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Detection of subtle white matter 
lesions in MRI through texture 
feature extraction and boundary 
delineation using an embedded 
clustering strategy
Kokhaur Ong1,2,10, David M. Young2,6,10, Sarina Sulaiman4, Siti Mariyam Shamsuddin4,11, 
Norzaini Rose Mohd Zain5, Hilwati Hashim8, Kahhay Yuen7, Stephan J. Sanders6, 
Weimiao Yu1,2,9* & Seepheng Hang3*

White matter lesions (WML) underlie multiple brain disorders, and automatic WML segmentation 
is crucial to evaluate the natural disease course and effectiveness of clinical interventions, including 
drug discovery. Although recent research has achieved tremendous progress in WML segmentation, 
accurate detection of subtle WML present early in the disease course remains particularly challenging. 
Here we propose an approach to automatic WML segmentation of mild WML loads using an intensity 
standardisation technique, gray level co-occurrence matrix (GLCM) embedded clustering technique, 
and random forest (RF) classifier to extract texture features and identify morphology specific to true 
WML. We precisely define their boundaries through a local outlier factor (LOF) algorithm that identifies 
edge pixels by local density deviation relative to its neighbors. The automated approach was validated 
on 32 human subjects, demonstrating strong agreement and correlation (excluding one outlier) with 
manual delineation by a neuroradiologist through Intra-Class Correlation (ICC = 0.881, 95% CI 0.769, 
0.941) and Pearson correlation (r = 0.895, p-value < 0.001), respectively, and outperforming three 
leading algorithms (Trimmed Mean Outlier Detection, Lesion Prediction Algorithm, and SALEM-LS) 
in five of the six established key metrics defined in the MICCAI Grand Challenge. By facilitating more 
accurate segmentation of subtle WML, this approach may enable earlier diagnosis and intervention.

White matter lesions (WML) are regions of abnormal myelination in the nervous system. WML are often seen 
as progressive brain changes in the elderly population, where the presence, shape, location and size of WML 
are important indicators of the etiology of neurological and geriatric disorders, including  stroke1,2, Alzheimer’s 
 disease3,4, vascular  dementia2,3,5, cognitive  decline6,7,  depression8–10, balance, and gait  impairment11,12. WML 
may also reflect inflammatory diseases such as multiple sclerosis, tumors, or vascular lesions. Accurate detec-
tion of these lesions has the potential to inform the diagnosis of the underlying disorders by characterizing their 
appearance and distribution, which in turn guides prognostication of the disease course and opportunities for 
earlier clinical  intervention13,14. Precise delineation of their boundaries and quantification of disease burden in 
drug development  research15 and future clinical settings may also shed light on the underlying disease patterns 
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and evolution, potentially revealing new disease subtypes and serving as pharmacodynamic biomarkers of treat-
ment response.

WML are commonly identified with Magnetic Resonance Imaging (MRI) techniques on Proton Density (PD), 
T2-weighted (T2-w) spin echo or fast spin echo sequence, and another, complementary T2-based technique, 
Fluid-Attenuated Inversion Recovery (FLAIR) pulse sequences. In particular, FLAIR MRI shows WML promi-
nently as diffuse and bright (hyperintense) regions in the brain, and thus WML are also known as white matter 
hyperintensities. Subsequently, diffusion and magnetization  transfer16,17 MRI serve as secondary sequences to 
identify active (acute) disease within WML. The assessment of white matter lesions is a tedious and challenging 
process for neuroradiologists. Common visual rating scales such as the Scheltens  scale18, the Age-Related White 
Matter Changes (ARWMC)  scale19, and the Fazekas  scale20 are manual and subjective, dependent on the neu-
roradiologist’s experience, interpretation, and judgment, and high intra- and inter-subject variability in WML 
assessment among neuroradiologists has impaired  reproducibility21. To address these limitations, quantification 
of WML volume using computer-aided detection and diagnosis techniques can assist neuroradiologists with 
objective, automated assessments that more reliably capture the extent and progression of WML in patients. On 
FLAIR MRI, WMLs seen in multiple sclerosis (MS) exhibit similar characteristics to WMLs seen in ischaemia, 
allowing similar analytic methods to be used for both.

Developing a computer-aided detection method to delineate WML is a challenging task, as the size, shape, 
and location of these lesions vary from subject to subject, further confounded by MRI flow artefact and image 
noise. Many WML segmentation methods have been developed to address these  challenges22, including Trimmed 
Mean Outlier Detection (TMOD) by our  group23. TMOD was evaluated on the MS data set from the MIC-
CAI  Challenge24, where it ranked third compared to other methods with a total score of 81.95 at the time of 
 submission23. Roura et al.25 introduced the SALEM-LS (SLS) algorithm, which uses an adaptive outlier algorithm 
to threshold outliers as WML from grey matter, ranking first on this dataset with a total score of 82.34. The Lesion 
Prediction Algorithm (LPA) developed by Schmidt et al.26–28 was based on logistic regression and successfully 
applied to the longitudinal analysis of WML  recently29. Vanderbecq and  colleagues30 recommended both the 
SLS and LPA algorithms as reasonable first choice WML segmentation tools after comparison and validation of 
seven different algorithms in their recent study.

Taking a similar approach to TMOD, Wu et al.31 used intensity histograms of FLAIR images for WML detec-
tion and adapted fuzzy connectedness for  segmentation32,33. De Boer et al.34 also used histogram thresholds to 
detect WML. Thresholds were adjusted adaptively based on grey matter voxel distribution, defined by T = μ + ασ, 
where the α was an optimized threshold parameter that was computed based on the highest similarity index 
from a set of ground truth annotated by a neuroradiologist. A recent study by Guizard et al.35 used a supervised 
method using non-local means to segment MS lesions leading to accurate identification and segmentation of 
MS lesions regardless of lesion orientation, size, and shape. In the same year, a Bayesian model applied to WML 
segmentation was introduced by Sudre et al.36. The main strength of this method was its ability to distinguish 
different types of abnormal brain tissue without prior pathological knowledge. Distinguishing different types 
of outliers, such as iron deposition, from WML helps improve diagnosis and management of age-related cogni-
tive decline. These fully automated approaches have the advantage of reducing inter- and intra-rater variability 
through an objective, consistent analysis after training on a large body of images, at least in theory. With these 
advancements, fully automated methods have become a preferred scheme for neuroradiologists to analyze and 
quantify WML in large MRI datasets, especially for longitudinal progression of WML in developmental studies, 
where large numbers of subjects with subtle changes across time require sensitive, high-throughput techniques.

One should note that false positive (FP) detection is a common problem detracting from WML segmentation 
 accuracy30,37–39. FP can arise from inadvertent segmentation of image noise, confounding non-brain structures 
such as signal from the skull and the optic nerve after inadequate skull-stripping, and other image  artifacts40 that 
can appear hyperintense in the FLAIR modality. Although such hyperintensities are often clearly identifiable 
as non-WML to the human eye, automated algorithms may have difficulty distinguishing these hyperintensi-
ties from WML, leading to false positive signals. This distinction becomes especially challenging for the subtle 
(spotted or punctate) WML seen in the mild WML loads of early disease, typically < 5 mL. Several  studies39,41 
have shown that these subtle WML are extremely common during aging, merging together over time to become 
confluent WML. In a very recent study of neuropathological  changes6, punctate WML associated with white 
matter microvascular networks likely reflect underlying white matter disease such as myelin damage, glial hyper-
plasia, and increased perivascular space. These punctate lesions seen in FLAIR images may be among the earliest 
indicators of this disease, and early intervention may reduce disease  progression14,42. Simple morphological opera-
tion and rule-based methods are applied in post processing steps to reduce FP, but the results are  insufficient43, 
especially for ill-defined, subtle lesions.

