Eqn. 2.20, a negative pitch angle will result in positive forward acceleration due to the

orientation of the body-frame axes as shown in Fig. 2.5. As a result, the forward velocity

peaks early, reducing the total time required to reach the endpoint. This peak velocity

is lower in operations with a small horizontal component, where high forward velocity is

not required or cannot be reached. By comparison, the baseline controllers pitch forward

much slower, as they cannot be well-calibrated considering the vehicle system dynamics.

Consequently, in relatively short flights, the vehicle will often decelerate sharply immediately

after reaching the peak forward velocity, indicating inefficient energy use.

In the middle portion of each operation following the initial acceleration, the OTF con-

troller tends to cruise while gradually pitching backwards and decelerating slightly, whereas
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Figure 5.2: Trajectories of Key UAV States under Each Controller in Simulation for Forward
(Xf = 100m,Zf = 0m) and Diagonal (Xf = 50m,Zf = 20m) Flights: (a) X Position of
Forward Flight, (b) X Velocity of Forward Flight, (c) Pitch Angle of Forward Flight, (d) Z
Position of Forward Flight, (e) Cumulative Energy Used of Forward Flight, (f) X Position
of Diagonal Flight, (g) X Velocity of Diagonal Flight, (h) Pitch Angle of Diagonal Flight, (i)
Z Position of Diagonal Flight, (j) Cumulative Energy Used of Diagonal Flight

the baseline controllers maintain high pitch angle and forward acceleration later into the op-

eration. In this way, the peak forward velocities of the optimized trajectories avoid exceeding

the energy-optimal forward cruise velocity shown in Fig. 4.5. This behavior also allows for

less extreme pitch angles at high forward velocities, improving energy efficiency by increasing

the lift-to-drag ratio as discussed in Section 4.3. The baseline controllers instead maintain

a steeper pitch angle, causing increased power requirements over the middle portion of the
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operation. This effect can be clearly observed from roughly 4 to 7.5 s in Fig. 5.2 (e), during

which time the total energy used by the baseline controllers, especially HVB, is shown to

increase much more rapidly than the energy used by the OTF controller.

The optimized deceleration behaviors also demonstrate significant energy saving over

the those of the baseline controller. The improvements are in part related to the previ-

ous cruise portion of the operation, during which the OTF controller allows the vehicle to

start deceleration gradually. Consequently, body drag supplements active braking, reducing

both the time and energy costs of the final deceleration portion, compared to the baseline

controllers which must actively brake from a higher velocity. Additionally, the optimized

trajectories are able to brake more precisely by considering the full vehicle dynamics. For

the baseline controllers, the target velocity is directly proportional to the remaining distance

to the endpoint. This approach causes the vehicle to gradually slow down as it approaches

the endpoint, requiring significant time spent at low and energy-inefficient velocities. As a

result, the baseline controllers are less precise than the OTF controller optimized based on

the full vehicle dynamics, which allows the vehicle to stop more promptly and efficiently.

Across all flight segments, the OTF controller is also able to balance the forward and

horizontal motion of the vehicle more efficiently than the baseline controllers. An example

can be observed in the second column of Fig. 5.2, i.e. subplots (f)-(j), showing the trajectories

for a diagonal flight with simultaneous horizontal and vertical motion. In subplot (h), it is

seen that the optimized trajectory reaches and maintains the steepest forward pitch angle Θ

early in the motion from approximately 0.5 to 2 s, during which time the vertical position

Z increases slowly as shown in subplot (i). Meanwhile, the baseline controllers are at their

steepest forward pitch angles from approximately 2.5 to 4.5 s, when Ż is also around its peak.
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According to the previous analysis in Section 4.3, high pitch angle, when coupled with large

perpendicular inflow velocity vz (which increases with vehicle vertical velocity Ż), would

decrease the propeller energy efficiency by reducing the lift-to-drag ratio. Consequently, the

baseline controllers will suffer lower energy efficiency compared to the OTF controller, due to

the coupling of high pitch angle with high vertical velocity during the course of the motion.

The effects of these behaviors can be observed in subplot (j), which shows that, although the

power used by the OTF controller is initially higher than that of either baseline controller,

the latter increased much faster during the middle portion of the operation, and the total

energy used is roughly equal at around 5.5 s. At that point, according to subplots (f) and (i),

the OTF controller has almost reached the endpoint, while the baseline controllers still have

significant forward and upward distance to cover. Specifically, at this time, the vehicle is 3.8

m from the endpoint (3.6 m horizontal, 1.2 m vertical) under the OTF controller, compared

to 12.6 m (11.9 m horizontal, 4.2 m vertical) under the HVB controller. The comparison

demonstrates the advantage of the OTF controller in energy efficiency (per distance).

It should also be noted that the calibration and constraint settings generally need to

be more conservative for the baseline controllers than for the optimized trajectory-following

controller, reducing the operation range as well as the potential of energy saving. This

is because the achievable operating limits of the UAV, governed by the underlying funda-

mental physics, could change under different vehicle conditions. For example, as shown in

[58], battery energy depletion over the course of a flight can cause significant reduction in

the maximum attainable thrust by the propeller, due to the impacts of battery voltage on

propulsion through the motor and ESC dynamics. Therefore, assuming that the vehicle is

appropriately modeled, the optimized trajectories could exploit the full energy saving poten-
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tial while following the (varying) limits accurately by taking into account the vehicle physical

dynamics. By contrast, it would be difficult for the baseline controllers to accommodate both

aspects of the performance. On one hand, if the controller is calibrated under the full battery

condition, it is likely to request unattainable thrust under low battery, e.g. near the end of

the flight, potentially resulting in unsafe operating conditions. On the other, if the controller

parameters and constraints are set conservatively to accommodate all operating conditions,

the energy performance would be sacrificed.

Finally, based on Table 5.1, the performance of the low-velocity baseline controller can

also be evaluated. While this controller does generally have improved energy efficiency

over the high-velocity baseline controller, it is only able to achieve a small fraction of the

improvement by the optimized trajectory following controller. For example, for the 100 m

horizontal flight, the LVB controller reduces the energy consumption over HVB by 2.8%,

while the OTF controller achieves a much higher reduction of 9.2%. It is seen from Fig. 5.2

(b) that the improvement by the LVB controller is mainly achieved by keeping the vehicle at

the energy-optimal horizontal velocity (which is 12.6 m/s as identified from Fig. 4.5) during

the middle cruising portion of the operation, while the velocity under the HVB controller is

higher and less energy efficient. Such improvement is more significant in flights with a longer

horizontal component as seen across Table 5.1. Nevertheless, the minimal improvement in

comparison with the OTF controller demonstrates the importance of optimizing not only the

steady-state behavior of the UAV, e.g. cruising velocity, but also the dynamic maneuver, e.g.

acceleration, deceleration, and pitching, based on the holistic vehicle system-level dynamics.
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5.4 Experimental Validation

In this section, experimental testing results are presented to validate the performance of the

optimized trajectories and feedback control. The testing platform and control implemen-

tation is described first in this section, followed by the experimental procedures and result

analysis.

5.4.1 Testing Platform

The test vehicle previously described in Chapter 3.2.2 is used for testing, which can be

controlled to perform different flight operations with data measured and recorded for anal-

ysis and validation. Regarding the control software, as described in Chapter 5.2, the feed-

back controllers of the developed framework are implemented using the custom script of the

ArduPilot Mission Planner in a two-layer PID control architecture. The high-level control

runs in a ground station computer, which communicates with the low-level control in the

onboard flight controller for exchange of command and sensor information as well as data

logging. Each of the vehicle states required for feedback control as shown in Fig. 5.1 are

calculated from a combination of measurements from the vehicle’s GPS, accelerometer, and

gyroscope hardware. The sensor measurements are processed and filtered by the onboard

flight controller, providing accurate measurements of the required vehicle rigid-body states

which can be accessed in real time for feedback control. As the benchmark for compari-

son, the aforementioned two baseline controllers are also implemented for testing using the

waypoint-based Auto Mode navigation function of the Mission Planner.
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5.4.2 Experimental Procedure

Four vehicle operations previously shown in Chapter 5.1 were performed for experimental

validation. These operations included horizontal flights, with distance of 50 m, 70 m, and

100 m, and diagonal forward climbing flight, with the endpoint set at 50 m ahead of and

20 m above the starting position. The experiments were conducted at the Woodland-Davis

Aeromodelers field, which is an open-air flat grass UAV test ground in Davis, CA, shown

in Fig. 3.7. It is noted that wind can have significant impact on vehicle performance, as

discussed in Chapter 4.3. This impact is demonstrated in Fig. 4.5, as a moderate 5 m/s

wind speed is shown to affect both the optimal energy-efficiency and respective cruising

velocity substantially. To comprehensively evaluate the vehicle energy performance under

the inevitable wind, each operation was repeated in multiple directions, including towards,

opposite, and perpendicular to the wind heading. The wind speed and heading were obtained

based on the trim condition under stationary hovering test. Specifically, when the vehicle

is hovering, the body drag caused by horizontal wind is equal in magnitude and opposite in

direction to the horizontal component of the total thrust,

CBDV̇
2
wind = |

8∑
j=1

Tj,horiz|. (5.8)

The total thrust ΣTj, and the magnitude and direction of its horizontal component ΣTj,horiz,

can be calculated using the equations in Chapter 2.1.4 and the measured orientation of the

vehicle. Using this approach, the wind was measured multiple times over the course of testing

to account for the changing wind conditions. For each measurement, the trim condition was

recorded at multiple yaw angles to improve accuracy and compensate for potential sensor

bias. The overall average wind speed was found to be approximately 5 m/s heading South
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at the day of testing, which agreed with weather reports. Specific wind measurements for

each operation are provided in Chapter 5.4.3.

5.4.3 Validation Results and Analysis

The experimental testing results are presented in Table 5.2. This table summarizes the total

energy consumption under each controller for each operation and vehicle heading, as well as

the improvement over the HVB controller. The wind conditions for each group of operations

are also specified, including wind velocity and direction (vehicle heading) measured by angle

clockwise from North. It is noted that, due to time and battery energy constraint during

testing, results for the LVB controller are only available for 50 m and 100 m forward flights.

As mentioned in Chapter 5.3, to consistently compare each controller, the cumulative energy

consumption for each operation was calculated at the time when the vehicle entered a certain

radius around the endpoint (increased to 4 m to accommodate greater variance due to wind

disturbances and sensor noise under experimental conditions).

