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ABSTRACT OF THE DISSERTATION 

A Unified Approach for Integrated Computer Aided Design  

and Manufacturing  

by 

Bin Huang 

Doctor of Philosophy in Mechanical Engineering 

University of California, Los Angeles, 2013 

Professor Daniel C.H. Yang, Chair 

Current research is targeted on automation of the computer aided process planning 

based on a CAM oriented model. Instead of bonding the CAM data directly on top of the 

CAD model, a CAM oriented model separates the manufacturing related information 

from the design process and translate the design model to a set of machining features that 

is semantically compatible with the CAM operations. With parameterization of the CAM 

oriented model, another objective of this research is to improve the efficiency and 

accuracy of current integration system.  

Motivated by this goal, there are four relevant topics of this concern are addressed in 

this research: 1). A data exchange scheme of CAD/CAM integration based on CAM 
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oriented model. 2). Data representation and architecture design for CAM oriented model. 

3). Process planning of roughing machining based on morphing theorems and 

parameterization of CAM oriented model. 4). A parameterization technology for tool path 

generation and verification.   

To show the feasibility to fully automate process planning and tool path generation 

with the CAM oriented model, the morphing based theorem is applied to modeling the 

manufacturing process particularly for machining process. The mathematical model of 

machining process enables the automation of process planning for the rough operation. 

Meanwhile the parameterization technology of tool path generation is exploited 

particularly to for the machining feature with tessellated geometry.  
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AIM 

 With a standard data structure and unified scheme for data exchange, the goal of this 

research is to build up a portable Computer Aided Manufacturing (CAM) framework that can 

seamlessly integrate with the current Computer Aided Design (CAD) systems. To achieve this 

goal, the following five theoretical topics are addressed 

1. A data exchange scheme of CAD/CAM integration based on CAM oriented model One 

goal of this research is to exploit a unified data interface between CAD/CAM. By splitting the 

design-related information and manufacturing-related information into two different levels, this 

new mechanism enables seamless transfer between the design model and the manufacturing 

model with the standard protocol of data exchange. It simplifies the product life cycle, such that 

both planning of manufacturing processes can be performed in a unified frame of data format.  

2. Data representation and architecture design for CAM oriented model. A commercial 

CAD model is normally composed of different types of geometric features. There is a lack of a 

portable and efficient data format specifically for CAM modeling. CAD and CAM data are 

identified separately, and are thus not exchangeable. Based on the STL models, a new B-rep 

structure is developed to represent the machining features in current research. 

3. Modeling manufacturing process based on Morphing theorems The existing methods of 

manufacturing planning usually is targeted on a specific type of feature. Therefore, the roughing 
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and finishing process have to be processed with different strategies. Based on the technology of 

solid and surface parameterization, this research aims to introduce a model method synthesis for 

the shape transformation of stock during the manufacturing process. This methodology 

parametrically controls the intermediate shapes during the roughing process. The intermediate 

models are subsequently used for tool path generation. Such an approach is very useful for 

modern machining planning, because the roughing and finish steps can be finished in one 

machine and share the same fixtures. 

4. Parametric Tool Path Generation This research aims to exploit a generic method of tool 

path generation based on the parameterization technology. Once model parameterization is 

complete, the tool path in 3D space can be generated by conformably mapping from parametric 

space. By adjusting the embedding distribution of tool path in 2D parametric space, the scallop 

height of the surface in 3D space can be easily controlled. 

5. Simulation and error control with the parameterization of both 2D and 3D freeform model, 

this research also provides a method for tool path optimization. With the error control of scallop 

height, the tool path will be adjusted to control the error of cut surface from the desired surface. 

Meanwhile, this research proposes a new method that can numerically simulate the scallop 

surface of cut stock. Based on the parameterization of stock surface, the simulation is easier and 

more accurate. 
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1  

INTRODUCTION 
 

1.1. Computer Integration Manufacturing 

This research exploits a new methodology for the integration of Computer Aided Design and 

Computer Aided Manufacturing, and thus involves theoretical research into the topics of system 

infrastructure design, data integrity and modeling design. 

Traditionally, the two major steps from design to manufacturing are bonded tightly. The 

increased complexity of manufacturing processes on the one hand accelerates the advancement 

of technologies and on the other further facilities the design technologies. Frequent changes in 

the manufacturing environment prevent the close bonding between CAD and CAM processes 

and separates manufacturing from design phase. The globalization of the manufacturing industry 

has further magnified this separation, which has led to the design works and manufacturing 
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works being delegated to isolated ranks of people who, therefore, have to keep on update with 

each other. Although advances in internet technologies have provided efficient ways for people 

to exchange their ideas and information, there is not yet a standard scheme for the integration of 

these two processes that pays due respect to the expertise of design engineers as well as 

manufacturing engineers. Today’s costly iterations between design and manufacturing phases of 

production cycles lack effective means of communication, as the information of the design 

phases does not necessarily reflect the requirements for the manufacturing process. This chapter 

presents a brief discussion of major terms and concepts related to the current computer systems 

used to integrate the design and manufacturing, with a primary focus on the manufacturing 

technologies. 

The traditional technology of Computer Integration Manufacturing (CIM) is defined as the 

computer systems that integrate the entire process of the product development cycles. It includes 

all the methods and tools associated with each step of the product life cycle, from the initial 

concept design to final manufacturing. The research into CIM spans almost all engineering 

domains and extensively affects the production quality, efficiency and product cost. 

In terms of functionality, the lifecycle of product development includes three key phases: 

design, planning and manufacturing. Respectively, Computer Aided Design (CAD), Computer 

Aided Process Planning (CAPP) and Computer Aided Manufacturing (CAM) represent the 

automation systems for each of these three phases. As shown in Figure 1-1, CAD is the system 

that converts the design concept to a geometric draft form. CAPP transfers the designed 
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geometries into the operational steps with generic level of machine instructions whereby to 

interpolate the design information as the steps of manufacturing operations. Each step of 

operations contains the set of information related to this particular operation process, such as the 

machining facility, the geometry of desired stock, the setup instruction, specifications of fixtures, 

machining tools, the execution machine, operation method and BOM (Bill of Material) , etc. As 

the last step, the CAM system targets specific operation processes and controls the machine tools 

as well as materials flow with programmable automation. It delivers each of these operations 

through detailed machining commands, the so-called Computerized Numerically Controlled 

(CNC) program. The CNC program is normally an interpolated language that provides the 

precise control for the execution of each step in the manufacturing process. Because every 

Definition: 
Computer Aided Process 

Planning: translating 

design information into the 

operational instructions. 

 

Commercial Software: 

CIMx, Cimplan, 

MetCAPP, HMS-CAPP, 

Costimator and Siemens 
Teamcenter 

Definition:  
Computer aided 

manufacture: Use of 

computer-based systems to 

control the machinery in 

manufacturing processes, 

often combined with CAD. 

 

Commercial Software:  

EdgeCAM, PowerMill, 

Siemens NX, VERICUT, 
MasterCAM   

Definition:  
Computer aided design: 

graphic modeling of parts 

and assembly, including 

the estimation of 

mechanical and 

kinematics behavior. 

 

Commercial Software:  

Solid works, Pro/E, 

Siemens NX and 
AutoInventor 

CAD CAPP 

Figure 1-1 Three phases of Computer Integrated Manufacturing 

CAM 
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controller company has their own technologies of program control, the CNC programs generated 

by CAM systems are normally targeted on the particular manufacturing facility. With generic 

information, CAPP bridges CAD and CAM by translating CAD data into a sequence of machine 

operations. The detailed execution of each operation is laid out by CAM systems. 

With the continuous evolution of manufacturing technologies, and especially the emergence 

of multi-tasking machine tools and machining centers, the functions of these three developing 

phases are coming increasingly to overlap. One major goal of CIM technologies is to realize the 

seamless data flow and integrity from CAD and CAM. However, due to the complexity of CAD 

geometries and modern manufacturing processes, the link between CAD and CAM is still weak. 

In recent years, some commercial software has emerged to integrate the CAD/CAM information 

in a standard and exchangeable way, and therefore certain functions of CAPP can be automated. 

One example of standard data format is STEP-NC [1], which builds up the manufacturing 

instruction design bonded with the design model. It provides NC commands as well as the CAD 

geometry to the CNC machine so that work pieces, fixtures and cutter shapes can be analyzed in 

the context of the tool path. However, the STEP-NC lacks flexibility because the machining 

environment is very complicated and has a variety of uncertainties that might influence the 

manufacturing process. For any change in the manufacturing environment, it is necessary to 

communicate back and forth, and even repeat the entire design process for the corresponding 

changes. Therefore, the direct bonding of final NC commands and design model is not the good 

practice for the complexity of the machine environment. Another example is Product and 

Manufacturing Information (PMI) [2, 3] first exploited by Siemens Product Life Management 

(PLM) software. As a new industry-standard format, PMI data can be generated and utilized to 
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drive manufacturing processes. It defines any annotations and attributes that can be associated to 

a 3D model, or directly attached on the model. Since the production information is contained in 

the design model, the requirements or changes made by design engineers can be captured for 

subsequent CAM operations downstream. However, this also poses the same problem as the 

STEP-NC standard, i.e. the PMI has to be reposted for any changes of manufacturing 

environment. Meanwhile, since the PMI feature is attached directly to the CAD model, there is 

much additional work to be done for the CAM engineers to define these operations. Also, PMI 

can only be defined and recognized in the NX environment, and there is no way for any other 

CAM system to either access or translate it into a recognizable format. Because there is no 

currently no compatibility for the PMI to be imported into other software to generate CAM 

features, the CAM engineers need to experience some limitations or difficulties to create their 

own PMI feature if they are not using the same CAD/CAM package. 

