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Dynamical Model and Optimal Turning Gait
for Mechanical Rectifier Systems

Saba Kohannim and Tetsuya Iwasaki

Abstract—Animal locomotion can be viewed as me-
chanical rectification due to the dynamics that convert
periodic body movements to a positive average thrust,
resulting in a steady locomotion velocity. This paper
considers a general multi-body mechanical rectifier un-
der continuous interactions with the environment, with
full rotation and translation in three dimensional space.
The equations of motion are developed with respect
to body coordinates to allow for direct analysis of
maneuvering dynamics. The paper then formulates and
solves an optimal turning gait problem for a mechanical
rectifier traveling along a curved path, with propul-
sive forces generated by periodic body deformation
(gait). In particular, the gait is optimized to minimize
a quadratic cost function, subject to constraints on
average locomotion velocity and average angular veloc-
ity. The problem is proven to reduce to two separate,
tractable minimization problems solvable for globally
optimal solutions. The first problem solves for the opti-
mal shape offset that results in turning, while the other
solves for the optimal gait that results in locomotion
along a straight path. A case study of a locomotor in
a fluid environment is presented to demonstrate the
utility of the method for robotic locomotor design.

Index Terms—Robotics, optimal control, nonlinear
systems, biological systems

I. Introduction
Robotic vehicle designs have been inspired by loco-

motion of animals that can efficiently interact with the
environment to produce a desired locomotion velocity, and
can adapt to environmental changes through modifications
in their body movements. Animal locomotion can be
regarded as a type of mechanical rectification, in which
sustained propulsive forces are produced through the inter-
action of the environment with the animal’s periodic body
motions (gaits) [1]–[3]. An essential problem in the design
of robotic locomotors inspired from animal locomotion is
determining a gait that optimizes an important perfor-
mance or cost function while satisfying a desired trajectory
constraint. This problem has been studied extensively in
the literature for various mechanical rectifiers, but due
to inherent difficulty, most existing results only provide
solutions that are locally optimal.

For locally optimal solutions, a standard approach is
based on the nonlinear optimal control theory. In [4],
Pontryagin maximum principle is used to characterize
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the optimal gait of a seven-link biped robot in terms
of a two-point boundary value problem, which is solved
by heuristic numerical methods. A similar method was
used in discrete-time setting [5] to solve for snake-like
link structures. Another popular approach is to reduce
the problem to a finite dimensional parametric optimiza-
tion by restricting the variables to the span of selected
basis functions (e.g. Fourier series, polynomial, piecewise
constant). In [6] and [7], this approach is taken to find
optimal gaits for an underwater eel-like robot and for
a nonholonomic snakeboard, respectively, by solving a
stationarity condition using Newton iteration algorithms.
The parametric approach is also used for biped robots
with direct numerical optimizations through sequential
quadratic programming [8], [9], steepest gradient descent
method [10], and a commercial software package [11].

There are a few approaches for computing global solu-
tions of certain optimal gait problems. One approach is in-
spired by biology, where an optimization problem is formu-
lated over a narrow set of possible gaits that are observed
in animal locomotion. In particular, for serpent crawling
and eel swimming, the animals exhibit undulatory body
movements with waves traveling down the body, which can
be parameterized by sinusoidally time-varying curvature
with constant amplitudes and linearly decreasing phases
over the slender body. Since the parameter space of various
gaits is restricted, it is possible to find the globally optimal
solution by simulations on gridded parameter points [12]
or by analytical perturbation methods [13]. These meth-
ods find reasonable gaits, but can miss better gaits that
deviate from those observed in biology.

Another approach to globally optimal gaits is to re-
strict the class of underlying locomotion dynamics rather
than the class of possible gaits. Reference [14] consid-
ers a general class of mechanical rectifiers that are in
continuous interactions with the environment, including
swimming, flying, and slithering. A simplified bilinear
model is developed under the assumption of small cur-
vature deformation, capturing essential rectifier dynamics
necessary for locomotion. An optimal gait problem is
then formulated as a minimization of a quadratic cost
function over all periodic body movements achievable with
a given set of actuators, subject to a constraint on the
average locomotion velocity. The globally optimal solution
is obtained using generalized eigenvalue computation, and
the method’s utility is validated by case studies of a link-
chain rectifier swimming in water.

The methods mentioned above are primarily used to find
optimal gaits for locomotion along a straight line, but the



problem can also be extended for turning motion along
a curved path. Turning motion has been studied in the
robotics framework by [15]–[18] for biped, quadruped, and
hexapod robots. However, in the frameworks of walking
on land, optimality is generally defined by the gait with
maximum stability to follow a defined path. Planar turning
motion has also been investigated by [5], [13], [19] for
eel swimming and snake crawling. In all these cases, a
constant offset is added to the harmonic shape variable
to achieve turning; however, only the harmonic terms are
included in the optimization problem and the offsets are
set to prescribed values, with no basis for the separation of
the offset terms from the periodic terms. Thus, it remains
essentially open how to optimize the gait for turning
locomotion in three dimensional space while minimizing
a general cost function.

In this paper, we address this open problem; we de-
velop a functional model for a general class of mechanical
rectifiers in three dimensional space, and extend the ap-
proach by [14] to find globally optimal gaits that satisfy
a desired steady turning constraint. We consider a multi-
body mechanical rectifier with full (six) degrees of freedom
(DOF) for position and orientation within the inertial
frame, in addition to arbitrary finite degrees of freedom
for body shape deformation. The body is assumed to
be in continuous contact with its environment, receiving
environmental forces that are proportional to the relative
velocities with directional preference. This class of rectifier
systems has been considered in [14], where the equations of
motion are derived within the inertial frame. We build on
the previous result and transform the equations of motion
into body coordinates in order to provide a comprehensible
description of the dynamics for arbitrary three dimensional
maneuvers from the “pilot’s view”, and independent of
an inertial frame. Assuming small body deformation, the
nonlinear model is reduced to a simplified model that is
tractable and captures the essential rectifying dynamics.

An optimal turning gait problem is then formulated for
the simplified model as the search for a periodic body
movement that minimizes a quadratic cost function while
achieving a steady turning motion with prescribed linear
and angular velocities on average over each cycle. Similar
to the previous methods mentioned above, shape offsets
are added to the periodic shape variables to allow for
turning motion; however, in this case the shape offsets are
not specified a priori, but included in the optimization.
The problem is shown to reduce equivalently to two sep-
arate and simpler minimization problems that are both
solvable for globally optimal solutions. The first problem
solves for the nominal (fixed) body shape that yields the
desired turning rate while minimizing the additional drag
due to turning. The second solves for the optimal periodic
body movement that would minimize the cost function if
the locomotion were achieved at the prescribed tangential
speed without the turning constraint, under increased
environmental drag and modified body dynamics. Thus,
our main result proves a separation principle in optimal
turning gait where the cost function and optimization

variables can both be decoupled into rotational and trans-
lational terms. The rotational problem is a simple convex
optimization and we provide an analytical solution, while
the translational problem takes the same form as the one
solved in [14] in terms of generalized eigenvalues, where a
harmonic gait is shown to be optimal. The utility of the
developed model and the optimal turning gait results are
tested by a numerical case study of an arbitrary swimming
locomotor designed to allow thrust generation in roll,
pitch, and yaw turning directions.

