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PHYSICAL REVIEW D, VOLUME 70, 087702
Noncommuting spherical coordinates
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Restricting the states of a charged particle to the lowest Landau level introduces a noncommutativity
between Cartesian coordinate operators. This idea is extended to the motion of a charged particle on a
sphere in the presence of a magnetic monopole. Restricting the dynamics to the lowest energy level
results in noncommutativity for angular variables and to a definition of a noncommuting spherical
product. The values of the commutators of various angular variables are not arbitrary but are restricted
by the discrete magnitude of the magnetic monopole charge. An algebra, isomorphic to angular
momentum, appears. This algebra is used to define a spherical star product. Solutions are obtained
for dynamics in the presence of additional angular dependent potentials.

DOI: 10.1103/PhysRevD.70.087702 PACS numbers: 02.40.Gh
Noncommutativity between operators corresponding to
space coordinates on a plane can be brought about via
two, not totally disconnected, procedures. In the first case
we replace the ordinary product between two functions by
the Moyal star product [1]

f�x� ? g�x� � exp
�
i
�ab

2
@�x�a @�y�b

�
f�x�g�y�jy�x; (1)

�ab is an antisymmetric tensor. The second approach
consists of having a particle move on a plane in the
presence of a very strong, constant magnetic field perpen-
dicular to the plane. Letting the ratio of strength of the
magnetic field to the mass of the particle approach infin-
ity forces the system to lie in the lowest Landau level.
Restricting the dynamics to this level permits us to treat
one of the planar coordinates as a momentum conjugate
to the other one and thus introduce a noncommutativity
between coordinate variables [2–5]. In this work we
extend this second approach to the motion of particles
on a sphere, namely, to noncommutativity between angu-
lar variables. The idea of using magnetic monopoles to
study the motion of charged particles on a sphere, in
analogy to a uniform field for dynamics on a plane,
goes back to investigations of the fractional quantum
Hall effect [6] and was noted in the study of noncommut-
ing variables in nonuniform magnetic fields [7]. For this
purpose we consider a particle of charge e and mass �
moving on a sphere of radius r in the presence of a
magnetic field due to a monopole of charge q=e; the
Dirac quantization condition limits q to the values n=2
where n is an integer. In the northern patch, the one
excluding the south pole, the Hamiltonian is [8]

H �
1

2�r2

�
p2
� �

�p� � q�1� cos���2

sin2�

�
: (2)

The simple approach would be to consider the above
Hamiltonian in the limit � ! 0 where we obtain the
address: mbander@uci.edu
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constraints p� � 0 and p� � q�1� cos�� which in turn
would imply the commutator

�cos�;�� �
i
q
: (3)

In the Cartesian case the right-hand side of the above
takes on any value inversely proportional to the strength
of the applied magnetic field. In the present situation these
values are restricted by the discrete possibilities of the
magnetic monopole charge. For functions periodic in �
this may be rewritten as

�cos�; ei�� � �
ei�

q
: (4)

Multiplying both sides by sin� we obtain a commutator of
variables well defined on a sphere

�cos�; sin�ei�� � �
sin�ei�

q
: (5)

We shall obtain a version of (5) in a more rigorous way
by considering the algebra of spherical harmonics to be
restricted to the lowest level of (2). Wu and Yang [8,9]
studied this problem extensively and wave functions and
their properties are discussed in these references. The
eigenvalues of (2) are Eq;l;m � �l�l� 1� � q2�=�2�r2�,
with l � jqj, jqj � 1, jqj � 2; . . . , and �l 
 m 
 l; each
level is �2l� 1� fold degenerate with eigenvalues being
the monopole harmonics [10], Yq;l;m��;��; up to a phase
these harmonics are multiples of rotation matrix elements
[9]. The lowest eigenvalue, Eq;q;m � jqj=�2�r2�, is sepa-
rated by 2�jqj � 1�=�2�r2� from the next level. Thus in
the limit � ! 0 we may restrict the dynamics to the
lowest level with states jq; q;mi. As most expressions
depend on jqj we shall treat the case q > 0.
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To this end we define a spherical q product:

hq; q;m2j�f��;��  g��;���qjq; q;m1i

�
X
m

hq; q;m2jf��;��jq; q;mi

� hq; q;mjg��;��jjq; q;m1i; (6)

where

hq; q;m0jf��;��jq; q;mi �
Z

Y�
q:q;m0 ��;��

�f��;��Yq:q;m��;��d�: (7)

Equation (5) suggests that we look at the matrix elements
of Y1;m��;�� in the level l � q. All such expressions may
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be found in [9].