Based on these results, the developed trajectory optimization and feedback control frame-

work is shown to achieve a significant reduction in energy use relative to both baseline con-

trollers. Averaged across all operations, the proposed OTF controller based on the optimized

trajectories uses 10.2% less energy than the high-velocity baseline controller, and 8.3% less

than the low-velocity baseline. The observed improvements are in good match with those

from simulation testing in Chapter 5.3, which show average improvement of 10.7% and 9.0%

respectively. To examine individual operations in more detail, Fig. 5.3 shows the trajec-

tories of key vehicle states for 50m forward flights under different headings using the OTF
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Xf , Zf (m) (50, 0) (70, 0)

Controller HVB OTF LVB HVB OTF

Wind (m/s, °) 5.4, 167 6.4, 200 5.3, 180 6.4, 200 3.9, 163

0° 6.8 kJ 5.3 kJ (-22.1%) 6.5 kJ (-4.4%) 8.7 kJ 7.4 kJ (-14.9%)

45° 5.8 kJ 5.2 kJ (-10.3%) 5.6 kJ (-3.4%) 7.9 kJ 7.2 kJ (-8.9%)

90° 5.4 kJ 4.8 kJ (-11.1%) 5.3 kJ (-1.9%) 6.7 kJ 6.4 kJ (-4.5%)

180° 5.2 kJ 4.6 kJ (-11.5%) 5.3 kJ (+1.9%) 5.9 kJ 5.7 kJ (-3.4%)

225° 5.0 kJ 4.1 kJ (-18.0%) 5.2 kJ (+4.0%) 6.3 kJ 5.9 kJ (-6.3%)

270° 5.4 kJ 5.5 kJ (+1.9%) 5.3 kJ (-1.9%) 7.0 kJ 6.6 kJ (-5.7%)

Mean 5.6 kJ 4.6 kJ (-11.9%) 5.5 kJ (-0.9%) 7.1 kJ 6.5 kJ (-7.3%)

Xf , Zf (m) (100, 0) (50, 20)

Controller HVB OTF LVB HVB OTF

Wind (m/s, °) 3.9, 163 5.3, 180 5.3, 180 6.4, 200 3.9, 163

0° 10.5 kJ 10.6 kJ (+1.0%) 10.5 kJ (+0.0%) - -

90° 9.1 kJ 8.5 kJ (-6.6%) 8.7 kJ (-4.4%) 8.6 kJ 6.8 kJ (-20.9%)

180° 8.3 kJ 7.4 kJ (-10.8%) 8.3 kJ (+0.0%) 8.5 kJ 6.5 kJ (-23.5%)

270° 8.8 kJ 8.4 kJ (-4.5%) 8.9 kJ (+1.1%) 8.6 kJ 7.5 kJ (-14.0%)

Mean 9.0 kJ 8.7 kJ (-5.3%) 9.1 kJ (-0.9%) 8.6 kJ 6.9 kJ (-19.5%)

Table 5.2: Energy Consumption under 4 Experimental Flight Operations in Different Di-
rections for 3 Feedback Controllers including High-Velocity Baseline (HVB), Optimized-
Trajectory-Following (OTF), and Low-Velocity Baseline (LVB)

and HVB controllers. These experimental results demonstrate that the energy performance

improvements achieved in simulation are largely captured in real-world operation, and that

the overall behaviors of each controller are similar. Meanwhile, the improvements achieved

by the OTF controller is slightly worse than those in simulation due to the uncertainties and

disturbances under real-world experimental conditions. In particular, wind has been shown
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Figure 5.3: Evolution of Vehicle States in 50 m Forward Flight Using Optimized-Trajectory-
Following and High-Velocity Baseline Controllers: X-Axis (forward) Position for (a) OTF
and (b) HVB, Pitch Angle for (c) OTF and (d) HVB, and Power Consumption for (e) OTF
and (f) HVB

to significantly affect the vehicle, and several specific behaviors are observed, which explain

the discrepancy between simulated and real-world performance.

One behavior beneficial to the energy performance of the OTF controller relative to the

baseline controllers is the larger variation of the forward velocity with respect to wind. As

described in Chapter 5.2, the baseline control architecture sets the pitch angle command to

follow a forward velocity target, which is dependent on the remaining distance to the end-

point. Consequently, under the baseline controller, the only rigid-body state with significant

variation is the pitch angle, allowing the vehicle to track the forward velocity target closely
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under whatever wind conditions. By contrast, the OTF controller calculates the pitch angle

command using the errors of three states relative to the target trajectories, i.e. forward

position, forward velocity, and pitch angle, each with an assigned weight. Under wind dis-

turbance, the controller would not be able to track all three states exactly, and this effect

actually helps improve the energy efficiency over the baseline controllers. Specifically, the

maximum forward velocity reached by the OTF controller is generally lower when travelling

against the wind, and higher when travelling with the wind. This variation, which can be

observed in the OTF forward position trajectories shown in 5.3 (a), coincides with the trend

of the energy-optimal cruising velocity with respect to wind, as shown in Fig. 4.5. Conse-

quently, the vehicle velocity under the OTF controller remains closer to the wind-adjusted

optimal forward velocity near the middle of the operation, while the baseline controllers

reach approximately the same maximum forward velocity regardless of wind. This differ-

ence is particularly notable due to the high forward velocity target of the HVB controller,

at which the energy cost per meter can increase significantly with headwind. As a result,

despite the consistency of the forward position and velocity profiles over different wind con-

ditions, the power used by the baseline controller, shown in Fig. 5.3 (f), is observed to

increase considerably near the middle of the operation when travelling against the wind.

Meanwhile, there are some other behaviors of the OTF controller that could lead to

degraded energy performance under real-world experimental conditions. First, the OTF

controller tends to be more sensitive to disturbances, as demonstrated in Fig. 5.3 by the

larger variation of the vehicle state trajectories compared to those of the baseline controller.

This is in part due to the PID gains of the OTF controller, which are calibrated to be more

aggressive and responsive compared to the baseline controllers, enabled by the underlying
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physical model. While the responsiveness improves the energy performance as discussed in

Chapter 5.3, it would also make the OTF controller more sensitive to wind disturbances.

Second, the vehicle trajectories are currently optimized as time sequences, which also makes

trajectory following more susceptible to wind disturbances. For example, the braking por-

tion of the trajectory occurs at a fixed time regardless of the position of the vehicle, and

hence the vehicle may sometimes slow down earlier than expected when traveling against

the wind. This would result in undershoot in trajectory following, which requires the ve-

hicle to accelerate again after braking, leading to waste of energy. This effect tends to be

more significant in longer flights, due to the accumulation of position errors caused by wind

disturbances. While this effect does not cause substantial degradation in energy efficiency,

the vehicle energy performance can be further improved by parameterizing the trajectory in

terms of vehicle states, e.g. forward position and velocity, instead of time. One approach

is to formulate trajectory optimization as an optimal control problem and derive control

policies, which could perform trajectory generation in real time based on feedback of the

actual vehicle states.

It is also noted that there were some fluctuations in wind conditions across flights that

could affect the comparisons. For instance, in the 100 m forward flight case, the wind speed

was higher for operations under the OTF controller (5.3 m/s) than those under the HVB

controller (3.9 m/s). This had a particularly significant impact on the performance of the

northbound operations (i.e. against the wind), where the baseline slightly outperformed the

OTF controller, in part due to the wind speed favoring the former. Although the opposite

effect occurs when travelling with the wind, the impact is less substantial, as it can be

observed in Fig. 4.5 that the effect of wind opposite vehicle motion is generally greater in
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magnitude than that of the same wind assisting vehicle motion. In the 70 m forward flight

case, the performance improvement of the OTF controller (over HVB) is instead the best

when travelling North and worst when travelling South, while the opposite is true in the 100

m case, as wind speed during the OTF controller operation is lower than that during the

HVB operation in the 70 m case but higher in the 100 m case. This effect does not generally

favor either the HVB or OTF controllers, but introduces uncertainty and fluctuations in the

results, which is the main reason why experiments were repeated multiple times in various

directions to ensure more fair comparison of controller performance.

The OTF controller achieves the largest improvement over the baseline controllers in the

diagonal flight case (Xf = 50, Zf = 20) in experiments (-19.8% on average), which is signif-

icantly higher than in simulation (-9.3%). In both cases, the improvement is largely due to

the ability of the optimized trajectories to balance both horizontal and vertical motion effi-

ciently, as described in Chapter 5.3. However, the more prominent performance improvement

observed in the experimental data is also caused by a baseline controller behavior not seen in

simulation. Specifically, the HVB controller was observed to decelerate horizontally earlier

than expected in diagonal flight, requiring the vehicle to take additional time and energy

regaining forward velocity to reach the endpoint. This behavior appears to be a result of the

real-world implementation of the controller, which tries to avoid overshoot by attempting

to reach the vertical and horizontal end states simultaneously. This issue demonstrates the

difficulty of calibrating a robust and efficient baseline controller capable of balancing motion

along multiple axes, due to the total reliance on feedback with no knowledge of underlying

system physics.

Finally, it can be observed that the energy consumption for each controller and operation
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group in experiments is generally lower than that in simulation. One possible cause is the

larger radius about the target point used in experimental testing to identify the end of

operation, which was necessary to accommodate the greater variance introduced by wind

effects. As another possible explanation, there may be slight discrepancies between the

UAV model and the real-world test vehicle. For example, the body drag coefficient was

identified using data from previous experiments, by fitting the model prediction of forward

acceleration to measurement under horizontal vehicle motion. Although multiple trials were

used to minimize variance, there are potential uncertainties, such as those introduced by

wind effects, which would induce errors in the result. However, despite these discrepancies,

the OTF controller achieves significant reduction in energy consumption in all cases of flights,

and the improvement over the baseline controllers is similar in experiments and simulation,

demonstrating the effectiveness of the developed planning and control framework to improve

vehicle energy performance in real-world applications.
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Chapter 6

Polynomial Approximation for

Efficient Trajectory Generation

While the optimized trajectory generation approach developed in the previous chapter min-

imizes the energy cost of vehicle operations, the significant computational requirements of

the approach make it impractical for real-time trajectory generation, particularly for hard-

ware with limited processing power such as a vehicle onboard controller. To address this

limitation, we propose to use polynomial equations to characterize the energy-optimal tra-

jectories in this chapter, which can be used for efficient trajectory generation for a wide

range of vehicle operations. These approximations, which substantially reduce the computa-

tional complexity of planning and control, capture key energy-efficient behaviors identified

from the optimized trajectories, and are shown to achieve similar energy performance as the

optimized trajectories in both simulation and real-world test flights.

6.1 Trajectory Fitting

In order to characterize the polynomial approximations, a reference set of optimized trajec-

tories was generated for operations with destination [Xf , Zf ] over the range of 0m≤Xf≤70m
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and −30m≤Zf≤50m, as shown in Fig. 6.1 (a). Specifically, the optimized trajectories are

generated at 10m increments along the X-axis and 5m increments along the Z-axis over most

of the range, except at 10 m increments along both axes over the range of 15m≤Xf≤65m

and −25m≤Zf≤25m. From these results, key patterns were identified and used to categorize

operations into 3 groups, which are then fitted with polynomial approximations capturing

the energy-efficient behaviors.
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6.1.1 Operation Groups

Based on the relationship between the operation end time tf and the destination (Xf and

Zf ) shown in Fig. 6.1 (b), operations can be divided into three groups within the reference

range. As is visible in Fig. 6.1 (a), operations in group 1 have relatively longer forward flight

components, and so tf is primarily influenced by Xf . For operations in groups 2 and 3, the

vertical component is longer, and so tf is instead solely dictated by Zf . The 2 groups are

divided according to the direction of Zf , with climbing operations (Zf > 0) in group 2 and

descending operations (Zf < 0) in group 3.