An abridged conference version of the present paper is
in [20] without technical details or proofs. The locomotor
case study reported here is new. Some preliminary results
on planar turning of an undulating link-chain rectifier have
been presented in [21].
Notations: The set of positive integers is denoted by

Z. The sets of n by m real and complex matrices are
denoted by Rn×m and Cn×m respectively. For vectors f
and x, the (i, j)th entry of ∂f/∂x is given by ∂fj/∂xi. For
a complex matrix X, the transpose, complex conjugate
transpose, and real part are denoted by XT, X∗, and
<[X] respectively. The matrix (or vector) obtained by
stacking matrices Xi, i ∈ Zn, in a column is denoted by
col(X1, . . . ,Xn). Similarly, diag(X1, . . . ,Xn) denotes the
block diagonal matrix with Xi stacked on the diagonal.

II. Mechanical Rectifier System
We consider a general mechanical system composed

of multiple rigid bodies that are connected arbitrarily
to each other at rigid or flexible joints with rotational
and/or linear degrees of freedom. The shape of the system
is defined by relative positions and orientations of the
multiple bodies, and can be deformed through actuators
placed at some of the joints. The multi-body system can
rotate and translate in three-dimensional space due to
interactive forces resulting from continuous contact with
the environment (e.g. water, air, ground). We assume that
the gravity effect can be neglected due to e.g. neutral
buoyancy of the system in a fluid. When the system
interacts with the environment to convert periodic body
motion to a net thrust over each cycle, we call it a
mechanical rectifier. Such systems would represent animal
locomotions or their robotic realizations such as fish and
batoid swimming, eel/serpent slithering, and balloon flight
with flapping wing.

The environmental force on each body is roughly mod-
eled as a static linear function of the relative velocities seen
from the body frame. The linear dependence of the force
on velocity is meant to capture the qualitative nature of
resistive interactions with the environment in various con-
texts (hydrodynamic drag in swimming, Coulomb friction
in slithering, etc.). The values of the drag coefficients are
chosen to quantitatively dictate the net effect over each
cycle of body oscillation. For instance, hydrodynamic force
in swimming may be modeled by a nonlinear function
of the velocity f(v) [22], [23]. However, if the velocity
is roughly sinusoidal v(t) ∼= asin(ωt+ b) during periodic
body movements, the net effect of the nonlinear force may



be approximated by a Fourier series truncation to yield
the linear term f(v)∼= κ(a)v where κ(a) is the describing
function [24]. The truncated higher order harmonics would
have a small impact on the overall behavior if they are
damped out due to the low pass filtering effect of the body
dynamics with inertia.

The next sections outline the derivation of analytical
models for mechanical rectifiers, with supplementary de-
tails given in the Appendix. The equations of motion with
respect to the inertial frame can be developed through
the Euler-Lagrange equation, using a set of generalized
coordinates as in [14]. However, our goal is to analyze
turning motion of the rectifier with a fixed average locomo-
tion speed and angular velocity. Therefore, we will develop
equations of motion with respect to a body frame, so that
the dynamics are described independently of the position
and orientation with respect to the inertial frame, as a
consequence of the symmetry/invariance property of the
environmental forces. The equations of motion are then
reduced, assuming small body oscillations, to a simpler
state space form that is reasonably accurate, tractable,
and usable for analytical study of optimal gaits for turning.

A. General equations of motion in the body frame
A mechanical rectifier in three dimensional space has

n = 6 + ` degrees of freedom, where the generalized co-
ordinates q := col(w,ψ,φ) ∈ Rn are given by the position
w ∈ R3, orientation ψ ∈ R3, and body shape φ ∈ R`. The
position of the rectifier can be defined as the coordinates
w of the center of mass of the entire multi-body system
within the inertial frame. The body shape φ of the rectifier
is given in terms of the kinematic variables specifying the
relative position/orientation between bodies within the
system (e.g. joint angles). The orientation of the rectifier
can be represented by a body frame attached to one of
the bodies comprising the rectifier. In particular, ψ can
be defined as a set of Euler angles for the body frame
with respect to the inertial frame.

The angular velocity of the body frame with respect to
the inertial frame, $ ∈ R3, can be expressed in the body
frame as

$ := P (ψ)ψ̇,

where P (ψ) ∈ R3×3 is a matrix-valued function uniquely
determined from the choice of the Euler angle sequence.
The locomotion velocity expressed in the body frame is
given by

v := col(vx,vy,vz) := Ω(ψ)ẇ,

where Ω(ψ)∈R3×3 is the orthogonal rotation matrix, and
vx, vy, and vz are the velocity components along the
respective axes of the body frame. We now define the new
velocity variable

ρ :=
[

v

ξ̇

]
, ξ̇ :=

[
$

φ̇

]
.

The equations of motion for a general mechanical rec-
tifier, with respect to the body frame, can be developed

using the Euler-Lagrange equation given by
d

dt

(
∂ρ

∂q̇

∂L

∂ρ

)
− ∂L
∂q

= h̄, (1)

where L := T −V is the Lagrangian, T (q,ρ)∈R is the total
kinetic energy of the system, V (q)∈R is the total potential
energy, and h̄(t)∈Rn are the generalized forces. Here, ρ is
viewed as a function of the generalized coordinates ρ(q, q̇),
and the equations of motion will be developed in terms of
(q,ρ) rather than (q, q̇).
The total kinetic energy is the sum of the translational

and rotational kinetic energies of all bodies, and can be
expressed as

T (q,ρ) = 1
2m||v||

2 + 1
2 ξ̇

TJ(φ)ξ̇, (2)

where m is the total mass, and J(φ) is the moment of
inertia matrix. The total potential energy captures the
elastic potential energy associated with body deformation
and is only a function of the shape of the mechanical
rectifier, i.e. V = V (φ).

The generalized forces consist of environmental forces
h̄e(t) ∈ Rn and actuator input forces h̄a(t) ∈ Rn, so that
h̄ = h̄e + h̄a. Let u(t) ∈ Rr be the actuator force/torque
inputs, and assume that their displacements are linear
functions of shape variables given by BTq for a coefficient
matrix B ∈ Rn×r with its first six rows being zero. Then,
the generalized force of actuators can be expressed as
h̄a = Bu. Let us define B to be the bottom (`+ 3)× r
block of B for later use. The environmental force acting
on a small segment on the ith body, at location c within
a local frame, with surface area dai, is modeled as

dfi =−Ω(ψi)T∆iΩ(ψi)σ̇i(c)dai,

where ∆i ∈ R3×3 is a constant matrix of drag/friction
coefficients, σ̇i(c)∈ R3 is the velocity of the segment, and
ψi ∈ R3 are the Euler angles of body i. The total virtual
work δW is obtained by integrating (δσi(c))Tdfi over the
surface of body i and summing over all the bodies of the
rectifier. The generalized environmental forces h̄e are then
found from δW = (δq)Th̄e as

h̄e =−
[
Ω(ψ) 0

0 Γ(ψ)

]T [
C(φ) E(φ)T

E(φ) D(φ)

