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Research Article

CALGB 150905 (Alliance): Rituximab Broadens the
Antilymphoma Response by Activating Unlicensed NK Cells

Juan Du1, Sandra Lopez-Verges2, Brandelyn N. Pitcher3, Jeffrey Johnson3, Sin-Ho Jung3, Lili Zhou1,
Katharine Hsu4, Myron S. Czuczman5, Bruce Cheson6, Lawrence Kaplan1, Lewis L. Lanier2, and
Jeffrey M. Venstrom1

Abstract
Natural killer (NK) cells contribute to clinical responses in patients treated with rituximab, but the rules

determining NK-cell responsiveness to mAb therapies are poorly defined. A deeper understanding of the
mechanisms responsible for antibody-dependent cellular cytotoxicity (ADCC) could yield useful biomarkers
for predicting clinical responses in patients. Unlicensed NK cells, defined as NK cells lacking expression of an
inhibitory KIR for self-HLA class I ligands, are hyporesponsive in steady state, but are potent effectors in
inflammatory conditions. We hypothesized that antitumor antibodies such as rituximab can overcome NK-cell
dependence on licensing, making unlicensed NK cells important for clinical responses. Here, we examined the
influences of variations in KIR and HLA class I alleles on in vitro responses to rituximab. We tested the clinical
significance in a cohort of patients with follicular lymphoma treated with rituximab-containing mAb combina-
tions, and show that rituximab triggers responses from all NK-cell populations regardless of licensing. Neither IL2
nor accessory cells are required for activating unlicensed NK cells, but both can augment rituximab-mediated
ADCC.Moreover, in 101 patientswith follicular lymphoma treatedwith rituximab-containingmAb combinations,
a "missing ligand" genotype (predictive of unlicensed NK cells) is associated with a higher rate of progression-free
survival. Our data suggest that the clinical efficacy of rituximabmay be driven, in part, by its ability to broaden the
NK-cell repertoire to include previously hyporesponsive, unlicensed NK cells. A "missing ligand" KIR and HLA
class I genotype may be predictive of this benefit and useful for personalizing treatment decisions in lymphomas
and other tumors. Cancer Immunol Res; 2(9); 878–89. �2014 AACR.

Introduction
Curing patients while sparing unnecessary toxicity remains

the ultimate goal in cancer treatment. Monoclonal antibodies
(mAb) hold this potential by recruiting a patient's immune
system to destroy cancer cells with minimal toxicity, but
responses are unpredictable and rarely curative (1–5). Identi-
fying the genetic and cellular factors that drive immune
responses in mAb therapy may make clinical responses more
predictable and allow the identification of strategies for aug-
menting mAb-induced responses (6). Natural killer (NK) cells
contribute to clinical responses in patients treated with ritux-

imab, but the rules governing how NK cells respond to ritux-
imab are unclear, thus limiting our ability to clinically manip-
ulate and predict NK-cell behavior in rituximab-treated
patients (3, 7–9).

The number and ligand specificity of inhibitory receptors
expressed by an NK-cell clone have been shown to modify NK-
cell–mediated cytotoxic responses (10–13). NK cells lacking
inhibitory receptors specific for self-MHC class I are weakly
responsive compared with fully competent (i.e., licensed) NK
cells expressing one or more inhibitory receptors for self-MHC
class I (10–14). However, these same inhibitory receptors can
suppress the licensed NK cells through interactions with MHC
class I ligands expressed by tumors. In human hematopoietic
stem cell transplantation and mouse cytomegalovirus (CMV)
infection, limitations of NK-cell licensing can be overcome by
harnessing hyporesponsive NK cells lacking inhibitory recep-
tors for self-MHC class I that may contribute to clinical
responses, although data are conflicting (15–20). It is unknown
whether rules of licensing similarly governNK-cell responses to
antibody-coated hematologic malignancies and whether mAb
alone can trigger these responses (12, 21). Because rituximab
activates NK cells through CD16, and CD16 does not require
coactivating signals to trigger NK-cell responses (22), we
hypothesize that rituximab can convert tolerant human
NK cells lacking inhibitory killer cell Ig-like receptors (KIR)
for self-MHC class I into potent killers. This may be a
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fundamental and potentially exploitable mechanism contrib-
uting to antitumor antibody clinical responses.
In the present study, we examined the influences of variations

in human KIR and HLA class I alleles on in vitro responses to
rituximab.We further tested the clinical significanceof our in vitro
findings in a cohort of patients with follicular lymphoma treated
with rituximab-containing antibody combinations (23, 24).

Materials and Methods
Follicular lymphoma patients
One hundred and two patients with previously untreated

follicular lymphomaprovided Institutional ReviewBoard (IRB)–
approved informed consent for collection of blood and biospeci-
mens to be used for research related to his or her cancer, such as
the correlative science aims of Cancer and Leukemia Group B
(CALGB) protocol #150905 (NCT01057459; NCT01749969). Eli-
gible patients with follicular lymphoma had previously untreat-
ed, stage III, IV, or bulky stage II disease and World Health
Organization tumor grade 1, 2, or 3a. Patients were treated

with a noncytotoxic strategy of rituximab-containing antibody
combinations on CALGB protocols 50402 (rituximab with galix-
imab) and 50701 (rituximab with epratuzumab) from 2005
through 2009 (23, 24). Forty-six of 62 patients (74%) fromCALGB
50402 consented and had samples available, although 1 patient
never began treatment and was excluded from the analysis.
Fifty-six of 60 patients (93%) from CALGB 50701 consented and
had samples available. One patient from 50701 was determined
to have stage I disease at baseline during final chart review
and was excluded from analysis. In all, 101 patients are included
in this analysis (Table 1, Supplementary Fig. S6).