In group 1, while the end time tf,G1 is primarily affected by Xf , tf,G1 is also negatively

correlated with Zf . This is because a larger vertical displacement necessitates a higher

average thrust throughout the operation, which in turn increases the horizontal acceleration

of the vehicle and reduces operation time. To capture these factors, tf,G1 is approximated as

tf,G1 = (C1,tfXf
2 + C2,tfXf + C3,tf )(C4,tfZf

2 + C5,tfZf + C6,tf ). (6.1)

Here, C1,tf through C6,tf are constant coefficients fitted based on the reference set, and are

given in Eqn. 9.3 of the Appendix 9.4. Eqn. 6.1 is found to predict the actual values

closely, with an error mean of 0.01s (0.2%) and standard deviation of 0.12s (3.9%) across

all reference operations in this group. In group 2 and 3, due to the vertical acceleration

constraint of ±2m/s set in Chapter 5.2, Zf is sufficiently large that the vehicle is unable to

reach the endpoint in the time predicted by Eqn. 6.1. As a result, tf is dictated strictly by

Zf and the vertical acceleration limit magnitude Z̈max = 2 as

tf,G2 = tf,G3 =

√
4Zf/Z̈max =

√
|2Zf |, (6.2)

which is the minimum time in which the vehicle can reach the endpoint. The predictions
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for these groups again match the actual values well, with an error mean of -0.01s (-0.2%)

and standard deviation of 0.04s (0.6%) for group 2, and -0.03s (-0.5%) and 0.07s (1.1%) for

group 3.

With these operation groups defined, polynomials can now be derived to approximate

the trajectories of the states needed for feedback control, which include Ẋt, Θt, and Żt

as described in Chapter 5.2. Meanwhile, Xt and Zt trajectories are also needed to ensure

position tracking, and can be obtained by numerically integrating the corresponding velocity

trajectories over the operation time. Noted that as the polynomials used to calculate tf and

the velocity trajectories are characterized separately, it is not guaranteed that the position

trajectories obtained by integrating the velocities will end at the target Xf and Zf exactly.

Therefore, the position and velocity trajectories are scaled accordingly to correct for small

discrepancies and ensure that the exact endpoint is reached.

6.1.2 Group 1

Regarding group 1, to capture key energy-efficient behaviors and their varying features across

operations, the relevant trajectories are divided into segments for each reference operation. A

sample operation for this group is shown in Fig. 6.2, which includes both the optimized target

trajectory and the polynomial approximation for the operation with endpoint Xf = 60m,

Zf = 20m. The segment boundaries are marked for Ẋt, Żt, and Θt.

For Ẋt and Θt, five segments are used. The first segment captures the initial forward

acceleration of the vehicle, during which the vehicle pitches forward rapidly, subject to the

Θ and Θ̈ constraints. After reaching the Θ constraint, this pitch angle is held until the
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segment end time t1,X,G1. In segment 2, Θ starts decreasing (in magnitude), as the vehicle

continues accelerating but at a slower pace until Ẋ reaches its peak value. In segment 3,

the vehicle begins to decelerate gradually using body drag, as the pitch angle reduces to

nearly zero. This segment ends when Θ passes -0.05 rad, which is selected rather than

0 rad to avoid fluctuations that tend to occur in the optimized Θ trajectories at around

0 rad. These fluctuations, which have limited impact on overall energy performance, are

attributed to minor numerical imprecision during optimization , and would obfuscate the

boundaries between segments if split across segments 3 and 4. Segments 4 and 5 capture

the final deceleration behavior of the vehicle as it approaches Xf . In segment 4, Θ gradually

increases to the upper limit of 0.6 rad for maximum braking, while in segment 5, Θ rapidly

decreases to reach 0 precisely at the endpoint.

Similarly, Ż is divided into 5 segments based on Z-axis behaviors observed across oper-

ations in this group. In the first segment, which is typically very brief, vertical acceleration

is minimal. This allows for increased thrust to maximize forward acceleration once a higher

pitch angle is reached without causing Z-axis overshoot. To balance forward and vertical

motion, this segment increases in duration with Xf and decreases with Zf , and hence does

not appear in all operations. Next, segments 2 and 3 contain the period of vertical accelera-

tion, which is held at the maximum limit (2 m/s2) in segment 2. In segment 3, the vertical

acceleration begins decreasing, and the vehicle continues to accelerate upwards gradually,

until reaching the maximum value of Ż. The vehicle then decelerates vertically to stop even-

tually at Zf in segments 4 and 5, which are divided by the 2 seconds mark before the end of

the operation. This value was chosen to capture the behaviors observed in the reference set

during the final 2s of operations in group 1, featuring rapidly-changing pitch angle to adjust
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thrust during segment 5.

With these segments defined, the optimized trajectories for each segment of each reference

operation are normalized along both the time and magnitude axes. The normalized segments

are then averaged across operations, and the averages are used to fit a set of sixth-order

polynomial equations. The normalized state trajectory segments and the corresponding

averages for the forward velocity and pitch angle profiles in this group are shown in Fig. 6.3.

The corresponding figures for the vertical velocity are given in Fig. 9.7 of Appendix 9.4,

along with the coefficients for the normalized polynomials in Table 9.2.
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Figure 6.3: Normalized State Trajectory Segments for Ẋ and Θ for Group 1 Operations

Next, to use these polynomial approximations to generate trajectories for a given oper-

ation, equations must be defined to determine the end of each segment. Each segment end

state is approximated by a linear relationship with respect to a certain combination of Xf

and Zf . The end state values of Ẋ and Θ for each operation in the group 1 reference set,

as well as the corresponding linear approximations, are shown in Fig. 6.4 with equations for

all group 1 segment end states given in the appendix in Eqns. 9.4 and 9.5. For example, the

equations for the end times of Ẋ and Θ segments 1 through 4 in group 1 are approximated

as

t1,X,G1 =0.1631(Xf − Zf/2)
0.5 + 0.5294

t2,X,G1 =0.03483(Xf − Zf/2) + 1.210

t3,X,G1 =t2,X + 0.0004470(Xf + 0.35Zf )
2 + 0.1921

t4,X,G1 =tf − 0.5487,

(6.3)
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while the values of Ẋ at the end of these segments are approximated as

Ẋ1,G1 =0.9000(Xf + Zf/2)
0.5 + 2.5170

Ẋ2,G1 =0.9893(Xf + Zf/2)
0.5 + 3.8678

Ẋ3,G1 =min{0.1039Xf + 5.7009, 9.8581}

Ẋ4,G1 =2.0362.

(6.4)

Note that the G1 subscripts here denote that these equations apply to group 1, and the

X subscripts in Eqn. 6.3 are used to distinguish from the Ż segment end times, which

are instead calculated using Eqn. 9.5 in Appendix 9.4. Although these relationships were

determined by fitting the reference solutions, there is typically a logical correlation underlying

the obtained polynomial. For example, t1,X,G1 and t2,X,G1 increase with Xf due to the

increased total duration of the operation, but decrease with Zf as the increased thrust

reduces the time needed for accelerating. Similarly, Ẋ1,G1 and Ẋ2,G1 increase with Xf , as

higher forward velocity is required to reach the endpoint, as well as with Zf , as more thrust

is available for early acceleration to reach higher velocity. It should also be noted that

some of the equations are constant, typically due to the definition of the segment (e.g. the

aforementioned Θ1,G1, which is set to -0.6 rad), or due to the consistent behavior observed

across operations. Finally, piecewise linear fits are used for certain cases, such as Ẋ3,G1, as

it was found to increase linearly with Xf up to a maximum value at Xf = 40m, then remain

nearly constant at an average of 9.86 m/s . Similarly, Ż1,G1, shown in Eqn. 9.5 and Fig. 9.4

of Appendix 9.4, saturates at a maximum value of 0, and Ż2,G1 is affected by the saturation

of Ż1,G1 as well as its own lower limit of 0.

89



2 4 6 8

1

1.2

1.4

1.6

1.8

2

T
im

e
 (

s
)

0 50 100
1

2

3

4

0 2000 4000 6000
0

1

2

3

4

0 20 40 60

X
f

0

0.2

0.4

0.6

0.8

1

4 6 8 10
4

6

8

10

12

F
o
rw

a
rd

 V
e
lo

c
it
y
 (

m
/s

)

4 6 8 10
6

8

10

12

14

0 20 40 60
6

7

8

9

10

0 20 40 60
1

1.5

2

2.5

3

0 20 40 60
-0.75

-0.7

-0.65

-0.6

-0.55

-0.5

P
it
c
h
 (

ra
d
)

4 6 8 10
-0.4

-0.3

-0.2

-0.1

0 20 40 60
-0.2

-0.1

0

0.1

0 20 40 60

0.5

0.6

0.7

Figure 6.4: Group 1 tX , Ẋ, and Θ Segment End Values, Including Fitted Equations (Red)
and Actual Values from Reference Optimized Trajectories

6.1.3 Groups 2 and 3

In groups 2 and 3, which contain operations with relatively large vertical components, tf is

dictated by Zf and the vertical acceleration constraint as defined in Eqn. 6.2. Consequently,

operations in these two groups exhibit similar behaviors, and are typically simpler than

operations in group 1. Most notably, only two segments are needed for Ż in these groups.

As shown in Fig. 6.5, vertical acceleration is held at the positive maximum limit for the

first half of the operation in group 2, and the negative maximum limit for the remainder.

This behavior minimizes the time required to complete the operation, which outweighs the

loss of propeller efficiency compared to a more gradual approach. The opposite behavior is
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observed in group 3, where maximizing downward velocity both reduces operation duration

and increases propeller efficiency.

For Ẋ and Θ, four segments are used. Segment 1 contains the initial forward acceleration

period, and is similar to the equivalent segment in group 1, except that the (negative)

maximum pitch limit is not reached in the cases with a small Xf value where high forward

acceleration is not required. In the cases when the pitch angle limit is not reached, the

segment simply ends when the pitch angle reaches its peak value. Segment 2 ends when the

forward velocity reaches its maximum value, and segment 3 (deceleration) ends at the peak

pitch angle, which typically does not reach the upper limit in these groups. The segment

end state equations for group 2 are given as Eqn. 9.6 and shown in Fig. 9.5 of Appendix

9.4. It should be noted that all segment end state equations for segment 1 in this group

use two piecewise linear segments, as the pitch angle does not always reach the limit as

previously mentioned. Additionally, less data was available for group 3, primarily due to

the limitations of blade element momentum theory in descending flight [64], which made

the generation of optimized trajectories less accurate below Zf = −30m. As a result, the

polynomial approximation in group 3 tend to be less accurate, and simpler equations are

used to avoid further overfitting. The segment end state equations for group 3 are given

in Appendix 9.4 as Eqn. 9.7 and shown in Fig. 9.6 For both groups 2 and 3, the segment

polynomial approximation coefficients are given in Table 9.3 and shown in Fig. 9.8.
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6.2 Performance Evaluation of Fitted Trajectories

In this section, the performance of the approximated trajectories is evaluated in simula-

tion and real-world flight experiments, in comparison with both the originally optimized

trajectories and the baseline controller.

