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Abstract
Enabling Full-Stack DNN Accelerator Design and Evaluation on Synthesizable Hardware
by
Hasan Nazim Genc
Doctor of Philosophy in Computer Science
University of California, Berkeley

Krste Asanovic, Chair

The growing diversity of computationally demanding DNN workloads, together with the
long-running decline of technology-scaling trends, has motivated the design of a great many
diverse specialized hardware accelerators. While these accelerators provide significant im-
provements to performance and energy consumption — making the modern wave of Al
innovation possible — they introduce significant challenges to computer architects, program-
mers, and hardware designers, due to the difficulty of (i) exploring the very broad design
space they represent, (ii) translating such designs rapidly to high-quality RTL and software
libraries, and (iii) evaluating such designs in realistic full-system contexts early on in the
design process.

Prior work has attempted to address these difficulties by proposing new accelerator design
frameworks which allow users to change only a few settings in a config file, or a few lines of a
domain-specific language, from which they can rapidly generate new synthesizable hardware,
or new high-level models that can guide architectural decisions. Many of these frameworks
also attempt to make accelerator design more principled by separating the different concerns
which go into accelerator design, so that each can be explored individually, and in relation
to other design choices.

However, prior accelerator generators and design frameworks often lack the ability to pro-
vide users visibility into the impact that the full system and software stack have upon DNN
accelerator performance, such as the potential for outer caches, virtual address translation
mechanisms, or host CPUs to bottleneck performance if they have not been carefully tuned
along with the accelerator’s functional units or spatial arrays. Prior accelerator design frame-
works which separate out different design concerns are also are not capable of generating
high-quality RTL for both dense and sparse accelerator ASICs, which limits their ability
to cover various modern workloads which sparsify DNN layers to improve performance or
energy efficiency.



This thesis presents two projects, Gemmini and Stellar, which address these difficulties.
Gemmini is a DNN accelerator evaluation framework which, while generating efficient spa-
tial arrays and accelerators, is primarily intended to help users evaluate the impact of SoC
components outside of the accelerator itself, such as external caches or virtual address trans-
lation mechanisms, upon overall DNN accelerator performance. Stellar is another frame-
work which provides abstractions that help users to design and explore different components
of both dense and sparse accelerators, while separating out the different concerns that go
into accelerator design, such as an accelerator’s functionality, its dataflow, the sparse/dense
data formats it supports, its load-balancing strategies, and the private memory buffers it is
equipped with. Gemmini-generated dense DNN accelerators achieve 87% the performance
of prior state-of-the-art accelerators such as NVDLA on image classification networks such
as ResNet50, and enable insights into how minor changes to system components such as
TLBs can improve end-to-end DNN performance by up to 15%. Stellar-generated acceler-
ators achieve up to 92% the performance of hand-written accelerators, with less than 15%
area overhead and power overheads on various DNN layers as low as 7%.



To my son.



Contents

Contents

List of Figures
List of Tables

1 Introduction

2 Background: The Spatial Accelerator Design Space

2.1 Spatial Accelerators . . . . . . ...
2.2 Dense Accelerator Generators . . . . . . . .. ... ... L.
2.3 Sparse Accelerator Generators . . . . . . . .. ...
2.4 Full-Stack, Full-System Visibility . . . . ... ... .. ... ... ......
2.5 SUIMMATY . . . v v v et e e

3 Gemmini: Full-Stack Evaluation of DNN Accelerators

3.1 Introduction . . . . . . . . .
3.2 Gemmini Generator . . . . . . .. e
3.3 Gemmini Evaluation . . . . . . . ..
3.4 Gemmini Case Studies . . . . . . . . L
3.5 Summary ...

4 Stellar: Designing and Synthesizing Accelerators

4.1 Introduction . . . . . . . . ..
4.2 Specifying Accelerators in Stellar . . . . . . .. .. .00
4.3 Hardware Generation in Stellar . . . . . . . . ... ...
4.4 Limitations . . . . . . . . .
4.5 Programming Interface . . . . . . . . ... L
4.6 Evaluation . . . . . . .. o
4.7 Summary ...

5 Conclusion
5.1 Future Work . . . . . . .

i

ii

iv

vii

p—

w W

16
16

18
18
20
38
42
46

47
47
49
57
71
71
73
78

79



5.2 Lessons Learned

Bibliography

il



v

List of Figures

2.1

2.2

2.3

24

2.5

2.6

2.7

2.8

2.9

3.1
3.2
3.3

3.4
3.5

3.6

Spatial arrays with different dataflows for matrix multiplications and two-dimensional

convolutions. . . . . . .. L 6
Dataflows for convolutions specified by spatially unrolling the loop axes in List-
ing 2.1, as proposed by Interstellar [97]. . . . . . . . . . .. ... ... .. 8
PE underutilization caused by spatially unrolling the kch dimension from List-
ing 2.1, which is small for a subset of common DNN layers. . . . . . . . ... .. 9

Different pipelining strategies for spatial arrays whose dataflows keep the same
elements stationary. The design in (a) pipelines the multiply-accumulates used
to calculate a vector dot-product. . . . . . .. ... 9
A spatial array with a hexagonal dataflow. This dataflow cannot be described
simply by specifying a set of loop axes which will each be spatially unrolled on
to a different physical spatial array dimension. . . . . . . . . ... ... .. ... 10
Memory buffers in a typical dense spatial accelerator. (a) shows centralized,
global buffers which may be hundreds of kilobytes or megabytes large. (b) shows

distributed, small register files local toeach PE. . . . . . . ... ... ... ... 11
A 2x3 matrix represented using the fibertree notation in (a) as a dense matrix,
and (b) in the CSR format. . . . ... ... ... ... Lo 12
NoCs required for different types of work-sharing and load-balancing between
PEs in a spatial array whose workloads may be imbalanced. . . . . . . ... .. 14

Load-balancing a spatial array whose PEs consume an imbalanced tensor B by
flattening and retiling the elements of B. In (a), each PE consumes a different

row of B, but in (b), each PE can consume elements from any row of B. . . .. 14
Gemmini hardware architectural template overview. . . . . . . . .. .. ... .. 19
Microarchitecture of Gemmini’s two-level spatial array. . . . . . . .. . ... .. 20

Examples of two different spatial architectures generated by Gemmini. Both
perform four multiply-accumulates per cycle though with different connectivities

between multiply-and-accumulate units. . . . . . .. ... oo 22
PEs that compute A x B = C with different dataflows. . . . . . . .. .. .. .. 23
The order in which inputs stream into a matmul spatial array that computes

A x B = C with different dataflows. . . . . . ... ... 26

The systolic transposer included in Gemmini-generated accelerators while trans-
posing two matrices, A and B, back-to-back. . . . . ... ..o 27



3.7
3.8

3.9

3.10

3.11

3.12

3.13
3.14

3.15

3.16

3.17

3.18

4.1

4.2

4.3
4.4

4.5

4.6

4.7

4.8

Scratchpad and accumulator addressing scheme for a 2x2 spatial array. . . . . . 28
The scratchpad and accumulator columns each connect to only one or two PEs
along the edges of the matmul array. . . . . . .. .. ... ... ... ...... 29
How Gemmini’s DMA moves matrices between DRAM or outer caches, and Gem-
mini’s private scratchpad, based on programmer-defined strides. . . . . . . . .. 31

Gemmini’s DMA replicates input activation data in the scratchpad when the
input channels are smaller than the number of scratchpad columns. When the

number of input channels is larger, no such replication occurs. . . . . . ... .. 32
TLB miss rate over a full ResNet50 inference, profiled on a Gemmini-generated
accelerator. . . . .. L 36
Example dual-core SoC with a Gemmini accelerator attached to each CPU, as
well as a shared L2 cache and standard peripherals. . . . . . ... ... ... .. 38
Area breakdown and layout of accelerator with host CPU. . . . . . ... .. .. 39
Speedup compared to an in-order CPU baseline. For CNNs, im2col was performed
on either the CPU, or on the accelerator. . . . . . . . .. . ... ... ...... 40
The matmul utilization while performing a BERT inference on Gemmini, with
different scratchpad and accumulator sizes. . . . . . . . . . ... ... ... ... 41
The time spent on different operations during a I-BERT inference. For all se-
quence lengths, the total execution time is dominated by matmuls. . . . . . .. 42
Normalized performance of ResNet50 inference on Gemmini-generated accelerator
with different private and shared TLB sizes. . . . . . . . . . ... .. ... ... 43
Performance of the various SoC configurations in the case study, normalized to
the performance of the Base configuration in Table 3.5. . . . . . . ... ... .. 45

A simplified illustration of Stellar’s accelerator specification and hardware gen-
eration process, from the user-specified inputs on the left to the Verilog and

programming interface outputs on the right. . . . . . ... ... ... ... ... 48
Examples of space-time-transforms (each named T") and the dense matmul dataflows
that result from them. . . . . . . .. .. .. ... 50
A three-dimensional spatial array generated by Stellar. . . . . . ... ... ... 52
Different pipelining strategies for the input-stationary matmul accelerator in Fig-

ure 4.2a. . ..o 53
The input-stationary matmul array from Figure 4.2a after the B-matrix is spec-

ified as a sparse CSR matrix. . . . . .. . .. ... .. 54
The output-stationary matrix from Figure 4.2b when the A-matrix conforms to

the A100 2:4 sparsity format [64]. . . . . . . . ... Lo 55
The sparse matmul array from Figure 4.5, executing an imbalanced B-matrix

with and without load-balancing. . . . . . . . . ... ... ... ... 55

An overview of the hardware generation process for Stellar, from the initial archi-
tectural specification, to the unoptimized and optimized IRs, to the final Verilog
and programming interface outputs. . . . . . .. ..o oo 56



4.9 Hardware architecture overview for an example sparse matrix-multiplication ac-
celerator. . . . . L L
4.10 The internal representation, called an IterationSpace for a spatial array per-
forming a matmul as in Listing 4.1 as it is transformed from a purely functional
description to a physically realizable two-dimensional spatial array. . . . . . ..
4.11 The effect of more or less flexible load-balancing strategies on PE-to-PE commu-
nication. . . . . . .. e e e
4.12 The architecture for a Stellar PE. . . . . . . . ... ... ... ... ... ...,
4.13 The read/write pipeline stages for a private memory buffer storing tensors with
different dense and sparse data formats. . . . . . .. ... ... ... ... ...
4.14 Tiling two-dimensional 2x2 matrices out of an imbalanced CSR matrix. . . . . .
4.15 The read/write pipeline stages for a private memory buffer dense matrices, with
two pipeline banks and two SRAM banks. . . . . .. ... ... ... .. ... .
4.16 Delay registers surrounding a dense matmul array. . . . .. ... ... ... ..
4.17 Various register files generated by Stellar, with more or less aggressive optimiza-
tions. All regfiles in this figure have four entries, two input ports on the left, and
two output ports on the right. Observe that when input/output ports can only
connect to regfile edges, elements must travel through the regfile entries so they
can reach the output ports. . . . . . . . ... o
4.18 Scattered partial sums generated by OuterSPACE. . . . . ... ... ... ...
4.19 DMA designs that can be generated by Stellar. Both may access the same number
of DRAM channels with the same maximum DRAM bandwidth, but (b) is better
for pointer-chasing workloads. . . . . . . . . ... ..o
4.20 The PE utilization of both the handwritten and Stellar-generated Gemmini ac-
celerators on ResNetb0. . . . . . . . . . .
4.21 Performance and power consumption of Stellar-generated and handwritten dense
and sparse accelerators. . . . . . .. ..
4.22 Spatial arrays that merge scattered partial matrices. In (a), every PE merges a
separate row of the partial matrices, and every PE only outputs a single element
every cycle. In (b), the different rows of the partial matrices are flattened into a
single fiber from which multiple elements are merged every cycle. . . . . . . ..
4.23 The number of merged elements generated every cycle by both row-partitioned
and flattened mergers when merging partial matrices with SpArch’s proposed
execution order [104]. . . . . . . . ..o

vi



vil

List of Tables

2.1

3.1

3.2
3.3
3.4
3.5

4.1

4.2
4.3

A comparison of DNN accelerator generators and design frameworks. = The
dataflow specification is implicit to the functional description, and not separated.
x* Various dataflow options are provided by the framework, but users cannot add
their own custom dataflows. { Supports sparse memory traffic, but not sparse
execution on spatial arrays. I Block sparsity. . . . . . .. ... )

A summary of Gemmini hardware-configurable parameters. For the integer ranges,
all power-of-2 values between the maximum and minimum are permitted. All pa-
rameters are independent of each other, and the size of the total search space is

the cross-product of all possible parameter values. . . . . . . ... .. ... ... 21
Legal and illegal transpositions on Gemmini. . . . . . . . . . ... .. ... ... 27
DNN kernels available in Gemmini’s mid-level programming interface. . . . . . . 33
Gemmini’s low-level ISA, summarized. . . . . . . . . ... ... ... ... 34

Gemmini SoC configurations for the system-level resource partitioning case study. 44

A representative subset of the commands in Stellar’s RISC-V ISA. Each instruc-
tion has two 64-bit register arguments, Rs! and Rs2. Bits [63:20] in Rsl are
currently unused. . . . . .. .o 72
Area comparison between Gemmini accelerators. . . . . . . ... ... ... 75
The SparseSuite matrices we include in our evaluation. . . . . . .. . ... ... 78



viii

Acknowledgments

It may be cliche to say, but is undeniably true, that this PhD was only possible through the
advice, input, and tireless help of a great many people, to whom I am deeply grateful.

First and foremost, I am grateful for the help and advice of Krste Asanovi¢, my advisor,
and Sophia Shao, who I have long regarded as a sort of unofficial advisor. Krste accepted
me into his research group, and through all these years, has always been ready to provide
me with invaluable feedback on everything from high-level research goals and directions to
low-level hardware design problems. I would be well-content to understand anything by the
end of my life as well as he understands computers. Sophia, on the other hand, joined our
lab shortly after I did, as a new professor, and I cannot imagine how different this experience
would have been without her there. She helped me find an angle by which to differentiate
my first project, Gemmini, from the many DNN accelerators which came before and after it,
allowing us to finally find a home for the work after earlier attempts had failed. Since then,
she has never hesitated to help me identify research problems worth solving, ask the hard
questions necessary to deliver a project to a satisfactory conclusion, or to dive deep into the
cause of any hardware or software inefficiency.

I am also grateful to my other dissertation committee members, Borivoje Nikolic and
Vijay Janapa Reddi. Both provided me with invaluable feedback from my quals all the way
up to my final dissertation years later. Vijay, in fact, began advising me when I was only
an undergrad sophomore, and I am thankful that he was willing to serve on my dissertation
committee at the end when I at last graduated with my final degree.

I am also grateful to Ameer Haj-Ali, Alon Amid, Vighnesh Iyer, and Seah Kim, who
were my earliest collaborators at Berkeley. One’s earliest collaborators set the baseline for
what one expects from future collaborators, and I was lucky that they set a high baseline for
me indeed. Closer to the end of my PhD, Prashanth Ganesh and Hansung Kim also worked
very closely with me, meeting the aforementioned standard easily. Without such friends and
co-authors, none of my work would have gotten anywhere close to the finish line.

Furthermore, I worked with a great many other people during this process; I list some of
them below, but by no means is this a complete list. John Wright, Daniel Grubb, Harrison
Liew, and Colin Schmidt helped me complete my first tape-out; though the process was
grueling, sitting around them (and Vighnesh) every day, all day, for several weeks on a large
table in BWRC was the only thing that made it possible to squeak out a violation-free
design at the end. Dima Nikiforov and Simon Guo helped me create tutorials for Gemmini;
the slides they helped me make and present have since been downloaded hundreds (perhaps
thousands) of times online. Jerry Zhao and Abraham Gonzalez helped me get unstuck
whenever Chipyard, or hardware design in general, stumped me (I got stuck quite often).
Qijing Jenny Huang and Grace Dinh knew much about topics of which I knew very little;
their assistance saved me much time and effort. I am grateful also to Vikram Jain, Coleman
Hooper, Josh Kang, Kris Dong, Gilbert Bernstein, Yuka Ikarashi, Charles Hong, Sehoon Kim,
Amir Gholami, Ja Wattanawong, Albert Ou, Howard Mao, Kevin Anderson, Sahil Bhatia,
Igor Kozachenko, Adam Izraelevitz, Brendan Sweeney, Richard Lin, Behzad Boroujerdian,



X

Matthew Halpern, Marcelino Almeida, Yazhou Zu, Srivatsan Krishnan, Ting-Wu Rudy Chin,
David Biancolin, John Koenig, and Schuyler Eldridge. If there are others whom I have
neglected to mention, the fault is with my memory and not with your contributions.

I was fortunate also to have a large number of undergraduate and Master’s assistants
over the past six years, including Richard Yan, Avinash Nandakumar, Leena Elzeiny, Divija
Hasteer, Pranav Prakash, SooHyuk Cho, Sherry Fan, and Kareem Ahmad. They made
excellent contributions to my projects, and often surprised me by surpassing the work that
I would have expected from a PhD student.

The assistance of the staff at SLICE (formerly ADEPT [formerly ASPIRE]) was also
indispensable and I am grateful therefore to Kostadin Ilov, Ria Briggs, and Tamille Chouteau.
To Kosta, I apologize for the times I forced machines to reboot.

Finally, I am grateful to my family: to my wife, Selva, who followed me across states,
made the long nights and debugging marathons much easier to bear, and who reminded me
that a much bigger, more important world exists outside of the IDE and waveform viewer;
to my parents, Emine and Ismail, who never tired of celebrating every small success and
providing encouragement when facing every big difficulty; and to my sister, Fatma, who,
unlike me, had the good sense to become a real doctor. Their constant caring love and
support has been the pillar on which my whole life rests.



Chapter 1

Introduction

Modern computer architects find themselves squeezed from both ends: as DNN (deep neu-
ral network) workloads continue to place ever-higher compute and memory capacity de-
mands on their underlying hardware, the transistor-scaling laws which traditionally made
such hardware faster, smaller, and more efficient have gradually plateaued. The pressing
need to accelerate such applications despite the (partial) demise of Moore’s Law and other
technology-scaling trends has motivated architects to search for optimizations further up
the hardware-software-system stack: through microarchitectural innovations; through more
careful scheduling or partitioning of DNN operations across multiple functional units, ac-
celerators, or independent chips [43]; or through the co-design of separate hardware and
software components so that neither imposes unnecessary inefficiencies on the other.

Such strategies have succeeded in accelerating DNN workloads, not only in academia, but
also in commercial products [64]. However, these techniques typically require an increase
in the complexity of both hardware and software designs. For example, simple systolic ar-
rays may need to be made more reconfigurable [25]; balanced cache-hierarchies may need to
become imbalanced with each cache independently tuned for a different tensor [58]; sophisti-
cated load-balancing techniques may necessitate expensive NoCs (networks-on-chip) to cope
with unevenly-distributed workloads; or software schedules may become so complicated that
new programming languages are needed for programmers to easily represent them across
different accelerators [36].

The complexity and diversity these solutions impose spans across the hardware-software-
system stack. The immense diversity of DNN models and software workloads is matched by
an equal variety of co-designed specialized hardware accelerators. A single accelerator may
need to run multiple workloads simultaneously, or a single DNN workload may need multiple
accelerators for different operations that it executes — in either case, the exact partitioning
of resources among competing hardware and software components, and the interactions
across different layers of the stack can cause subtle and difficult-to-diagnose bottlenecks and
unexpected inefficiencies.

To maintain high architect and engineer productivity in the face of this complexity,
new tools are needed: to design and explore diverse accelerator solutions, and to evaluate
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their performance and efficiency once they’ve been integrated into a full-system, full-stack
environment. This work describes two such tools, Gemmini [22] and Stellar, which enable
developers to (i) rapidly explore accelerator designs for DNN (and other) workloads, (ii)
automatically generate high-quality RTL for complete, programmable SoCs containing their
accelerators, and (iii) evaluate how their accelerators run on real-world end-to-end workloads,
when interacting with both external hardware on the SoC and with the higher-level software
stack.

Gemmini is a DNN accelerator generator, which includes a flexible programming stack
and various counters and profilers which are designed to evaluate the impact of SoC compo-
nents outside of the accelerator itself, such as external caches or virtual address translation
mechanisms, upon overall DNN accelerator performance. The accelerator generator, written
in Chisel [3], primarily targets dense CNN and transformer inference workloads, although it
also includes support for certain other applications such as DNN training. Gemmini covers
a wide design-space of dense DNN accelerator designs, with different spatial arrays, integer
or floating-point datatypes, dataflows, and memory-hierarchies, and generates RTL for them
which achieves real-time performance on real-world workloads.

Stellar, on the other hand, is designed to cover a wider space of accelerator designs
for both dense and sparse workloads. Stellar introduces abstractions that allow users to
separate out the different concerns that go into accelerator design: the functionality of an
accelerator, its dataflow, the dense or sparse data formats it supports, and its load-balancing
strategies. Once users specify their accelerators using these abstractions, Stellar generates
high-quality RTL which achieves comparable performance and area efficiency to handwritten
Verilog designs from prior work.