][
v

ξ̇

]
, (3)

for appropriately defined coefficient matrices.
Using the given expressions for kinetic energy, potential

energy, and generalized forces, the Euler-Lagrange equa-
tion reduces to the following two equations of motion:

J(φ)ξ̈+g(φ, ξ̇) +D(φ)ξ̇+E(φ)v+k(φ) =Bu,

mv̇+mQ($)v+C(φ)v+E(φ)Tξ̇ = 0, (4)

where the coefficient matrices are defined in the Appendix.
The terms J(φ)ξ̈+g(φ, ξ̇) and mv̇+mQ($)v are the iner-
tial torques and forces, D(φ)ξ̇+E(φ)v and C(φ)v+E(φ)Tξ̇
capture the environmental torques and forces, k(φ) are
the torques due to body stiffness, and u ∈ Rr are the
forces/torques applied through actuators. Because the
generalized velocity q̇ is replaced by the body-frame vari-
able ρ in (4), all the coefficient matrices are independent of



the rectifier’s orientation ψ and position w, due to assumed
symmetry of the environmental forces. This property al-
lows us to specify desired nominal locomotion velocity and
angular velocity in the optimal gait problem.

B. Approximate model for trimmed locomotion
In order to analyze the locomotion mechanism of a

mechanical rectifier (4), and formulate a tractable and
meaningful optimal turning gait problem, we develop the
simplest approximated model that still captures the es-
sential rectifying dynamics. We focus on a trim condition
for steady turning locomotion where the rectifier body
moves through space at a constant speed v and angular
velocity $. Since the thrust is generated by rectifying the
effect of periodic body oscillation, the actual values of v
and $ oscillate around fixed constants. The objective is
to develop a simple model that captures the perturbed
dynamics around the trim condition, including the thrust
generation mechanisms.

In [14], simplified equations of motion for a general
mechanical rectifier in a similar form to (4), but in the
inertial frame, were developed to capture the dynamics
during locomotion along a straight line. The simple model
was used for analytical study of optimal gaits and was
shown to be valid for snake-like undulation and jellyfish-
like flapping of link-chain locomotors in comparison with
numerical simulations of the original nonlinear model. In
their approach, it was assumed that the body oscillated
about some nominal posture, defined as a fixed body shape
and orientation that allow coasting along a straight line in
the absence of any actuator inputs. The oscillation about
the nominal posture was assumed small and of order ε, and
Taylor series expansions were used to reduce the equations
to their simplest forms by retaining up to second order
O(ε2) terms that had essential contribution to the thrust
generation.

Here, we use a similar approach to [14], but modify
it to make it applicable for turning motion. Since body
orientation ψ does not appear in the new equations of mo-
tion (4), there is no need to introduce nominal orientation
angles. This feature is essential for turning analysis. We
consider the nominal body shape φ defined as follows. Let
V⊂ R3 be a linear subspace (straight line) indicating the
intended direction of locomotion in the body frame. The
shape φ(t)≡ η ∈ R` is said to be nominal along V if

k(η) = 0, E(η)V = 0, C(η)V⊆ V. (5)

Under these conditions, ($,φ, φ̇) = (0,η,0) satisfies (4)
with some v(t) ∈ V and u(t)≡ 0, which can be physically
interpreted as follows. At a nominal shape, the body is
at rest with minimum elastic potential (k(η) = 0), and
the rectifier can coast without changing its orientation or
shape under no actuator inputs (E(η)V= 0), while keeping
the same direction of locomotion velocity (C(η)V⊆ V).

We consider the situation where a small body deforma-
tion ϕ(t) := φ(t)− η around a nominal shape η achieves
steady turning with nearly constant speed v and angular

velocity $. Without loss of generality, we choose the body
frame so that the rectifier travels in the y-axis direction
during an intended locomotion; V = {ve2 : v ∈ R}, where
v := vy is the tangential velocity, and ei ∈ R3 is a vector
whose ith entry is one and all others are zero. This setting
allows us to neglect higher order terms of angular acceler-
ation $̇ and normal velocity components δ := col(vx,vz),
which are perpendicular to the direction of locomotion.
Assuming that ϕ, δ, and $̇ are small and of order ε, we
use Taylor series expansions, like in [14], and linearize the
shape equation or the first equation in (4), as well as the
normal velocity equation for δ̇. However, we keep up to
the quadratic or O(ε2) terms in the tangential velocity
equation for v̇ to keep the thrust term embedded in E(φ)Tξ̇,
which would be lost if linearized. Note that neither turning
rate $ nor locomotion speed v is assumed small, and all
the terms associated with these variables are retained.

The general equations of motion in (4) then reduce to
(see the Appendix for details)

ẋ=A($,v)x+Bu,
v̇ = (bTx−a)v+xTS($,v)x, x := col($,ϕ̇,δ,ϕ), (6)

where v := vy ∈ R, δ := col(vx,vz) ∈ R2, and ϕ := φ− η ∈
R`. All the coefficients are a function of the nominal shape
η. Coefficients a, b, and B are constant scalar, vector, and
matrix, and A($,v) and S($,v) are affine in col($,v)
except that the last ` columns of A($,v) have additional
terms that are quadratic in $. Furthermore, S($,v) is
symmetric and has zeros in its first 3× 3 block. The
parameter a is positive, representing the drag from the
environment under the nominal condition x = 0. These
properties become useful when formulating and solving the
optimal turning gait problem.

The definition of nominal shape in (5) may not be the
best for turning motion analysis since the trim condition
results in coasting along a straight line. Alternatively, a
nominal shape could be defined to maintain a specified
locomotion speed and nonzero angular velocity given a
known constant actuator input to keep the shape and a
fictitious thrust to sustain the speed. However, finding
such a nominal shape is strenuous as it requires solving
a complex nonlinear vector equality. Instead, we define
the nominal shape by more tractable condition (5) that is
generically satisfied by well-designed mechanical rectifiers
with streamlined bodies, like those found in nature.

The nominal shape would typically have some symme-
try to maintain straight coasting, but body oscillation
around an asymmetric shape can be needed for turning.
We use model (6) and optimal gait analysis to find the
optimal body shape offset that satisfies the desired angular
velocity. This process is guaranteed to work only when
the desired turning can be achieved by small body shape
offsets because model (6) assumes small body deformation
around a nominal shape. However, a large body shape
offset that achieves higher desired turning rates may be
found through an iteration process, where the optimal
gait analysis defines the nominal shape used in the next



iteration step, which maintains a specific angular velocity
at a desired locomotion speed.

III. Optimal turning locomotion
We will formulate an optimal turning gait problem and

provide a solution to find the best body oscillation of the
mechanical rectifier that achieves steady locomotion with
a desired speed and turning rate on average. The prob-
lem formulation and solution are based on the simplified
model in (6); however, functionality of the result will be
confirmed later for the original model (4) through a case
study.