6.2.1 Evaluation in Simulation

In order to evaluate the polynomial approximations over the full range of operations, simula-

tions were performed similarly to those in Chapter 5.3. Specifically, the energy costs for each

operation in simulated feedback control using the fitted polynomial trajectories (referred to

as the polynomial trajectory following (PTF) controller) were compared to those obtained

using the optimized trajectory following (OTF) controller as well as to those of the high-

velocity baseline (HVB) controller. Numerical simulation results over a range of Xf and Zf

are given in Table 6.1, with summary statistics presented in Table 6.2. Additionally, the full

trajectories for a sample operation with Xf = 60m and Zf = 20m are shown in Fig. 6.7.
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Figure 6.7: Simulation Results for a Sample Operation (Xf = 60m, Zf = 20m), Including
Optimized State Trajectories (”Optimal Trajectory”) and Feedback Control Results Using
Optimized Trajectories (”Feedback (Optimal)”), Polynomial Trajectories (”Feedback (Poly-
nomial)”), and Baseline Controller (”Feedback (Baseline)”); Subplots: (a) Forward Position,
(b) Vertical Position, (c) Pitch Angle, (d) Forward Velocity, (e) Vertical Velocity, (f) Energy
Consumption

The fitted polynomial trajectories are shown to approximate the optimized trajectories

accurately in most cases, using a slight 1.3% more energy on average than the optimized

trajectories across the full operation range, with a standard deviation of 3.1%. While the

energy cost is very similar between the two in most cases, the polynomial fits deviate more

significantly from the optimized trajectories in descending forward flight (relative to ascend-

ing). As a result, the mean energy cost differences in groups 1 and 3 are slightly larger

than the overall average, at 2.1% and 1.9% respectively. While this overall difference is

small, larger discrepancies are observed for individual operations, especially at those with

long descending distance (i.e. large negative values of Zf ), up to a maximum difference of
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15.1% for the case of Xf = 70m, Zf = −30m. This is again due to the limitations of the

blade element momentum theory in descending flight, which tend to make the optimization

results less consistent in operations with significant negative Zf components. These limi-

tations prevented accurate generation of optimized trajectories below Zf = −30m, and so,

as shown in 6.1 (a), group 3 has fewer reference operations available than groups 1 and 2.

Consequently, it is more difficult to properly characterize the polynomials to achieve accu-

rate trajectory generation for those descending flights. From the full data, it is also noted

that there is a smaller cluster of operations near Xf = 10m, Zf = 0m where the polynomial

fits perform poorly in percentage error. This is primarily due to the very short length of

operations and hence low energy consumption in this range, and a small difference in energy

cost would cause a large percentage difference. Finally, the best results for the polynomial

trajectory approximation are achieved in group 2, with a mean difference of only 0.3%. This

is attributed to the larger number of operations available for fitting in this group than in

group 3, as well as the more consistent behaviors than in group 1, which contains climbing,

forward, and vertical flight operations.

The results comparing the polynomial trajectory following controller to the high-velocity

baseline controller are also given in Table 6.1, which demonstrate that the majority of the

improvements in energy cost achieved by the original optimized trajectories are retained

by the polynomial trajectories. Across the complete range of operations, the polynomial

trajectories achieve an average improvement of 22.4% in energy cost relative to the baseline

controller. The polynomial trajectories outperform the baseline in all groups, with average

energy cost reductions of 14.7% in group 1, 21.1% in group 2, and 41.9% in group 3, respec-

tively. Notably, the largest improvements tend to occur in operations with larger vertical
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displacements. This is attributed to the ability of the optimized trajectories to better balance

horizontal and vertical motion than the baseline controller, as discussed in Chapter 5, which

is captured by the polynomial trajectories. Additionally, the baseline controller requires

more strict (conservative) vertical velocity and acceleration constraints to ensure safe opera-

tion of the vehicle, while the trajectory-following controllers are capable of safely exploiting

the operation envelop to reach the endpoint more rapidly in flights with a larger vertical

component. This effect is especially significant in group 3, where the higher descending

velocity also increases propeller efficiency as discussed in Chapter 4.3.

6.2.2 Experimental Validation

To validate the polynomial trajectory generation, a set of test flights were performed, with

results given in Table 6.3. The PTF, OTF, and HVB controllers were tested for three

operations, with endpoint coordinates (i.e., Xf and Zf ) set to 50 m forward and 0 m up for

the first operation, 50 m and 20 m for the second, and 10 m and 20 m for the third. These

tests largely repeated the testing procedure previously described in Chapter 5.4.2, with some

adjustments noted. In particular, each operation was again run multiple times to control for

variation in experimental conditions, but the operations were tested in a single direction of

travel in order to better reduce variations caused by environmental effects. In addition, the

vehicle’s mass was reduced from 7.6 kg to 7.0 kg as a result of repairs.

From the results in Table 6.3, it is observed that the OTF and PTF controllers perform

similarly across all three operations. On average, the PTF controller uses 3.1% less energy

than the OTF controller for the first operation (forward 50 m), 5.3% more energy for the
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second (forward 50 m and up 20 m), and 0.9% less energy for the third (forward 10 m

and up 20 m). It is noted that, for all three operations, the range of results for the OTF

and PTF controllers overlaps, and the average PTF energy usage is within one standard

deviation of the OTF average. The reductions in energy consumption relative to the HVB

controller are also of note, and are found to be consistent with simulated results. Specifically,

from the experimental results, the PTF controller reduces energy consumption for the three

operations by 10.5%, 7.2%, and 22.4%, respectively, as compared to 13.2%, 10.0%, and

21.6% in simulation. The equivalent values for the OTF controller were found to be 7.6%,

11.9%, and 21.7% from the experimental results and 13.2%, 9.9%, and 22.1% in simulation.

While these reductions for the PTF controller in the first two operations are reduced slightly

relative to the simulation results, they are sufficient to conclude that, in real-world operation,

the PTF controller captures the majority of the energy savings achieved in simulation, as

well as those achieved by the OTF controller.
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Xf (m)

Zf (m) 10 30 50 70

HVB Energy Cost (kJ)

50 15.5 15.4 15.8 16.5

30 10.3 10.3 10.7 11.4

10 5.3 7.3 7.7 9.2

-10 4.2 4.6 5.7 7.2

-30 6.6 6.4 6.1 5.9

OTF Energy Cost (kJ)

& Change from HVB (%)

50
11.9 11.9 12.1 12.8

-23.2% -23.3% -23.2% -22.3%

30
8.2 8.3 9.0 10.5

-20.6% -19.5% -16.3% -8.0%

10
3.8 5.1 6.7 8.4

-27.6% -30.5% -12.9% -9.4%

-10
2.2 3.4 5.0 6.5

-48.6% -27.5% -13.2% -9.3%

-30
4.2 3.7 3.8 5.2

-37.0% -42.5% -37.9% -11.9%

PTF Energy Cost (kJ)

& Change from HVB (%)

50
11.9 11.9 12.1 12.9

-23.0% -23.2% -23.3% -22.1%

30
8.2 8.3 9.0 10.5

-20.4% -19.3% -15.8% -8.1%

10
3.9 5.0 6.7 8.4

-27.2% -31.1% -13.4% -8.8%

-10
2.2 3.3 5.0 6.8

-47.6% -28.1% -12.5% -5.1%

-30
4.1 3.8 4.1 5.9

-38.0% -40.4% -33.1% +1.5%

Table 6.1: Sample Simulation Results for Polynomial Trajectory Following (PTF), Compared
to Optimized Trajectory Following (OTF) and High-Velocity Baseline (HVB) Controllers

98



Total Group 1 Group 2 Group 3

OTF v. HVB
Mean -23.3% -16.5% -21.3% -42.9%

SD +11.4% +9.3% +3.5% +4.5%

PTF v. HVB
Mean -22.4% -14.7% -21.1% -41.9%

SD +11.8% +10.2% +3.5% +4.6%

PTF v. OTF
Mean +1.3% +2.1% +0.3% +1.9%

SD +3.1% +3.9% +0.6% +4.1%

Table 6.2: Summary Statistics for Comparison of Polynomial Trajectory Following (PTF),
Optimized Trajectory Following (OTF), and High-Velocity Baseline (HVB) Controllers

(50 m, 0 m) (50 m, 20 m) (10 m, 20 m)

Iteration HVB OTF PTF HVB OTF PTF HVB OTF PTF

1 5.04 kJ 4.73 kJ 4.54 kJ 7.81 kJ 7.02 kJ 6.82 kJ 5.82 kJ 4.71 kJ 4.44 kJ

2 4.89 kJ 4.62 kJ 4.49 kJ 7.78 kJ 7.01 kJ 7.18 kJ 5.72 kJ 4.46 kJ 4.70 kJ

3 5.27 kJ 4.37 kJ 4.51 kJ 7.51 kJ 7.14 kJ 7.51 kJ 6.00 kJ 4.73 kJ 4.63 kJ

4 5.05 kJ 4.97 kJ 4.58 kJ 7.82 kJ 6.08 kJ 7.19 kJ 6.15 kJ - 4.61 kJ

Mean 5.06 kJ 4.67 kJ 4.53 kJ 7.73 kJ 6.81 kJ 7.17 kJ 5.92 kJ 4.64 kJ 4.59 kJ

-7.6% -10.5% -11.9% -7.2% -21.7% -22.4%

Table 6.3: Energy Consumption under 3 Experimental Flight Operations for 3 Feedback Con-
trollers including High-Velocity Baseline (HVB), Optimized- Trajectory-Following (OTF),
and Polynomial-Trajectory-Following (PTF)
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Chapter 7

Mission Planning

The focus of this chapter is motion planning at the mission level, with the goal of identifying

the optimal ordering of waypoints in 3D space yielding the minimum energy consumption.

The work is enabled by the energy-efficient trajectory generation between waypoints devel-

oped in the previous chapters. In this chapter, the structure of the mission is first described,

followed by the proposed approach for mission optimization and the baseline approaches for

comparison. The optimization is performed over a large number of missions with randomized

waypoint locations, and key features of the optimal waypoint ordering and energy perfor-

mance improvements are identified and analyzed. In particular, it is interesting to find that

the minimum-energy order is not identical to the minimum-distance order in majority of the

missions due to the impact of motion on the aerodynamic efficiency of the UAV.