Here, we build upon the TMOD approach to minimize the number of FP WML and refine WML boundary 
delineation to improve segmentation of mild WML loads (< 5 mL) for early detection of abnormalities that may 
herald underlying disease. We extract texture features critical to defining the morphology of true white matter 
lesion using intensity standardization coupled with gray level co-occurrence embedded clustering, followed by 
Random Forest (RF) based classification of these features to substantially reduce these false positives. We further 
refine the boundaries of these WML using a Local Outlier Factor (LOF)  algorithm44 to identify edge pixels more 
precisely, thus detecting both lesions and their shapes more accurately. The overview of the proposed framework 
is illustrated in Fig. 1. We validate the method on 32 scans and compare our approach with three other lead-
ing algorithms, the Trimmed Mean Outlier  Detection23, Lesion Prediction Algorithm (LPA)27, and SALEM-LS 
(SLS)25,45 methods, to evaluate their performance, which demonstrates that our approach correlates the closest 
with manual WML delineation by a neuroradiologist.
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Results
To improve the TMOD algorithm, we first established a ground truth dataset using manual WML segmentation 
by an experienced neuroradiologist on 2-dimensional axial FLAIR MRI images from 32 subjects across a range 
of WML loads, independently verified by a second neuroradiologist. Representative images with three differ-
ent levels of two-dimensional and three-dimensional WML segmentation images can be seen in Sect. 1 of the 
Supplementary Material.

We quantified and compared the total WML load of each subject through manual segmentation, our revised 
method, and the three state-of-the-art WML automatic segmentation methods: TMOD, SLS, and LPA (see Fig. 2a, 
sorted by increasing lesion volume of ground truth)23,26,45. We chose TMOD as our prior method, verified on the 
MICCAI Challenge MS dataset, and SLS as the first ranking algorithm using the same dataset. We also selected 
LPA as the recommended first choice WML segmentation algorithm along with SLS by Vanderbecq et al.30. We 
applied the open-source implementations of each algorithm (available for free in the scientific community), 
and Sect. 2 of the supplementary material provides additional explanations about the parameter settings used 
in each method.

Spearman correlation coefficient and Intra-Class Correlation coefficient (ICC) were employed to measure the 
correlation and agreement (excluding one outlier), respectively, between the WML load (volume, mL) detected by 
each algorithm with manual delineation by an experienced neuroradiologist. The Pearson correlation coefficient 
showed a significant, strong correlation (r = 0.895, p-value < 0.001) between the proposed method and manual 
delineation by a neuroradiologist as illustrated in Fig. 2b. Although all algorithms showed high and relatively 
similar r values, demonstrating overall strong correlation with WML across all sizes, that of the proposed method 
was numerically the highest (vs. TMOD: r = 0.871, LPA: r = 0.819, SLS: r = 0.867).

As an additional reliability test, we obtained the ICC coefficient to evaluate the agreement between the manual 
segmentation by radiologists and automated segmentations. An appropriate ICC for this reliability analysis was 
chosen based on the procedure recommended by Ko and  Li46, the single measurement reliability with “absolute 
agreement” since there are two raters (manual and automated segmentation). The ICC with the proposed method 
is 0.882 (95% CI: 0.769, 0.941), the strongest agreement among the evaluated methods (vs. TMOD: ICC = 0.840, 
95%, CI 0.671, 0.923; LPA: ICC = 0.711, 95%, CI 0.483, 0.849; SLS: ICC = 0.832, 95%, CI 0.680, 0.915).

The low WML load and scattered distribution of the WMLs early in disease processes is particularly chal-
lenging for automated WML detection and segmentation, with many algorithms leading to multiple FPs. To 
interrogate these lesions, we stratified the lesion load into three previously defined  groups28,47,48: mild (< 5 mL), 
moderate (5–15 mL), and severe (> 15 mL) based on the ground truth lesion load. In addition to evaluation of 
gross WML loads, we measured the quality of segmentations to evaluate their morphological accuracy. The 
evaluation of WML segmentation quality is varied in the literature. Evaluation metrics (see Table 1) were chosen 

Figure 1.  Flow chart of the proposed method. (a) The method used for image preprocessing. (b) The method 
used to detect WML candidates. (c) The method used for FLAIR image intensity standardization. (d) The 
method used to detect WML (true positive) from WML candidates. (e) Refining the boundaries of WML 
segmentation.
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Figure 2.  Correlations between automated WML segmentations and ground truth stratified by lesion load. (a) The total WML load 
for each subject manually segmented by the neuroradiologist and automated methods was quantified and sorted by increasing lesion 
volume in the corresponding ground truth. Subjects were stratified into three WML load groups: mild (< 5 mL, blue background), 
moderate (5–15 mL, green background) and severe (> 15 mL, red background), also based on the ground truth lesion load. (b) A 
scatter plot of the simple linear regression analysis (32 subjects minus one outlier from severe WML load cases) for WML volume 
of each automated method compared to the ground truth. (c) A scatter plot of the simple linear regression analysis (25 subjects 
with < 5 mL WML load) for each automated method compared to the ground truth.
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based on the well-known metrics defined in the MICCAI Grand Challenge on MS Lesions  Segmentations24 and 
summaries by Geremia et al.49 with a similar aim of segmenting WML accurately based on symmetrical features. 
Together these sources yielded six evaluation metrics to evaluate segmentation performance: Dice index (DI), 
Jaccard index (JI), positive predictive value (PPV), volume difference (VD), false positive rate (FPR), and true 
positive rate (TPR) to compare the agreement between automated segmentations and ground truth.

Qualitatively, we observed accurate performance of the proposed method in detecting and segmenting WML 
in images across WML loads (Fig. 3), reinforced by quantitative assessments. For a representative subject with 
high WML load (132.4 mL, Fig. 3a), the Dice Index is 89%, PPV is 90%, TPR is 88% and FPR is 9%, in line with 
previous studies for high WML loads (> 15 mL), where the DI, PPV, and TPR values are typically above 80% 
(TPR for TMOD: 84%, LPA: 70%, SLS: 91%). By contrast, the FPR value obtained by the proposed method is less 
than 10%, also in line with the other methods (TMOD: 6%, LPA: 0.9%, SLS: 7%). These high accuracy results are 
as expected because the lesions are prominent, and the area is large.

Given the importance and challenge of identifying and segmenting mild WML loads in subjects for earlier 
diagnosis, we further focused on the accuracy of segmentation performance with WML loads < 5 mL. For these 
loads, the proposed method is the only one that showed a positive, statistically significant correlation (r = 0.471, 
p-value < 0.05, n = 25 subjects, see Fig. 2c, vs. TMOD: r = 0.080, LPA: r = 0.137, SLS: r = 0.304). Compared with 
the higher loads, the accuracy metrics are much lower for mild loads, where the Dice Index is 30%, PPV is 48%, 
TPR is 22%, and FPR is 19% (see Fig. 3b), in line with previous  studies25,50,51. Figure 4a,b illustrate the Dice Index 
and Jaccard Index, respectively, as line plot analyses, and Table 2 shows the summarised means and standard 
deviation of four of the essential agreement measures of WML segmentation for the mild WML group, which 
show generally improved and stabler metrics compared with the other methods. Notably, the proposed method 
received the highest Dice Index (26.5%) for the average of 25 subjects compared to the TMOD (24.0%), SLS 
(14.7%, p-value ≤ 7.19 ×  10–4, Bonferroni corrected for four comparisons), and LPA (12.8%, p-value ≤ 1.51 ×  10–5, 
Bonferroni corrected). Also, the proposed method showed a substantial, statistically significant reduction in FP 
with an average FP of 36.6% compared to 55.9% for TMOD (p-value ≤ 1.85 ×  10–4, Bonferroni corrected), 47.5% 
for SLS (p-value ≤ 1.27 ×  10–2, Bonferroni corrected) and 54.2% for LPA (p-value ≤ 1.20 ×  10–3, Bonferroni cor-
rected). Together with the volume difference metric, these similarity metrics indicate that the proposed method 
is robust in segmenting mild load volumes along with TMOD and LPA while obtaining a statistically significant 
improvement in accuracy.