KIR genotyping, HLA genotyping, and KIR ligand
assignment

Genomic DNA was extracted from peripheral blood mono-
nuclear cells (PBMC) by using a QIAmp DNA Blood Mini Kit
(Qiagen). KIR genotyping was performed as previously
described (25, 26). HLA class I genotyping was performed by
PCR using a combination of sequence-specific primers and

Table 1. Characteristics of patients from CALGB 50402 and CALGB 50701

Treatment protocol

Characteristics Rituximab þ epratuzimab (n ¼ 55) Rituximab þ galiximab (n ¼ 46) Pa

Ethnicity 1.00
Caucasian 50/53 (94.3%) 45 (97.8%)
Non-Caucasian 3/53 (5.7%) 1 (2.2%)

Median age, y (range) 54 (32–90) 58 (22–84) 0.75
Female gender 32 (58.1%) 16 (34.8%) 0.03
LDH > ULN 5 (9.0%) 7 (15.2%) 0.37
"B" symptoms 4/53 (7.5%) 4/43 (9.3%) 1.00
Follicular lymphoma stage 0.74
I — —

II 2 (3.6%) 3/45 (6.7%)
III 18 (32.7%) 16/45 (35.6%)
IV 35 (63.3%) 26/45 (57.8%)

FLIPI 0.97
0–1 12/54 (22.2%) 9/45 (20.0%)
2 24/54 (44.4%) 20/45 (44.4%)
�3 18/54 (33.3%) 16/45 (45.6%)

Histologic grade 0.82
Grade 1 30/53 (56.6%) 27/45 (60.0%)
Grade 2 20/53 (37.7%) 17/45 (37.8%)
Grade 3a 3/53 (5.7%) 1/45 (2.2%)

Bone marrow 0.69
Positive 30 (54.6%) 23 (50.0%)
Negative 25 (45.4%) 23 (50.0%)

Bulky disease 11/55 (20.0%) 8/40 (20.0%) 1.00
ECOG performance status 0.05
0 33 (60.0%) 33/45 (73.3%)
1 22 (40.0%) 10/45 (22.2%)
2 0 (0.0%) 2/45 (4.4%)

Abbreviations: FLIPI, Follicular Lymphoma International Prognostic Index; LDH, lactic dehydrogenase; ULN, upper limit of normal.
aP values for the categorical variableswerecomputedusing theFisher exact test; theWilcoxon rank-sum testwasused to computeage
differences between groups.
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PCR-specific oligonucleotide probes. The CLIA-approved
Immunogenetics Laboratory at the University of California,
San Francisco, performed the genotyping. HLA-C and HLA-B
alleles were segregated into KIR ligand groups: C1 (HLA-
CAsn80), C2 (HLA-CLys80), and HLA-Bw4 or HLA-Bw6, and KIR
haplotypes were assigned as previously described (25).

In vitro culture conditions
For functional experiments, blood was obtained from

healthy volunteer deidentified leukocyte reduction filters
(Blood Centers of the Pacific, San Francisco, CA). PBMCs were
separated by density gradient centrifugation (Histopaque-
1077; Sigma) and were suspended in 10% dimethyl sulfoxide
(DMSO; Fisher Scientific;) and 90% fetal bovine serum (FBS;
Omega), and then stored in liquid nitrogen. For NK-cell recov-
ery, cryovials of PBMCs were transferred to a 37�C water bath,
thawed quickly in RPMI-1640media (with 20% FBS, warmed to
37�C), and then washed in complete cell culture media (RPMI-
1640 with 10% FBS, 2 mmol/L glutamine, 100 U/mL penicillin
and 100 mg/mL streptomycin; Cell Culture Facility, University
of California, San Francisco, San Francisco, CA). Cells were
counted and viability was confirmed using a Vi-Cell XR (Beck-
man Coulter Inc.). Cells were cultured overnight at 37�C with
5% CO2 in a 24-well plate at a concentration of 3 � 106/mL of
RPMI-1640 media. Exogenous IL2 was not routinely added to
the culture conditions, but only added (1,000 U/mL of IL2;
BioVision) in experiments testing the specific contribution of
IL2. NK cells were isolated from PBMCs using a MACS NK
Isolation Kit (Miltenyi Biotec Inc.).

Tumor cells
Three cell lines were used: human CD20þ HLA class I–defi-

cient EBV-transformed B lymphoblastoid cell line 721.221, Raji
Burkitt lymphoma cell line, and the human erythroleukemia cell
line K562. All cell lines were cultured in complete RPMI-1640
media.CD20expressionwas confirmedby stainingwithBrilliant
Violet 421–conjugated anti-human CD20 (clone 2H7; BioLe-
gend). HLA-A, HLA-B, HLA-C expressionwasmonitored weekly,
and before each experiment, by using FITC-conjugated anti-
human HLA-A, HLA-B, HLA-C antibody (clone G46-2.6; BD
Biosciences). The FITC-conjugated anti-human HLA-Bw4 mAb
(One Lambda) was used to evaluate cell-surface expression of
HLA-Bw4. All three cell lines were validated to be mycoplasma
free; except for the expression of CD20 and other cell-surface
markers, no other authentication assays were performed.

