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(ATSM) known or unknown in the literature, by providing an explicit mapping

between the reduced-form and ATSM parameters for identification analysis, devel-

oping a more reliable, better-behaved and faster estimation procedure, and coming

up with a framework to examine how well those models fit the data. I also apply

ATSM to assess the effectiveness of unconventional monetary policy under the zero

lower bound during the current financial crisis, and develop new measures for con-

tribution of maturity structure of Treasury debt to the term structure of interest

rates.
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Chapter 1

Numerical Challenges for Affine

Term Structure Models: A

Solution

Abstract

The conventional estimation procedure for affine term structure models

with MLE is known to be problematic, plagued by singularity, local maxima and

flat LLF surface along several directions. To solve the numerical challenges, I

propose a new estimation procedure, which solves part of the problem with OLS

after re-parameterization, and breaks the parameters down into three groups, to

be estimated one group at a time with a combination of numerical and analytical

methods. Empirical analysis establishes that the new method offers a substantial

improvement over the traditional formulation. One of the problems that the proce-

dure helps uncover is that the canonical representations proposed in the literature

are not unique; one more restriction is needed to ensure the uniqueness.

1.1 Introduction

The conventional estimation procedure for affine term structure models

with MLE (maximum likelihood estimation) is known to be problematic due to

1



2

highly non-linear and badly-behaved likelihood surface. For example, Kim and

Orphanides (2005) observe:

In particular, the likelihood function seems to have multiple inequiv-
alent local maxima which have similar likelihood values but substan-
tially different implications for economic quantities of interest. Fur-
thermore, the likelihood function around these maxima can be quite
flat along many directions in the parameter space; the standard errors
for the parameters and quantities of economic interest are often too
large to be useful.

Duffee (2002) likewise cautions:

... general three-factor affine models are already computationally
difficult to estimate owing to the number of parameters.

...
The QML functions for these models have a large number of local

maxima. The most important reason for this is the lack of structure
placed on the feedback matrix K. Similar QML values can be produced
by very different interactions among the elements of the state vector.

Ang and Piazzesi (2003) have also encountered:

... difficulties associated with estimating a model with many factors
using maximum likelihood when yields are highly persistent.

...
We need to find good starting values to achieve convergence in this

highly non-linear system. In particular, since unconditional means of
persistent series are difficult to estimate, the likelihood surface is very
flat in λ0 which determines the mean of long yields.

...
While our particular procedure may be path dependent, we could

not find a feasible alternative which implies unconditional means for
long yields close to those in the data.

And Kim (2008) also notes:

Flexibly specified no-arbitrage models tend to entail much estima-
tion difficulty due to a large number of parameters to be estimated and
due to the nonlinear relationship between the parameters and yields
that necessitates a nonlinear optimization. Even if one finds the pa-
rameter vector that corresponds to the global optimum of the criterion
function, not all may be fine with the resulting estimate.
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To solve the estimation problem of affine term structure models, I propose

a new estimation procedure, which solves a linear regression with OLS, and breaks

the parameters down into three groups and estimates one group at a time. I first

rewrite the model in terms of its VAR (vector autoregression) representation. Next,

I re-parameterize the VAR representation to make the error terms of two parts

of the system orthogonal, then I estimate these two parts separately with OLS.

Lastly, I break the underlying parameters into three groups, where such a grouping

is supported by theory, and back out one group of parameters at a time from the

estimated OLS coefficients. Two groups of parameters are solved numerically with

systems of equations and one is solved analytically with closed-form solutions.

The advantages of the new method are as follows:

1. Less non-linearity. There are multiple levels of functions in the conven-

tional method, and all the functions are highly non-linear. The new proce-

dure eliminates one level of non-linear functions by solving the linear regres-

sion with OLS.

2. Avoiding singularity. The log likelihood function in the conventional

procedure involves the inverse of matrices, which may cause a singularity

problem. The new procedure totally avoids this problem by solving the re-

parameterized system with OLS.

3. Fewer parameters inferred at each step. The conventional method

solves all underlying parameters in the affine term structure models numer-

ically at once. The new procedure breaks the parameter system down into

three groups, and solves two of them numerically with systems of equations

and one analytically with closed-form solutions. This grouping, which is

supported by theory, simplifies the estimation tremendously.

4. No trouble recognizing convergence. The old procedure, maximizing

the likelihood function, can employ no handy tool to tell local maxima from

global ones except repeating with enough different starting values. The new

procedure, solving systems of equations numerically or solving closed-form so-
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lutions analytically, can recognize convergence with certainty if the equations

are solved with the weighted sum of squared errors less than the tolerance.

Besides introducing the new estimation procedure to solve the recognized

estimation problems of affine term structure models, my empirical findings also

show that the canonical representations or identifying restrictions proposed in lit-

erature are not unique, and one more restriction, the ordering of the diagonal

elements of the mean reversion matrix under the risk neutral measure, is needed

to ensure the uniqueness.

The new approach is also superior to the common practice of imposing zero

restrictions on some parameters arbitrarily in a first round of estimation (Duffee

2002, Dai and Singleton 2002, Duarte 2004, Ang and Piazzesi 2003, Kim and

Orphanides 2005, Christensen, Diebold and Rudebusch forthcoming) discuss this

approach and note its shortcomings. I demonstrate the potential consequences of

that approach with a simulated example. Zero restrictions imposed arbitrarily may

yield wrong parameter estimates and thus totally distinct economic implications,

and can also cause multiple local maxima that don’t even exist in the original

system. Again, these problems are avoided completely with the new method.

The rest of the paper is organized as follows. Section 1.2 introduces a

baseline affine term structure model with all state variables latent, and several

versions of identifying restrictions imposed in the literature. Section 1.3 introduces

the new estimation procedure in terms of five steps, and also discusses how the

modified version of identifying restrictions facilitates the new estimation procedure.

Section 1.4 illustrates the issues using simulated data. I use three-factor models

to demonstrate estimation difficulties with the conventional MLE and how the

new method solves them. Multiple global solutions found by the new procedure

reveal that the “identifying” restrictions proposed in the literature are in fact not

identifying and need one more restriction to ensure the uniqueness of the canonical

representation. In that section I also illustrate the consequences of imposing zeros

on some parameters arbitrarily.
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1.2 The Model

1.2.1 State and Short Rate Dynamics

The baseline model is a discrete version of the standard affine term structure

models. All the underlying factors are latent, and the N -dimensional vector ft

follows a vector autoregression:

ft = µ+ ρft−1 + Σut (1.1)

where ut˜i.i.d.N (0, IN) , µ is a N ×1 vector and ρ and Σ are N ×N matrices. The

above factor process is specified under the physical probability measure P.

The no-arbitrage condition is equivalent to the existence of an equivalent

martingale measure of P , or the risk-neutral measure Q, under which ft follows

the dynamics:

ft = µQ + ρQft−1 + ΣuQt (1.2)

The short rate is specified as an affine function of the underlying factors:

rt = δ0 + δ′1ft (1.3)

1.2.2 Identifying Restrictions in the Literature

The latent state variables ft may rotate and translate without changing

the probability distribution of bond yields, hence not all parameters in the above

system Eq.(1.1) − (1.3) can be identified. As the first effort, Dai and Singleton

(2000) impose the identifying restrictions under the P -measure on Eq.(1.1)−(1.3),

which they refer to as A0 (N) where N stands for the number of factors: the mean

µ = 0, the volatility matrix Σ = I and the mean reversion matrix ρ to be triangu-

lar. Singleton (2006) and Christensen et al. (forthcoming) impose the identifying

restrictions under the Q-measure instead: the mean µQ = 0, the volatility matrix

Σ = I and the mean reversion matrix ρQ to be triangular. Besides the restrictions

on the factor dynamics, the identifying restriction on the short rate process δ1 ≥ 0

is also standard in the literature.
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However, Christensen et al. (forthcoming) point out:

from an economic point of view, these two identifications may not be
equivalent, because the yield function being fit to the observed yields is
determined solely by the dynamics under the Q-measure, so imposing
restrictions on the Q-measure drift terms could limit the ability of the
model to fit observed yields.

Taking that into consideration, I propose a set of equivalent identifying

restrictions to restrict the mean reversion matrix under the Q measure ρQ, and the

mean vector under the P-measure µ:

• Σ = I

• µ = 0

• ρQ is lower triangular

• δ1 ≥ 0.

1.2.3 Bond Pricing and Difference Equations

Define the nominal pricing kernel mt+1 as

mt+1 = exp

(
−rt −

1

2
λ′tλt − λ′tut+1

)
(1.4)

The variables λt are the time-varying market prices of risk associated with

the sources of uncertainty ut+1. As in the affine term structure literature, I pa-

rameterize λt as an affine function of the state variables:

λt = λ0 + λ1ft (1.5)

Now we can link the parameters from P and Q dynamics together through

λ0 and λ1:

µQ = µ− λ0 = −λ0 (1.6)

ρQ = ρ− λ1
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Hereafter, I will represent the parameter system in terms of 5 underlying

parameters: δ0, δ1, ρ, ρ
Q and λ0.

Having defined the nominal pricing kernel in Eq.(2.6), the prices of zero

coupon bonds satisfy:

pn+1
t = Et

(
mt+1p

n
t+1

)
(1.7)

where pnt is the price of an n-period zero coupon bond at time t.

In the affine term structure models, the bond prices are exponential affine

functions of the state variables:

pnt = exp
(
ān + b̄′nft

)
(1.8)

where ān and b̄n follow the difference equations:

ān+1 = −δ0 + ān − b̄′nλ0 +
1

2
b̄′nb̄n (1.9)

b̄n+1 = −δ1 + ρQ′b̄n

with ā1 = −δ0 and b̄1 = −δ1. The derivation of the difference equations can be

found in Appendix A of Ang and Piazzesi (2003)

Then, the yields ynt are linear in the state variables

ynt = − log pnt
n

= an + b′nft (1.10)

with an = −ān/n and bn = −b̄n/n.

The difference equations in Eq.(1.9) can be solved for ān and b̄n and there-

fore an and bn as follows (see Appendix A for derivation):

b̄n = −
[(
ρQ′
)n − I] [ρQ′ − I]−1 δ1 (1.11)

bn =
1

n

[(
ρQ′
)n − I] [ρQ′ − I]−1 δ1

an = δ0 +

(
b̄′1 + b̄′2 + ...b̄′n−1

)
n

λ0 −
(
b̄′1b̄1 + b̄′2b̄2 + ...+ b̄′n−1b̄n−1

)
2n

1.2.4 Conventional Estimation with MLE

The conventional method estimates the affine term structure models through

MLE (maximum likelihood estimation), and the likelihood function can be found,

for example, in Appendix B of Ang and Piazzesi (2003).
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1.3 New Estimation Procedure

This section introduces the new estimation procedure. I first write the

affine term structure model in terms of a VAR representation, then re-parameterize

the VAR representation to orthogonalize the error terms and estimate this re-

parameterized system with OLS, and lastly back out the underlying parameters

with a combination of numerical and analytical methods. I’ll discuss why re-

parameterization is necessary and how the new representation of identifying re-

strictions described in Section 2.2 facilitates the new estimation procedure.

Step1: VAR representation

The affine term structure model has been presented with latent state vari-

ables ft, and this section will illustrate how to get rid of those latent variables and

represent the system with only observables. The estimation procedure introduced

by Chen and Scott (1993) assumes that the number of yields priced without error

is equal to the number of unobserved factors N , so we can back out the unobserved

factors given data and parameters.

The yields have N + M different maturities, collected in a vector Yt. Par-

tition this vector into an N × 1 vector Y 1
t , the yields for which the affine pricing

model is presumed to hold without error, and an M × 1 vector Y 2
t for which mea-

surement error is allowed. Stack Eq.(2.10) for N + M different maturities in the

order of Y 1
t and Y 2

t into an (N +M)× 1 equation system, and add pricing errors

for the elements in Y 2
t :[
Y 1
t

Y 2
t

]
=

[
A1

A2

]
+

[
B1

B2

]
ft +

[
0

Bm

]
umt (1.12)

with Bm =


σ1 · · · 0
...

. . .
...

0 · · · σM

 and umt ˜i.i.d.N (0, IM)

Solve the unobserved vector ft from Y 1
t part of Eq.(2.11), and then sub-

stitute it into the factor dynamics Eq.(1.1) and Y 2
t part of Eq.(2.11). After some
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derivation (see Appendix B), the VAR representation of the above macro finance

system is given as follows:

Y 1
t = A∗1 + φ∗1Y

1
t−1 + u∗1t (1.13)

Y 2
t = A∗2 + φ∗2Y

1
t−1 + u∗2t

with A∗1 = A1 −B1ρB
−1
1 A1 (1.14)

A∗2 = A2 −B2ρB
−1
1 A1

φ∗1 = B1ρB
−1
1

φ∗2 = B2ρB
−1
1

var

(
u∗1t

u∗2t

)
=

(
B1B

′
1 B1B

′
2

B2B
′
1 B2B

′
2 +BmBm′

)

Step 2: OLS with Re-parameterization

I have transformed the affine term structure model with latent factors into

its VAR representation in Eq.(1.13), which can be solved by OLS (ordinary least

squares). But before applying that technique, I will re-parameterize the VAR

representation and make the error terms orthogonal. Such a re-parameterization

simplifies the system and facilitates the following steps of estimation to solve out

the underlying parameters.

Consider the population linear projection of u∗2t in Eq.(1.13) on u∗1t,

u∗2t = ηu∗1t + ũ∗2t (1.15)

The residual ũ∗2t is uncorrelated with u∗1t. The regression coefficient η turns

out to be:

η = B2B
−1
1 (1.16)

where the derivation can be found in Appendix C.

To make the error terms orthogonal, subtract ηY 1
t from Y 2

t , where Y 1
t and

Y 2
t are from Eq.(1.13):

Y 2
t = Ã∗2 + ηY 1

t + ũ∗2t (1.17)
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with Ã∗2 = A∗2− ηA∗1, and ũ∗2t defined in Eq.(1.15). The derivation can be found in

Appendix C.

If such a transformation were performed with the unrestricted version of

Eq.(1.13), Eq.(1.17) would maintain the Y 1
t−1 term. However, Eq.(1.17) doesn’t

include any lagged term. Therefore, re-parameterization doesn’t only orthogonalize

the error terms, but also practically imposes one more restriction on the linear

regression, the coefficient for Y 1
t−1 is zero in Eq.(1.17), reflected from the structural

restrictions of Eq.(1.13).

Now the system in Eq.(1.13) has been written

Y 1
t = A∗1 + φ∗1Y

1
t−1 + u∗1t (1.18)

Y 2
t = Ã∗2 + ηY 1

t + ũ∗2t

with E

(
u∗1t

ũ∗2t

)(
u∗1t ũ∗2t

)
=

(
B1B

′
1 0

0 BmBm′

)
(1.19)

and Ã∗2 and η defined in Eq.(1.17) and Eq.(1.16) .

Having independent error terms, the Y 1
t and Y 2

t blocks can be estimated

separately with OLS in this step. Regressing Y 1
t over a constant and its own lag

Y 1
t−1 gives us values for Â∗1, φ̂

∗
1 and B̂1B′1. Regressing Y 2

t over a constant and Y 1
t

yields ̂̃A∗2, η̂ and ̂BmBm′.

Step 3: Numerically Solve ρQ, δ1, B1 and B2 from B̂1B′1 and η̂

The third step solves ρQ, δ1, B1 and B2 from B̂1B′1 and η̂ numerically with

system of equations. First, construct the estimate B̂2B′1 = η̂× B̂1B′1. We then use

the following system of equations:

B1B
′
1

(N×N)

=


b′i1
(
ρQ, δ1

)
...

b′iN
(
ρQ, δ1

)
[ bi1 (ρQ, δ1) · · · biN

(
ρQ, δ1

) ]
(1.20)

B2B
′
1

(M×N)

=


b′j1
(
ρQ, δ1

)
...

b′jM
(
ρQ, δ1

)
[ bi1 (ρQ, δ1) · · · biN

(
ρQ, δ1

) ]
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where the expressions for bn’s as functions of ρQ and δ1 can be found in Eq.(1.11),

i1, ..., iN are the N maturities of the yields priced exactly and j1, ..., jM are the M

maturities of the yields priced with error.

The unique elements in B̂1B′1 and B̂2B′1 give us N × (N + 1) /2 + M ×N
equations, and ρQ and δ1 totally contain N × (N + 1) /2 + N unknowns with

the identification restriction constraining ρQ to lower triangular. The system is

“just identified” in the sense that the number of equations equals the number of

unknowns if M = 1, and at this point, I will only analyze the “just-identified”

case. Note we can use this system of equations to solve for ρ̂Q and δ̂1 numer-

ically. Then, we can use the closed-form solutions in Eq.(1.11) to solve ̂̄bn for

n = 1, 2, ...max (i1, ..., iN , j1, ..., jM)−1, and b̂n for n = i1, ..., iN , j1, ..., jM . Finally,

B̂1 =
[
b̂i1
(
ρQ, δ1

)
· · · b̂iN

(
ρQ, δ1

) ]′
, B̂2 =

[
b̂j1
(
ρQ, δ1

)
· · · b̂jM

(
ρQ, δ1

) ]′
.

Step 4: Analytically Solve A1, A2, B
m and ρ from OLS Coef-

ficients

In the second step, we have already solved Â∗1, φ̂
∗
1,
̂̃A∗2 and ̂BmBm′, which

are direct functions of A1, A2, B1, B2, B
m and ρ in form of A∗1 = A1 − B1ρB

−1
1 A1,

φ∗1 = B1ρB
−1
1 and Ã∗2 = A2−B2ρB

−1
1 A1−ηA∗1. Therefore, in this step, we want to

back out A1, A2, B
m and ρ from the OLS coefficients obtained in the second step,

and they can be solved with closed-form solutions in the following manner:

4.1 Solve B̂m from ̂BmBm′ where Bm is a diagonal matrix.

4.2 Solve ρ̂ from φ̂∗1, and ρ = B−11 φ∗1B1.

4.3 Solve Â1 from Â∗1, and A1 = (I − φ∗1)
−1A∗1

4.4 Solve Â2 from ̂̃A∗2, and A2 = Ã∗2 + ηA∗1 +B2ρB
−1
1 A1.

Step 5: Numerically Solve δ0 and λ0 from Â1 and Â2

Lastly, we can solve δ0 and λ0 numerically from Â1 and Â2 with system of

equations. We have solved ̂̄bn in Eq.(1.11) for different n′s in the third step, so we
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can write A1 and A2 as functions of δ0 and λ0 only:

A1 =


ai1 (δ0, λ0)

...

aiN (δ0, λ0)

 A2 =


aj1 (δ0, λ0)

...

ajM (δ0, λ0)

 (1.21)

where an’s as functions of δ0 and λ0 can be found in Eq.(1.11), i1, ..., iN are the N

maturities of the yields priced exactly and j1, ..., jM are the M maturities of the

yields priced with error.

There are totally 1+N unknowns in δ0 and λ0, and the number of available

equations is N + M . So with M = 1, the system is “just identified” in the sense

that the number of equations equals the number of unknowns. I can solve δ̂0 and

λ̂0 numerically from Â1 and Â2 with this system of equations.

Discussion

One might wonder why the re-parameterization is necessary. Without re-

parameterization, the VAR representation in Eq.(1.13) as a whole can still be

estimated with OLS. Given the restrictions in Eq.(1.14), we can still follow step 3

and numerically obtain values for ρ̂Q, δ̂1, B̂1 and B̂2 from B̂1B′1 and B̂1B′2 in the

covariance matrix. Next, ρ̂ can be solved from φ̂∗1 following step 4.2. However,

having φ̂∗2, ρ̂, B̂1 and B̂2, the equation φ∗2 = B2ρB
−1
1 in Eq.(1.14) becomes redun-

dant and doesn’t hold for most of the time. One additional restriction on the

linear regression imposed implicitly by re-parameterization solves this problem, as

demonstrated with the algorithm in this section.

The modified version of identifying restrictions I have proposed with con-

straints on the mean reversion matrix under the Q measure ρQ and the mean

vector under the P -measure µ fits into the new estimation procedure better for

the following reasons: 1) ρ can be solved in Step 4.2 with closed-form solution, so

there is no need to constrain it to be triangular. 2) The mean reversion matrix

ρQ is unidentifiable from B1B
′
1 and η = B2B

−1
1 unless it’s restricted to be triangu-

lar, as argued above. 3) Restricting µ instead of µQ is more desirable in terms of

economic meaning.
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1.4 Empirical Results

1.4.1 Illustrative Results for Simulated Data

This section conducts an experiment with 3 factors (N = 3) and 4 ma-

turities (M = 1), of which 1, 12 and 60 months yields are priced exactly, and

36 months yield is priced with error. Both the conventional and new estimation

methods will be performed, and results for both will be reported.

I simulate a set of 1000-month yield data with parameters shown in Table

1.1.

The experiment uses 100 randomly generated starting values for the key

variable ρQ based on the following formula. Draw 3 random variables from the

uniform distribution then divided by 2 and plus 1/2, and place them in the diag-

onal. Hence, the diagonal elements of ρQ are between 0.5 and 1, and off-diagonal

elements are all zeros.

The initial values for other parameters are quite standard and non-stochastic.

I set λ1 = 0 with the conventional procedure, which yields ρ = ρQ. The new pro-

cedure doesn’t require an initial value for ρ because it solves ρ with a closed-form

solution. All three elements in δ1 start from 1e-4, λ0 from zeros, and δ0 from

0.0046, the average short rate. This set of starting values is very close to the

parameters used for simulation, and is among the best initial values we can start

with.

I perform the conventional procedure with MLE first. For 26 out of 100

starting values, the conventional procedure stops because the initial values en-

counter the singularity problem. For another 69 starting values, it converges to

some local maxima. Table 1.2 shows 4 examples of those, and all of which dis-

play similar log likelihood values but different parameter estimates or economic

meanings.

Furthermore, there is an issue of multiple “global” maxima. For the remain-

ing 5 starting values, the conventional method gets two “global” maxima in Table

1.3, which both imply the identical likelihood function with the highest LLF I can

achieve of 28110.4. Thus, one problem with the canonical representation is people
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haven’t noticed that we need some more restrictions to ensure its uniqueness.

In addition, the so-called “global” maxima could turn out to be local if

some other estimates produce higher LLF values.

Now, let’s see how the new estimation method solves all those problems.

With initial values generated by the same algorithm described above, the new pro-

cedure converges to one of the six configurations in Table 1.4 100 out of 100 times,

and all six estimates imply the identical LLF. Furthermore, with the new method,

I can recognize the six estimates are the global solutions, because Eq.(1.20) and

Eq.(1.21) in third and fifth steps are solved with approximately zero errors. To sum

up, the new procedure eliminates all the local maxima and singularity problem,

and converges to one of the global maxima 100%.

Compare the estimates in Table 1.3 and Table 1.4, I could confirm the

“global” maxima found with the conventional estimation are global. “Global”1

in Table 1.3 is GLOBAL1 in Table 1.4 and “Global”2 is GLOBAL3 with only

numerical approximation errors.