7.1 Problem Formulation and Optimization Approach

As shown in Fig. 7.1, a mission considered in this work consists of a set of NW waypoints

in 3D space, i.e. {Wi}NW
i=1 , which the vehicle visits each once before returning to its starting

position (origin O). The goal of mission planning is to minimize the total energy consumption
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Figure 7.1: Waypoints for a Sample Mission with NW = 8

over the whole mission,

min
S
E =

NW−1∑
i

EWsi→Wsi+1
+ EO→Ws1

+ EWsNW
→O (7.1)

where the optimization variable S = [s1, s2, ...sNW
] is the order of visiting the NW waypoints,

EWsi→Wsi+1
denotes the energy cost for the vehicle to move between adjacent waypoints, and

EO→Ws1
and EWsNW

→O are the energy costs to start from and return to the origin. It is

noted that the energy costs are the minimal energy consumption that can be achieved by the

energy-optimal trajectory studied previously. To evaluate such energy costs, a reference table

was pre-calculated using the polynomial trajectories for waypoints over a range of horizontal

(Xf ) and vertical (Zf ) displacements, as plotted in Fig. 7.2. In this work, interpolation from

this table is used to predict the energy cost between any pair of waypoints in Eqn. (7.1). The

optimization is subject to constraints on UAV dynamics, including limits on acceleration,

velocity, and pitch angle among others. In addition, the vehicle needs to stop and hover at
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each waypoint before proceeding to the next one. This mission structure is a realistic setting

with wide real world applications, including surveillance, inspection, and delivery tasks, in

which a multirotor UAV needs to stop and take images, perform measurements, or drop

packages at each waypoint. It is noted that this problem is a form of the NP-hard travelling

salesman problem, and solutions can be computationally difficult to find for large NW . While

it is possible to obtain the approximate solutions efficiently using heuristic approaches for

large NW [76, 44], the focus of this work is to explore the features of the optimal order, and

hence we consider NW between 6 and 10 and use enumeration to find the exact solutions.

Figure 7.2: Reference Table for Optimal Energy Costs between Waypoints over a Range of
Horizontal and Vertical Displacements

To demonstrate the performance improvement achieved by the energy-optimal mission

planning, the minimum-distance orders of the waypoints are also determined as the base-
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line for comparison, which can be more easily found without understanding the multirotor

energy dynamics. Specifically, 3 types of minimum-distance orders are considered, namely

those minimizing the horizontal distance XM , vertical distance ZM , and total distance DM .

The energy consumption of these orders are evaluated the same way as the energy-optimal

order. It will be seen that by analyzing and comparing the energy consumption against these

3 orders, the underlying mechanisms of the energy-optimal order can be better understood,

which are heavily dependent on the energy dynamics of the horizontal and vertical motion.

Also noted that each minimum distance order can be traversed in two directions, which

could have different energy implications. Additionally, for any mission with NW > 2, mul-

tiple minimum vertical distance orders could exist and the one with the shortest horizontal

distance XM is chosen as the minimum order for analysis.

7.2 Optimization Results and Energy Performance Anal-

ysis

In this section, optimization is first performed for large number of missions to evaluate

the energy performance of the optimal ordering, especially the statistics compared with the

baseline minimum-distance ordering. To further interpret the results, two sample missions

will be discussed in detail, which demonstrate the key features of the minimum energy order

related to the fundamental energy dynamics of the multirotor.
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7.2.1 Statistics of Mission Optimization Results

To evaluate the performance of mission planning, large numbers of missions (500 − 5000)

with random waypoint locations are generated over a series of NW and operation ranges. The

results comparing the energy performance of the different ordering approaches are presented

in Table 7.1, which shows the increase in energy consumption of the 3 min-distance orders

over the min-energy order in percentage. The histogram for one combination of mission

parameters (8 waypoints within range −30m < X < 30m, −30m < Y < 30m, −25m < Z <

25m) are given in Fig. 7.3, where the x-axis denotes the ratio of energy cost of each min-

distance order to that of the min-energy order. It is seen that for majority of the missions,

the minimum-distance order does not give the minimum energy consumption, as indicated

by the ”% Min-DM ̸= Min-Energy” column in Table 7.1, e.g. in 83.3% of the missions for

NW = 6 and 95.8% for NW = 10.

Energy Cost Relative to Min-Energy Order

Range (m) No. of

Missions

Min-XM Min-ZM Min-DM % Min-DM

̸= Min-EnergyNW X&Y Z Mean 90th %ile Mean 90th %ile Mean 90th %ile Max

6 ±30 ±25 5000 +7.16% +14.58% +2.72% +5.99% +2.15% +5.19% +14.87% 83.32%

8 ±20 ±25 5000 +16.25% +26.68% +2.53% +5.18% +2.62% +5.75% +13.51% 93.70%

8 ±30 ±25 5000 +10.16% +18.40% +3.19% +6.49% +2.81% +6.10% +12.93% 91.66%

8 ±40 ±25 5000 +6.12% +12.66% +4.29% +8.75% +2.12% +4.87% +12.60% 85.72%

8 ±30 ±15 5000 +4.27% +9.76% +4.98% +9.29% +1.58% +3.76% +10.58% 84.80%

10 ±30 ±25 500 +12.57% +20.18% +3.69% +7.08% +3.36% +6.55% +13.27% 95.80%

Table 7.1: Average, Maximum, and 90th Percentile Energy Cost Increase over Min-Energy
Order of Min-XM , ZM , and DM Orders for Missions with Varying Number of Waypoints
and Ranges

Furthermore, the maximum difference between the two orders is as high as 10.6-14.9%
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Figure 7.3: Histograms of Ratio of Energy Cost of Baseline Orders (Min-XM , ZM , and DM)
over Min-Energy Order for 5000 Randomized Missions, with Varying Number of Waypoints
and Ranges

depending on the mission ranges and number of waypoints, with the average and 90th per-

centile difference at 1.58%-3.36% and 3.76%-6.55% respectively. These results indicate the

significant energy loss when planning the mission just based on distance. Meanwhile, the

improvement is more prominent when comparing the minimum-energy order with minimum-

XM and minimum ZM orders. Specifically, minimizing ZM results in average increase in

energy consumption of 2.72%-4.98%, while minimizing XM results in average increase of
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4.27%-16.25%. Regarding the 3 baseline minimum distance ordering, although minimizing

the total distance DM uses the least energy on average, the performance is not consistent

across individual missions. Specifically, minimizing ZM is more efficient in between 34.8%

and 45.6% of missions, and minimizing XM is more efficient in between 1.6% and 5.3% of

missions, again depending on mission parameters.

The key to interpret these results is to account for the stronger impact of vertical motion

on energy performance compared with horizontal motion. On one hand, vertical motion

contributes primarily to the perpendicular propeller inflow, which has a greater (negative)

impact on propeller energy efficiency than planar inflow, as discussed in Chapter 4. On the

other, the vertical velocity that can be achieved and sustained by the vehicle is typically

lower than that in the horizontal axis. Additionally, while the descending portion of a

mission typically reduces energy cost compared with other portion, this reduction is usually

outweighed by the increased energy cost of the equivalent climbing portion, which has to

be performed during the mission to bring the vehicle back to the origin. As a result, the

minimum-energy order tends to have a lower total vertical distance ZM than the minimum-

DM order. However, the minimum-energy order is typically not exactly the minimum ZM

order, as the tradeoffs between horizontal and vertical motion needs to be balanced reliably.

7.2.2 Analysis of Sample Missions

To further demonstrate and explore key features of the minimum-energy ordering, two sample

missions are chosen for discussion. The waypoints of the first mission are specified in Table

7.2, along with the minimum-energy and minimum-distance orders shown in Fig. 7.4.
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A B C D E F G H

X -20 20 -12 12 -12 12 -20 20

Y 20 -20 -12 12 12 -12 -20 20

Z 19 19 11 11 -11 -11 -19 -19

Table 7.2: Waypoints of Sample Mission 1

Figure 7.4: Minimum-Energy (Solid) and Minimum-Distance (Dashed) Orders for 8-
Waypoint Sample Mission, Including Multiple Viewing Angles.

The energy performance of different ordering approaches is given in Table 7.3. It is

seen that when using Fig. 7.2 to predict the optimal energy usage (by interpolation), the

minimum-DM order uses 13.5% more energy than the energy-optimal order for this mission,

even though the total distance traveled is 5% shorter (284.4 m versus 299.3 m). Meanwhile,

the min-XM order uses 25.4% more energy, and the min-ZM order uses either 7.0% or 5.6%

more (depending on direction), than the min-energy order, but outperforms the min-DM

order even though the distance traveled is 13% longer (321.4 m versus 284.4 m).
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Order Min-Energy Min-DM Min-XM Min-ZM

Direction - Mean (1, 2) Mean (1, 2) Mean (1, 2)

Predicted (kJ) 51.7 58.6 (58.6, 58.6) 64.8 (64.8, 64.8) 54.9 (55.3, 54.5)

% Increase - +13.5% (+13.5%, +13.5%) +25.4% (+25.4%, +25.4%) +6.3% (+7.0%, +5.6%)

PTF (kJ) 39.7 45.8 (45.9, 45.7) 50.2 (51.4, 49.0) 43.1 (43.6, 42.5)

% Increase - +15.4% (+15.6%, +15.1%) +26.6% (+29.6%, +23.5%) +8.5% (+10.0%, +7.1%)

HVB (kJ) 55.6 70.3 (70.2, 70.3) 86.4 (86.8, 86.0) 56.0 (56.2, 55.9)

% Increase +40.1% +77.1% (+76.9%, +77.2%) +117.7% (+118.6%, +116.8%) +41.2% (+41.6%, +40.8%)

DM (m) 299.3 284.4 311.6 321.4

(XM , ZM) (271.9, 108) (189.5, 174) (183.2, 240) (291.3, 76)

Table 7.3: Energy and Distance Metrics of a 8-waypoint Sample Mission under Different
Ordering Approaches and Feedback Controllers

Key features of each ordering approach can be analyzed based on this sample mission.

First, since vertical motion generally has a stronger (negative) impact on energy consumption

than horizontal motion as discussed in Chapter 4.2, the min-energy order tends to have larger

XM but lower ZM than the min-DM order, and the min-XM order performs very poorly. It

is seen from Fig. 7.4 that under the min-energy order, the vehicle visits all waypoints

on the lower half plane first (Waypoints F, G, E, H), and then proceeds to the top half

to minimize the vertical operations. By contrast, the min-DM order moves up and down

repeatedly, and hence contains multiple vertical operations with high energy costs. Second,

the min-energy order is also not identical to the min-ZM order. In fact, the difference in

ZM between the two orders (22 m) is greater than the difference in XM (19.4 m). This

behavior reflects the complexity of the tradeoffs between horizontal and vertical motion,

and the need for the physics-based energy consumption computation and optimization to

balance the two motions across the waypoints. Specifically, long operations along one axis,

108



especially the vertical axis, are generally less efficient than diagonal operations with motion

along both axes. For example, the vehicle consumes 9.0 kJ to move 50 m along X-axis while

climbing 30 m along Z-axis, compared to 8.2 kJ for climbing 30 m alone and 5.8 kJ for

moving 50 m forward alone. It is seen that adding horizontal motion to climbing barely

increases the energy consumption, while significantly increasing the distance traveled and

hence improves the overall energy efficiency. This is because moving long distance along

the Z-axis requires a long operation time due to the typical lower vertical velocity limit.