Antibody-induced NK-cell activation assays
To model the physiologic interaction of NK cells with

antibody-coated tumors, we developed a coculture system
using resting human PBMCs from KIR- and HLA-genotyped
subjects added to antibody-coated tumor cell lines. To assess
individual NK-cell responses, wemeasured both degranulation
of NK cells by staining for LAMP-1 (Pacific Blue–conjugated
anti-CD107a; clone H4A3; BioLegend; refs. 15, 27), the lyso-
some-associated membrane protein upregulated on the NK-
cell surface after NK-cell stimulation, and intracellular IFNg
(V450-conjugated anti-IFNg , clone B27; BD Biosciences)
expression as a marker of cytokine secretion, which both

correlate with target cell death (12, 27).We initially determined
the percentage of CD3�CD56þ NK cells in the PBMCs using
antibodies for CD3 (APC-eFluor 780–conjugated anti-CD3,
clone SK7; eBioscience), and CD56 (Brilliant Violet 605–con-
jugated anti-CD56, clone HCD56; BioLegend). On the basis of
the percentage of CD3�CD56þ NK cells, PBMCs containing 1.2
to 3.0 � 105 NK cells were mixed with tumor cells coated with
0.1 to 1,000 mg/mL of rituximab at a NK cell-to-target ratio (1:2)
in sterile 24-well plates with RPMI-1640þ 10% FBS. Cells were
incubated for 4 hours at 37�C, 5% CO2. For CD107a detection, 5
mL/mL of Pacific Blue–conjugated anti-CD107a was added to
themixture of PBMCs and antibody-coated tumor cells in each
well at the beginning of the incubation. For intracellular IFNg
staining, brefeldin A (BioLegend) was added to the mixture of
PBMCs and antibody-coated tumor cells in each well after 1
hour of incubation. Fixation was performed after staining cell-
surface markers, and permeabilization was performed at the
time of IFNg staining, according to themanufacturer's instruc-
tions (Fix & Perm Cell Permeabilization Kit; Invitrogen Life
Technologies).

NK-cell subset analysis
To interrogate the relative responsiveness of individual NK-

cell subsets expressing a single KIR (spKIR), we designed a
panel of fluorochrome-conjugated antibodies specific for indi-
vidual NK-cell receptors. To evaluate and control for the
influence of cognate KIR and HLA interactions endowing
effector function to individual NK-cell subsets, we used HLA
genotyping and HLA class I KIR ligand assignment to identify
the presence or absence of the ligand for the inhibitory KIR. NK
cells exclusively expressing an inhibitory KIR from a subject
lacking the cognate HLA class I ligand were considered "unli-
censed" spKIR-expressing NK cells. For NK-cell phenotyping, a
combination of the following antibodies was used: APC-eFluor
780–conjugated anti-CD3 (clone SK7; eBioscience), PerCp-
conjugated anti-CD3 (clone SK7; BioLegend), Brilliant Violet
605–conjugated anti-CD56 (clone HCD56; BioLegend), APC-
Cy7–conjugated anti-CD16 (clone 3G8; BioLegend), FITC-con-
jugated anti-KIR2DL1 (clone 143211; R&D Systems), Alexa
Fluor 700–conjugated anti-KIR3DL1 (clone DX9; BioLegend),
PE-Cy7–conjugated anti-KIR2DL2/L3/S2 (clone GL183; Beck-
man Coulter), APC-conjugated anti-NKG2A (clone Z199; Beck-
man Coulter), and PE-conjugated anti-KIR3DL2 (clone DX31;
UCSF Hybridoma Core). Unstained controls, isotype-matched
Ig controls, single-color controls (BD Compbeads), and FMO
controls were used for multicolor compensation and gating.
The isotype-matched Ig control for CD107a is Pacific Blue–
conjugated mouse IgG1 (MOPC-21; BioLegend); IFNg staining
was performed by using an isotype-matched Ig control or anti-
IFNg antibody combined with anti-CD3, anti-CD56, and anti-
KIR antibodies, allowing precise gating of IFNgþ cells.

Gating strategy
Cells were analyzed on an LSRFortessa flow cytometer (BD

Biosciences) using FACSDiva software. Data were further
processed with FlowJo software (v9.5.2; Tree Star, Inc). Lym-
phocytes were gated on forward and side light scatter para-
meters after excluding doublets. NK-cell subsets exclusively
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expressing a single inhibitory KIRwere detected after gating on
the CD3�CD56þ NK-cell population (Supplementary Fig. S1).

Cytotoxicity assay
We performed cytotoxicity assays using sorted NK-cell

populations and PKH-26–labeled 721.221 lymphoblasts to
validate the degranulation and cytokine measurements, as
previously described (12, 28). Both direct killing and anti-
body-dependent cellular cytotoxicity (ADCC) were tested, in
triplicates, using labeled target cells coated with or without 10
mg/mL of rituximab and mixed with unlicensed NK cells at an
effector:target cell ratio of 1:1, 2:1, and 5:1. Dead 721.221
lymphoblast target cellswere defined asTO-PRO3þPKH�26þ,
after subtracting spontaneous death of 721.221 cells cultured
without NK cells.