Both Table 1.3 and Table 1.4 confirm there are multiple global maxima with

the identifying restrictions in the literature imposed. Comparing the 6 distinct

global solutions in Table 1.4, I find the key parameter ρQ in all cases shares the

same diagonal elements but in different orders. The parameters assessing the

average short rate δ0 and the measurement error Bm stay the same in different

cases. For cases with the same entry for the (1,1) or (3,3) element of ρQ, the

corresponding elements of other parameters are the same. For example, GLOBAL1

and GLOBAL2 share the same (1,1) element of ρQ, which causes the first elements

of δ1 and λ0 and the (1,1) element of ρ are the same.

Therefore, with the assistance of the new method, the empirical results

show that the canonical representations proposed by Dai and Singleton (2000) and

Singleton (2006) display multiple equivalent solutions. To make the canonical rep-

resentations unique, one more restriction on the ordering of the diagonal elements

of ρQ is needed, and I would make it the descending order.

Proposition 1 A canonical representation of system (1.1) − (1.3) satisfies the

following restrictions:
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1. Σ = I

2. µ = 0

3. ρQ is lower triangular

4. δ1 ≥ 0

5. Diagonal elements of ρQ are in descending order

1.4.2 Robustness to Alternative Experiment Designs

Using the same set of simulated data, the second experiment employs a

different formula to generate 100 initial values. Set the diagonal elements of ρQ to

0.99, 0.93 and 0.7, add a random variable from N (0, 0.01) to each of them, and

place them in the diagonal. This set of starting values for ρQ is somewhere near

the “truth”, and unit root is allowed. All three elements in δ1 start from 0.001, and

other things remain the same. The conventional MLE stops with the singularity

problem for 2 starting values, and converges to some local but not global maxima

for another 90 starting values and only converges to the global maxima for 8

starting values. On the other hand, the new procedure converges to one of the six

global maxima for 100 out of 100 times.

I simulate another set of 1000-month yield data with the same parameters

shown in Table 1.1.

With the new set of simulated data and the same algorithm to produce

the initial values as the first experiment in Section 1.4.1, the results of the third

experiment are more dramatic. The conventional MLE stops with the singularity

problem for 13 starting values, and converges to some local maxima for 86 starting

values and only converges to the global maxima for 1 starting value. On the other

hand, the new procedure again converges to one of the global maxima for 100 out

100 times.
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1.4.3 The Consequences of Imposing Zeros Arbitrarily

This section will demonstrate the consequences of a common practice in

literature, which imposes zeros on some parameters arbitrarily in order to solve the

badly-behaved system citeDuffee,DaiSingleton2002, and show that the estimates

in the original case and in the modified case with zero restrictions produce totally

different economic implications. For simple demonstration, I use a single factor

model and 1000 months of simulated yields with 2 different maturities of 1 and 60

months.

Table 1.5 shows the parameters used for simulation “SIMU” and compares

the parameters estimated from the conventional MLE (“MLE”) and the new pro-

cedure (“NEW”) under 3 different scenarios. In the first scenario, the model is

unrestricted and “identified” in the sense that the number of unknown parameters

equals the number of equations. In this case, both procedures produce exactly the

same parameters.

In literature, it’s commonly seen that most elements of λ0 are restricted to

0 due to large standard errors in the first round of estimation (Dai and Singleton

2002, Ang and Piazzesi 2003). The second scenario sets λ0 to 0 to demonstrate

the consequences of such an exercise in literature. In order to achieve higher LLF,

the conventional MLE gets very different values for ρ in physical dynamics and

δ0, which is essentially the average short rate and should be somewhere close to

0.0043. Therefore, setting λ0, which is commonly considered as a trivial parameter,

to zero will result in significant changes in underlying economic meanings. On the

other hand, the ”NEW” procedure reproduces ρQ, ρ and δ1 exactly, because they

could be solved without the knowledge of λ0. Even though δ0 does depend on λ0,

the value of δ0 is not affected much by fixing λ0.

The variable δ0 is essentially the average short rate, and it shouldn’t be

something like 0.0174. So I fix it at 0.0043 (similar to what Ang and Piazzesi

(2003) did) besides setting λ0 to zero in the third scenario. Such an additional

restriction doesn’t lead the MLE estimate to where it’s supposed to be, but on the

contrary, the MLE leads us to two different local maxima. On the other hand, the

”NEW” procedure reproduces ρQ, ρ and δ1 exactly the same as before.
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Therefore, imposing zero restrictions arbitrarily in the first round of esti-

mation may yield to very different parameter estimates and thus wrong economic

implications, and it might also cause multiple local maxima, which don’t even exist

in the original “just-identified” system. On the other hand, there is no need for the

new estimation procedure to impose extra zero restrictions besides the identifying

ones because it always converges to the global maxima.

1.5 Conclusion

The conventional estimation procedure for affine term structure models with

MLE is known to be problematic due to highly non-linear likelihood function and

badly-behaved likelihood surface. To completely solve the numerical challenges, I

propose a new estimation procedure. The new procedure solves part of the prob-

lem with OLS after re-parameterization, and by doing so, it reduces non-linearity

of the system and solves the singularity problem. It also breaks the parameters

down into three groups and estimates one group at a time with a combination of

numerical and analytical methods. This grouping, which is supported by theory,

simplifies the estimation tremendously. Moreover, by solving systems of equa-

tions numerically and closed-form solutions analytically, the new procedure has

no difficulty recognizing the convergence, while the conventional way has trouble

differentiating local maxima from global ones.

In three factor experiments, the conventional MLE encounters singularity

problem with a good chance due to the inverse of matrices in the log likelihood

function. Besides, it converges to some local but not global maxima for most

of the times. The empirical analysis gives examples of those, and all of which

display similar log likelihood values but different parameter estimates or economic

meanings. Moreover, even though the conventional method gets to the “global”

maxima by luck, there is a multiple “global” maxima issue. In addition, the

“global” maxima obtained by the conventional method could turn out to be local

if some other estimates produce higher LLF values.

In contrast, the new procedure proposed in this paper eliminates all the
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local maxima and singularity problem, and converges to one of the global maxima

100%. Besides the fact that it doesn’t run into local maxima, the new method can

recognize the global solutions with certainty when the equation systems are solved

with zero errors.

For a three factor model with identifying restrictions imposed in the litera-

ture, the new estimation procedure lands at 6 distinct global solutions with iden-

tical LLF’s, which therefore shows that the canonical representations proposed by

Dai and Singleton (2000) and Singleton (2006) display multiple equivalent solu-

tions. To ensure the uniqueness of canonical representation, one more restriction

on the ordering of the diagonal elements of ρQ is needed.

A simple experiment with one factor model and simulated data shows that

the widely-used technique in the conventional estimation with MLE of imposing

zero restrictions arbitrarily on some parameters may yield to very different pa-

rameter estimates and therefore different economic implications from the original

system, and it might also cause multiple local maxima, which don’t exist in the

original system.
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1.7 Appendices

A. Solve the Difference Equations.

Solve b̄n+1 part in Eq.(1.9)

b̄n+1 = −
[
I + ρQ′ + ...+

(
ρQ′
)n]

δ1

= −
[(
ρQ′
)n+1 − I

] [
ρQ′ − I

]−1
δ1

Then, ān+1 part of the difference equations in Eq.(1.9) can be solved as

well:

ān+1 = −δ0 + ān − b̄′nλ0 +
1

2
b̄′nb̄n

=

(
−δ0 − b̄′nλ0 +

1

2
b̄′nb̄n

)
+

(
−δ0 − b̄′n−1λ0 +

1

2
b̄′n−1b̄n−1

)
...+

(
−δ0 − b̄′1λ0 +

1

2
b̄′1b̄1

)
+ a1

= − (n+ 1) δ0 −
(
b̄′1 + b̄′2 + ...b̄′n−1 + b̄′n

)
λ0

+
1

2

(
b̄′1b̄1 + b̄′2b̄2 + ...+ b̄′n−1b̄n−1 + b̄′nb̄n

)
So b̄n, bn = −b̄n/n and an = −ān/n can be solved in Eq.(1.11).

B: Derive the VAR Representation.

Solve the unobserved vector ft from Y 1
t part of Eq.(2.11):

ft = B−11

(
Y 1
t − A1

)
(1.22)

and then substitute it into the factor dynamics Eq.(1.1):

Y 1
t =

(
A1 −B1ρB

−1
1 A1

)
+B1ρB

−1
1 Y 1

t−1 +B1ut (1.23)

The Y 2
t part of Eq.(2.11) now becomes:

Y 2
t =

(
A2 −B2ρB

−1
1 A1

)
+B2ρB

−1
1 Y 1

t−1 +B2ut +Bmumt (1.24)

Combining Eq.(1.23) and (1.24) results in the VAR representation of the

affine term structure model in Eq.(1.13) with parameters defined in Eq.(1.14)
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C: Re-prameterization.

The regression coefficient η in Eq.(1.15) is

η′ =
(∑

u∗1tu
∗′
1t

)−1∑
u∗1tu

∗′
2t

= [var (u∗1t)]
−1 cov (u∗1t, u

∗
2t)

= (B1B
′
1)
−1
B1B

′
2

= B′−11 B−11 B1B
′
2

= B′−11 B′2 =
(
B2B

−1
1

)′
Subtract ηY 1

t from Y 2
t , where Y 1

t and Y 2
t are from Eq.(1.13) with expressions

for φ∗′s plugged in from Eq.(1.14)

Y 2
t − ηY 1

t = (A∗2 − ηA∗1) +
(
B2ρB

−1
1 − ηB1ρB

−1
1

)
Y 1
t−1 + (u∗2t − ηu∗1t) (1.25)

Y 2
t = (A∗2 − ηA∗1) + ηY 1

t +
(
B2ρB

−1
1 −B2B

−1
1 B1ρB

−1
1

)
Y 1
t−1 + (u∗2t − ηu∗1t)

It results in the expression for Y 2
t in Eq.(1.17) .
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Tables

Table 1.1: parameters for simulation

Y 1
t 1mth 12mth 60mth
Y 2
t 36mth
ρQ 0.9992 0 0

0.0100 0.9320 0
0.0294 0.2553 0.7034

δ1 1.714E-04 1.816E-04 4.418E-04
ρ 0.9812 0.0067 0.0614

-0.0008 0.8629 0.1039
0.0165 0.1849 0.6854

δ0 0.0046
λ0 -0.0401 -0.0154 -0.5501
Bm 9.128E-05

This table shows the parameters used for simulation.
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Table 1.2: Examples of local maxima

LOCAL1 LOCAL2
ρQ 0.9985 0 0 0.9336 0 0

0.0113 0.9328 0 -0.0121 0.9982 0
0.0224 0.2499 0.7200 0.2413 0.0670 0.7096

δ1 1.736E-04 1.729E-04 4.455E-04 1.455E-04 2.032E-04 4.465E-04
ρ 0.9807 0.0180 0.0683 0.8629 -0.0224 0.0978

0.0086 0.8576 0.1182 -0.0126 0.9788 0.0983
0.0152 0.2005 0.6994 0.1759 0.0638 0.7110

δ0 -0.0025 -0.0652
λ0 -0.0759 -0.1178 -0.0041 0.1553 -0.4352 -0.0139
LLF 28104.9 28099.2

LOCAL3 LOCAL4
ρQ 0.9984 0 0 0.9976 0 0

0.0122 0.9329 0 0.3113 -0.9988 0
0.0153 0.2464 0.7212 0.1404 -0.7643 0.9433

δ1 1.785E-04 1.717E-04 4.502E-04 1.231E-04 1.928E-04 4.540E-04
ρ 0.9823 0.0085 0.0778 0.9634 0.0839 0.0708

0.0004 0.8523 0.1208 0.0497 0.6374 -0.0413
0.0268 0.1846 0.7179 0.0357 -0.1269 0.9367

δ0 0.2449 -0.0012
λ0 1.2496 -0.4875 -0.4293 -0.0620 0.0564 -0.1280
LLF 28097.9 28074.3

This table shows 4 examples of local maxima achieved by the conventional estimation

for affine term structure models.

Table 1.3: 2 “global” maxima

“Global”1 “Global”2

ρQ 0.9985 0 0 0.9328 0 0
0.0116 0.9328 0 -0.0116 0.9985 0
0.0219 0.2500 0.7202 0.2424 0.0652 0.7202

δ1 1.713E-04 1.710E-04 4.452E-04 1.386E-04 1.984E-04 4.452E-04
ρ 0.9696 0.0141 0.0671 0.8548 -0.0230 0.1040

-0.0027 0.8533 0.1175 -0.0062 0.9681 0.0866
0.0085 0.1985 0.6993 0.1940 0.0429 0.6993

δ0 0.0046 0.0046
λ0 -0.0416 -0.0085 -0.5315 -0.0012 -0.0425 -0.5315
LLF 28110.4 28110.4

This table shows 2 “global” maxima achieved by the conventional estimation for affine

term structure models.
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Table 1.4: 6 global maxima

GLOBAL1 GLOBAL2
ρQ 0.9985 0 0 0.9985 0 0

0.0116 0.9326 0 0.0054 0.7209 0
0.0220 0.2500 0.7209 0.0243 -0.2500 0.9326

δ1 1.717E-04 1.704E-04 4.455E-04 1.717E-04 1.578E-04 4.502E-04
ρ 0.9697 0.0140 0.0672 0.9697 0.0327 0.0603

-0.0028 0.8529 0.1177 0.0076 0.6329 -0.0611
0.0086 0.1987 0.6997 0.0048 -0.1421 0.9196

δ0 0.0046 0.0046
λ0 -0.0416 -0.0084 -0.5305 -0.0416 -0.3364 -0.4103
Bm 9.109E-05 9.109E-05
LLF 28110.4 28110.4

GLOBAL3 GLOBAL4
ρQ 0.9326 0 0 0.9326 0 0

-0.0116 0.9985 0 0.2387 0.7209 0
0.2424 0.0649 0.7209 0.0440 -0.0649 0.9985

δ1 1.382E-04 1.985E-04 4.455E-04 1.382E-04 3.886E-04 2.948E-04
ρ 0.8544 -0.0230 0.1043 0.8544 0.1068 0.0014

-0.0062 0.9681 0.0865 0.1905 0.6849 -0.0234
0.1942 0.0428 0.6997 0.0382 0.0203 0.9828

δ0 0.0046 0.0046
λ0 -0.0011 -0.0424 -0.5305 -0.0011 -0.5069 -0.1621
Bm 9.109E-05 9.109E-05
LLF 28110.4 28110.4

GLOBAL5 GLOBAL6
ρQ 0.7209 0 0 0.7209 0 0

-0.0054 0.9985 0 -0.2387 0.9326 0
-0.2504 0.0194 0.9326 -0.0760 -0.0194 0.9985

δ1 1.545E-04 1.747E-04 4.502E-04 1.545E-04 3.825E-04 2.948E-04
ρ 0.6322 0.0010 -0.0623 0.6322 -0.0600 -0.0166

0.0261 0.9703 0.0591 -0.1438 0.9071 -0.0166
-0.1422 0.0020 0.9196 -0.0151 0.0405 0.9828

δ0 0.0046 0.0046
λ0 -0.3355 -0.0481 -0.4103 -0.3355 -0.3800 -0.1621
Bm 9.109E-05 9.109E-05
LLF 28110.4 28110.4

This table displays 6 distinct solutions for a 3 factor model with 4 simulated yields

estimated from the new procedure.
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Table 1.5: Parameter comparison

SIMU Unrest λ0= 0 λ0= 0 δ0 = 0.0043
NEW MLE NEW MLE NEW MLE

ρQ 0.9961 0.9964 0.9964 0.9964 0.9964 0.9964 0.9710 1.0091
ρ 0.9712 0.9852 0.9852 0.9852 0.9996 0.9852 0.9851 0.9851
δ1 5.48E-04 5.47E-04 5.47E-04 5.47E-04 5.49E-04 5.47E-04 5.27E-04 4.80E-04
δ0 0.0043 0.0042 0.0042 0.0042 0.0187 0.0043 0.0043 0.0043
λ0 -0.0954 -0.0960 -0.0961 0 0 0 0 0

This table compares the estimated parameters from the conventional MLE and the

new procedure under 3 different scenarios. The column “SIMU” gives the param-

eters used for simulation. The first scenario ”Unrestricted” means all parameters

are free to estimate; the second case restricts λ0 to zero; the third case fixes δ0 to

0.0043 besides λ0 = 0.



Chapter 2

Identifying and Testing the

Refutable Implications behind the

Macro Finance Term Structure

Models of Interest Rates

Abstract

Macro finance term structure models of interest rates and their estimation proce-

dure impose refutable restrictions on the VAR. I introduce the VAR representation

of a class of macro finance models to illustrate why those restrictions are testable.

Fitting the VAR and macro finance models into the same framework makes the

comparison more tractable and better defined. The empirical results show that

both the in-sample and out-of-sample criteria favor the VAR over the macro fi-

nance structure.

2.1 Introduction

Accurately describing and correctly modeling the behavior of the term

structure of interest rates is essential for bond pricing in the financial market,

and policy making for the central banks. Research on joint movement of the yield

25
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curve and macro variables is becoming the trend in the term structure literature.

Empirical studies start to investigate the joint behavior of the yield curve

and macro variables with VAR models. Representative research includes Estrella

and Mishkin (1997) and Evans and Marshall (2007).

To rule out riskless arbitrage opportunities across maturities, Ang and Pi-

azzesi (2003)’s seminal paper begins the macro finance literature by incorporating

cross-equation restrictions into the VAR structure. Subsequent examples include

Bernanke, Reinhart and Sack (2004), Ang, Piazzesi and Wei (2006), Dewachter

and Lyrio (2006), Hördahl, Tristani and Vestin (2006), Rudebusch and Wu (2008)

and Pericoli and Taboga (2008)

The macro finance structure together with an estimation technique assum-

ing some interest rates are observed without error (Chen and Scott 1993) brings

testable restrictions on the VAR. To my knowledge, all of the previous research

simply adopts the ”standard” model setup and estimation technique without first

testing if they fit the data well. The main objective of this paper is to make the first

effort to demonstrate in a systematic manner why those restrictions are testable,

what they are and whether the models fit the data as well as people have assumed.

A related empirical literature has obtained mixed results for the data com-

patibility of the arbitrage-free models. On the one hand, Duffee (2002) among

others notes that the associated arbitrage-free models demonstrate disappointing

empirical performance, especially with regard to out-of-sample forecasting. On the

other hand, Ang and Piazzesi (2003) claim a superior out-of-sample performance of

one of their two macro finance models after comparing them with some VAR and

other reduced form models. However, in addition to the conflicting results on the

empirical performance of the arbitrage-free structure, the comparisons are limited

to the forecasting dimension and the comparison models are chosen arbitrarily due

to the lack of a unified framework of the reduced form models and the structural

arbitrage-free models. To address those problems, I introduce the VAR representa-

tion of the macro finance models. Fitting the VAR and macro finance models into

the same framework makes the multidimensional comparisons between them fea-

sible, and makes the comparisons more tractable and better defined. This action



27

also addresses the specification uncertainty of the reduced form models mentioned

by Cochrane and Piazzesi (2009)

The empirical tests find that with Ang and Piazzesi (2003)’s exact models

and data, two out of three in-sample criteria (the likelihood ratio tests and AIC)

prefer the reduced form VAR while BIC and out-of-sample forecasting results are

ambiguous. After finding that those restrictions imposed by the macro finance

structure are not as data compatible as people have assumed with their original

setup, I examine some alternative macro finance model specifications. Unfortu-

nately, none of the changes in the model specifications save the performance of the

macro finance structure; on the contrary, all of the model selection criteria favor

the unrestricted VAR setup, and this result is proved to be robust.

The paper is organized as follows. Section 2.2 introduces the baseline macro

finance model setup. In section 2.3, I explain why the restrictions are testable by

introducing the VAR representation of the baseline macro finance model, and then

elaborate on what those restrictions are and where they are from. Section 2.4

performs various in-sample and out-of-sample empirical tests on those restrictions,

starting with Ang and Piazzesi (2003)’s original setup, and then turning to some

alternatives. A robustness check is conducted in Section 2.5, and Section 2.6

concludes the paper.

2.2 The Baseline Macro Finance Term Structure

Model

2.2.1 Factor Dynamics

In the macro finance literature of the term structure models of interest

rates, the underlying factors fall into two categories: the observable macro variables

and the unobservable latent factors. The factor dynamics, with a minimal set of

identification restrictions proposed by Pericoli and Taboga (2008), follow a VAR
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process1:

f ot = ρooF
o
t−1 + ρouf

u
t−1 + σou

o
t (2.1)

fut = ρuoF
o
t−1 + ρuuf

u
t−1 + uut

with (uo′t , u
u′
t )′ ˜i.i.d.N (0, I5) , where σo is a 2 × 2 lower triangular matrix. The

vector f ot contains two current macro variables: inflation and output gap; while

fut is a vector containing three unobserved latent factors, which are commonly

referred to as ”level”, ”slope” and ”curvature” in the literature. The vector F o
t−1 =(

f o′t−1, ..., f
o′
t−p
)′

, for p = 1, 2, ..., 12, has 2p elements of past macro variables. For

example, Ang and Piazzesi (2003) set p = 12, or F o
t−1 =

(
f o′t−1, ..., f

o′
t−12
)′

, implying

that the lagged macro variables up to t − 12 are incorporated into the system to

explain the current ones.

The unrestricted factor process (2.1) in the baseline model allows depen-

dence between the macro and latent factors; while some variations of the baseline

setup might impose an additional independence assumption (see, for example, Ang

and Piazzesi (2003)), which would restrict the cross terms ρou and ρuo to zeros.

Write all the macro variables in the factor process (2.1) in terms of F o
t as

opposed to f ot :

F o
t = %ooF

o
t−1 + %ouf

u
t−1 + Σou

o
t (2.2)

fut = ρuoF
o
t−1 + ρuuf

u
t−1 + uut

The first two rows of the macro dynamics of in (2.2) are identical to the

macro dynamics in (2.1). That is, the first two rows of %oo are ρoo, those of %ou are

ρou, and those of Σo are σo. The rest of %oo contains an identity matrix on the left

and a zero matrix on the right; while the other rows of %ou and Σo only contain

zeros. Note that there are 2p elements in F o
t and only 2 in uot , so Σo might not be

a square matrix. In the special case with p = 1, Eq.(2.2) collapses to Eq.(2.1), and

%oo = ρoo, %ou = ρou,Σo = σo.

1I construct the macro series fot to have means of zeros. As in the literature, I impose the
identification restriction that the latent variables fut also have zero means by assuming that
the factor process be stationary, which is different from the restriction imposed by Pericoli and
Taboga (2008) that fu0 = 0. Due to the restrictions imposed above, the constant terms in the
factor dynamics are close to but not identical to zeros. But for compatibility, I follow Ang and
Piazzesi (2003) to drop the constant terms from the VAR.
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The vector Ft = (F o′
t , f

u′
t )′ follows a VAR(1) process in the companion form:

Ft = %Ft−1 + Σut (2.3)

where ut = (uo′t , u
u′
t )′ . The matrix % contains four blocks: %oo, %ou, ρuo and ρuu;

and Σ can be partitioned into four blocks as well: Σo and a zero matrix on the

top, and a zero matrix and an identity matrix on the bottom.