A. Problem statement
We seek the optimal periodic gait ϕ(t) and correspond-

ing periodic control input u(t) that minimizes a quadratic
cost function, subject to constraints on the average loco-
motion velocity v and angular velocity $, with normal
velocities δ oscillating about zero. The optimal turning
gait problem is formulated for the mechanical rectifier (6)
as follows:

min
τ∈R

min
u∈Pτ

1
τ

∫ τ

0
zTΥzdt, z := F (s)

[
x
u

]
, (7)

subject to 1
τ

∫ τ

0
vdt= vo, (8)

1
τ

∫ τ

0
ydt= yo, y := Cx, (9)

where we assume that system (6) admits a τ -periodic solu-
tion (x,v) in response to τ -periodic input u. The optimal
periodic control input u ∈ Pτ and its period τ > 0 are to
be found, where Pτ is the set of possibly vector-valued
τ -periodic signals. The objective function is the average
value of a quadratic form zTΥz, where Υ is a constant
symmetric matrix, and z ∈ Pτ is a selected performance
output specified by filtering ς := col(x,u) ∈ Pτ through a
transfer function F (s).1 The constraints are imposed on
the average values of v and y with desired values vo and yo.
Here, we let y := col($,δ) be the constrained output with
target value yo := col($o, δo), and choose C accordingly.
A typical value of target normal velocity is zero (δo = 0),
although we allow nonzero values.
The objective function in (7), which is quadratic in

variable ς := col(x,u), is defined in terms of F (s) and Υ.
For technical simplicity, we assume that these filter and
weight are chosen such that the bias term ς̄ := 1

τ

∫ τ
0 ς dt

has no contribution to the value of the objective function.
It can readily be verified that the assumption is satisfied
if and only if ς̄TΠ(0)ς̄ = 0 holds for the frequency weight
Π(jω) := F (jω)∗ΥF (jω). Even with this assumption, (7)
captures useful cost functions through appropriate choices
of F (s) and Υ. Table I gives examples of such objective in-
tegrands that are practically important, together with the
corresponding frequency weights Π(jω), where U and W

1z = F (s)ς under an appropriately chosen initial condition that
makes the output τ -periodic without transient.

are defined such that ζ̇ := col($,ϕ̇) = U Tx and ϕ̇=W Tx.
The input power and shape derivative have nonzero Π(0),
but it can be verified that ς̄TΠ(0)ς̄ is zero by noting that
the bias of ϕ̇ is zero. Other costs can also be defined with
possibly discontinuous function Π(jω). For instance, if
velocity ripples are undesired, the oscillation amplitudes of
$ and δ can be penalized by choosing Π(jω) = diag(CTC,0)
for ω 6= 0 and Π(0) = 0. Finally, a cost can be given as a
linear combination of various costs.

TABLE I: Objective Functions
Quantity Objective Function Π(jω)

Input Power
1
τ

∫ τ
0 ζ̇TBudt

1
2

[
0 UB

BTUT 0

]
Input Torque Rate

1
τ

∫ τ
0 ||u̇||

2dt

[
0 0
0 ω2I

]
Shape Derivative

1
τ

∫ τ
0 ||ϕ̇||

2dt

[
WW T 0

0 0

]

B. Problem reformulation using phasors
Solving the optimal gait problem in (7)-(9) for a globally

optimal solution is difficult. For tractability, we reformu-
late the problem assuming small body deformation ϕ and
truncating its higher order terms.

Let us start by introducing some notation and providing
a brief review of mathematical preliminaries. A periodic
signal u ∈ Pτ can be approximated by its Fourier series

u(t) = ū+
h∑
k=1
<[ûkejωkt], (10)

where h ∈ Z can be arbitrarily large, ω := 2π/τ is the
fundamental frequency, ū ∈ Rr is the bias, and ûk ∈ Cr
is the phasor for the kth harmonic term. We denote the
phasor of u as û := col(û1, . . . , ûh). For a transfer function
F (s), we define

Fhω := diag(F (jω),F (j2ω), . . . ,F (jhω)). (11)

The notations ū, û, and Fhω will be used for generic
periodic signals and transfer functions. The following re-
sult is elementary and can be proven by straightforward
calculations (hence a proof is omitted).
Lemma 1: Let periodic signals z, ς ∈ Pτ and a transfer

function F (s) be given. Then

z = F (s)ς ⇒ z̄ = F (0)ς̄ , ẑ = Fhω ς̂ .

For signals x,y ∈ Pτ of the form (10), we have

1
τ

∫ τ

0
x(t)Ty(t)dt= x̄Tȳ+ 1

2

h∑
k=1
<[x̂∗kŷk].

We now reformulate the optimal gait problem. One
factor that makes the problem difficult is the ripples in
the locomotion velocity; if v(t) were constant, the analysis
would be easier. We realize this ideal situation by adding
a fictitious force ε(t), with zero average, to the right hand
side of the v̇ equation in (6). Consider the situation where
τ -periodic inputs u,ε ∈ Pτ for (6), with ε(t) specifically



chosen to regulate the swim speed v(t), result in constant
locomotion velocity v(t)≡ vo and τ -periodic response x(t).
Approximate u,x∈ Pτ by truncations of the Fourier series
as in (10) for a chosen h∈Z. Assume that the bias term ϕ̄
and all the harmonic terms x̂ are small and of order ε, and
neglect the O(ε2) and O(ε3) terms, respectively, in the ẋ
and v̇ equations in (6). We equate the periodic terms in
the first equation of (6) to obtain

x̂k =M(jkω)ûk, M(s) :=
(
sI−Ã($o,vo)

)−1B,

where Ã is defined to be identical to A except that the
linear terms of $ in the first three columns are multiplied
by two. The bias terms in the first equation of (6) give

x̄=Hū, H :=−A($o,vo)−1B.

Using the above expression, the angular and normal ve-
locity constraint in (9) can be rewritten as

Hū= yo, H := CH, (12)

Since we assumed a fictitious force ε, with zero average, is
applied to keep v≡ vo, the average of the velocity equation
in (6) over one cycle should also be zero. Averaging (6),
we replace the velocity constraint integral in (8) by

1
τ

∫ τ

0

(
(bTx−a)vo+xTS($,vo)x

)
dt= 0, (13)

yielding the thrust-drag balance at v(t) ≡ vo with no
fictitious forcing on average. The integral in (13) can be
converted to a quadratic constraint in ū and û using
Lemma1 as follows:

û∗Yω
hû− ŭTZŭ= 1,

where ŭ := col(ū,1) and

Y (jω) :=M(jω)∗S($o,vo)M(jω)/(2avo),

Z :=−
[
∇ d
dT 0

]
,

d :=HTb/(2a),
∇ :=HTS($o,vo)H/(avo).

(14)

Similarly, the objective integral in (7) can equivalently be
written by û∗Xωhû, where

X(jω) := 1
2

[
M(jω)
I

]∗
Π(jω)

[
M(jω)
I

]
. (15)

In summary, the original optimal gait problem formulated
in (7)-(9) is approximated by the following quadratic
optimization problem:

min
ω∈R

min
û ∈ Crh
ū ∈ Rr

û∗Xω
hû s.t. û∗Yω

hû= 1 + ŭTZŭ,
Hū= yo,

(16)

which is to be solved for the control bias ŭ := col(ū,1) and
the control phasor û.
Since the cost or performance function is generally

chosen to represent a physical quantity such as energy cost
or a vector norm, it is a valid assumption for the cost to
be positive. Due to the environmental drag a> 0, coasting
without deceleration is impossible, and there will always
be a nonzero cost for any locomotion at nonzero (linear or
angular) velocity. Thus we impose the following.