Statistical analysis
Patients were classified on the basis of the presence or

absence of cognate HLA class I ligand (determined by HLA
genotype) for inhibitory KIR (determined by KIR genotype).
HLA-A and HLA-B alleles were grouped on the basis of the
presence or absence of the Bw4 epitope; HLA-C status was
characterized by the presence of HLA-C1 alleles only, HLA-C2
alleles only, or both. "Missing ligand" was defined as the
absence of cognate HLA class I ligand in the presence of the
gene encoding its corresponding inhibitory KIR. The primary
outcomes for this study were complete response and overall
best response (29). The secondary endpoint was progression-
free survival (PFS), defined as time from study entry to pro-

gression, relapse, or death, whichever occurred first. Probabil-
ities of PFS were estimated using the Kaplan–Meier method,
and the log-rank test was used to evaluate differences in
survival distributions based on ligand status. To investigate
statistically significant differences in NK-cell function, NK-cell
subsets were compared using the Mann–Whitney, Wilcoxon,
or Kruskal–Wallis tests. All P values reported in this article are
two sided. Statistical analyses were conducted by the Alliance
Statistics and Data Center, using data collected through
November 2012.

Results
Estimation of the size of NK-cell subpopulations

We used an exclusion gating technique to enumerate spe-
cific NK-cell populations expressing a single KIR (Supplemen-
tary Fig. S1). We focused on five NK-cell subsets: spKIR2DL2/3,
spKIR2DL1, spKIR3DL1, spKIR3DL2, and KIR�. We operation-
ally defined "KIR�" NK cells as lacking KIR2DL1, 2DL2/S2,
2DL3, 3DL1, 3DL2, and NKG2A. We used HLA class I geno-
typing and KIR ligand assignment to further characterize
spKIRþ NK cells (NKG2A�) as either "licensed" (cognate HLA
class I ligand present in the subject) or "unlicensed" (subjects
lacking cognate HLA class I ligand). The frequency of spKIRþ

and KIR� NK cells in the 19 study subjects was variable (Table
2), consistent with prior reports (21, 30, 31). The proportion of
immature CD56brightCD16dim and mature CD56dimCD16bright

NK cells within KIR�, unlicensed, and licensed NK-cell subsets
was comparable (Supplementary Fig. S4). To assess and com-
pare NK-cell subset responses within each subject, we

Table 2. Frequency of NK-cell populations and HLA KIR ligand status in healthy study subjects

Percentages of single-positive NK-cell subsets (%) HLA KIR ligands

Subject number KIR2DL2/L3 KIR2DL1 KIR3DL1 KIR3DL2 KIR� HLA-B HLA-C HLA-A

1 3.23 2.82 1.97 3.06 8.22 Bw4/Bw6 C2C2 24,32
2 6.56 5.30 5.80 2.98 18.20 Bw4/Bw6 C1C1 03,26
3 5.52 0.41 0.78 1.52 2.78 Bw6/Bw6 C1C1 02,02
4 7.56 5.06 1.06 3.69 11.40 Bw4/Bw6 C2C2 03,26
5 22.4 4.78 0.00 2.75 17.30 Bw6/Bw6 C1C1 02,24
6 6.85 1.48 0.71 1.89 5.49 Bw4/Bw6 C1C2 02,11
7 9.45 1.43 0.97 3.27 6.13 Bw4/Bw6 C1C1 03,29
8 4.97 2.91 1.96 7.10 11.20 Bw6/Bw6 C1C1 02,24
9 4.41 1.81 3.85 1.37 12.70 Bw4/Bw6 C2C2 02,30
10 9.17 6.70 2.58 1.61 14.40 Bw6/Bw6 C1C1 02,11
11 2.32 1.24 1.54 0.44 2.30 Bw6/Bw6 C1C2 11,31
12 3.00 1.21 2.58 2.74 7.54 Bw4/Bw6 C1C2 02,31
13 5.78 9.56 0.00 4.11 16.70 Bw4/Bw6 C1C2 03,30
14 3.76 4.81 0.00 1.88 4.94 Bw4/Bw6 C1C2 02,68
15 8.01 1.23 1.02 1.09 5.17 Bw4/Bw6 C1C2 02,11
16 1.77 1.45 0.62 1.22 3.57 Bw4/Bw4 C1C2 01,02
17 9.51 5.20 5.61 1.53 16.80 Bw4/Bw6 C1C1 03,26
18 8.24 1.01 4.09 3.05 10.10 Bw4/Bw6 C1C1 03,24
19 5.12 2.01 1.44 3.61 9.35 Bw4/Bw6 C1C1 02,24

NOTE: KIR ligands are assigned on the basis of HLA class I genotyping. NK-cell subsets are NKG2A�.
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measured tumor-triggered degranulation (CD107a) and cyto-
kine production (IFNg) of spKIRþ NK-cell populations after
excluding NKG2A and other KIR (Supplementary Fig. S1).