Together, the two works together enable architects to more quickly design, generate,
and evaluate novel accelerators in a full-system, full-stack context. Chapter 2 describes
prior, related work and provides further background on accelerator design and accelerator
generators. Chapter 3 provides an in-depth description of Gemmini, as well as case studies
showing how it can be used to derive interesting insights into how “full-system components”
affect DNN accelerator performance. Chapter 4 introduces Stellar, describes how its frontend
enables architects to quickly design and explore accelerators, and how it then generates high-
quality RTL based on users’ frontend descriptions. Finally, Chapter 5 concludes the thesis
and describes future research opportunities building on the work described here.



Chapter 2

Background: The Spatial Accelerator
Design Space

The growing diversity of DNN workloads has spurred the development of an equally wide
variety of specialized hardware accelerators, typically incorporating highly-parallel “spatial
arrays” which are responsible for executing most arithmetic operations. To expedite the
creation of so many accelerators, prior work has proposed a number of automated accelerator
generators, which allow users to co-design or tune their hardware and software workloads
at higher levels of abstractions and then generate high-fidelity models or high-quality RTL,
as opposed to having users write new ad-hoc RTL by hand for every new accelerator design
point. However, prior accelerator generators either fail to provide insight into the impact that
all the different components of the hardware-software-system stack have upon accelerator
performance, or they fail to generate actual synthesizable RTL for the full design space of
sparse and dense DNN workloads — limitations which are addressed by Gemmini [22] and
Stellar.

This chapter describes spatial accelerators from prior work (Section 2.1), as well as high-
level generators and frameworks for both dense (Section 2.2) and sparse (Section 2.3) ac-
celerator design. Section 2.4 describes how prior accelerator generators, for either sparse or
dense workloads, provided only limited insight into how the full hardware/software stack
determines overall accelerator performance and efficiency. Finally, Section 2.5 describes how
our work addresses these limitations. Table 2.1 summarizes how our work compares to prior
accelerator generators and design frameworks.

2.1 Spatial Accelerators

Researchers have proposed a large variety of novel DNN accelerators with different per-
formance and energy-efficiency targets for different applications across a diverse set of de-
ployment scenarios [9, 18, 60, 86]. At the architecture level, different DNN accelerators
exploit different reuse patterns to build specialized memory hierarchies [98] and interconnect
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networks [48] to improve performance and energy efficiency. Most existing hardware DNN
architectures are largely spatial, where parallel execution units are laid out spatially either
in a systolic fashion, as in the case of the TPU, or in parallel vector units like Brainwave [21]
and NVDLA [80]. Many exploit either structured or unstructured sparsity in their workloads
(typically imposed during or after training at a small cost to accuracy) in order to achieve
higher performance or energy efficiency [14, 15, 31, 64, 71, 67].

The design space for dense accelerators is well understood as they typically differ in
the dataflows they support (which may be fixed or runtime-configurable), the quantized or
unquantized datatypes they operate on, the functional operations they can perform (e.g.,
ReLU, GeLU, or other activation functions for more recent DNNs), or in their resource con-
straints, e.g. for small accelerators targeting low-power edge devices or for high-performance
accelerators located in the cloud.

Sparse accelerators differ in even more ways, due to the wide variety of sparsity distri-
butions and the corresponding sparse data formats in sparse workloads. Some sparse accel-
erators are designed for extremely sparse workloads, where far fewer than 1% of elements
are non-zeros [66, 82, 104, 102]. Conversely, accelerators optimized for sparse DNNs [68,
64, 72] target matrix densities ranging from 30% to 70%. The vast range of sparsity levels
necessitates the adoption of distinct sparse data formats and hardware designs, exposing a
substantial design space.

As a result, existing accelerator designs generally differ from each other in multiple ways.
For example, recent sparse accelerator proposals commonly propose not only new hardware
dataflows but also new sparse formats and load-balancing strategies [82]. This inherent
diversity complicates the process of comparing different accelerators, making it challenging
to discern which feature contributes to specific improvements or drawbacks. However, such
nuanced comparisons are crucial for architects, providing insights into the key principles
underlying each design and guiding the selection of optimal solutions for specific workloads.

Furthermore, although spatial arrays often attract a disproportionate amount of interest
from hardware designers, they sit within a wider SoC and hardware/software stack, where
components outside of the spatial arrays themselves may interact in unexpected ways to influ-
ence workload performance and efficiency. For example, cache and memory hierarchies, host
CPUs, page-table walkers, and even operating system interrupt and prioritization schemes
can impose delays which prevent the spatial accelerator from achieving high utilizations.
Some prior work has attempted to address these sources of inefficiency from “external” com-
ponents [35, 27, 57], but tools that provide users with visibility into how all these components
interact holistically have traditionally not been available for DNN accelerator designers.

2.2 Dense Accelerator Generators

To help meet the ever-growing demand for custom dense spatial accelerator designs, prior
efforts have developed hardware-generation frameworks that systematically enumerate the
dense design space. These frameworks allow designs to be expressed along orthogonal design
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dimensions, such as functionality to describe an accelerator’s expected outputs, dataflow
to describe data reuse patterns, and memory buffers which describe memory hierarchies.
Frameworks like PolySA [11], AutoSA [89], and Interstellar [97] allows users to succintly
describe a broad set of of dense accelerators using these well-defined, orthogonal design di-
mensions. These frameworks can automatically synthesize RTL implementations for FPGAs
or ASICs, together with application-level APIs as their programming interfaces, while offer-
ing a comprehensive separation of design concerns for systematic design space exploration.
Other works, such as NVDLA [63], VTA [61], or Tabla [56] provide highly parameterized
handwritten accelerators, or convenient pre-defined operators and templates which can be
composed by users into more complex accelerators, but lack the ability to express certain
design considerations, such as dataflows, independently of other design concerns.

The following subsections describe in further detail how these dense accelerator design
frameworks specify and taxonomize different design considerations, such as dataflows and
memory buffers, and their existing limitations.

2.2.1 Dataflow

Dense accelerator generators are often focused on expressing and generating different dataflows
for spatial accelerators. A dataflow is a description of how inputs and outputs travel through
a spatial array, and how they are re-used as they travel. For example, consider Figure 2.1,
which illustrates spatial arrays for matrix multiplications holding either weights (Figure 2.1a)
or outputs (Figure 2.1b) stationary in local registers, while other tensors travel between the
processing elements (PEs), or Figure 2.1c, which shows a two-dimensional convolution where
neither inputs, nor weights, nor outputs remain stationary.

Switching from one dataflow to another, as from Figure 2.1a to Figure 2.1b, does not
necessarily change the number of functional units or the total maximum throughput of the

1 @41 = by [+ by by by Wyq ipg Wy
{ ! by by Wit iy Wrz 22
822 812 - b21 Bl b22 * * ‘ D/O o
! ! 12811 = G141 7 C12 | 21
l45 |
Coi  Coo | | ' | 13 123
Ci1  C12 g2 821 | Cp1 7 C22 ] 022012
(a) Weight-stationary matmul. (b) Output-stationary matmul. (c) 2D convolution.

Figure 2.1: Spatial arrays with different dataflows for matrix multiplications and two-
dimensional convolutions.
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spatial array (although we will see later how dataflow inflexibility can limit performance for
certain workloads). Dataflow exploration for dense accelerators is therefore often intended
to minimize energy consumption by reducing the number of times which high-reuse elements
must be read from or written into large SRAMs or register files, even if overall performance
remains unchanged.

Which input or output elements will have the highest re-use depends on the exact work-
loads being run, and often varies significantly even within the same end-to-end workload. For
example, convolutions in popular CNNs often have small filters which are reused hundreds
or thousands of times across large input activation tensors, however, later layers in CNNs
tend to have input activations with smaller planar dimensions which can significantly reduce
the relative reuse of filter elements. The diversity of existing software workloads therefore
requires diverse hardware dataflows to be explored by architects.

Beyond data-reuse opportunities, there are more subtle differences between different
dataflows as well. For example, observe that the spatial array in Figure 2.1a accesses ele-
ments of a in a row-major order, but the spatial array in Figure 2.1b accesses them in a
column-major order which will require either than data is laid-out differently in memory, or
that hardware transposers are supplied to the accelerators to perform such transpositions
on-the-fly.

To make principled (and ideally automated) exploration of dataflows easier, numerous
attempts have been made to construct dataflow taxonomies. For example, Eyeriss [7] intro-
duces a dataflow classification scheme ultimately separating them into six classes: weight-
stationary, three different types of output-stationary, dataflows with no stationary elements,
and row-stationary (which was first introduced by the Eyeriss authors themselves).

Although this scheme is concise, easy-to-understand, and capable of explaining a great
number of past accelerators, it is fundamentally limited: there are after all, far more than six
possible spatial array dataflows. Any dataflow classification scheme which attempts to define
dataflow solely as a set of pre-defined “enums” will be difficult to extend as new dataflows
are discovered. (In fact, Eyeriss’s main innovation was a new dataflow which required the
above classification scheme to be expanded so that it could cover it).

Interstellar [97] (described above in Table 2.1) describes dataflows in a more principled
way: in terms of which loop axes are spatially or temporally unrolled across a physical
spatial array. For example, Figures 2.2a to 2.2b illustrate different convolutional spatial
arrays constructed by spatially unrolling different loops of a seven-nested convolutional for-
loop (shown for convenience in Listing 2.1).

Listing 2.1: Three-dimensional convolution.

1 for (int b = 0; b < batches; b++)

2 for (int orow = 0; orow < orows; orow-++)

3 for (int ocol = 0; ocol < ocols; ocol++)

4 for (int och = 0; och < ochs; och++)

5 for (int krow = 0; krow < krows; krow++)

6 for (int kcol = 0; kcol < kcols; kcol++)
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Figure 2.2: Dataflows for convolutions specified by spatially unrolling the loop axes in List-
ing 2.1, as proposed by Interstellar [97].

7 for (int kch = 0; kch < kchs; kch++)
8 Out[b][orow][ocol][och] 4=

9 In[b][orow+krow | [ ocol+kcol ][ kch] =
10 Wt[krow | [ kcol | [kch][och]

The spatial arrays in Figures 2.2a to 2.2b are all rectangular and systolic [47], however,
Interstellar also provides users with a boolean parameter that can be used to specify if a tree-
based, recursive reduction should be used when unrolling loops instead, as in Figure 2.2c.
A tree-based reduction can sometimes be used to construct shorter critical paths than a
systolic one.

Unrolling loops spatially, however, can lead to PE underutilization and reduced perfor-
mance when the loop dimension which is unrolled is smaller than the dimensions of the
spatial array. For example, consider again the convolutional spatial array in Figure 2.2b,
which spatially unrolls the input-channel and output-channel dimensions of convolution lay-
ers to construct a weight-stationary systolic array. Certain popular CNNs, however, have
layers with very few input-channels, such as the depthwise convolutions in Mobilenet [33]
which perform large numbers of convolutions with only a single input-channel each, or the
first layer of a CNN like ResNet50 [30] which consumes an RGB image with only three input
channels. Figure 2.3a illustrates how such a layer would be mapped onto a 16x16 spatial
array with the weight-stationary dataflow from Figure 2.2b; note that the maximum possible
utilization becomes 18.75%.

To support such types of workloads, Interstellar proposes a form of load-balancing which
it calls “replication.” As illustrated in Figure 2.3b, replication enables the dataflow to
optionally unroll an additional dimension spatially whenever PEs are unutilized, at the cost
of potentially greater hardware complexity.

Other works, such as PolySA [11], propose an even more flexible dataflow specification
scheme [42, 50, 74, 75, 101], where rather than simply selecting several loop dimensions to
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Figure 2.3: PE underutilization caused by spatially unrolling the kch dimension from List-
ing 2.1, which is small for a subset of common DNN layers.

unroll spatially, a more general “space-time transform” matrix is constructed by the user.
This space-time transform enables multiple loop axes to be unrolled spatially or temporally
onto the same dimension of the physical spatial array, resulting in designs which may have
different pipelining strategies based on how many dimensions were unrolled temporally, as in
Figure 2.4, or in designs which are not even rectangular, as in Figure 2.5. Figure 2.5 unrolls
three different axes of a matmul loop spatially onto a two-dimensional physical array. Build-

b1p by~ a4y ‘D"am b1, by~ a4y ‘D"am
Poy boy—~ ay, ‘D" Ao Poy boy—~ a5, ‘D" Ao
Ci2 Coo Ci2 Coo
C11 Co1 Ci1 Co1
(a) Pipelined dot-product. (b) Combinational dot-
product.

Figure 2.4: Different pipelining strategies for spatial arrays whose dataflows keep the same
elements stationary. The design in (a) pipelines the multiply-accumulates used to calculate
a vector dot-product.
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Figure 2.5: A spatial array with a hexagonal dataflow. This dataflow cannot be described
simply by specifying a set of loop axes which will each be spatially unrolled on to a different
physical spatial array dimension.

ing upon these space-time transform abstractions, more recent works, such as Rubick [53,
54], introduce frameworks which can decompose dataflows into separate specifications for
the order in which tensor elements are accessed by a spatial array, and the layout with which
these tensor elements are arranged in memory, enabling further automated optimizations.
Later, Section 4.3.2 in Chapter 4 will describe in more detail how these space-time transform
matrices are mapped to physical, synthesizable hardware.

2.2.2 Memory Buffers

Just as architects using dense accelerator design frameworks must choose dataflows which
maximize data re-use in the spatial array, so must they construct memory hierarchies which
exploit data re-use to perform the minimum number of energy-expensive SRAM reads and
writes.

For example, Interstellar will construct separate memory buffers for each level of the
loop being mapped to an unrolled spatial array!, and automatically calculate the neces-
sary capacities and bandwidths to keep the spatial array fully utilized when memory buffers
are double-buffered. AutoSA, similarly, automatically constructs L1 buffers with optional
double-buffering to feed spatial arrays with inputs at bandwidths which match their compu-
tational throughput.

MAGNet allows users to construct separate memory buffers for inputs, weights, and
partial sum accumulations in a convolution, with small optional caches, constructed of latch
arrays, providing an additional level of memory hierarchy. However, although separate mem-
ory buffers enable more aggressive hardware opimizations, note that memory buffers that
are shared across different matrices, like a single large memory buffer for both weights and

Tt is common for dense accelerator generators to construct one level of memory hierarchy for each level
of a nested loop; note, however, that some prior work argues that “imbalanced” memory hierarchies which
do not map one-to-one with loop nests can provide additional efficiency [58].
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Figure 2.6: Memory buffers in a typical dense spatial accelerator. (a) shows centralized,
global buffers which may be hundreds of kilobytes or megabytes large. (b) shows distributed,
small register files local to each PE.

inputs, will enable an accelerator to sustain high performance across a wider set of workload
dimensions or loop tile sizes. In addition to memory hierarchies external to the spatial array,
as in Figure 2.6a, some accelerator generators [97] also enable users to explore different sizes
for register files local to each PE, as in Figure 2.6b, to further reduce accesses to large SRAM
buffers.

Finally, note that the memory buffers constructed by dense accelerator generators are
oftentimes explicitly-managed, either by the programmer or by the accelerator generator
framework, to maximize data reuse across the memory hierarchy without incurring the higher
area or energy overhead of an implicitly-managed cache. For dense workloads specifically, it
is possible for programmers or automated frameworks [69] to calculate the optimal tile sizes
given a fixed memory hierarchy and DNN layer dimensions; explicit management is therefore
the optimal choice.

2.2.3 Limitations

Although the hardware design frameworks described [11, 89, 56] above can effectively sepa-
rate the concerns that go into dense accelerator design while generating high-quality RTL,
they are challenging to extend to sparse accelerator design. Sparse accelerators introduce
new key design considerations such as different sparse data structures and load-balancing
techniques, which are often overlooked by frameworks designed exclusively for dense sce-
narios. Additionally, these frameworks typically expose only application-level programming
interfaces which enable entire workloads to be offloaded to accelerators, but which lack the
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low-level ISA visibility which can help programmers who are targeting unusual or irregular
workloads across a broad set of deployment scenarios.

2.3 Sparse Accelerator Generators

While existing design frameworks for dense accelerators provide end-to-end flows from ab-
stract design specifications to RTL generation, frameworks dedicated to sparse accelerators
have primarily focused on modeling and simulating sparse hardware designs and are not able
to automate the RTL generation process. As such, they still leave significant manual work
for hardware designers, and may sometimes fail to expose low-level performance bottlenecks
not accounted for in higher-level simulators.

Specifically, recent works on modeling and simulating sparse hardware accelerators, such
as TeAAL [62], the Sparse Abstract Machine (SAM) [34], and Sparseloop [95], introduce
new abstractions for sparse data formats and load balancing, separately from other design
concerns. These works define the functionality of sparse accelerators using convenient and
intuitive syntax such as Einstein summations [19], the scheduling of operations on them using
Halide-like loop transformations, and their sparse data formats using extensible abstractions
such as fibertrees [84]. While TeAAL supports certain load-balancing schemes by allowing
various tensor dimensions to be flattened for balanced distribution to spatial array PEs, it is
difficult to describe more sophisticated load-balancing strategies [23], where individual PEs
in a spatial array might have greater load-balancing capabilities than others.

The following subsections describe in further detail how these frameworks allow users to
specify the sparsity formats, load-balancing schemes, and memory buffers needed.

2.3.1 Sparsity Formats

Sparseloop, TeAAL, and SAM all define the sparsity formats that their accelerators operate
on using the fibertree notation [84]. As illustrated in Figure 2.7, a data format, such as

Figure 2.7: A 2x3 matrix represented using the fibertree notation in (a) as a dense matrix,
and (b) in the CSR format.
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“Dense,” “Compressed,” or “Linked List,” is attributed to every dimension of a tensor. A
“Dense” dimension skips no elements at all, stores no associated metadata, and enables both
in-order iteration and efficient random-access. A “Compressed” dimension, on the other
hand, skips O-elements entirely (whether these 0-elements are individual scalar values or
empty rows/blocks), requires coordinate and pointer metadata to be stored along with data,
and cannot efficiently perform random accesses. By composing these fibertree formats in
different orders, many sparse data formats, such as CSR (Dense-Compressed) or block-CSR
(Dense-Compressed-Dense-Dense) can be specified. A non-sparse two-dimensional matrix
would simply be Dense-Dense.

Note that the fibertree notation does not necessarily indicate anything about the actual
sparsity or distribution of nonzeros in a tensor. For example, a sparse tensor stored in the
CSR format could have 0.1% density, 10% density, or (in theory if not in practice) 100%
density. These nonzeros could also be distributed uniformly through the tensor, or following
some Gaussian or power-law distribution (as with GCNs [23]). All of this, however, is
independent of the actual data formats used to store the sparse tensors.

More recent work has proposed structured sparsity formats where the format requires
specific nonzero distributions. For example, the NVIDIA A100’s 2:4 sparsity format [64]
requires two of every four adjacent elements to be zero, enabling far more efficient spatial
arrays to be generated than unstructured formats such as CSR typically do. (This format
has since been generalized to N:M sparsity formats [105]). The ELL [20] format is similar
to the CSR format except that every row of the sparse matrix must have the same length,
removing the need for lookups from a pointer array when iterating over the matrix. Finally,
more recent sparsity formats proposed for large attention layers in transformers separate
attention matrices into different regions, each of which may have diagonal, block-diagonal,
or random sparsity distributions, and other regions which are completely dense [5, 10, 15,
73, 90, 100]. A single sparsity specification for the entire matrix is therefore not possible for
such workloads.

2.3.2 Load-Balancing Schemes

Although load-imbalances can occur in dense workloads, as described above in Section 2.2.1,
they are much more common in sparse workloads, where nonzero distributions can vary
widely across rows (or other dimensions) of a tensor. Prior work proposes elaborate load-
balancing schemes to maintain high PE utilization under such conditions; for example, AWB-
GCN [23, 24] allows most PEs to take work only from overburdened neighboring PEs, but
a small number of PEs are permitted to take work from any other PE, even if it is not a
neighbor. The primary difficulty in designing load-balancing hardware is in avoiding large,
unscalable interconnects when redistributing work from over-burdened PEs to underutilized
PEs. For example, if every PE was permitted to share work with non-neighboring PEs,
then the muxes and switches needed to redistribute work would grow vastly more expensive.
Figure 2.8 illustrates how different levels of connectivity between PEs can lead to different
costs and flexibilities for load-balancing.
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Figure 2.8: NoCs required for different types of work-sharing and load-balancing between
PEs in a spatial array whose workloads may be imbalanced.

Prior sparse accelerator design frameworks are not able to describe arbitrary load-balancing
schemes separately from other design considerations; however, TeAAL is able to describe a
subset of important load-balancing schemes by allowing tensor dimensions to be flattened
and then re-tiled. For example, if a CSR matrix is unevenly distributed across different rows,
TeAAL can flatten it into a single fiber which is then retiled so that equally-sized groups of
nonzero elements (which may have originally been from different rows of uneven tensor) can
be distributed to different PEs. Figure 2.9 illustrates how this flattening and retiling occurs.
Some prior handwritten accelerators, such as Sextans [81] also balance sparse matmuls using
this strategy.

bi,b13012011~ PE b13b415b4+ PE

Og2 b1 PE by, by by~ PE

(a) Imbalanced. (b) Flattened and balanced.