2.2.2 Short Rate Process

The Taylor (1993)rule describes how the Fed adjusts the short term interest

rate rt in response to inflation and real activity fluctuations. In addition to the

short rate being a linear function of macro variables in the standard Taylor rule,

it is also a linear fucntion of latent variables fut . Following Ang and Piazzesi

(2003)’s convention, I will employ two versions of the Taylor rules, and they differ

in the defination of the macro factors F̃ o
t used to explain the short rate process:

F̃ o
t contains only current macro factors in one version and both current and past

macro factors in the other version

rt = δ0 + δ′1oF̃
o
t + δ′1uf

u
t (2.4)

The model is called ”macro” if F̃ o
t = f ot , in which the short rate only

depends on the contemporaneous variables; and called ”macro lag” if F̃ o
t = F o

t ,

in which the whole state vector Ft in the companion form of the factor dynamics

(2.3) helps to form the short rate process. With p = 1, two cases collapse into

one, and I will name it ”macro”. By Pericoli and Taboga (2008), the identification

restriction requires δ1u ≥ 0.

To unify the notation in the short rate process (2.4) with that in the factor

dynamics (2.3), I write factors in terms of F o
t or Ft as opposed to F̃ o

t , and the short

rate equation becomes:

rt = δ0 + δ′1Ft (2.5)

The ”macro lag” model has δ′1 = (δ′1o, δ
′
1u); while the ”macro” model has

δ′1 =
(
δ′1o, 01×(2p−2), δ

′
1u

)
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2.2.3 Pricing Kernel

Define the nominal pricing kernel mt+1 as

mt+1 = exp

(
−rt −

1

2
λ′tλt − λ′tut+1

)
(2.6)

This setup for the risk adjusted stochastic discount factor is very standard in

the literature. The variables λt are the time-varying market prices of risk associated

with the sources of uncertainty ut+1. As in the affine term structure literature, I

parameterize λt as an affine function of the state variables

λt = λ0 + λ1Ft (2.7)

In order not to over fit, the vector λt is constrained to only have 5 non-

zero elements corresponding to the current variables, and is constrained to depend

only on the state variables of the current period. Consequently, the time invariant

vector λ0 only has 5 non-zero elements. The matrix λ1 has zeros in rows and

columns corresponding to the lagged macro factors, and only has 5 × 5 non-zero

elements at four corners. If an independent model is adopted (see, for example,

Ang and Piazzesi (2003)), the matrix λ1 is further restricted to be block diagonal

with 2×2+3×3 non-zero elements; that is, the time variation in the compensation

for shocks to latent variables is only driven by the latent variables themselves, and

the same argument holds for macro variables.

2.2.4 Bond Pricing

Having defined the nominal pricing kernel in Eq.(2.6), the prices of zero

coupon bonds satisfy

pn+1
t = Et

(
mt+1p

n
t+1

)
where pnt is the price of an n-period zero coupon bond at time t.

In the affine term structure models, the bond prices are exponential affine

functions of the state vector,

pnt = exp
(
ān + b̄′nFt

)
(2.8)
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where ān and b̄n follow the difference equations:

ān+1 = −δ0 + ān − b̄′nΣλ0 +
1

2
b̄′nΣΣ′b̄n (2.9)

b̄n+1 = −δ1 + (%− Σλ1)
′ b̄n

with ā1 = −δ0 and b̄1 = −δ1. The derivation of the difference equations can be

found in Appendix A of Ang and Piazzesi (2003).

Then, the yields ynt are linear in the state variables

ynt = − log pnt
n

= an + b′nFt (2.10)

with an = −ān/n and bn = −b̄n/n.

2.3 Testable Restrictions Implied by the Macro

Finance Structure

In addition to those assumptions imposed by the macro finance structure to

rule out opportunities for riskless arbitrage across maturities, practitioners usually

assume some interest rates are observed without error (see Chen and Scott (1993)),

and that combination will give us testable restrictions. To my knowledge, all of

the previous researches simply adopt the ”standard” model setup and estimation

technique without testing if they fit the data well. Therefore, the main objective

of this paper is to make the first effort to demonstrate why those restrictions

are testable, what they are and whether they fit the data as well as people have

assumed. I will address these questions in an orderly manner, and use the empirical

results to demonstrate the model compatibility with the data.

In this section, I will first explain why those restrictions are testable by

introducing the VAR representation of the baseline macro finance model, and then

elaborate on what the testable restrictions are and where they come from. Finally,

I’ll explain how to separate those restrictions that the baseline macro finance struc-

ture imposes on the reduced form VAR from the restrictions that various versions

of the macro finance models impose on the baseline macro finance structure, and

I will focus on the former ones.
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2.3.1 Deriving the VAR representation of the Baseline

Macro Finance Model

The estimation procedure introduced by Chen and Scott (1993) assumes

that the number of yields priced without error is equal to the number of unobserved

factors, so we can back out the unobserved factors given data and parameters.

The yields in my data set have N = 5 different maturities (1, 3, 12, 36 and 60

months), collected in a 5×1 vector Yt. Partition this vector into a 3×1 vector Y 1
t ,

the yields for which the affine pricing model is presumed to hold without error (for

example, in Ang and Piazzesi (2003)), Y 1
t = (y1t , y

12
t , y

60
t )
′
), and a 2× 1 vector Y 2

t

for which measurement error is allowed (for example, in Ang and Piazzesi (2003),

Y 2
t = (y3t , y

36
t )
′
). Stack Eq.(2.10) for 5 different n’s in the order of Y 1

t and Y 2
t into

a 5× 1 equation system, and add pricing errors for the elements in Y 2
t :[

Y 1
t

Y 2
t

]
=

[
A1

A2

]
+

[
B1o

B2o

]
F o
t +

[
B1u

B2u

]
fut +

[
0

Bm

]
umt (2.11)

with Bm =

(
σ1 0

0 σ2

)
and umt ˜i.i.d.N (0, I2)

.

Solve the unobserved vector fut from the Y 1
t part of the equation system

(2.11), and then substitute it into the factor dynamics (2.2) and the Y 2
t part of

(2.11). After some derivation (see Appendix A), the VAR representation of the

above macro finance system is given as follows:

F o
t = A∗o + φ∗ooF

o
t−1 + φ∗o1Y

1
t−1 + u∗ot (2.12)

Y 1
t = A∗1 + φ∗1oF

o
t−1 + φ∗11Y

1
t−1 + u∗1t

Y 2
t = A∗2 + φ∗2oF

o
t−1 + φ∗21Y

1
t−1 + u∗2t

The non-linear restrictions on the coefficients and the variance-covariance

matrix of the error terms are given in Appendix A and B. For elements of F o
t

corresponding to lagged macro variables, if any, the corresponding rows of A∗o, φ
∗
o1

and u∗ot are zeros, and those of φ∗oo consist of an identity matrix and zeros. Note

that Y 2
t−1 doesn’t enter into the right hand side of the VAR representation as an
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explanatory variable, which means that only Y 1
t−1 interest rates that are assumed

to be accurately priced by the model should help to forecast both F o
t , Y 1

t or Y 2
t .

Moreover, there are 7 random elements in the system from uot , u
u
t and umt .

Deriving the VAR representation of the baseline macro finance model shows

that the no-arbitrage affine macro finance structure implies testable restrictions.

Moreover, fitting the structural and reduced form models into the same framework

makes the comparison more tractable and better defined. For example, Ang and

Piazzesi (2003) compare the out-of-sample forecasting performance of their macro

finance models with p = 12 in Eq.(2.1) with that of a VAR(12) for 5 yields and

2 macro variables. It can be seen from Eq.(2.12) that a VAR with p = 12 lags of

macro variables and only 1 lag of yields would be a better candidate to compare

with.

2.3.2 Testable Restrictions

I’ve shown why the no-arbitrage affine macro finance structure implies

testable restrictions by illustrating that the baseline macro finance model is a

vector autoregression with linear and nonlinear restrictions. All of the previous

applications of this framework simply adopt the ”standard” model setup and esti-

mation technique without noticing that they are testable.

Having seen why the restrictions are testable, we shall ask what those

testable restrictions are and where they come from.

The unrestricted VAR version of (2.12) is:

F o
t = A∗o + φ∗ooF

o
t−1 + φ∗o1Y

1
t−1 + φ∗o2Y

2
t−1 + u∗ot (2.13)

Y 1
t = A∗1 + φ∗1oF

o
t−1 + φ∗11Y

1
t−1 + φ∗12Y

2
t−1 + u∗1t

Y 2
t = A∗2 + φ∗2oF

o
t−1 + φ∗21Y

1
t−1 + φ∗22Y

2
t−1 + u∗2t

By comparing the restricted version in (2.12) with its unrestricted version

in (2.13), the restrictions that the baseline macro finance model imposes on the

VAR include the nonlinear ones shown in Appendix A and B and the linear ones:

φ∗o2 = 0, φ∗12 = 0, φ∗22 = 0. Those restrictions can be attributed to the interaction
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between the affine macro finance structure ruling out arbitrage opportunities and

the estimation procedure assuming some of yields are priced without error.

2.3.3 Target Restrictions vs. Maintained restrictions

I’ve already demonstrated what the restrictions imposed by the baseline

macro finance model setup and estimation framework are. Those restrictions are

of central interest of this paper and I will call them the ”target” restrictions or

”structural” restrictions thereafter. In addition, the variations in the macro finance

model specifications may impose some extra restrictions on the baseline setup, and

some of those restrictions will pass through to the VAR representation and add

some additional non-structural restrictions on it. Those additional restrictions are

not of central interest of this paper, so I will just take them as given without test-

ing them, and refer them as the ”maintained” restrictions. This section associates

each macro finance model with a matching VAR model by adding these maintained

restrictions to the unrestricted VAR. In other words, the difference between the

VAR and macro finance models in the same pair should only consist of the struc-

tural restrictions, and the following shows how to construct the pairs from several

dimensions.

The first dimension is the dependence between the macro and latent factors.

The independent macro finance models impose ρou = 0 and ρuo = 0 in the factor

dynamics (2.1), implying additional restrictions on the VAR representation (2.12)

in the form of φ∗o1 = 0 and A∗o = 02. The detailed derivation can be worked through

similarly to Appendix A, and the intuition is that the independence assumption

on the factors results in one way dependence between the macro variables and the

interest rates, which means only the yields depend on the information from the

lagged macro variables and the reverse is not true. Therefore, the VAR models used

to compare with the independent macro finance models impose φ∗o1 = 0, φ∗o2 = 0

and A∗o = 0 in Eq.(2.13), and with abuse of notation I will refer those VARs to be

”independent” along the first dimension.

2I construct the macro series fot to have means of zeros, so in the independent case with
φ∗o1 = 0 in (2.12), A∗o is close to but not identical to a vector of zeros. But for compatibility, I
follow Ang and Piazzesi (2003) to impose A∗o = 0.
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Second, the number of macro lags in the factor dynamics (2.1) p may vary

across macro finance models, so I choose to compare the VAR and macro finance

models with the same p. For example, if p = 1 in the macro finance model, then I

compare it with a VAR for which also p = 1, meaning F o
t−1 = f ot−1 in both cases.

On the other hand, changing to Taylor rule, that is, ”macro” or ”macro lag”

in (2.4), won’t bring any maintained restrictions. So each pair of the ”macro” and

”macro lag” models3 with the same entries along the first two dimensions, p and

dependence, has a reduced form VAR to nest both of them with only target restric-

tions; and this VAR model has the same traits as its macro finance counterparts

along the other two dimensions.

2.4 Empirical Results

In this section, I will empirically test those restrictions implied by the macro

finance structure imposing no arbitrage constraint and the estimation procedure

assuming that some of the yields are priced with no error.

As a starting point, I will use Ang and Piazzesi (2003)’s exact models

and data to see if those refutable implications derived in the above section could

survive their original setup. After showing that those restrictions imposed by the

macro finance structure are not as data compatible as people have assumed under

their original setup, I’ll turn to some alternative model specifications to see if

those would help. Unfortunately, none of the various specifications can save the

performance of the macro finance models; none of the macro finance models have

better performance than their VAR counterparts.

I will use various in-sample and out-of-sample model selection criteria as

follows.

First, I use likelihood ratio tests to compare nested models. The likelihood

ratio is defined as:

Ratio = −2 (lnLR − lnLU) (2.14)

where LR is the maximized likelihood of the restricted model, and LU is the max-

3The pair will degenerate to the ”macro” model if p = 1.
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imized likelihood of the unrestricted model. The ratio asymptotically has a χ2

distribution with degrees of freedom equal to the number of restrictions.

The traditional likelihood ratio tests may suffer from the small sample bias.

As a robustness check, I will simulate the critical values of the ratios at 5% sig-

nificance level for some of the applications. More specifically, I will simulate a set

of data with the same time series length as the actual data given the estimated

parameters and model structure of the restricted version, and then estimate with

both restricted and unrestricted models to calculate the simulated likelihood ratio

based on Eq.(2.14). I repeat the procedure 1000 times and sort the simulated ra-

tios in an ascending order, so the simulation-based critical value is the 950th entry

of the ratios. If the likelihood ratio calculated from the real data is greater than

the simulation-based critical value, we will reject the restriction.

Second, the information criteria, the AIC (Akaike information criterion)

and the BIC (Bayesian information criterion), are used to compare both nested

and non-nested models. The two information criteria, penalizing on over parame-

terization to different degrees, are defined as follows:

AIC = 2K − 2 ln(L) (2.15)

BIC = K ln (T )− 2 ln(L)

where K is the number of parameters, ln(L) is the maximized value of the log

likelihood function, and T is the length of time series. A smaller AIC or BIC

means a better model. For time series data with ln (T ) > 2, BIC penalizes the

number of parameters more severely, so it will favor more parsimonious models.

Third, the out-of-sample RMSE (root mean squared error) employs a differ-

ent philosophy from those in-sample likelihood-based tests in that it’s not a direct

function of the maximized likelihood value, which characterizes how good the in-

sample fits are. In contrast, the out-of-sample RMSE reflects how well the models

fit the data in terms of forecasting. The procedure for examining the out-of-sample

forecasts is as follows. At each date t, I estimate the models using data up to and

including time t, and then forecast the next month’s yields at time t+ 1, and I do

so for all the five yields available in data.
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2.4.1 A Special Case: Ang and Piazzesi (2003)

Ang and Piazzesi (2003) compare their models with some other models

including one vector autoregression with both yields and macro factors from an

out-of-sample forecasting perspective, and they conclude that one of their macro

finance models has a better out-of-sample performance. I will say more about the

post sample performance shortly, but first focus on the more basic question of

whether the assumptions behind the macro finance structure are valid.

Data, Models and Estimation Methods

The monthly data I am using is the closest I can find to that used by Ang

and Piazzesi (2003), and almost identically replicates the statistics and estimation

results in their paper. I use zero-coupon bond yields with maturities of 1, 3,

12, 36 and 60 months from CRSP monthly treasury file. I obtain two groups of

monthly US macroeconomic key indicators, seasonally adjusted if applicable, from

Datastream. The first group consists of various inflation measures which are based

on the CPI, the PPI of finished goods, and the CRB Spot Index for commodity

prices. The second group contains variables that capture real activity: the Index of

Help Wanted Advertising, Unemployment Rates, the growth rate of Total Civilian

Employment and the growth rate of Industrial Production. All growth rates and

inflation rates are measured as the difference in logs of index at time t and t− 12,

for index’s monthly data. To reduce the dimensionality of the system, I follow Ang

and Piazzesi (2003)’s procedure: I first normalize each series separately to have

zero mean and unit variance, then extract the first principal component of each

group, and name them as the ”inflation” and ”real activity” indices, so each index

has zero mean and unit variance by construction. The sample period for yields

is from December 1952 to December 2000, and that for the macro indices is from

January 1952 to December 2000.

The macro finance models in Ang and Piazzesi (2003) specify p = 12 in the

factor dynamics (2.1), which means 12 macro lags are used as explanatory variables.

In addition, they assume independence between the macro and latent factors; in

other words, ρou = 0 and ρuo = 0 in the factor dynamics (2.1), and λ1 in (2.7) is
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block diagonal with 2× 2 + 3× 3 non-zero elements. Given the independence, the

macro dynamics in (2.2) and the macro part of the short rate process in (2.4) can be

estimated by OLS. I will designate a macro finance model as ”macro” if F̃ o
t = f ot in

(2.4) and as ”macro lag” if F̃ o
t = F o

t in (2.4). During estimation, Ang and Piazzesi

(2003) impose 10 additional zeros on those insignificant parameters in both models.

Rather than following their path-dependent estimation procedure, I set those 10

parameters to zero before estimation. Lastly, they assume Y 1
t = (y1t , y

12
t , y

60
t )
′
, or

1, 12 and 60 months yields are priced exactly.

As I have described in Section 3, I will separate the maintained restrictions

from the structural ones and just test those implied by the model setup and esti-

mation procedure. Consequently, the VAR model I use to compare with the macro

finance models in Ang and Piazzesi (2003) has the following properties: p = 12

in (2.13) or F o
t−1 =

(
f o′t−1, ..., f

o′
t−12
)′

, and what I refer to as the ”independent”

assumption namely φ∗o1 = 0, φ∗o2 = 0, A∗o = 0 in (2.13).

The above described VAR is different from the VAR selected by Ang and

Piazzesi (2003) in the following aspects. First, Ang and Piazzesi (2003) incorporate

12 lags for both macro variables and yields; while Eq.(2.12) shows that the VAR

with one lag of yields is enough to nest the macro finance models, and 12 lags of

yields together with 12 lags of macro variables make the model overparameterized.

Second, the macro variables and yields are dependent in Ang and Piazzesi (2003)’s

VAR model. Instead, I will use the ”independent” version of the VAR models to

nest those macro finance setups for parsimony.

The macro finance models are estimated with MLE (the maximum likeli-

hood estimation), and the identical estimation results can be achieved two differ-

ent ways. The first method is to solve the VAR in Eq.(2.12) with the structural

restrictions provided in Appendix A and B and the maintained restrictions for

independence mentioned above, and the second method is to use the likelihood

function provided in Appendix B of Ang and Piazzesi (2003). The VAR with

the independence assumption can be solved following the procedure described in

Chapter 11 of Hamilton (1994).
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Results

Table 2.1 performs the large-sample likelihood ratio tests between the VAR

and the macro finance models. The vector autoregression is the unrestricted model,

while the two macro finance models, “macro” and “macro lag”, are the restricted

ones. The conventional likelihood ratio tests from row 3 to row 5 reject the re-

strictions with both P values of 0.00%, and prefer the unrestricted VAR.

As a robustness check, I perform in the last row of the table the simulation-

based likelihood ratio tests, which adjust for small sample bias. Both the likelihood

ratios in the third row are greater than the simulated critical values at the 5% sig-

nificance level, so the restrictions implied by the macro finance models in Ang and

Piazzesi (2003) are rejected. Compared to the conventional likelihood ratio tests,

the simulation-based likelihood ratio tests might change the results quantitatively,

but not qualitatively. Therefore, both the large-sample and small-sample versions

of the likelihood ratio tests agree with each other, and don’t support the structure

imposed by the macro finance models.

Table 2.2 ranks the VAR and macro finance models based on the AIC, and

the ranking preference is in a descending order throughout the table. It shows that

the VAR model has a smaller AIC value than both macro finance models; thus it

confirms the results from the likelihood ratio tests, and the key result of this paper

is that the cross equation restrictions imposed by the macro finance structure do

not fit the data well.

Compared to the AIC, the BIC penalizes over-parameterization more, and it

tends to choose more parsimonious models. BIC prefers the “macro” model to both

the VAR and ”macro lag”. That might be because imposing the cross equation

restrictions reduces the dimensionality of the system to certain degree. For both

information criteria, the ”macro lag” model is ranked at the bottom, which is

saying that the short rate only depends on the contemporaneous variables.

Table 2.3 compares the VAR and macro finance models using the out-of-

sample RMSE, and the best models for different maturities with the smallest RM-

SEs are indicated in bold. It shows that the VAR model does better in forecasting

the shorter yields with the maturities of 1 month and 3 months; while the “macro”
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model proposed by Ang and Piazzesi (2003) provides a better post sample fit for

the longer yields with the maturities of 12, 36 and 60 months. On the other hand,

the ”macro lag” model is once again proved to be the worst with the highest RM-

SEs for most of the time. Thus, I find that the cross equation restrictions imposed

by the macro finance models are desirable for forecasting the longer term yields,

which is consistent with the findings in Ang and Piazzesi (2003). On the other

hand, I find them not desirable for forecasting the shorter term yields, which is con-

trary to the results in Ang and Piazzesi (2003). The reason that I have obtained a

different result from Ang and Piazzesi (2003) is that I am using a more restrictive

VAR, which nests the two macro finance models with only ”target” restrictions

and thus is a more suitable candidate for the comparison.

Overall, the empirical results show that the ”macro” model proposed by

Ang and Piazzesi (2003) does have a lower BIC value and a better forecasting

ability, but such ability is limited to the longer term yields as compared to the

VAR model. On the other hand, the ”macro lag” model performs poorly by all

criteria. Moreover, both macro finance models have worse in-sample fits in terms

of both likelihood ratio tests and AIC.

2.4.2 Generalization: Alternative Specifications

We have seen that under Ang and Piazzesi (2003)’s original setup, the re-

strictions imposed by macro finance models appear to be inconsistent with the

data. This section examines an alternative data set and various model specifica-

tions, yet maintains the basic affine no-arbitrage macro finance structure and its

estimation procedure, to see if such modifications can save the performance of the

macro finance models.

Data, Model Specifications and Estimation Methods

The data are the same as before, except that the time periods are shorter

and more recent: the yields are from December 1970 to December 2007 and the
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macro indices are from January 1970 to December 20074,5.

Ang and Piazzesi (2003)’s original macro finance setups fail to pass various

model selection tests, and I will try some alternative specifications for the macro

finance models along several dimensions.

First, Ang and Piazzesi (2003) assume independence between macro and

latent factors: ρou = 0 and ρuo = 0 in (2.1), and λ1 in (2.7) is block diagonal with

2 × 2 + 3 × 3 non-zero elements. Such an assumption eliminates any potential

feedbacks from the yields to the macro variables. The alternative is the dependent

setup, which removes the constraints on ρou and ρuo, and λ1 has 5 × 5 non-zero

elements on four corners.

The second dimension is how many lags of macro variables p are in the

factor dynamics (2.1). In Ang and Piazzesi (2003)’s setup, p = 12 or F o
t−1 =(

f o′t−1, ..., f
o′
t−12
)′

. However, the number of parameters explodes when so many lags

are included, especially when dependence is introduced at the same time. The

alternative is p = 1 or F o
t−1 = f ot−1 for its parsimony.