Rituximab stimulates robust degranulation and
IFNg secretion from KIR�NKG2A� and unlicensed
spKIRþNKG2A� NK cells

To control for interindividual variability in NK-cell
responses, we compared NK-cell responses within subjects
possessing both licensed and unlicensed spKIRþ populations.
For the functional experiments, we used KIR and HLA class I
genotyping to deliberately select subjects lacking a self-HLA
class I ligand for an inhibitory KIR. As expected, the NK-cell
repertoire had variable responses to the CD20-expressing, HLA
class I–deficient B-cell lymphoblast 721.221 cell line (and K562
cell line), consistent with a role for cognate NK-cell KIR–HLA
interactions in endowing a "missing self" response toHLA class
I–deficient lymphoid and myeloid tumors (Fig. 1A–C and
Supplementary Fig. S2). In direct 721.221 cell killing assays,
licensed spKIRþ NK cells showed stronger responses than
unlicensed spKIRþNKG2A� NK cells and KIR–NKG2A� NK
cells. Adding rituximab to CD20þ 721.221 cells, however,
allowed all NK cells to become activated, triggering NK-cell
degranulation from the hyporesponsive subsets of unlicensed
NK cells expressing a spKIR2DL3 receptor (NKG2A�) andKIR�

NKG2A� NK cells (Fig. 1A). Confirming the NK-cell degranu-
lation responses, rituximab-coated B-lymphoblasts similarly
triggered IFNg release fromhyporesponsive KIR�NKG2A� and
unlicensed spKIRþNKG2A� NK cells, and increased cytotox-
icity mediated by unlicensed NK cells (Fig. 1B and Supplemen-
tary Fig. S3). The presence of NKG2A minimally enhanced the
responsiveness of NK cells to rituximab-coated 721.221 (data
not shown). Aggregating the analysis for 8 subjects, rituximab
consistently augmented the activity of previously tolerant,
hyporesponsive NK cells and abolished the functional hierar-
chy observed when stimulating NK cells with tumor alone (Fig.
1C). These data suggest that coating hematologic tumors with
antitumor antibody may overcome intrinsic mechanisms of
NK-cell tolerance, unleashing the full repertoire of NK cells for
a therapeutic benefit.

Rituximab augments the activity of hyporesponsive NK
cells against the Raji Burkitt lymphoma cell line

To test whether the antibody-mediated triggering of hypo-
responsive NK cells was restricted to rituximab-coated HLA
class I–deficient 721.221 B lymphoblasts, we evaluated NK-cell
activity in KIR-ligand compatible HLA-Bw6/6 subjects against
the patient-derived, CD20-expressing, HLA-Bw6/6 Raji Burkitt
lymphoma cell line, which we confirmed lacks expression of
HLA-Bw4 by staining with anti–HLA-Bw4–specific mAb (data
not shown). Consistent with results using the 721.221 cell line,
unlicensed spKIR3DL1þNKG2A� NK cells from an HLA-Bw6/

Figure 1. Rituximab triggers degranulation and IFNg release from
hyporesponsive KIR–NKG2A� and unlicensed spKIRþNKG2A� NK
cells. A, the vertical axis depicts the percentage of NK cells
expressing CD107a (a marker of degranulation) after 4 hours of
incubation with CD20þ B-cell lymphoblasts (721.221) � rituximab.
The KIR�NKG2A� and unlicensed spKIR2DL3þNKG2A� NK-cell
subsets responded poorly to CD20þ lymphoblasts alone, but
coating the lymphoblasts with 10 mg/mL of rituximab for 30 minutes
activated these hyporesponsive NK-cell subsets. B, intracellular
IFNg responses between KIR�NKG2A� and unlicensed
spKIR2DL1þNKG2A� NK cells from subject #2 (HLA-C1/C1,
Bw4/Bw6) were consistent with the degranulation responses, with a
2- to 3-fold increase in the percentage of hyporesponsive, KIR�

NKG2A�, and spKIR2DL1þNKG2A� NK-cell subsets releasing IFNg
after the addition of rituximab. C, aggregate degranulation responses
of NK cells exclusively expressing an unlicensed KIR, licensed KIR, or
KIR�NKG2A� from 8 subjects with distinct KIR–HLA genotypes and
circulating NK-cell repertoires. Data were combined into three
functional groups: NK cells lacking KIR2DL1, 2DL2, 2DL3, 3DL1, and
NKG2A (KIR�NKG2A�); NK cells expressing unlicensed KIR
(spKIR3DL1þHLA-Bw6/6, KIR2DL1þHLA-C1/C1, or KIR2DL2/
3þHLA-C2/C2); and NK cells expressing licensed KIR
(spKIR3DL1þHLA-Bw4, KIR2DL1þHLA-C2, or KIR2DL2/3-HLA-C1).

(Legend continued in the following column.)

Statistical comparisons were made using the Wilcoxon test; ��, P < 0.01.
In subjects with more than one unlicensed or licensed KIRþ NK-cell
subset, the dot represents the total number of CD107aþ spKIR NK cells
divided by the number of spKIR NK cells. Experiments were performed in
triplicate; horizontal bar represents mean, with standard errors of mean.
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Bw6, C1/C2 subject were tolerant of Raji B-lymphoblast cells
(Fig. 2). In contrast, coating Raji tumors with rituximab stim-
ulated robust degranulation by the unlicensed spKIR3DL1þ

NKG2A� NK cells (Fig. 2). Unlicensed spKIR3DL2þNKG2A�

NK cells had a similar response. This antibody-induced acti-
vation of hyporesponsive NK cells by rituximab likely reflects
the uniquely potent calcium flux and signaling cascade trig-
gered by CD16 ligation (22).