Figure 2.9: Load-balancing a spatial array whose PEs consume an imbalanced tensor B by
flattening and retiling the elements of B. In (a), each PE consumes a different row of B,
but in (b), each PE can consume elements from any row of B.

2.3.3 Memory Buffers

Unlike memory buffers for dense accelerators, sparse memory buffers require additional stor-
age for pointers, coordinates, or other metadata. The “bitmap” format, for example, stores
small bitvectors adjacent to data buffers in order to determine exactly which coordinate a
specific data value points to. The exact area or memory bandwidth overhead incurred by a
sparsity format depends on the exact distribution of nonzeros within it’s tensors; the bitmap
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format would impose only a small extra storage requirement for a tensor with 40% density,
but an unacceptably high overhead for a tensor with 0.01% density.

The fibertree notation described above can express a large number of sparsity formats,
and sparse accelerator design frameworks can use such specifications to automatically calcu-
late capacity or bandwidth requirements for sparse tensor memory buffers.

However, unlike dense accelerators, sparse accelerators often benefit from implicitly-
managed caches, rather than lower-area explicitly-managed buffers, due to the difficulty
of calculating the optimal tiling or access patterns for imbalanced, randomly distributed
nonzeros before runtime. Handwritten sparse accelerators introduced in recent work [104,
102] propose implicitly-managed caches with novel prefetching or eviction strategies that are
designed to maximize data re-use for specific sparse workloads. Some existing sparse ac-
celerator design frameworks, such as TeAAL, can model caches with user-specified eviction
policies to help cover such designs.

2.3.4 Limitations

Although the frameworks described above in this section enable rapid specification, eval-
uation, and simulation of sparse spatial accelerators, none of them generate actual RTL
implementations. TeAAL and Sparseloop provide simulation and modeling capabilities and
are primarily intended for early-stage exploration. SAM, while defining a set of hardware
components for mapping dataflow, limits its evaluation to cycle-approximate simulations and
CGRAs, rather than actual RTL implementations.

Prior work has proposed various hardware generation frameworks which do generate
sparse accelerator RTL, but these lack the full separation of concerns necessary for effective
design-space exploration. For example, DSAGEN [93] generates RTL for both dense and
sparse workloads, however, it expects them to be defined as annotated C programs where
sparse workloads are simply those with indirect memory accesses. These C descriptions
are limited in their ability to separate out all the different concerns which go into sparse
hardware design, so that each can be explored independently, as for the previously mentioned
taxonomies. Other works, such as Spatial [45], introduce languages which describe custom
hardware as sets of nested-loops, which generalize well to a variety of workloads, but which
make it difficult to separate the functionality of an accelerator fully from its scheduling and
dataflow, and which also lack higher-level constructions, such as data-format specifications,
necessary to concisely express sparse workloads.

To enable faster hardware development, as well as to investigate various performance
bottlenecks or area/power trade-offs which are only visible on actual RTL, hardware design-
ers require tools which can generate synthesiable hardware designs from succint, expressive,
separable abstractions. Although such frameworks do exist for dense accelerators, as de-
scribed in Section 2.2, they are yet-to-be-developed for a broader set of dense and sparse
hardware designs.
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2.4 Full-Stack, Full-System Visibility

The frameworks described in Section 2.2 and Section 2.3 make it easier for users to design
spatial accelerators across a broad design-space, but they do not provide users with visibility
into the impact of the full hardware-software-system stack upon end-to-end performance and
efficiency. Although a spatial accelerator is critical to the performance of a DNN workload,
it is still only one component of a more complex SoC, where many different cores and ac-
celerators may compete for access to shared resources, and where programming stacks and
software runtimes must sometimes sacrifice full accelerator utilization for the sake of pro-
grammer convencience. Tools which allow architects and hardware designers to understand
this full space are therefore necessary.

Prior accelerator generators typically do not enable users to explore SoC-level design
parameters, such as host CPU configurations, virtual memory translation schemes, or ar-
bitration over shared outer caches or system buses. However, industry evaluations have
demonstrated that modern ML workloads could spend as much as 77% of their time running
on SoC components outside of spatial arrays themselves, such as on CPUs which execute new
operators that existing accelerators do not yet support, or when moving data between differ-
ent CPUs and accelerators [32, 94, 29, 76]. Allowing architects to specify SoC-level design
parameters, such the type of CPU to connect to an accelerator, enables the full hardware
design to be tuned in tandem with the spatial accelerators themselves.

Finally, accelerator design frameworks need to provide easy-to-use programming inter-
faces so that end users can quickly program their applications for the generated accelerators.
Different developers would prefer different software design environments based upon their
targets or research interests. For example, DNN application developers would prefer that
the hardware programming environment be hidden by DNN development frameworks like
PyTorch [70] or TVM [8] so that they don’t need to worry about low-level development
details, as in the case with VTA [60] and DNNWeaver [79]. At the same time, framework
developers and system programmers may want to interact with the hardware at a low level,
in either C/C++ or assembly, to accurately control hardware states and squeeze every bit of
efficiency out, as in the case of MAGNet [87] and Maeri [48]. Accelerator generators should
ideally provide “multi-level” programming interfaces which span the different levels of accel-
erator software development to satisfy users with different programming requirements. In
addition to a lack of choice in the programming language/interface, prior accelerator gener-
ators and design frameworks typically neglect to add support for virtual memory, making it
significantly more difficult for end-users to program their accelerators without special driver
software.

2.5 Summary

As the demand for specialized hardware accelerators for DNN workloads grows, the need for
faster, cheaper hardware design methodologies and frameworks becomes ever more acute.
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Although prior work has introduced many excellent hardware design frameworks to meet
this need, prior frameworks have several limitations: (i) they lack abstractions that allow
independent exploration of different design parameters over the full space of dense and sparse
accelerators, (ii) they could only generate actual synthesizable RTL for dense accelerators,
and /or (iii) they do not provide architects with visibility into the impact of the full hardware-
software-system stack upon overall performance.

Our work, Gemmini and Stellar, address these limitations. Gemmini is a full-stack,
full-system DNN accelerator design framework that provides insight into how different SoC,
programming, and system components affect end-to-end performance and efficiency. Stellar,
on the other hand, is an accelerator design framework which separates out the different
components of hardware design so they can be explored independently, and then generates
synthesizable RTL for both dense and sparse accelerators which is comparable in performance
and area overhead to handwritten RTL.
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Chapter 3

Gemmant: Full-Stack Evaluation of
DNN Accelerators

3.1 Introduction

Deep neural networks (DNNs) have gained major interest in recent years in application
domains ranging from computer vision, to machine translation, to robotic manipulation.
However, running modern, accurate DNNs with high performance and low energy consump-
tion is often challenging without dedicated accelerators which are difficult and expensive to
design. The demand for cheaper, high-productivity hardware design has motivated a num-
ber of research efforts to develop highly-parameterized and modular hardware generators for
DNN accelerators and other hardware building blocks [60, 87, 11, 103, 96, 91, 99]. While the
hardware generator efforts make it easier to instantiate a DNN accelerator, they primarily
focus on the design of the accelerator component itself, rather than taking into considera-
tion the system-level parameters that determine the overall SoC and the full software stack.
Some industry perspectives have advocated for a more holistic exploration of DNN accel-
erator development and deployment [29, 94, 76]. However, existing DNN generators have
little support for a full-stack programming interface which provides both high and low-level
control of the accelerator, and little support for full SoC integration, making it challenging
to evaluate system-level implications.

In this work, we present Gemmini, an open-source, full-stack DNN accelerator gener-
ator for DNN workloads, enabling end-to-end, full-stack implementation and evaluation
of custom hardware accelerator systems for rapidly evolving DNN workloads. Gemmini’s
hardware template and parameterization allows users to tune the hardware design options
across a broad spectrum spanning performance, efficiency, and extensibility. Unlike existing
DNN accelerator generators that focus on standalone accelerators, Gemmini also provides
a complete solution spanning both the hardware and software stack, and a complete SoC
integration that is compatible with the RISC-V ecosystem. In addition, Gemmini imple-
ments a multi-level software stack with an easy-to-use programming interface to support
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Figure 3.1: Gemmini hardware architectural template overview.

different programming requirements, as well as tight integration with Linux-capable SoCs
which enable the execution of any arbitrary software.

Gemmini-generated accelerators have been successfully fabricated in both TSMC 16nm
FinFET and Intel 22nm FinFET Low Power (22FFL) process technologies, demonstrating
that they can be physically realized. In addition, our evaluation shows that Gemmini-
generated accelerators deliver comparable performance to a state-of-the-art, commercial
DNN accelerator [80] with a similar set of hardware configurations and achieve up to 2,670x
speedup with respect to a baseline CPU. Gemmini’s fully-integrated, full-stack flow enables
users to co-design the accelerator, application, and system all at once, opening up new re-
search opportunities for future DL SoC integration. Specifically, in our Gemmini-enabled
case studies, we demonstrate how designers can use Gemmini to optimize virtual address
translation mechanisms for DNN accelerator workloads, and to partition memory resources
in a way that balances the different compute requirements of different layer types within a
DNN.

In brief, this work makes the following contributions:

1. We build Gemmini, an open-source, full-stack DNN accelerator design infrastructure
to enable systematic evaluation of deep-learning architectures. Specifically, Gemmini
provides a flexible hardware template, a multi-layered software stack, and an integrated
SoC environment (Section 3.2).

2. We perform rigorous evaluation of Gemmini-generated accelerators using FPGA-based
performance measurement and commercial ASIC synthesis flows for performance and
efficiency analysis. Our evaluation demonstrates that Gemmini-generated accelera-
tors deliver comparable performance compared to state-of-the-art, commercial DNN
accelerators (Section 3.3).



CHAPTER 3. GEMMINI: FULL-STACK EVALUATION OF DNN ACCELERATORS20

3. We demonstrate that the Gemmini infrastructure enables system-accelerator co-design
of SoCs running DNN workloads, including the design of efficient virtual-address trans-
lation schemes for DNN accelerators and the provisioning of memory resources in a
shared cache hierarchy (Section 3.4).

3.2 Gemmini Generator

Gemmini is an open-source, full-stack generator of DNN accelerators, spanning across dif-

ferent hardware architectures, programming interfaces, and system integration options. With

Gemmini, users can generate everything from low-power edge accelerators to high-performance
cloud accelerators equipped with out-of-order CPUs. Users can then investigate how the

hardware, SoC, OS, and software overhead interact to affect overall performance and effi-

ciency. Table 3.1 summarizes the parameters that Gemmini users can set when exploring

the design space for their accelerators.

3.2.1 Architectural Template

Figure 3.1 illustrates Gemmini’s architectural template. The central unit in Gemmini’s ar-
chitectural template is an array with spatially distributed processing elements (PEs), each
of which performs dot products and accumulations. The spatial array reads data from
an explicitly managed scratchpad of banked SRAMs, while it writes results to a local ac-
cumulator storage with a higher bitwidth than the inputs. Gemmini also supports other
commonly-used DNN kernels, e.g., pooling, non-linear activations (ReLU or ReLU6), and
matrix-scalar multiplications, through a set of configurable, peripheral circuitry. Gemmini-
generated accelerators can also be integrated with a RISC-V host CPU to program and
configure accelerators.

Spatial Array Tile

L

A

7 v
TiIeTiIe ﬂ‘ Tile Ll pgls-eepE L
- 7 7
o > PE |+ PE H

Tile ﬂ‘TiIe ﬂ* Tile —PEp>-+|PE |
] | T

Y ' \/
to accumulator or scratchpad

Figure 3.2: Microarchitecture of Gemmini’s two-level spatial array.
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Category \ Parameter

Recommended Range

Mesh Rows 1-256
Spatial Mesh Columns 1-256
Array Tile Rows 1-256
Tile Columns 1-256
Dataflow Weight /output stationary, or both
Scratchpad Capacity 256 bytes—16 MB
Accumulator Capacity 256 bytes—8 MB
Accelerator | Scratchpad Banks 1-4
Memory | Accumulator Banks 1-4
Scratchpad ports 1-2
Accumulator ports 1-2
Execution Reservation Statign Entries 4-128
Schedule Load Queue Entries 2-128
Store Queue Entries 2-128
Execute Queue Entries 4-128
PE Latency 0-4 cycles
Controller DMA Bus Width 64-256 bits
DMA Block Size 32-64 bytes
TLB Entries 2-64
Datatype SInt/Ulnt/Float/User-defined
Datatypes Input Bitwidth 8-32 bits
Output Bitwidth 8-32 bits
Accumulator Bitwidth 16-64 bits
Multiply by Scalar Present/Not
Transposer Present /Not
Operators | Pooling Present/Not
Normalizers Present /Not
Backprop convs Present /Not
Im2col Present/Not
Host Processor Rocket, BOOM, etc.
Number of Cores 1-64
Number of Accelerators 0-Number of Cores
System

Shared L2 Cache Size
Peripherals

10 Models

256 KB - 16 MB
UART, GPIO, SPI, JTAG, etc.
Network, DDR3, Block Device

Latency-Bandwidth pipeline

Table 3.1: A summary of Gemmini hardware-configurable parameters.

For the integer

ranges, all power-of-2 values between the maximum and minimum are permitted. All param-
eters are independent of each other, and the size of the total search space is the cross-product
of all possible parameter values.
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Figure 3.3: Examples of two different spatial architectures generated by Gemmini. Both
perform four multiply-accumulates per cycle though with different connectivities between
multiply-and-accumulate units.

Spatial Array

We design Gemmini’s spatial array with a two-level hierarchy to provide a flexible template
for different microarchitectures, as demonstrated in Figure 3.2. The spatial array is first
composed of tiles, where tiles are connected via explicit pipeline registers. Each of the
individual tiles can be further broken down into an array of PEs, where PEs in the same
tile are connected combinationally without pipeline registers. Each PE performs a single
multiply-accumulate (MAC) operation every cycle, using either the weight- or the output-
stationary dataflow. The tiles are composed of rectangular arrays of PEs, where PEs in the
same tile are connected combinationally with no pipeline registers in between them. The
spatial array, likewise, is composed of a rectangular array of tiles, but each tile does have
pipeline registers between it and its neighbors. Every PE and every tile shares inputs and
outputs only with its adjacent neighbors.

Figure 3.3 illustrates how Gemmini’s two-level hierarchy provides the flexibility to support
anything from fully-pipelined TPU-like architectures to NVDLA-like parallel vector engines
where PEs are combinationally joined together to form MAC reduction trees, or any other
design points in between these two extremes. We synthesized both designs with 256 PEs.
We found that the TPU-like design achieves a 2.7x higher maximum frequency, due to its
shorter MAC chains, but consumes 1.8x as much area as the NVDLA-like design, and 3.0x
as much power, due to its pipeline registers. With Gemmini, designers can explore such
footprint vs. scalability trade-offs across different accelerator designs !.

The dataflow can be either fixed at elaboration-time, or made configurable at runtime.
Figure 3.4a illustrates a PE which supports only the weight-stationary dataflow, Figure 3.4b

INote, however, that certain arithmetic dot-product optimizations, such as bulk normalization of floating-
point values, have yet to be implemented in Gemmini.
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Figure 3.4: PEs that compute A x B = (' with different dataflows.

shows a PE which supports only the output-stationary dataflow, and Figure 3.4c illustrates a
PE which can switch between both at runtime; note that the runtime-configurability requires
a small number of muxes to be added to the PEs. In the weight-stationary mode, PEs are
preloaded with filter values before executing dot-products; in the output-stationary mode,
they are preloaded with zeros or biases. All PEs are double-buffered so that they can be
preloaded while dot-products are occuring; although this increases the area cost of the PEs,
it helps ensure that matmuls and convolutions can continue at full throughput even when
DNN matmul or convolutional layer dimensions do not enable much reuse of preloaded,
stationary values.

Datatypes

Unlike some prior accelerator generators which provide support for only integer or only
floating-point operations [11, 48, 79], Gemmini supports both. Users can generate spatial
arrays with signed or unsigned integers, or with floating-point units with arbitrary exponent
or mantissa widths, including IEEE standards such as double-precision, single-precision, and
half-precision, or custom floating-point standards such as bfloat16 [38] or various proposed
FP8 standards [59, 83]. The only limitations are that the total bitwidth of the datatype
must be a power-of-2, and must be between 8 bits and 512 bits wide; these limitations only
exist because they make the DMA design (described below) simpler.

Gemmini also provides an Arihmetic Scala typeclass which enables users to add their
own custom datatypes by implementing a small number of operations such as additions,
multiply-accumulates, and comparisons. Listing 3.1 shows an example of a custom complex
datatype added to Gemmini.

Listing 3.1: An example of a custom complex datatype (with real and imaginary components)
added to Gemmini.

1 class Complex(val w: Int) extends Bundle {
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2 val real = SlInt(w.W)
3 val imag = SInt (w.W)
!

)

6 //

8 implicit object ComplexArithmetic extends Arithmetic[Complex]{
9 override implicit def cast(self: Complex) =
10 new ArithmeticOps(self) {

11

12 override def +(other: Complex): Complex = {
13 val w = self.w max other.w

14

15 Complex (w,

16 self . real + other.real,

17 self .imag + other.imag

18 )

19 }

20

21 override def x(other: Complex): Complex = {
22 val w = self.w max other.w

23

24 Complex (w,

25 self . real % other.real — self.imag * other.imag,
26 self . real % other.imag + self.imag % other.real
27 )

28 }

29

30 //

31}

A Gemmini user’s datatype specification can also interact with the dataflow selection to
impact the spatial array design in more subtle ways. For example, 8-bit quantized DNNs
typically accumulate partial sums into higher bitwidths, such as 32-bit integers, before they
are scaled back down to 8-bit values which can be fed into the next DNN layer. With
the output-stationary dataflow, 32-bit partial sums are accumulated in each PE; if the user
wishes to pass these 32-bit results directly to the external accumulator where they can be
scaled down, then 32, rather than 8, wires will need to be instantiated between each PE,
increasing the spatial array’s area overhead. If, instead, the user wishes to transmit only 8-bit
values between PEs, then each PE must instead be instantiated with internal bitshifters or
scaling units to reduce the 32-bit partial sums back down to 8-bit activations, also incurring
an area overhead.
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Scaling Units

As mentioned above, quantized DNNs typically require scaling units which cast higher-
bitwidth partial sums down to lower-bitwidth activations for the following layer. In more
area-conscious designs, these scaling units may be implemented as simple bishifters; when
higher accuracy is required, they may be implemented as FP32 multipliers. To enable both
area-conscious and high-accuracy use cases, Gemmini allows users to specify the scaling
functions they require as arbitrary Chisel functions, although we also provide users with
pre-written commonly-used scaling functions, such as integer bitshifts or floating-point mul-
tiplications with a variety of rounding modes.

These scaling units are optional and can be left out of accelerators which do not require
them, such as DNNs which perform all operations with unscaled FP32 data. Note, however,
that even floating-point non-DNN workloads, such as BLAS routines, often require such
scaling units for both inputs and outputs; to support such use cases, we allow scaling units
to be optionally instantiated at both the inputs to the scratchpad holding inputs and weights,
and at the outputs of accumulators holding accumulated partial sums.

One existing limitation of Gemmini’s scaling functions is that they are designed primarily
to perform matrix-scalar multiplications. More recent DNN quantization schemes [16], in-
cluding for commonly used large language model (LLMs) implementations such as 11ama. cpp
[52], require separate scaling factors for different rows, or different blocks of adjacent values
in input- or weight- matrices. Such scaling factors are not currently supported, though we
expect that they will be added to Gemmini in future work.

Activation Functions, Max-Poolers, and Normalizers

Gemmini-generated accelerators include optional functional units for commonly used acti-
vation functions such as ReLU or the [-BERT [44] variant of GeLU, as well as comparators
for max-pooling. For weight-stationary matrix multiplications or convolutions, activation
functions or max-pooling are applied as completed sums are being read out from the accu-
mulator before being written out to DRAM or outer caches. In the output-stationary mode,
activation functions can be optionally applied in the PEs before their internal scaling units
reduce final partial sums down to low-bitwidth quantized activations for the next DNN layer.
To support more recent attention [85] models and LLMs, Gemmini also includes sup-
port for functional units which perform layernorm and softmax operations. To avoid the
expensive lookup-tables needed to calculate exponents or other floating-point operations in
parallel across large vectors or matrices, we instead implement polynomial approximations
of these operations using compile-time integer constants [44]. Like weight-stationary activa-
tion functions or max-pools, normalizations are performed while accumulated partial sums
are being read out from the accumulator memory so they can be written out to DRAM.
However, normalizations such as layernorm require multiple read-outs of the same data from
the accumulator; first to collect runtime statistics such as means or maximums of different
vectors, and then again to use these collected statistics to scale and normalize the data.
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Transposer

Figure 3.5a shows the order in which inputs and weights must enter an output-stationary
spatial array, while Figure 3.5b shows the order in which they enter a weight-stationary
array. Observe that for output-stationary matrix multiplications, elements of A must enter
the array transposed, in column-major order.

byy Do A1 A41 = by1 [+ byp

b1 byy v v
: : A2 812 ~| Doy [+ Doy

Ay 811 = Cqq1 [ Cq2 ¥ !
' ' Co1  Cop
App Ap1 | Coq1 7 Cop Ci1 Cq2
(a) Output-stationary (OS). (b) Weight-stationary (WS).