Assumption 1: Consider the optimization problem in
(16). The constraints are feasible, and the value of the
objective function is positive on the feasible set for any
nonzero vo or $o and for any a> 0.
The assumed property turns out to have favorable implica-
tions to tractability of the optimization problem as shown
in the next section.

C. Optimal turning gait
The optimal gait problem for locomotion along a

straight line is a special case of (16), and has been solved in
[14]. However, the additional turning rate constraint makes
it more difficult. For straight locomotion without turning
(yo = 0), zero bias ū= 0 satisfies the second constraint in
(16) making ŭTZŭ= 0, and problem (16) reduces to

min
ω∈R

min
û∈Crh

û∗Xω
hû s.t. û∗Yω

hû= 1. (17)

While this problem is nonconvex since matricesXωh and Yωh
are generally indefinite, [14] has shown that the problem
can be equivalently converted to a generalized eigenvalue
computation using the S-procedure [25]. For the turning
locomotion, however, there are two equality constraints
on mixed real (ū) and complex (û) variables, and direct
application of the S-procedure is conservative (inaccurate).
One could eliminate the linear equality constraint2 by
solving it for ū, but we take a different approach to gain
insights into the turning problem.

Our approach is to reduce the problem to two tractable
problems by proving a separation principle under the prop-
erty in Assumption 1. First note that the cost û∗Xωhû is
small if the oscillation amplitude ‖û‖ is small. The thrust-
drag balance, i.e. the first constraint in (16), indicates that
‖û‖ is smaller if ŭTZŭ is smaller. Hence, the term ŭTZŭ can
be thought of as the cost associated with turning. Indeed,
this term is nonnegative as shown below.
Lemma 2: Suppose Assumption 1 holds. Then

ŭ= col(ū,1), Hū= yo ⇒ ŭTZŭ≥ 0. (18)

Proof: Suppose condition (18) does not hold. Then
there is a ū such that Hū = yo but ŭTZŭ < 0. Since Z is
proportional to 1/a, an appropriate scaling of a can make
1+ ŭTZŭ= 0. For this value of a, û= 0 is a feasible control
input that satisfies constraint (16), and makes the cost
û∗Xω

hû= 0. Since this contradicts the original assumption,
condition (18) must hold.

Thus, the minimum value of ŭTZŭ is zero and is achieved
when the input bias ū is set to zero for straight locomotion
(yo = 0) as in [14]. For general turning locomotion (yo 6=
0), we may minimize the turning cost ŭTZŭ separately by
choosing ū. This idea is formally justified as follows.
Lemma 3: Consider problem (16) and

min
ω∈R

min
û∈Crh

û∗Xω
hû s.t. û∗Rω

hû= 1, (19a)

µ := min
ū∈Rr

ŭTZŭ s.t. Hū= yo, (19b)

2We thank Prof. Lieven Vandenberghe for pointing this out.



where

R(jω) := Y (jω)/(1 +µ), ŭ := col(ū,1).

Suppose Assumption 1 holds. Then, problem (19) and
problem (16) are equivalent in the sense that they have
the equal value of the optimal cost function and the same
optimizer solution.

Proof: It suffices to show that problems (16) and (19),
excluding the minimization over ω, are equivalent for each
fixed ω. Let γ1 be the optimal value of the cost function
in (16) with optimizer (ū1, û1), let γ2 be the optimal value
of the cost in (19a) with optimizer û2, and let ū2 be an
optimizer for (19b). Define

αi := 1 + ŭT
iZŭi,

Ri := Yω
h/αi,

ŭi := col(ūi,1),
ûo :=

√
(α2/α1)û1,

for i= 1,2. Because (18) holds, αi is always positive, and
by definition, R2 = Rω

h. We will show that problems (16)
and (19) are equivalent by showing γ1 ≤ γ2 and γ2 ≤ γ1.

The proof for γ1 ≤ γ2 is simple. Because û∗2Yωhû2 = 1+µ
where µ = ŭT

2Zŭ2, the parameter (ū2, û2) satisfies both
constraints in problem (16) and is a possible solution
to (16). However, since γ1 is the optimal solution to
(16), it follows that γ1 ≤ û∗2Xω

hû2 = γ2. To show the
other direction, note that the optimizer (ū1, û1) satisfies
the constraints in (16), and hence û∗1R1û1 = 1. We then
see that û∗oR2ûo = û∗1R1û1 = 1, so that ûo satisfies the
constraint in (19a). It now follows that

γ2 ≤ û∗oXωhûo = (α2/α1)û∗1Xωhû1 ≤ γ1,

where the first inequality holds because γ2 is the optimal
solution to (19a), and the second inequality holds since
ū2 is the optimal solution to (19b) and therefore α2 ≤ α1.
This completes the proof.

Lemma 3 proves that the optimization problem in (16)
can be reduced, equivalently, to two minimization prob-
lems, where the optimal bias term is found separately from
the optimal periodic component. The physical interpreta-
tion of (19b) is the minimization of the environmental drag
due to the bias ū, given by ŭTZŭ, with the achievement
of the desired turning rate $o. Equivalently, it can be
seen as finding the optimal nominal body shape of the
rectifier to reduce the environmental drag effect. According
to Lemma 3, the optimal bias offset is independent of the
effects of the periodic component or even the choice of cost
functions. On the other hand, (19a) has the same form
as (17), and is essentially the optimal straight locomotion
problem with the modification of the velocity constraint,
which compensates for the drag effect µ due to the turning
component.

The phasor optimization problem in (19a) can be solved
using a previous result for straight locomotion (Lemmas
2 and 3 in [14]). The result shows that the optimal value
of the cost û∗Xωhû is independent of h, meaning that the
optimum can always be achieved by a purely sinusoidal
input and no further reduction of the cost is possible by a
general periodic input. The optimal cost can be found from
the generalized eigenvalues of the pair (X(jω),R(jω)) with

a line search over ω, and the phasor of the optimal input
is given as the corresponding eigenvector.

For the bias optimization problem in (19b), ŭTZŭ is
an indefinite quadratic form, and hence is not convex.
However, it turns out that the objective function is convex
on the feasible set under Assumption 1. Therefore, the
problem has only one local minimum, and the global
minimizer can be found by a local algorithm or convex
programming. In fact, the problem admits a closed form
solution of the global minimizer as follows.
Lemma 4: Consider the problem (19b). Suppose the

problem is feasible and condition (18) holds. Then an
optimizer is given by

ū[ = ūo−N(N T∇N)†N T(∇ūo+d), (20)

where (·)† denotes the Moore-Penrose inverse, and

N := I−H†H, ūo = H†yo.