On a per-voxel basis, the proposed method detected WML with a low PPV, or precision, of 33.8% on aver-
age, but statistically significant improvement compared to 21.8% for TMOD (p-value ≤ 6.10 ×  10–3, Bonferroni 
corrected for four comparisons), 16.8% for SLS (p-value ≤ 8.07 ×  10–4, Bonferroni corrected) and 13.3% for LPA 
(p-value ≤ 3.82 ×  10–5, Bonferroni corrected; see Table 2; Fig. 4c). The true positive rate, or sensitivity, was similarly 
low for all methods (see Fig. 4f). While per-voxel metrics showed room for improvement in all methods, the 
proposed method showed close correspondence with ground truth in overall volume differences, having among 
the lowest differences among all methods across all WML loads, especially mild loads. The mean volume dif-
ference was 0.506 mL, substantially reduced compared to 1.435 mL for TMOD (p-value ≤ 7.0 ×  10–3, Bonferroni 
corrected for four comparisons), 0.798 for SLS (p-value ≤ 1.71 ×  10–2, Bonferroni corrected) and 1.497 mL for 
LPA (p-value ≤ 1.50 ×  10–3, Bonferroni corrected; see Table 2; Fig. 4d). Additionally, the proposed method showed 
the best PPV and FPR among all automated methods across the vast majority of WML loads (see Fig. 4c,e).

Discussion
White matter lesion (WML) segmentation has the potential to play an important role in detection and diagnosis 
of many neurological disorders. Extending automated WML detection methods to reliably detect lesions in 
individuals with early-stage disease and milder WML burden (< 5 mL) could improve early diagnosis and act 

Table 1.  The six evaluation metrics are chosen from the conventional and well know evaluation parameters 
presented in the MICCAI grand challenge and literature. The Dice index (DI), Jaccard index (JI), and volume 
difference (VD) are used to measure the quality of WML segmentation by calculating their volume and 
Euclidean distance of WML boundary. Whereas, the true positive rate (TPR), false positive rate (FPR) and 
positive predictive value (PPV) usually practice understanding the quality of WML detection. The notations 
for Vol ( Sauto ) is volume of WML segmented by automated method, Vol ( GT ) is volume of WML delineated by 
neuroradiologist, TP is number of true positive, FP is number of false positive, FN is number of false negative, 
and TN is number of true negative. The best is defined as perfect segmentation and worst is completely missed 
segmentation.

Evaluation metrics Definition Best Worst

DI 2×Vol(Sauto)∩Vol(GT)
Vol(Sauto)+Vol(GT)

1 0

JI 2×Vol(Sauto)∩Vol(GT)
Vol(Sauto)∪Vol(GT)

1 0

TPR TP
TP+FN

1 0

FPR FP
TP+TN

0 1

PPV TP
TP+FP

1 0

VD Vol(Sauto)−Vol(GT)
Vol(GT)

0 ∞
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as a pharmacodynamic biomarker. However, to date, such methods have suffered from high false positive rates. 
Here, we refine the TMOD method to enhance the delineation of mild WML in imaging data from 32 subjects 
with subtle WML loads. Specifically, the proposed method improves the lesion detection rate by using intensity 
standardization to capture the full set of intensity feature data, one critical component of the classification model. 
Similarly, applying the cluster-based GLCM method allows better discrimination of texture features match-
ing those in WML (see Figs. 1d, 6). We demonstrate improved WML segmentation across all state-of-the-art 
methods as shown qualitatively (see Fig. 4g) and quantitatively, including 2.5 times improved volume difference 

Figure 3.  Comparison of the proposed method to ground truth for severe and mild cases. Representative 
examples of the performance of the proposed WML detection and segmentation are shown, with several slices 
of a WML binary image results segmented by a neuroradiologist and segmented by the proposed method 
superimposed on top of the intensity standardised FLAIR image. The binary image data of white matter and 
white matter lesions were also used for three-dimensional reconstruction. (a) For severe cases, the results of 
both are very close. (b) The results of mild cases show greater discrepancy, which is also the challenge of the 
proposed method and other comparative methods for mild cases.
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compared with our prior work and the best ranked performance among the other state-of-the-art methods in 
the false positive rate, Dice index, positive predictive value, and volume difference for mild WML (see Fig. 4a–f 
and Table 2). By enhancing subtle WML detection sensitivity while simultaneously and rigorously filtering out 
FP, the proposed method provides the capability for more effective and accurate early detection and quantifica-
tion of WML in age-related human disease.

To provide a consistent performance comparison across all state-of-the-art methods for 32 subjects, we 
found that the proposed method showed the optimal performance for each metric except for sensitivity (see 
Fig. 5), where it took second to our prior work, trading some sensitivity for increased precision (PPV). Together, 
the proposed method outperformed the three other automatic methods in measures related to segmentation 
precision and specificity (the positive predictive value and false positive rate, respectively), critical to identify-
ing relevant lesions for clinical follow-up and monitoring. Furthermore, the proposed method identified lesion 
patterns with greater fidelity to ground truth (Dice index, Jaccard index, and volume difference), consistent with 
improved WML boundary determination in fuzzy, amorphous regions. It is worth noting that we focused on 
these voxel-rather than lesion-based measures to assess the precise delineation of WML boundaries, which are 
not directly assessed with lesion-based  measures52.

Despite improvement, several limitations remain. As discussed in the literature, WML segmentation of age-
related, mild loads is a challenging problem with the low detection rates in the 30% range as opposed to the > 80% 
range seen with large WML loads (> 15 mL). In this study, the average Dice index was lower than 0.5 for all 
automatic methods, in line with the current state of the  literature25,29,45,50,51 and not as promising as segmenta-
tion of the typically large multiple sclerosis (MS) lesions reported in the  literature22. The main cause of low 
indices is likely missed segmentations in parts of the brain that contain high density white matter fibers, with 
small intensity differences between the white matter lesions and background normal white matter fibers. When 
detecting WML visually, neuroradiologist rely on the signal intensity gradient (difference) between the WML 
and the surrounding normal white matters. This is easily done qualitatively when the gradient is high between 
the hyperintense WML and the areas in the brain with low density white matter fibres with relatively low inten-
sity background. Areas of the brain with high density white matter fibres have a relatively higher intensity than 
the rest of the brain which reduces the gradient of signal intensity between the high-density white matter and 
the hyperintensity WML. Nonetheless, an experienced neuroradiologist can still detect these WML despite this 
slight challenge to the visual segmentation by adjusting the window width and window length when analysing 
the images. Areas with such fibers are the corona radiata and centrum semiovale, which contain major neural 
networks in the brain such as the cortico-spinal tracts. Consistent with this finding, the automatic methods 
struggle to segment WML in such low contrast and fuzzier white matter areas. Similarly, the per-voxel metrics 
were low (PPV, TPR, and FPR) for mild WML burden, although the proposed method is superior to the other 
methods for most WML loads. Overall volumes corresponded well with ground truth, indicating that while 

Figure 4.  The performance of the proposed method compared to TMOD, LPA and SLS in well-established 
evaluation metrics. They are (a) Dice index, (b) Jaccard index, (c) positive predictive value, (d) volume 
difference, (e) false positive rate and (f) true positive rate. (g) The comparison of the proposed method and other 
comparative methods by qualitative analysis of WML segmentation.
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individual voxels may be inappropriately assigned, the overall segmented sizes of WML are accurate with the 
proposed method. Detection was also limited by the 5 mm slice thickness and 1 mm inter-slice gaps, which can 
reduce contrast or miss lesions within  gaps53, respectively. Imaging on higher resolution MRI scanners may yield 
higher detection rates and better differentiation of false from true lesions.

Detecting outliers is a critical problem in defining WML since noise, incomplete skull stripping, and other 
artefacts often mimic WML, with the potential for false diagnoses, undue distress, unnecessary follow-up testing, 
or even unwarranted treatment. Previous methods have focused on identifying the features of healthy normal 
brain tissue to identify WML, whereas the proposed approach utilizes characteristics inherent in outliers to 
classify them as WML or non-WML, using intensity voxel standardization together with cluster-based GLCM 
texture feature extraction to enhance and contrast these features with normal tissue. Moreover, the LOF algorithm 
further curates lesion boundaries by adaptively comparing voxel intensities with their local neighbourhood, 
which allows for more precise WML segmentation in fuzzy areas of low contrast (see Fig. 4g).