Therefore, motion along the other (horizontal) axis can be completed simultaneously under

relatively low velocity with minimal additional thrust, and hence only slightly increases

the energy consumption. In addition, a low horizontal velocity can also increase propeller

efficiency due to the aerodynamic effects, as discussed in Chapter 4.2, partially offsetting

the increased thrust required for diagonal motion. These factors have even more significant

impacts on the less efficient high-velocity baseline controller, as the HVB controller uses 10.7

kJ for the equivalent diagonal operation, 10.3 kJ for the vertical component, and 6.7 kJ for

the horizontal component. Under the minimum-energy order, the vehicle takes advantage of

these behaviors by visiting all waypoints below the X-Y plane first, crossing this plane only

once and minimizing the number of vertical operations required to complete the mission.

Therefore, in this mission, the min-energy order is mostly the same as the min-ZM order,

except that the former commands the vehicle to climb diagonally from point H to point

B, while the latter moves vertically to D and then horizontally to B. The energy saving in

this motion sequence accounts for most of the advantage of the min-energy order over the

min-ZM order.

For further analysis, a simpler 3-waypoint mission, consisting of the waypoints A, B, and
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C at (0, 40, 25), (40, 0, 25), and (0, 0, 24), is shown in Fig. 7.5 for discussion. In this mission,

the min-DM order is the same as the min-XM and ZM orders, and, depending on direction of

travel, uses either 27.1 or 28.0 kJ of energy, which is 3.9 or 7.5% more than the 26.1 kJ used

by the min-energy order. Interestingly, DM , XM , and ZM of the min-DM order, which are

167.8 m, 136.6 m, and 50 m respectively, are all shorter than those of the min-energy order,

which are 174.4, 160, and 52 m respectively. This result, though counterintuitive, is primarily

due to the fact that the min-energy order prioritizes diagonal flight with both horizontal and

vertical motion. In the min-DM order, the vehicle climbs purely vertically from the origin to

point C, using 8.29 kJ. In the min-energy order instead, it climbs diagonally to point B, using

only 0.48 kJ more energy while covering a significant horizontal distance. The vehicle then

travels to points C and A in two short horizontal operations before returning to the origin,

while the min-DM order replaces the motion from C to A with a longer operation from B

Figure 7.5: Minimum-Energy (Solid) and Minimum-Distance (Dashed) Orders of 3-Waypoint
Sample Mission, Including Multiple Viewing Angles.
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to A. This longer operation by the min-DM order uses 1.50 kJ more energy, significantly

outweighing the energy saved in the previous climb for a net increase of 1.02 kJ (3.9%)

over the min-energy order. Meanwhile, the reverse direction of this min-DM order uses even

more energy, in part because the final descent to O is vertical (from C) rather than diagonal

(from A). Interestingly, less energy is needed to descend diagonally to the origin from point A

(5.01 kJ) than vertically from point C (5.62 kJ), despite the former operation being longer in

distance with an additional horizontal component. To understand this effect, recall that, as

discussed in Chapter 4.2, forward motion can improve propeller efficiency by increasing the

propeller inflow. During simultaneous descent and forward flight, even though additional

thrust is needed for the forward motion, the increase in power consumption is minimal

because the propeller thrust-to-power ratio is higher at lower angular velocities (typical

of descent flight due to lower thrust demand). Consequently, the improvement in propeller

efficiency outweighs the increase in thrust, resulting in a net decrease of energy consumption.

Combined with the previously noted energy lost by climbing diagonally rather than vertically,

this min-DM order uses a total of 0.93 kJ (3.5%) more than its reverse, for a total increase

of 1.95 kJ (7.5%) relative to the minimum energy order. However, as the direction of travel

of a waypoint order has no effect on the distance travelled, the min-DM order is not able to

determine which direction is more efficient, and hence reduce the energy usage.
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7.3 Energy Performance Improvement by Combining

Optimal Mission Planning with Trajectory Gener-

ation and Control

It is also of great interest to examine how much improvement in energy performance can

be achieved by combining optimal mission planning with trajectory generation and control,

which has been investigated by simulation studies. Specifically, simulations of hundreds

of random missions have been performed for various combinations of mission planning ap-

proaches (including energy-optimal and minimum-distance ordering) and trajectory/flight

controllers (including polynomial trajectory with feedback controller, high velocity baseline

controller, and low velocity baseline controller). The performance comparison is summarized

in Table 7.4. Note that the relative values for the 3 min-distance orders in this table are given

as a percentage increase over the min-energy order, which enables consistent comparison of

results across missions. When referenced in the text, some results are presented differently

(e.g., min-energy improvement over min-distance) as appropriate.

First, it is seen that the polynomial trajectory following (PTF) controller recovers the

majority of the energy saving predicted by the optimization results. Specifically, under PTF,

the energy-optimal ordering approach achieves average energy reductions between 1.5% and

2.7% compared to the minimum-distance ordering, which is close to the optimization results

shown in Table. 7.1. The slight difference is due in part to the interpolation error of the

energy consumption Table in Fig. 7.2. Additionally, each operation in the reference table

is simulated starting at hover, while each mission is simulated as a series of operations

completed consecutively, with each operation continuing from the end point of the previous

operation. As a result, the simulated vehicle may not stop with the exact precision by the
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start of the next operation, which can introduce slight disturbances to subsequent operations

within the mission, contributing to these errors.

Energy Cost Increase Relative to Min-E + PTF (%)

PTF HVB LVB

NW

No. of

Missions Min-DM

No. of

Missions Min-E Min-DM

No. of

Missions Min-E Min-DM

6 294 +1.49% 194 +39.95% +46.74% 100 +55.96% +59.92%

8 388 +2.11% 193 +38.64% +47.92% 195 +57.19% +63.66%

10 194 +2.80% 96 +37.79% +48.35% 98 +59.38% +67.84%

Table 7.4: Simulation Results of Average Energy Cost Increase over Minimum-Energy Or-
der + Polynomial Trajectory Feedback (PTF) Controller for Combinations of Minimum-
Energy/Minimum-DM Orders + PTF/High-Velocity Baseline (HVB) Controllers for Ran-
domly Generated Missions with Varying NW and Ranges of −30m < X < 30m, −30m <
Y < 30m, −25m < Z < 25m

The most noteworthy results are that, by combining the minimum-energy order and

the polynomial trajectory following controller, large energy improvements are achieved over

the baseline controllers. Specifically, the PTF controller with minimum-energy ordering

achieves energy cost reductions of 31.9%-32.6% and 37.5%-40.4% over the HVB and LVB

controllers with minimum-distance ordering. The features of the optimal trajectory and

waypoint order discussed in previous chapters contribute to these improvements, although

it is noted that the difference between baseline and PTF controllers tend to be larger for

complete missions than for the average individual operation shown in Chapter 6.2. This is

because, on one hand, most of the operations within the randomly-generated missions include

both horizontal and vertical components, which the baseline controllers often fail to balance
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efficiently. On the other, because of the range limit of the waypoints, the operations tend

to be short relative to the full reference range. The baseline controllers typically perform

worse in shorter operations where a larger percentage of the operation is spent accelerating

and decelerating, whereas the PTF controller can enable more precise and energy-efficient

motion as described in Chapter 5. These short operations also explain why the high-velocity

baseline tends to perform better than the low-velocity baseline (using, on average, between

8.2% and 13.5% less energy), due to the sluggish de/acceleration of the latter. The LVB

controller typically performs best in long forward cruise operations, but they rarely exist in

typical missions. Short operations also mean that the mission tend not to contain flights

with large simultaneous descending and forward components, therefore avoiding the area

of the reference range where the polynomial fits perform worst relative to the optimized

trajectories, as shown in Table 6.1.

Another important finding is that the energy-optimal ordering, although designed based

on the PTF controller, could also dramatically reduce the energy consumption of the baseline

controllers. Specifically, compared to the minimum-distance order, the minimum-energy

order uses between 4.6% and 7.1% less energy with the HVB controller, and between 2.5%

and 5.0% less energy with the LVB controller. The differences between the two ordering

approaches are in fact larger for the baseline controllers than for the PTF controller, as the

inefficiency of the baseline controllers and the minimum-distance ordering approach combine

for a greater negative impact than each individually. This finding indicates the importance

of mission planning in its own right, and its capability of improving UAV energy efficiency

under general flight controllers.
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Chapter 8

Summary

8.1 Main Works and Findings

In this dissertation, a multiphysical model is developed and applied to the flight control

and mission planning of multirotor uncrewed aerial vehicle with the goal of improving the

energy performance. First, the integrated vehicle model, which captures the dynamics of

each relevant subsystem, is described. These subsystem dynamics include the aerodynamics

of the propeller, the electro-mechanical dynamics of the motor-ESC assembly, the electrical

dynamics of the battery, and the rigid-body dynamics of the vehicle. A laboratory test bench

is used to parameterize and validate the subsystem models, and flight tests are performed to

validate the complete integrated model under real-world experimental conditions. The model

demonstrates a high degree of fidelity over a range of operating conditions (including hover,

horizontal, climbing, and descending flight), and predicts the thrust generated as well as the

power consumption with high accuracy. Specifically, the mean errors between measured and

predicted discharge rate, voltage, and thrust were 0.41%, 0.56%, and 2.27% in hover, 0.82%,

-0.50%, and 2.9% in vertical flight, and 0.61%, -0.29%, and 3.7% in horizontal flight. The

corresponding standard deviations were 0.66%, 0.33%, and 2.50% in hover, 0.89%, 0.32%,
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and 2.82% in vertical flight, and 1.34%, 0.36%, and 3.07% in horizontal flight.

The model is then used to analyze specific flight behaviors observed in experimental re-

sults, which are key to understanding the overall energy performance of the vehicle. First,

the impact of battery dynamics are evaluated using simulated and test bench data. For the

octorotor considered in this work, it is shown that propeller RPM, torque and thrust un-

der a given actuation command (motor PWM input) decrease by ∼14%, ∼26%, and ∼26%

respectively over the battery operating range. These results demonstrate the power con-

straints imposed on the vehicle by a depleting battery during flight, which can (and need

to be) predicted by the model to avoid non-optimal or unsafe performance. Second, energy

efficiency is evaluated for various operating conditions, with each subsystem examined to

compare their relative impacts on the overall system efficiency. In particular, the propeller

aerodynamics, which are often overlooked or oversimplified in existing works of UAV energy

optimization, are found to have a significantly higher impact on overall energy performance

than the other subsystems. Specifically, over the range of operating conditions evaluated,

the thrust to power ratio varies from 0.101 N/W in hover to a minimum of 0.042 N/W

(−58.4%) in climbing flight and a maximum of 0.133 N/W (+31.7%) in descending flight.