The geometry information of CAD systems cannot be exchanged with CAM operations 

directly. Therefore the CAD model normally has to be interpolated with a CAPP system, and 

divided into fundamental manufacturing operations. For each of these operations, a detailed 

manufacturing plan is built up in the subsequent CAM systems. As of today, this interpolation 

process is not fully automated. Intensive human expertise has to be involved in this phase to 

interpret the design information into the machining operations and to prepare geometry for tool 

path generation and after the NC programs. The methods for planning are still far from efficient. 

Meanwhile, as shown in Figure 1-2, the modeling of CAM is processed through iterative 

attempts. To meet the demands of cycle time reduction, many manufacturing engineers recognize 

the need to improve their development processes. Process modeling is one way to support this as 
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a method to evaluate risks, identify potential improvements and predict outcomes. Also, CAM 

simulation is a way to estimate the geometrical accuracy of the designed operations in CAM 

model. However due to the uncertainty surrounding design and production processes, 

development processes of new product are difficult to model compared to other business 

workflow. Although research has been conducted into CAD/CAM integration for over 20 years, 

the time spent on process planning, NC programming and machine setup is still extensive, 

remaining considerably longer than the actual manufacturing time. 

1.2. CNC Manufacturing 

CNC (computer numerical controlling machining) is the automation technology most 

commonly used in manufacturing engineering. By controlling the movements of cutting tools to 

follow a sequence of electronic commands, CNC makes it possible to automate the 

manufacturing process, and most Computer Integrated Manufacturing Systems are hence based 

on it. There are many different types of CNC manufacturing processes, which can generically be 

 

Machining Controller 

 

 

 

 

CAM software 

 

Figure 1-2 Workflow of CNC process 

CAM feature 

 

CAM Process 

(Tool Path Generation) 

 

CAM Post Process 

(CNC program generation) 

 

Controller Interpolation Stepping signal to motor 
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categorized into additive and subtractive processes. Additive process is a forming process to 

build up the successive layers of material; it is also referred to as rapid prototyping, composite 

manufacturing or 3D-printing. Based on the base material used in prototyping, there are many 

different types of additive manufacturing technologies, such as fused deposition modeling (FDM) 

[4, 5, 6], granular materials binding [6, 7, 8], photopolymerization [6, 9] and composite 

manufacturing [10]. The opposite of additive processes, subtractive machining tools are normally 

driven by a set of programmable motors controlled by a numerical controller. 

As the process used to generate the driving commands for machine, CAM modeling not only 

specifies the manufacturing operations but also a set of detailed commands related to each of the 

operation steps, the so-called CNC program. Figure 1-3 illustrates an example model of a CAM 

system for the machining process; the bottom surface represents the desired CAD surface, and 

the curve on the top illustrates a path base for the machining tool to cut through the material and 

form the stock to be the shape of design. It is a group of curve traces that drives the machining 

Scallop surface  

Tool Path 

Cutter Offset surface 

Desired surface Scallop  

height  

Figure 1-3 CNC machining process 
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tool during the manufacturing process. The cluster of the curves forms a coverage surface 

geometrically, and is referred to as a cutter offset surface. Because the machining tool is usually 

not flat, the movement of the tool cannot cover the entire CAD surface, and the resulting shape 

of the cutting surface is not exactly like the CAD surface. Based on the shape of the tool, the 

surface has wave-like remains, called scallops, and the surface that remains after the machining 

process is called a scallop surface. 

For CNC controlling, the controller interpolates the CNC commands and sends out 

simultaneous signals to the step motors. It controls the movements of the tool and removes the 

undesired material from the stock until the stock shape approaches the desired shape. In order to 

generate the CNC commands, each CAD feature has to be redefined as a group of manufacturing 

operations and interpolated as a cluster of curves in the CAM system, the so-called tool paths. As 

shown in Figure 1-3, the tool path is designed in such a way that the movements of the tool can 

cover the desired stock and transform the shape of stock to approach the desired shape. A best 

tool path should maximally reduce the machining time and avoid any collision between machine 

components. 

Figure 1-4 illustrate a multistep machining process, in which the desired geometry is 

normally achieved in multiple steps. From the rough stock to the final finished stock, a 

machining process is normally divided into three steps: roughing process, semi-finishing process 

and finishing process. Heat treatment will sometimes be conducted following the steps of 

roughing or semi-finish process. 
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1.3. Challenge of Modern CAM technologies 

The continuous enhancement of CAD technologies enables engineers to design the geometry 

with higher levels of complexity. The abundance of complex design concepts requires 

manufacturing companies to develop tooling systems with richer flexibility to handle the 

geometric features with different levels of complexity. For the wide spectrum of CAD 

geometries and manufacturing types, there is a lack of a generic modeling method to integrate 

the CAD and CAM process in a unified manner. Although many studies have been conducted in 

this field, the connection between CAD modeling and CAM process is still not smooth. All the 

CAD features have to be interpolated manually as a set of CAM operations with a CAPP 

package. For any changes in the manufacturing environments, the entire process has to be 

recycled. 

The variable-axis machining process raises another issue. Because there is a lack of format 

exchange standards or a unified scheme to link the CAD model and CAM feature, different 

features in the CAD model have to be processed with different strategies in CAM, which 

Fig. 1-4     Multistage Machining Process 
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Rough Mill 

Mold 
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Block 



12 

 

requires intensive involvement of human expertise. This would be more generic and simpler if 

there was a unified modeling technology to interpolate the CAD features with the semantics of 

manufacturing operations. 

For the machining process, currently different strategies have to be adopted for each step of 

the machining process. Because of the high efficiency, the roughing processes are normally 

performed on a three-axis machine, in so-called fixed axis machining. However, for more 

complex products, fixed axis machining is not the best manufacturing method to ensure the 

maximal removal of the material. In some models for which the CAD geometry is extremely 

distorted, such as impellers, turbine blade and the like, the geometry is not accessible with fixed 

axis machining. With additional degrees of freedom, variable-axis machining can create tool 

paths across the complex shape that is not accessible to fixed-axis machines. Good examples of 

these include impellers or blades cutting, five-axis trimming, automotive port finishing, and 

undercut die mold production. 

. 
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2  

CAD/CAM INTEGRATION BASED 

ON UNIFIED DATA EXCHANGE 

 

2.1 Review of Current CIM systems 

A CAD/CAM integration system integrates the design and manufacturing planning by 

translating the design specifications into the final machine instructions. CAD/CAM integration is 

quicker and less error prone than human work. Meanwhile CAD/CAM systems allow engineers 

to see how the various parts of a design interact with each other without having to build a 

prototype. One of the more recent examples [11, 12] is that of “Boeing having designed and built 

its 777 wide-body airframe without any prototype work at all: the first physical version was the 

actual plane that test pilots flew in 1994”.  
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In a Computer integration manufacturing system(CIM), the processing of data is transferred 

into the production will also be streamlined within hardware and software. This will allow 

operators to alter and enhance programs in order to improve production. Meanwhile, the CIM 

system will also provide the necessary algorithms to connect all the data together, which will 

then be able to intermingle with the sensing and modification components of the system. 

Figure 2-1 illustrates the key elements and the framework of an integrated manufacturing 

process. The CIM framework provides a collection of software and hardware tools to enable the 

manufacturers to react quickly to any changes of the requirement and minimize cost and errors. 

 

 

 

Figure 2-1 Key elements of CIM framework 
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To build a CIM system, there are five key elements to be addressed for any CIM system: scheme 

of design, data acquisition, Process Planning, manufacturing design and manufacturing.  The 

major technologies of CIM include Flexible Manufacturing Systems (FMS) [13, 14, 15], 

Distributed Numerical Control (DNC) [16, 17], Manufacturing and Execution Systems (MES) 

[18, 19, 20] and distributed manufacturing system [21, 22]. These researches include the areas of 

building the hardware/software infrastructure, data integrity, process planning and manufacturing 

design. 

2.2 Traditional technologies of integrated manufacturing system 

Tu et al. [23] introduced a method called incremental process planning (IPP) for one-of-a-

kind production (OKP), where process plan is extended or modified incrementally with a 

primitive plan by adding new features identified from a product design, until all the features is 

exhausted.  

There are normally two different kinds of systems for process planning. As the more 

traditional approaches, most of the earlier CIM systems can be categorized under the centralized 

approaches, which utilize artificial intelligence techniques to automatically generate an optimal 

process plan according to the part and manufacturing requirements. Such approaches include 

object-oriented approaches [24, 25], GA-based approaches [26, 27], neural-network–based 

approaches [28, 29], feature recognition or feature-driven approaches [30, 31] and knowledge-

based approaches [32, 33]. All these approaches and their combinations have been applied to the 

domains of some specific problem, such as tool selection, tool path planning, process sequencing 

and setup planning. The major weakness of the centralized approach is that the central system 
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lacks knowledge of each machine and tool availability. The estimate of central expertise for the 

entire manufacturing process is therefore not accurate. Many of the studies that have been 

conducted have been based on certain ideal scenarios or empirical data, which cannot reflect the 

dynamism of the world of industry. Based on these reasons, a truly generative process-planning 

system that can provide an appropriate generic framework and meet industrial needs has not yet 

been developed [34]. 