By reducing the burden of false diagnoses from WML segmentation, the proposed method can serve as a 
more reliable and quantitative WML measurement tool for clinical practice. For example, tools to detect and 
quantify the burden and trajectories of WML early in disease may enhance the capability for early diagnosis of 
leukoencephalopathies, quantify WM changes related to headache (e.g., migraine), and find patterns that might 
distinguish vascular dementia from other forms of dementia. Additionally, having the segmentation results in 
selected patients can be useful as it provides a more accurate quantification that may have a significant role in 
deciding whether a particular intervention should be continued, stopped or changed. Furthermore, if the outlin-
ing is accurately completed by automatic segmentation, where clinicians only need to cross-check or make subtle 
adjustments, the threshold to performing accurate segmentation for research or clinical trials will be lowered. We 
also anticipate that segmentation may adopt an important future clinical role for quantitative analysis of disease, 
which allows for lesion volume tracking to assess disease progression and assessment of response to treatment 
both for clinically approved and novel pharmaceuticals. Identification of lesion patterns and distributions may 
also serve as biomarkers for diseases and disease sub-types.

Deep learning is well-recognized as a promising technique for computer aided diagnosis. However, the 
training process of deep learning typically requires a large amount of WML-related, copiously annotated image 
data for sufficient training without overfitting to selected populations, coupled with computationally intensive 
training calculations. To the best of our knowledge, such datasets capturing the broad scope of WML image data 
are not yet  available38, particularly for the subtler lesions of early age-related diseases targeted here. Although 
pre-trained CNN models such as VGG 16, Inception V3, and ResNet 50 are useful starting points to pilot such 
algorithms, most of the trained image data in these models are not related to the medical diagnosis, especially 
WML imaging. Classical image processing algorithms such as the random forest algorithm have the advantage 
of operating as fully unsupervised techniques that do not require this breadth of training. We chose the ran-
dom forest method as it has been verified as the best performer specifically for medical segmentation of WML 
among ten other classification  algorithms54. Another common limitation of supervised learning algorithms is 
the requirement to retrain detection models constructed by non-invariant features when MR scanner acquisition 
settings  change47. However, in our proposed framework, this retraining is not required because the MR voxel 
intensities are corrected and standardised during the pre-processing stage using the landmark based intensity 
standardization  method55. A drawback is that the constructed model is specific to WML, and hence for brain 
lesions that predominate in gray matter such as many neurodegenerative diseases, the model’s settings would 
need to be retrained.

Conclusion
We have proposed a method designed to effectively reduce the FP of WML for accurate WML segmentation, 
tailored to subtle lesions that are characteristic of early age-related neurological brain disorders. As a future 
extension, the proposed method can be applied to longitudinal population studies for further validation and iden-
tification of the earliest accurate detection of the onset for many white matter disorders, interrogating whether 

Table 2.  Agreement measures for Dice index, Jacarrd index, positive predictive value, true positive rate, 
false positive rate, and volume difference between lesions segmented by the automated methods and a 
neuroradiologist for 25 subjects with mild WML loads. Dice index, Jaccard index, positive predictive value, 
true positive rate, false positive rate, and volume difference are presented as mean ± standard deviation. B 
indicates Best, and W is Worst. NS is not statistically significantly different compared with the proposed 
method (P > 0.05); * is significant at P ≤ 0.05; ** is significant at P ≤ 0.01, and *** is significant at P ≤ 0.001. All 
paired t-tests were Bonferroni corrected for four comparisons.

Automated 
segmentation methods

Dice index (B = 1, 
W = 0)

Jaccard index (B = 1, 
W = 0)

Positive predictive 
value (B = 1, W = 0)

True positive rate 
(B = 1, W = 0)

False positive rate 
(B = 0, W = 1)

Volume difference 
(B = 0, W = ∞)

Proposed method 0.2648 ± 0.134 0.1598 ± 0.10 0.3383 ± 0.218 0.2555 ± 0.143 0.3656 ± 0.189 0.5056 ± 0.435

TMOD 0.2397 ± 0.123
NS

0.1420 ± 0.09
NS

0.2180 ± 0.139
**

0.3351 ± 0.150
*

0.5594 ± 0.191
***

1.4350 ± 2.005
**

SLS 0.1471 ± 0.131
***

0.0851 ± 0.09
**

0.1680 ± 0.167
***

0.1609 ± 0.148
**

0.4748 ± 0.196
*

0.7978 ± 0.653
*

LPA 0.1275 ± 0.080
***

0.0700 ± 0.05
***

0.1331 ± 0.122
***

0.1913 ± 0.157
*

0.5417 ± 0.229
**

1.4973 ± 1.673
**
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and what types of subtle abnormalities detected as WML go on to declare themselves as unequivocal pathology. 
By enabling comparison of texture of WML and MR intensity across different time points, the evolution of white 
matter disease can be modeled from its onset and better correlated with genetic, environmental and therapeutic 
measures. Also, it will be interesting to further extend and apply this method to help differentiate different types 
of WML that otherwise share similar appearance and signal characteristics through texture differences, helping 
to unlock the underlying classifications and associated etiologies of WML in neurological diseases.

Materials and methods
Subjects, imaging, and WML loads. The proposed WML segmentation and false positive elimination 
method was evaluated using a subset of cranial MR images obtained from a clinical study of 121 subjects older 
than 35 years with cardiovascular risk factors on the protective effect of palm vitamin E tocotrienols on brain 
white  matter15, scanned using the brain MR imaging protocol for T1-Weighted (T1-W) and FLAIR sequences 
listed in Table 3. Informed consent was obtained from all volunteers and the study was approved by the Research 
Ethics Committee for human studies of Universiti Sains Malaysia (http:// www. crp. kk. usm. my/ pages. jepem. 
htm), and all methods were carried out in accordance with relevant guidelines and regulations. From this study 
population, we randomly selected 42 subjects to perform detailed annotations on their baseline MR images. 
This number provided for 10 training and at least 30 test subjects, which allowed for reasonable assumptions of 
normality in the sampling distribution of the test cases and as a practical case load for meticulous ground truth 
annotations by the neuroradiologists.

We further broke down the target study population by lesion load to obtain a larger proportion of those 
with low loads while including some with higher loads to ensure applicability of the method to the full range 
of WML loads. To obtain an approximation of the total lesion load for each subject in the original cohort, we 
used the trimmed mean outlier  method23. Next, we randomly selected 32 subjects with less than 5 mL loads 
and randomly partitioned 7 for training and 25 for testing. For medium loads (5–15 mL), we randomly selected 
another 10 samples, partitioning 3 for training and 7 for testing. Last, we selected 3 subjects (1 for training, 2 for 
testing) with high lesion loads (greater than 15 mL) as positive controls to ensure that our segmentation could 
generalize to the more common and less challenging case of large lesions.

The training data set for the random forest classifier was validated by tenfold cross-validation of 10 subjects 
with a total of 92 2D FLAIR planes comprising 533 individual white matter lesions in patches of different sizes 
and 50.43 ml total lesion load (mean 5.04 ± 7.05 mL; see Table 3). For testing, a total of 32 subjects comprising a 
total of 279 2D FLAIR planes with a total count of 1569 individual white matter lesions and a cumulative WML 
volume of 239.48 mL (mean 7.48 ± 23.82 mL).

Ground truth and training dataset preparation protocol. Two neuroradiologists prepared the 
ground truth annotations using the publicly available software package MIPAV (Medical Image Processing, 

Figure 5.  Summaries of all metric evaluations from each automatic method (all 32 subjects). (a) Metrics 
ranging from 0 as the best to 1 or ∞ as the worst performance. (b) Metrics with the opposite orientation, where 
the best performance index is scored 1.0, and the worst performance is 0.

http://www.crp.kk.usm.my/pages.jepem.htm
http://www.crp.kk.usm.my/pages.jepem.htm
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Analysis and Visualization), provided by the National Institutes of Health (NIH), which includes a tool for 
manual delineation assisted by a level set segmentation tool as a method of modeling curve evolution based 
on contour shape. For each lesion, the neuroradiologist painted hyperintense pixels as seed points, which the 
level-set tool expands to include similar hyperintensities in the immediately adjacent, neighboring pixels. This 
assistive segmentation both speeds the annotation process and captures pixels that are difficult to annotate accu-
rately with standard painting tools. The level-set threshold can be titrated to limit its aggressiveness, especially in 
areas with obscured borders. The annotation boundaries are composed of splines that allow further fine-tuning 
through manual, free-form movement to ensure close alignment with the underlying lesion. When considering 
the extent of lesion boundaries, the neuroradiologist incorporated knowledge from the adjacent slices above and 
below each given slice and adopted a liberal annotation strategy that included spatially heterogeneous patterns 
such as those found in deep WML and periventricular WML as well as intermediate phases of hyperintensity 
surrounding many of the bright hyperintensities, fainter than the core but brighter than the surrounding normal 
 tissue56,57. One neuroradiologist first generated a complete set of annotations for all subjects, followed by verifi-
cation of each annotation by a second neuroradiologist. When the neuroradiologists disagreed on a lesion, this 
second neuroradiologist would generate an independent annotation. Using the Intra-Class Correlation metric 
on lesion volume, the two neuroradiologists demonstrated consistent results across annotations (ICC = 0.9950, 
95% CI: 0.9897, 0.9976). Details and comparison of their agreement measures can be viewed in Supplementary 
Material Tables S1–S3.