Third, even though the ”macro lag” version of the models underperforms

with the original setup, I’ll keep it and see if the results are different with the new

model setups. Still, the model is called ”macro” if F̃ o
t = f ot in (2.4) and ”macro

lag” if F̃ o
t = F o

t in (2.4). The ”macro lag” version will only be assessed together

with p = 12.

To sum up, the macro finance models have three different traits to be varied:

dependence (dependent or independent), p (12 or 1) and the Taylor rule (”macro”

or ”macrolag”). By assuming that the 1, 12 and 60 months yields are priced

exactly, totally 6 macro finance models will be compared among others, and I

denote the models as MF (dep/ind, 1/12,macro/lag), where ”lag” only appears

when the second entry is 12. As a special case, the models MF (ind, 12,macro) and

4Empirical term structure research has used different sample periods: some of them use longer
periods, starting from 1950’s or 1960’s, for example, Ang and Piazzesi (2003), and Pericoli and
Taboga (2008); some others use shorter periods, starting from 1980’s and 1990’s, for example,
Kim and Wright (2005),Kim and Wright (2005),Diebold and Li (2006) and Rudebusch and Wu
(2008). Combining these two strands, I follow Bikbov and Chernov (2008) among others to start
from 1970 and extend to 2007.

5I also have done calculations not reported that use bigger panels, which are only available
for this shorter period.
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MF (ind, 12, lag) are exactly the same as the models in Ang and Piazzesi (2003),

and the only difference is I don’t impose the extra 10 zeros on the parameters

during the estimation.

As I have described in Section 3, each pair of the ”macro” and ”macro

lag” models6 with the same entries along the first two dimensions has a reduced

form VAR to nest both of them with only target restrictions; and this VAR model

should have the same traits as its macro finance counterparts along those two

dimensions. So I will specify the first two dimensions of the VAR models the same

as those of the macro finance models, and the four VAR models are named as

V AR(dep/ind, 1/12).7 The model V AR(i, j) nests MF (i, j, ·) with only necessary

structural restrictions, for i = ind or dep, j = 1 or 12.

The likelihood ratio tests require nesting relationship, and therefore the

VAR model and macro finance model in the same test should have the same model

entries along the first two dimensions. In other words, I compare V AR(i, j) with

MF (i, j, ·). For other model selection criteria, nesting relationship is not necessary,

so I will pool all the macro finance models and their matching VAR models together

to make the comparisons.

For simplicity, I will solve the MLE of the macro finance models using the

VAR representations in Eq.(2.12) with structural and maintained restrictions. The

reduced form VARs can be solved following the procedure described in Chapter 11

of Hamilton (1994).

Results

The likelihood ratio tests in Table 2.4 reject the restrictions imposed by the

no-arbitrage macro finance structure under all model specifications at all signifi-

cance levels with all of the p-values being 0.00%. The conclusion drawn from this

set of likelihood ratio tests is perfectly in line with that from the likelihood ratio

tests conducted with only Ang and Piazzesi (2003)’s models in Table 2.1, and the

key result stands.

6The pair will degenerate to the ”macro” model if p = 1.
7The ”independent” VAR models have the restrictions: φ∗o1 = 0, φ∗o2 = 0, A∗o = 0 in (2.13).
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Putting together the structural and reduced form models, the AIC will

unanimously pick any VAR over any macro finance models (in Table 2.5), no

matter which values the other two dimensions, ”dep” and ”p”, take. The best

model nominated by the AIC is VAR(ind,12,n). Once again, it confirms the point

Table 2.2 has delivered and the key point of the paper that the macro finance

models don’t go well with the data.

Table 2.6 shows that the BIC chooses the parsimonious models with p = 1

over the ones with p = 12. Comparing between the VAR and macro finance models,

with the second entries being p = 1, the VAR models are preferred over the macro

finance ones, which is in line with the key result. The new BIC results seem to

overrule those old ones in Table 2.2, but they are not totally inconsistent. Putting

the picture together, the macro finance models may have lower BICs, but only if

p = 12; and the VAR jointly with p = 1 gives the best models as far as the BIC is

concerned. Thus, incorporating more model specifications doesn’t help the macro

finance structure to perform but eliminates the deviation of the earlier BIC results

from the key result.

The root mean squared errors compare the models from a forecasting per-

spective. A superior forecasting ability is claimed to be one of the key contributions

of the macro finance models, and my experiment under Ang and Piazzesi (2003)’s

exact setup in Table 2.3 confirms this point, but only for the longer end of the yield

curve. However, with more macro finance and VAR models incorporated into the

comparison, Table 2.7 indicates that the VAR model V AR(ind, 1) performs the

best for almost all of the maturities. Accordingly, the reduced form VAR structure

is supported even by the out-of-sample forecasting under the new setup, and up

to this point, the key result is that the restrictions implied jointly by the macro

finance structure and estimation procedure are not preferred by all of the model

selection criteria.

Therefore, the changes in the macro finance model specifications do not

save the performance of the structure introduced by Ang and Piazzesi (2003); on

the contrary, all of the model selection criteria favor the unrestricted VAR setup.
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2.5 Robustness Check: Which Three Yields Are

Priced Without Error

The above comparisons between the macro finance models and VAR models

are conducted by assuming Y 1
t = (y1t , y

12
t , y

60
t )
′
, or 1, 12 and 60 months yields

are priced exactly. But it’s actually testable which yields we want to treat as

observable, and I will conduct this set of tests by comparing models assigning Y 1
t

with different maturities. In particular, I will just compare within the VAR family,

and the VAR models used for this comparison only impose maintained restrictions

on the VAR representation (2.12). Incorporating different yields in Y 1
t implies

different sets of the two yields which do not appear on the right hand side of the

VAR models as the explanatory variables.

The VAR models used to compare with the macro finance models in the

empirical section take the form of Eq.(2.13), and therefore they are symmetric;

while those used to test which three yields we want to treat as observable in this

section take the form of Eq.(2.12), and they are asymmetric.

2.5.1 A Special Case: Ang and Piazzesi (2003)

This section will test which three yields should be priced without error

using Ang and Piazzesi (2003)’s data from 1952 to 2000, and adopting the first

two dimensions from Ang and Piazzesi (2003) with p = 12 and independence.

Table 2.8 compares the asymmetric VAR models assigning Y 1
t with different

yields. The table ranks the models based on the log likelihoods, and it shows that

Y 1
t = (y3t , y

12
t , y

60
t )
′

is the best choice. Since the numbers of the parameters are

exactly the same for all those models, ranking the likelihoods is equivalent to

ranking the AICs or BICs, and thus the likelihood-based tests suggest that 3, 12

and 60 months yields are better proxies for short, medium and long runs.

Table 2.9 compares the out-of-sample performance of those VAR models

with different yields included in Y 1
t . No particular model is the best in terms

of all the maturities, and the three best models highlighted in bold are Y 1
t =

(y3t , y
12
t , y

60
t )
′

for 60 months yields, Y 1
t = (y3t , y

12
t , y

36
t )
′

for 12 and 36 months and
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Y 1
t = (y1t , y

3
t , y

12
t )
′

for 1 and 3 months. Therefore, to forecast the yields with

any particular maturity, the yields with this maturity should be incorporated in

Y 1
t . For example, the model Y 1

t = (y3t , y
12
t , y

60
t )
′

has a lowest RMSE in predicting

60 months yields, and this model assumes that the 60 months yields are priced

without error.

2.5.2 Generalization: Alternative Specifications

This section will further test which three yields should be priced without

error by using the alternative data set from 1970 to 2007, and four specifications

along the first two dimensions V AR(dep/ind, 1/12).

Table 2.10 ranks the VAR models along the third dimension, which three

yields are incorporated in Y 1
t , based on the order in Table 2.8. For all four different

VAR specifications, V AR(dep/ind, 1/12), the log likelihoods are almost in descend-

ing order, and the best models highlighted in bold always have Y 1
t = (y3t , y

12
t , y

60
t )
′
.

This implication that the 3, 12 and 60 months yields are good proxies for the short

term, medium term and long term is consistent with Table 2.8.

Four different VAR specifications V AR(dep/ind, 1/12) nominate different

sets of the best models, and each set contains 5 or less best models with the

lowest RMSEs for the 5 yields. For example, in Table 2.11, the best models with

V AR(dep, 12) are Y 1
t = (y1t , y

3
t , y

60
t )
′

for 1 month, Y 1
t = (y1t , y

3
t , y

12
t )
′

for 3 and 12

months, Y 1
t = (y1t , y

3
t , y

36
t )
′

for 36 months and Y 1
t = (y3t , y

12
t , y

36
t )
′

for 60 months.

Although different specifications favor different models, forecasting the yields with

a specific maturity requires the yields with this maturity to be included in Y 1
t ,

for most of the cases. Surprisingly, the model chosen by Ang and Piazzesi (2003)

Y 1
t = (y1t , y

12
t , y

60
t )
′

is never the best for any maturity.

To sum up, Y 1
t = (y3t , y

12
t , y

60
t )
′

is nominated as the best by in-sample

likelihood-based tests consistently for all variations along the first two dimensions,

and the results from the out-of-sample tests are far more ambiguous.
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2.5.3 Robustness Check with Y 1
t =

(
y3
t , y

12
t , y

60
t

)′
We’ve seen that the in-sample tests overwhelmingly prefer the models with

Y 1
t = (y3t , y

12
t , y

60
t )
′
, so I will adopt this specification Y 1

t = (y3t , y
12
t , y

60
t )
′

and redo

some tests in Section 4.1, which have been performed under Ang and Piazzesi

(2003)’s setups.

Table 2.12 and 2.13 exactly reproduce the ordering in Table 2.2 and 2.3,

and thus the key result stands.

2.6 Conclusion

Combined with its estimation procedure assuming some interest rates are

observed without error, the macro finance structure imposes some testable re-

strictions in order to rule out opportunities for riskless arbitrage across maturities.

This paper makes the first effort to demonstrate why those restrictions are testable,

what they are and whether they fit the data as well as people have assumed. To

address those questions, I introduce the VAR representation of the macro finance

models and fit the VAR and macro finance models into the same framework, which

makes the comparison more tractable and better defined.

Using Ang and Piazzesi (2003)’s exact models and data, the empirical re-

sults show that the ”macro lag” model with the lagged macro variables incor-

porated in the short rate process performs poorly with all criteria. Both of the

”macro” and ”macro lag” models are seen to have worse in-sample fits in terms of

both likelihood ratio tests and AIC, and the results from BIC and out-of-sample

forecasting are ambiguous.

After finding that those restrictions imposed by the macro finance structure

are not as data compatible as people have assumed with their original setup, I

examine some alternative model specifications. Unfortunately, none of the changes

in the macro finance model specifications save the performance of the structure

introduced by Ang and Piazzesi (2003); on the contrary, all of the model selection

criteria favor the unrestricted VAR setup.

Rather than assuming three particular yields are included in Y 1
t , the ro-
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bustness section examines which yields we want to treat as observable. I find that

Y 1
t = (y3t , y

12
t , y

60
t )
′

is nominated as the best by in-sample likelihood-based tests

consistently for all variations along the first two dimensions, and the results from

the out-of-sample tests are far more ambiguous. More interestingly, the one chosen

by Ang and Piazzesi (2003) Y 1
t = (y1t , y

12
t , y

60
t )
′

is never the best for any criteria.

Redoing some tests using Y 1
t = (y3t , y

12
t , y

60
t )
′

instead of Y 1
t = (y1t , y

12
t , y

60
t )
′

exactly

reproduces the ordering of the models by various criteria, and the key result stands.
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2.8 Appendices

A. Deriving the VAR representation of the Baseline Macro

Finance Model

I follow Chen and Scott (1993) and others in assuming that the inverse of

B1u exists, so I can solve the unobserved vector fut from the Y 1
t part of the equation

system (2.11):

fut = B−11u Y
1
t −B−11u A1 −B−11u B1oF

o
t (2.16)

Note that the unobserved factors are an affine function of the 3 yields and

the current and lagged macro variables.

Substitute (2.16) into the macro dynamics in (2.2):

F o
t = %ooF

o
t−1 + %ouf

u
t−1 + Σou

o
t

= %ooF
o
t−1 + %ou

(
B−11u Y

1
t−1 −B−11u A1 −B−11u B1oF

o
t−1
)

+ Σou
o
t

= −%ouB−11u A1 +
(
%oo − %ouB−11u B1o

)
F o
t−1 + %ouB

−1
1u Y

1
t−1 + Σou

o
t

So the macro state variables are affine in their own lags and lagged yields

which are priced without error:

F o
t = A∗o + φ∗ooF

o
t−1 + φ∗o1Y

1
t−1 + u∗ot (2.17)

with

A∗o = −%ouB−11u A1 (2.18)

φ∗oo = %oo − %ouB−11u B1o

φ∗o1 = %ouB
−1
1u

u∗ot = Σou
o
t

Substitute the expression for fut in (2.16) into the dynamics for the latent

factors in (2.2):

B−11u Y
1
t −B−11u A1 −B−11u B1oF

o
t = ρuu

(
B−11u Y

1
t−1 −B−11u A1 −B−11u B1oF

o
t−1
)

+ρuoF
o
t−1 + uut
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Y 1
t − A1 −B1oF

o
t = B1uρuoF

o
t−1 +B1uρuu

(
B−11u Y

1
t−1 −B−11u A1 −B−11u B1oF

o
t−1
)

+B1uu
u
t

Y 1
t = A1 +B1o

(
A∗o + φ∗ooF

o
t−1 + φ∗o1Y

1
t−1 + u∗ot

)
+B1uρuoF

o
t−1

+B1uρuu
(
B−11u Y

1
t−1 −B−11u A1 −B−11u B1oF

o
t−1
)

+B1uu
u
t

=
(
I3 −B1uρuuB

−1
1u

)
A1 +B1oA

∗
o

+
(
B1oφ

∗
oo +B1uρuo −B1uρuuB

−1
1u B1o

)
F o
t−1

+
(
B1oφ

∗
o1 +B1uρuuB

−1
1u

)
Y 1
t−1

+B1ou
∗
ot +B1uu

u
t

So Y 1
t can be written as a linear combination of F o

t−1 and Y 1
t−1:

Y 1
t = A∗1 + φ∗1oF

o
t−1 + φ∗11Y

1
t−1 + u∗1t (2.19)

with

A∗1 =
(
I3 −B1uρuuB

−1
1u

)
A1 +B1oA

∗
o (2.20)

φ∗1o = B1oφ
∗
oo +B1uρuo −B1uρuuB

−1
1u B1o (2.21)

φ∗11 = B1oφ
∗
o1 +B1uρuuB

−1
1u (2.22)

u∗1t = B1ou
∗
ot +B1uu

u
t (2.23)

Substitute F o
t in (2.17) and fut in (2.16) into the Y 2

t part in (2.11):

Y 2
t = A2 +B2oF

o
t +B2uf

u
t +Bmumt

= A2 +B2oF
o
t +B2u

(
B−11u Y

1
t −B−11u A1 −B−11u B1oF

o
t

)
+Bmumt

= A2 −B2uB
−1
1u A1 +

(
B2o −B2uB

−1
1u B1o

)
F o
t +B2uB

−1
1u Y

1
t +Bmumt

= A2 −B2uB
−1
1u A1 +

(
B2o −B2uB

−1
1u B1o

) (
A∗o + φ∗ooF

o
t−1 + φ∗o1Y

1
t−1 + u∗ot

)
+B2uB

−1
1u

(
A∗1 + φ∗1oF

o
t−1 + φ∗11Y

1
t−1 + u∗1t

)
+Bmumt

= A2 −B2uB
−1
1u A1 +

(
B2o −B2uB

−1
1u B1o

)
A∗o +B2uB

−1
1u A

∗
1

+
(
B2oφ

∗
oo −B2uB

−1
1u B1oφ

∗
oo +B2uB

−1
1u φ

∗
1o

)
F o
t−1

+
(
B2oφ

∗
o1 −B2uB

−1
1u B1oφ

∗
o1 +B2uB

−1
1u φ

∗
11

)
Y 1
t−1

+
(
B2o −B2uB

−1
1u B1o

)
u∗ot +B2uB

−1
1u u

∗
1t +Bmumt
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Finally, the expression for Y 2
t in terms of lagged macro variables and yields

is:

Y 2
t = A∗2 + φ∗2oF

o
t−1 + φ∗21Y

1
t−1 + u∗2t (2.24)

with

A∗2 = A2 −B2uB
−1
1u A1 +

(
B2o −B2uB

−1
1u B1o

)
A∗o +B2uB

−1
1u A

∗
1 (2.25)

φ∗2o = B2oφ
∗
oo −B2uB

−1
1u B1oφ

∗
oo +B2uB

−1
1u φ

∗
1o

φ∗21 = B2oφ
∗
o1 −B2uB

−1
1u B1oφ

∗
o1 +B2uB

−1
1u φ

∗
11

u∗2t =
(
B2o −B2uB

−1
1u B1o

)
u∗ot +B2uB

−1
1u u

∗
1t +Bmumt

Putting (2.17), (2.19) and (2.24) together with their non-linear restrictions

on the parameters in (2.18), (2.20) and (2.25), we obtain the VAR representation

of the baseline macro finance model:

F o
t = A∗o + φ∗ooF

o
t−1 + φ∗o1Y

1
t−1 + u∗ot (2.26)

Y 1
t = A∗1 + φ∗1oF

o
t−1 + φ∗11Y

1
t−1 + u∗1t

Y 2
t = A∗2 + φ∗2oF

o
t−1 + φ∗21Y

1
t−1 + u∗2t

B. Non-linear restrictions on the variance-covariance matrix

As shown in Appendix A, the error terms for F o
t , Y

0
t and Y 1

t in the VAR

representation of the baseline macro finance model (2.26) are:

u∗ot = Σou
o
t (2.27)

u∗1t = B1ou
∗
ot +B1uu

u
t = B1oΣou

o
t +B1uu

u
t

u∗2t =
(
B2o −B2uB

−1
1u B1o

)
u∗ot +B2uB

−1
1u u

∗
1t +Bmumt

=
(
B2o −B2uB

−1
1u B1o

)
u∗ot +B2uB

−1
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Individual components of the variance-covariance matrix in (2.28) take the

following forms:
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Tables

Table 2.1: Likelihood ratio tests

Unrestricted VAR VAR
Restricted macro macrolag
Ratio 898 1305
d.f. 153 131
p-value 0.00% 0.00%
Simulated 5% critical value 481 512

This table conducts the likelihood ratio tests. The unrestricted model is the VAR

and the restricted models are the macro finance models from Ang and Piazzesi

(2003). Row 3 through row 5 performs the conventional likelihood ratio tests:

Ratio = −2 (lnLR − lnLU), d.f. = the number of restrictions. The restriction can

be rejected, if the p-value is smaller than or equal to the significance level. The

last row performs the simulation-based likelihood ratio tests adjusted for the small

sample bias, with the simulated critical values at 5% significance level shown in

the last row of the table. If the actual ratio is greater than the critical value, I can

reject the restriction. The VAR denotes that five yields and two macro variables

regress over 12 lags of macro variables and 1 lag of yields, and the dependence is

one way, which means only the yields depend on the lagged macro variables and

the reverse is not true.
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Table 2.2: AIC and BIC

# of para LLF AIC BIC
VAR 226 21137 -41822 -40838
macro 73 20688 -41230 -40912
macrolag 95 20470 -40750 -40336

This table describes the AIC and BIC of one VAR and two macro finance models.

The information criteria are defined as AIC = 2K − 2 ln(L), BIC = K ln (T ) −
2 ln(L). A smaller AIC or BIC means a better model. The macro finance models

are the exact ones from Ang and Piazzesi (2003). The VAR denotes that five yields

and two macro variables regress over 12 lags of macro variables and 1 lag of yields,

and the dependence is one way, which means only the yields depend on the lagged

macro variables and the reverse is not true.

Table 2.3: RMSE

1mth 3mth 12mth 36mth 60mth
VAR 0.2730 0.1802 0.1999 0.2507 0.2628
macro 0.3074 0.2013 0.1799 0.2405 0.2477
macrolag 0.3293 0.2721 0.2188 0.2599 0.2519

This table compares the VAR and Ang and Piazzesi (2003)’s macro finance models

using RMSE. A smaller RMSE indicates a better model, and the best models for

different maturities are indicated in bold. The procedure for examining the out-of-

sample forecasts over the last 60 months of the sample is as follows. At each date

t, I estimate the models using data up to and including time t, and then forecast

the next month’s yields at time t+1, and I do so for all the five yields available in

data. The VAR denotes that five yields and two macro variables regress over 12

lags of macro variables and 1 lag of yields, and the dependence is one way, which

means only the yields depend on the lagged macro variables and the reverse is not

true.
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Table 2.4: likelihood ratio tests

Unrestricted VAR(dep,12) VAR(dep,12) VAR(dep,1)
Restricted MF(dep,12,lag) MF(dep,12,macro) MF(dep,1,macro)
Ratio 367 376 392
d.f. 40 62 18
p-value 0.00% 0.00% 0.00%
Unrestricted VAR(ind,12) VAR(ind,12) VAR(ind,1)
Restricted MF(ind,12,lag) MF(ind,12,macro) MF(ind,1,macro)
Ratio 1159 701 532
d.f. 121 143 33
p-value 0.00% 0.00% 0.00

This table conducts the likelihood ratio tests between the macro finance and VAR

models. The ratio is defined as Ratio = −2 (lnLR − lnLU), and the degree of

freedom (d.f.) is the number of the restrictions. Accept the restriction if the p-

value exceeds the significance level, otherwise, the unrestricted version is preferred.

Table 2.5: AIC ranking

Model dep p npara LLF AIC BIC
VAR(ind,12) VAR ind 12 226 16286 -32121 -31195
VAR(dep,1) VAR dep 1 84 16137 -32107 -31762
VAR(dep,12) VAR dep 12 238 16291 -32105 -31131
VAR(ind,1) VAR ind 1 72 16124 -32104 -31809
MF(dep,12,macro) MF dep 12 176 16103 -31854 -31133
MF(dep,12,lag) MF dep 12 198 16107 -31819 -31008
MF(dep,1,macro) MF dep 1 66 15941 -31751 -31480
MF(ind,12,macro) MF ind 12 83 15936 -31705 -31365
MF(ind,1,macro) MF ind 1 39 15858 -31638 -31478
MF(ind,12,lag) MF ind 12 105 15707 -31204 -30774

This table ranks the VAR and macro finance models based on the AIC, and the

ranking preference is in a descending order throughout the table. The information

criteria are defined as AIC = 2K − 2 ln(L), BIC = K ln (T )− 2 ln(L). A smaller

AIC or BIC means a better model.
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Table 2.6: BIC ranking

Model dep p npara LLF AIC BIC
VAR(ind,1) VAR ind 1 72 16124 -32104 -31809
VAR(dep,1) VAR dep 1 84 16137 -32107 -31762
MF(dep,1,macro) MF dep 1 66 15941 -31751 -31480
MF(ind,1,macro) MF ind 1 39 15858 -31638 -31478
MF(ind,12,macro) MF ind 12 83 15936 -31705 -31365
VAR(ind,12) VAR ind 12 226 16286 -32121 -31195
MF(dep,12,macro) MF dep 12 176 16103 -31854 -31133
VAR(dep,12) VAR dep 12 238 16291 -32105 -31131
MF(dep,12,lag) MF dep 12 198 16107 -31819 -31008
MF(ind,12,lag) MF ind 12 105 15707 -31204 -30774

This table ranks the VAR and macro finance models based on the BIC, and the

ranking preference is in a descending order throughout the table. The information

criteria are defined as AIC = 2K − 2 ln(L), BIC = K ln (T )− 2 ln(L). A smaller

AIC or BIC means a better model.