hq; q;m2jY1;m��;��jq; q;m1i � ��1�m2�1�q�2q� 1�

�

�������
3

4�

s � q 1 q

�q 0 q

�

�

� q 1 q

�m2 m m1

�
; (8)

where the arrays are Wigner 3j symbols and m � m2 �
m1. Explicit expressions for these 3j symbols are readily
available [11] yielding
hq; q;m2jY1;m��;��jq; q;m1i �
��1�m�1

q� 1

�������
3

4�

s 8>><>>:
��������������������������������������
�q�m2��q�m1�

p
for m � 1;

m1 for m � 0;
�

��������������������������������������
�q�m2��q�m1�

p
for m � �1:

(9)
Using (6), the q commutator is defined as

�f��;��; g��;���q � �f��;��  g��;���q � �g��;��

f��;���q; (10)

and we obtain

�Y1;0��;��; Y1;1��;���q � �
1

q� 1

�������
3

4�

s
Y1;1��;��; (11)

which agrees with (5) for large q. The q commutator of
Y1;1 with Y1;�1 is

�Y1;1��;��; Y1;�1��;���q �
2

q� 1

�������
3

4�

s
Y1;0��;��: (12)

From (9) or from (11) and (12) we find that under the
spherical q product the Y1;m’s form an algebra isomorphic
to angular momentum with

�q� 1�

�������
4�
3

s
Y1;1 $ L�; �q� 1�

�������
4�
3

s
Y1;0 $ �Lz;

�q� 1�

�������
4�
3

s
Y1;�1 $ �L�;

(13)

or equivalently,

��q� 1�r̂ $ L: (14)
In addition to nontrivial commutation relations for
angular position operators, we would like to obtain a
definition of a star product for these variables. Such a
star product will agree with the q product only for com-
mutators but not for simple products [3,5]. We do require
that a star product reduce to an ordinary one when multi-
plying commuting variables; the q product does not do
that. For Cartesian coordinates the most direct way of
obtaining a star product in (1), consistent with �ra; rb� �
i�ab, is through the Fourier transform. Namely,

eikreiqr � e�i=2��
abkaqbei�k�q�r: (15)

For the angular case, we must modify the product of two
spherical harmonics to allow for noncommuting angular
variables. To this end we start with an unconventional
expression for the coefficient of YL;M in the expansion of
the product of two spherical harmonic (usually written as
a product of 3j symbols),

R
Yl1;m1

�r̂�Yl2;m2
�r̂�Y�

L;M�r̂�dr̂.
From the expansion of a plane wave in terms of spherical
waves we find

Yl;m�r̂� �
i�l

4�jl�kr�

Z
eikxYl;m�k̂�dr̂; (16)

this expression is independent of the magnitudes of k and
r. The previously discussed expansion coefficient be-
comes
Z
Yl1;m1

�r̂�Yl2;m2
�r̂�Y�

L;M�r̂�dr̂ �
i�l1�l2

jl1�kr�jl2�qr�

Z
eikreiqrYl1;m1

�k̂�Yl2;m2
�q̂�Y�

L;M�r̂�dr̂dk̂dq̂: (17)
When the components of r̂ commute with each other the
product of the two exponentials in the above integrals is
treated normally. In the noncommuting situation we have
to define such a product to be consistent with the com-
-2
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mutators in (11) and (12). Using the correspondence in
(14) we may make the replacement

exp�ik  r� ! exp
�
�ir

1

q� 1
k L

�
(18)

with a similar expression for exp�iq  r�. The product of
the two exponentials is treated as a product of two rota-
tions. The result is then inserted into (17) to obtain the
desired coefficients. This time the result depends on the
magnitudes k and r indicating that, as in the Cartesian
case, different star products will result in the same star
commutator. This procedure is a specific construction for
087702
the rotation group which agrees with a general study of
such products using coherent state bases [12].

Following Peierls [13], who studied the problem of a
charged particle that, in addition to the strong magnetic
field, is acted on by some potential, we can add an angle
dependent potential, V��;��, to the present problem. In
general, the solution requires the diagonalization of a
�2q� 1� � �2q� 1� matrix. In the simple case V��;�� �
# cos� the eigenstates are still the jq; q;mi’s and the
corresponding energies are

Eq;q;m � q=�2�r2� � ��1�m
#m
q� 1

: (19)
[1] J. E. Moyal, Proc. Cambridge Philos. Soc. 45, 99 (1949).
[2] D. Bigatti and L. Susskind, Phys. Rev. D 62, 066004

(2000).
[3] R. Jackiw, Nucl. Phys. B, Proc. Suppl. 108, 30 (2002).
[4] R. Jackiw, Ann. Inst. Henri Poincaré 4S2, S913 (2003).
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