In addition to the centralized approaches, agent-based technology is emerging in CAPP as a 

solution for distributed manufacturing process and has attracted wide attention. Cooperative 

intelligent agents are being used in developing distributed CAPP and CAM systems instead of 

being one large expert system,. This type of system is targeted at building up a framework that 

fully integrates design and manufacturing processes, automates the process planning and 

provides rapid manufacturing service by utilizing the distributed intelligent resources. The agent-

based approach is also recognized as an effective way to realize flexibility and dynamism of 

process planning. Shih and Srihari [35] proposed a distributed AI-based framework for process 

planning. Their approach decomposes the entire production control task into several sub-tasks, 

each of which is implemented by an intelligent agent. By working collaboratively, the agents can 

reach a solution for the problem. Zhao et al. [34, 36] proposed distributed complex process-

planning activities to multiple specialized problem-solvers and the coordinate of them to solve 

complex problems. In their research, cooperation and coordination mechanisms are established 

among distributed agents by using knowledge-based techniques. Each agent in the system deals 

with a relatively independent issues. Zhang et al. [25] proposed an agent-based adaptive process-

planning system (AAPP) with object-oriented manufacturing resources modeling framework. It 
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describes the manufacturing resources’ capacity in the logic of object-oriented manner, while 

this approach is implemented as an integrated process-planning platform. Instead of automating 

process-planning tasks completely, the AAPP system provides an interactive mode to enable 

experienced manufacturing engineers to make decisions at crucial points. A contract net-based 

scheme is utilized as the coordination protocol between agents. Other studies include the virtual 

work system of Sluga et al. [37] and the networked manufacturing service developed by 

CyberCut [22] for rapid part design and fabrication on the internet. While all these researched or 

prototyped solutions are successful for a particular area of manufacturing problems, they lack a 

unified framework to support the data exchange. As introduced in the previous chapter, the major 

challenge partially derives from the discrepancy of data integrity. All these agents are either 

simulated modules or are not dedicated to particular manufacturing facilities. 

2.3 Challenges of CIM systems 

The ultimate goal of the CIM system is to reduce the waste of time and material incurred 

during the manufacturing process. This is done by taking account of all the elements of 

production lifecycle, including design, analysis, planning, purchasing, cost accounting, inventory 

control and distribution departments, and interlinking them with the factory floor, material 

handling, and management departments. Currently, advances in solid modeling systems offer the 

better tools to visualize the design concept for the manufacturing process. This development has 

improved the feasibility of CAD/CAM integration; however, on the other hand, the complexity 

of CAD models and the emergence of new modeling technologies have introduced new problems 

and challenges for manufacturing and system integration. 
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With the globalization of manufacturing processes, many manufacturing processes are now 

accomplished through multiple facilities located in different areas. Recent research on Computer 

Integration Manufacturing (CIM) and design has shifted toward the consideration of problems in 

distributed manufacturing environments or remote manufacturing systems. Traditional 

CAD/CAM integration is based on a tight bond between design and manufacturing processes. 

The manufacturing process needs to provide a clear picture to the design engineers, so that they 

can easily manipulate the CAD model to produce a more efficient manufacturing process. One 

characteristic of distributed manufacturing is that such systems usually do not have a meaningful 

manufacturing context laid out to provide a semantic foundation for the purpose of CAD/CAM 

integration. In such systems, there is no way for CAD designers to control the economics of 

manufacturing process, such as operation type, tolerance of rough stock etc. Therefore, the 

traditional integration standard of CAD/CAM integration, such as STEP-NC, cannot be applied 

to these scenarios. 

One challenge is how to coordinate the different machines within the factory. In the 

workshop enviroment, there are a variety of machines that perform different tasks that are made 

by a variety of suppliers. It has to be addressed to get every one of these machines to interact 

with the manufacturing code with a unified interface, and finish the tasks within one mainframe 

computer. 

Another challenge of the CIM system is posed by the data itself and the data entry personnel. 

There is a need for operators to maintain the integrity of the data that is transmitted to the 

machines. The challenge is the factory will need to ensure that the individuals working with the 
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system throughout the factory are competent and knowledgeable. These individuals will need to 

be well trained, and to update their training periodically. 

Last problem remains that Product Life Management (PLM) gives the design engineer the 

flexibility to design any geometric features. At the CAM facility, an experienced engineer is 

needed to design the manufacturing process and coordinate the machine resources, but it is still 

necessary that the design engineers have insightful expertise of the manufacturing process. 

Recent design-for-manufacturing (DFM) oriented software, such as VLSI-MOSIS [21] and 

CyberCut [22], requires the designer to place more concern on the manufacturability. A separate 

software module is usually embedded in the CAD software to assist the design engineer for the 

purpose of DFM. 

2.4 Agent-based CIM design based on unified scheme of data exchange 

Figure 2-2 shows a typical infrastructure of an agent-based CIM network, which includes the 

elements that most of the current CIM system has. The design concepts are independent of 

facility location, resources, and technical expertise etc. As shown in the figure, the framework of 

the system comprises three major elements: client site agent, workshop managing module, and 

virtual CNC machine. 
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In an agent system, the functions of CAPP tend to be split in two: one embedded in the 

design level is used to identify the CAD features to be manufactured and to set up the order for 

task according to the current status fed back from each local agent. Apart from the traditional 

CAPP system, the detailed process plan for each manufacturing feature is not completed in this 

step. Instead, it assigns the tasks to each cell through a unified scheme of data exchange. 

Combined with the tasks of Management and Execution System (MES) and DNC, a CAPP 

function is accomplished right at the cell level, where the data from the CAD modeler is 

accepted, analyzed by the Direct Numerical Controller (DNC), and translated into executable 

commands for a specific station. Other elements of this framework are as follows: 

Design Ends 

Machining Center 

Machining Ends 

Fig. 2-2 Architecture of agent-based manufacturing system 
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Machine Agent (MA): In machining agent, the task assigned from CAPP is communicated to 

the machine in the same way. As the interface between the DNC and the station, MA is basically 

a small CAM that is dedicated to the particular machine. Because each MA has all the 

information associated with the machine, this mechanism provides a better way to protect the 

machine and generate an optimized manufacturing command. 

MA also plays a role as a virtual machine that mimics the behavior of the real machine. Its 

capability is determined by the specifications of the CNC machine with which it is associated. 

With the technologies of forward and inverse kinematical analysis, the virtual machine will 

simulate the machining process, validate the material removal, detect collision and report 

malfunctions. Through the communication of MA, the CAPP on the server side can be 

dynamically updated with the status of each machine. This improves the accuracy when CAPP 

estimates the work load and minimizes the waste to assign the tasks. 

Traditional process-planning is to be finished automatically. However, the technologies of 

these areas are not yet well developed, and there is a need to introduce a fair amount of manual 

works that will increase the data occupation in a sophisticated manner. A standard means of 

doing this so far is via dialogs, i.e. the designer is required to plan the manufacturing process 

manually through a series of interactions. The outcome of this module is not just a machining 

feature, but the operation flow that also gives important connectivity information bridging one 

feature to another. If any exemption occurs or the design model changes, the whole process 

might need to be reset, which causes much waste. Through MA, all the updated information will 

feed directly back to the server. Through certain algorithms, the CAPP could readjust its plan 

adaptively. 
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In addition, MA contains a set of rules to prevent any infeasible features. One example of an 

infeasible feature is that pocket depth is beyond the access limits of machining tools, and another 

is that the rib feature is too thin to evade deformation when the feature is being machined. 

Management and Execution System (MES) once the manufacturing task is sent to the 

workshop and the manufacturing quote is in the cell, MES is triggered to check the availability 

of local machine resources. If there is a local manufacturing facility available, MES will assign 

the task request to an available machine that is capable of it. CAM module of MA is then 

launched to set up a specific manufacturing program for this machine. If all the manufacturing 

stations are busy, MES will append the request and the manufacturing information to a waiting 

list. Sequencing the manufacturing order is the main function of MES. In cases in which some 

models with complicated parts cannot be completed in one location, MES needs to arrange the 

transportation of semi-finished stock and monitor and synchronize the inventory base. For 

flexible manufacturing of mass production, WMM is also in charge of deploying different 

workstations and design 

2.5 Scheme for data integrity 

CAPP plays the role of an interface from the designer to manufacturers for the exchange of 

design and manufacturing information. Based on the framework of the highly effective industry 

standards that facility the data exchange and the modeling functionality, processing data is 

generated to drive manufacturing processes. However, because of the complexity of the products, 

there is a lack of a standard scheme for the data exchange through the entire network. The 

communication from design to the downstream applications is far away from exchangeable and 



23 

 

compatible. The design data mostly has to be translated manually into the product definition and 

accountability enforced for the purpose of manufacturing. The conversion creates redundant data 

that might introduce manufacturing errors and increase the cost. 