Table 2.7: RMSE

Models 1mth 3mth 12mth 36mth 60mth
VAR(dep,12) 0.3361 0.3100 0.2955 0.2603 0.2424
VAR(dep,1) 0.2795 0.2367 0.2548 0.2490 0.2300
VAR(ind,12) 0.3338 0.3089 0.2944 0.2601 0.2420
VAR(ind,1) 0.2640 0.2248 0.2392 0.2431 0.2262
MF(dep,12,lag) 0.3251 0.2757 0.2807 0.2689 0.2385
MF(dep,12,macro) 0.3255 0.2798 0.2817 0.2667 0.2364
MF(dep,1,macro) 0.2814 0.2339 0.2451 0.2664 0.2358
MF(ind,12,lag) 0.5245 0.4009 0.2250 0.2817 0.2328
MF(ind,12,macro) 0.3454 0.2492 0.2142 0.2571 0.2343
MF(ind,1,macro) 0.2794 0.2363 0.2016 0.2559 0.2339

This table compares various VAR and macro finance models using the RMSE. A

smaller RMSE indicates a better model, and the best models for different matu-

rities are indicated in bold. The procedure for examining out-of-sample forecasts

over the last 44 months of the sample is as follows. At each date t, I estimate the

models using data up to and including time t, and then forecast the next month’s

yields at time t+1, and I do so for all the five yields available in data.
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Table 2.8: LLF ranking

yields in Y 1
t LLF

3,12,60 21035
3,36,60 20981
1,12,60 20959
3,12,36 20904
1,36,60 20895
12,36,60 20893
1,12,36 20838
1,3,60 20792
1,3,36 20697
1,3,12 20419

This table ranks the LLFs of the VAR models with different maturities included in

Y 1
t , and the ranking preference is in a descending order throughout the table. The

first column indicates that for each model, which three yields are priced exactly.

For all the VAR models, five yields and two macro variables regress over 12 lags of

macro variables and 1 lag of yields, and the dependence is one way, which means

only the yields depend on the lagged macro variables and the reverse is not true.
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Table 2.9: RMSE

Yields in Y 1
t 1mth 3mth 12mth 36mth 60mth

3,12,60 0.2758 0.1802 0.2010 0.2572 0.2601
3,36,60 0.2855 0.1800 0.2075 0.2520 0.2643
1,12,60 0.3067 0.2203 0.2054 0.2600 0.2613
3,12,36 0.2739 0.1802 0.1987 0.2499 0.2846
1,36,60 0.3060 0.2530 0.2307 0.2522 0.2645
12,36,60 0.4447 0.2943 0.2072 0.2551 0.2664
1,12,36 0.3069 0.2194 0.2037 0.2519 0.2857
1,3,60 0.2767 0.1797 0.2074 0.2573 0.2663
1,3,36 0.2756 0.1800 0.2001 0.2565 0.2908
1,3,12 0.2720 0.1796 0.2114 0.3442 0.3931

This table compares the VAR models with different maturities included in Y 1
t using

RMSE. A smaller RMSE indicates a better model, and the best models for different

maturities are indicated in bold. The procedure for examining the out-of-sample

forecasts over the last 60 months of the sample is as follows. At each date t, I

estimate the models using data up to and including time t, and then forecast the

next month’s yields at time t+1, and I do so for all the five yields available in data.

For all the VAR models, five yields and two macro variables regress over 12 lags of

macro variables and 1 lag of yields, and the dependence is one way, which means

only the yields depend on the lagged macro variables and the reverse is not true.
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Table 2.10: log likelihood comparison

Yields in Y 1
t VAR(dep,12) VAR(dep,1) VAR(ind,12) VAR(ind,1)

3,12,60 16222 16051 16219 16042
3,36,60 16189 16030 16187 16020
1,12,60 16151 15982 16149 15973
3,12,36 16130 15949 16127 15941
1,36,60 16125 15969 16124 15959
12,36,60 16103 15952 16100 15941
1,12,36 16066 15888 16063 15880
1,3,60 16015 15836 16013 15827
1,3,36 15952 15769 15951 15761
1,3,12 15779 15584 15778 15579

The VAR models with different maturities included in Y 1
t , and it ranks the models

based on the order in Table 2.8. The first column indicates that for each model,

which three yields are priced exactly. Four different VAR specifications along the

first two dimensions, V AR(dep/ind, 1/12) , are considered.
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Table 2.11: RMSE

Yields in Y 1
t 1mth 3mth 12mth 36mth 60mth

12,36,60 0.3636 0.3023 0.2770 0.2571 0.2465
3,36,60 0.3212 0.3056 0.3144 0.2609 0.2528
3,12,60 0.3302 0.3194 0.3160 0.2820 0.2500
3,12,36 0.3317 0.3202 0.3289 0.2609 0.2426
1,36,60 0.3789 0.3516 0.3371 0.2611 0.2524
1,12,60 0.3555 0.3145 0.2994 0.2780 0.2516
1,12,36 0.3543 0.3112 0.3065 0.2591 0.2549
1,3,60 0.3200 0.3014 0.4348 0.2896 0.2540
1,3,36 0.3211 0.2936 0.3872 0.2569 0.3787
1,3,12 0.3269 0.2779 0.2460 0.7329 1.0482

This table compares the VAR models with different maturities included in Y 1
t using

RMSE. A smaller RMSE indicates a better model, and the best models for different

maturities are indicated in bold. The procedure for examining the out-of-sample

forecasts over the last 60 months of the sample is as follows. At each date t, I

estimate the models using data up to and including time t, and then forecast the

next month’s yields at time t+1, and I do so for all the five yields available in data.

For all the VAR models, five yields and two macro variables regress over 12 lags of

macro variables and 1 lag of yields, and the dependence is one way, which means

only the yields depend on the lagged macro variables and the reverse is not true.

The VAR specification along the first two dimensions is V AR(dep, 12).
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Table 2.12: AIC and BIC

# of para LLF AIC BIC
VAR 226 21137 -41822 -40838
macro 73 20684 -41221 -40903
macrolag 95 20511 -40831 -40418

This table describes the AIC and BIC of one VAR and two macro finance models.

The information criteria are defined as AIC = 2K − 2 ln(L), BIC = K ln (T ) −
2 ln(L). A smaller AIC or BIC means a better model. The macro finance models

are the same as the ones from Ang and Piazzesi (2003) except Y 1
t = (y3t , y

12
t , y

60
t )
′
.

The VAR denotes that five yields and two macro variables regress over 12 lags of

macro variables and 1 lag of yields, and the dependence is one way, which means

only the yields depend on the lagged macro variables and the reverse is not true.

Table 2.13: RMSE

1mth 3mth 12mth 36mth 60mth
VAR 0.2730 0.1802 0.1999 0.2507 0.2628
macro 0.3074 0.1999 0.1719 0.2401 0.2475
macrolag 0.4755 0.2729 0.2118 0.2501 0.2512

This table compares the symmetric VAR and Ang and Piazzesi (2003)’s macro

finance models with Y 1
t = (y3t , y

12
t , y

60
t ) using RMSE. A smaller RMSE indicates a

better model, and the best models for different maturities are indicated in bold.

The procedure for examining the out-of-sample forecasts over the last 60 months

of the sample is as follows. At each date t, I estimate the models using data up to

and including time t, and then forecast the next month’s yields at time t+1, and

I do so for all the five yields available in data. The VAR denotes that five yields

and two macro variables regress over 12 lags of macro variables and 1 lag of yields,

and the dependence is one way, which means only the yields depend on the lagged

macro variables and the reverse is not true.



Chapter 3

The Effectiveness of Alternative

Monetary Policy Tools in a Zero

Lower Bound Environment

Abstract

This paper reviews alternative options for monetary policy when the short-

term interest rate is at the zero lower bound and develops new empirical estimates

of the effects of the maturity structure of publicly held debt on the term structure

of interest rates. We use a model of risk-averse arbitrageurs to develop measures

of how the maturity structure of debt held by the public might affect the pricing

of level, slope and curvature term-structure risk. We find these Treasury factors

historically were quite helpful for predicting both yields and excess returns over

1990-2007. The historical correlations are consistent with the claim that if in

December of 2006, the Fed were to have sold off all its Treasury holdings of less

than one-year maturity (about $400 billion) and use the proceeds to retire Treasury

debt from the long end, this might have resulted in a 14-basis-point drop in the

10-year rate and an 11-basis-point increase in the 6-month rate. We also develop

a description of how the dynamic behavior of the term structure of interest rates

changed after hitting the zero lower bound in 2009. Our estimates imply that

at the zero lower bound, such a maturity swap would have the same effects as

61
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buying $400 billion in long-term maturities outright with newly created reserves,

and could reduce the 10-year rate by 13 basis points without raising short-term

yields.

3.1 Introduction.

The key instrument of monetary policy is the interest rate on overnight loans

between banks, which in normal times is quite sensitive to the quantity of excess

reserves. However, since December 2008, the Fed’s target for the fed funds rate

has been essentially zero. The level of reserves, which had typically been around

$10 billion prior to the financial crisis, has been maintained in the neighborhood

of a trillion dollars. Trying to lower the short-term interest rate or increase the

volume of reserves any further offers little promise of boosting aggregate demand.

With the Fed’s traditional tools incapable of providing further stimulus to the

economy, it is of considerable interest to ask what other options might be available

to the central bank.

Our study begins by briefly reviewing some of the available options and the

Fed’s experience with using them. That analysis leads us to focus on one strategy

in particular, which is to try to influence the term structure of interest rates through

the maturity structure of securities acquired by open-market purchases.

A number of previous studies have reported evidence that the relative sup-

plies of Treasury securities of different maturities are correlated with yield spreads;

see for example Roley (1982), Bernanke et al. (2004), Kuttner (2006), Gagnon,

Raskin, Remache and Sack (2010), Doh (2010), Greenwood and Vayanos (2010),

D’Amico and King (2010), and Swanson (2011).1 But using those correlations

to infer potential effects of nonstandard open-market operations raises questions

from the perspective of both economic theory, in terms of the proposed mechanism

whereby the effects could possibly be generated, as well as from the perspective

of econometric methodology, in terms of whether it is reasonable to place a causal

interpretation on the correlations. Our paper makes contributions in both areas.

1Other closely related research includes Krishnamurthy and Vissing-Jorgensen (2010),
Baumeister and Benati (2010), Kitchen and Chinn (2010), and Hancock and Passmore (2011).
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Our theoretical motivation follows Vayanos and Vila (2009), who developed

a promising framework for understanding how the supplies of assets of different

maturities might influence their respective yields. Vayanos and Vila postulate the

existence of two groups of investors. The willingness of preferred-habitat investors

to buy securities of maturity n is presumed to be an increasing function of the yield

on that asset. A second group, known as arbitrageurs, is willing to hold any assets

based on a simple tradeoff between expected return and risk. The behavior of

the second group generates no-arbitrage conditions relating the yields on different

securities.

Our empirical analysis follows Doh (2010) and Greenwood and Vayanos

(2010) in using the Vayanos and Vila (2009) framework to try to quantify the

ability of nonstandard open-market operations to change the yields on assets of

different maturities. We differ from these earlier researchers in making more use

of the details of the framework to inform the empirical estimates, developing a

discrete-time version of the model and relating it directly to maximum-likelihood

estimates of the dynamic behavior of the term structure of interest rates. We

develop specific historical measures of how the maturity structure of debt issued to

the public might be expected to affect the pricing of level, slope, and curvature risk

according to this framework, and show that our inferred Treasury risk factors were

historically quite helpful in predicting yields and excess returns. For example, we

find that over 1990-2007, the excess one-year return from holding 2-year Treasuries

over 1-year Treasuries can be predicted with anR2 of 71% on the basis of traditional

term-structure factors along with our proposed Treasury risk factors.

One of the challenges for estimating potential policy effects on the basis

of historical correlations is the problem of endogeneity, in that the correlation

between bond supplies and interest rates may reflect the response of the Treasury

or the Fed to interest rates. We try to minimize this endogeneity bias by looking

at forecasting rather than contemporaneous regressions and including the current

level, slope, and curvature as additional explanatory variables in the regression.

Our impact estimates are based on the incremental contribution of the Treasury

maturity structure to a one-month-ahead forecast of interest rates beyond the
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information already contained in the current term structure, so that insofar as the

maturities of debt issued by the Treasury or purchased by the Fed are responding

to current interest rates, that response could not account for our estimated effects.

Our dynamic formulation also avoids the potential spurious regression problem

that could arise in simple contemporaneous regressions that make no allowance for

near-unit-root dynamics.

We use our estimated forecasting relations to analyze the outcome of the

following policy change. Suppose the Federal Reserve were to sell off all of its

holdings of Treasury securities of less than one-year duration, and use the proceeds

to buy up all the outstanding Treasury debt it could at the long end of the yield

curve. For example, in 2006 this would have involved a $400 billion asset swap

that would have retired all Treasury debt of more than 10-years duration. Our

estimates imply that, in an environment not affected by the zero lower bound,

this would have decreased the 10-year yield by 14 basis points and increased the

6-month yield by 11 basis points.

We next develop a framework for analyzing the behavior of interest rates

when the short-term interest rate hits the zero lower bound. Our basic approach

is to postulate that movements in longer-term yields in such a setting are explained

by arbitrageurs’ assumption that the economy will eventually break out of the zero

lower bound, and that, once it does, short-term interest rates would again fluctuate

in response to the same kind of forces as they did historically. We propose a very

parsimonious description in which arbitrageurs assume that, apart from a possible

downward shift in the average level, the post-ZLB dynamics will be the same as

those observed in the pre-ZLB experience. Given an exogenous probability of

exiting the ZLB in any given period, we then develop a no-arbitrage theory of

how the term structure evolves dynamically when at the ZLB. We find this model

provides a reasonable empirical description of the behavior of the term structure

during 2009 and 2010.

We then use this model to revisit the question analyzed for the pre-2007

data. We find that, at the ZLB, an asset swap could continue to depress long-

term yields by the same amount that it would in normal times, without producing
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any rise in short-term yields. Thus, whereas swapping short-term for long-term

assets has no consequences for the overall level of interest rates in normal times,

it is an available tool for lowering the overall level at the ZLB. Moreover, since

at the ZLB newly created reserves are essentially equivalent to short-term T-bills,

direct large-scale asset purchases are a feasible tool that the Fed could use to lower

long-term interest rates when at the ZLB.

The plan of the paper is as follows. Section 3.2 reviews alternative mech-

anisms whereby monetary policy might still be able to influence interest rates for

an economy at the ZLB, and explains our reason for focusing in particular on the

possible effects arising through changes in the maturity composition of outstand-

ing debt. Section 3.3 develops a discrete-time version of the Vayanos and Vila

(2009) framework for analyzing the nature of preferred-habitat asset markets and

the pricing of term-structure risk. Section 3.4 provides details of our method for

obtaining maximum-likelihood estimates of parameters, while Section 3.5 reviews

the data set assembled for this study. In Section 3.6 we analyze the effects of

nonstandard open-market operations in an environment of fluctuating short-term

interest rates, while Section 3.7 extends the analysis to an economy in which the

short-term rate is temporarily stuck at some lower bound. We briefly compare

our results with other recent estimates in Section 3.8. Section 3.9 concludes.

3.2 Options for monetary stimulus at the zero

lower bound.

When the short-term interest rate gets all the way to zero, an open-market

purchase of a short-term Treasury security with newly created base money repre-

sents an exchange of essentially equivalent assets. Such an exchange is obviously

incapable of lowering the short-term rate any further, and it’s not clear how the ex-

change could affect any economic magnitude of interest. Eggertsson and Woodford

(2003) describe this as a situation in which the demand for money is completely

satiated. With over a trillion dollars in excess reserves, the United States presently

appears to be well past the satiation point for Federal Reserve deposits.
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Even if the demand for reserve balances is presently satiated, as long as the

situation is not permanent, at some future date the Fed will regain its ability to

influence overnight rates. Thus even at the zero lower bound, Krugman (1998)

and Eggertsson and Woodford (2003) propose that the central bank could mitigate

the current problems by successfully communicating its commitment to reverse any

decreases in the price level, embracing the higher future inflation rates necessary

to achieve that. Although such a strategy holds appeal in theory, in practice it

appears to be quite hard to achieve. For example, the top panel of Figure 3.1

plots the 5-year expected inflation rate implied by the difference between nominal

and inflation-indexed U.S. Treasuries. This plunged in the fall of 2008, and has

yet to recover to its pre-crisis levels. Five-year expected inflation has also declined

according to the average response to the Survey of Professional Forecasters (bottom

panel). The failure of the Fed to follow the theoretical policy prescription of trying

to increase inflationary expectations in response to the crisis is not so much an

indictment of the Fed as it is a clear demonstration that these expectations are

far more difficult to control in practice than simple theoretical treatments might

sometimes suppose.

If buying T-bills with newly created reserves has no effect, the Fed could

buy some other assets which clearly are not perfect substitutes for cash. One ob-

vious class of assets to consider purchasing would be those denominated in foreign

currencies. If the Fed announced a commitment to buy such assets without limit

until the dollar depreciated, it is hard to imagine real-world market forces that

could prevent the goal from being achieved. In terms of theoretical models, the

ability of the Fed to make good on such a commitment could arise from a portfolio

balance effect (McCallum (2000)), or the announcement could serve as an expec-

tations coordinating mechanism (Svensson (2001)). In either case, it certainly

seems one practical tool for preventing deflation even if no others are available.

If the private sector were indeed indifferent between holding freely cre-

ated reserves and long-term Treasury debt, one wonders why the Federal Reserve

wouldn’t want to buy up the entire stock of outstanding public debt, thereby elimi-

nating the need for future taxes to service that debt. A related question is why the
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government would choose to use taxes rather than money creation as the means

to pay for any of its current or projected future expenditures. Auerbach and

Obstfeld (2005) explore the possible expansionary effects resulting from reducing

the distortionary effect of taxes.

In the actual U.S. experience over 2008-2010, the Federal Reserve doubled

the size of its balance sheet, buying two broad classes of assets (see Figure 3.2). In

the first year of the crisis, the Fed was aggressively extending loans through a vari-

ety of new facilities such as the Term Auction Facility (essentially a term discount

window open to all depository institutions on an auction basis), foreign currency

swaps (used to assist foreign central banks in lending dollars), and the Commercial

Paper Funding Facility (which helped provide loans for issuers of commercial pa-

per). These measures could matter both in terms of making these markets more

liquid (in the sense of reducing bid-ask spreads) as well as potentially absorbing

some default risk onto the Fed’s balance sheet. Christensen, Lopez and Rude-

busch (2009), McAndrews, Sarkar and Wang (2008), Taylor and Williams (2009),

Adrian, Kimbrough and Marchioni (2010) and Duygan-Bump, Parkinson, Rosen-

gren, Suarez and Willen (2010) provide empirical assessments of the effectiveness

of such measures.

Beginning in March 2009, these lending facilities began to be unwound and

replaced by the gradual purchase of up to $1.1 trillion in mortgage-backed secu-

rities, along with $160B in agency debt and $300B in new holdings of Treasury

bonds with greater than one year maturity. Although rates on MBS and agency

debt might be argued to include a default premium, with the de facto national-

ization of Fannie and Freddie, it seems most natural to regard the effect of these

purchases as coming from a change in the relative supply of longer-term assets.2

As this has become the most important tool going forward, our analysis in this

paper focuses on the potential of such operations to alter the term structure of

interest rates.

The mechanism by which such asset purchases might have an effect is very

different from that characterizing traditional open-market operations. The Federal

2Hancock and Passmore (2011) nevertheless found evidence that the MBS purchases did lower
the premium on MBS relative to Treasury securities.
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Reserve is the monopoly supplier of reserves held by depository institutions and

currency held by the public, and the supply it creates of these assets unquestionably

has consequences under normal economic conditions. However, when the demand

for such assets is satiated, it is not clear that anything the Fed does could affect the

pricing kernel determining other yields. For example, Eggertsson and Woodford

(2003) elaborate conditions under which an open-market purchase of any asset

whatever would have zero consequences for variables such as real output and the

price level provided that it has no implications for the future conduct of monetary

or fiscal policy. Woodford (2010) notes that if the operations have no affect on the

asset’s state-contingent income stream or on the state-contingent aggregate supply

of goods available for consumption, they should have no effect on the price of the

asset.

Certainly from the perspective of an individual investor, a 10-year Treasury

bond has different risk characteristics from a 6-month T-bill, and these differences

get priced by the market. If an individual investor changes her relative holdings of

these assets, she perceives herself to have a different risk exposure, and perceives

the U.S. Treasury to be the counterparty. By focusing on this aspect of bond

pricing, as our paper does, our answer to the Eggertsson-Woodford critique is

that, if the government changes the maturity structure of its outstanding debt, it

is in fact committing to a different state-contingent path for spending, taxes, or

inflation in order to maintain intertemporal budget balance under the altered debt

structure.

Changing the risk exposure of the holders of government debt appears to be

the key mechanism whereby changes in the maturity structure of government debt

would be able to influence the term structure of interest rates in a class of formal

descriptions of the portfolio-balance effect. We illustrate this point by developing

in the following section a discrete-time version of the framework recently proposed

by Vayanos and Vila (2009). This exercise both clarifies the mechanism whereby

nonstandard open market operations could affect the term structure, and also

suggests particular empirical measures that prove to be helpful for quantifying

plausible sizes for these effects.
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3.3 Preferred-habitat investing and market arbi-

trage.

Vayanos and Vila (2009) propose that the investors we will refer to as

“arbitrageurs” care only about the mean and variance of rt,t+1, the rate of return

between t and t+ 1 on their total portfolio3:

Et(rt,t+1)− (γ/2)Vart(rt,t+1). (3.1)

If y1t denotes the return on a risk-free asset, arbitrageurs will choose port-

folio weights such that for any asset with a risky yield ri,t,t+1,

y1t = Et(ri,t,t+1)− γϑit (3.2)

where ϑit is (1/2) the derivative of total portfolio variance with respect to holdings

of asset i.