Figure 3.5: The order in which inputs stream into a matmul spatial array that computes
A x B = C with different dataflows.

To perform such transpositions on-the-fly, Gemmini accelerators also include optional
transposers, illustrated in Figure 3.6, which transposes data coming from the input/weights
scratchpad into the matmul spatial array. The transposer is implemented as a small systolic
array, but one which performs no computations and only reorders data. To transpose a
DIM xDIM submatrix, the transposer will first take DIM cycles consuming rows of the
submatrix from its left edge; it will then spend the next DIM cycles outputting the submatrix
in column-major order along its upper edge. Note, however, that the transposer continues
to consume a new untransposed matrix from its bottom edge while while outputting the
transposed one from its upper edge; after DIM cycles, it will output another transposed
matrix from its right edge. The transposer, therefore, operates at the same throughput as
the matmul spatial array; there are no idle cycles or “bubbles” while it transposes a new
matrix. Furthermore, the transposer’s systolic design reduces its wiring congestion: every
input port and output port can only connect to one of two PEs.

Table 3.2 shows which matrices Gemmini can transpose based on the dataflow the spatial
array is configured to run. Because only one transposer is available in the accelerator, in
the weight-stationary mode, only one matrix can be transposed at a time. However, in the
output-stationary mode, both the inputs and weights can be transposed simultaneously: the
weights by feeding them through the transposer, and the inputs by not feeding them into
the transposer so that they enter the matmul spatial array in row-major order, rather than
in column-major order as in Figure 3.5a.
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Figure 3.6: The systolic transposer included in Gemmini-generated accelerators while trans-
posing two matrices, A and B, back-to-back.

Dataflow | Transpose A | Transpose B | Permitted?
No No Yes
No Yes No
05 Yes No Yes
Yes Yes Yes
No No Yes
No Yes Yes
L Yes No Yes
Yes Yes No

Table 3.2: Legal and illegal transpositions on Gemmini.

Scratchpad and Accumulator Memories

Gemmini-generated accelerators include a scratchpad which stores inputs and weights for
DNN layers, and an accumulator for partial sums. Inputs and weights share the same
scratchpad, enabling a wide range of tiling sizes to be chosen by programmers during runtime,
but partial sums can only be stored in the accumulator.
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Table 3.1 describes the parameters that Gemmini users can set for the scratchpad and
accumulator memories. Users can choose between different SRAM capacities, numbers of
banks, and porting options. Bank conflicts in the SRAMs, or contentions of read/write
ports in single-ported SRAMs will be handled transparently by Gemmini’s hardware con-
trollers and arbiters, although such contention may reduce performance. The partial sum
accumulators must, by necessity, must be dual-ported, since they simultaneously perform
reads and writes to add partial sums; however, if the accumulators are specified as being
single-ported, then Gemmini will instantiate two single-ported accumulator SRAMs and in-
terleave operations between them such that they appear to the rest of the accelerator as a
dual-ported SRAM. The single-ported accumulators, however, do have certain limitations
on striding patterns which the dual-ported SRAM accumulators do not, and cannot there-
fore support certain DNN training operations which perform convolutions and matmuls with
more sophisticated striding patterns.

The scratchpad and accumulator memories in Gemmini are “row-addressed,” where each
row is DIM elements wide for a DIMxDIM matmul spatial array. The row-addressing
scheme is illustrated below, in Figure 3.7, for an accelerator with a 2x2 spatial array, 8-bit
integer quantized values in the inputs/weights scratchpad, and 32-bit partial sums in the
accumulator.

Scratchpad Accumulator Spatial Array
2 int8 values 2 int32 values 2 PEs
<+---------—H > B > S L PR R ->

Addr 0x0 Addr 0x80000000

Addr 0x1 Addr 0x80000001 . L,

Addr 0x2 Addr 0x80000002

Addr 0x3 Addr 0x80000003 v v

Addr 0x4 Addr 0x80000004

Addr 0x5 Addr 0x80000005 g ]

Figure 3.7: Scratchpad and accumulator addressing scheme for a 2x2 spatial array.

Because only rows of the scratchpad memories, rather than columns within them, can be
addressed, the connections between SRAM ports and the spatial array PEs are quite efficient;
each SRAM column is connected to only one or two PEs along the top, left, or lowermost
edges of the spatial array, as illustrated in Figure 3.8. Enabling column-addressing would
require more expensive crossbars to be instantiated between SRAM read/write ports and
the spatial array PEs.

However, an important limitation of row-addressing is that it can lead to SRAM un-
derutilization for awkwardly-shaped matrix multiplications or convolutions. For example, a
one-column vector stored in the scratchpad SRAMs would only occupy one SRAM column;
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Figure 3.8: The scratchpad and accumulator columns each connect to only one or two PEs
along the edges of the matmul array.

there is no way to pack multiple vectors across separate columns of the SRAMs for a series of
independent matrix-vector operations because there is no way for the programmer to index
or address individual columns of the scratchpad SRAMSs so that they can separately be fed
into the spatial array.

Every Gemmini scratchpad or accumulator address is 32 bits wide. The three most
signficant bits are reserved, and have special meanings:

e Bit 31 (the MSB) is 0 if we are addressing the inputs/weights scratchpad, and 1 if we
are addressing the accumulator.

e Bit 30 is ignored if we are addressing the scratchpad, or if we are reading from the
accumulator. If, instead, we are writing to the accumulator, then bit 30 is 0 if we want
to overwrite the data at that address, and 1 if we want to accumulate on top of the
data already at that address.

e Bit 29 is ignored if we are addressing the scratchpad, or if we are writing to the
accumulator. If; instead, we are reading from the accumulator, then bit 29 is 0 if we
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want to read scaled-down data from the accumulator, and 1 if we want to read the full,
unscaled partial sums from the accumulator.

— If bit 29 is 1 for an accumulator read address, then we do not apply activation
functions or scaling to the output of the accumulator.

This addressing scheme enables Gemmini to support residual additions or matrix-matrix
additions very elegantly: programmers simply load data directly from DRAM into the ac-
cumulator by setting bit 31 (the MSB) to 1, before loading another matrix on top of the
same address by setting bits 31-30 to 11. No specific matrix addition command is therefore
required in the ISA; the memory addressing scheme instead encodes such information.

Currently, partial sums in Gemmini’s accumulator cannot be transferred directly to the
inputs/weights scratchpad unless they are first written out to DRAM by the DMA, and
then read back in to the accelerator’s memory. This limits Gemmini’s ability to perform
certain cross-layer optimizations when the accelerator is equipped with enough accumulator
memory to store an entire layer’s output tensors; however, we expect this limitation to also
be addressed by future work.

DMA

All data transfers between Gemmini’s private scratchpad memories, and DRAM or outer
caches, are handled by Gemmini’s internal read DMA and write DMA. The read and write
DMAs make memory requests to outer memory using the cache-coherent TileLink proto-
col [12]. The user can choose whether the two DMAs should share and arbitrate over the
same TileLink ports to outer memory, or whether they should have separate ports, which
can increase wiring congestion but enable reads and writes to happen simultaneously.

The read and write DM As both move two-dimensional matrices with programmer-specified
row-strides (the columns are assumed to be completely contiguous). Figure 3.9a shows how
a load from outer memory to the scratchpad works. Figure 3.10b illustrates the special
case where the number of columns moved-in to the scratchpad is greater than DIM for an
accelerator with a DIMxDIM spatial array:

The read DMA also includes certain optimizations specifically useful for a DNN acceler-
ator. For example, when the outer memory address specified for a move-in command is the
null pointer, then the DMA will avoid making any TileLink requests and simply write zeros
into the specified scratchpad addresses; this is helpful for padding in convolutional layers.
The DMA also includes optimizations for loading biases into the accumulator. Biases in
DNNs are typically one-dimensional vectors, but must be copied over many different rows
of an accumulator. When the DRAM row-stride in Figure 3.9 is zero, the read DMA will
make only a single TileLink request and copy the data returned from DRAM across multiple
accumulator rows.

Finally, the read DMA can also assist with im2col for convolutions with very few input
channels. By default Gemmini performs convolutions by unrolling the input-channel and
output-channel dimensions spatially across the spatial array’s rows and columns. However,
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DRAM or L2 Scratchpad
D et > D e >
Addr x x[0:DIM-1] |4 x[0 : DIM-1] Addr Z
i | 2 rows
Addr x+dram_row_stride y[0:DIM-1] |y y[0: DIM-1] Addr Z+1

(a) Transferring a matrix with less than or equal to DIM columns.

DRAM or L2 Scratchpad

Addr x x[0 : 2*DIM-1]
Addr x+dram_row_stride y[0 : 2*DIM-1]

x[0 : DIM-1] Addr Z
y[0: DIM-1] Addr Z+1

2 rows

<“-->

X[DIM : 2*DIM-1] Addr Z+spad_stride
y[DIM : 2*DIM-1] Addr Z+spad_stride+1

(b) Transferring a matrix with more than DIM columns.

Figure 3.9: How Gemmini’s DMA moves matrices between DRAM or outer caches, and
Gemmini’s private scratchpad, based on programmer-defined strides.

when the number of input channels is very small, as in the first layer of a typical CNN, the
resulting spatial array PE utilization and SRAM utilization can be very low. To improve
utilization in such situations, the read DMA can automatically replicate input activation data
across the scratchpad SRAM columns, as illustrated in Figure 3.10, similarly to how im2col
replicates input activations in order to map convolutions to matrix multiplications [92].

3.2.2 Programming Support

The Gemmini generator produces not just a hardware stack, but also a tuned software
stack, boosting developers’ productivity as they explore different hardware instantiations.
Specifically, Gemmini provides a multi-level software flow to support different programming
scenarios. At the high level, Gemmini contains a push-button software flow which reads
DNN descriptions in the ONNX file format and generates software binaries that will run
them, mapping as many kernels as possible onto the Gemmini-generated accelerator. Alter-
natively, at the low level, the generated accelerator can also be programmed through C/C++
APIs, with tuned functions for common DNN kernels. These functions must be tuned dif-
ferently for different hardware instantiations in order to achieve high performance, based on
scratchpad sizes and other parameters. Therefore, every time a new accelerator is produced,
Gemmini also generates an accompanying header file containing various parameters, e.g. the
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Figure 3.10: Gemmini’s DMA replicates input activation data in the scratchpad when the
input channels are smaller than the number of scratchpad columns. When the number of
input channels is larger, no such replication occurs.

dimensions of the spatial array, the dataflows supported, and the compute blocks that are
included (such as pooling, im2col, or transposition blocks).

High-Level Programming Interface

Gemmini software libraries include a RISC-V fork of Microsoft’s ONNX Runtime plat-
form [65], which analyzes ONNX files and searches for operators, such as matrix multi-
plications or convolutions, which can be mapped directly to operators defined in Gemmini’s
handwritten mid-level prograamming interface (described below). Our fork adds support for
integer quantization, as well as support for the NHWC format, which Gemmini uses for its
input, weight, and output tensor layouts. We also add support for various operator fusions
supported by Gemmini-generated accelerators, such as fusions of convolutions, activation
functions, and max-pool operations.

When our high-level programming interface encounters an ONNX operator which it does
not recognize, or which cannot be offloaded to Gemmini’s spatial array or functional units,
it falls back to running it on the CPU instead. The high-level programming interface is
therefore able to maintain functional correctness even for novel, yet-to-be-invented neural
network models, as long as a CPU fallback exists, although performance may be low for
operations which can’t run directly on Gemmini.

The high-level programming interface can also quantize and dequantize operations on-
the-fly; for example, if a particular layer requires expensive floating-point operations which
Gemmini does not support, our ONNX Runtime fork will automatically scale quantized
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integer layer outputs to dequantized floating-point values, and then scale them back to
quantized tensors once they can be fed back into the Gemmini accelerator.

Mid-Level Programming Interface

Rather than using the high-level programming interface, which maps ONNX files directly to
Gemmini, programmers can also run individual Gemmini-supported kernels in their own ap-
plications using our mid-level programming interface. Gemmini includes a C software library
of handwritten, hand-tuned kernels for commonly used kernels such as convolutions, max-
pools, residual additions, or layer normalizations. Table 3.3 summarizes the handwritten
kernels which our mid-level programming interface currently supports.

Kernel Parameters

Transpositions, input or output scaling factors, bias,
activation functions, dataflow

Padding, input dilation, kernel dilation, fused

matmul

convolution max-pooling, scaling factors, activation functions,
transpositions, depthwise

resadd Input or output scaling factors, activation functions

max_pooling Pooling dimensions and strides

global_average_pooling | Pooling dimensions and strides

layernorm Fused activation function

softmax Fused activation function

Table 3.3: DNN kernels available in Gemmini’s mid-level programming interface.

At runtime, each kernel in the mid-level programming interface calculates tiling factors
based on the dimensions of a layer’s inputs and the hardware parameters of the accelerator.
These tiling factors are calculated using heuristics which maximize the amount of data moved
into the scratchpad per iteration. If the programmer wishes, the mid-level API also allows
them to manually set tile-sizes for each kernel.

Low-Level Programming Interface

Finally, if the kernels we provide in the mid-level programming interface are not sufficiently
optimized for a particular DNN, or if a DNN includes novel kernels which our mid-level
API does not currently support, then programmers can write their own DNN kernels using
Gemmini’s low-level programming interface. At the low-level, programmers call Gemmini’s
ISA directly using low-level wrappers written in C, which are summarized in Table 3.4.
Instructions in Gemmini’s low-level programming interface primarily operate on DIM x DIM
matrices, where DIM is the dimension of the spatial array (although some instructions, like
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Instruction Parameters
config mvin Row-strides and scaling factors
Loads
nvin Number of rows, number of columns,
DRAM addresses, scratchpad addresses
, Row-strides, scaling factors,
config mvout — . . .
Stores activation function, max-pooling options
vout Number of rows, number of columns,
DRAM addresses, scratchpad addresses
Executes (i.e. config execute | DRAM addresses, scratchpad addresses
matmuls, convs, Number of rows, number of columns,
dot-products,etc.) | preload scratchpad addresses for preloaded values
(weights or biases)
compute Number of rows, number of columns,
P scratchpad addresses for inputs/weights
DRAM addresses of inputs, weights, biases,
loopmatmul . o .
Loop unrollers outputs, strides, transpositions, padding
DRAM addresses of inputs, weights, biases,
loop_conv outputs, strides, transpositions, padding,
dilation, fused max-pooling

Table 3.4: Gemmini’s low-level ISA, summarized.

the mvin commands, can operate on larger matrices as described in Section 3.2.1). For ex-
ample, preload loads a DIM x DIM matrix of weights or biases into the spatial array, matmul
multiplies a DIMxDIM matrix with the preloaded values, and mvout moves the resulting
DIM xDIM matmul result from the accumulator buffer into DRAM or outer caches.

RAW, WAR, or WAW dependencies between these instructions are tracked by a reser-
vation station which attempts to overlap load, store, and matmul instructions for maximum
performance, even permitting such instructions to execute out-of-order with respect to each
other, while maintaining program order from the programmer’s perspective. This reserva-
tion station can also be parameterized to have different capacities for load, store, or matmul
instructions.

These DIMxDIM instructions can then be composed by the programmer into larger
loops that perform matrix multiplications, convolutions, or other operations on arbitrarily-
large tensors. However, composing instructions together into larger, tiled loops sometimes
presents significant challenges to programmers, especially when DIM is small. When DIM
is small, each low-level Gemmini instruction has a small granularity and may take only a
few cycles to execute; the overhead of looping on the host CPU then can prevent Gemmini
instructions from being issued fast enough to the accelerator to keep the spatial array or
DMA fully utilized. Workarounds such as loop-unrolling, software pipelining, or double-
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buffering are difficult for programmers to do manually. To alleviate such difficulties and
enable programmers to use the low-level programming interface more easily, Gemmini is also
compatible with the Exo [36] programming language, which performs optimizations such as
loop unrolling automatically.

Alternatively, programmers using the low-level programming interface can also use hard-
ware loop unrollers that Gemmini-generated accelerators are all equipped with. These loop
unrollers can be configured by programmers to automatically generate low-level ISA instruc-
tions and scratchpad addresses on-the-fly and feed them into Gemmini’s reservation station,
based on common looping patterns found in operations such as matrix multiplications and
convolutions. Listing 3.2 shows an example of how the hardware loop unrollers can be invoked
to replace tiled loops in software with code which performs equivalently, but doesn’t require
ardous manual loop-unrolling or software pipelining in order to maintain high instruction
throughput from the host CPU to the accelerator’s reservation station.

Listing 3.2: Invoking Gemmini’s hardware loop unrollers to replace software loops composed
of low-level ISA instructions.

I for (int i0 = 0; i0 < N; i0 += TILE.I) {

2 for (int jO = 0; jO < N; jO += TILE_J) {

3 for (int k0 = 0; kO < N; k0O += TILEK) {

4

5 // Scratchpad tiles with software loops.

6 for (int il = 0; il < N; i1 4= DIM) {

7 for (int j1 = 0; j1 < N; jl 4+= DIM) {

8 for (int k1 = 0; k1 < N; k1l += DIM) {

9 int i =10 * tile_I + il;

10 int j = j0 % tile_J 4+ j1;

11 int k = k0 x tile_.K 4+ k1;

12

13 A_addr = ...; B.addr = ...; C.addr = ...;
14

15 if (j1 = 0)

16 mvin(&A[i0xtile I + il ][k«TILE.K + k1], A_addr);
17 if (il = 0)

18 mvin(&B[kOxtile K + kl1][j+«TILE_.J 4+ j1], B_addr);
19

20 preload (B_addr, C_addr);

21 compute (A_addr);

22

23 // Scratchpad tiles with hardware loop—unrollers.
24 //  This one line replaces the many software

25 // looping lines written above.

26 gemmini_loop matmul (...); }}}}}}
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Figure 3.11: TLB miss rate over a full ResNet50 inference, profiled on a Gemmini-generated
accelerator.

Finally, hardware loop unrollers also enable certain performance optimizations which
software could not feasibly accomplish, even with perfect loop unrolling or software pipelin-
ing. For example, due to the unpredictability of outer cache accesses, it cannot be known
until execution begins exactly how long each load or store instruction will take. A series
of unexpectedly slow loads/stores can overwhelm the reservation station and leave no room
for matmul instructions to be issued or executed, reducing overall performance as matmul
instructions are no longer perfectly overlapped with memory transfer instructions. Gem-
mini’s hardware loop unrollers, however, will monitor reservation station utilization during
runtime and ensure that the number of load, store, and matmul instructions being executed
simultaneously are balanced, even when loads or stores take unexpectedly long due to outer
cache misses; such low-level, fine-grained optimizations are impossible for programmers to
do solely with tiled software loops.

Gemmini’s hardware loop unrollers cover a range of commonly used loops, summarized
above in Table 3.4. In addition to commonly used DNN inference operations, they can
also be used to accelerate certain backprop operations such as convolutions which insert
0-elements in between every row and column of an input-activation tensor, or convolutions
which perform reductions over batch dimensions instead of input-channel dimensions so that
the total gradient-step contribution of different images in a mini-batch can be accumulated
together.

Virtual Memory Support

In addition to the programming interface, Gemmini also makes it easier to program accel-
erators by providing virtual memory support. This is useful for programmers who wish to
avoid manual address translations as well as for researchers who wish to investigate vir-
tual memory support in modern accelerators. Gemmini also enables users to co-design and
profile their own virtual address translation system. For example, Figure 3.11 shows the



CHAPTER 3. GEMMINI: FULL-STACK EVALUATION OF DNN ACCELERATORS37

miss rate of an example accelerator’s local TLB profiled on Gemmini. As we can see, the
miss rate occasionally climbs to 20-30% of recent requests, due to the tiled nature of DNN
workloads, which is orders-of-magnitude greater than the TLB miss rates recorded in prior
CPU non-DNN benchmarks [55]. Later, in Section 3.4.1, we use Gemmini to co-design a
virtual address translation system which achieves near-maximum end-to-end performance
on accelerated DNN workloads, with only a few TLB entries in total.

Performance Profiling

To help programmers and architects identify the causes of performance bottlenecks, Gemmini-
generated accelerators also included optional performance counters which track the number
of cycles that the spatial array, DMA, or various functional units remain idle, and the reason
for which they remain idle. For example, Gemmini includes counters that track how many
cycles the DMA stalls while waiting for page-table walkers to translate virtual addresses, or
how many cycles are spent stalling while waiting for long-latency loads to return from an
outer cache miss.

3.2.3 System Support

Gemmini allows architects to integrate RISC-V CPUs with Gemmini-generated accelerators
in the Chipyard [1] framework. These can range from simple, in-order microcontrollers which
are not expected to do much more than IO management, all the way up to out-of-order, high-
performance, server-class CPUs that may be running multiple compute-intensive applications
even as they are sending commands to the Gemmini-generated accelerator. SoCs can also
be configured to host multiple host CPUs and Gemmini-generated accelerators, which can
each operate on different tasks in parallel with each other. Figure 3.12 is one example of a
dual-core system, where each CPU has its own Gemmini-generated accelerator. Additional
SoC-level parameters include bus widths between accelerators and host CPUs, as well as
the size, associativity and hierarchy of the caches in the multicore, multicache memory
system. Later, in Section 3.4.2, we show how these parameters can be tuned, based on the
computational characteristics of DNNs, to improve performance by over 8%.