The PMI (Product and Manufacturing Information) [3] provided by Siemens is a 

comprehensive annotation in 3D modeling environment that not only captures and associates 

manufacturing requirements to the 3D model, but also allows the digital data to be re-used by 

downstream applications. Although this is step further to the goal of integrity between CAD and 

CAM, the PMI is not a complete description of the manufacturing features. The 2D drawing or 

the 3D model generated from the PMI needs to be further analyzed and converted to a set of 

manufacturing features that is accountable to the machine stations. In Siemens NX, the software 

switches between the design mode and manufacturing, so the user can define the manufacturing 

features based on the same CAD model.  

Other industry-standard file formats, such as the Initial Graphics Exchange Specification 

(IGES), are better supported, allowing CAD geometry to reliably transfer between CAD or CAM 

systems. Industry is also developing new standards, such as the International Standards 

Organization's (ISO) Standard for the Exchange of Product Model Data (STEP), to meet 

expanding interoperability requirements. This may allow for the CAM system functions to be 

boosted by integrating the product specification with the solid model from the CAD system. As i t 

currently stands, the CAM system does not have all the information it needs. Hence, CAM users 

still have to import CAD geometry into their CAM systems and create the manufacturing system. 

There is lacks of standard for data exchange between different CAM software tools. STEP-NC 

[38, 39] is a new data standard  CNC machining that combines the product, process information 
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and manufacturing instructions. The new standard for the CAD geometry and tolerance data is to 

include CAM tool-path data, process data, and cutting tool data. But with STEP-NC, similar 

disconnect occurs between a CAM system and a CNC machine. Currently the state-of-the-art in 

CNC program format tells machine tools exactly where and how to move. For different machine 

tools, the NC program needs to be re-interpolated. 

Figure 2-3 illustrates a structure of the STEP-NC information model. The root of a STEP-NC 

part program is a project containing a main work plan. Each work plan contains a series of 

working operations. Each of these operations applies a machining operation to a CAD feature, 

for example a roughing operation. The same machining operation may be reused in multiple 

working steps and multiple working steps may be necessary to complete a feature. For example, 

a roughing operation is required followed by a semi-finish operation. The details of the work 

plan are encapsulated in each operation, including the tool specification, tool path, heat treatment 
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and other related parameters. 

As an open architecture module, STEP-NC provides a standard to build up a seamless 

connection through CAD, CAPP to CAM. However, this standard is not widely accepted by the 

software providers and machine builders. One major reason for this is the fact that the data 

integrity of STEP-NC limits the flexibility of manufacturing process planning. In a distributed 

working environment, the design engineer has the role of setting up the geometrical model of the 

product. The CAD model is then transferred to the manufacturing engineer, who might be 

located in a different place. Their jobs include providing a detailed process plan by adding the 

manufacturing information to the model transferred from the upper-stream department. However, 

the synchronization of manufacturing data from peer departments is extremely hard, if not 

impossible. Meanwhile, STEP-NC attempts to connect CAD, CAPP and CAM modules by 

binding all the information into one file on top of the CAD model. To achieve this goal, the more 

recent edition of STEP-NC (ISO 10303-238:2007) unifies the methodologies of the post process 

for the generation of NC commands; that is, the tool path nested in the STEP-NC file can be 

directly adopted to control the NC machines. This eliminates the post process that is currently 

used to generate and optimize the NC commands for one specific machine. However, this might 

cause problems in practice for productivity, because of the diversity of post and controlling 

technologies adopted by different machine builders to ensure the best manufacturing quality for 

the particular machine. There are various factors in the real life of a workshop that could 

influence the productivity and the quality. Especially in a distributed manufacturing environment, 

it is normally difficult to predict the machine tool used for a certain operation. If the operator 

decides to replace one machine with another, the corresponding tool path and NC commands 
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have to be redesigned. Therefore, in many recent studies, the manufacturing information carried 

by STEP-NC file is omitted [40], as manufacturing engineers prefer to ignore the information 

stored in the STEP-NC file and to generate their own NC commands. But this leads to STEP-NC 

losing its original meaning, and also introduces redundant data and discrepancies between the 

management statistics and real workforce. 

2.6 A new scheme of data exchange for agent-based distributed manufacturing 

To resolve the problem and make STEP-NC more adaptable to the unpredictable working 

environment, a new scheme of data exchange is introduced as shown in Figure 2-4. The major 

difference between the new scheme and the traditional one is that its geometry model is not a 

CAM oriented Model CAM data 

L[0:?] 

1 

Figure 2-4 New STEP-NC architecture based on distributed 

manufacturing 

 geometry machining_feature machining_working_step 

workplan 

machining_operati

on 

workpiece 

Project 
S[0:?] 

    geometry 

   geometry 

   geometry 

desired 

geom 
Initial geom 

bounding 

geom 

feature#2 feature #1 

operation#2 operation#1 … 

strategy 

technolog

y 

tool 

Specification 

 geometry 

  L[0:?] 

… 

S[0:?] 

1 

CAD

D  



27 

 

direct copy of the CAD model. Instead, it is built on top of a CAM-oriented geometry model that 

is abstracted by subtracting the CAD model from the model of rough stock. By peeling off the 

machine-related information, the CAM-oriented model is left only containing the geometry 

information of removed material. All the machine information is shifted to another layer of CAM 

data. The in-process-stock contains a set of to-be-machined features, each of which encapsulates 

the subgroups of geometries, including the initial geometry, desired geometry and bounding 

geometry. Instead of one work plan for the project, on the CAM layer there could be multiple 

work plans for each project. This will help version control and data synchronization. Based on 

the working plan, the same geometry entity could be interpolated as different machining features, 

and also handled with different operations. 

Figure 2-5 illustrates the data flow of the new scheme. The CAD model is first converted into 

a CAM-oriented model. This module can be accomplished by an applications built in the CAD 

systems. After CAM-oriented model is created, the data can be transferred to the CAM system 

for the NC post. The applications built in the CAM systems retreat the CAM feature from CAM-

oriented model and generate operations according to the machine information and specification 

in real-time. Any new defined CAM operations are kept semantically separate from the CAD 

information. 
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2.7  Case study 

Figure 2-6 illustra tes the decomposition of the machining feature. CAM-oriented model is 

obtained by subtracting the CAD model (desired model) from the raw model. It represents the 

volume to be removed during the machining process, and is further decomposed to a set of 

machining features. Every machining feature is composed of initial stock, desired stock and 
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Figure 2-6 Decomposition of machining feature 
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machining stock. In such a CAM-oriented model, raw stock is also referred to as in-process stock, 

which is the initial stock of every machining step. It may also be the desired stock of the 

preceding machining step. The machining stock could be decomposed as a group of machining 

features. For the part shown in the figure, it contains one hole feature and six blade features. 

Because blade features are axis-symmetric, it can also be simplified as a pattern feature whereby 

radial copies of the blade feature along the axis. As a result, the final machining feature can be 

translated as one hole feature, one blade feature and one pattern feature. Figure 2-6 illustrates the 

geometries for the blade feature: it contains the desired surface, bounding surfaces and initial 

surface. All the decomposition is accomplished at the phase of design. It provides a technical 

analysis of the product to identify machining requirements and constraints. This phase can be 

accomplished by the manufacturing experts manually through a series of interactions in the CAD 

environment. There are also many technologies of feature recognition to automate this process. 

The final result of all the working steps is transferred to the local manufacturing center. 

Based on the current status of the work floor, the second planning is conducted in the machining 

center to match the required job operations with the operation capabilities of the available 

production resource. Once the machining station receives the task, it will detail the 

manufacturing plan and generate the NC code for the assigned machine station. Without the 

restriction to follow the designed tool path requirement, each station and agent has the flexibility 
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to optimize the NC code based on the characteristics of the machine station that it is associated 

with. Meanwhile the data transition between server, machining center and machining station can 

be more efficient. 
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Figure 2-7 A generic machining feature 
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3  

 REPRESENTATION STRUCTURE 
AND ARCHITECTURE DESIGN 

  

3.1 Overview of Boundary Representation (B-rep) for Solid Modeling 

3.1.1 Representation of boundary surface 

As shown in Figure 3-1, the machining feature is defined as the cut volume to be removed 

during the machining process. It is usually abstracted from the machining feature that contains 

the boundary entities, such as the bounding geometry entities (surfaces, edges and vertices). Each 

machining is usually represented as a boundary representation model (B-rep). Solid modeling 

systems for boundary representation models are mostly 2-manifold. A 2-manifold surface is one 

for which every point is topologically equivalent to an open disk. The machining features are 

normally generated with an interactive step-by-step construction procedure by picking up the 

boundary entities. Many studies have been conducted that attempt to identify the machining 

features automatically[41, 42]. 
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B-rep is formed on the basis of the assumption that any physical object is enclosed by a set of 

bounding faces that divide the space into domains of interior and exterior space. The orientation 

applied to the surfaces identifies the interior and exterior region. Meanwhile, each face has 

boundary curves and vertices. The database of B-rep comprises the sets of geometrical entity and 

topological entity. As shown in Figure 3-2, geometrical entities do not carry any boundary 

information, and therefore the geometrical entities, such as surface and curve, are regioned 

infinitely. By defining boundaries of the geometrical entities, topological entities trim the 

geometry entities, such that volume is bounded by faces, face is bounded by edges, and edges are 

bounded by ending points. Topological entities serve as the “glue” to connect the geometrical 

entities together. Information needed for a boundary representation is commonly obtained 

through user input or a boundary evaluation of CSG data. Due to the complexity of 3D geometry, 

many studies have attempted to simplify the modeling process by using a unified internal form 