Consider a pure-discount n-period bond that is free of default risk, the log

of whose price at date t (denoted pnt) is conjectured to be an affine function of a

vector of J different macroeconomic factors (denoted ft),

pnt = an + b
′
nft. (3.3)

The risk-free one-period rate is a function of the same factors,

y1t = a1 + b′1ft,

where y1t = −p1t, a1 = −a1, and b1 = −b1. Although these bonds have no default

risk, the future pricing factors ft+s are not known with certainty at date t, and so

there is an uncertain one-period holding yield associated with buying the n-period

bond at date t and selling the resulting (n− 1)-period bond at date t+ 1 given by

rn,t,t+1 = exp
(
an−1 + b

′
n−1ft+1 − an − b

′
nft

)
− 1. (3.4)

3Vayanos and Vila (2009) assume that arbitrageurs maximize an objective function that is
quadratic in the change in wealth rather than in the rate of return as here. Although their
specification may have more theoretical appeal, their parameterization would be more difficult
to bring to the data in the manner we propose here for an economy in which there is a trend in
the level of wealth.
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Suppose that the pricing factors follow a VAR(1) process,

ft+1 = c+ ρft + Σut+1 (3.5)

with ut ∼ i.i.d. N(0, IJ), and that the arbitrageurs hold a fraction znt of their

portfolio in the bond of maturity n, so that the return on their portfolio is given

by

rt,t+1 =
N∑
n=1

zntrn,t,t+1.

Then, as we detail in Appendix A, an approximation to the portfolio optimization

problem results in the following implication of (3.2) for each maturity n:

−a1− b
′
1ft = an−1 + b

′
n−1(c+ ρft) + (1/2)b

′
n−1ΣΣ′bn−1− an− b

′
nft− b

′
n−1Σλt (3.6)

λt = γΣ′dt (3.7)

dt =
N∑
n=2

zntbn−1. (3.8)

If the number of maturities N is greater than the number of factors J ,

equation (3.6) implies a set of restrictions that bond prices must satisfy as a result

of the actions of arbitrageurs, who will price factor j risk the same way no matter

which bonds it may be reflected in.

Vayanos and Vila close the model by postulating that other credit market

participants may have a particular preference for bonds of a given maturity. They

present examples in which the borrowing demand from these participants for bonds

of maturity n, denoted ξnt, is a decreasing affine function of the yield ynt. In our

application, we will express these demands relative to Wt, the net wealth of the

arbitrageurs:

ξnt/Wt = ζnt − αnynt.

Thus ζnt reflects the overall level of preferred-habitat borrowing of bonds of ma-

turity n and αn the sensitivity of this demand to the interest rate. Equilibrium



71

then requires that the net borrowing by the preferred-habitat sector equals the net

lending from the arbitrage sector:

znt = ζnt − αnynt. (3.9)

Suppose that ζnt is also an affine function of ft. We show in Appendix B that in

equilibrium,

λt = λ+ Λft. (3.10)

Substituting (3.10) into (3.6), we see that

b
′
n = b

′
n−1ρ

Q − b′1 (3.11)

ρQ = ρ− ΣΛ (3.12)

an = an−1 + b
′
n−1c

Q + (1/2)b
′
n−1ΣΣ′bn−1 − a1 (3.13)

cQ = c− Σλ. (3.14)

3.4 Estimation of Affine-Term-Structure Mod-

els.

Equations (3.11) through (3.14) will be recognized as the no-arbitrage con-

ditions for a standard affine-term-structure model (e.g., equations (17) in Ang and

Piazzesi, 2003). Thus the Vayanos-Vila formulation can be viewed as one expla-

nation for the origins of affine prices of risk. In this section we describe how we

estimated parameters for this class of models; for further details see Appendix C.

Let ynt denote the yield and pnt the log price on an n-period pure discount

bond, which are related by ynt = −n−1pnt. From (3.3),

ynt = an + b′nft (3.15)
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with an = −an/n and bn = −bn/n. In the models we estimate, the factors ft are

represented by a (J × 1) vector of observed variables, whose dynamic parameters

c and ρ can be obtained from OLS estimation of (3.5). We suppose that we have

available a set of M different observed yields Y2t = (yn1,t, yn2,t, ..., ynM ,t)
′ whose

values differ from the theoretical prediction (3.15) by measurement error

Y2t = A+Bft + Σeu
e
t (3.16)

with uet ∼ N(0, IM). We assume that the measurement error uet is independent

of the factor innovation ut in (3.5), but otherwise the structure of Σe does not

affect the estimation procedure– full-information maximum-likelihood estimates of

all parameters other than Σe will be numerically identical regardless of whether

the matrix Σe is assumed to be diagonal.

Our estimates come from the minimum-chi-square estimation algorithm

proposed by Hamilton and Wu (2010b) which allows OLS to do the work of max-

imizing the joint likelihood function and uses the theoretical model to translate

those OLS estimates back into the asset-pricing parameters of interest. Note that

the structure of (3.5) and (3.16) implies that OLS equation by equation is the most

efficient procedure for estimation of these reduced-form parameters. In the special

case of a just-identified model, in which the number of observed yields M is one

more than the number of factors J, there is an exact solution for the parameters

of interest in terms of these OLS coefficients, and the resulting estimates are nu-

merically identical to those that would be obtained by maximization of the joint

likelihood function f(Y2T , fT , Y2,T−1, fT−1, ..., Y21, f1|Y20, f0) with respect to the pa-

rameters of the affine-term-structure model, namely, c, ρ,Σ, cQ, ρQ, b1, a1 and Σe.

Among other advantages, this approach allows us to recognize instantly

whether estimates represent a local rather than a global maximum to the likelihood

function, and makes it feasible to calculate small-sample confidence intervals for

any function of the parameters of interest, by simulating a thousand different

samples for{ft, Y2t}Tt=1 from a postulated structure and calculating the estimates

that result from the proposed procedure on each separate artificial sample.



73

3.5 Data.

Our baseline estimates use weekly observations for ynt, based on constant-

maturity Treasury yields as of Friday or the last business day of the week as

reported in the FRED database of the Federal Reserve Bank of St. Louis.4 We

supplement this with monthly analysis of holding yields on securities of nonstan-

dard maturities, for which we construct constant-maturity yields from the daily

term-structure parameterization of Gürkaynak, Sack and Wright (2007) as of the

last day of the month.5

We also constructed estimates of the face value of outstanding U.S. Treasury

debt at each weekly maturity as of the end of each month between January 1990

and December 2009 as detailed in Appendix E. For purposes of the pure theory

sketched above, we would want to interpret each semiannual coupon on a given

bond as its own separate zero-coupon security (paying $C at some time t + s)

and construct the market value of the bond as the sum of the market value of

its individual components, each coupon viewed as a separate pure-discount bond.

However, converting the face value into a market value by this device would be quite

unsatisfactory for our larger purpose of identifying exogenous sources of variation

in the supply of outstanding securities at different maturities. The true market

value of a given security would be highly endogenous with respect to changes in

interest rates, whereas the face value, by construction, is not.6 Note moreover

that, when issued, the face value of the original coupon bond should be close to

the market value of the sum of its individual stripped components. For these

reasons, we regard the face value as reported by the Treasury and the Fed to

4The 30-year yields are unavailable for 2002/2/19 to 2006/2/8. Over this interval we used
instead the 20-year rate minus 0.21, which is the amount by which the 20-year rate exceeded the
30-year rate both immediately before and after the gap.

5Specifically, we calculated ynt from their equations (6) and (9) as

ynt = β0t + n−1β1tτ1t[1− exp(−n/τ1t)] + β2tτ1t{1− [1 + (n/τ1t)] exp(−n/τ1t)}
+β3tτ2t{1− [1 + (n/τ2t)] exp(−n/τ2t)}

using daily values for the parameters {β0t, β1t, β2t, τ1t, τ2t} downloaded from
http://www.federalreserve.gov/econresdata/researchdata.htm.

6Greenwood and Vayanos (2010) deal with this issue by stripping coupons off and converting
from face value to present value using the historical average short rate.
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be the better measures to use for our purposes, and simply use the number of

remaining weeks to maturity on any given series as the value for n.

We separately constructed rough estimates of how much of the security of

each maturity was held by the Federal Reserve, as detailed in Appendix E. The

resulting data structures for outstanding Treasury debt and Fed holdings take the

form of (240 × 1577) matrices, with rows corresponding to months (ranging from

January 31, 1990 to December 31, 2009) and columns corresponding to maturity

in weeks up to 30 years. Figure 3.3 displays the information from the December

31, 2006 rows of these two matrices. Figure 3.4 provides a sense of some of the

time-series variation, plotting the average maturity of debt held by the public for

each month.7 Average maturity dropped temporarily in the mid-1990s and began

a more significant and sustained decrease after 2001. Average maturity dropped

sharply between September 2007 and October 2008, but has since reverted back

to September 2007 levels.

3.6 The term structure of interest rates prior to

the financial crisis.

In our baseline specification, we took the J = 3 observed factors to be the

deviations from the sample mean of the level, slope, and curvature of the term

structure implied by the 6-month, 2-year, and 10-year Treasuries8, sampled weekly

from January 1990 through the end of July, 2007. These yields and the 3 implied

factors are plotted in Figure 3.5. The level factor trended down over this period,

with pronounced dips after the recessions of 1990-91 and 2001. During these

episodes, the term structure also sloped up more than usual and the curvature

increased as the 2-year yield fell away from the 10-year. The parameters c, ρ

and Σ reported in Table 3.1 were estimated by OLS regressions of each factor on

a constant and lagged values of the other three factors. We chose M = 4 other

7The graph plots
∑N
n=1 nznt for each t.

8That is, if maturities were measured in weeks, prior to demeaning we would have f1t =
(1/3)(y26,t + y104,t + y520,t), f2t = y520,t − y26,t, and f3t = y520,t − 2y104,t + y26,t.
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yields9 (the 3-month, 1-year, 5-year, and 30-year) in the vector Y2t in order to

estimate the parameters cQ, ρQ, a1, b1 and Σe from equation (3.16). We measured

ft in annual percentage points to keep reporting units natural and measured ynt

in weekly discount units so that the asset-pricing recursions all hold as written;

for example, a 5.2% continuously compounded annual rate would correspond to

f1t = 5.2 and ynt = 0.001.

The model described in Section 3.3 implies that an objective forecast (some-

times referred to as the P -measure expectation) of the 3 factors is given by

EP
t (ft+1) = c+ ρft.

However, as a result of risk aversion, arbitrageurs value assets the way a risk-neutral

investor would if that investor believed that the forecast was instead characterized

by the Q-measure expectation

EQ
t (ft+1) = cQ + ρQft.

The risk premium is the difference between these two forecasts,

EP
t (ft+1)− EQ

t (ft+1) = Σλ+ ΣΛft

= Σλt.

9Note that this approach does not make full use of all the available information, in that we
do not impose any connection between the model-implied value for

y520,t − y26,t = a520 − a26 + b′520ft − b′26ft

and the observed value of f2t itself. However, the smooth structure of the ATSM causes these
restrictions to be approximately satisfied even without imposing them, that is, the estimates
reported below are characterized by b̂26

b̂104
b̂520

 ≈
 (1/3) (1/3) (1/3)
−1 0 1
1 −2 1

−1 =

 1 −(1/2) (1/6)
1 0 −(1/3)
1 (1/2) (1/6)

 .
It is possible instead to apply the minimum-chi-square algorithm to a system imposing restrictions
such as the above equation directly. The effect of adding this restriction (along with the analogous
expressions for level and curvature) is to fix the values of ρQ and b1 up to the eigenvalues of ρQ,
which eigenvalues are then estimated from (3.16). We applied this approach to several of the
systems examined below and obtained almost identical results to those from the simpler approach
that ignores these restrictions. To minimize the computational and expositional burden, we only
report here the estimates from the unrestricted version of the model.
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At the beginning of the sample, investors behaved as if they expected next week’s

level of interest rates to be about 3 basis points higher (at an annual rate) than

an objective forecast would imply, though this risk premium had mostly vanished

by the end of the sample. Throughout the sample, arbitrageurs acted as if they

expected the slope to be flatter than it usually turned out to be, and often expected

the 10-year-2-year spread to move closer to the 2-year-6-month spread.

We next consider how the term-structure risk factors would be priced ac-

cording to the Vayanos-Vila framework under the following special case. Suppose

that (1) the preferred-habitat sector consisted solely of the U.S. Treasury and Fed-

eral Reserve, (2) the arbitrageurs comprise the entire private sector, and (3) U.S.

Treasury debt is the sole asset held by arbitrageurs. These are obviously extreme

assumptions, but they have the benefit of implying a clear answer to how changes

in the maturity structure of outstanding Treasury debt would influence the price of

risk in one highly stylized case. Under these conditions, the arbitrageurs’ portfolio

weights znt could be measured directly from the ratio of debt held by the public

of maturity n to the total outstanding publicly held debt at that date. From

equations (3.7) and (3.8), we would then predict that Σλt = γΣΣ′
∑N

n=2 zntbn−1.

Define

qt = 100ΣΣ′
N∑
n=2

zntbn−1 (3.17)

where a value of γ = 100 was assumed in order to bring the series roughly on the

same scale as Σλt. This series for qt was calculated with the values bn calculated

from equation (3.11) for ρQ, and b1 reported in Table 3.1. The values for the

3 elements of qt are highly correlated, though as we shall see shortly, there is

statistically useful information in the difference between them.

If the strong assumptions detailed above were literally true, then the vector

qt would be proportional to the corresponding series plotted in Figure 3.5, and in-

deed the level, slope, and curvature of the term structure could be described solely

in terms of changes in the maturity composition of the public debt as summarized

by these three factors. Obviously the assumptions do not hold, and the maturity

composition of outstanding Treasury debt is just one of many factors potentially

contributing to interest rate moves. However, it is interesting to look at what
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connections there may be in the data between qt and pricing of interest-rate risk.

Before doing so, we emphasize that although the above theory suggests that qt

might be related to the behavior of interest rates, in terms of how the series is

constructed mechanically from the data, the time-series variation in qt is driven

solely by changes in the composition of Treasury debt znt and not at all by changes

in interest rates. We accordingly propose the vector qt as a possible 3-dimensional

summary statistic of how the maturity composition of Treasury debt changes over

time, where the simple theory sketched above suggests that this might be a sum-

mary statistic of interest for purposes of analyzing changes over time in the term

structure of interest rates.

We begin by examining the ability to predict excess holding yields for bonds

of different maturities. Let pmt denote the log price of a pure-discount m-month

bond purchased on the last day of month t.10 The k-month holding yield for the

bond (quoted at an annual rate) is (12/k)(pm−k,t+k − pmt). This compares with

the holding yield for a k-month bond of (12/k)(p0,t+k − pkt) = (12/k)(−pkt). Let

hmkt denote the excess holding yield for an m-month relative to a k-month bond:

hmkt = (12/k)(pm−k,t+k − pmt + pkt).

We explored regressions to predict these holding yields on the basis of information

available at date t:

hmkt = cmk + β′mkft + γ′mkxt + umkt. (3.18)

If investors were risk-neutral, all the coefficients in (3.18) would be zero. Our

finding of nonzero elements for λ and Λ in Table 3.1 (and a huge literature before

us) suggests nonzero values for cmk and βmk, though if the market pricing of risk

were fully captured by the 3-factor affine-term-structure model, no other variables

xt should enter statistically significantly.11

10We inferred these prices from the daily term-structure summaries of Gürkaynak et al. (2007).
11Although unkt is uncorrelated with the regressors in (3.18), it is not independent of the

regressors, and thus OLS is subject to the small-sample problems highlighted by Stambaugh
(1999). Moreover, given that risk-neutrality does not hold, both the left-hand and right-hand
variables in (3.18) are highly serially correlated, raising potential spurious regression concerns if
these are near-unit-root processes.
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Table 3.2 reports the results from OLS estimation of (3.18), giving the R2

of the regression and Newey-West tests of the hypothesis that γmk or subsets of

γmk are zero for various specifications of xt.
12 The first row reproduces the well-

known result that the traditional level, slope, and curvature factors ft can predict

a significant amount of the excess holding yield on assets of assorted maturities,

with for example an R2 of 0.33 in the case of predicting the excess returns from

holding a 2-year bond for one year. The second row adds the average maturity of

outstanding debt,

zAt =
N∑
n=1

nznt,

which was one of the summary statistics examined by Greenwood and Vayanos

(2010),13 but which we find in our sample usually does not have statistically sig-

nificant additional predictive power beyond that contained in ft. On the other

hand, the other measure they propose, the fraction of outstanding debt of more

than 10-year maturity,

zLt =
N∑

n=521

znt,

does statistically significantly predict excess returns.

One could consider various other linear combinations of {znt}Nn=1 as possible

predictors, such as the first three principal components. We find in the fourth

row of Table 3.2 that these are helpful for forecasting the holding returns on short-

maturity assets, but are generally inferior to zAt or zLt .

The theory sketched above suggests three particular linear combinations of

{znt}Nn=1 that should matter for term premia, namely the three elements of the

vector qt in (3.17). The sixth row of Table 3.2 shows that these turn out to be

incredibly useful for predicting holding returns, with an R2 as high as 0.71 in the

12Note that even though the excess holding yield would follow an MA(k − 1) process under
the null hypothesis of risk neutrality, one would still need to let the Newey-West lag parameter
go to infinity as the sample size grows in order to get a consistent estimate. The Newey-West
approach is helpful under the alternative hypothesis of a possibly more complex serial correlation,
and generates a positive-definite variance-covariance matrix by construction. We also performed
these calculations using Hansen-Hodrick (1980) standard errors based on k − 1 lags. These
produced the same results except for one case in which the Hansen-Hodrick standard error was
negative.

13Greenwood and Vayanos (2010) use duration rather than maturity.
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case of predicting the 2-over-1 excess return. The contribution of qt is statistically

significant for every maturity, even if the regression already includes both ft and

the first three principal components of {znt}Nn=1.

Cochrane and Piazzesi (2005) propose a particular yield pricing factor that

they have found very helpful for forecasting excess holding returns. In our applica-

tion, we confirm that this factor14 provides a statistically significant improvement

over using just ft alone (row 5 of Table 3.2). Nevertheless, our Treasury factors

qt still provide a very dramatic improvement in forecasting ability beyond that

contained in ft and the Cochrane-Piazzesi factor vt (row 8).

We next examine the ability of the Treasury factors qt to help predict the

yields themselves, examining OLS regressions of the form

ft+1 = c+ ρft + φqt + εt+1 (3.19)

for φ a (3 × 3) matrix. The first column of Table 3.3 reports that the vector qt

makes a useful contribution to predicting each of the term-structure factors, with

the hypothesis that the ith row of φ is zero being rejected for each i.

It is then tempting to use (3.19) to draw tentative conclusions about what

the effects on yields of different maturities might be of a change in the compo-

sition of publicly held debt. Such calculations are subject to a well-understood

endogeneity problem: historical variations in znt may have represented a response

by the Treasury or the Fed to overall economic conditions or to term-structure

developments in particular. Although this is also a potential concern for (3.19),

our formulation has three advantages over traditional regressions which simply ex-

amine the contemporaneous correlations. First, any contemporaneous response

of qt to ft could not account for a nonzero value of φ in (3.19). We are explicitly

asking about the ability of qt to forecast future ft+1 over and above any informa-

tion contained in ft itself.15 Second, because the statistics we report represent the

answer to well-posed forecasting questions, the results have independent interest

14In our application, we constructed vt from the fitted value of a regression of (1/4)(h24,12,t +
h36,12,t + h48,12,t + h60,12,t) on a constant and the 1- through 5-year forward rates at date t.

15On the other hand, if qt only matters for ft+1 through its effect on ft, we might understate
the contribution of qt using our approach.
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as objective summaries of those forecasting relations, regardless of what the un-

derlying dynamic structural relations may be. Third, because we include lags of

the dependent variable in the regression, we avoid the potential spurious regression

problem that could plague other popular approaches such as trying to use OLS to

estimate a relation of the form ft = α + βzAt .

For purposes of focusing on a particular forecasting question that might be

of interest to policy makers, we consider the following exercise. Suppose that at

the end of month t, the Federal Reserve were to sell all its Treasury securities with

maturity less than 1 year, and use the proceeds to buy up all of the outstanding

nominal Treasury debt of maturity greater than n1t, where n1t would be determined

by the size of the Fed’s short-term holdings and outstanding long-term Treasury

debt at time t. For example, if implemented in December of 2006, this would result

in the Fed selling about $400 B in short-term securities and buying about $400

B in long-term securities, effectively retiring all the federal debt of ten-year and

longer maturity. We then calculated what qAt would be under this counterfactual

scenario, and calculated the average historical value of qAt − qt, which turns out to

be

∆ =


0.026101

0.022712

−0.00780

 . (3.20)

We then asked, by how much would one expect ft+1 to change according to (3.19)

if qt were to change by ∆? As should be clear from the description of the exercise,

we are talking about a quite dramatically counterfactual event. If one considers

the analogous forecasting equations of the form qt+1 = cq + ρqft + φqqt + εq,t+1, a

change of qt of the size of ∆ would represent a 36σ event, obviously something so

far removed from anything that was attempted during the historical sample as to

raise doubts about interpreting the parameter estimates as telling policy makers

what would happen if they literally implemented a change of this size.

The second column of Table 3.3 reports how a forecast of the traditional

term-structure factors would be affected by this change. We find that changing

qt by this amount could flatten the slope of the yield curve by 25 basis points,

with no effect on the level of interest rates themselves. If it reduces the slope
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but has no effect on the level, that means it would reduce long-term yields and

raise short-term yields. Indeed, our 3-factor ATSM has a prediction16 as to how

much any given interest rate would change if the factors were to change by the

amount specified in Table 3.3, which predicted responses we plot in Figure 3.8.

Yields on maturities longer than 2-1/2 years would fall, with those at the long

end decreasing by up to 17 basis points. Yields on the shortest maturities would

increase by almost as much.17

A separate question from the feasibility for the Federal Reserve to achieve

such effects is the desirability of its attempting to do so. Although we have

described this as a Fed operation, it is probably more natural to think of it as

a Treasury operation, implemented by the Treasury doing more of its borrowing

at the shorter end of the yield curve. According to the simple framework that

motivated our definition of qt, the average slope of the yield curve arises from the

preference of the U.S. Treasury for doing much of its borrowing with longer-term

debt. For reasons presumably having to do with management of fiscal risks, the

Treasury is willing to pay a premium to arbitrageurs for the ability to lock in a

long-term borrowing cost. If the Treasury has good reasons to avoid this kind of

interest-rate risk, it is not clear why the Federal Reserve should want to absorb

it.

Our conclusion is that, although it appears to be possible for the Fed to

influence the slope of the yield curve in normal times through the maturity of the

System Open Market Account holdings, very large operations are necessary to have

an appreciable immediate impact. If there is no concern about a zero-lower-bound

constraint, this potential tool should clearly be secondary to the traditional focus

of open-market operations on the short end of the yield curve.

16The predicted change in ynt is given by b′nφ̂∆ for bn = −bn/n, bn calculated from equation

(3.11) using the values of ρQ and b1 reported in Table 3.1, φ̂ the OLS estimates from equation
(3.19), and ∆ given by (3.20).

17Our estimates would also allow us in principle to answer dynamic questions, though we are
much less comfortable with using the framework for this purpose. One problem is that the
standard errors for dynamic responses turn out to be quite large. Another challenge is trying to
infer the permanent consequences of changes whose time-series variation has been transitory.
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3.7 The term structure of interest rates at the

zero lower bound.