Finally, an analysis of the energy used per meter travelled, which is a key energy efficiency

index in forward cruise, is provided, including identification of the energy-optimal and maxi-

mum cruising velocities. The results again demonstrate the vital importance of incorporating

propeller aerodynamics for flight control, as failing to consider these dynamics would lead to

a significant underprediction of overall energy usage at high velocities, and consequently a

significant overprediction of the energy-optimal cruising velocity, resulting in 67.8% increase

in energy consumption. The results under a fully-charged (25 V) and near-empty (21 V)
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battery are also compared, showing that, while overall energy consumption is fairly simi-

lar, low battery energy significantly reduces the maximum cruising velocity (∼11%). This

analysis is also repeated under the effects of wind along and against the direction of motion,

which is shown to have major impacts on the overall energy consumption.

Next, the model is used to develop an energy-efficient trajectory generation and feedback

control framework for waypoint-to-waypoint operations. The results are evaluated relative

to a baseline in both simulation and in real-world testing, demonstrating significant per-

formance improvements (on average >10% reduction in energy consumption) in all flight

cases. Key behaviors which contribute to these performance improvements are identified

and analyzed. In general, it is demonstrated that the model-based approach enables the

holistic planning of vehicle behavior along different directions and coordination of multiple

vehicle states efficiently over the course of operation. For example, the framework enables

the vehicle to supplement active braking with passive deceleration from air resistance, cruise

near the energy-optimal velocity, and accelerate more rapidly and efficiently. The framework

demonstrates similar average energy savings (10.2%) in experimental testing, despite greater

variation due to real-world disturbances and uncertainties, e.g. wind effects, which are also

analyzed and discussed in detail based on the experimental results.

In addition, polynomial approximations of the optimized trajectories are developed, en-

abling rapid and computationally efficient trajectory generation. To characterize these poly-

nomials, optimized trajectories are generated for a range of operations. This reference set

is divided into three groups (i.e., primarily forward flight, steep climbing flight, and steep

descending flight). Operations in each group are further divided into segments based on key

features of the vehicle state trajectories. In both simulations and experimental validation,
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these approximations are shown to capture the majority of the energy performance improve-

ments achieved by the optimization, with only a slight 1.3% increase in energy consumption

on average despite significantly reduced computational complexity.

Finally, the framework is extended to study the energy-optimal planning of waypoint-

based missions. Specifically, the minimum-energy order of traversing a series of waypoints in

3D space is determined and compared to the minimum-distance order as a baseline, over a

large number of missions with randomized waypoint locations. It is found that the minimum-

energy order differs from the minimum-distance order in majority of the cases, e.g. >95%

of 500 missions with 10 waypoints. The difference in energy consumption between the two

orders can be as high as 14.9%, with the average at 1.6%-3.3% and 90th percentile at 3.7%-

6.5% among missions of varying ranges and number of waypoints. Several features of the

minimum-energy order are identified by comparing with the minimum-distance order, and

analyzed using two sample missions. For example, it is important to minimize the number

and length of vertical flights in a mission due to the negative impact of vertical motion

on aerodynamic efficiency. Besides, coupling vertical motion with horizontal motion can

significantly promote the vehicle energy efficiency. In the climbing case, adding horizontal

motion only slightly adds to the energy consumption while significantly increasing the total

distance covered. In the descent case, the effect is even more prominent to the point that

additional horizontal motion can actually reduce the energy consumption. These results are

explained by correlating to underlying fundamental UAV energy dynamics, especially the

impact of motion on the aerodynamic efficiency. It is also shown that, by combining energy-

efficient mission planning with the developed trajectory generation and feedback control

framework, average energy cost reductions of 37.5%-40.4% are achieved relative to minimum-
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distance ordering using the high-velocity baseline controller.

8.2 Recommendations for Future Work

One possible area for expanding this work is to extend the considered hover-to-hover, waypoint-

to-waypoint flights to more types of operation. For example, UAV missions could also include

waypoints at which the vehicle does not need to stop, and instead maintain some velocity

while passing through with reorientation of the attitude. Operations or missions could also

be explored under the effect of wind, or with the presence of obstacles the vehicle must avoid.

Regarding the energy-optimal trajectory generation for the new types of operation, due to

the potential higher complexity of the problem, it may be desirable to explore the use of

machine learning methods (e.g. reinforcement learning) to obtain the optimal trajectories

as well as their computationally efficient approximation (e.g. through multi-kernel learning

[77]).

Additionally, it is noted that the model-based approach investigated in this work allows

thorough examination of vehicle behaviors under different scenarios of UAV applications. For

example, the model would enable the analysis of the effect of varying vehicle mass on energy

dynamics and performance. Changes in vehicle mass are expected in certain emerging appli-

cations such as package delivery, which require the vehicle to carry one or multiple variable

payloads to one or multiple destinations/waypoints. It is of great interest to investigate how

the energy-optimal planning and control should change under the changing mass, including

how to determine the optimal forward velocity and associated energy consumption, optimal

assignment of payloads to different UAVs, and selection of the optimal routing of delivery.
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The flexibility of the model-based approach could also be used to explore applications with

constraints not considered in this work. For example, noise constraints are significant limi-

tations for emerging urban applications, including urban air mobility [32]. While acoustics

were not included in this work, they could be incorporated into the appropriate subsystem

models, which would enable generation of optimized trajectories which take such limitations

into account.

Finally, it may be beneficial to improve the modeling of the propeller aerodynamics de-

scribed in Chapter 2.1.1. Although the model was demonstrated to accurately predict overall

energy performance, as discussed in Chapter 4.2, the dynamics of the propeller subsystem

vary significantly under variable operating conditions, and it is therefore important to con-

sider potential improvements to this subsystem model. For example, the model assumes that

induced velocity is uniform over the propeller disk, which is not the case in all operating

conditions, particularly when vx ̸=0. A non-uniform inflow model, such as the Peters-He dy-

namic inflow model [78], could therefore be included to improve the accuracy of the model.

Similarly, the interactions of the propeller flow streams with the vehicle frame, and with that

of other propellers, is not fully modeled. While the scaling factors discussed in Appendix 9.3

partially compensate for such effects, a more complete model of these coupled dynamics may

provide more accurate results. However, it should also be noted that such improvement in

model fidelity may come with the tradeoff of increased complexity. To compensate for this,

it may be beneficial to simplify the model in circumstances where computational efficiency is

a significant limitation, as was done using lookup tables in Chapter 5.1 and polynomial ap-

proximations in Chapter 6. For example, data-driven modeling could be used to streamline

prediction of certain energy dynamics or subsystem behaviors, and the order of the model
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could be reduced in cases where individual variables add complexity but with minimal bene-

fits. Analysis using the full order vehicle model could be used to identify cases where model

complexity can be reduced, as well as to evaluate the performance of the simplified model

to ensure the impact on performance is minimized.
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Chapter 9

Appendix

9.1 Three-Dimensional Rigid-Body Vehicle Model Equa-

tions

To calculate the vehicle (octorotor) motion in three dimensions, the following system of

equations is used:
Ẋ

Ẏ

Ż

 =


cosΘ cosΨ sinΦ sinΘ cosΨ

− cosΦ sinΨ
cosΦ sinΘ cosΨ
+ sinΦ sinΨ

cosΘ sinΨ sinΦ sinΘ sinΨ
+cosΦ cosΨ

cosΦ sinΘ sinΨ
− sinΦ cosΨ

− sinΘ sinΦ cosΘ cosΦ cosΘ




ẋ

ẏ

ż



ẍ

ÿ

z̈

 =


Ψ̇B ẏ − Θ̇B ż

Θ̇B ż − Ψ̇Bẋ

Θ̇Bẋ− Θ̇B ẏ

+
1

m



DX cosΘ cosΦ
+DY cosΘ sinΨ

−mg sinΘ

DX(sinΦ sinΘ cosΨ−cosΦ sinΨ)
+DY (sinΦ sinΘ sinΨ+cosΦ cosΨ)

−mg cosΘ sinΦ

DX(cosΦ sinΘ cosΨ+sinΦ sinΨ)
+DY (cosΦ sinΘ sinΨ−sinΦ cosΨ)

−mg cosΘ cosΦ−ΣTj



Φ̇

Θ̇

Ψ̇

 =


1 sinΦ tanΘ cosΦtanΘ

0 cosΦ − sinΦ

0 sinΦ
cosΘ

cosΦ
cosΘ




Φ̇B

Θ̇B

Ψ̇B



Φ̈B

Θ̈B

Ψ̈B

 =


JTheta−JPsi

JPhi
Θ̇BΨ̇B

JPsi−JPhi

JTheta
Φ̇BΨ̇B

JPhi−JTheta

JPsi
Φ̇BΘ̇B

+


1

JPhi
τΦ

1
JTheta

τΘ

1
JPsi

τΨ



(9.1)
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Here, X, Y , and Z are the vehicle positions in the three reference-frame axes, while ẋ, ẏ, and

ż are the corresponding velocities in the body-fixed frame. Similarly, Φ, Θ, and Ψ are the

vehicle’s Euler roll, pitch, and yaw angles, while Φ̇B, Θ̇B, and Ψ̇B are the equivalent angular

rates in the body-fix frame. DX and DY are the drag forces in the X and Y axes, while τΦ,

τΘ, and τΨ are the total torques along each rotational axis. These terms are calculated as

follows:

Dx =− CBDẋ
√
ẋ2 + ẏ2

Dy =− CBDẏ
√
ẋ2 + ẏ2

τΦ =(T7 + T6 − T3 − T8)L cos(π/8)/J

+ (T5 + T2 − T1 − T4)L sin(π/8)/J

τΘ =(T1 + T5 − T2 − T4)L cos(π/8)/J

+ (T3 + T7 − T6 − T8)L sin(π/8)/J

τΨ =− T1 − T2 + T3 + T4

+ T5 + T6 − T7 − T8

(9.2)

9.2 Battery Model RC Pair Parameters

The resistance Rk and capacitance Ck values for the battery model, identified as described

in Chapter 3.1.3 for the three RC pairs, are given here in Fig. 9.1.
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Figure 9.1: Identified (a) R1, (b) C1, (c) R2, (d C2, (e) R3, and (f) C3, versus SOC
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9.3 Identification of Inflow Scaling Factors

To obtain the scaling correction factors for vx and vz, thrust was predicted for each time

step in the experimental data collected in Chapter 3.2.2 using the full model as well as using

a version of the model which does not consider propeller inflow. As shown in Fig. 9.2, the

errors between the predicted and the measured thrusts were then plotted over the range of

vehicle perpendicular velocities, planar velocities, and pitch angles in the data set, with the

errors averaged at increments over multiple data points. As shown in Table 3.1, while there

is relatively little correlation between thrust error and x-axis velocity, stronger correlations

were observed between thrust error and the other two terms, with the no-inflow and full-

inflow models having inverse signs in all three cases. Various combinations of scaling factors

were tested, and the combination which minimized the root-mean-square thrust error over

the full data set was selected.

z-Axis Velocity x-Axis Velocity Θ

No Inflow 0.87 -0.09 0.89

Full Inflow -0.88 0.2 -0.95

Partial Inflow 0.51 -0.31 -0.12

Table 9.1: Correlation Coefficients for Thrust Prediction Error versus Perpendicular Velocity,
Planar Velocity, and Pitch Angle, with Model-Predicted Thrust Calculated under No Inflow,
Full Inflow, and Partial Inflow

9.4 Polynomial-Fit Coefficients

In this section, the full equations for the polynomial-fit trajectories described in Chapter 6

are given along with all associated constants. First, the group 1 end time for a given Xf and
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Figure 9.2: Thrust Prediction Error versus Perpendicular Velocity, Planar Velocity, and
Pitch Angle, with Model-Predicted Thrust Calculated under No Inflow, Full Inflow, and
Partial Inflow

Zf pair can be calculated as

tf,G1 = (C1,tfXf
2 + C2,tfXf + C3,tf )(C4,tfZf

2 + C5,tfZf + C6,tf )

C1,tf =3.57049×10−4; C2,tf = 5.85449×10−2; C3,tf = 3.05095;

C4,tf =2.81828×10−5; C5,tf = −2.74942×10−3; C6,tf = 1.01356.