Proof: The result follows from a standard linear alge-
bra result [26].
We can now summarize the main result. Consider the

optimal turning gait problem given by (7)-(9) for the
mechanical rectifier in (6) with desired locomotion speed
vo, turning rate $o, and cost weights Υ and F (s). Suppose
the objective function value is zero when u and x are
constant solutions of (6). Then, based on the reformulation
procedure in Section III-B, the problem reduces, approxi-
mately, to the quadratic optimization given by (16), where
matrices X(ω), Y (ω), Z, and H are defined in (14), (15),
and (12). The optimizers of the two problems are related
by (10). The globally optimal solution to (16) is given by
the following result.
Theorem 1: Consider the optimal turning gait problem

given by (16). Suppose Assumption 1 holds. Then the
optimal bias ū[ is given by (20), and optimal phasor û[
and frequency ω[ can be found as follows. For each ω > 0,
define

R(ω) := Y (ω)/(1 + ŭT
[Zŭ[), ŭ[ := col(ū[,1),

and let λω be the largest real generalized eigenvalue of
the pair (X(ω),R(ω)) that satisfies the condition X(ω) ≥
λωR(ω). Let ûω be the eigenvector corresponding to λω,
normalized such that û∗ωR(ω)ûω = 1. The optimal frequency
ω[ is given by ω that minimizes λω, and the optimal phasor
û[ is the corresponding eigenvector ûω[ .

Proof: Problem (16) can be equivalently split into
the bias and harmonics (phasor) optimizations in (19) as
shown in Lemma 3. The optimal bias ū[ is given by Lemma
4, and the optimal phasor û[ is obtained from the result
in [14] as described.
Theorem 1 states that the optimal control input for the

original problem (7)–(9) can be approximately given by
the exact solution u[(t) to the reformulated problem (16).
The optimal solution u[(t) is purely sinusoidal and has the
form

u[(t) = ū[+<[û[ejω[t],



where ū[ and û[ are found by an explicit formula and
eigenvalue computation. The optimal frequency ω[ can be
found through a line search by gridding the frequency axis
and plotting the optimal cost value λω as a function of ω.
The optimal gait, or body shape ϕ[(t) corresponding to
u[(t), is also sinusoidal and its bias ϕ̄[ and phasor ϕ̂[ are
found by computing (x̄[, x̂[) using the equations following
(10). Note that the optimal bias shape ϕ̄[ is independent
of the cost function.

IV. Numerical example: The H-swimmer

This section demonstrates the utility of the optimal
turning gait problem formulation and solution through
numerical examples of an arbitrary locomotor swimming
in water. The mechanical rectifier is H-shaped, and is
composed of a main body (54.5×9.1 mm, 0.33 g) with six
degrees of freedom of translation and rotation, and twenty
identical panels (9.1×9.1 mm, 0.083 g each) connected at
rotational joints, each with one degree of freedom for a
total of n = 26 degrees of freedom (Fig. 1). Half of the
panels are located in front of the main body, divided
between right and left sides (arms), and can rotate along
the pitch direction, and half of the panels are located
behind the main body, divided between right and left
sides (legs), and can rotate along the yaw direction. The
rectifier’s total length along the y-axis is 100 mm, and
its width along the x-axis is 54.5 mm. It is placed in a
fluid environment, subject to hydrodynamic forces and
torques that interact with the body motion to produce
thrust for locomotion. The hydrodynamic forces acting on
each panel are approximated by linear functions of the
relative velocities of the respective segments; fni = cnivni
and fti = ctivti in the normal and tangential directions,
where (cni , cti) = (41,0.62) mN·s/m for the small panels
and (cn, ct) = (60,0.88) mN·s/m for the main body. All
the model parameter values are set for physical plausibility
from experimental data of leech swimming [23].

The body frame is attached to the main body as shown
in Fig. 1, and its Euler angles ψ ∈R3 and angular velocity
$ ∈ R3 represent the orientation and turning rate of the
rectifier. The joint angles φ ∈R20 specify the body shape,
and are defined so that φ = 0 when the arms and legs
are stretched along the y-axis. Each joint is actuated by
a torque input, such that u(t) ∈ R20, and the adjoining
panels are connected by linear bending stiffnesses 3×10−4

Nm/rad. Finally, the nominal shape is set to be straight
(η = 0), where the flexible joints are at rest.

v
z

x y

Fig. 1: Swimming locomotor model consisting of κ = 21
bodies and n= 26 degrees of freedom

(a) Pitch, $o =
[
0.8,0,0

]T (b) Roll, $o =
[
0,0.8,0

]T

(c) Yaw, $o =
[
0,0,0.8

]T

Fig. 2: Optimal shape with only bias of the joint angles
ϕ̄[, around which the body oscillates

This particular locomotor design serves two features.
The first is that it is not replicating any particular under-
water animal that could give us a reasonable gait without
using optimal gait analysis. The second feature is that it
allows for torque production in any direction of rotation
such that a bias shape ϕ̄ exists for any feasible value of the
desired angular velocity$o. This can be better understood
by Fig. 2, which shows the optimal bias shapes for basic
pitch, roll, and yaw rotations calculated from (20). Pure
pitch rotation is achieved by a body shape with left-right
symmetry where the arms are curled up along the radius
of rotation. Similarly, pure yaw rotation is achieved by
the legs curving along the radius of rotation about the z-
axis. Pure roll rotation, however, requires asymmetry in
the body where one arm pushes the fluid upward and the
other arm pushes the fluid downward.

We find the optimal torque input, optimal frequency,
and optimal body shape for the three cost functions pro-
vided in Table I subject to an average locomotion velocity
of vo = 100 mm/s, an average angular velocity of $o =
col(75,75,400) rad/ks, and average δo = col(0,0) mm/s.
Table II gives the optimal frequencies and the average
values of the steady state velocities obtained by simulating
the simplified model (6). The optimal frequencies for the
three cost functions range between 2 Hz to 4 Hz. The
results show that average velocities close to the desired
values are achieved for shape-derivative and torque-rate
optimizations; however, there are some large errors in the
simulated velocities for power optimization. These errors
are due to the large harmonics of the angular velocity $̂
that violate the assumption that $̂ is of order ε. The
errors can be reduced, if desired, by penalizing a linear
combination of power and angular velocity oscillations.

Minimization of each cost function leads to a distinct
gait whose optimality is not obvious from physical intu-
ition. Snapshots of these optimal gaits over one period are
shown in Figs. 3-5. Thrust generation in the power optimal
gait is achieved by the arms sending asymmetrical waves
down the right and left sides of the body, while the legs
oscillate from side to side with small amplitudes (Fig. 3).
The oscillation amplitudes are larger on the left hand side
to achieve the desired turning. This asymmetrical gait has
a lower power cost than a gait with symmetrical waves



TABLE II: Target values, optimal frequencies, and simu-
lated velocities of the simplified model (6)

objective ω[ [Hz] v [mm/s] δ [mm/s] $ [rad/ks]

(Target Value) — 100
[
0
0

] [
75
75
400

]

Power 2.00 101.0
[
−1.7
−0.1

] [
100
85
499

]

Shape 2.26 99.5
[
−0.2
0.0

] [
75
75
413

]

Torque 3.66 98.8
[
−1.8
0.0

] [
73
69
394

]

traveling down the right and left sides of the locomotor.
The shape-derivative cost is minimized when the legs use
a flapping motion to propel the locomotor forward, similar
to the gait in jellyfish swimming (Fig. 4). This gait is
desirable because it minimizes large changes in the body
shape and allows the main body to remain steady without
large oscillations about its orientation. However, it comes
at a price of very large torque and power costs. In the
optimal torque-rate gait, the legs synchronously oscillate
from side to side at a relatively high frequency, similar to
the motion of caudal fins in fish (Fig. 5). This gait saves
input torque magnitude, but sacrifices large body shape
changes and yawing motion.