The above analysis ended prior to the first stages of the financial crisis in

August 2007. As discussed in Section 3.2, we divide subsequent developments into

two phases. The first phase was characterized by high default premiums, failures

of some leading financial institutions, and serious disruption of traditional lending

patterns. Gürkaynak and Wright (2010) documented that under the financial

strains, significant arbitrage opportunities between yields on different Treasury

securities often persisted between October 2008 and February 2009. We will

not attempt to address the many important issues having to do with monetary

policy under those circumstances, but instead begin our analysis here with the

second phase which began in March of 2009, and during which policy makers have

confronted the longer-term issue of how to provide stimulus to aggregate demand

when the short-term interest rate had essentially reached zero.

Figure 3.6 plots assorted yields over this period. The 3-month yield has

remained stuck near zero over this period, and the 1-year, although higher, has also

displayed little variability. Nonetheless, there has continued to be considerable

fluctuation in longer-term yields. What is the nature of the developments driving

long-term yields in this environment?

The natural answer is that investors do not believe the U.S. will remain at

the zero lower bound forever. When the U.S. escapes from the ZLB, interest rates

at all maturities will again respond as they always have to changes in economic

fundamentals. Any news today that leads to revisions in the expectations of those

future fundamentals shows up as changes in those longer-term yields.

We propose that one way to interpret current long-term yields is to postulate

the existence of latent factors, denoted ft, which would determine what interest

rates would currently be doing if the ZLB were not binding, along with probabilities

that arbitrageurs assign to escaping from the ZLB at various future dates. For

the first task, what should we assume about the dynamic behavior of these latent

factors? The most parsimonious hypothesis would obviously be that, when the
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economy escapes from the ZLB, the factor dynamics would revert to their historic

behavior as represented by equations like (3.5) or (3.19). The difference is that,

when we originally introduced these equations, we were treating the factors ft

as directly observed from the level, slope, and curvature of the term structure,

whereas we are proposing now to interpret them as latent factors characterizing

what the level, slope, and curvature would be if we were not stuck at the ZLB. For

the second task, we again adopt the simplest possible hypothesis, which is that

arbitrageurs assign a constant Q-measure probability πQ that the economy will

remain at the ZLB next week.

To develop this idea in more detail, we postulate that, once the economy

escapes from the ZLB, the short rate will return to being determined by the factors

according to the structure

ỹ1t = a1 + b′1ft

p̃nt = an + b
′
nft

where the sequences {an, bn}Nn=1 can be calculated as before using the recursions

(3.11) and (3.13). However, as long as the economy remains at the ZLB, we

instead have

y∗1t = a∗1

p∗nt = a∗n + b
∗′
n ft.

If the zero lower bound were interpreted literally, then a∗1 would be zero. We

represent it instead with some number slightly above zero to match the U.S. expe-

rience in which an interest rate paid on reserves has prevented the rate from falling

all the way to zero.

Let qn,t+1 denote the holding return on an n-period bond purchased at t and

sold at t+1. Note that if t is characterized by the ZLB, the Q-measure expectation
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of this return is given by

EQ
t (qn,t+1) = EQ

t

[
(Pn−1,t+1 − Pnt)

Pnt

]
= πQEQ

t

[
(P ∗n−1,t+1 − P ∗nt)

P ∗nt

]
+ (1− πQ)EQ

t

[
(P̃n−1,t+1 − P ∗nt)

P ∗nt

]
≈ πQ

[
a∗n−1 + b

∗′
n−1(c

Q + ρQft)
]

+ (1− πQ)
[
an−1 + b

′
n−1(c

Q + ρQft)
]

+(1/2)πQb
∗′
n−1ΣΣ′b

∗
n−1 + (1/2)(1− πQ)b

′
n−1ΣΣ′bn−1 − a∗n − b

∗′
n ft.

No-arbitrage requires the Q-measure expected one-period holding yield for an n-

period bond to equal y1t,

a∗1 = EQ
t (qn,t+1).

This requires

b
∗′
n = πQb

∗′
n−1ρ

Q + (1− πQ)b
′
n−1ρ

Q (3.21)

a∗n = πQa∗n−1 + (1− πQ)an−1 + πQb
∗′
n−1c

Q + (1− πQ)b
′
n−1c

Q

+(1/2)πQb
∗′
n−1ΣΣ′b

∗
n−1 + (1/2)(1− πQ)b

′
n−1ΣΣ′bn−1 − a∗1. (3.22)

Given cQ, ρQ, a1, b1,Σ we can calculate {an, bn}Nn=1 from (3.11) and (3.13). Given

these and b
∗
1 = 0, we can calculate {a∗n, b

∗
n}Nn=1 as functions of πQ and a∗1. Predicted

bond yields under the ZLB are then given by

y∗nt = a∗n + b∗′n ft (3.23)

where a∗n = −a∗n/n and b∗n = −b∗n/n.
As a first pass, we propose to use the same values for cQ, ρQ, a1, b1,Σ as

estimated from the earlier historical sample. Note that even though these param-

eters are the same as before, the implied mapping from factors ft into observed

yields has changed. Let Y1t = (y26,t, y104,t, y520,t)
′ denote the 6-month, 2-year, and

10-year yields observed at time t. In our historical sample, these were related to

the factors ft according to

Y1t = A1 +B1ft (3.24)

A1 =


a26

a104

a520

 B1 =


b′26

b′104

b′520

 .
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Because we treated the factors in normal times as directly observed from the 6-

month, 2-year, and 10-year level, slope, and curvature, and because of the smooth-

ness of the ATSM term structure, our estimates were characterized by

B1 ≈


(1/3) (1/3) (1/3)

−1 0 1

1 −2 1


−1

=


1 −(1/2) (1/6)

1 0 −(1/3)

1 (1/2) (1/6)


where the approximation would have been exact if we had imposed the restriction

that Y1t is observed without error.

By contrast, under the ZLB, the relation is

Y1t = A∗1 +B∗1ft (3.25)

A∗1 =


a∗26

a∗104

a∗520

 B∗1 =


b∗′26

b
∗′
104

b∗′520

 .
Let Y2t denote the four other yields used in the estimation, namely the

3-month, 1-year, 5-year, and 30-year yields. The model implies that

Y2t = A∗2 +B∗2ft + εet (3.26)

A∗2 =


a∗13

a∗52

a∗260

a∗1560

 B∗2 =


b∗′13

b
∗′
52

b∗′260

b∗′1560


where εet ∼ N(0,Ωe) denotes measurement error. Substituting (3.25) into (3.26),

Y2t = A†2 +B†2Y1t + εet (3.27)

A†2 = A∗2 −B∗2(B∗1)−1A∗1 B†2 = B∗2(B∗1)−1. (3.28)

We applied the minimum-chi-square estimation approach developed by Hamilton

and Wu (2010b) to weekly interest rate data from March 6, 2009 to August 4,

2010 to infer the values of πQ and a∗1 from the OLS estimates of Â†2 and B̂†2,
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taking cQ, ρQ, a1, b1,Σ as given by the pre-2007 parameter estimates, as detailed in

Appendix D.

This procedure resulted in estimates 5200â∗1 = 0.037 and π̂Q = 0.9834,

implying that the ZLB is characterized by a one-week interest rate of 4 basis

points (at an annual rate) and that arbitrageurs expect the ZLB to persist for

1/(1 − πQ) = 60 weeks. We used these two parameters along with the pre-crisis

values for cQ, ρQ, a1, b1,Σ reported in Table 3.1 to calculate b∗n and a∗n from (3.21)

and (3.22), and used these to infer a value for ft on the basis of the observed

6-month, 2-year, and 10-year yield using (3.25). With this ft we then have from

(3.26) predicted values for each week’s 3-month, 1-year, 5-year, and 30-year yields,

which predictions are plotted as dashed lines of Figure 3.6. The R2 for each

relation is reported in the first column of Table 3.4. We might compare these with

the best possible fit as represented by an unrestricted OLS regression of each yield

on a constant and the 6-month, 2-year, and 10-year yields, whose R2 is reported

in the second column of Table 3.4. Particularly for the longer-term yields, the

predictions from our simple restricted parameterization are not far from what is

actually observed during the ZLB period.

A tougher test of the framework is whether it can successfully predict yields

in advance. Here we used the ft constructed as above, formed the one-week-

ahead forecast EP
t (ft+1) = c + ρft again on the basis of the pre-crisis parameters

reported in Table 3.1, and calculated the implied yields yn,t+1 using (3.23). Again,

particularly for the longer maturities, these forecasts are reasonably close to the

best possible in-sample fit as represented by an unrestricted OLS regression of

yn,t+1 on a constant and Y1t (see columns 3 and 4 of Table 3.4).

Although the post-sample fit is good, the model could nevertheless still

be improved. Hamilton and Wu (2010b) propose a test of the overidentifying

restrictions, which is basically a test of the statistical significance of the difference

in R2 between the first and second columns of Table 3.4. This leads to quite

strong rejection, with a χ2(14) test statistic of 344.5.

We made one further simple adjustment to improve the fit further. We

postulated that when the economy escapes from the ZLB, arbitrageurs anticipate a
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different average level of interest rates (as governed by the parameter a1) compared

to that observed in the pre-crisis episode. The estimated value of 5200a1 is 2.19,

meaning arbitrageurs expect the post-ZLB average short rate to be below the 4.12

level observed over 1990-2007. The new estimate of 5200a∗1 is 0.068 and of πQ is

0.9907, implying an expected ZLB duration of 108 weeks. These changes improve

the fit relative to that of the model summarized in Figure 3.6 and Table 3.4, though

the specification would still be rejected (χ2(13) = 176.0).

Although one could relax other restrictions of the model until a perfect fit is

achieved, we regard this as an attractive parsimonious framework that successfully

captures the broad features of how interest rates have been observed to behave

under the ZLB regime to date. Another benefit is that this framework gives us an

immediate basis for drawing conclusions about how the effects of monetary policy

differ under the ZLB from normal times.

Figure 3.7 plots the factor loadings, which summarize how the yield of any

maturity n is predicted to respond to changes in any of the three factors. The main

difference is that, under the ZLB, short-term yields are essentially unresponsive

to any macroeconomic developments, with all three elements of b∗n near zero for

small n. This is because arbitrageurs see very little probability of escaping from

the ZLB over most of the term of the security. As n increases, the response of

the yield to macroeconomic factors becomes larger and approaches the response

observed in normal conditions, because there is an increasing probability that the

economy will be away from the ZLB for most of the security’s duration.

This framework allows us to revisit the consequences of a shift in the matu-

rity of the Fed’s Treasury holdings. Given our assumption that the latent factors

ft are responding in the same way as they would when away from the ZLB, we can

still use the prediction that a change in the maturity composition of publicly held

debt that changes the Treasury risk factor vector by ∆ would change ft+1 by φ∆.

But whereas in normal times we premultiplied this vector by b′n to see what the

change ∆ implied for a yield of maturity n, at the ZLB we would instead premul-

tiply φ∆ by b∗′n . These predicted impacts are compared in Figure 3.8. The policy

continues to depress long-term yields by the same amount as in normal times, but,
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because of the ZLB, it has very little effect on short-term yields. Cumulative ef-

fects on short-term yields are also negligible, while the ability to bring long yields

down is the same as without the ZLB, as seen in Figure 3.8.

We have analyzed here the effects of a swap by the Federal Reserve of

short-term assets for longer-term assets. An alternative strategy, which might

be characterized as quantitative easing, is for the Fed to buy longer-term assets

outright with newly created reserves. At the ZLB, interest-bearing reserves are

essentially indistinguishable from zero-risk 1-week bonds. The effect of quanti-

tative easing is to reduce the available supply of longer-term securities without

changing the private-sector’s exposure to the risk associated with holding short-

term securities. But at the ZLB, changes in the supply of short-term securities

have essentially no effects. Thus, the economic consequences of quantitative eas-

ing would be identical to those of the maturity swap just described if the economy

were at the ZLB.

3.8 Discussion.

3.8.1 Comparison with other estimates.

Here we compare our estimates with those obtained by other researchers.

For this purpose, we standardize on the basis of the two scenarios analyzed above.

The first scenario is a simultaneous sale by the Fed of $400 B in securities at the

short end and purchase of $400 B in securities at the long end, implemented in

December of 2006. The second scenario is an outright purchase of $400 B in

long-term securities, implemented at the zero lower bound.

Gagnon et al. (2010) used as an explanatory variable the face value of

privately-held debt of more than one-year maturity as a percent of GDP, and as

dependent variable the 10-year yield or 10-year term premium. They estimated

the effect of debt supply on yields using regressions estimated 1986:M12 to 2008:M6

that included several other explanatory variables, and obtained a coefficient relat-

ing the 10-year yield to bond supply of 0.069. Since $400 B would represent about

2.9% of U.S. GDP in 2006:Q4, their estimates imply a predicted decline in the
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10-year yield under scenario 1 of (2.9)(0.069) = 20 basis points. This is close to

our estimate of a decline of 14 basis points, as reported in the first row of Table

3.5.18

In the analysis of Greenwood and Vayanos (2010), the right-hand variable

was the fraction of privately-held debt with duration greater than 10 years, and the

left-hand variable was assorted yield spreads. They found that a one-percentage-

point increase in the share resulted in a 4-basis-point increase in the 5-year-1-year

spread over the period 1952-2006. In the sample we studied (1990-2007), a maturity

swap of the size contemplated in scenario 1 would have lowered the share of debt

with maturity greater than 10 years by 9.8 percentage points. This gives an effect

implied by the Greenwood-Vayanos estimates of (9.8)(4) = 39 basis points. For

comparison, our estimate of the size of the effect is 17 basis points for scenario 1,

but only 9 basis points for scenario 2. The reason for the difference between the

two scenarios is that, in our framework, part of the drop in the spread if the policy

had been implemented over the period studied by Greenwood and Vayanos (2010)

would have come from an increase in short-term yields, something that would not

happen if the same purchase were implemented at the zero lower bound.

Another recent analysis comes from D’Amico and King (2010), who look

at the change in yields of different maturities during the Fed’s purchase of $300

billion in long-term securities between March and October of 2009. They conclude

that these purchases lowered the yield on 10-year Treasuries by about 50 basis

points, which would translate into an effect of (4/3)(50) = 67 basis points for

the $400 B purchase analyzed in Table 3.5, a somewhat larger effect than implied

by our estimates. However, the 10-year yield was where these purchases were

concentrated and where D’Amico and King found the biggest effects, and large

standard errors are associated with any of these estimates.

Deutsche Bank (2010) attempted to synthesize the estimates of Gagnon et

18Gagnon et al. (2010)’s regressions in which the term premium rather than the yield is the
left-hand variable would imply estimates as low as 12 basis points. However, these are harder
to compare directly with those for our scenario. In our conception of the question being asked,
we assume that the supply of securities with maturity less than one year increases by $400 B,
driving up the yield on those securities and making the decrease in the term premium larger than
the decrease in the yield. This effect is not captured by the Gagnon et al. (2010) regressions.
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al. (2010), Macroeconomic Advisers, and their own research staff, and estimated

that $1 trillion in long-term purchases in the current setting might produce a 50-

basis-point decline in long-term yields, which we’ve translated as a 20-basis-point

decline for the $400 billion purchase reported in Table 3.5.

In 1961, the U.S. attempted to use Treasury and Fed operations to lower

the fraction of publicly-held long-term debt in what was referred to as “Operation

Twist.” Swanson (2011) used a daily event study of announcements pertaining

to the Operation Twist and found effects on bond yields that, when scaled by

the change in size of outstanding Treasury debt, are broadly consistent with those

summarized in our Table 3.5.

Although our estimates of the effects are the smallest in this group, they

are generally in the same ballpark, which is somewhat surprising given the very

different ways in which these estimates are derived. There is overall agreement

that sufficiently large asset purchases could achieve a modest reduction in long-

term yields. There is nevertheless considerable uncertainty, both in terms of

the econometric standard errors and possible specification errors, in any of the

estimates reported.

3.8.2 Effects on non-Treasury securities.

Here we sketch a generalization of the theoretical framework in Section 3.3

to allow arbitrageurs also to hold other securities with a nonzero probability of

default.

Let P ‡1t denote the price paid at t for a one-period bond whose value next

period will be

P ‡0,t+1 =

{
1 with probability exp(−ψt)
0 with probability 1− exp(−ψt)

.

If the arbitrageurs hold a fraction z‡1t in the risky asset and if the probability

of default ψt is independent of risk factors ft, then using a similar approach to

that in Appendix A, the contribution of the risky asset to the variance can be
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approximated19 by z‡21tψt and the no-arbitrage condition (3.2) becomes

y‡1t = y1t + ψt(1 + γz‡1t). (3.29)

In the absence of risk aversion (γ = 0), in equilibrium the risky security will offer

the same expected return as the risk-free security, which requires a premium of ψt

to compensate for the probability of default. With risk aversion (γ > 0) and a

positive exposure of arbitrageurs to this risk (z‡1t > 0), the risky asset will offer a

higher expected return to compensate for the risk.

If the factors that govern ψt and determine equilibrium z‡1t are independent

of the factors ft that determine the risk-free yield, the one-period risky rate would

have identical loadings as y1t on fluctuations in the level, slope, and curvature

factors, as well as additional loadings on separate default-risk factors. A parallel

result can be derived for risky assets of longer maturity, with p‡nt loading on ft

with the same coefficients bn as for risk-free bonds, along with separate loadings

on the default-risk factors.

Although the independence of Treasury and default risk factors is a highly

stylized assumption, there is no question that risky yields of different maturities

respond in a similar way to the factors driving Treasury yields. Figure 3.9 displays

the comovement between the 10-year Treasury rate and that on 30-year mortgages

and Aaa-rated and Baa-rated corporate debt20.

Rather than impose a particular loading of non-Treasury yields on the level,

slope, and curvature factors, we can estimate the empirical loading directly by OLS

19If we conjecture that p‡1t = h
(
a‡1 + b

‡′
1 ft + c‡ψψt + c‡ζψtζ

‡
1t

)
for ζ‡1t independent factors af-

fecting the supply of risky assets,

Et

[
z‡1t

(
P ‡0,t+1

P ‡0t
− 1

)]2
= z‡21t {exp(−ψth) exp[−2h(a‡1 + b

‡′
1 ft + c‡ψψt + c‡ζψtζ

‡
1t)]

−2 exp(−ψth) exp[−h(a‡1 + b
‡′
1 ft + c‡ψψt + c‡ζψtζ

‡
1t)] + 1}

= z‡21tψth+ o(h).

20Aaa and Baa yield represent values as of the last day of the month, while the 30-year mortgage
rate is for the last week of the month, from the FRED database of the Federal Reserve Bank of
St. Louis.
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estimation of

y‡jt = a‡j + b‡′j ft + ut

over t = 1990:M1 to 2007:M7 for assorted securities j. Note that if there is a

correlation between the default risk factors and ft, this will be incorporated in the

estimated values of b‡j. Table 3.6 reports the empirical factor loadings for these

three risky yields, which, not surprisingly given Figure 3.9, turn out to be similar

to those for 10-year Treasury bonds.

In the next-to-last column we use these estimated values of b‡j to calculate

the predicted effect in normal times of a shift in the maturity composition of Fed

holdings.21 Based on the historical correlations between bond yields, in the pre-

crisis period, if the Fed were to sell $400 billion of short-term Treasuries and buy

$400 billion in long-term Treasuries, the 10-year T-bond and the Aaa and Baa

corporate yields would each be expected to decline by 14 basis points, and the

30-year fixed mortgage rate by 11 basis points.

We can also get a quick impression of what might be expected at the zero

lower bound as follows. The predicted change in the 6-month, 2-year, and 10-

year yields of this $400 billion maturity swap when at the ZLB are given by the

corresponding elements of the vector B∗1φ∆. If y‡jt tracks these as estimated his-

torically (namely, by b‡′j B
−1
1 ), then we get a predicted effect on y‡jt at the ZLB of

b‡′j B
−1
1 B∗1φ∆. These estimates are reported in the last column of Table 3.6. Inter-

estingly, buying long-term Treasuries might if anything have an even bigger effect

on risky yields when at the ZLB than it does in normal circumstances. Again, at

the ZLB, in our framework the effects are the same whether the Fed finances the

purchases with sales of short-term T-bills or with newly created reserves.

If the Fed were instead to purchase risky securities directly, the resulting

reduction in arbitrageurs’ holdings of these securities z‡nt would both reduce the

default risk premium (through equation (3.29)) as well as affect the pricing of

Treasury level, slope or curvature risk (because by holding these risky securities an

investor is also exposed to the conventional term structure factors). For example,

21These were calculated as b‡′j φ∆ for φ the matrix of OLS coefficients in (3.19) and ∆ given

by (3.20).
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the Fed’s MBS purchases could both flatten the slope of the Treasury yield curve

and narrow the spread between MBS and Treasury yields.

We should also comment on how arbitrageurs’ holding of risky securities

would influence our empirical estimates of the matrix φ itself. If Treasuries rep-

resent only a subset of arbitrageurs’ holdings, then Treasury holdings as a fraction

of their total wealth znt would be a smaller number than we have assumed. If, for

example, each znt were divided by 2, our vector qt and therefore the magnitude ∆

would be divided by two, while the OLS estimates φ̂ would be multiplied by two.

Notice that a change in scale of this type would leave the estimated product φ∆

unchanged and have no effect on any of the estimates reported. This invariance

results from the fact that ultimately our estimates are simply an empirical sum-

mary of the historical relations between observed yields and maturity shares znt

defined as a percentage of total publicly held federal debt, and it is the historical

covariation of yields with outstanding Treasury debt that determined these esti-

mates. If we were trying to make an inference about structural coefficients such

as the risk aversion parameter γ, getting the scale right would be important. But

for the purposes for which the estimates are used here, the scale of znt does not

matter for any of the reported results.

3.8.3 Application: Evaluation of QE2.

On November 3, 2010, the Federal Reserve announced its intention to im-

plement additional measures to stimulate the economy, which was described in the

financial press as a second round of quantitative easing (QE2). The plan was to

purchase an additional $600 billion of longer-term Treasury securities by the end

of the second quarter of 2011, a pace of about $75 billion per month. This differed

in several details from the scenarios analyzed above.

The first difference is that, as implemented, the purchases were concentrated

not on the longest-maturity securities, but instead focused primarily on securities

between 2-1/2 and 10 years. Over the period 1990-2006, if the Fed had sold all

its holdings of less than 1 year and used the proceeds to purchase outstanding

Treasury debt evenly over the 2-1/2 to 10 year range, the resulting average change
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in qt would be not the value reported in expression (3.20) but instead

∆2 = (0.006898, 0.004479,−0.004406)′. (3.30)

Whereas the estimated effects of ∆ on the term structure are statistically signifi-

cantly distinguishable from zero in our framework, those resulting from ∆2 are not.