Next, we prepared the training dataset for WML detection and segmentation by applying  TMOD23 to obtain 
separate sets of true and false WML, both necessary to train the classifier. We used the annotations drawn by the 
neuroradiologist as the true WML training set, labelled as "Lesions," and the remaining TMOD output lesions 
that did not match the neuroradiologist’s annotations as the false WML, "Non-lesion" set. Finally, all WML 
and non-WML annotations were converted into binary masks for the feature extraction in the next process. 
This approach reduces the neurologist’s workload while simultaneously making the segmentation results more 
realistic for the RF classifier.

Image pre-processing. In the WML segmentation framework, N3 inhomogeneity correction, skull strip-
ping, intensity standardisation, and image registration are indispensable preprocessing steps to accurate WML 
detection and segmentation (see Fig. 1a). In our segmentation work, we first perform intra-subject co-registra-
tion of each 2D T1-weighted image to the corresponding 2D FLAIR image. This registration method is to use 
the built-in function of automatic multi-modal medical image registration provided in the MATLAB 2014a 
(Mathworks Inc., USA) image processing toolbox. It uses intensity-based image registration to automatically 
align two magnetic resonance (MRI) images to a common coordinate system. Next, we implemented the N3 
inhomogeneity correction method suggested by Sled et al.58 to eliminate the MRI artefacts caused by receiver 
coil sensitivity variation during the MRI scanning  process59 on co-registered T1-W and FLAIR sequence images, 
which show a gradient effect on the image from side to side and inhibit brain segmentation. After attenuating 
these artifacts, we proceeded to segment the brain into white matter, gray matter, and cerebrospinal fluid by 
using a fuzzy C-means clustering  algorithm60. These regions can be used in the next step to further identify and 
eliminate false positives as reported in our previous  study23.

Next, we used the level-set algorithm introduced by Zhuang et al.61 to strip the skull from brain tissue. Com-
pared with other skull stripping algorithms using morphological operations, the level-set approach obtained a 
superior segmentation when incorporating the patient’s age (obtained from DICOM metadata) as the key crite-
rion to terminate the segmentation evolution for skull stripping. Co-registered T1-W is the input for the skull 
stripping process because neuroradiologists use T1-W as the best MRI sequence to show brain tissue structure. 
Next, the skull stripped T1-W images were used as a mask to extract the brain in the corresponding FLAIR 
images. MRI intensity standardisation was applied using the process that we described  previously55 because the 
voxel intensity read from MRI shows large variations between and within each scan due to the limitation of MRI 
instrumentation, which would otherwise preclude texture and brightness comparability between images. The 
output of standardised FLAIR MRI (see Fig. 1c) was used to perform the feature extraction later.

For WML segmentation, the method based on boxplots and trimmed mean computation described in our 
previous  study23 was used for automated WML segmentation and extended here to avoid subtle false positives. 
First, we used the trimmed mean method to estimate the normal brain intensity distribution in each 2D image 
slice. Next, we constructed boxplots of each distribution, where extreme outliers identified the presence of WML 
in each slice and defined the threshold parameters for WML segmentation (see Fig. 1b). By using boxplots 
specific to each 2D slice, we thus adapt to local outliers while maintaining a global context to minimize subtle 
false positives.

GLCM embedded clustering strategy for WML detection and false positive removal. Among 
the candidates for detected WML, false positives remained such as hyperintensity voxels, seen especially in mild 
WML loads, image flow artefacts, incomplete skull stripping, and the non-specific (poor signal-to-noise ratio) 
caused by inaccurate intensity thresholding in WML  detection62. However, current TMOD  methods23 have not 
been shown to delineate these hyperintensity types for false positive removal. In this study, we propose a method 
based on the standardised  intensity55 of WML candidates and their textures to enhance the features to identify 
and classify WML by using random forests, substantially reducing false positives.

To identify and eliminate FP, we first apply the Random Forest algorithm, known for its suitability to high-
dimensional and multi-classification problems in medical  images54,63.One of the advantages of this algorithm 
is that it can classify without requiring feature scaling, a time-consuming and error-prone step. Two important 
features extracted from the WML image patch serve as input to the Random Forest: (1) the intensity histogram 
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feature (see Table 4), calculated based on WML candidate intensities obtained from WML image patches, and 
(2) the texture feature from the GLCM embedded clustering strategy that we propose here, where we embed-
ded k-means clustering in a gray level co-occurrence matrix (GLCM) calculation. In Fig. 6b, we compared the 
texture visualization between the original WML candidate image and the reconstructed image determined by 
k-means versus the quantile method (the existing linear scaling method), which demonstrated that k-means can 
recapitulate the detailed texture of the original image with greater fidelity, as highlighted by the green arrow. This 
shows that the clustering method can effectively scale the original image from 16 to 3 bits, while still retaining the 
global content. In addition, the k-means clustering algorithm has been successfully and widely used in various 
medical image segmentation applications such as WML  segmentation64,65, brain lesion  segmentation66, brain 
 segmentation67, corpus callosum  segmentation68, and brain tumour  segmentation69,70. In our implementation, 
k-means was used to accurately cluster the intensity data of WML texture structure, so that the feature data in the 
next feature extraction process was more accurate in the GLCM calculation (see Fig. 1d). Therefore, the intensity 
of each image patch will be clustered as the input to the GLCM calculation.

GLCM is a method of describing and digitizing image texture by finding the frequency of pixel pairs that 
appear in various spatial relationships (such as distance and direction) in an image. These frequencies was used 
to construct the gray-level spatial correlation matrix, also known as a co-occurrence matrix (CM)71, where the 
element of the co-occurrence matrix for a given clustered WML image patch N × M with L clustered grey levels 
can be defined as Eq. 1. Subsequently, the GLCM was constructed from each of the elements in the matrix of 
probabilities that pairs of pixels occurred in a given spatial relationship. For instance, Prob(x,y|∆x,∆y) (see Eq. 2), 
which was computed based on the distance d(∆x, ∆y) of two neighboring voxels in the clustered intensity image 
that co-occur at a given orientation (0°, 45°, 90°, and 135°).

Therefore, each element Prob(x,y|∆x,∆y) represents the relative frequency based on their neighbourhood 
relationship as illustrated in Fig. 6a. Subsequently, texture features including contrast, energy, correlation, and 
homogeneity features were calculated from the GLCM (see Table 5).

Three parameters need to be considered to compose the best GLCM texture and intensity histogram feature 
set: (1) the number of clusters when constructing cluster images, (2) the parameters needed to identify pixel 
pairs when constructing GLCM, which are the distance (∆x = 1, ∆y = 0) and (3) the orientation (0°, 45°, 90°, 
135°). The distance (∆x = 1, ∆y = 0) was fixed because the size of patch images was relatively small. In our study, 

(1)CM =

{

1 if f
(

x, y
)

= nAND f
(

x −�x, y −�y
)

= m
0 elsewhere

(2)Prob
(

x, y|�x,�y
)

=
1

(N −�x)(M −�y)

M−�y
∑

y=1

N−�x
∑

x=1

CM

Table 3.  MRI protocol specification for the FLAIR and T1-W sequence obtained from a 1.5 T Signa HDx GE 
Scanner and detailed information about the use of MRI datasets for training and testing. Repetition time, Echo 
time, Inversion time, Age, Slices of each subject, and WML loads are presented as mean ± standard deviation. 
ms, mm, and mL represent for milliseconds, millimeters, and milliliters, respectively.