Figures 3-5 show that it is optimal to use either arms
or legs to generate thrust for locomotion, but it is not
desirable to combine all four limb movements. This is a
counterintuitive result (valid at least for the simplified
model) that one would not be able to predict without
using the optimal gait theory. Furthermore, the left-right
asymmetry in the optimal gaits resulting from turning re-
quirement, which is most prevalent in power optimization,
demonstrates the following point. Although the harmonic
term of the body shape is found by solving a problem
of the same form as the straight locomotion problem, the
oscillatory component of the optimal gait is still a function
of the desired angular velocity due to the dependence of
X(ω) and Y (ω) on $o.

In order to analyze the accuracy of the optimal gait re-
sult from the simplified model (6), we look at the simulated
velocities of the original nonlinear model (4) given in Table
III. The different gaits result in different accuracies de-
pending on how well they satisfy the assumptions on small

TABLE III: Simulated velocities of the original model (4)
objective v [mm/s] δ [mm/s] $ [rad/ks]

Power 87.2
[
0.2
1.9

] [
84
60
312

]

Shape 95.7
[
−0.1
−2.4

] [
74
64
518

]

Torque 107.2
[
−0.8
−3.2

] [
114
75
499

]

t = 0 τ/4

τ/2 3τ/4

Fig. 3: Snapshots of the power optimal gait

t = 0 τ/4

τ/2 3τ/4

Fig. 4: Snapshots of the shape-rate optimal gait

t = 0 τ/4

τ/2 3τ/4

Fig. 5: Snapshots of the torque-rate optimal gait

(a) Power (b) Shape

(c) Torque

Fig. 6: Nonlinear model trajectory over 25 seconds

body deformation and small angular velocity harmonics.
In torque-rate optimization, in particular, the pitch rate
is much larger than desired. This occurs because the gait
in torque-rate optimality has large roll rate harmonics due
to the motion of the back panels pushing the main body
from side to side, thereby violating the assumption that $̂
is of order ε. The roll rate harmonics can be reduced by ac-
tuating the rectifier at a higher oscillation frequency with
smaller amplitudes, thereby achieving simulated velocities



that are closer to the desired values.
Figure 6 shows snapshots of the trajectories for the

original nonlinear model (4) over 25 seconds.3 The slower
nominal speed and smaller yaw rate in power optimization
results in a trajectory with a larger radius of rotation and
a larger bank angle. The larger yaw rate and smaller roll
rate in shape-derivative optimization results in a smaller
radius of rotation and a tighter distance between the turns.
The larger locomotion speed and pitch rate in torque-rate
optimization results in the locomotor traveling at a faster
pace with a larger bank angle. Despite the discrepancies
between the simulated velocities, all the trajectories follow
the desired path at least qualitatively, demonstrating the
utility of the optimal turning gait formulation and solution
for robotic locomotor designs. Although optimality of the
simplified model does not guarantee global optimality for
the original nonlinear model, the optimal gait found can
be used as an initial condition to find optimal gaits for the
fully nonlinear model.

V. Discussion and Conclusion
Analytical studies of (animal or robotic) locomotion

systems require dynamic models of the body-environment
interactions. While most of the past modeling efforts
have addressed specific locomotor configurations, it is
desired to have a “paradigm model” for a class of lo-
comotors, upon which a general theory of locomotion
can be developed. A successful paradigm model, based
on geometric mechanisms, exists [6], [7], [28], [29], which
encompasses modeling/analysis of locomotors interacting
with environment through kinematic (nonholonomic) con-
straints (rolling wheels, momentum preservation, etc.).
This paradigm does not capture locomotors interacting
with the environment through resistive forces resulting
from relative body motion (swimming, slithering) under
nontrivial inertia effects. The dynamical models we de-
veloped in Section II capture this class of locomotors,
providing a basis for further analytical studies.

In general, robotic locomotors are subject to many
uncertainties embedded in various features, and their ac-
curate modeling is infeasible. Hence, a good practice in
robotic control design or motion planning, in our opinion,
is to analyze a simple model capturing the essential dy-
namics and develop a rough plan for operation, followed
by fine tuning on site through experiments. With this
scenario in mind, we have derived the equations of motion
(4) for a general class of mechanical rectifiers traveling in
three dimensional space with full rotation and translation.
The resistive nature of the body-environment interactions
is qualitatively captured by forces linearly dependent on
the relative velocities, with drag coefficients quantitatively
dictating the net effect over a cycle of body oscillation.
We then reduced the model to the simplest form (6) that
maintained the necessary rectifying dynamics, assuming
small body deformation. The state space model (6) unveils
the dynamical structure of mechanical rectifiers, explicitly

3A video of the simulations can be found in [27].

showing how variables are interlaced to produce thrust for
propulsion and moment for turning. Our simple analytical
model is not only applicable for numerical simulations, but
also for theoretical study.

We then formulated an optimal turning gait problem
as the minimization of a quadratic cost function subject
to constraints on the average locomotion velocity and
angular velocity. Physical properties (Assumption 1) were
exploited to reduce the optimality problem equivalently to
two separate minimization problems, solvable for globally
optimal solutions. It was proven that the optimal offset
resulting in turning is first found independently of the
periodic term resulting in translation, while the optimal
periodic term is adjusted to compensate for the environ-
mental drag due to the shape offset. Furthermore, it was
shown that, like optimal locomotion in a fixed direction,
the optimal periodic term is purely sinusoidal.

To confirm the utility of the optimal gait problem and
solution, numerical examples of a swimming locomotor
were presented. The examples showed that while the op-
timality problem is formulated and solved for a simplified
model, the optimal gaits are reasonable for the original
nonlinear model even when the assumptions of small body
deformation are slightly violated. The results showed the
benefits of the optimal gait theory in finding optimal gaits
that can achieve a desired trajectory and speed.

Lastly, the theoretical framework developed through a
series of research, including [14] and the present paper, are
useful for understanding biological mechanisms underlying
animal locomotion. For instance, modeling and gait anal-
yses within our framework have supported the hypothe-
ses that carangiform fish exploit body-fluid resonance
for efficient swimming [30] and two representative gaits
of batoids, undulation and oscillation [31], result from
energy optimization under round and triangular shapes of
large pectoral fins [32], [33]. In the field of engineering,
our framework is useful for proof-of-concept designs of
mechanical rectifiers. Our theory can quickly provide a
list of reasonable gaits for a creative (not necessarily bio-
inspired) design of a robotic locomotor, without any a
priori knowledge or prejudice from animal locomotion.
These innovative designs of locomotors can be achieved
through design/analysis iterations to go beyond mimicking
what we observe in nature.