Figure 3.10 compares the estimated effects on yields of ∆ and ∆2 if implemented

at the zero lower bound. The dashed curve summarizes the predicted effects if the

Fed were to sell all its holdings of less than 1-year maturity, and use the proceeds

to retire debt of the longest outstanding maturities. Note this is identical to the

dashed curve in Figure 3.8. The solid curve summarizes the predicted effects if

the Fed were to sell all its holdings of less than 1-year maturity, and spread the

proceeds evenly to purchase outstanding Treasury debt in the 2-1/2 to 10 year

range. The latter has a significantly smaller effect on long-term rates. Again

we interpret an outright purchase of a comparable quantity of securities as having

similar effects to a debt swap when the economy is at the zero lower bound.

A second important difference between QE2 as it’s been implemented by

the Fed and the scenarios analyzed here is in the timing, with the purchases asso-

ciated with QE2 spread over a period of 8 months. Between November 2009 and

November 2010, non-TIPS Treasury debt increased by $127.3 billion per month,

of which $71.4 billion was in the 2-1/2 to 10 year maturity range. Hence, the

proposed QE2 would barely absorb the newly issued medium-term debt, and debt

of greater than 10 years would continue to increase rather than decline. The top

panel of Figure 3.11 shows that the average maturity of publicly-held Treasury

debt has been higher in each of the first three months of QE2 than it had been in

any month over the preceding 2 years. The bottom panel shows that the fraction

of publicly-held debt of more than 10 years maturity continued to increase even

as the Fed was implementing its QE2 bond purchases. Our conclusion is that

QE2 as implemented had little potential to lower long-term interest rates via the

mechanism explored in this paper.
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3.9 Conclusion.

We have found statistically significant forecasting relations over 1990-2007

between the maturity structure of Treasury debt held by the public and the be-

havior of U.S. interest rates. These relations suggest that in normal times, the

Federal Reserve has some potential to flatten the yield curve, though not to reduce

the overall level of interest rates, by selling short-term securities and buying long-

term securities. Our estimates of the effect on impact suggest that quite massive

operations would be necessary to have a measurable effect on interest rates.

We proposed that altering the maturity structure of publicly held Treasury

debt would be equally effective at lowering long-term yields when the economy

is at the zero lower bound. But because there are negligible consequences for

short-term yields in such a setting, the policy of reducing public holdings of long-

term bonds has the potential to bring the overall level of interest rates down for

an economy at the ZLB, whereas it could not do so in a normal environment.

Quantitative easing, defined as buying the long-term bonds with newly created

reserves, has the identical potential in this model.

One might suppose that the potential small magnitude of the effect is not

a concern as far as the latter policy is concerned– if hundreds of billions are not

enough to make much difference, then perhaps purchases in the trillions, such

as the Fed has embarked upon with its holdings of mortgage-backed securities,

might do the trick. However, we would emphasize that, in the model of the ZLB

proposed here, the entire ability to influence long-term yields comes from investors’

perceptions of what fundamentals are going to be after normal conditions have

returned. A policy that only kept the supplies off the market during the ZLB

episode itself would have much more limited potential. In this sense, this particular

form of nonstandard monetary policy could end up having limited effectiveness for

the same reasons as policies that hope to influence the public’s expectation of what

the target will be for short-term interest rates once the economy escapes from the

ZLB.

Our estimated effects are linear– twice as big a purchase is predicted to

have twice as big an effect on yields. But this is simply an assumption of our
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empirical estimation strategy and not a proposition we have tested directly in the

data. Particularly since the magnitudes under discussion are so different from the

observed historical variations from which our estimates were inferred, extrapolation

of these effects to larger and larger policy measures is of necessity an uncertain

exercise.

We also noted that, although we have framed the discussion here in terms of

options available to the Federal Reserve, this policy tool could in many ways more

naturally be implemented by the Treasury itself altering the term structure of debt

that it issues. If the Treasury has sound reasons not to do so, it is unclear why

the Federal Reserve should try to undo the Treasury’s attempted hedging of the

unified government’s balance sheet with respect to interest rate risk. Conversely,

if the Fed has good reasons to try to flatten the slope of the yield curve, it is

unclear why the Treasury should resist being the agent to implement the plan.
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3.11 Appendices

A. Details of the arbitrageurs’ portfolio optimization prob-

lem.

Let Pnt denote the price of a pure-discount n-period bond (with P0t = 1),

Wt the total wealth of the arbitrageurs, and znt the portion of their wealth allocated

to each bond maturity. Then the arbitrageurs’ wealth evolves according to

Wt+1 =
N∑
n=1

znt
Pn−1,t+1

Pnt
Wt

with associated rate of return

rt,t+1 =
Wt+1 −Wt

Wt

=
N∑
n=1

znt

[
Pn−1,t+1

Pnt
− 1

]
.
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If the change in prices between t and t + 1 is small,22 the portfolio’s mean return

and variance can be approximated

Etrt,t+1 ≈ −z1t(a1 + b
′
1ft) (3.31)

+
N∑
n=2

znt

[
an−1 + b

′
n−1(c+ ρft) + (1/2)b

′
n−1ΣΣ′bn−1 − an − b

′
nft

]

Vart(rt,t+1) ≈ d′tΣΣ′dt (3.32)

where the (J × 1) vector dt summarizes exposures to each of the J factor risks

associated with holding the (N × 1) vector of bonds zt. The arbitrageurs thus

choose zt so as to maximize (3.1) subject to (3.31), (3.32), (3.8), and
∑N

n=1 znt = 1,

for which the first-order condition is given by (3.6).

B. Arbitrage-free equilibrium.

Note that ynt = −n−1pnt = −n−1(an + b
′
nft) and suppose that ζnt = ζn +

ϑ′nft. If we multiply (3.9) by bn−1 and sum over n = 2, ..., N , we find using (3.8)

22Suppose that

qn,t+1 ≡
(Pn−1,t+1 − Pnt)

Pnt
= exp

(
µnh+

√
hεn,t+1

)
− 1

where (ε1,t+1, ..., εN,t+1)′ ∼ N(0,Ω). Our approximation is derived from the limiting behavior as
h becomes small, analogous to those obtained when considering a continuous-time representation
of a discrete-time process. Thus as in Merton (1969) ,

Et

(
N∑
n=1

zntqn,t+1

)
=

N∑
n=1

znt [µnh+ Ωnnh/2 + o(h)]

Vart

(
N∑
n=1

zntqn,t+1

)
= z′tΩzth+ o(h)

for Ωnn the row n, column n element of Ω and zt = (z1t, ..., zNt)
′. Equations (3.31) and (3.32)

are obtained by setting h = 1 and o(h) = 0. Specifically,

Pn−1,t+1

Pnt
= exp

(
an−1 + b

′
n−1ft+1 − an − b

′
nft

)
µn = an−1 + b

′
n−1(c+ ρft)− an − b

′
nft

Ωnn = b
′
n−1ΣΣ′bn−1.
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that equilibrium requires

dt =
N∑
n=2

bn−1

[
ζn + ϑ′nft + (αn/n)(an + b

′
nft)

]
.

Equation (3.10) is obtained from (3.7) with

λ = γΣ′
N∑
n=2

bn−1 [ζn + (αn/n)an)]

Λ = γΣ′
N∑
n=2

bn−1

[
ϑ′n + (αn/n)b

′
n

]
.

C. ATSM estimation for a just-identified model.

We first estimate the parameters of (3.5) and (3.16) by OLS:[
ĉ ρ̂

]
=

(
T∑
t=2

ft

[
1 f ′t−1

])( T∑
t=2

[
1

ft−1

] [
1 f ′t−1

])−1

Σ̂Σ̂′ = (T − 1)−1
T∑
t=2

(ft − ĉ− ρ̂ft−1)(ft − ĉ− ρ̂ft−1)′

[
Â B̂

]
=

(
T∑
t=1

Y2t

[
1 f ′t

])( T∑
t=1

[
1

ft

] [
1 f ′t

])−1

Σ̂eΣ̂
′
e = T−1

T∑
t=1

(Y2t − Â− B̂ft)(Y2t − Â− B̂ft)′.

The predicted value for row i of B̂ is given by

B̂′i = n−1i b′1

[
IJ + ρQ +

(
ρQ
)2

+ · · ·+
(
ρQ
)ni−1

]
for i = 1, ...,M.

For the just-identified case with M = J + 1, we solve this [(J + 1)× J ] system of

equations for the J(J + 1) unknowns ρQ and b1 using numerical search. Taking

these values for ρQ and b1 as given, we can then use (3.11) to solve for bn for any

desired n along with

an = na1 +
n∑
`=1

b
′
`−1c

Q + (1/2)
n∑
`=1

b
′
`−1ΣΣ′b`−1.

The J + 1 values for a1 and cQ are then found by numerical solution of the J + 1

equations

Âi = −n−1i ani
for i = 1, ...,M.
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D. ATSM estimation for an overidentified model.

We estimated (3.27) by unconstrained OLS,

[
Â†2 B̂†2

]
=

(
T∑
t=1

Y2t

[
1 Y ′1t

])( T∑
t=1

[
1

Y1t

] [
1 Y ′1t

])−1

for which the inverse of the usual variance matrix for the estimated coefficients is

given by

R̂ = Ω̂−1e ⊗ T−1
T∑
t=1

[
1

Y1t

] [
1 Y ′1t

]
with Ω̂e given by diagonal elements of

T−1
T∑
t=1

(Y2t − Â†2 − B̂
†
2Y1t)(Y2t − Â

†
2 − B̂

†
2Y1t)

′.

The minimum-chi-square estimation procedure proposed by Hamilton and Wu

(2010b) estimates the structural parameters of interest θ = (πQ, a∗1)
′ or (πQ, a∗1, a1)

′

by minimizing

T [π̂ − g(θ)]′R̂[π̂ − g(θ)] (3.33)

where π̂ = vec

([
Â†2 B̂†2

]′)
and g(θ) denotes the corresponding predicted value

from (3.28). Under the null hypothesis that the model is correctly specified, the

minimal value achieved for (3.33) should have an asymptotic χ2(k1− k0) distribu-

tion, where k1 = 14 is the number of parameters in Â†2 and B̂†2 and k0 = 2 or 3 is

the number of elements in θ.

E. Details of data construction.

Following Greenwood and Vayanos (2010), we started with CRSP data for

outstanding Treasury debt by individual CUSIP number to estimate outstanding

nominal Treasury debt at the end of each month. We calculated n for each issue

by calculating the number of days between maturity and the last Friday of the

month, and converted to weeks by rounding up. The raw source for these data

appears to be the Monthly Statement of the Public Debt of the United States. We

checked these data by summing all the maturities and comparing this sum with
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the sum of nominal bills, bonds, and notes recorded in the Haver database,23 which

also comes from the same Monthly Statement. We found numerous discrepancies,

which came from such factors as the CRSP files on occasion missing individual

CUSIP series and at other times having incorporated assorted data entry errors.

We were able to correct CRSP data errors so as to reduce almost all discrepancies

to less than $200 M by hand comparison of the CRSP numbers with individual

copies of the Monthly Statement itself.

Although the Federal Reserve currently reports outright Treasury holdings

for the System Open Market Account by individual CUSIP, we were unable to

secure access to historical archives of these, and settled for rough estimates con-

structed as follows. The Federal Reserve’s weekly H41 release24 reports SOMA

each Wednesday by rough maturity breakdowns (less than 15 days, 16-90 days, 91

days to 1 year, over 1 year to 5 years, over 5 years to 10 years, and over 10 years),

and we matched up the last Wednesday of each month for SOMA holdings with

the last calendar day of the month for Treasury marketable debt. Unfortunately,

the reported SOMA maturity categories include both nominal Treasuries as well as

TIPS, which we exclude from our analysis. Our solution was to assume that Fed

holdings of TIPS as a fraction of the Fed’s total holdings of notes and bonds was

the same across all maturity categories. Total Fed holdings of notes and bonds are

reported on the H41, as are total TIPS holdings (though prior to December 2002,

we had to read the latter by hand from the notes section of individual reports). We

then multiplied each maturity category greater than 1 year by this ratio to get an

estimate of total TIPS holdings in those categories. For maturity categories less

than 1 year, we multiplied by the product of this ratio with the ratio of the Fed’s

notes and bonds of maturity less than 1 year to the Fed’s total Treasury securities

less than one year. We then subtracted the resulting estimates of TIPS holdings

within each maturity category from the reported total holdings within each cate-

gory to get our estimate of nominal Fed holdings for each maturity category. We

23We thank Christiane Baumeister for sharing these Haver data.
24Available in Table 2 of http://www.federalreserve.gov/datadownload/Choose.aspx?rel=H41.

Prior to June 2003, we used the end-of-calendar month data compiled by Kuttner (2006) available
at http://econ.williams.edu/people/knk1/research.
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then allocated this ratio evenly across total outstanding Treasury securities of each

weekly maturity falling within that category to arrive at our estimate of how much

of those securities were held by the Federal Reserve’s SOMA.
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Tables

Table 3.1: Parameter estimates

Estimated parameters Implied parameters
cQ 0.0116

(0.0002)
−0.0118

(0.0005)
−0.0036

(0.0007)
λ −0.1378

(0.0717)
0.1604
(0.0727)

−0.0564
(0.0687)

ρQ 0.9990
(0.0001)

0.0094
(0.0002)

−0.0140
(0.0005)

Λ −0.0867
(0.0468)

−0.0480
(0.0594)

−0.0948
(0.1203)

0.0027
(0.0003)

0.9870
(0.0004)

0.0330
(0.0010)

0.0847
(0.0455)

−0.0266
(0.0825)

0.1773
(0.1200)

−0.0018
(0.0002)

−0.0028
(0.0002)

0.9867
(0.0008)

−0.0567
(0.0436)

0.0531
(0.0596)

−0.1862
(0.1594)

c −0.0034
(0.0089)

−0.0003
(0.0074)

0.0006
(0.0066)

ρ 0.9895
(0.0072)

0.0042
(0.0081)

−0.0244
(0.0157)

0.0083
(0.0047)

0.9826
(0.0081)

0.0478
(0.0123)

−0.0013
(0.0041)

0.0055
(0.0058)

0.9755
(0.0132)

a1 × 5200 4.1158
(0.0074)

b1 × 5200 1.0345
(0.0058)

−0.6830
(0.0081)

0.6311
(0.0189)

Σ 0.1094
(0.0236)

0 0

0.0360
(0.0100)

0.1027
(0.0045)

0

−0.0670
(0.0188)

0.0025
(0.0130)

0.0968
(0.0149)

Σe × 5200 0.0978
(0.0023)

0 0 0

0 0.0674
(0.0016)

0 0

0 0 0.0531
(0.0013)

0

0 0 0 0.1171
(0.0028)

Parameter estimates for the weekly affine-term-structure model, Jan 5, 1990 to

July 27, 2007. Small-sample standard errors in parentheses. Sample size: T = 917.

Bold indicates statistically significantly different from zero at the 5% significance

level.
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Table 3.2: Holding-return forecasting regressions

Regressors 6m over 3m 1yr over 6m 2y over 1y 5y over 1y 10y over 1y
c, f ∗t 0.357 0.356 0.331 0.295 0.331

(0.000) (0.000) (0.000) (0.000) (0.000)
c, ft, z

A∗
t 0.410 0.420 0.373 0.300 0.336

(0.020) (0.119) (0.311) (0.728) (0.665)
c, ft, z

L∗
t 0.428 0.501 0.524 0.398 0.357

(0.003) (0.008) (0.006) (0.035) (0.196)
c, ft, z

pc∗
t 0.368 0.361 0.333 0.297 0.334

(0.001) (0.007) (0.062) (0.098) (0.051)
c, ft, v

∗
t 0.385 0.409 0.388 0.339 0.338

(0.016) (0.001) (0.006) (0.008) (0.227)
c, ft, q

∗
t 0.444 0.568 0.714 0.617 0.549

(0.002) (0.000) (0.000) (0.000) (0.001)
c, ft, z

pc
t , q

∗
t 0.452 0.571 0.717 0.618 0.550

(0.002) (0.000) (0.000) (0.000) (0.002)
c, ft, vt, q

∗
t 0.458 0.595 0.737 0.640 0.552

(0.001) (0.000) (0.000) (0.000) (0.002)
c, ft, z

A
t , z

L
t , q

∗
t 0.476 0.597 0.741 0.670 0.634

(0.000) (0.001) (0.000) (0.002) (0.054)

R2 and hypothesis tests for holding-return forecasting regressions. Reported num-

bers are the R2 for the regressions, with p-values in parentheses, for tests of the

null hypothesis that coefficients on starred variables are zero. All regressions also

include a constant term (denoted by c) and all hypothesis tests use Newey-West

variance matrix with 20 lags. Bold indicates coefficients on starred variables are

statistically significantly different from zero at the 5% significance level.
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Table 3.3: Factor vector autoregression

F test φ′i∆
level 3.256 0.005

(0.023) (0.112)
slope 4.415 −0.250

(0.005) (0.116)
curvature 2.672 −0.073

(0.049) (0.116)

Granger-causality tests and scenario impact estimates for factor vector autoregres-

sion. First column reports F test (p-value in parentheses) of null hypothesis that

φi = 0 in regression fit = ci+ρ′ift−1 +φ′iqt−1 + εit. Second column reports estimate

of φ′i∆ for that regression (with standard error) for ∆ the average change in q

under the alternative scenario.

Table 3.4: R2 for post-crisis sample

Contemporaneous Forecast
restricted unrestricted restricted unrestricted

3m 0.625 0.668 0.522 0.602
1y 0.891 0.924 0.652 0.767
5y 0.961 0.975 0.753 0.753

30y 0.965 0.972 0.735 0.787

R2 for post-crisis sample (March 3, 2009 to Aug 10, 2010) for unrestricted OLS fit to

post-crisis data and for prediction constructed from pre-crisis parameter estimates

together with post-crisis estimates of πQ and a∗1. Contemporaneous: prediction of

ynt given current 6-month, 2-year and 10-year yields. Forecast: predictions of ynt

given lagged 6-month, 2-year and 10-year yields.

Table 3.5: Comparison of different estimates

Original estimates Hamilton-Wu estimates
Study Measure Pre-crisis ZLB Pre-crisis ZLB

Gagnon, et. al. 10 yr yield -20 -14 -13
Greenwood-Vayanos 5yr-1yr spread -39 -17 -9

20yr-1yr spread -74 -25 -18
D’Amico-King 10yr yield -67 -14 -13
Deutsche Bank 10yr yield -20 -14 -13

Comparison of different estimates of the effect of replacing $400 billion in long-term

debt with short-term debt.
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Table 3.6: Risky securities

Yield Factor loadings Normal ZLB
level slope curvature effect effect

10-year Treasury 1.000 0.500 0.167 -14 -13
Aaa Corporate 0.883 0.453 0.379 -14 -15
Baa Corporate 0.888 0.441 0.535 -14 -17
30-year Mortgage 0.933 0.363 0.325 -11 -13

Empirical loadings of selected yields on Treasury level, slope and curvature factors,

and predicted effect on yield (in basis points) of selling $400 billion in short-term

Treasury debt and buying $400 billion in long-term Treasury debt.
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Figure 3.1: Alternative measures of 5-year expected inflation

Top panel: 5-year break-even inflation rate, calculated as nominal yield of 5-year Trea-

sury bond minus nominal yield on 5-year Treasury Inflation Protected Security, 2005:M1-

2010:M6. Data source: FRED database of the Federal Reserve Bank of St. Louis. Bot-

tom panel: 5-year expected CPI inflation, from the average response of the Survey of

Professional Forecasters, 2005:Q3 to 2010:Q2. Data source: Federal Reserve Bank of

Philadelphia.
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Figure 3.2: Federal Reserve assets

Federal Reserve assets, in billions of dollars, Jan 3, 2007 to Aug 4, 2010, Wednesday

values, seasonally unadjusted, from Federal Reserve H41 release. Maiden 1: net port-

folio holdings of Maiden Lane LLC; MMIFL: net portfolio holdings of LLCs funded

through the Money Market Investor Funding Facility; TALF: loans extended through

Term Asset-Backed Securities Loan Facility; AIG: sum of credit extended to American

International Group, Inc. plus net portfolio holdings of Maiden Lane II and III; ABCP:

loans extended to Asset-Backed Commercial Paper Money Market Mutual Fund Liq-

uidity Facility; PDCF: loans extended to primary dealer and other broker-dealer credit;

discount: sum of primary credit, secondary credit, and seasonal credit; swaps: central

bank liquidity swaps; CPLF: net portfolio holdings of LLCs funded through the Com-

mercial Paper Funding Facility; TAC: term auction credit; RP: repurchase agreements;

MBS: mortgage-backed securities held outright; agency: federal agency debt securities

held outright; misc: sum of float, gold stock, special drawing rights certificate account,

and Treasury currency outstanding; other FR: Other Federal Reserve assets; treasuries:

U.S. Treasury securities held outright.



109

0

20,000

40,000

60,000

80,000

100,000

1 105 209 313 417 521 625 729 833 937 1041 1145 1249 1353 1457 1561

Figure 3.3: Maturity structure of U.S. federal debt

Maturity structure of U.S. federal debt as of December 31, 2006. Horizontal axis: ma-

turity in weeks. Black bars: face value of marketable nominal Treasury securities of

that maturity, in millions of dollars. Light bars: imputed holdings of the System Open

Market Account of the U.S. Federal Reserve.
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Figure 3.4: Average maturity

Average maturity in weeks of debt held by the public, plotted monthly from Jan 31,

1990 to Jan 31, 2011.
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Figure 3.5: Yields and factors

Yields and factors used in baseline estimation, weekly from Jan 5, 1990 to July 27, 2007.
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Figure 3.6: Actual and model fitted interest rates

Actual (solid) and predicted (dashed) behavior of selected interest rates, weekly from

March 7, 2009 to August 10, 2010. Rates shown (in order from top to bottom) are the

30 year, 5 year, 1 year, and 3 month.
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Figure 3.7: Factor loadings

Solid curves: normal loadings (plots of 5200bn as function of maturity n in weeks).

Dashed curves: zero-lower-bound loadings (5200b∗n). Top panel: level loadings; middle

panel: slope loadings; bottom panel: curvature loadings.
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Figure 3.8: Predicted change

Predicted change in yn,t+1 (quoted in annual percentage points) as a function of weeks

to maturity n in response to shift in qt of size ∆. Solid: effect in normal times (plot of

5200b′nφ∆ as a function of n); dashed: effect at the zero lower bound (plot of 5200b∗′nφ∆).
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Figure 3.9: Assorted long-term yields

Assorted long-term yields, 1990:M1 to 2007:M7.
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Figure 3.10: Assorted long-term yields

Effects of two different maturity swaps when implemented at the zero lower bound.

Dashed curve: Fed sells all its holdings of less than 1-year maturity and retires debt at

the longest end of the maturity structure (plot of 5200b∗′nφ∆ as a function of n). Solid

curve: Fed sells all its holdings of less than 1-year maturity and retire debt evenly across

2-1/2 to 10 year maturities (plot of 5200b∗′nφ∆2).
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Figure 3.11: Summaries for maturity structure

Top panel: average maturity of Treasury debt other than that held by the Federal Reserve

(zAt ), 2010:M1-2011:M1. Bottom panel: fraction of outstanding Treasury debt not held

by the Federal Reserve that is of 10 years or longer maturity (zLt ), 2010:M1-2011:M1.
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