Sequence FLAIR T1-W

MRI protocol

Orientation 2D-Axial 2D-Axial

Image dimension (px) 512 × 512 512 × 512

Voxel size (mm) 0.4297 × 0.4297 × 5 0.4297 × 0.4297 × 5

Intersection gap (mm) 1 1

Repetition time (ms) 8002 ± 0 490.70 ± 29.39

Echo time (ms) 126.21 ± 2.30 13.30 ± 0.46

Inversion time (ms) 2000 ± 0 –

Dataset Training (FLAIR) Testing (FLAIR)

MRI data set

Subject’s gender (Male/Female) 10 (6/4) 32(13/19)

Subject’s age 56.40 ± 10.71 56.38 ± 6.46

Slices of each subject 20.455 ± 6.905 21.55 ± 4.139

Confirmed WML slices/total slices 92/225 279/711

Confirmed WML counts 533 1569

“WML”/“Non-WML” annotation counts 533/3924 –

WML loads (mL) of each subject 5.040 ± 7.05 7.480 ± 23.82

Mild WML loads (mL)/Subjects 1.459 ± 1.4730/7 1.639 ± 0.9936/25

Moderate WML loads (mL)/Subjects 5.909 ± 0.3206/2 8.855 ± 2.147/ 5

Severe WML loads (mL)/Subjects 23.951/1 77.11 ± 83.62/2



12

Vol:.(1234567890)

Scientific Reports |         (2022) 12:4433  | https://doi.org/10.1038/s41598-022-07843-8

www.nature.com/scientificreports/

the optimal parameter for the number of clusters and direction was validated on the training dataset consisting 
of 533 “WML” and 3924 “Non-WML” using Random Forest in a tenfold stratified cross-validation experiment 
using WEKA 3.672 (see Fig. 6c). In brief, this process produced 10 equally sized sets for training and testing to 
generate a random forest classifier. In the first iteration, 90% of the cases are used for training, with the remain-
ing 10% of the cases used for testing to obtain a performance metric such as accuracy. The same process was 
repeated nine times so that each case was used once in a test group, providing a sufficient ratio of training to 
testing and true to false lesions. We took the average accuracy rate from the ten iterations as the final accuracy 
of the random forest classifier. Accuracy of WML classified based on each L, the number of cluster (range from 
1 to 7), and G level processes using the k-means algorithm, and the quantile method (the same method used to 
rescale the intensity before GLCM calculation), respectively, were compared with the four orientations at the 
distance (∆x = 1, ∆y = 0). The optimal L (number of cluster) for k-means cluster-based texture features was 5 
for the orientation Ɵ = 0°, with a highest accuracy of 94.34% validated in the test dataset. Similarly, the optimal 
random forest parameters for number of trees, T = 25, and tree depth, D = 25, have been validated based tenfold 
cross validation using optimal cluster-based texture features. Additional description about optimum parameters 
applied in Random Forest classifier is provided in the Supplementary Material, Sect. 4, and our k-means imple-
mentation in Supplementary Material, Sect. 5.

Defining WML region boundary using local outlier factor. The boundaries of the detected WML 
regions were segmented and defined using the Local Outlier Factor (LOF) algorithm originally introduced by 
Breunig et al.44. The Trimmed Mean Outlier  method23 previously used to segment WML may be difficult to 
accurately define the boundary of diffuse WML. Furthermore, the spatial distribution of WML is varied since it 
can be found in a wide variety of brain tissues and thus subjected to artifacts from surrounding voxels. Knowl-
edge of the neighbour voxel intensity is crucial to identify a reasonable boundary of each WML regionally and 
adaptively.

We proposed the local outlier factor (LOF) to overcome this limitation (see Fig. 1e), a method that has not 
yet been applied to medical image segmentation to the best of our knowledge. First, each voxel was classified as 
normal or outlier on identified WML image patches to measure the extent to which each outlier deviates from 
its local neighbourhood. The image intensity features in the WML training set outlined by the neuroradiologist 
was used to construct the intensity gray level model. The LOFs were constructed in the following steps:

(1) Identify the kα-neighbours by calculating distances d(oα, pα) in between each oα voxel intensity and pα in 
training data for each voxel, where kα is a natural number used to build the number of neighbours. Obtain 
the kα-distance neighbourhood by obtaining the first kα-distance nearest to oα as defined in Eq. (3)

(2) Reachability distances are defined in Eq. (4), where β is test data, d(pβ,o) is distance between pβ from kβ-
neighbours and o ∈ β

(3) Local reachability distances are defined in Eq. (5), which calculate the distance between each voxel intensity 
o ∈ β and all neighbours pα ∈ MinPtsα(o) of kα-neighbours, where MinPtsα is a minimum number of voxel 
intensities in the neighbourhood of a voxel intensity o.

(4) Calculate Local Outlier Factor (Eq. 6) for each voxel intensity o ∈ β.

(3)kα-neighours =d
(

oα , pα
)

≤ kα − distance(o)

(4)reach− distk
(

p, o
)

= max
{

k − distance(o), d(pβ , o)
}

(5)lrdMinPtsα (o) =
1

/

(

∑

p∈MinPtsα(o)
reach−distMinPtsα (o,p)

NMinPtsα(o)

)

Table 4.  Discrete probabilities p(gi) of gray levels gi , with i = 0, . . . . . .N − 1(L = 8192) , in a standardised 
image.

Features of intensity histogram Definition

Mean, µ ∑N−1
i=0 giP(gi)

Variance, σ2 ∑N−1
i=0 (gi − µ)2P(gi)

Skewness
∑N−1

i=0 (gi−µ)3P(gi)

σ 3/2

Kurtosis
∑N−1

i=0 (gi−µ)4P(gi)

σ 2

Energy ∑N−1
i=0 P2(gi)

Entropy ∑N−1
i=0 P(gi)log2P(gi)
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Detailed analysis of the LOF properties and theorem can be found in the study conducted by Breunig et al.44. 
The output generated with the LOF algorithm was considered the final WML at the end of the framework as 
demonstrated in Fig. 1e.

Statistical analysis. The Spearman correlation coefficient and Intra-Class Correlation coefficient (ICC) 
tests were employed to measure the correlation and agreement, respectively. A Pearson correlation value of 1 
indicates the best correlation, and a p-value of < 0.05 is considered statistically significant. For testing the agree-
ment, ICC and its corresponding 95% confidence interval (CI) were calculated to determine the inter-observer 
agreement of the WML load detected by automated segmentation with the manual delineations. In addition, we 
used a paired t-test to compare the evaluation metrics between methods and employed Bonferroni correction 

(6)LOFMinPtsα (o) =

∑

pǫMinPts(o)
lrdMinPtsα (p)
lrdMinPtsα (o)

nMinPtsα (o)

Table 5.  Discrete probabilities P(i, j) of gray level co-occurrence matrix for distance d is (1,1), with N is 
the number of clusters used in an image of a lesion. µx ,µy , σx , and σy are the mean and standard deviations 
of Pxand Py . Px(i) is the i-th entry in the marginal-probability matrix obtained by summing the rows 
of P(i, j): Px(i) =

∑N−1
i=0 P(i, j) and Py

(

j
)

=
∑N−1

j=0 P(i, j); µx =
∑N−1

i=0 iPx(i) and µy =
∑N−1

j=0 iPy(j). 

σx =
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2 and σ y =
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j=0 (Py
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j
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2.

Gray level co-occurrence matrix (GLCM) texture features Definition

Contrast ∑N
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Figure 6.  (a) Geometrical relationship of GLCM computed based on distance d = 1 and four directions, where 
Ɵ = 0°, 45° 90°, and 135°. (b) The result of texture visualization after rescaling the intensity information from 16 
to 3 bits through k-means and the quantile method. (c) The optimal k value of k-means and the quantile method 
determined in the tenfold cross validation experiment using the training dataset.



14

Vol:.(1234567890)

Scientific Reports |         (2022) 12:4433  | https://doi.org/10.1038/s41598-022-07843-8

www.nature.com/scientificreports/

to correct the significance level for multiple comparisons. All statistical analyses were performed in MATLAB 
2014a (Mathworks Inc., USA) and its statistical toolbox.

Consent for publication. All authors of this work agreed to publish with Nature Scientific Reports.

Data availability
Due to sample information protection, patient privacy protection and medical institutional data regulatory poli-
cies, the data for the development and verification of the proposed method are not publicly available, but Prof 
Emeritus Dr. Yuen Kah Hay (khyuen@usm.my) can be contacted directly.