Desired features 

Initial stock Cut volume Corresponding faces 

Sub-domain 

Figure 3-1 Sub-domains of cut volume and their boundaries 
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        Figure 3-2 Geometrical entity and their topological set 
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for geometric representation, including parametric representation and facet representation ([43-

47]) 

3.1.2 Unified Parametric representation 

The boundary surfaces of conventional B-rep are composed of patches that have different 

kinds of primitive geometry, such as polygons, cone, cylinder, sphere, and quadric surface. In 

recent years, solid modelers have been developed to handle the wealth of not only the primitive 

models, but also the freeform surfaces. One of the strategies whereby this is done is to develop a 

unified approach to support the various curve and surface forms. Non-Uniformed Rational B-

spline (NURBS) [43, 44] is an example that has been commonly adopted for this purpose. Since 

NURBS is convertible with most primitive features, its internal operations, such as the 

calculation of surface-to-surface intersections, can be achieved with a unified algorithm. The 

surfaces are first specified by the designer and then translated into the unified internal form such 

as NURBS. Primitives can be created in the form of NURBS and used for model development in 

CSG or B-rep representations, allowing a large variety of geometric forms to be handled with a 

manageable amount of computer code and easily accessed by the CAM system. The fundamental 

theories of NURBS are stated in a number of studies [45, 46]. 
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The formulation of parametric representation has a higher order, and it can therefore 

represent complex patches or curves with a simplified formulation. The CAD model can 

consequently be built up with small number of features or patches. This could reduce the data 

size of the model. However, the parametric representation is normally an approximated or 

interpolated form, and it does not exactly match with the original patch and its boundary edges. It 

is usually very hard to obtain a waterproof model with parametric representation, that is, there 

are almost always gaps or mismatches between two neighboring patches. 

3.1.3 Tessellated representation 

In cases of complicated objects, the exact B-rep models are obtained by the equations that 

represent their edges and faces. However, these surfaces and curves can be also approximated 

with planar facets that are referred to as facet representation or tessellated representation [46, 47, 

48]. The surface of the object is covered with triangles and quadrilaterals. It is very flexible and 

<Vertex Table> 

<Index Number>  <X coordinate>  <Y coordinate>  <Z coordinate> 

1        0       0  0 

2        1.0       0.0  0 

3        1.0       1.0  0 

4         0       1.0  0 

… 

<Mesh Table> 

 <Index Number>  <Vertex 1>  <Vertex 2>  <Vertex 3>  <Vertex 4> 

1  1          2        3             4 

2  2          3           4  5 

… 

 

Figure 2-4, an example of the Facet Representation 

 

 
Table 3-1 B-rep of cube with tessellation 
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easy to add new surface types, and all needs can be satisfied with very simple geometric data. 

The problem of surface-to-surface intersection is simplified to calculate the intersection of planar 

facets. The tessellated representation enables numerical analysis. Many simulations, such as 

finite element analysis, are based on the facet model. However, since the geometry needs first to 

be linearized as facet planners, a large quantity of facets has to be generated to maintain an 

acceptable level of accuracy in the model. 

One commonly used data structure for tessellated B-rep is an Index Table. Table 3-1 

provides an example of such a facet representation for a unit cube. The table lists the four 

vertices of the top face and their index number. The face is defined in another table with the 

indices of the vertices that form each face, also followed with the additional attributes derived 

from the surface to which the mesh belongs, such as its normal direction and its curvature. These 

attributes provide geometric and topologic details that are the necessary parameters for the 

implementation of tool-path generation. 

In our system, all the CAD models will be tessellated into triangle facets. However, any 

sorting or searching operation of the Index Table is inefficient. There is hence a need for a more 

efficient data structure. A winged-edge data structure is designed to solve this problem ([49-52]). 

Other traditional data structures such as lists, trees and graphs are by themselves insufficient to 

represent geometric objects because they are either one dimensional or do not capture the rich 

structural properties. 
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3.2 Data structure of B-rep 

3.2.1 Winged-edge structure of C style 

The data structure used for B-rep is normally called winged-edge structure[46-49]. Unlike 

regular one-dimensional structures, it is a nonlinear structure that describes the topology of the 

network formed by geometrical entities. The winged-edge data structure was first proposed by 

Bruce G. Baumgart in 1975 [50]. It features vertices, edges and faces with a dense pointer 

structure between incident primitives. Through those links, a fast access of neighboring entities 

is made possible, although there is some overhead in space and time necessary (memory space 

and processing time, and sometimes programming time). The winged-edge data structure is 

capable with certain modifications of overcoming some of these restrictions, and the more 

complex radial-edge data structure allows for non-manifold meshes altogether. There are various 

Fig 3-3 Failure cases of B-rep structure 
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winged-edge structures, such as quad-edge structure [51], half-edge structure [52, 53], radial-

edge structure [54] etc. As mentioned in the introduction, half-edge's restriction to represent 

manifold surfaces makes it unusable for certain purposes. With the winged-edged structure of B-

rep, two surfaces intersect at a common edge curve that has the same ending vertices. The 

hanging entity, as shown in Figure 3-3, is not allowed. Each entity of B-rep structure intersects at 

the same entity of lower level in the hierarchy of the data structure. The lower-level entities 

follow an order such that the higher-level entities are ordered counter-clockwise(CCW) with 

respect to the innate orientation of the edge. Figure 3-4 shows an example of a model with 

polyhedron facets. Each face is represented with a list of edges that consist of two ending 

vertices. If two faces share the same edge, the overlap edges are the wing edge of each face. The 

figure shows a polyhedron with vertices, edges and faces indicated with upper case letters, lower 

case letters and digits respectively. Vertex X is comprised of the incident vertices of edge a, b 

and e. When the edges are traversed, the following information is important and must be linked 

to the vertex: i) vertex position and other geometric attributes, such as normal, u/v tangent, 

principle curvature etc.; ii) All the edges incident to it, so-called emanating edges; iii) The faces 

incident to it. 

For edge a = XY as an example, it has two incident vertices X and Y, and two incident faces 1 

and 2. A face is a polygon surrounded by loops of edge.  Face 1 has its edges a, b and c, and face 

2 has its edges a’, e and d.  Edge a and a’ represent the same geometric edge, but they are in 

opposite directions when traversed in the two neighboring faces. Therefore they are called radial 

edges. In the example case, it is traversed once when traversing face 1 and traversed a second 

time when traversing face 2, and is used twice in different directions. These two edges are 
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defined as radial edges. The radial edges belong to the different loops of neighboring faces. For 

each edge, the following information is important: i) its two ending vertices; ii) its radial edges; 

iii) the predecessor and successor of this edge when traversing its left face, and the predecessor 

and successor of this edge when traversing its right face. 

For face 1, for example, it has one loop that is composed of edges a, b and c. But many faces 

contain the exterior loop and interior loops. With the implementation of winged-edge structure 

with C style, the B-rep is built on the hash table of vertices, edges and faces. The entity is 

recorded with the index number of the corresponding entity stored in the hash table. The traverse 

is based on each face, then edge, and then vertex. 

Vertex Table The vertex table contains a list of vertex structures. Each of them contains the 

coordinates of the point. In some B-rep models, each vertex also contains the list of the index 

numbers for the corresponding edges that are incident to it. 

Edge Table Each entry in the edge table contains the index information of above entities: edge 

name, start vertex and end vertex, left face and right face, the predecessor and successor edges 

when traversing its left face, and the predecessor and successor edges when traversing its right 

face. Note that clockwise ordering (viewed from the outside of the polyhedron) is used for 

traverse. Note also that the direction of edge a is from X to Y. If the direction is changed to Y to X, 

all entries but the first one in the following table must be changed accordingly. 

The winged-edge data structure allows for quick traverse on the faces, edges, and vertices 

due to the explicitly linked structure of the network. This rich form of specifying an unstructured 

grid is in contrast to simpler specifications of polygon meshes such as a node and element list, or 
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the implied connectivity of a regular grid. However, the traditional winged-edge structure is a 

procedure-based structure. There is a lack of expandability for the data to be handled. The 

traverse among the geometrical entities is quicker than with the Index Table, but the operation of 

geometry, such as scaling, boolean, adding or reduction of entities is not easy. To resolve the 

problem, a new radial-edged architecture has been designed [54]. This new architecture is based 

on the philosophy of object-oriented programming, which is a more data-centered architecture. It 

makes all the B-rep operations easier to handle, and also provides great flexibility for expanding 

functions. 

3.2.2 Winged-edge structure of Object-Oriented Programming (C++) style 

In the last decade, the development of object-oriented programming (OOP) technologies has 

increased the demands to redesign the B-rep structure with the concepts of class. As opposed to 

OOP, the traditional data structure is based on procedure and has limitations in many aspects. 

First of all, the traditional implementation is not expandable and is designed for only one specific 

type of model. For example, the data structure of a facet model is dedicated solely to the facet 

model, which is not compatible with the NURBs model or any other non-facet model. 