RISC-V-based full SoC integration also enables deep software-stack support, such that
Gemmini-generated accelerators can easily be evaluated running the full software stack up
to and including the operating system itself. This enables early exploration of accelerated
workloads in a realistic environment where context switches, page-table evictions, and other
unexpected events can happen at any time. These unexpected events can uncover bugs and
inefficiencies that a “baremetal” environment would not bring to the surface. For example,
our experience of running Linux while offloading DNN kernels to a Gemmini-generated ac-
celerator uncovered a non-deterministic deadlock that would only occur if context switches
happened at very particular, inopportune times. Running on a full software stack with an
OS also uncovered certain bugs where Gemmini read from certain regions of physical mem-
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Figure 3.12: Example dual-core SoC with a Gemmini accelerator attached to each CPU, as
well as a shared L2 cache and standard peripherals.

ory without the proper permissions. On a “baremetal” environment, these violations were
silently ignored.

3.3 Gemmini Evaluation

This section discusses our evaluation methodology and evaluation results of Gemmini-generated
accelerators compared to both CPUs and state-of-the-art, commercial accelerators.

3.3.1 Evaluation Methodology

We evaluate the end-to-end performance of Gemmini-generated accelerators using the FireSim
FPGA-accelerated simulation platform [40]. We evaluate five popular DNNs: ResNet50,
AlexNet, SqueezeNet v1.1, MobileNetV2, and I-BERT. All DNNs are quantized to 8-bits,
with 32-bit biases and accumulations, and run on a 16x16 spatial array. The CNNs use a
256 KB scratchpad and 64 KB partial sum accumulators, while - BERT is evaluated with
a 64 KB input/weights scratchpad and a 256 KB accumulator. All workloads are run with
a full Linux environment on a complete cycle-exact simulated SoC. We synthesize designs
using Cadence Genus with the Intel 22nm FFL process technology and place-and-route them
using Cadence Innovus. Our layout and area breakdown, described in Figure 3.13, show that
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Figure 3.13: Area breakdown and layout of accelerator with host CPU.

the SRAMSs alone consume 67.1% of the accelerator’s total area. The spatial array itself only
consumes 11.3%), while the host CPU consumed a higher 16.6% of area.

3.3.2 Performance Results

We evaluated the performance of several Gemmini configurations, with different host CPUs
and different “optional” compute blocks, to determine how the accelerator and host CPU
configuration may interact to impact end-to-end performance. In particular, we evaluated
two host CPUs: a low-power in-order Rocket core, and a high-performance out-of-order
BOOM core. We used two different Gemmini configurations: one without an optional im2col
block, and the other with an im2col block which allowed the accelerator to perform im2col
on-the-fly, relieving the host CPU of that burden.

As illustrated in Figure 3.14, when the accelerator is built without an on-the-fly im2col
unit, its performance depends heavily on the host-CPU which becomes responsible for per-
forming im2col during CNN inference. A larger out-of-order BOOM host CPU increases
performance by 2.0x across all CNNs. The less complex the DNN accelerator is, the more
the computational burden is shifted onto the CPU, giving the host CPU a larger impact on
end-to-end performance.

However, when the accelerator is equipped with an on-the-fly im2col unit, the choice of
host CPU is far less important, because the CPU’s computational burden is shifted further
onto the accelerator. Adding a small amount of complexity to the accelerator allows us to re-
duce the area and complexity of the host CPU to a simple in-order core while preserving per-
formance. Gemmini enables hardware designers to easily make these performance-efficiency
tradeoffs.

With the on-the-fly im2col unit and a simple in-order Rocket CPU, Gemmini achieves
40.3 frames per second (FPS) for ResNet50 inference when running at 1 GHz, which is a
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Figure 3.14: Speedup compared to an in-order CPU baseline. For CNNs, im2col was per-
formed on either the CPU, or on the accelerator.

4,720x speedup over the in-order Rocket CPU and an 2,000x speedup over the out-of-order
BOOM CPU. The accelerator also achieves 79.3 FPS on AlexNet. Some DNN models such
as MobileNet are not efficiently mapped to spatial accelerators due to the low data reuse
within the depthwise convolution layers. Therefore, Gemmini demonstrates only a 255x
speedup compared to the Rocket host CPU on MobileNetV2, reaching 37.5 FPS at 1GHz.
On SqueezeNet, which was designed to be run efficiently on modern CPUs while conserving
memory bandwidth, Gemmini still demonstrates a 1,760x speedup over the Rocket host
CPU. Our results are comparable to other accelerators, such as NVDLA, when running with
the same number of PEs as the configuration in Figure 3.13a.

The remaining performance gap with prior accelerators such as NVDLA is primarily
caused by inefficiencies in Gemmini’s DMA. For example, Gemmini’s DMA breaks large
matrix tiles that are being moved into or out of main memory into smaller DIMxDIM
matrices, where DIM is the dimenion of the spatial array; tiling large memory transfers
in this way can reduce spatial locality when iterting across the columns of a large matrix
tile. More importantly, however, when replicating data into the scratchpad for convolutional
layers with few input channels, as illustrated above in Figure 3.10, Gemmini’s DMA will
perform multiple writes to each SRAM row, which bottlenecks the bandwidth at which
inputs can be moved from main memory into the private scratchpads. Because convolutional
layers with few input channels can consume a significant portion of end-to-end runtime (over
15% of total runtime, in fact, on a ResNet50 inference on Gemmini), such inefficiencies can
noticeably degrade end-to-end performance. We expect that by adding a set of simple shift
registers to Gemmini’s DMA, we will be able to avoid unnecessary writes to scratchpad
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Figure 3.15: The matmul utilization while performing a BERT inference on Gemmini, with
different scratchpad and accumulator sizes.

SRAM rows and close most of the remaining 13% performance gap with NVDLA.

Language models such as BERT or its variants such as I-BERT have lower arithmetic
intensity and different data re-use patterns than the CNN models evaluated above; they
therefore have different optimal scratchpad and accumulator sizes. Figure 3.15 shows how
the PE utilization of the spatial array varies with different scratchpad and accumulator sizes.
Larger accumulators enable higher output-reuse which significantly improve the performance
of transformer matmuls, which often have smaller, rectangular input matrices being multi-
plied to generate larger, more square output matrices.

Based on the results shown in Figure 3.15, we equip the Gemmini-generated accelerator
with 256 KB of partial sum accumulator storage, and 64 KB of scratchpad space — the exact
opposite of the scratchpad/accumulator provisioning ratio that we used for CNNs which had
far higher weight or input reuse.

Figure 3.16 illustrates the time spent on different operations when running I-BERT on
Gemmini. Matrix multiplications (fused with GeLU operations) consume the vast majority
of runtime, with normalization operations like layernorm and softmax consuming the re-
maining 10%. As sequence lengths increase, the low-arithmetic-intensity, bandwidth-limited
normalization operations consume a larger portion of total runtime.

Because layernorm and softmax operations are bandwidth-bound, it is natural to wonder
why we did not fuse them with the more compute-bound matmul operations in Figure 3.16.
In fact, not only would operator fusion in this case enable better overlapping of operations,
but it would also allow Gemmini to avoid spilling 32-bit pre-normalization sums to DRAM,
and enable only 8-bit normalized values to be written to DRAM instead, reducing bandwidth
requirements for layernorm or softmax operations significantly.

Unfortunately, however, both layernorms and softmax require an entire matrix row to
be resident in the accumulator for normalization statisics — such as means and variances —
to be calculated. If layernorm and softmax operations are fused and fully overlapped with
matrix multiplications in transformers, then the matmuls are forced to adopt much more
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Figure 3.16: The time spent on different operations during a I-BERT inference. For all
sequence lengths, the total execution time is dominated by matmuls.

rectangular tile sizes, reducing the arithmetic intensity of each tile significantly and reducing
overall inference performance. In fact, - BERT matmul layers fused with layernorm have
73% lower arithmetic intensity with a sequence-length of 128 than when the layers are left
unfused, given 256 KB of partial sum accumulator storage. Gemmini therefore leaves them
unfused, sacrificing potential bandwidth savings in the normalization operations in order to
maintain performance in the much higher-FLOP matmuls.

3.4 Gemmini Case Studies

This section demonstrates how Gemmini enables full system co-design with two case studies.
We use Gemmini to design a novel virtual address translation scheme, and to find the optimal
SoC-level resource partition scheme of a multi-core, multi-accelerator system.

3.4.1 Virtual Address Translation

With an RTL-level implementation that supports virtual memory, users can co-design their
own virtual address translation schemes based on their accelerator and SoC configuration.
Prior works in virtual address translation for DNN accelerators have proposed very different
translation schemes, from NeuMMU [35], which calls for a highly parallel address-translation
system with 128 page-table walkers (PTWs), to Cong et al. [27], who recommend a more
modest two-level TLB hierarchy, with the host CPU’s default PTW co-opted to serve requests
by the accelerator. This lack of convergence in the prior literature motivates a platform
that allows co-design and design-space exploration of the accelerator SoC together with its
virtual address translation system, for both hardware designers and researchers. Fortunately,
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Figure 3.17: Normalized performance of ResNet50 inference on Gemmini-generated acceler-
ator with different private and shared TLB sizes.

with Gemmini, we can iterate over a variety of address translation schemes as we tune the
accelerator and SoC.

To demonstrate, we configure Gemmini to produce a two-level TLB cache, with one pri-
vate TLB for the accelerator, and one larger shared TLB at the L2 cache that the private
TLB falls back on when it misses. Our design includes only one PTW, shared by both the
CPU and the accelerator, which is suitable for low-power devices. We configure the accel-
erator for low-power edge devices, with a 16-by-16 systolic mesh and a 256 KB scratchpad.
As shown in Figure 3.17a, we iterate over a variety of TLB sizes to find the design that best
balances TLB overhead and overall performance, including over a design point where the
shared L2 TLB has zero entries.

Figure 3.17a demonstrates that the private accelerator TLB has a far greater impact on
end-to-end performance than the much larger shared L2 TLB. Increasing the private TLB
size from just four to 16 improves performance by up to 11%. However, adding even 512
entries to the L2 TLB never improves performance by more than 8%. This is because our
workloads exhibit high page locality; even with tiled workloads, our private TLB’s hit rate
remained above 84%, even with the smallest TLB sizes we evaluated. In fact, we found that
87% of consecutive read TLB requests, and 83% of consecutive write TLB requests, were
made to the same page number, demonstrating high page locality. However, because reads
and writes were overlapped, read and write operations could evict each other’s recent TLB
entries.

Although tuning TLB sizes improves hit rates, our private TLB hit latency in the tests
shown in Figure 3.17a was still several cycles long. Fortunately, using the Gemmini platform,
we were able to implement a simple optimization: a single register that caches the last TLB
hit for read operations, and another register that caches TLB hits for write operations. These
two registers allow the DMA to “skip” the TLB request if two consecutive requests are made
to the same virtual page number, and help reduce the possibility of read-write contention
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over the TLB. These “filter registers” reduce the TLB hit latency to 0 cycles for consecutive
accesses to the same page. As Figure 3.17b shows, this low-cost optimization significantly
improves our end-to-end performance, especially for small private TLB sizes. Due to our
high TLB hit rate and low TLB hit penalty, we found that a very small 4-entry private TLB
equipped with filter registers, but without an expensive shared L2 TLB, achieved only 2%
less than the maximum performance recorded. With such a configuration, the private TLB
hit rate (including hits on the filter registers) reached 90% and further increases to either
TLB’s size improved performance by less than 2%, even if hundreds of new TLB entries were
added.

Using Gemmini, we have demonstrated that a modest virtual address translation system,
with very small private TLBs, a single page-table-walker, and two low-cost filter registers for
the TLB, can achieve near maximum performance for low-power edge devices. Gemmini is
designed to enable such co-design of the SoC and its various components, such as its virtual
address translation system.

3.4.2 System-Level Resource Partition

Gemmini also enables application-system co-design for real-world DNN workloads. To
demonstrate, we present a case study describing a system-level design decision: memory par-
titioning based on application characteristics. We investigate memory partitioning strategies
in both single-core and multi-core SoCs.

Real-world DNN applications, such as CNN inference, have diverse layer types which
have different computational requirements and which contend for resources on an SoC in
different ways. For example, ResNet50 includes convolutions, matrix multiplications, and
residual additions, which all exhibit quite different computational patterns. Convolutions
have high arithmetic intensity; matrix multiplications have less; and residual additions have
almost no data re-use at all. Additionally, unlike the other two types of layers, residual
additions benefit most if layer outputs can be stored inside the cache hierarchy for a long
time, rather than being evicted by intermediate layers, before finally being consumed several
layers later. These different layer characteristics suggest different ideal SoC configurations.
To run with optimal performance over an entire DNN, a hardware designer must balance all

Config | Scratchpad | Accumulator L2

Name | (per core) (per core) | Cache
Base 256 KB 256 KB 1 MB
BigSP 512 KB 512 KB 1 MB
Bigl.2 256 KB 256 KB 2 MB

Table 3.5: Gemmini SoC configurations for the system-level resource partitioning case study.
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Figure 3.18: Performance of the various SoC configurations in the case study, normalized to
the performance of the Base configuration in Table 3.5.

these constraints.

To demonstrate, we run ResNet50 inference on six different SoC configurations. These
are the three different configurations described in Table 3.5, repeated for both single- and
dual-core SoCs (as in Figure 3.12), where each CPU core has its own Gemmini-generated ac-
celerator. The dual-core SoCs run two ResNet50 workloads in parallel, while the single-core
SoCs run just one. The base design point has a 256 KB scratchpad, and a 256 KB accumula-
tor per core, as well as a 1 MB shared L2 cache. The scratchpad and accumulator memories
are private to the accelerators, but the L2 cache is shared by all CPUs and accelerators on
the SoC. We presume that we have 1 MB of extra SRAM that we can allocate to our memory
system, but we need to decide whether to allocate these SRAMs to the accelerators’ private
memory, or to the L2 caches.

As shown in Figures 3.18a and 3.18b, convolutional layers benefit from a larger, explicitly
managed scratchpad, due to their very high arithmetic intensity. Convolutional kernels
exhibit a 10% speedup with one core, and an 8% speedup in the dual-core case, when
the scratchpad and accumulator memory is doubled by the addition of our 1 MB worth
of SRAMs. The matmul layers, on the other hand, achieve only a 1% and 3% speedup
when the scratchpad is enlarged in the single-core and dual-core cases respectively, due to
their lower arithmetic intensity. Residual additions, which have virtually no data re-use and
are memory-bound operations, exhibit no speedup when increasing the scratchpad memory
size. Instead, they exhibit a minor 1%-4% slowdown, due to increased cache thrashing. In
the single-core case, the increased convolutional and matrix multiplication performance is
enough to make the design point with increased scratchpad memory, rather than increased
L2 memory, the most performant design point.

However, Figure 3.18b shows that when we run dual-process applications that compete
for the same shared L2 cache, allocating the extra 1 MB of memory to the shared L2 cache
improves overall performance more than adding that memory to the accelerators’ scratch-
pad and accumulator memories. Increasing the scratchpad size still improves convolutional
performance more than increasing the L2 size, but this improvement in performance is more
than negated by the 22% speedup of residual additions that the dual-core Bigl.2 design point
enjoys. This is because each core’s residual addition evicts the input layer that the other



CHAPTER 3. GEMMINI: FULL-STACK EVALUATION OF DNN ACCELERATORS46

one is expecting from the shared L2 cache, increasing the latency of memory-bound residual
addition layers. The dual-core Bigl.2 configuration, which increases the shared cache sizes,
alleviates this contention, reducing the L2 miss rate by 7.1% over the full ResNet50 run,
and increasing overall performance by 8.0%. The BigSP configuration, on the other hand,
improves overall performance by only 4.2% in the dual-core case.

With Gemmini, we have demonstrated how the memory partitioning strategy, a key
component of system-level design, can be decided based upon application characteristics,
such as the composition of layer types and the number of simultaneous running processes.

3.5 Summary

We present Gemmini, a full-stack, open-source generator of DNN accelerators that enables
systematic evaluations of DNN accelerator architectures. Gemmini leverages a flexible archi-
tectural template to capture different flavors of DNN accelerator architectures. In addition,
Gemmini provides a push-button, high-level software flow to boost programmers’ produc-
tivity. Finally, Gemmini generates a full SoC that runs real-world software stacks including
operating systems, to enable system architects to evaluate system-level impacts. Our evalu-
ation shows that Gemmini-generated accelerators demonstrate high performance efficiency,
achieving 87% of the performance of prior handwritten accelerators such as NVDLA on
workloads such as ResNetb0, and our case studies show how accelerator designers and sys-
tem architects can use Gemmini to co-design and evaluate system-level behavior in emerging
applications.

However, Gemmini does have certain limitations. For example, although it’s parameters
expose a broad design space, we do not yet include automated search algorithms to help
users to search this space. (Section 5.1 in Chapter 5 discusses this challenge in more detail).
Furthermore, Gemmini is limited to dense DNN workloads, such as CNNs like ResNetb0 and
MobileNet [78], or transformers such as I-BERT [44]; the following chapter describes how
we create an accelerator design framework which helps cover the sparse accelerator space as
well.
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Chapter 4

Stellar: Designing and Synthesizing
Accelerators

4.1 Introduction

In response to diminishing technology scaling trends and the growing computational demands
of modern workloads, computer architects have increasingly turned to domain-specific ac-
celerators and co-designed software optimizations for improved energy and area efficiency.
However, the expanding landscape of diverse workloads has given rise to a large multitude
of hardware designs and software co-optimization techniques. These diverse solutions range
from fixed-function matrix-multiplication arrays for dense DNNs [22, 63, 18, 37, 61], to co-
designed structured sparsity formats that remove low-priority weights or features from large
DNN models [105, 64, 51, 88], to accelerators for extremely sparse, highly-imbalanced tensor
operations [66, 104, 102, 82, 24, 13].

While this broad spectrum of hardware and software optimizations presents ample op-
portunities for accelerator and software co-design, it also greatly complicates the analysis,
exploration, and design of specialized architectures. Prior work has attempted to address
these challenges through methods ranging from ad-hoc hardware design to proposals for
well-defined, expressive accelerator taxonomies. Ad-hoc design, a traditional and flexible
approach, provides limited opportunities for automated and rapid design space exploration.
Conversely, techniques like high-level synthesis enable swift hardware development via direct
compilation from software to hardware, but fail to maintain a strong separation of concerns
in the hardware design process, making it difficult to explore independent design choices
without modifying unrelated parts of an architect’s specifications. Recent efforts have intro-
duced expressive abstractions and taxonomies in an attempt to disentangle various compo-
nents of accelerator design. However, these approaches often fail to generate synthesizable
sparse hardware designs, focusing predominantly on higher-level modeling, or they struggle
to describe low-level aspects of hardware design that are of interest to architects.

In response to the complexity posed by the diverse landscape of accelerator design, we
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Figure 4.1: A simplified illustration of Stellar’s accelerator specification and hardware gen-
eration process, from the user-specified inputs on the left to the Verilog and programming
interface outputs on the right.

develop “Stellar”, a new accelerator design framework for automated dense and sparse spa-
tial accelerators. Stellar addresses these challenges by introducing three key features: (i) it
provides expressive abstractions for the design of both dense and sparse accelerators, (ii) it
maintains a strong separation of concerns between different design considerations, allowing
independent specification and exploration, and (iii) it generates synthesizable Verilog imple-
mentations of user-specified hardware, together with RISC-V programming interfaces that
can easily be incorporated into users’ software applications. Stellar’s design flow, summa-
rized in Figure 4.1, enables the rapid development and generation of accelerators for both
dense and sparse workloads.

Building upon prior taxonomies for dense and sparse accelerators [69, 49, 11, 95, 62],
Stellar introduces new abstractions of interest to hardware developers, such as fine-grained
load-balancing schemes and pipelining strategies. Users independently express a specialized
hardware accelerator’s (i) functional behavior, (ii) dataflow, (iii) supported sparsity patterns,
(iv) load-balancing strategy, and (v) private memory buffers. They can modify these differ-
ent design considerations in isolation and observe the subtle interactions between them to
determine the best accelerator design choice.

Stellar maps these design specifications to hardware templates, and optimizes them to
maximize data reuse and minimize area and wiring congestion. Stellar then outputs synthe-
sizable Verilog implementations of a full SoC, including user-specified accelerators, optional
host CPUs, and shared memory hierarchies. Our evaluation demonstrates that Stellar-
generated hardware implementations perform competitively to hand-designed accelerators,
and that they effectively expose various performance bottlenecks caused by either hardware
or software design choices, which often cannot be exposed in high-level simulators or models.
We provide an end-to-end, unified platform for both dense and sparse accelerator design,
enabling systematic evaluation and comparison of diverse architectural design choices.
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4.2 Specifying Accelerators in Stellar

Stellar is composed of a specification language that describes spatial accelerators, dense or
sparse, and a compiler that translates these descriptions into Verilog. The specification
language is designed to maximize an architect’s separation of concerns when designing an
accelerator; each of the five subsections below describes a separate design concern which
users can specify and explore independently, even if the full impact of one design concern
on the overall performance of the accelerator may depend partially upon another design
concern.