Unlicensed NK-cell ADCC activity does not require
accessory cells, and ismodified by antibody dose and IL2
Cytokines can overcome NK-cell requirements for licensing

and may independently augment the effector function of
hyporesponsive NK cells (11, 13, 32). To examine the require-
ment of cytokine signaling, and to eliminate the confounding
influence of cytokine production by accessory cells, we sorted
NK cells before incubation with antibody-coated tumors and
found similar rituximab-mediated triggering of unlicensed
spKIR2DL1þNKG2A�, unlicensed spKIR3DL1þNKG2A�, and
KIR�NKG2A� NK cells (Fig. 3A). To address the specific
contribution of IL2, and to ask whether cytokines can enhance
the antibody-dependent effector function of previously toler-
antNK cells, PBMCswere primed overnightwith 1,000U/mLof
IL2 before the addition of tumor targets. Hyporesponsive NK
cells expressing KIR without self-MHC class I ligands did not
require IL2 to degranulate in response to rituximab-coated Raji
tumor cells, but IL2 augmented the unlicensed NK-cell ADCC
activity compared with resting unlicensed NK cells (Fig. 3B).
IL2 alone was sufficient to endow a degranulation response of
hyporesponsive NK cells to direct stimulation by CD20þ Raji
tumors, in the absence of rituximab (Supplementary Fig. S5).
Titration of rituximab revealed that the majority (�55%) of

both licensed and unlicensed NK cells can be activated with
low and subtherapeutic concentrations of rituximab (Fig. 3C),
but higher rituximab concentrations were required to generate
comparable responses from unlicensed and licensed NK cells
(Fig. 3D; refs. 33, 34). These data confirm that cytokines and
accessory cells are not required for rituximab-dependent
activation of unlicensed NK cells, and that activation of unli-
censed NK cells may contribute to the clinical dose–response
seen in patients treated with rituximab (35).

KIR3DL2þ NK cells are activated by rituximab
KIR3DL2 is encoded by a framework KIR gene present in all

humans, expressed on 18% to 27% of NK cells, and reported to
bind HLA-A3 and HLA-A11 ligands in the presence of specific
peptides (36). The function and contribution of spKIR3DL2þ

NK cells, however, are unclear (36, 37). NK cells exclusively
expressing KIR3DL2 from HLA-A3 or HLA-A11 healthy indi-
viduals areminimally responsive (37, 38). To determine wheth-
er KIR3DL2þ NK cells contribute to the ADCC response, we
performed exclusion gating to isolate the function of
spKIR3DL2þNKG2A� NK cells lacking KIR3DL1, KIR2DL1,
KIR2DL2/3/S2, and NKG2A using NK cells from subjects with
andwithout the cognate HLA-A3 or HLA-A11 ligand. Similar to
KIR�NKG2A� and unlicensed spKIRþNKG2A� NK cells, the
721.221 B lymphoblasts alone triggered minimal degranula-
tion, but the addition of rituximab activated the hyporespon-
sive spKIR3DL2þNKG2A�NK-cell subset independent of HLA-
A3 or HLA-A11 (Fig. 4). The expression of KIR3DL2 on unli-
censed NK cells expressing another KIR without a self-MHC
class I ligand did not significantly alter the responsiveness
(data not shown). The abundant KIR3DL2þ NK-cell subset,
therefore, may require potent stimulation through CD16 for
activation, and may contribute to the aggregate NK-cell
response in patients treated with rituximab.

"Missing KIR ligand" is associated with PFS in patients
with follicular lymphoma treated with rituximab

To test whether the ability of rituximab to activate unli-
censed NK cells (without cytokines, transplantation, or che-
motherapy) is clinically significant, we genotyped 101 patients
with follicular lymphoma treated with mAb alone [CALGB
protocols 50402 (rituximab with galiximab) and 50701 (ritux-
imab with epratuzumab); refs. 23, 24] and compared PFS
between patients with and without a "missing KIR ligand"
genotype (Table 1; Supplementary Fig. S6). The median PFS
estimate for all patients was 3.74 years. We hypothesized that
patients with a "missing KIR ligand" genotype will uniquely
benefit from unlicensed NK-cell ADCC. Consistent with this
hypothesis, we found a statistically significant difference in
PFS among the KIR ligand groups (Fig. 5). Patients with
follicular lymphoma lacking the HLA-A11 ligand for KIR3DL2
had ahigher probability of remaining alive andprogression free
compared with patients possessing HLA-A11 for the inhibitory
KIR3DL2 [Fig. 5B; HR, 0.29; P < 0.01]. We observed a similar
association for patients lacking theHLA-C2 ligand for KIR2DL1
(Fig. 5C; HR, 0.48; P ¼ 0.04). A difference in PFS among
patients lacking the HLA-Bw4 ligand for KIR3DL1 was mar-
ginally statistically significant (PFS, 74% vs. 47%; HR, 0.55;

Figure 2. Coating Raji B-cell lymphoblasts with rituximab overcomes
intrinsic NK-cell tolerance of the unlicensed spKIR3DL1þNKG2A�, KIR�

NKG2A�, and hyporesponsive spKIR3DL2þNKG2A� NK-cell subsets.
Percentage of NK cells expressing cell-surface CD107a exclusively
expressing spKIR3DL1, spKIR3DL2, and NK cells lacking inhibitory KIR
expression for self-HLA using subject #11 (HLA-C1/C2, Bw6/6, A11/A31)
after 4 hours of incubation with a different CD20-expressing B-
lymphoblast cell line (Raji) confirmed to match the HLA-B KIR ligand
status of subject 11. Unlicensed spKIR3DL1þNKG2A�, spKIR3DL2þ

NKG2A�, and KIR�NKG2A�NK cells haveminimal "missing self" activity
against CD20þ HLA-class I–deficient 721.221 and HLA-Bw6/6 Raji B
lymphoblasts. Incubating both CD20þ B lymphoblasts with 10 mg/mL of
rituximab stimulates robust degranulation from these hyporesponsive
unlicensed NK-cell subsets.
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P¼ 0.09; Fig. 5D). Patients lacking both the HLA-C2 and HLA-
Bw4 ligands had the highest probability of remaining alive
and progression free (PFS, 88%; HR, 0.75; P ¼ 0.02; Fig. 5E).
We observed an association of PFS with HLA-C2 gene dose,
consistent with prior reports (39–41), such that HLA-C1/C1
homozygosity is associated with longer PFS, followed by
HLA-C1/C2 heterozygosity, and HLA-C2 homozygosity was
associated with the highest probability of disease progres-
sion (76% vs. 49% vs. 37%; HR, 0.60; P ¼ 0.04). Differences in
response rates between the different groups were not sta-
tistically significant (data not shown).

Discussion
ADCC is one of several mechanisms contributing to

clinical responses in patients treated with rituximab, but
the immunogenetic factors modulating cellular responses to
rituximab remain unclear. A deeper understanding of the
functional impact of KIR and HLA diversity on NK-cell

responses to rituximab-coated tumors may help predict
clinical responses to rituximab and other mAbs. We specif-
ically sought to determine how the rules of NK-cell licensing
modulate the responsiveness of NK-cell subsets to rituxi-
mab. The licensing model predicts a hierarchical NK cellular
response, dominated by the NK-cell subset expressing an
inhibitory KIR for self-HLA, which we confirmed in the
absence of rituximab, when NK cells encounter HLA class
I–deficient cells, consistent with prior studies (11–14, 42).
Coating CD20-expressing transformed B cells with rituxi-
mab, however, activates NK cells lacking an inhibitory KIR
for self-HLA. Activation of these unlicensed NK cells may
contribute to the "missing KIR ligand" benefit that we
observed in patients with follicular lymphoma treated with
rituximab-containing mAb combinations.

Rituximab and other antitumor antibodies provide a potent
NK-cell stimulus through CD16 (FcgRIII), the low-affinity IgG
receptor, and unlike other activating NK-cell receptors, CD16
ligation alone triggers fast calciumflux, cytokine secretion, and

Figure 3. Rituximab alone is sufficient to activate unlicensed NK cells, which are augmented by IL2 and higher doses of rituximab. A, to determine whether
cytokines secreted from other mononuclear cells within the PBMC population are required for rituximab-dependent activation of unlicensed NK cells,
NK cells from subject #8 (HLA-C1/C1, Bw6/Bw6) were purified by antibody-coated magnetic bead sorting and incubated for 4 hours with rituximab-coated
721.221 B lymphoblasts. The CD107a response of NK-cell subsets is shown; similar results were seen using subject #2 (data not shown). B, to
evaluate requirements for IL2, PBMCs from subjects #2, #1, #8, and #11 were incubated overnight with or without 1,000 U/mL of IL2 before coculture with
rituximab-coated Raji cell lines. C, escalation of rituximab concentration demonstrates dose-dependent activation of unlicensed NK cells (subject #17).
D, NK cells from 3 study subjects (#17, #18, and #19) were stimulated in vitro with increasing concentrations of rituximab and a fixed NK-cell to 721.221
cell ratio of 1:2. CD107a was measured on individual NK-cell subsets and licensing was determined on the basis of KIR expression and HLA class I
genotyping. Statistical significance was defined as P < 0.05. Experiments were performed in duplicate for each study subject.
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cytotoxicity of resting NK cells (22). We, therefore, hypothe-
sized that rituximab exploits this unique signaling feature of
CD16. We show that IL2 is not required for mAb to activate
unlicensed NK cells as unlicensed NK cells sorted from sup-
portive accessory cells can mediate a similar effect, and that
antitumor ADCC mediated by unlicensed KIR3DL2þ NK cells
may contribute to antibody responses. These data shed light on
the licensing model, and suggest that the rules governing NK-
cell responses to antibody-coated tumors may differ from the
rules governing direct antitumor responses.
Because the population of KIR� and unlicensed NK cells

within the total NK-cell repertoire is large, rituximab's ability to
activate these previously tolerant, hyporesponsive NK cells
may be a fundamental mechanism contributing to the ritux-
imab clinical responses. Our analysis of the NK-cell repertoire
is consistent with the literature, demonstrating significant
interindividual variability in spKIRþ and KIR�NKG2A� NK-
cell populations (11, 12, 21, 31, 38, 43). By combining single-cell
exclusion gating with KIR phenotyping, HLA genotyping, and
HLA class I KIR ligand assignment, we also demonstrate that
licensed NK cells may comprise a minority of the NK-cell
population, depending on an individual's HLA genotype. In
the absence of rituximab, therefore, NK-cell responses to
CD20þ tumors may be limited by the small subpopulation of
licensed NK cells that degranulate after direct exposure to
tumors. Rituximab's ability to increase the number of activated
NK cells by circumventing a licensing requirement may aug-
ment the magnitude of NK-cell responses to CD20þ tumors,
similar to the role of naive T-cell frequencies inmodulating the
immune response to viruses and vaccines (44–47). Moreover,
the potential for KIR�NKG2A� and unlicensed NK cells to

evade inhibition by HLA class I ligand expression on tumors
may result in superior clinical responses in patients with
greater numbers of these uninhibited NK-cell subsets, as
suggested in other model systems (16, 21, 48).