Meanwhile, the traditional structure style of B-rep lacks of flexibility, which can hardly add a 

new geometric entity in real-time into an existing B-rep. For detailed information regarding OOP 

and class design, refer to Appendix A. 
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Based on the definition of object-oriented programming, the topological information of the 

B-rep entities can easily be encapsulated as the class attributes. Figure 3-5 shows the example 

classes of an edge, in which its radial edges are connected with a double-linked list. 

mPrecessorRadialE and mSuccessRadialE represent the predecessor radial edge and the 

successive radial edge. All the radial edges will subsequently be bundled into a list. mFace is the 

Class Edge 

{ 

Private: 

          // The following fields correspond to radial edges 

         Edge * mPrecessorRadialE; 

         Edge * mSuccessRadialE; 

         // The face that the edge belongs to 

         Face * mFace; 

         // The preceeding and successor edges in the loop 

         Edge * mPrecessingEdge; 

         Edge * mSuccessorEdge; 

        // The ending vertics 

        Vertex * mStartVertex; 

       Vertex * mEndVertex; 

} 

Figure 3-5 Class definition of edge 
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face to which the edge belongs. Also, each instance of edge class is connected to an edge loop 

with a link-list, and its precessor and successor in the loop is represented as mPrecessingEdge 

and mSuccessorEdge. 

Figure 3-6 shows an example class of a vertex. This class is normally derived from the point 

class that contains the coordinate information of the vertex. Besides this, the class definition of 

the vertex also includes other geometric attributes, such as normal vector, tangent vector etc. For 

the convenience of traversing the emanating edges, mEminatingEdge represents the list of edges 

that emanate from the vertex. To easily access the edges that are incident from it, each vertex 

also contains the addresses of the emanating edges. 

Class Point 

{ 

Private: 

         Double x; 

         Double y; 

         Double z; 

} 

Class Vertex : public Point 

{ 

Private: 

        // The following fields correspond to emanating edges 

        Edge* mEmanatingEdge; 

 

       // The face that the edge belongs to 

       Face* mFace; 

} 

Fig. 3-6 Class definition of vertex 
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Figure 3-7 shows the class definition of a polyhedron face that is composed of a loop of 

edges. A face can have multiple loops, one of which is the exterior loop. Interior loops are used 

if the face has holes. Interior loops and exterior loops have opposite directions (CCW and CW). 

Other entities on the face include composite face, shell and lump. Shell is composed of a set of 

connected faces, and represents a region of a solid. Some solid modelers support multiple solids, 

and can therefore have multiple sets of B-rep. Each of them are called lumps, but the top level 

entity for a polygon B-rep is face. 

3.2.3 A new Design pattern of Topology network 

Besides the data structure, the operation for a B-rep also follows certain behaviour patterns, 

and these can be abstracted with some design patterns in software technology. Design pattern is a 

 

Class Loop 

{ 

Public: 

        //Accessors 

        … 

Private: 

       // The following fields correspond to the array of 

       Edge * mEdgelist; 

       Int mNumEdges;  

} 

 

Class Face 

{ 

Private: 

 // The following fields correspond to a interior loops and exterior loop that belongs to the face 

        Loop* mExteriorLoop; 

        Loop* mInteriorLoops 

} 

 

Fig. 3-7 Class definition of face 
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general structure or solution that can be re-used for a common type of repeatable problem. (For 

detailed information regarding OOP and class design, refer to Appendix A.) The major strength 

of design pattern over regular OOP is that, in addition to the data structure of OOP, design 

pattern also generalizes the interactions between multiple objects. It describes a semantic 

solution to abstract the repeatable behavior of real-world objects with interface objects, while 

OOP only contains data. In such a way, we can use the core pattern over and over again by 

hooking it with different real world behavior in the application level. Many studies and 

commercial packages have attempted to design B-rep structure with the traditional OOP 

structures, but design pattern has not yet been incorporated into these researches. All the OOP 

programming hitherto provided is simply intended to resolve the issues of how the data is built 

and connected in the level of concrete classes, but the traverse between different entities is still 

dependent on the types of B-rep and its geometrical entities. For facet and NURBS models, for 

example, although their behaviors and data structure follow certain repeatable patterns, the 

traverse function, visiting function and the entities have to be defined separately for each 

individual entity. Most codes are insufficiently flexible to handle any types of B-rep, and a new 

framework is hence developed with the design pattern. 

iTopology and iOwningTopology iTopology and iOwningTopology are sets of abstract bases to 

define the topology and owner of topology. Figure 3-8 shows the definition of abstractive vertex 

and topology. Each iTopology is a member of a linked list that is owned by an iOwningTopology. 

It represents a node in the topology owned by iOwningTopology. iOwningTopology is the owner 

of all the entities in its list, but can also be a topological member of another topology owner. 

Therefore, iOwningTopology is derived from iTopology. In this framework, each entity class is 
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derived from the interface of either iTopology or iOwningTopology. With the unified interface 

class, namely iTopology, visiting the target entity of B-rep can be accepted through the unified 

interface, which simplifies the traverse. On the other hand, because iOwningTopology could be 

owned by another iOwningTopology, it can easily build up a composite based on this inheritance.  

iVertex Figure 3-8 shows the class definition of iVertex in design. It is the interface class of any 

vertices in the B-rep. The vertex is a subclass of iTopology. The difference between a point and 

vertex is that a point contains only geometric information, while in B-rep a vertex has further 

attributes. It also contains the topology information, including its incident edges that merge at or 

emanate from it. All the vertices are defined and visited based on the same interface, so that each 

instance can be traversed. For instance, the work flow that calculates the normal direction is 

shown in the following figure. The iterator goes through each vertex and calculates the normal 

direction. Because the type of visited object is all iVertex, they can therefore be visited through a 

unified interface, i.e. iVertex. The same traverse can be used for other operations on the vertices 

Fig. 3-8 Class definition of vertex with interface  
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of B-rep. This follows the so-called visitor pattern: when the operation changes, clients simply 

need to create a different visitor. 

iEdge iEdge is the interface base that represents the intersection of any two adjacent faces. It 

normally contains two ending vertices. The edge of the polygon face is a line segment, and 

therefore its two ending vertices are sufficient to represent it shape. In other types of model, such 

as IGES model, the edge needs a parametric function to represents its shape besides its two 

ending points. In case of a feature model, the edge might contain the feature type and other 

information. Figure 3-9 shows a definition of a linear edge. It has two vertex members that are 

connected to the adjacent edges. Meanwhile, the iEdge class is derived from iOwningTopology, 

as an edge can be a composite of multiple sub-edge segments. Beside its inherited properties, 

each edge is shared by the neighboring face. In order to easily access these faces, it contains a list 

of all faces that are connected to the face. In the B-rep of this research, a double-hanged structure 

is used, as shown in Figure 3-9. Each edge is owned by only one face, and every face has its own 

edges. The edges at the intersection of the neighboring faces are called radial edges, and they are 

bundled as a list of radial edges. 

Starting vertex 

Ending vertex 

List of radial edges 

Formulation class 

iTopology 

 

iEdge 

 

Edge 

 

 

 

 

Fig. 3-9 Class definition of edge  
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iFace Face class is defined as the subclass of interface iFace that is derived from 

iOwningTopology, as shown Figure 3-10. Each face is composed of lists of edge loops and the 

mathematic formulation of the surface. If it is a simple polygon face, the mathematic formulation 

is not needed. Every loop is a closed list of edges. The CCW direction of the loop points to the 

innate direction of the surface being normal. Face class also has other geometric attributes, such 

as normal vector etc. In Figure 3-11, Face A and B intersect at the same edge, but they both have 

their own edges, namely Edge CD and DC. Because these two edges actually represent the same 

edge but in opposite directions, they are bundled into a list, so-called radial edge. Meanwhile, 

due to their compatible condition, Edge CD and DC have the same ending vertices but opposite 

directions. For the non-manifold model, the radial edge list normally has only two edges, which 

are opposite to each other. For the manifold model, the number of radial edges can be greater 
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           Figure 3-11 Double winged-edge structure 

Figure 3-10 Class definition of Face 
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than two, but the number of radial edges along one direction has to be equal to the other direction.  

iVisitor and Traverse Because of unified interface definition, any operation of B-rep can be 

implemented through an aggregate hierarchy of interface objects. In design pattern, this approach 

is accomplished by the visitor pattern. The approach encourages the design of lightweight 

element classes, because processing functionality is removed from their list of responsibilities. 

New functionality can easily be added to the original inheritance hierarchy by creating a new 

visitor subclass. Figure 3-12 shows that the design pattern can be implemented on both client 

side and visitor side. On the client side, every concrete class of iTPTopology has a common 

method 

Figure 3-12 Class definition of vertex traverse  
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iTPTopology :: accept (iVisitor). This method offers a mechanism with which to implement the 

operation to be applied to a type of element during the traverse. On the visitor side, the concrete 

visitor inherits the visit methods from the interface. The actual implementation of visit methods 

is specified on the basis of the input type of topology element. 

Class DLL_EXPORT 

ValidationVistor : public iVisitor 

{ 

public: 

//Constructor 

 ValidationVistor(B-rep* B-rep); 

//Destructor 

 ~ValidationVistor(); 

//Visiting Functions 

 virtual void Visit(Topology* myTopol); 

 virtual void Visit(Vertex* myVertex); 

 virtual void Visit(Edge* myEdges); 

 virtual void Visit(Face* myFace); 

  

 virtual void Visit(TreeNode* myNode); 

//Status accessor 

 bool GetStatus() const; 

private: 

//No copy constructor 

 ValidationVistor(const ValidationVistor&); 

 B-rep* m_brep; 

}; 

Figure 3-13 Class declaration of validation visitor 
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 Figure 3-13 shows a validation visitor that checks the entities of a B-rep. The validation 

operation needs to be different for vertex, edge and face. Although all the entities of B-rep are 

traversed and visited by the same visitor, each element structure will have an associated visitor 

class. This abstract visitor class declares a VisitConcreteElement operation for each class of 

concrete element defining the object structure. Each visit operation on the visitor declares its 

argument to be a particular concrete element, allowing the visitor to access the interface of the 

concrete element directly. As a concrete visitor, validation visitor overrides each visit operation 

to implement visitor-specific behavior for the corresponding element class. 