Code availability
The source code for the methods and their optimum training models are available at https:// github. com/ kokha 
ur/ WML- Segme ntati on- False- Posit ive- Detec tion.

Received: 29 June 2021; Accepted: 24 February 2022

References
 1. Yamauchi, H., Fukuda, H. & Oyanagi, C. Significance of white matter high intensity lesions as a predictor of stroke from arterio-

losclerosis. J. Neurol. Neurosurg. Psychiatry 72(5), 576–582 (2002).
 2. Debette, S. & Markus, H. S. The clinical importance of white matter hyperintensities on brain magnetic resonance imaging: Sys-

tematic review and meta-analysis. BMJ 341, c3666 (2010).
 3. Cavalieri, M. et al. Vascular dementia and Alzheimer’s disease: Are we in a dead-end road?. Neurodegener. Dis. 7(1–3), 122–126 

(2010).
 4. Park, M. H. et al. Vascular risk factors and the effect of white matter lesions on extrapyramidal signs in Alzheimer’s disease. Int. 

Psychogeriatr. 23, 1–8 (2010).
 5. Kawata, Y. et al. Computer-aided evaluation method of white matter hyperintensities related to subcortical vascular dementia 

based on magnetic resonance imaging. Comput. Med. Imaging Graph. 34(5), 370–376 (2010).
 6. Alber, J. et al. White matter hyperintensities in vascular contributions to cognitive impairment and dementia (VCID): Knowledge 

gaps and opportunities. Alzheimer’s Dementia 5, 107–117 (2019).
 7. Jonsson, M. et al. Cerebrospinal fluid biomarkers of white matter lesions: Cross-sectional results from the LADIS study. Eur J 

Neurol 17(3), 377–382 (2010).
 8. Launer, L. J. Epidemiology of white matter lesions. Top. Magn. Reson. Imaging 15(6), 365–367 (2004).
 9. O’Sullivan, M. Leukoaraiosis. Pract. Neurol. 8(1), 26–38 (2008).
 10. Silbert, L. C. et al. Impact of white matter hyperintensity volume progression on rate of cognitive and motor decline. Neurology 

71(2), 108–113 (2008).
 11. Pinter, D. et al. Impact of small vessel disease in the brain on gait and balance. Sci. Rep. 7(1), 41637 (2017).
 12. Zheng, J. J. J. et al. Impact of white matter lesions on physical functioning and fall risk in older people. Stroke 42(7), 2086–2090 

(2011).
 13. Chutinet, A. & Rost, N. S. White matter disease as a biomarker for long-term cerebrovascular disease and dementia. Curr. Treat. 

Opt. Cardiovasc. Med. 16(3), 292–292 (2014).
 14. Schmidt, R. et al. Progression of cerebral white matter lesions: 6-year results of the Austrian Stroke Prevention Study. Lancet 

361(9374), 2046–2048 (2003).
 15. Gopalan, Y. et al. Clinical investigation of the protective effects of palm vitamin E tocotrienols on brain white matter. Stroke 45(5), 

1422–1428 (2014).
 16. Fox, R. J. et al. Advanced MRI in multiple sclerosis: Current status and future challenges. Neurol. Clin. 29(2), 357–380 (2011).
 17. Enzinger, C. et al. Nonconventional MRI and microstructural cerebral changes in multiple sclerosis. Nat. Rev. Neurol. 11(12), 

676–686 (2015).
 18. Scheltens, P. et al. A semiquantative rating scale for the assessment of signal hyperintensities on magnetic resonance imaging. J. 

Neurol. Sci. 114(1), 7–12 (1993).
 19. Wahlund, L. O. et al. A new rating scale for age-related white matter changes applicable to MRI and CT. Stroke 32(6), 1318–1322 

(2001).
 20. Fazekas, F., Chawluk, J. B. & Alavi, A. MR signal abnormalities at 1.5 T in Alzheimer’s dementia and normal aging. Am. J. Roent-

genol. 149(2), 351–356 (1987).
 21. Enzinger, C. et al. Progression of cerebral white matter lesions: Clinical and radiological considerations. J. Neurol. Sci. 257(1–2), 

5–10 (2007).
 22. Caligiuri, M. E. et al. Automatic detection of white matter hyperintensities in healthy aging and pathology using magnetic resonance 

imaging: A review. Neuroinformatics 13(3), 261–276 (2015).
 23. Ong, K. H. et al. Automatic white matter lesion segmentation using an adaptive outlier detection method. Magn. Reson. Imaging 

30(6), 807–823 (2012).
 24. Styner, M. et al. 3D Segmentation in the Clinic: A grand challenge II: MS lesion segmentation. MIDAS J. https:// doi. org/ 10. 54294/ 

lmkqvm (2008).
 25. Roura, E. et al. A toolbox for multiple sclerosis lesion segmentation. Neuroradiology 57(10), 1031–1043 (2015).
 26. Schmidt, P. Bayesian Inference for Structured Additive Regression Models for Large-Scale Problems with Applications to Medical 

Imaging (Ludwig-Maximilians-Universität München, 2017).
 27. Schmidt, P. et al. Automated segmentation of changes in FLAIR-hyperintense white matter lesions in multiple sclerosis on serial 

magnetic resonance imaging. Neuroimage 23, 101849–101849 (2019).
 28. Schmidt, P. et al. An automated tool for detection of FLAIR-hyperintense white-matter lesions in Multiple Sclerosis. Neuroimage 

59(4), 3774–3783 (2012).
 29. Ribaldi, F. et al. Accuracy and reproducibility of automated white matter hyperintensities segmentation with lesion segmentation 

tool: A European multi-site 3T study. Magn. Reson. Imaging 76, 108–115 (2021).
 30. Vanderbecq, Q. et al. Comparison and validation of seven white matter hyperintensities segmentation software in elderly patients. 

Neuroimage 27, 102357 (2020).
 31. Wu, M. et al. A fully automated method for quantifying and localizing white matter hyperintensities on MR images. Psychiatry 

Res. 148(2–3), 133–142 (2006).
 32. Udupa, J. K. Multiple sclerosis lesion quantification using fuzzy-connectedness principles. IEEE Trans. Med. Imaging 16(5), 598–609 

(1997).

https://github.com/kokhaur/WML-Segmentation-False-Positive-Detection
https://github.com/kokhaur/WML-Segmentation-False-Positive-Detection
https://doi.org/10.54294/lmkqvm
https://doi.org/10.54294/lmkqvm


15

Vol.:(0123456789)

Scientific Reports |         (2022) 12:4433  | https://doi.org/10.1038/s41598-022-07843-8

www.nature.com/scientificreports/

 33. Udupa, J. K., Saha, P. K. & Lotufo, R. A. Relative fuzzy connectedness and object definition: Theory, algorithms, and applications 
in image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 24(11), 1485–1500 (2002).

 34. de Boer, R. et al. White matter lesion extension to automatic brain tissue segmentation on MRI. Neuroimage 45(4), 1151–1161 
(2009).

 35. Guizard, N. et al. Rotation-invariant multi-contrast non-local means for MS lesion segmentation. Neuroimage 8, 376–389 (2015).
 36. Sudre, C. H. et al. Bayesian model selection for pathological neuroimaging data applied to white matter lesion segmentation. IEEE 

Trans. Med. Imaging 34(10), 2079–2102 (2015).
 37. Ghafoorian, M. et al. Location sensitive deep convolutional neural networks for segmentation of white matter hyperintensities. 

Sci. Rep. 7(1), 5110 (2017).
 38. Ding, T. et al. An improved algorithm of white matter hyperintensity detection in elderly adults. Neuroimage 25, 102151–102151 

(2020).
 39. Wen, W. et al. White matter hyperintensities in the forties: Their prevalence and topography in an epidemiological sample aged 

44–48. Hum. Brain Mapp. 30(4), 1155–1167 (2009).
 40. Bailey, W. M. Fast Fluid Attenuated Inversion Recovery (FLAIR) imaging and associated artefacts in Magnetic Resonance Imaging 

(MRI). Radiography 13(4), 283–290 (2007).
 41. Chowdhury, M. H. et al. Age-related changes in white matter lesions, hippocampal atrophy, and cerebral microbleeds in healthy 

subjects without major cerebrovascular risk factors. J. Stroke Cerebrovasc. Dis. 20(4), 302–309 (2011).
 42. Ovbiagele, B. & Saver, J. L. Cerebral white matter hyperintensities on MRI: Current concepts and therapeutic implications. Cer-

ebrovasc. Dis. 22(2–3), 83–90 (2006).
 43. Yamamoto, D. et al. Computer-aided detection of multiple sclerosis lesions in brain magnetic resonance images: False positive 

reduction scheme consisted of rule-based, level set method, and support vector machine. Comput. Med. Imaging Graph. 34(5), 
404–413 (2010).