Little is known about the functional role of spKIR3DL2þ NK
cells, and published data suggest that spKIR3DL2þNK cells are
hyporesponsive regardless of the presence of the HLA-A3 or
HLA-A11 ligand (36–38). The ability of rituximab to activateNK
cells expressing KIR3DL2 and the clinical association of a
"missing KIR3DL2 ligand" with improved PFS suggest that
KIR3DL2þ NK cells are competent, do not require cognate
HLA-A3 or HLA-A11 ligand recognition for antibody-depen-
dent activation, and may mediate clinically meaningful
responses in patients treated with rituximab. Expression of
HLA-A ligands on tumors may impair KIR3DL2 NK-cell func-
tion (38), such that patients lackingHLA-A ligands forKIR3DL2
may benefit from a lack of KIR3DL2 inhibition. Because we
used MHC class I–low or MHC class I–negative tumor targets
in our in vitro experiments, we were unable to specifically
address the role of HLA expression on tumors. Moreover,
whether differences in HLA-A3 and HLA-A11 expression or
binding to KIR3DL2 explain different clinical responses among
HLA-A3þ and HLA-A11þ follicular lymphoma patients merits
further investigation.

The in vivo NK-cell response to rituximab likely occurs in
phases, similar to T-cell immune responses (49), with NK-cell
expansion, contraction, and memory formation after initial
activation (50). Our studies focus on the early activation phase,
in which unlicensed and licensed NK cells appear to have
comparable early degranulation and IFNg responses to ritux-
imab-coated transformed cells. Whether an advantage of
unlicensed NK cells emerges in later phases of the in vivo
response to rituximab is unclear, but suggested by prior studies
(16, 21). Our experiments, performed in the absence of cyto-
kines and validated with sorted NK cells, suggest that a highly
inflammatory environment like mouse CMV infection or com-
bination chemotherapy with mAb therapy may not be neces-
sary for circumventing the requirement of MHC education (15,
16, 21). Antitumor antibodies, therefore, may be a uniquely
targeted strategy for breaking tolerance and triggering activity
from hyporesponsive NK cells, while avoiding toxicities of
cytokines and inflammation.

Our finding that rituximab activates a large population of NK
cells by overcoming a requirement for HLA-dependent NK-cell
licensing may inform strategies for augmenting clinical remis-
sions. Cognate inhibitory KIR–HLA binding plays a dual, par-
adoxical role in controlling NK-cell responses: endowing effec-
tor function and inhibiting NK-cell responses (12, 14, 16, 51).
Because the presence of an HLA class I ligand for inhibitory KIR
is not required for rituximab-dependent NK-cell responses,
binding cognate ligandmay actually lead to NK-cell exhaustion
and impede clinical responses mediated by NK cells (52).
In neuroblastoma patients treated with combination anti-GD2
chemoimmunotherapy, licensed NK-cell inhibition is the dom-
inant result of cognate KIR–HLA binding (21). Blocking inhib-
itory KIR–HLA interactions to trigger licensed NK-cell
responses is feasible in the clinic (53–55), and a rationale
augmentation strategy for patients treated with rituximab,

Figure 4. Hyporesponsive NK cells exclusively expressing KIR3DL2 are
activatedby rituximab.Shown is thedegranulation (CD107a) responseby
NK cells exclusively expressing KIR3DL2 induced by 721.221 B
lymphoblasts with or without rituximab. CD107a results from 4 subjects
were aggregated: subject #11 (HLA-A11/31), #6 (HLA-A11/02), #4 (HLA-
A3/26), and #3 (HLA-A02/02). Similar to the KIR�NKG2A� (shown) and
unlicensed spKIRþNKG2A� (not shown) NK cells, NK cells exclusively
expressing KIR3DL2 were hyporesponsive to 721.221 B lymphoblast
tumor cells alone, but degranulated after the addition of rituximab,
comparable with the licensed NK-cell subset. Statistical comparisons
weremade using theMann–Whitney andKruskal–Wallis tests; �,P < 0.05.
The presence of the HLA-A11 (subjects #11 and #6) or HLA-A3 (subject
#4) ligand did not influence the antibody-dependent activation of the
spKIR3DL2þ NK-cell subset.
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although responses likely depend on the frequency of licensed
NK cells in patients, which was highly variable in our study
subjects. IL2 might also augment rituximab NK-cell responses,
as demonstrated previously (56), although prevention of regu-
latory T-cell expansion may be required for optimal clinical
benefit (57, 58). In aggregate, these data highlight the impor-
tance and feasibility of understanding the requirements for
capturing the antitumor potential of the NK-cell repertoire,

which may facilitate safer, more effective, and personalized
treatment decisions for patients with cancer.
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