Figure 3-14 shows a traverse method implemented in B-rep. As each topology element is 

iterated, the visitor will implement the operation based on the type of the topology element. The 

visitor is created by a visitor factory that provides a static method to create all types of visitors 

and return it as iVisitor.  
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3.2.4 Reconstruction of B-rep from STL model 

The STL model has no topological information. Each triangle has separate vertex coordinates, 

and a method is required to rebuild the information with the STL model. Based on the above 

design pattern, the topology can easily be reconstructed by merging the overlapping vertices. The 

regular method is to import each triangle and search through the B-rep to find its neighboring 

triangles. This algorithm is time consuming. Figure 3-15 shows an algorithm that is based on the 

above design pattern. To accelerate the search process, a subdivision tree structure is introduced 

to divide the space into sub-regions, so that the closet triangles to the input triangle can be sorted 

out for search and merge. As shown in Figure 3-16, when each triangle is read, the existing 

//Class declaration of visitor factory 

Class DLL_EXPORT VisitorFactory 

{ 

static iVisitor BuildValidationVisitor() 

{ 

 Return ValidationVisitor(); 

} 

} 

 

 

//Traverse function in B-rep 

void  Brep::Traverse(iVisitor* visitor, TOPOL_LIST& topoList) 

{ 

   TOPOL_LIST ::const_iterator cgiTerator;  

   for(cgiTerator = topoList.begin();  cgiTerator!=topoList.end(); cgiTerator++) 

   { 

 if(*cgiTerator) 

     (*cgiTerator)->Accept(visitor); 

 if(visitor->Terminate()) 

    break; 

   } 

}; 

Figure 3-14 Creation and traverse of validation visitor 
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vertices will be compared to the new triangle. If none of the existing vertices is close enough to 

the new vertices, a new vertex will be created, but if there is a vertex that has the same position 

to the new vertex, the vertex will be re-used to form the new triangle. After the three vertices are 

obtained, the new face will be created. The neighboring triangles of a vertex can be obtained 

from its emanating edges. If the input triangle shares the two vertices with any existing triangle, 
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Figure 3-15 Reconstruction of B-rep 
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the topological information of its faces and edges are formed to connect the triangle with the 

other triangles. The topological information to be formed includes the radial edges, the 

emanating edges of the vertices, and the edge loops of the face, as shown in Figure 3-16. 

One advantage of this structure is that the neighboring vertices of any vertex can easily be 

found, because they are all connected through emanating edges. Also, with this structure, each 

facet can be polygonal instead of triangular, and can consist of internal loops in a CCW direction. 

In this part, the STL model is limited to triangles only. 

3.2.5 Memory Management 

Object and Container classes All the classes are based on either the UObject class or 

UContainer class. UObject class is a global base for all the objects that need to be “used” 

(allocated) in the memory pool. As the opposite of this, the UContainer is the class that contains 

(manages) the memory pool. Figures 3-17 and 3-18 show the class declaration of object and 
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container. Object is an abstract class for which certain methods are enforced to implement in its 

sub-classes. It defines a new operator that will take the designated memory pool and reallocate 

the memory. 

Container contains a member of UMemPool. It is a member that maintains and manages all 

the memory usage in the heap. Because of the large size of B-rep, especially for polygon B-rep, 

there needs a way to quickly allocate, de-allocate and access the heap. Normally, a memory pool 

mechanism will be implemented to manage the heap usage for large sized objects [55, 56]. 

UMemPool is based on a structure very similar to a regular heap manager[57], but provides a 

mechanism to dynamically allocate and stack heap blocks, and a way to rapidly access the 

memory block without the limitation of fragmentation. 

The UContainer can have multiple memory pools based on the types of object that it can 

contain. One example of a container is B-rep. The container of B-rep has four memory pools, 

one for vertices, one for edges, one for loops and one for faces. The major benefits of a 

mem_pool is improving the speed of allocation, traverse and deletion. 
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namespace UCAM 

{ 

// Context object, used to support the memory management 

// It is the base class for the classes to be allocated in the memory pool 

class DLL_EXPORT UObject 

{ 

public: 

//Constructors 

UObject() : m_index(0), m_visitingmarker(0) {}; 

void *operator new(size_t num_bytes, MemPoolHndl heap) 

{ 

if(!heap) 

 return malloc(num_bytes); 

else 

 return (SMEM_create_element(heap)); 

}  

virtual ~ UObject (); 

UObject(const UObject &) {}; 

 

virtual void Dump() const; 

virtual void AssertValid() const; 

//Accessors of index 

void SetIndex(int id); 

ULONG GetIndex(); 

//Operators of bounding box 

virtual void JoinDomain(UDomain3D* rDomain) = 0; 

virtual bool IsContainedBy(UDomain3D * rDomain) = 0; 

virtual UDomain3D GetDomain3D() = 0; 

//Operators of visting methods 

virtual void Accept(iVisitor* cgVisitor) = 0; 

virtual void IncrementVisitingMarker() { m_visitingmarker++;} 

virtual ULONG GetVisitingMarker() { return m_visitingmarker;} 

 

private: 

ULONG m_index; 

ULONG m_visitingmarker; 

}; 

typedef std::list< UObject *> OBJECT_LIST; 

typedef std::vector< UObject *> OBJECT_VECTOR; 

} 

Figure 3-17 Declaration of object 
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namespace UCAM 

{ 

// This is the base level object for memory pool. It provides the mechanism 

//memory management and allocation 

class DLL_EXPORT UContainer 

{ 

public: 

//Constructor 

UContainer () : mem_pool(NULL), m_ownerOfMemory(false){};  

UContainer (int poolCount, bool ownerofMemory); 

virtual ~ UContainer (); 

 

//Modifier of ownership 

inline void SetOwnerOfMemory(const bool isOwnerOfMemory); 

inline bool IsOwnerOfMemory(); 

 

//Creator of memory pool handler 

UMemPoolHndl CreateNewPool(int ind, int elementSize, int bufferSize); 

UMemPoolHndl GetMemPoolHndl(int index) const ; 

inline int GetPoolCount() const; 

 

inline void Free();  

virtual void DumpPool(); 

protected: 

// Copy constructor is not allowed for memory pool management 

UContainer(const UContainer & source) : mem_pool(source.mem_pool), 

m_ownerOfMemory(false) {}; 

private: 

bool m_ownerOfMemory; 

UMemPool mem_pool; 

}; 

} 

 

Figure 3-18 Declaration of container 
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Figure 3-19 illustrates the declaration of UMemPool, which is based on a stacked heap 

mechanism. The normal mechanism of the memory management for B-rep is very similar to the 

memory pool management. But because B-rep normally has triangles of a large size, the memory 

must have good expandability. The regular heap structure has a fixed size memory pool. If the 

expanding size is bigger than the total size of the allocated memory, it is sometimes impossible 

to expand the memory size of the pool in the original address because of memory fragmentation, 

which blocks the HEAP from expanding from the original address. In this case, the original 

allocated memory pool is copied to a new address for the new size, as shown in Figure 3-20(a). 

// This object contains a system dependent pointer to a memory pool.   

// The deletion of this object will clean up the pool. 

#define UMemPoolHndl char* 

namespace UCAM 

{ 

class DLL_EXPORT UMemPool 

{ 

friend class UContainer; 

public: 

    UMemPool(); 

    UMemPool(int m_poolCountl) ; 

   

    virtual ~ UMemPool(); 

     

    inline void Free(); 

    inline void DeletePool(int ind); 

    UMemPoolHndl CreateNewPool(int ind, int elementSize, int bufferSize); 

    UMemPoolHndl AddNewPool(); 

 

protected: 

    UMemPoolHndl* m_memPools; 

    int m_poolCount; 

}; 

} 

Figure 3-19 Declaration of UMemPool 
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But the memory in the original address will be freed after resizing. If there are external 

references pointing to these old addresses that are allocated in the original heap, they need to be 

updated with the new address. This method is not feasible in B-rep, because all the topology 

information of B-rep entities is carried by referencing the address of the entities. It is difficult to 

achieve rapid updates for all these topological references with the new addresses. Figure 3-20(b) 

shows another data structure that preserves all the allocated memory blocks when the pool needs 

to be resized. Instead of deleting and copying the original memory block to a new address, 

UMemPool provides a link-list for all the allocated memory blocks. If the expanding size is 

bigger than the total size of the allocated memory pool, an additional memory block will be 

allocated in a new address, and this new address will be stacked to the existing list of allocated 

memory blocks. In this way, the resizing operation does not need to update any external 

references. Because the memory blocks that have been allocated are preserved in a link-list, the 

deletion operation of the memory pool simply involves traversing all the elements of this link-list, 

and freeing each of them. For the detailed function information of stacked heap allocation, please 

refer to Appendix C. 

Meanwhile, the UMemPool can also have multiple pools of different individual element sizes. 