4.2.1 Functionality

Stellar users specify the functionality of their accelerator with a Halide-like notation which
has been used in prior work for dense accelerator design [75, 101]. The functional notation
defines various tensor inputs and outputs, and how the outputs are calculated from the
inputs.

Consider, for example, Listing 4.1, which illustrates how a Stellar-user may define the
functional behavior of a matrix-multiplication accelerator. We will refer back to this example
repeatedly throughout this paper:

Listing 4.1: Functional behavior of a matmul accelerator with indices 7, 7, and k.

1 // Inputs

2 a(i, j.lowerBound, k) := A(i, k)

3 b(i.lowerBound, j, k) := B(k

4 c(i, 7, k.lowerBound) := 0

5 // Intermediate calculations

a(i, j, k) = a(i, j=1, k)

b(i, 7, k) := b(i=1, 7, k)

(i, j, k) := c(i, 7, k=1) +
a(i, j—=1, k) % b(i=1, j, k)

// Outputs

C(i, 7) := (i, j, k.upperBound)

© 00 J O C

—_
—_
(-

Unlike an iterative for-loop, Stellar’s Halide-like notation involves no state-mutations,
and makes no assumptions about the order, time, or place of each multiply-accumulate
operation within a hardware unit. The i, j, and k indices exist only in what we call the
“tensor iteration space,” and do not directly correspond to time or space coordinates on
a physical hardware accelerator. Neither does the functional notation make assumptions
about the sparsity distributions or sparse data formats of the input or output tensors. The
following subsections describe how we specify such design considerations.

In addition to arithmetic operations, Stellar’s functional notation also supports data-
dependent accesses to the input and output tensors, which are sometimes useful for spec-
ifying merging and sorting algorithms for sparse workloads in particular. Output mergers
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Figure 4.2: Examples of space-time-transforms (each named 7') and the dense matmul
dataflows that result from them.

and coordinate-matchers are necessary for many sparse accelerators, where they sometimes
consume more area or power than the MAC arrays themselves [104]. For example, consider
the Stellar code sample in Listing 4.2 below, which demonstrates how data-dependent Stel-
lar code can be written for the shared-coordinate-matching unit of an inner-product sparse
matmul accelerator:

Listing 4.2: Functional behavior of a matmul accelerator with indices 7, j, and k.
1 matches(n) := A(ka(n)) = B(kb(n))
2 ka(n) := ka(n) + (A(ka(n)) < B(kb(n)))
3 kb(n) := kb(n) + (A(ka(n)) > B(kb(n)))

Stellar can therefore be used to construct a full pipeline for both sparse and dense ac-
celerators, including functional units for arithmetic reductions and data-dependent pre- or
post-processing. The functionality of these hardware units can also be specified indepen-
dently of their dataflows, sparsity formats, load-balancing strategies, or private memory
buffers.

Finally, although Stellar’s functional provides a set of commonly used arithmetic oper-
ators, such as additions, multiplications, comparisons, bitshifts, or boolean operators, we
also allow users to implement their own operators in raw Chisel, as shown in Listing 4.3.
This extensibility helps support use cases where users wish to operate on custom datatypes
such as bfloat16 [38], or perform complicated bit-level accesses which may be awkward to
compose out of our pre-defined operators.

Listing 4.3: Custom floating-point MAC, in raw Chisel with the Hardfloat library [28], for
Stellar’s functional specification.

I /% Specify the nputs and outputs for this custom
operation , as in lines 8-9 of Listing 4.1 x/
c(i,j,k) := Custom(ops=Seq(a(i,j—1,k), b(i—=1,7,k), c(i,j,k—=1)),
function = { ops =>
val Seq(a_bits, b_bits, c_bits) = ops

Ut
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[ /* A Chisel implementation of a multiply—addr, from

8 the open—source HardFloat library x/

9 val muladder = Module(new MulAddRecFN (expWidth, sigWidth))
10

11 muladder.io.op := 0.U // Multiply—accumulate

12

13 /* HardFloat supports multiple rounding modes,

14 but round—near—even is typically best for

15 DNN workloads. x/

16 muladder.io.roundingMode := consts.round_near_even
17

18 muladder.io.a := a_bits

19 muladder.io.b := b_bits

20 muladder.io.c := c_bits

21

22 muladder.io.out

23}, name="Mac”)

4.2.2 Dataflow

Users define the dataflow of their accelerator by specifying a linear transformation (repre-
sented by an invertible matrix) from the tensor iteration space described above to physical
space and time coordinates on a spatial array. Following the example of prior work [42, 50,
74, 75, 101}, we call this linear transformation a “space-time transform”. For example, for
the matmul example in Listing 4.1, the space-time transform would be T in the equation
below:

T (4.1)

o,
Il
< 8

where 7' is a 3x 3 invertible matrix, x and y are space coordinates, and ¢ is a timestep. Every
input, output, and intermediate MAC operation in the matmul in Listing 4.1 is mapped by
T to a specific place and time on a two-dimensional physical spatial array with x rows and y
columns. For example, if T is the identity matrix, then a MAC that takes place when i = 1,
j =2, and k = 3 would be mapped to the PE at position (zr = 1,y = 2) (i.e. row-1 and
column-2 in the spatial array), and would occur when the time-step, ¢, equals 3.

Figure 4.2 illustrates various space-time transforms for matmuls and the spatial arrays
that result from them. Note that by simply changing numerical values in the T" matrix, users
can create a wide variety of spatial arrays, including input-stationary, output-stationary, and
hexagonal [4] designs.

Each of these space-time-transforms represents a separate dataflow, covering a superset
of the dataflows proposed by some other dataflow-classification schemes which are instead
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A

Figure 4.3: A three-dimensional spatial array generated by Stellar.

defined in terms of which tensor iterators are spatially or temporally unrolled [97], or by
which inputs or outputs remain stationary during execution [7]. For example, a dataflow-
classification scheme which only allows users to decide which iterators to spatially unroll
could only produce 3D spatial arrays, as in Figure 4.3, if the user wanted to unroll all three
indices (i, j, and k) in Listing 4.1. Stellar can express 3D arrays as well, but it can also
express more niche spatial arrays that such dataflow-classification schemes cannot, such as
the hexagonal array in Figure 4.2¢ which spatially unrolls all three indices onto a 2D plane,
yielding shorter wires which may be easier to route.

Stellar’s dataflow specifications also give hardware designers more fine-grained control
over lower-level hardware design decisions, such as the number of pipeline registers to place
across different axes of the spatial array. Figure 4.4 illustrates how changing individual values
in the lowest row (the time axis) of the dataflow-specification matrix 7" creates designs that
are more or less aggressively pipelined.

Stellar uses the dataflow specified by the user’s space-time transform to construct “base-
line” dense accelerators which maximize PE-to-PE data re-use, as in Figure 4.2. Later,
Section 4.3.2 describes how these baseline spatial arrays are modified to skip zero-values in
sparse workloads, based on the sparsity specifications given in the following subsection.

4.2.3 Sparse Data Structures

For sparse accelerators, the sparse data structures of the input and output tensors are ex-
pressed in Stellar in terms of which iterators in the tensor iteration space may be “skipped”
and under which conditions they may be skipped. For example, consider the following spar-
sity structures we define for the matmul example introduced in Listing 4.1:

Listing 4.4: Specifying sparse data structures in Stellar.

// AxB=C where A and B are CSC/CSR
Skip ¢ when A(i,k) = 0
Skip j when B(k,j) = 0

_ W0 N =
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Figure 4.4: Different pipelining strategies for the input-stationary matmul accelerator in
Figure 4.2a.

at

// AxB=C where A is diagonal
6 Skip ¢ and k& when ¢ != Fk

oo

// AxB=C where rows of A may be all 0
9 Skip k& when A(i,—>) = 0

Note that in Listing 4.4, we do not specify how exactly the tensors are stored in memory,
or what metadata is associated with them; these details are irrelevant to the spatial array
design. Listing 4.4 only specifies which tensor elements are skipped; e.g. whether we skip
elements along rows, as in the CSR format, or along columns, as in the CSC format. By
contrast, later subsections describe how users specify how tensors are actually stored and
encoded in memory.

Once a sparsity structure is specified, Stellar determines which PE-to-PE connections
in the baseline dense spatial array (as illustrated in Figure 4.2) are no longer guaranteed
to transmit useful non-zero values in every single cycle. Under the assumption that these
PE-to-PE connections are unlikely to carry useful data (as when the total non-zero density
of a tensor is very low), Stellar removes these PE-to-PE connections and replaces them with
IO connections that access the input- or output-tensors directly from outer register files.

For example, Figure 4.5 illustrates how the input-stationary matmul array in Figure 4.2a
will look after the user specifies that the input-B matrix has the CSR format, causing Stellar
to remove the vertical PE-to-PE connections which were previously being used to accumulate
partial sums. Section 4.3.2 describes in further detail how Stellar calculates exactly which
PE-to-PE connections to remove.

However, for some forms of structured sparsity, PE-to-PE connections are still valuable
even if some of the data they carry will only be useful to a small number of PEs. For
example, Figure 4.6 illustrates a Stellar-generated spatial array implementing NVIDIA’s
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A100 structured sparsity scheme [64] for matmuls, where two out of every four adjacent
DNN weights are zeros. Some of the nonzeros will be used for useful computations in any
particular cycle, while others will simply be forwarded through the array. To support such
sparsity structures, Stellar provides the OptimisticSkip keyword, which, unlike the Skip
keyword, does not remove PE-to-PE connections, but replaces them with wires that carry
small bundles of potentially useful data, rather than scalar values.

4.2.4 Load-Balancing

Spatial array workloads are oftentimes extremely imbalanced, causing some PEs to idle while
other PEs are performing useful arithmetic operations. Prior work proposes a wide variety of
hardware techniques to redistribute work from over-burdened PEs to idle PEs at runtime [23,
24].

Stellar allows users to specify whether they want computations that would normally take
place in certain regions of the tensor iteration space to be shifted towards other “target”
iterations, but only if the target iterations would be idle otherwise. For example, consider
the following load-balancing strategy for a sparse matmul described using Stellar’s notation:

Listing 4.5: A simple load-balancing scheme in Stellar
I Shift (/xi = x/ N— 2«N, 7, k) to
2 (/*i =%/ 0 —> N, 7, k+1)
where the tensor iterators, ¢, 7, and k, are the same as those introduced for the matmul in

Listing 4.1. For any iterator value k = K, if the target matmul iterations, where 0 <1i < N,
are all idle due to a workload imbalance, then Stellar will shift future work that has not yet
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Figure 4.5: The input-stationary matmul array from Figure 4.2a after the B-matrix is spec-
ified as a sparse CSR matrix.
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Figure 4.6: The output-stationary matrix from Figure 4.2b when the A-matrix conforms to
the A100 2:4 sparsity format [64].

begun where kK = K +1 and N < ¢ < 2N onto the idle PEs, reducing the future workload
of PEs which are currently busy.

Based on the exact dataflow specified, this might mean, for example, that adjacent rows
of the spatial array can share work, but only if they are directly adjacent. Figure 4.7
illustrates a scenario where this happens. More flexible load-balancing schemes can share
work across broader sets of PEs, but, as detailed later in Section 4.3.2, they may require
Stellar to generate hardware with greater area and wiring congestion.

More fine-grained and sophisticated load-balancing schemes can also be specified. For
example, some sparse accelerators, such as AWB-GCN [23], will give specific PEs the ability

b1gb47015011~ 211 | Ay bi5b11~ a4 = Ay
-+ ~ bigby7~ a4 | @y
(a) Without load-balancing (b) With load-balancing

Figure 4.7: The sparse matmul array from Figure 4.5, executing an imbalanced B-matrix
with and without load-balancing.
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Figure 4.8: An overview of the hardware generation process for Stellar, from the initial
architectural specification, to the unoptimized and optimized IRs, to the final Verilog and
programming interface outputs.

to take work from any other overburdened PE, while other PEs can only share work with
their close neighbors. To help support such strategies, Listing 4.6 shows an example load-
balancing scheme where only iterations corresponding to a small subset of PEs will take
work from other PEs:

Listing 4.6: Very flexible load-balancing for a limited set of PEs.
1 Shift (i,7,k) to (/*xi=x/0, /[xj=x/0—>4, k)
Finally, note that Stellar’s notation for specifying load-balancing schemes specifies which
operations should be remapped only in the tensor iteration space (as described in Sec-

tion 4.2.1). Therefore, users can express and explore different load-balancing strategies
completely independently of the dataflow or sparsity structures themselves.
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Figure 4.9: Hardware architecture overview for an example sparse matrix-multiplication
accelerator.

4.2.5 Private Memory Buffers

To generate scratchpad memories and private memory buffers for their accelerators, Stellar
users must specify the specific dense or sparse data formats they will support. To specify
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such data formats, we use the fibertree notation from prior work [84], where users specify a
different dense/sparse format for every axis (i.e. dimension) of a tensor. For example, the
CSR format would be specified by setting the outer-axis of a two-dimensional matrix to the
Dense uncompressed format, while the innermost axis would be Compressed, composed of a
list of coordinates and data. Stellar supports other formats as well, such as Linked-Lists; by
composing these formats to different dimensions of a tensor, a wide variety of unique sparse
tensor formats can be defined.

Note that the private memory buffer data formats do not necessarily have to conform
exactly to a spatial array’s expected sparse data structures (described above in Section 4.2.3).
For example users can define spatial arrays that are completely dense connected to private
memory buffers which store sparse data. The dense arrays will preserve short, low-overhead
connections between PEs, unlike sparse spatial arrays which must often replace PE-to-PE
connections with longer, more expensive, and more congested wiring to outer memory units.
The sparse private memory buffers, meanwhile, can store sparse data in order to reduce
DRAM bandwidth requirements. By allowing independent specification of both spatial array
and memory buffer parameters, Stellar enables such designs to be explored and evaluated.

4.3 Hardware Generation in Stellar

After an accelerator’s functionality, dataflow, sparse data structures, load-balancing schemes,
and private memory parameters are specified in Stellar, our compiler elaborates these into
an IR which represents a set of spatial arrays, register files, SRAMs, and load-balancers.
These are optimized based on data-access patterns which can be determined at elaboration
time, and the optimized IR is mapped to a set of Chisel [3] templates which are lowered
into Verilog and RISC-V programming interfaces. Figure 4.8 illustrates this full hardware
generation process, which is described in further detail in this section.

4.3.1 Architectural Overview

Stellar-generated accelerators are composed of spatial arrays, register files, private mem-
ory buffers, (optional) load-balancers, and a DMA. Figure 4.9 shows the overall hardware
architecture of an example Stellar-generated accelerator that performs sparse matrix multi-
plications and merges the scattered partial sums into merged matrix results.

Spatial arrays perform compute operations such as matrix multiplications or the merging
of scattered output results. These spatial arrays read and write their input and output
tensors to register files, which may themselves be populated by or emptied into larger private
memory buffers. Load-balancers monitor the regfile inputs and outputs to determine whether
PEs will be idle or over-utilized. Finally, a DMA transfers tensors between off-chip DRAM or
outer caches and the accelerator’s private memory buffers. The following subsections describe
how the aforementioned hardware components are generated and optimized by Stellar.
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Figure 4.10: The internal representation, called an IterationSpace for a spatial array
performing a matmul as in Listing 4.1 as it is transformed from a purely functional description
to a physically realizable two-dimensional spatial array.

4.3.2 Generating Spatial Arrays

Stellar initially constructs dense spatial arrays, based on the functional description of the
accelerator and its dataflow. The PEs of these spatial arrays will request inputs or issue
outputs when their physical coordinates and current time-step correspond to the indices these
input/output operations are supposed to occur at. For example, the PE output on line 11
of Listing 4.1 occurs whenever the tensor iterator £ is at its maximum value, k.upperBound.
By multiplying a PE’s space-time coordinates, (z,y,t) as in Equation 4.1, by the inverse
of the space-time transform, 7!, we can find the exact point in the tensor iterator space
to which the current space-time coordinates correspond. If the value of k at that point is
k.upperBound, then the PE output will be issued.

Figure 4.10a illustrates how an example spatial array is initially represented in the Stel-
lar compiler’s internal IR, based purely on the functional description in Listing 4.1, before
the dataflow or sparsity specifications are applied to it. Stellar refers to this IR as an
IterationSpace, where every Point within the IterationSpace corresponds to a differ-
ent unique set of values for the tensor iterators (i, j, k). Furthermore, the IterationSpace
includes a set of Point2PointConns (point-to-point connections) describing data dependen-
cies between different points, and a set of I0Conns (IO connections) representing input- or
output-requests to external register files (described later in Section 4.3.4). Finally, every
Point has a set of Assignments representing the different arithmetic operations, such as
multiply-accumulates or variable initializations, that happen at a specific Point.

The baseline, dense spatial array that is initially constructed by Stellar is modified based
on the user’s sparsity structure specifications.. Dense spatial arrays typically achieve high
data reuse by sharing data through PE-to-PE connections. However, sparse workloads often
have much less data reuse, rendering many of these PE-to-PE connections obsolete. Stellar
will remove the PE-to-PE connections which are no longer guaranteed to carry useful data
between PEs, and replace them with direct connections to outer regfiles, as seen by the
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change between Figure 4.2a and Figure 4.5.

For an example of how Stellar determines which connections to remove, consider the
accumulation of partial sums on lines 8-9 of Listing 4.1. We see that a PE at point (i, j, k)
in the tensor iteration space computes the multiply-accumulate-sum, ¢(i, j, k), based on
c(i,j, k — 1), which means that the “difference vector” [101] for the variable ¢ is (Ai =
0,Aj =0, Ak = 1). Multiplying the input-stationary space-time-transform 7" in Figure 4.2a
by the difference vector yields the spacetime difference vector (Azx = 1, Ay = 0,At = 1),
which indicates that the partial sums travel vertically down the spatial array every time-step.

Now, suppose that B is in the CSR format, as in Listing 4.7:

Listing 4.7: Making the B-matrix CSR
1 Skip j when B(k,j) = 0

In the CSR sparse format, finding the j-coordinate would require a series of indirect
lookups and pointer arithmetic. Stellar abstracts these lookups away by expressing the “ex-
panded” j-coordinate as some arbitrary function f whose inputs are k and the compressed
j-coordinate: Jespanded = [ (K, Jeompresssea). Lherefore, the difference vector for ¢ now be-
comes (Al = 0, Ajeacpanded = f(kajcompressed) - f(k - 17jcompressed)» Ak = 1) Because the
j-component depends on indirect data lookups and can no longer be simplified into a scalar
constant, Stellar can no longer assume that the partial sums will be unconditionally accumu-
lated vertically across the spatial array. The corresponding vertical PE-to-PE connections
are therefore removed, yielding the matmul array in Figure 4.5 with fewer PE-to-PE con-
nections, and a larger number of output ports to outer register files. Figure 4.10b illustrates
how the Stellar compiler’s internal representation of a spatial array, an IterationSpace,
appears after its Point2PointConns are pruned based on the equations described above.

Load-balancing schemes can also affect the design of spatial arrays. Figure 4.11b il-
lustrates a load-balancing strategy where any PE within a row can operate on data that
would otherwise have been sent to the upper row, if that PE would have otherwise been
idle. Each PE can independently be redistributed work from the above row, and therefore
it might no longer receive useful data along its horizontal PE-to-PE connections. Therefore,
since horizontal PE-to-PE connections might no longer transmit the necessary inputs, Stellar
must replace them with connections to outer regfiles. Contrast this to Figure 4.11a, where
load balancing operates at the granularity of an entire row of PEs, preserving the horizontal
connections.

Different sparsity and load-balancing schemes can therefore significantly impact the area
and power overheads of the spatial arrays, by reducing the efficiency gains of cheap PE-to-
PE communication that can be fully exploited when workloads are dense. Stellar’s strong
separation of concerns enables users to flexibly specify various sparse data structures and
load-balancing schemes, and evaluate their impact on hardware.

After Point2PointConns have been fully pruned and replaced with I0Conns based on the
sparsity and load-balancing specifications, the space-time transform describing the dataflow
(Section 4.2.2) is applied to generate a new IterationSpace, as illustrated in Figure 4.10c.
Each Point in this new IterationSpace corresponds to a different PE in the final generated
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Figure 4.11: The effect of more or less flexible load-balancing strategies on PE-to-PE com-
munication.

spatial array; multiple Points in Figure 4.10b may therefore map to the same Point in
Figure 4.10c if they represent different operations which happen at different timesteps on
the same PE. Therefore, this final transformation is not one-to-one, but many-to-one.

As described above, Stellar’s IterationSpace supports affine linear transformations and
the pruning of Point2PointConns; however, it does not yet support more complicated
dataflow graph transformations such as transpositions, folding, or interleaving. We leave
such transformations to future work.