Appendix

Definitions of coefficient matrices in (4)

This section provides some details on the rectifier model
in (4). Let κ be the number of rigid bodies forming the
rectifier. For the ith body, mi ∈ R is the mass, Ji ∈ R3×3

is the moment of inertia, bi(φ) ∈ R3 is the position of
the center of mass relative to the center of mass of the
entire system, expressed in the reference body frame, and
ψ∗i (φ)∈R3 is the orientation with respect to the reference
body frame. Note that bi and ψ∗i are functions of shape
variable φ. The equations of motion in the body frame are



given by (4) for the following definitions:

J(φ) =
κ∑
i=1

(
miQi(φ)Qi(φ)T +Pi(φ)JiPi(φ)T

)
,

C(φ) =
κ∑
i=1

Ω(ψ∗i )TCiΩ(ψ∗i ), Ci :=
∫

∆idai,

E(φ) =
κ∑
i=1
Qi(φ)CiΩ(ψ∗i ), Di :=

∫
Q(c)∆iQ(c)Tdai,

D(φ) =
κ∑
i=1

(
Qi(φ)CiQi(φ)T +Pi(φ)DiPi(φ)T

)
,

g(φ, ξ̇) =−J(φ)Γ̇(ψ,ψ̇)θ̇+ Γ(ψ)−TG(θ, θ̇)θ̇,

where Q(z) ∈ R3×3 is the skew symmetric matrix satisfy-
ing z×x=Q(z)x=Q(x)Tz, and

G(θ, θ̇) =
(
∂J(θ)θ̇
∂θ

)T

− 1
2

(
∂J(θ)θ̇
∂θ

)
, k(φ) := ∂V (φ)

∂θ
,

J(θ) := Γ(ψ)TJ(φ)Γ(ψ), θ := col(ψ,φ),

Qi(φ) :=
[
Q(bi)
∂bi/∂φ

]
Ω(ψ∗i )T, Pi(φ) :=

[
Ω(ψ∗i )T

(∂ψ∗i /∂φ)P (ψ∗i )T

]
,

Γ(ψ) := diag(P (ψ), I), Γ̇(ψ,ψ̇) := dΓ(ψ)
dt

.

It remains to show that the right hand side of the g(φ, ξ̇)
equation can be expressed in terms of φ, φ̇, and $, without
involving ψ. This is formally stated and proven in the
following lemma.
Lemma 5: The function

g(θ, θ̇) :=−J(φ)Γ̇(ψ,ψ̇)θ̇+ Γ(ψ)−TG(θ, θ̇)θ̇

can be written as g(θ, θ̇) = g(φ, ξ̇) for some function g(·, ·).
Proof: First note that the following identities hold for

an arbitrary vector a ∈ R3:(
∂Ω(ψ)Ta

∂ψ

)T

= Ω(ψ)TQ(a)TP (ψ),(
∂P (ψ)a
∂ψ

)T

ψ̇ = Ṗ (ψ,ψ̇)a, Ṗ (ψ,ψ̇) := dP (ψ)
dt

,(
∂P (ψ)Ta

∂ψ

)
ψ̇ = Z(ψ,ψ̇)a, Z(ψ,ψ̇) := ∂P (ψ)ψ̇

∂ψ
.

The function g(θ, θ̇) can then be written as

g(θ, θ̇) =−J(φ)
[
Ṗ (ψ,ψ̇)ψ̇

0

]
+ Γ(ψ)−T

((
∂J(θ)θ̇
∂θ

)T

− 1
2

(
∂J(θ)θ̇
∂θ

))
θ̇.

The above partial derivative terms can be simplified by:(
∂J(θ)θ̇
∂θ

)T

θ̇ = Γ(ψ)T

(
∂J(φ)ξ̇
∂φ

)T

φ̇+ Γ̇(ψ,ψ̇)TJ(φ)ξ̇

+ Γ(ψ)TJ(φ)
[
Z(ψ,ψ̇)Tψ̇

0

]
,

(
∂J(θ)θ̇
∂θ

)
θ̇ =

2
[
Z(ψ,ψ̇) 0

]
J(φ)ξ̇

∂J(φ)ξ̇
∂φ

ξ̇

 .

Using these simplifications, g(θ, θ̇) becomes

g(θ, θ̇) =
(
∂J(φ)ξ̇
∂φ

)T

φ̇+

[R(ψ,ψ̇) 0
]
J(φ)ξ̇

−∂J(φ)ξ̇
2∂φ ξ̇

 ,
where R(ψ,ψ̇) := P (ψ)−T

(
Ṗ (ψ,ψ̇)T−Z(ψ,ψ̇)

)
. Finally, it

can be shown that R(ψ,ψ̇) =Q($) using the commutative
property and the Jacobi identity:

∂

∂ψ

(
dΩ(ψ)Ta

dt

)
= d

dt

(
∂Ω(ψ)Ta

∂ψ

)
,

Q(a)Q($)T +Q($)Q(a) =Q(Q(a)T$).

Thus, R(ψ,ψ̇) is a function of $, and hence g(θ, θ̇) is a
function of φ and ξ̇.

Some details of approximations leading to (6)
Approximate equations of motion in (6) are derived

from (4), assuming that body deformation ϕ, angular
acceleration $̇, and velocity components δ normal to the
direction of locomotion V are small and of order ε, where
ϕ := φ−η, δ := NTv, N := [e1 e3 ], and ei is the ith column
of the 3×3 identity matrix.
The terms in (4) can be approximated by Taylor series

expansion and truncation as follows:

J(φ)ξ̈ = J(η)ζ̈+O(ε2),
g(φ, ξ̇) = G($)ζ̇+ G1($$T)ϕ+O(ε2),
D(φ)ξ̇ = D(η)ζ̇+ D1($)ϕ+O(ε2),
E(φ)v = ����E(η)e2v +E(η)Nδ+vΛϕ+O(ε2),
k(φ) = �

��k(η) + Kϕ+O(ε2),
NTQ($)v = vR$+ NTQ($)Nδ,
eT
2Q($)v =−(R$)Tδ,

NTC(φ)v = �����NTC(η)e2v + NTC(η)Nδ+vQϕ+O(ε2),
eT
2C(φ)v = �����eT

2C(η)Nδ + c(ϕ)v+ (Qϕ)Tδ+O(ε3),
NTE(φ)Tξ̇ = NTE(η)Tζ̇+ E($)ϕ+O(ε2),
eT
2E(φ)Tξ̇ = ����

eT
2E(η)Tζ̇ + (Λϕ)Tζ̇+ϕTF($)ϕ+O(ε3),

where ζ̇ := col($,ϕ̇) and v := eT
2v. Functions G, G1, D1,

E, and F are linear (without constant terms) and function
c(ϕ) is the quadratic approximation of eT

2C(φ)e2. All the
terms depend on η and the canceled terms are zero due to
the nominal shape properties. Thus, (4) approximates to

Jζ̈+D($)ζ̇+K($,v)ϕ+Eδ =Bu,

mδ̇+C($)δ+mR$v+ETζ̇+ L($,v)ϕ= 0,
mv̇+ c(ϕ)v+ (Qϕ−mR$)Tδ+ (Λϕ)Tζ̇+ϕTF($)ϕ= 0,

where O(ε2) and O(ε3) terms are neglected in the first two
and the last equations, respectively, and

J := J(η), E := E(η)N, D($) := D(η) + G($),
L($,v) := vQ+ E($), C($) := NT(mQ($) +C(η))N,
K($,v) := G1($$T) + D1($) +vΛ + K,

Finally, it can readily be seen that the approximate equa-
tions can be expressed in a more compact form as (6).
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