 44. Breunig, M. M. et al. LOF: Identifying density-based local outliers. SIGMOD Rec. 29(2), 93–104 (2000).
 45. Roura, E. et al. An SPM12 Extension for Multiple Sclerosis Lesion Segmentation. In SPIE Medical Imaging (SPIE, 2016).
 46. Koo, T. K. & Li, M. Y. A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J. Chiropr. 

Med. 15(2), 155–163 (2016).
 47. Griffanti, L. et al. BIANCA (Brain Intensity AbNormality Classification Algorithm): A new tool for automated segmentation of 

white matter hyperintensities. Neuroimage 141, 191–205 (2016).
 48. Roy, P. K. et al. Automatic white matter lesion segmentation using contrast enhanced FLAIR intensity and Markov Random Field. 

Comput. Med. Imaging Graph. 45, 102–111 (2015).
 49. Geremia, E. et al. Spatial decision forests for MS lesion segmentation in multi-channel magnetic resonance images. Neuroimage 

57(2), 378–390 (2011).
 50. Valverde, S. et al. Improving automated multiple sclerosis lesion segmentation with a cascaded 3D convolutional neural network 

approach. Neuroimage 155, 159–168 (2017).
 51. Rachmadi, M. F. et al. Limited one-time sampling irregularity map (LOTS-IM) for automatic unsupervised assessment of white 

matter hyperintensities and multiple sclerosis lesions in structural brain magnetic resonance images. Comput. Med. Imaging Graph. 
79, 101685 (2020).

 52. García-Lorenzo, D. et al. Review of automatic segmentation methods of multiple sclerosis white matter lesions on conventional 
magnetic resonance imaging. Med. Image Anal. 17(1), 1–18 (2013).

 53. Bradley, W. G. & Glenn, B. J. The effect of variation in slice thickness and interslice gap on MR lesion detection. AJNR Am. J. 
Neuroradiol. 8(6), 1057–1062 (1987).

 54. Dadar, M. et al. Performance comparison of 10 different classification techniques in segmenting white matter hyperintensities in 
aging. Neuroimage 157, 233–249 (2017).

 55. Ong, K. H. et al. White matter lesion intensity standardization using adaptive landmark based brain tissue analysis on FLAIR MR 
image. Int. J. Adv. Soft Comput. Appl. 10(3), 143–166 (2018).

 56. Grajauskas, L. A. et al. MRI-based evaluation of structural degeneration in the ageing brain: Pathophysiology and assessment. 
Ageing Res. Rev. 49, 67–82 (2019).

 57. Habes, M. et al. White matter lesions: Spatial heterogeneity, links to risk factors, cognition, genetics, and atrophy. Neurology 91(10), 
e964–e975 (2018).

 58. Sled, J. G., Zijdenbos, A. P. & Evans, A. C. A nonparametric method for automatic correction of intensity nonuniformity in mri 
data. IEEE Trans. Med. Imaging 17(1), 87–97 (1998).

 59. Madabhushi, A. & Udupa, J. K. Interplay between intensity standardization and inhomogeneity correction in MR image processing. 
IEEE Trans. Med. Imaging 24(5), 561–576 (2005).

 60. Paul, G., et al. A Fuzzy C mean clustering algorithm for automated segmentation of brain MRI. In Proceedings of the International 
Conference on Frontiers of Intelligent Computing: Theory and Applications (FICTA) 2013 (Springer International Publishing, 2014).

 61. Zhuang, A. H., Valentino, D. J. & Toga, A. W. Skull-stripping magnetic resonance brain images using a model-based level set. 
Neuroimage 32(1), 79–92 (2006).

 62. Duan, G. et al. Boosting magnetic resonance imaging signal-to-noise ratio using magnetic metamaterials. Commun. Phys. 2(1), 
35 (2019).

 63. Criminisi, A., Shotton, J. & Konukoglu, E. Decision forests for classification, regression, density estimation, manifold learning and 
semi-supervised learning. Microsoft Res. 5(6), 12 (2011).

 64. Jaini, P. S. & Deepti, S. K. Image processing application in the detection of white matter lesions. Int. J. Sci. Res. Dev. 1(11), 2542–2545 
(2014).

 65. Gwo, C.-Y., Zhu, D. C. & Zhang, R. Brain white matter hyperintensity lesion characterization in T(2) fluid-attenuated inversion 
recovery magnetic resonance images: Shape, texture, and potential growth. Front. Neurosci. 13, 353–353 (2019).

 66. Juang, L.-H. & Wu, M.-N. MRI brain lesion image detection based on color-converted K-means clustering segmentation. Measure-
ment 43(7), 941–949 (2010).

 67. Liu, J. W. & Guo, L. Selection of initial parameters of K-means clustering algorithm for MRI brain image segmentation. In 2015 
International Conference on Machine Learning and Cybernetics (ICMLC) (2015).

 68. Bhalerao, G. V. & Sampathila, N. K-means clustering approach for segmentation of corpus callosum from brain magnetic resonance 
images. In IEEE 2014 International Conference on Circuits, Communication, Control and Computing (I4C) (2014).

 69. Vijay, J. & Subhashini, J. An efficient brain tumor detection methodology using K-means clustering algorithm. In 2013 International 
Conference on Communication and Signal Processing (2013).

 70. Cabria, I. & Gondra, I. Automated localization of brain tumors in MRI Using Potential-K-means clustering algorithm. In 12th IEEE 
Conference on Computer and Robot Vision (CRV) (2015).

 71. Jain, R., Kasturi, R. & Schunck, B. G. Machine Vision 549 (McGraw-Hill Inc, 1995).
 72. Kohavi, R. A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection (Ijcai, 1995).



16

Vol:.(1234567890)

Scientific Reports |         (2022) 12:4433  | https://doi.org/10.1038/s41598-022-07843-8

www.nature.com/scientificreports/

Acknowledgements
The authors would like to thank the Universiti Teknologi Malaysia (UTM) and Agency for Science, Technol-
ogy and Research (A*STAR), Singapore for their support in Research and Development, the Soft Computing 
Research Group (SCRG), Institute of Molecular and Cell Biology (IMCB), and Bioinformatics Institute (BII) 
for the inspiration in making this study a success. This work is supported by the Ministry of Higher Education 
(MOHE) under Research University Grant R.J130000.2654.17J37 UTM TIER 2.

Author contributions
K.O., S.H. and S.S. designed the experiments; N.M. manually labeled the dataset; H.H. cross-checked the labeled 
data set; K.O. wrote the code to achieve different tasks; K.Y. contributed to the collection and acquisition of MRI 
data sets; K.Y. and S.J.S. contributed in manuscript editing; K.O., D.Y., S.J.S., and W.Y. contributed to the analysis 
of the data; S.H., S.S., W.Y. and S.M. conceived and directed the project; K.O., S.H. and D.Y. wrote the manuscript 
with the assistance and feedback of all the other co-authors.

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https:// doi. org/ 
10. 1038/ s41598- 022- 07843-8.

Correspondence and requests for materials should be addressed to W.Y. or S.H.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2022

https://doi.org/10.1038/s41598-022-07843-8
https://doi.org/10.1038/s41598-022-07843-8
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Detection of subtle white matter lesions in MRI through texture feature extraction and boundary delineation using an embedded clustering strategy
	Results
	Discussion
	Conclusion
	Materials and methods
	Subjects, imaging, and WML loads. 
	Ground truth and training dataset preparation protocol. 
	Image pre-processing. 
	GLCM embedded clustering strategy for WML detection and false positive removal. 
	Defining WML region boundary using local outlier factor. 
	Statistical analysis. 
	Consent for publication. 

	References
	Acknowledgements