Finally, every Point in Figure 4.10c is mapped to a highly generalizable Chisel template
of a PE, shown in Figure 4.12. Every Assignment associated with the Point is translated
to Chisel in the “User-Defined Logic” block. For a matrix-multiplication spatial array, this
would consist primarily of multiply-accumulate operations. However, a single PE may per-
form different operations in different time-steps; for example, the variable c¢ is initialized to
0 on line 4 of Listing 4.1, but is thereafter accumulated every subsequent cycle on line X.

P E Space Coordinates
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> —>

Start / Stall
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10 Request
Generator
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Time
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Data from PEs Data to PEs

_>\
Data from RFs
_>
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comparisons, etc.)

Data to RFs

Figure 4.12: The architecture for a Stellar PE.
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To calculate which operation to perform at a specific time-step, every PE includes a “Time
Counter” register; when concatenated to the physical coordinates of the PE, a space-time
vector, (z,y,t), can be generated and multiplied by the inverse of the space-time transform,
T~! to generate the original tensor iterators (i,j, k). Based on these tensor iterators, the
exact operation to perform can be determined at runtime by the PE. Input- and output-
requests to outer register files, each one corresponding to a different I0Conn, are generated
in the “IO Request Generator” when the tensor iterators match the values specified in the
functional description in Listing 4.1. The PEs are then connected to each other if they have
Point2PointConns in the spatial array’s IterationSpace, as in Figure 4.10c.

4.3.3 Generating Private Memory Buffers

As described in Section 4.2.5, Stellar users specify the dense or sparse data formats, capaci-
ties, banks, and read/write bandwidths their private memory buffers will support. The data
formats are defined using the fibertree notation, where different dense/sparse formats are
defined for every axis (i.e. dimension) of a tensor.

Stellar then generates multiple pipeline stages — one for each axis of the dense or sparse
tensors that the buffer stores — which read/write requests made by programmers pass
through. Dense axes generate simple address generators, while Compressed or Linked-List
axes may require indirect lookups to SRAMs which store metadata to determine the final
data addresses to read or write to. Figure 4.13a shows example pipeline stages generated for
a private memory buffer holding tensors in the block-CSR [17] format.

Reads and writes each pass through separate pipeline stages, and Stellar-generated
SRAMs are always dual-ported so that reads and writes can happen simultaneously. Only
write pipelines will every write data to an SRAM, but certain metadata buffers, such as the
RowId pointers in compressed axes, or the NextNode pointers in linked-list axes (illustrated
in Figure 4.13¢), may need to be read by both read and write pipelines. The SRAMs storing
these metadata buffers therefore have round-robin arbiters that allow both read and write
pipelines to share access to their read-ports.

Tiling
For every read or write request, the programmer must specify at runtime the address, length,
and data and/or metadata strides for each axis. Because dense axes are implemented as basic
address generators, Stellar users may wish to add extra dense axes to an SRAM to allow
more complex striding or tiling patterns. For example, as in Figure 4.13b, a third outer
dense axis might be added to a memory buffer storing a two-dimensional matrix, where the
outermost dense axis is simply used to tile or block submatrices out of the larger 2D matrix.
However, simply adding an outer dense axis is sometimes not optimal when tiling imbal-
anced sparse matrices. Consider, for example, a workload where the user must tile small,
two-dimensional submatrices out of a larger, sparse, CSR matrix with imbalanced rows, as
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(a) Block-CSR [17] matrices.
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(¢) Two-dimensional matrices where the rows are linked-lists.

Figure 4.13: The read/write pipeline stages for a private memory buffer storing tensors with
different dense and sparse data formats.
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Figure 4.14: Tiling two-dimensional 2x2 matrices out of an imbalanced CSR matrix.

in Figure 4.14. We could tile it naively as in Listing 4.8 (which, in Stellar, would correspond
to adding an outer dense axis):

Listing 4.8: Tiling a CSR matrix.
for (int tile_id = 0; tile_id < N_TILES; tile_id++) {

1

2 for (int row = 0; row < NROWS; row++) {

3 int start = Rowld[row] + tile_id % TILE_SIZE;

4 int end = min(Rowld [row+1], start + TILE_SIZE);

5 for (int ptr = start; ptr < end; ptr++) {

6 int data = CsrData[ptr];

7 int coord = CsrCoords|[ptr];

8 // Perform computations on ‘data’ and ‘coord ’...

O 31}

However, this approach would result in many unnecessary reads of the RowId buffer in line
3 in order to re-determine the length of a row whose length had already been checked in the
past. In fact, if the rows of the matrix being tiled are highly imbalanced, then many cycles
may be spent checking the lengths of rows in line 3 which have already been entirely iterated
over, leading to bubbles in the outputs from the memory buffer. To optimize for such tiling
scenarios, Stellar users can parameterize their memory buffers to cache prior RowId reads or
accesses to other pointers or metadata buffers, and only read data from rows of the matrix
which have not yet finished being output.

Finally, naive tiling of sparse, imbalanced matrices sometimes fails to account for the
fact that some regions of a tensor — for example, certain rows of a CSR matrix — may be
consumed by a spatial array at a faster rate than others, at different points during runtime.
For example, observe that the all the elements in row 0 in Figure 4.14 happen to have larger
indices than all the elements in row 1. Suppose a Stellar user generates a spatial array which
merges the different rows of a CSR matrix into a single sorted row. All the elements of row
1 will have to be read out before any elements of row 0 can be consumed; however, simple
interleaving of rows in a round-robin fashion would cause elements of row 0 to be issued from
the memory buffer even when they cannot be consumed by the spatial array. To optimize
for such scenarios, Stellar’s private memory buffers can also optionally monitor the number
of elements that are currently resident in an output register file which have not yet been
consumed by a spatial array, and the memory buffers will then interleave the rows (or other



CHAPTER 4. STELLAR: DESIGNING AND SYNTHESIZING ACCELERATORS 64

dimensions) that they output to prevent any row from occupying too much idle space in the
register file.

Banking

The private memory buffers can be banked to support multiple simultaneous reads or writes
from different addresses. As shown in Figure 4.15, banking causes the read and write
pipelines to be duplicated; each read/write pipeline bank may then perform independent
reads/writes to similarly banked SRAMs storing tensor data or sparse metadata.

The read /write pipeline banks are independent of the banking of the SRAMs; for example,
users may create private memory buffers with four pipeline banks, but 16-banked SRAMs.
Every pipeline bank has access to all SRAM banks (which leads to the creation of crossbars
in the generated RTL). The more aggressively the SRAMs are banked, the less likely it will
be that multiple pipeline banks attempt to access different addresses of the same SRAM
bank simultaneously.

If two different pipeline banks, bank-X and bank-Y, attempt to read or write from the
same SRAM bank, then pipeline bank-X will have priority if X < Y. However, as a minor
optimization, if both pipeline banks are trying to read or write the same address in the
same SRAM bank, then their read or write requests are consolidated so that they happen
simultaneously.

Synchronization

The private memory buffers also support various synchronization and interleaving options.
For example, reads and writes can be performed simultaneously on the same memory buffer,
but with the writes “trailing” (i.e. following behind) the reads; this can be used, for example,
to accumulate partial sums in a matmul. Section 4.5 describes Stellar’s ISA which allows
programmers to specify such synchronization options.

Hardcoding Memory Buffer Request Parameters

Finally, users can optionally hardcode certain read /write request parameters, such as striding
patterns that will be used at runtime, before hardware generation begins in order to help
Stellar make optimizations to both memory buffers and register files. For example, Listing 4.9
shows an example where a Stellar user hardcodes certain parameters to specify that the dense
tensor memory buffer in Figure 4.13b will always produce 4 x 4 dense matrices. The internal
adders and gates in the Dense Addr-Gen units in Figure 4.13b can be simplified based
on these hardcoded parameters, for example by replacing runtime-configurable adders with
simpler adders that have hardcoded operands.

Listing 4.9: Hardcoding memory buffer read parameters

I def hardCoded(x: MemPipeline) = Map(
2 x.read_req.spans(0) — 4.U,
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Figure 4.15: The read/write pipeline stages for a private memory buffer dense matrices, with
two pipeline banks and two SRAM banks.

3 x.read_req.spans (1) — 4.U,
4 x.read_req.data_strides (0) — 1.U,
5 x.read_req.data_strides (1) — 4.U)

4.3.4 Generating Register Files

All spatial arrays in Stellar read from and write into register files (regfiles). For the matmul
example in Listing 4.1, every input and output variable (A, B and C') must be stored in a
separate register file before being accessed by the spatial array.

Note that these regfiles are also commonly included in handwritten spatial accelerators,
even if the name they are given is different. For example, prior dense DNN accelerators,
such as Gemmini [22], must delay certain inputs or outputs before they enter a spatial array
because of their specific pipelining strategies; Figure 4.16 demonstrates how these delay
registers may be arranged. In Stellar, this can be implemented as a low-area feedforward
regfile with a triangular shape.

However, the default, baseline register file design in Stellar is more expensive, as illus-
trated in Figure 4.17a. Every input port and output port has access to all entries in the
register file simultaneously, and outputs are performed by searching all entries to find one
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Figure 4.16: Delay registers surrounding a dense matmul array.

whose coordinates match the ones that a PE is requesting. The cost of each input and
output port therefore scales by the total number of elements in the register file. The register
file must also be large enough to store all elements that the spatial array will request during
its execution, no element is popped off until the spatial array has completely finished its
execution.

The baseline register file design is expensive because Stellar’s functional specifications
(described in Section 4.2.1) are highly flexible and support indirect accesses whose coordi-
nates may not be known until runtime. It may also not be possible to know before runtime
how many times exactly an element will be requested from a regfile. The baseline design
therefore functions as a worst-case fallback for spatial arrays with complicated and unpre-
dictable regfile access patterns, and despite its high area overhead and wiring congestion,
may still be adequate for smaller accelerators. Fortunately, for the vast majority of dense
and sparse accelerators, the register file parameters available in Stellar allow these overheads
to be greatly reduced, and the scalability of regfiles to be greatly improved.

For example, to reduce the overhead of each individual input or output port, it might be
sufficient for inputs and outputs to occur only at the edges of a regfile as in Figure 4.17b.
With further optimizations, Stellar users can narrow the number of elements that need to be
searched for a spatial array request even further, as in Figure 4.17c, where each output port
is only responsible for observing a single element of the register file, to produce a simple feed-
forward array of shift registers, also similar to the design previously shown in Figure 4.16.
By selecting which edges to designate as entry and exit points for the regfile, Stellar regfiles
can even perform various data layout transformations, such as transpositions, as illustrated
by Figure 4.17d. The input and output port entry/exit points are also independent of each
other; users can optimize only the exit points, for example, without optimizing the entry
points if the regfile inputs need maximum flexibility. The entry/exit points can currently be
Anywhere, FIFO, Edge, or PerpendicularEdge.
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In addition to optimizing the number of elements that an input or output port needs
to search, Stellar users can also benefit from other optimizations which do not change the
functional correctness of a register file’s RTL, but which can affect its area overhead. For
example, if different regfile input or output ports can be determined to work “in lockstep”,
such as when two output ports in a regfile are known to always return two directly adja-
cent elements, then only one of the two ports will require circuitry to search for matching
coordinates among the regfile elements, and the other can simply return the regfile element
neighboring it. This is very common in dense spatial arrays, but also occasionally possible
with sparse spatial arrays. Alternatively, if input ports write to hardware FIFOs in the reg-
ister files, but the regfile’s input ports have been specified to operate in lockstep with each
other, then the regfile will not need independent, separate FIFO counters for each input-port;
they will instead be able to share the same counters.

Other optimizations relate to the “popping” of elements from a register file. For example,
if it is known that a spatial array will only access a regfile element once, then it can be
“popped” (i.e. removed) immediately after being accessed, potentially enabling the register
file to have fewer entries in total. If a spatial array, however, has complicated, data-dependent
access patterns which may require a regfile entry to be accessed an indefinite number of times,
then no regfile entry can be popped until the spatial array completely finishes execution, in
which case the register file may need more elements in total so that all the inputs the spatial
array could potentially need to access in a particular cycle are simultaneously available.

4.3.5 Generating Load Balancers

To support load-balancing, (described in Section 4.2.4), Stellar generates load-balancer mod-
ules which monitor regfile inputs and determine based on them whether the PEs that read
from those regfiles have enough inputs available to do useful work, or whether they will be
idle. The load-balancer modules are designed to be lightweight and to hold as little state as
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Figure 4.17: Various register files generated by Stellar, with more or less aggressive opti-
mizations. All regfiles in this figure have four entries, two input ports on the left, and two
output ports on the right. Observe that when input/output ports can only connect to regfile
edges, elements must travel through the regfile entries so they can reach the output ports.
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possible: when feasible, bitvectors are used to record whether or not various spatial array
inputs are available, with each bit corresponding to a different input known at hardware-
generation time to be necessary for a PE to be utilized. When several layers of indirect
lookups are needed to calculate the coordinates for a PE input, then extra state may need
to be stored in the load-balancer module, because the exact coordinates corresponding to a
required regfile input may be determined only at runtime.

Once the load-balancers determine that work should be redistributed between PEs, they
calculate space-time biases to apply at runtime to the space-time transforms of the PEs
to which work will be redistributed. A space-time bias is a vector addition, as seen in
Equation 4.2, which modifies the unbalanced space-time transform in Equation 4.1 from
Section 4.2.2:

1 bl T
T Jl| + [b2 = |y (4.2)
k b3 t

where by, by, and bs are scalar offsets which are calculated by Stellar based on the user’s load-
balancing specification. When the space-time bias gives the PEs new space-time coordinates
at runtime, they behave as if they were other PEs in other parts of the spatial array, allowing
them to take some of their workload.

4.3.6 DMA

Finally, Stellar generates a DMA module that handles data transfer between the private
memory buffers buffers and main memory, using the cache-coherent TileLink protocol [12].
As with the private memory buffers, Stellar generates different address generation logic for
each axis depending on the user’s sparse format specification.

However, unlike the SRAM buffer design illustrated in Figure 4.13a, the DMA module
generator does not instantiate separate pipelined stages, but instead a state machine that
executes each address generation stage sequentially. We choose not to pipeline the DMA
because we observe that memory transactions to outer memory are frequently bounded by
DRAM bandwidth limitations, lowering opportunities to fully utilize hardware resources if
using a more expensive pipelined design similar to the private memory buffers.

Regardless, the DMA does benefit from certain optimizations which are not relevant for
the private memory buffers, such as prefetching or memory coalescing to minimize repeated
consecutive accesses to the same outer L2 cache lines. The DMA is designed so that the naive,
non-optimized implementation of any sparse or dense tensor transfer to/from DRAM, L2, or
memory buffers should always be available, in order to guarantee functional correctness for
any DMA accesses to any custom sparsity formats. However, for certain memory transfer
patterns, such as for CSR matrix transfers, we manually added various extra optimizations,
such as prefetching of row-ids (described in detail in the sub-sections below), to improve
performance further.
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Finally, for Stellar accelerators which have only dense spatial arrays and dense memory
buffers, support for compressed or linked-list axes can be entirely left out of the DMA,
simplifying it to a simple DRAM address generator and reducing its area or power overhead.

Prefetching Optimizations

As mentioned above, the effective bandwidth of DMA transfers is greatly improved by certain
optimizations, such as prefetching of row-ids for CSR matrices from DRAM. For example,
consider the DMA’s actions when reading a two-dimensional CSR matrix from outer memory,
such as L2 or DRAM, into a private memory buffer for a Stellar accelerator. A naive
implementation of this CSR matrix transfer would have the DMA read each row-id pointer
individually, in a separate TileLink read request, before reading the coordinates the row-id
points to.

A more efficient strategy, however, is to read multiple row-ids simultaneously, in a single
TileLink read request, which, in Chipyard, can return up to 64 bytes of data, equivalent to 16
4-byte row-ids. This strategy, where multiple row-ids are read and prefetched simultaneously,
can greatly reduce the number of TileLink requests made to outer memory, reducing the
number of DMA stalls while waiting for TileLink to return pointers that are necessary for
the addresses of future memory requests to be calculated.

Pointer lookups can also be skipped entirely for sparse matrices in some cases, such as
if the programmer wants to move an entire, untiled, contiguous CSR matrix from DRAM
into SRAM, or vice versa. In such cases, all row-ids, coordinates, and data can be moved
as dense blocks to or from DRAM, without any need to stall in the DMA while waiting for
row-ids to be returned.

Making Multiple TileLink Requests In Every Cycle

For certain workloads, DMA performance can also be greatly improved if multiple non-
contiguous TileLink requests can be performed every cycle. For example, OuterSPACE [66]
is a handwritten sparse accelerator from prior work which performs matrix multiplications in
two phases: one “matmul” phase which multiplies a CSC matrix, A, with a CSR matrix, B,
to produced scattered, discontiguous partial sums that are written into DRAM, and a second
“merge” phase which merges these partial sums into the final matmul results. OuterSPACE
multiplies matrices to produce scattered partial sums, which are stored in a large array of
linked-lists, as in Figure 4.18, where each node of each linked list is a small contiguous vector
of partial sum values and coordinates.

Before any partial sum vector is accessed by the accelerator, the pointers to that vector
must be read from DRAM. Despite comprising less than 10% of the total memory traffic in a
typical OuterSPACE matmul, accesses to these pointers can pose a severe memory bottleneck
for an OuterSPACE-like accelerator’s performance due to control- and data-dependencies
imposed by the pointer accesses. Any inefficiency in their reads or writes causes further
latency-sensitive stalls in the accelerator’s DMA.
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Figure 4.18: Scattered partial sums generated by OuterSPACE.

This issue is compounded by simpler DM As which can only make one new memory load-
/store request per cycle, across the different DRAM channels, as illustrated in Figure 4.19a.
For dense accelerators such as Gemmini [22], or many sparse accelerators such as SCNN [67],
such DMASs are sufficient for high performance. Even when accessing the partial sum values
and coordinates which make up most of OuterSPACE’s total traffic, one request per cycle
maintains high read bandwidth for most matmuls. However, when accessing the pointers
to these vectors, one read request can only return a single scalar pointer, causing DRAM
under-utilization and a series of costly stalls; these stalls then compound further because the
DMA must wait for the pointer to return before it can make read requests for corresponding
partial sum vectors.

To accommodate such pointer-chasing workloads, Stellar’s DMA is can be parameterized
by the architect to generate multiple independent DRAM read or write requests per cycle,
as illustrated in Figure 4.19b, without necessarily increasing total DRAM bandwidth or the
number of DRAM channels. When Stellar’s DMA observes at runtime that the programmer
is attempting to access multiple, discontiguous pointers, it will perform TileLink requests in
parallel to reduce the chances of stalling while waiting for pointers to return.
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(a) DMA that makes at most one new read-request (b) DMA that makes multiple new read-requests ev-
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Figure 4.19: DMA designs that can be generated by Stellar. Both may access the same
number of DRAM channels with the same maximum DRAM bandwidth, but (b) is better
for pointer-chasing workloads.
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4.4 Limitations

Although Stellar’s front-end specification language and backend hardware generator support
a wide variety of sparse and dense accelerator designs, the existing tool is limited in its abil-
ity to express or generate certain sophisticated cache hierarchies found in prior work [102,
104]. Stellar’s private memory buffers are explicitly managed by the programmer; however
some accelerators benefit most from hardware-managed caches with unusual eviction poli-
cies [104]. Fortunately, this limitation is mitigated to a degree by Stellar’s integration with
the Chipyard [1] framework, which can provision Stellar-generated SoCs with large L2 caches
which can be shared by both CPUs and accelerators, although support for custom eviction
or prefetching policies are left for future work.

For spatial arrays on the other hand, Stellar’s dataflow descriptions can currently only
express affine transformations, and cannot express recursive or hierarchical transformations
such as tree-reductions. However, our functionality specification language is still general
enough that such compute structures can be manually implemented by Stellar’s users, though
at the cost of blurring the separation of concerns between the functional behavior of an accel-
erator and the scheduling of operations spatially or temporally on it. For example, we were
able with Stellar to express the complex hierarchical mergers described in SpArch [104]. Af-
ter synthesis, we found that these mergers consumed 13x the area of simpler, non-hierachical
mergers from OuterSPACE [66]. Therefore, even for recursive operations which don’t map
easily to Stellar’s dataflow abstractions, our experience indicates that such designs can still
be specified by the user and explored for area or performance tradeoffs.

Finally, the pre-defined operators in Stellar’s functional specification (Section 4.2.1) are
all assumed to take only a single cycle to execute, or to be fully-pipelined when extra pipeline
registers are inserted between PEs. Certain operations, however, such as divisions or square-
roots are typically implemented using iterative hardware which takes multiple cycles to return
a result. Modern DNN workloads, such as large language models which perform layernorm
or softmax operations, often include such iterative operations, which makes them difficult to
map onto Stellar. Fortunately, however, Stellar’s functional specification language is general
enough that such operations, which take multiple cycles, can be implemented manually by
the user using the pre-defined addition or bitshift operators.