(9.3)

Recall from Chapter 6.1.1 that an operation is considered part of group 1 if tf,G1 is calculated

to be greater than
√
|2Zf |. In this group, the values of time (tX), forward velocity (Ẋ), and
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pitch angle (Θ) at the end of each segment can then be calculated as

t1,X,G1 =0.1631(Xf − Zf/2)
0.5 + 0.5294

t2,X,G1 =0.03483(Xf − Zf/2) + 1.210

t3,X,G1 =t2,X + 0.0004470(Xf + 0.35Zf )
2 + 0.1921

t4,X,G1 =tf − 0.5487

Ẋ1,G1 =0.9000(Xf + Zf/2)
0.5 + 2.5170

Ẋ2,G1 =0.9893(Xf + Zf/2)
0.5 + 3.8678

Ẋ3,G1 =min{0.1039Xf + 5.7009, 9.8581}

Ẋ4,G1 =2.0362

Θ1,G1 =− 0.6

Θ2,G1 =− 0.0336(Xf + Zf/2)
0.5 − 0.079

Θ3,G1 =− 0.05

Θ4,G1 =0.5989.

(9.4)
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The equivalent terms for the vertical velocity (Ż) segments are calculated as

t1,Z,G1 =max{0,−0.4557Zf/Xf + 0.1588}

t2,Z,G1 =max{0, 3.1123Zf/Xf + 0.6215, 9.9776Zf/Xf − 1.4516}

t3,Z,G1 =0.7062|Zf |0.5 + 0.1394

t4,Z,G1 =tf − 2

Ż1,G1 =min{0, 0.9173Zf/Xf − 0.3168}

Ż2,G1 =max{0, 8.4286Zf/Xf + 0.2524, 21.6746Zf/Xf − 3.6139}

Ż3,G1 =1.4115|Zf |0.5 − 1.3390

Ż4,G1 =7.9643|Zf/Xf | − 0.2595.

(9.5)

Recall also that some of these terms are constant, either due to the definitions of each

segment (i.e. Θ3,G1, as the third segment for Θ in group 1 is defined to end as this term

increases above -0.05) or in cases with minimal variation between operations (i.e. Ẋ4,G1,

where no significant trend could be identified). For certain other terms, a simple linear

relationship is insufficient to accurately describe the observed behavior, and so a piecewise

combination of linear expressions and constant limits are used. For example, Ẋ3,G1 is linear

with respect to Xf , but is limited to a maximum value of 9.8581 s. The individual values

from the optimized results of each reference trajectory used to fit these equations are plotted

alongside the equations themselves in Fig. 9.3 for tX , Ẋ, and Θ, and in Fig. 9.4 for tZ and

Ż.
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Figure 9.3: Group 1 tX , Ẋ, and Θ Segment End Values, Including Fitted Equations (Red)
and Individual Values from Reference Optimized Trajectories
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Figure 9.4: Group 1 tZ and Ż Segment End Values, Including Fitted Equations (Red) and
Individual Values from Reference Optimized Trajectories

Similarly, for groups 2 and 3, the equations for tX , Ẋ, and Θ at the end of each segment

136



are given as

t1,X,G2 =max{0.0355(Xf − Zf ) + 0.4712, 0.0040(Xf − Zf ) + 0.4976}

t2,X,G2 =0.8080(Xf
0.25 + 0.1Zf

0.5) + 0.0502

t3,X,G2 = tf−0.1263(Xf/Zf )− 0.3619

Ẋ1,G2 =max{0.2616(Xf − Zf ) + 1.6597, 0.0362(Xf − Zf ) + 1.6410}

Ẋ2,G2 =1.2786(X0.5
f (1 +Xf/Zf ))

0.75 − 1.2112

Ẋ3,G2 =0.4649(Xf/Zf )
2 + 0.1221

Θ1,G2 =max{−0.6,−0.0131(Xf − 0.4Zf )− 0.2879}

Θ2,G2 =− 0.0056(X0.5
f (1 +Xf/Zf ))

1.25 + 0.0305

Θ3,G2 =min{0.6, 0.3236(Xf/Zf )− 0.0346}

(9.6)

for group 2 and

t1,X,G3 =min{1.4,max{−0.2131(Xf/Zf ) + 0.2794,−1.9242(Xf/Zf )− 2.1010}}

t2,X,G3 =− 0.0979Zf + 1.5011

t3,X,G3 =tf + 0.1196(Xf/Zf )− 0.2857

Ẋ1,G3 =min{5.5,max{−1.6626(Xf/Zf )− 0.7813,−9.6982(Xf/Zf )− 11.8592}}

Ẋ2,G3 =max{0,−3.1698(Xf/Zf ) + 2.2339}

Ẋ3,G3 =max{0,−1.2129(Xf/Zf )− 0.4345}

Θ1,G3 =min{0,max{0.5423(Xf/Zf ) + 0.1597,−0.6}}

Θ2,G3 =− 0.0311(Xf/Zf )
2 − 0.0230

Θ3,G3 =max{0,−0.2962(Xf/Zf ) + 0.0039}

(9.7)

for group 3. Recall that, in these groups, Ż is simply split into two equal segments, with

137



vertical acceleration maximized in one and minimized in the other to minimize the time

required to reach Zf . The equations for each of these terms, including the individual values

from the optimized results of each reference operation used to fit these equations, are shown

in Fig. 9.5 for group 2 and Fig. 9.6 for group 3.
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Figure 9.5: Group 2 State Segment End Values, Including Fitted Equations (Red) and
Individual Values from Reference Optimized Trajectories
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Figure 9.6: Group 3 State Segment End Values, Including Fitted Equations (Red) and
Individual Values from Reference Optimized Trajectories (Black)

Polynomial equations are also defined to approximate the states within each segment.

These equations are given as

S =
7∑

n=1

Cnt
(7−n)

, (9.8)

where S and t are the segment state and time, respectively normalized to S = t = 0 at the

start of the segment, and S = t = 1 at the end of the segment. The seven coefficients C1

through C7 which define each sixth-order polynomial for the normalized state are given in

Tables 9.2 and 9.3, and these equations are plotted alongside the normalized segments from

each individual reference operation in Fig. 9.7 for group 1 and in Fig. 9.8 for groups 2 and

3.
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from Reference Optimized Trajectories (Dotted Black Lines) and Fitted Equations (Solid Red
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C1 C2 C3 C4 C5 C6 C7

1

Ẋ

1 1.7881 -6.4606 7.2295 -2.0965 0.5776 -0.0385 0.0005

2 1.1012 -3.6892 4.4504 -1.6263 -1.7921 2.5561 -0.0012

3 -1.0693 3.3351 -3.8968 2.0202 0.4634 0.1476 0.0002

4 -0.3593 1.0745 -1.0023 0.4914 0.3705 0.4252 0.0002

5 -4.2580 13.2709 -13.6797 4.4489 -0.6808 1.8990 -0.0005

Θ

1 0.0859 4.5814 -11.6585 7.6919 0.1399 0.1612 -0.0020

2 1.4993 -5.6116 8.6333 -6.3039 1.4017 1.3819 -0.0002

3 -3.4188 10.6443 -12.6089 7.5627 -2.5002 1.3204 -0.0004

4 -5.2413 10.6889 -6.2951 0.1132 1.1349 0.5952 0.0022

5 6.7611 -14.7489 6.9439 1.6440 0.3214 0.0810 0.0003

Ż

1 0 0 0 0 0 1 0

2 0 0 0 0 0 1 0

3 -7.6386 24.2387 -29.7519 18.0730 -6.3520 2.4330 -0.0044

4 21.7433 -64.8178 71.9480 -36.5378 7.8906 0.7786 -0.0030

5 29.1783 -83.4763 91.2184 -46.1078 9.6384 0.5729 -0.0010

Table 9.2: Table of Coefficients for Group 1 Normalized State Equations
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C1 C2 C3 C4 C5 C6 C7

2

Ẋ

1 -2.0082 7.5597 -11.1813 7.3176 -0.7279 0.0401 -0.0003

2 0.0476 -0.6259 0.4227 1.5019 -2.9338 2.5902 -0.0016

3 0.9784 -2.7525 3.0487 -1.5555 1.2855 -0.0057 0.0006

4 -1.7572 5.6315 -5.4502 1.0201 -0.4305 1.9871 -0.0007

Θ

1 -5.6150 21.5083 -28.9170 14.0373 -0.2150 0.2027 -0.0023

2 2.6858 -13.7299 25.1964 -19.2120 4.9557 1.1122 -0.0022

3 5.0671 -12.7897 11.4434 -4.2141 0.5954 0.9045 0.0006

4 4.3200 -7.6319 0.0287 3.9745 0.1264 0.1847 0.0005

3

Ẋ

1 1.6923 -5.0621 4.2609 -0.1183 0.2387 -0.0112 0.0001

2 0.4447 -0.9569 0.1583 1.5996 -3.0308 2.7867 -0.0012

3 -8.0879 22.7936 -20.7083 5.1866 1.7685 0.0438 0.0006

4 -0.6396 3.0315 -3.8669 1.0075 -0.3236 1.7919 -0.0005

Θ

1 -1.3543 9.4402 -17.1535 9.8320 0.0566 0.1810 -0.0023

2 12.6376 -40.2634 48.9982 -27.9088 6.5147 1.0310 -0.0056

3 1.3406 -22.5016 51.8029 -41.9537 11.8277 0.4504 0.0268

4 5.7613 -15.5710 11.9479 -2.1608 0.9829 0.0380 0.0017

Table 9.3: Table of Coefficients for Group 2 and Group 3 Normalized State Equations
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