4.5 Programming Interface

Stellar-generated accelerators are programmed using custom RISC-V instructions, summa-
rized in Table 4.1. All instructions revolve around data transfers from one memory unit to
another; for example, from DRAM to a private memory buffer, or from a private memory
buffer to a register file. There are no commands to explicitly begin execution on a spatial
array; instead, the spatial arrays immediately begin execution when the inputs they need
appear in their register files.

For most Stellar instructions that move data from a source memory to a destination mem-
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ory, users set certain values, such as addresses, strides, spans, and fibertree axis types [84],
for the source and/or the destination. For example, to move a sparse CSR matrix from
DRAM into a private memory buffer, programmers specify the addresses of the matrix’s
data and metadata arrays in DRAM, as well as the address within the accelerator’s private
memory that the data will be copied to.

To illustrate, Listing 4.10 shows two code snippets in C using Stellar’s ISA. One snippet
moves a dense matrix from DRAM into a private memory buffer called SRAM_A. The other
moves a CSR matrix into SRAM_B. Programmers set strides to generate data- or metadata-
addresses; for example, on lines 39-41, as we move through the outer dense axis, we increment
the ROW_ID address of the innermost compressed axis.

Stellar’s ISA also supports synchronization between data-transfer operations occurring
simultaneously. For example, if we are accumulating a matmul result into a private memory
buffer, we will need to simultaneously read and write partial sums in the memory buffer as
they are gradually accumulated into their final results. If we set should trail reads in
Table 4.1 to true, Stellar will prevent write-after-read hazards from mutating partial sums
before they are read.

Stellar’s codebase includes C/C++ libraries to enable easy integration of Stellar instruc-
tions into users’ applications. Stellar-generated accelerators also come equipped with a
variety of optional in-order [2] or out-of-order [6] RISC-V CPUs from Chipyard [1] which

Instruction Rs1[19:16] | Rs1[15:0] Rs2
cot address For sre, dst, Axis DRAM/SRAM
or both address, or regfile
set_span For src, dst, Axdis Number of
or both elements to move
set_data_stride For sre, dst, Axis Stride
or both
_ For src, dst, | Axis and metadata type .
set_metadata_stride or both (c.g. ROW_TD or COORD) Stride
set_axis_type For src, dst, Axdis “D.ense”, .“Compressed”,
or both “LinkedList”, etc.
ID of scalar or boolean
constant to set: e.g. True/false if boolean,
set_constant N/A should_trail_reads, scalar integer
should interleave, otherwise
interleave_axis

Table 4.1: A representative subset of the commands in Stellar’s RISC-V ISA. Each instruc-
tion has two 64-bit register arguments, Rs! and Rs2. Bits [63:20] in Rsl are currently
unused.
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Listing 4.10: Moving matrices from DRAM into local memory.

// Moving in dense matrix
float matrix_A[DIM][DIM];

1

2

3

4 set_src_and_dst (DRAM, SRAM_A);

c

5

6 set_data_addr (FOR_SRC, matrix_A);
(

8 for (int axis = 0, axis < 2; axis++) {
9 set_span (FOR_BOTH, axis, DIM);

10 set_axis (FOR_BOTH, axis, DENSE);
11}

12

13 set_stride (FOR_BOTH, /*addr-gen-axis=*/0, 1);
14 set_stride (FOR_BOTH, /*addr-gen-axis=x*/1, DIM);

16 stellar_issue ();

I8 // Moving in CSR matrix

19 float matrix_B_data[DATA_SIZE];
20 int matrix_B_coords [DATA_SIZE];
21 int matrix_B_row_ids [N_ROWS];

23 set_src_and_dst (DRAM, SRAM_B);

25 set_data_addr (FOR_SRC, matrix_B);

27 set_metadata_addr (FOR_SRC, /*xaxis=*x/0, ROW_ID,

28 matrix_B_row_ids);
29 set_metadata_addr (FOR_SRC, /*xaxis=x/0, COORDS,
30 matrix_B_coords);

32 set_span(FOR_BOTH, /*axis=%*/0, ENTIRE_AXIS);
33 set_span(FOR_BOTH, /*axis=x/1, N_ROWS);

35 set_stride(FOR_BOTH, /*addr-gen-axis=x/0, 1);
36 set_metadata_stride (FOR_BOTH,

37 /*addr -gen-axis=%/0, /*xaxis=x/0,

38 COORDS, 1);

39 set_metadata_stride (FOR_BOTH,

40 /*addr -gen-axis=x/1, /*axis=x/0,

11 ROW_IDS, 1);

13 set_axis (FOR_BOTH, /*axis=*/0, COMPRESSED);
44 set_axis (FOR_BOTH, /*axis=x*/1, DENSE);

46 stellar_issue ();
can run arbitrary code while issuing instructions to Stellar-generated accelerators.

4.6 Evaluation

Stellar allows users to efficiently express state-of-the-art accelerator designs, and then auto-
matically synthesizes RTL implementations which are comparable in performance and area
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Figure 4.20: The PE utilization of both the handwritten and Stellar-generated Gemmini
accelerators on ResNet50.

consumption to hand-designed accelerators when running real-world workloads. By gener-
ating actual hardware, Stellar also enables architects to make insights into area/power/per-
formance trade-offs on real hardware which are which cannot be evaluated in higher-level
simulators.

4.6.1 Methodology

To demonstrate that Stellar-generated designs are competitive with hand-written imple-
mentations, we generate two DNN accelerators from prior work: a dense DNN accelerator
modeled after Gemmini [22], which performs convolutions and 8-bit quantized matrix multi-
plications with a 16x 16 weight-stationary systolic array, and SCNN [68], which targets con-
volutional networks which have been pruned for unstructured weight and activation sparsity.
Using cycle-accurate simulators [41], we compare the performance of both the hand-written
and Stellar-generated implementations on the DNN workloads they were originally evaluated
on in prior work: an end-to-end ResNet50 [30] inference for Gemmini, and AlexNet [46] for
SCNN. For area and frequency comparisons, we synthesize designs using the ASAP7 PDK,
and we evaluate energy consumption on Joules using the Intel 22nm process.

4.6.2 Performance and Area Overheads

The Stellar-generated Gemmini accelerator achieved 90% of the utilization of the handwritten
Gemmini accelerator when both were synthesized to 500 MHz, as shown by Figure 4.20.
However, the Stellar-generated accelerator was successfully synthesized at up to 1 GHz,
while the handwritten Gemmini could only reach 700 MHz. The handwritten Gemmini
includes complicated, centralized loop-unrollers, whose address generators failed to meet
timing at higher frequencies; Stellar’s more distributed memory-buffer address-generators
were more scalable. Stellar’s performance is also competitive with those of prior accelerator
generators. For example, Interstellar [97] reports near 100% utilization for AlexNet-CONV3
when generating an accelerator using Gemmini’s weight-stationary dataflow at 400 MHz;
our Stellar-generated design achieves 92% utilization at 1 GHz.
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Figure 4.21: Performance and power consumption of Stellar-generated and handwritten
dense and sparse accelerators.

Furthermore, the Stellar-generated Gemmini accelerator only consumed 13% more area
than the hand-designed accelerator when both were synthesized to 500 MHz, as shown in
Table 4.2, demonstrating that Stellar’s support for sparse accelerators does not compromise
the competitiveness and efficiency of the dense accelerators that it generates. The area
overhead for the matmul array comes partially from the larger amount of internal state in a
Stellar-generated PE (such as the “time” register in Figure 4.12), compared to handwritten
Gemmini PEs which have no internal counters. Furthermore, Stellar-generated spatial arrays
include global signals that start and stall all PEs simultaneously. While this is useful for
many workloads, it is not needed in Gemmini-like workloads where the memory buffers
consuming partial sums from the matmul array will always be ready to consume spatial
array outputs. These long global signals add further area overhead.

Stellar’s power overhead ranges from 7% at best to 30% at worst compared to the hand-
written Gemmini on various layers of ResNet50, as illustrated in Figure 4.21b when both
were synthesized to 500 MHz with the Intel 22nm node.

Finally, as illustrated in Figure 4.21a, the Stellar-generated SCNN achieved 83%-94%
of the hand-designed accelerator’s reported performance when executing a sparse, pruned

Original Stellar-Generated

Area (um?) | Area (%) | Area (um?) | Area (%)
Matmul array 334K 10% 420K 11%
SRAMs 2,225K 68% 2,247K 61%
Regfiles 25K 1% 104K 3%
Loop unrollers 259K 8% 482K 13%
DMA 102K 3% 109K 3%
Host CPU 337K 10% 337K 9%
Total 3,282K 100% 3,699K 100%

Table 4.2: Area comparison between Gemmini accelerators.
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Figure 4.22: Spatial arrays that merge scattered partial matrices. In (a), every PE merges
a separate row of the partial matrices, and every PE only outputs a single element every
cycle. In (b), the different rows of the partial matrices are flattened into a single fiber from
which multiple elements are merged every cycle.

model of AlexNet. SCNN has a sophisticated design including a spatial array with a four-
dimensional PE topology, but Stellar’s abstractions covered this point in the design space
while Stellar’s hardware generation flow delivered synthesizable and programmable RTL.

4.6.3 Area and Performance Tradeoffs in Sparse Mergers

Stellar’s generation of real RTL also enables architects to investigate performance, area,
and hardware efficiency trade-offs which cannot be explored by more abstract, higher-level
simulators. To illustrate, in this section, we show how Stellar can be used to significantly
reduce the area of partial matrix mergers without compromising their performance on a
variety of sparse matrix multiplications.

Prior work [102, 104, 66] on sparse tensor accelerators introduces various spatial arrays
that merge the scattered partial matrices produced by sparse matrix multiplier arrays. Some
works, such as GAMMA[102] and OuterSPACE [66], merge each row of a partial matrix on
a different PE, each generating one element every cycle as shown in Figure 4.22a. The
throughput of such mergers can be increased by scaling up the number of PEs to merge
more rows in parallel. Other accelerators, such as SpArch [104], do not partition merging
tasks in this way, but instead flatten the different rows in a partial matrix into a single
contiguous fiber, and pop multiple elements from this fiber every cycle, as in Figure 4.22b.

The mergers which operate on different rows separately, such as with GAMMA, take up
far less area than the ones which flatten partial matrices, such as the one used in SpArch. For
example, SpArch’s mergers consume over 60% of it’s area, with 128 64-bit comparators used
for a maximum throughput of 16 elements per cycle, while GAMMA-like mergers, when
synthesized with Stellar, consume 13x less area. However, the cheaper, row-partitioned
mergers are more sensitive to imbalances in the lengths of different rows of the partial ma-
trices. SpArch’s loop execution order generates many small partial matrices which can have
highly imbalanced row-lengths, causing severe underutilization on GAMMA-like mergers.
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Figure 4.23: The number of merged elements generated every cycle by both row-partitioned
and flattened mergers when merging partial matrices with SpArch’s proposed execution
order [104].

The original SpArch work [104] does not explore the potential performance and area
tradeoffs of using cheaper, row-partitioned mergers at the cost of greater sensitivity to row-
length imbalances. However, for accelerators with severe area or resource constraints, this
trade-off may be worthwhile. With a framework such as Stellar, where diverse spatial array
designs for components such as mergers can be easily generated alongside the necessary
memory buffers, register-files, DMAs, and programming interfaces, such trade-offs can be
easily explored.

To investigate, we generated row-partitioned, low-area mergers for SpArch with a max-
imum throughput of 32, and compared their performance to the more expensive flattened
mergers from the handwritten accelerator, which have a smaller maximum throughput of 16
but more comparators in total in the mergers. As mentioned above, SpArch merges large
numbers of small matrices; these matrices often have so few elements that most of their rows
may be entirely empty of dense values. To compensate for this high level of “row-sparsity,”
we store the partial matrices in our private memory buffers in a custom sparsity format
which skips empty rows entirely; Stellar’s strong abstractions for private memory buffer
design enable such optimizations.

As shown in Figure 4.23, the row-partitioned mergers achieve at least 80% of the flat-
tened merger’s performance on over a third of the SuiteSPARSE matrices that SpArch was
tested on in its original publication (summarized in Table 4.3). In fact, on the matrices
poisson3Da, filter3D, cop20k_A, and webbase-1M, the smaller, row-partitioned merger
performed better than the larger, flattened merger from the original SpArch work, due to
the row-partitioned merger’s greater maximum theoretical throughput. On the remaining
matrices, the row-partitioned mergers performed poorly due to the particular non-zero dis-
tributions across partial matrix rows. Architects who face area constraints and who expect
that the matrices they merge will be similar to poisson3Da or cop20k_A, may prefer the
row-partitioned mergers when building accelerators that merge matrices in the same order
that SpArch does.

As noted previously in Section 4.4, SpArch’s flattened mergers, illustrated in Figure 4.22b,
are not the best fit for Stellar’s dataflow specification language. However, despite this limi-
tation, Stellar’s functionality specification language was still generalizable enough to enable
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Matrix Nnz/row Dimension Matrix  Nnz/row Dimension
patents_main 2.33 240,547 web-Google 5.07 916,428
p2p-Gnutella3l 2.36 62,586 scircuit 5.61 170,998
roadNet-CA 2.81 1,971,281 amazon0312 7.99 400,727
webbase-1M 3.11 1,000,005 | ca-CondMat 8.08 23,133
m133-b3 4.00 200,200 email-Enron 10.02 36,692
cit-Patents 4.38 3,774,768 wiki-Vote 12.50 8,297
mario002 5.38 389,874 cagel?2 15.61 130,228
2cubes_sphere 16.23 101,492 filter3D 25.43 106,437
offshore 16.33 259,789 poisson3Da 26.10 13,514
cop20k_A 21.65 121,192

Table 4.3: The SparseSuite matrices we include in our evaluation.

SpArch’s flattened mergers to be implemented so that they could be compared to the simpler,
row-partitioned mergers more commonly used in accelerators such as GAMMA. Furthermore,
Stellar’s compiler was capable of generating the RTL for the memory buffers, regfiles, DMAs,
and programming interfaces necessary to run these matrix merging and sorting workloads
without writing custom Verilog for hardware components or testbenches.

4.7 Summary

Stellar enables the rapid design, exploration, and generation of both dense and sparse spa-
tial accelerators, by allowing architects to cleanly separate the different concerns that go
into designing an accelerator, and then generating synthesizable RTL implementations and
software interfaces which are comparable to hand-written designs from prior work, based on
architects’ specifications. Stellar is also fully compatible with the Chipyard [1] chip design
framework, enabling users to integrate their designs into complete, programmable SoCs.
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Chapter 5

Conclusion

One of the greatest challenges for a hardware designer (and not just a hardware designer,
but also a software programmer!) is to separate different design concerns: between an ac-
celerator’s functionality and its dataflow, between an accelerator’s compute array and its
cache hierarchy, or between any of the other design components which have such important
cross-cutting impacts that they naturally tend to bleed into each other during ad-hoc imple-
mentation. This thesis describes two projects — Gemmini and Stellar — which demonstrate
the advantages of maintaining a strong separation of concerns all throughout the design pro-
cess, such as the ability to rapidly iterate on hardware designs, or the ability to accurately
analyze the impact that often-overlooked design considerations such as TLB hierarchies have
upon end-to-end performance. In particular, we make the following contributions:

e A detailed review of past work that examines (i) spatial arrays which accelerate DNNs
(or other applications), (ii) past proposals for high-level abstractions for dense and
sparse accelerator design, and (iii) the need for accelerator design/generation frame-
works which allow architects to account for the impact of the full hardware-software-
system stack upon DNN acceleration.

e Highly-parameterized hardware generators that produce high-quality, synthesizable
RTL with only modest effort from architects. This RTL has been taped-out [26] (and
continues to be taped-out in ongoing projects), and has been used for real-world work-
loads in domains such as computer vision, numerical analysis, and for large language
models.

e Domain-specific languages that can describe a wide range of spatial arrays for both
dense and sparse applications, while maximizing the separation of concerns between
different design considerations such as dataflows and sparse/dense data structures.

! And not just a software programmer, but the creator of any complex system.
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e Tools which leverage frameworks such as Chipyard [1] and FireSim [41] to enable
architects to derive useful insights into the impact that system or software components
external to the spatial array will have upon DNN acceleration.

5.1 Future Work

Although this projects described in this thesis help make DNN accelerator design easier and
more efficient, they do have a number of limitations which provide opportunities for future
work:

e Both Gemmini and Stellar expose broad design spaces for users, but neither work
includes any method for automated exploration. It is our hope that the design space
parameters and domain specific languages introduced are amenable to algorithmic
exploration. (In fact, this was one of our aims; that is one reason why we preferred
to define dataflows using simple matrices of which every element could, in theory, be
swept by an automated search algorithm). However, designing such an algorithm still
remains as future work.

e Stellar introduces expressive abstractions for both a front-end domain-specific lan-
guage and an internal representation (the IterationSpace described in Chapter 4 Sec-
tion 4.3.2) for spatial arrays. However, the abstractions for memory buffers, register
files, DMA designs, and other memory storage and transfer components have more lim-
ited extensibility. We designed them as highly-parameterizable handwritten templates
with a great number of elaboration-time parameters to choose from, but it remains
possible that new accelerators can be proposed which require new parameters which
would have to be added manually by the Stellar authors. Selecting the correct parame-
ters for a given accelerator’s memory buffers, register files, DMASs, etc. is also difficult.
(Although Stellar includes baseline fallback designs for these components which should
work in all scenarios, they are too unoptimized to be feasible for most large designs).
Integrating high-level abstractions for memory buffer, cache, and DMA units into Stel-
lar could make these units less like “templates with a great many parameters which
must be carefully chosen,” and more like the spatial array internal representations,
which rely far less on handwritten optimizations to Chisel templates.

e Gemmini, by integrating into the Chipyard ecosystem, provides users with an SoC with
a realistic programming stack (all the way up to the operating system running on the
SoC), and with various performance counters that can identify performance bottlenecks
caused by different system components. However, these performance counters were all
identified and added manually by Gemmini’s authors. It remains possible that future
users will need to run workloads whose performance bottlenecks are caused by a system
component that we did not forsee, and for which we added no performance counters
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ourselves. A more principled way to identify bottlenecks would make Gemmini more
future-proof, and may provide opportunities for future work.

e Finally, the evaluations in this thesis were primarily DNN-focused. This is not unusual
for research in this space, considering the economic importance of modern-day DNNs,
but the full space of spatial accelerator workloads is clearly much broader. In par-
ticular, even Al applications are oftentimes bottlenecked by non-DNN kernels which
require attention from architects — or even their own specialized hardware — to resolve.
Prior work [77] has shown that in some end-to-end Al workloads for face recognition,
over 40% of end-to-end cycles can be spent on non-DNN operations, rather than the
matrix multiplications or convolutions which this thesis focuses on. For example, im-
age processing operations such as resizing or cropping can consume over 15% of total
runtime on some vision-based Al workloads [77]. Other prior work [39] shows that for
heavily-optimized workloads such as ResNet or MobileNet, preprocessing operations,
such as decoding image file formats, can be an order of magnitude more expensive
than the actual DNN inference. Evaluating Gemmini and Stellar on such workloads
(and extending them to better support such applications if need be) provides rich
opportunities for future work.

5.2 Lessons Learned

Finally, this dissertation ends with a few pitfalls and challenges I encountered during this
work, and the lessons I learned from them, in the hope of helping future students and
researchers avoid them.

The projects in this dissertation attempted to provide principled abstractions and frame-
works which made accelerator design, generation, and evaluation more efficient. However,
a persistent challenge — for both Gemmini and Stellar — was that performance bottlenecks
and energy overheads oftentimes came from those aspects of accelerator design which were
initially overlooked by our high-level abstractions. Caches, transfers back-and-forth to main
memory, and synchronization logic were frequent sources of such overheads, while, for both
Gemmini and Stellar, our initial high-level abstractions focused instead on spatial array
design, dataflow, and loop order configurations.

When we instead encountered bottlenecks from these other sources, we oftentimes simply
hand-wrote optimizations for them, and added new scalar, enum, or boolean parameters to
our templates to cover these design points. Over time, these boolean or scalar parameters
gradually built up till they became difficult for users to fully understand or reason about. If,
instead, we had taken the opportunity to rework our more principled, high-level abstractions
when we encountered these unexpected bottlenecks, rather than simply appending an extra
knob or switch on top of our existing framework, then the resulting design may have been
simpler, more elegant, and potentially more future-proof as well. Of course, it is also possible
that extending our high-level abstractions to cover all these extra design considerations in an
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elegant way might have been impossible, but it should have still been our initial inclination
at all times.

Finally, this particular pitfall was primarily a consequence of the fact that we generated
real RTL from all our frameworks (which, even now, is not all that common in this field).
Generating higher-level models or simulators would have allowed us to ignore, for example,
the overhead caused by certain DMA inefficiencies which only become apparent in real hard-
ware, such as the examples given in Chapter 4, Section 4.3.6. Generating real hardware (and
then taping it out) remains a worthy goal for computer architecture researchers; however,
those trying to create principled, one-stop, end-to-end frameworks for hardware design and
exploration would do well to remember the challenge of doing so when so many different (and
sometimes, frankly, uninteresting) sources of inefficiency might exist in their SoC which are
tempting to solve simply with ad-hoc manual RTL fixes.
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