For example, in polygon B-rep, the objects of vertex, edge, loop and face are all of different size, 

and when we create the instance for each of them, they should allocate in different pools. 

Therefore, UMemPool for polygon B-rep should have four memory pools. With this mechanism, 

all the objects of the same type will be allocated in the array type of memory blocks. Therefore, 

the traversing of objects is much faster than the mechanism of dynamic allocation. Because we 

allocate all the memory in a memory block, it is easy to delete. It can contain multiple memory 
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pools for different types of object. The client can dynamically create the new pool based on the 

type of the objects to be created in the class. Also, this solution resolves the problem of 

expandability that we encounter for the regular heap. 

 

 

 

 

 

 

 

 

 

Figure 3-20 Dynamic expansion of stacked memory pool 
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4  

PARAMETERIZATION OF FREEFORM 
SOLID AND MORPHING BASED 

MACHINING PLANNING 

 

4.1 Overview of the multistage rough machining based on solid parameterization and 

boundary constraint morpheme 

To validate the feasibility of the data scheme of manufacturing oriented model, we use a 

machining feature as a study case. The machining feature is defined as the feature specifically for 

a machining operation. It is a volume of material to be removed from the in-process stock by 

using machining operation, and it normally represented as a desired surface, initial surface and 

the surrounding boundary geometries.  

To protect the tool from damage, the material must not be removed by only one pass if the 

depth of the cut volume exceeds the permissible depth of cutter. Therefore, the machining 

procedure begins with stock material normally going into three phases: rough cutting, semi-
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finish, and finish, as show in Figure 4-1. Rough cutting brings the material near the required 

shape. The semi-finish performed on the near shape brings it within the dimension tolerance, and 

the finishing machining is used to polish or to keep the surface within the finishing tolerance. 

The tool path for each of these phases has to be generated with different concerns: for rough 

cutting, the tool path should be designed productive within the limitation of the cutter’s life-

expectation; for the last two steps, there is more compromise between the speed and surface 

quality. To meet the seamless integration of CAM, a good machining algorithm should meet the 

following requirements: 

i. It should be independent of the form of geometrical representation. Various algorithms 

have been created aiming at different geometrical models. But since the CIM is a highly 

Rough Cutting 

Semi-finished Cutting 

Desired surface 

Finished 

Ball end cutter Flat end cutter 

Stair case shape Tolerance layer 

Figure 4-1 Conventional multi-stage machining 
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intelligent system, it should be applicable to any CAD model provided by any designing features. 

Regardless of whether it is represented by the discrete data points or parametric description, the 

algorithm will be able to generate the fabrication plan with a unified scheme. 

ii. It should be gauge-free, implicitly avoiding the problems of gouge, over-cutting, and 

under-cutting. Martin [58] and Tao [59] addressed these issues in their research, but limitations 

of knowledge about the local analytic properties on the machined surface makes it difficult to 

avoid gouging and over-cutting. 

iii. It should be boundary conformed. Compared with other methods, the boundary-

conformed method, in which the cutting tip is pulled up and down to process the disconnected 

segments in case of non-continuous tool path, is efficient considering the time consumed. Also, 

the boundary-conformed method can improve the quality of surface at the area around the edge. 

Although the pocketing method [58] is to some extent boundary conformed by offsetting or 

scaling the boundary profile, the main application of this machining method includes mold and 

die cavities only. Yang et al. [60, 61] provide a good alternative to generate the conformed tool 

path based on the mapping theories. 

4.2 Process planning for 5-axis rough milling 

In order to meet the requirements of machining alogrithm, handle the complexity of CAD 

geometry and obtain the maximum cutting speed, most of these researches use 3-axis machining 

for rough machining [62, 63]. However, 5-axis is superior to 3-axis machining in many respects: 

i. Shorter cutting tools can be used for 5-axis machining. Since the tool can be tilted to adjust 

the angle between the cutter and the part, the increased rigidity of shorter tools can take 
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advantage of the high-speed options with no loss in accuracy. The result has better surface 

quality and reduced finishing time. 

ii. Generating 5-axis tool paths instead of traditional 3-axis tool paths can result in fewer cut 

passes and improved surface quality. In many applications, such as blade machining, the 

accessibility of 3-axis machining is very limited. 

iii. By optimizing the angle between the tool and the surface, it is possible to achieve a constant 

chip load and a high feed rate at the contact point. The result is improved surface finish and 

extended tool life. 

iv. Parts that previously required multiple setups can be machined in a single setup with 

simultaneous control of the rotary axis. In addition to saving time, this also cuts down on 

mistakes that might be made during multiple setups. 

Nevertheless, although 5-axis is superior to 3-axis machining in these respects, there is lack 

of methodology to implement the 5-axis machining in the roughing process. 

4.3 Morphing-based Process Planning 

In the current research, the concept of parameterization technology is extended to 3-D space, 

where the whole machining volume will be split into surfaces that are conformed to the volume 

boundary surfaces. The interim surfaces are interpolated from the initial surface and the desired 

surface. The major improvement of the new cutting strategy is that, while the procedure from 

rough cutting to finish cutting produces a series of surfaces morphing between the initial surface 

to the desired surface, as shown in Figure 4-2, the conventional approach of rough cutting [62-66] 

is to divide the machining volume into parallel slices. Each slice is cut into a staircase-shape 
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leaving a small amount of uncut allowance for semi-finishing or finishing processes. This 

method is only valid for 3-axis roughing process. Also because complicated numerical methods 

have to be introduced to calculate the enclosing contour and islands for each slice, it is not an 

efficient method and cannot be implemented as the unified method for tool path generation. In 

addition, the tool path does not conform to the boundaries. In practice, additional cutting is 

needed to clean the remaining material along the boundaries. For complicated geometric models 

with extreme irregular boundary surfaces, this method is weak, offering few errorless results. 

With a morphing-type transformation, the machined profiles are determined in such a way that 

the intermediate surfaces conform to the initial surfaces, the desired surface and the bounding 

geometries. The local analytic properties of each intermediate surface are explicitly predicable 

on the initial surface, final surface and boundary facets. There is no additional driving geometry 

needed for the tool path generation and collision avoidance.  

 

                                         

Interim Surfaces 

Figure 4-2 the metamorphosis of the intermediate 
surfaces 
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4.4 Overview of geometry morphing 

According to Douglas DeCarlo and Jean Gallier [67], the task of transforming one model into 

another epitomizes the general problem of metamorphosis between two objects, commonly called 

“morphing”. Morphing starts from a correspondence between the two objects, which specifies 

where features on one object end up on the other objects as a result of the transformation. When 

the transformation involves topological change, the correspondence must also indicate how the 

change takes place. The morphing engine effects a transition that realizes the desired 

correspondence using a method of interpolation. 

In recent years, image-morphing techniques have gained considerably in popularity for 

computer geometry, especially in the entertainment industry. Unfortunately, any intermediate 

forms produced by image-morphing methods exist only in image form. Current research 

represents for the first time the concept of surface metamorphosis to be applied to manufacturing 

process planning. 

Meanwhile, most research into 3D surface morphing has focused on either morphing 

between a restricted, topologically similar class of shapes, or automatically constructing the 

correspondence between the two shapes for a morph. Very often, the user has little or no say in 

how the morph takes place. For topologically similar objects, a smooth morphing process has the 

following properties: 

i. Over the course of the transformation, no discontinuous jumps in shape are present 

ii. No undesirable topological changes occur, such as the splitting open of a surface or distortion.  
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The surface topology of the shape is specified by the local metric of the surface. For example, a 

sphere and torus have different surface topologies. As discussed in the first section, the mesh 

topology is specified by the graphic connectivity of the mesh. The deformation of a shape (a 

geometrical change) does not change either the mesh or surface topology. 

Introduction of the metamorphosis of 3D surfaces inaugurates a new area for process 

planning, making possible the unified tool path-planning scheme, namely the manufacturing 

process can actually be defined as the geometry metamorphosis from initial stock to the final 

desired object. These two end objects can be linked with a set of interim forms, as shown in 

Figure 4-2. Instead of applying different strategies for rough cutting and finish cutting, we can 

plan the tool path on each of these interim surfaces in a unified manner, as what we do in the 

traditional finish machining. The main advantage of this development is that it dramatically 

simplifies the process of tool-path planning. The algorithm is independent of feature type. With 

correct adjustment it can theoretically be applied on any form of surface. Meanwhile, the scheme 

supplies boundary-conformed tool paths, which allows the machining of the parts to irregular 

geometrical properties, such as spars or cast raw materials. The description of each to-be-

manufactured feature is straightforward and consists of initial surface, desired surface and 

boundaries. Since the resulting tool paths are boundary conformed, it does not bring into 

staircase-shape on the surface, ensuring the surface qualities. The process of 3D surface 

morphing usually consists of two issues: 

i. The specification of the correspondence. Particularly for the faces of the control mesh, the 

correspondences induce correspondences between the points on the initial and final objects. 
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Moreover, the discrepancies between the structures of the corresponding faces describe the 

topological evolution that must occur during the transformation. 

ii. The interpolation algorithm, which is used to describe the issues arising in the presence of 

geometric evolution. 

In the example illustrated in Figure 4-2, the object model is divided into three machining 

features. After correspondence, each of them corresponds to one face of the initial stock. The 

whole cut volume is consequently divided into a set of sub-domains that are bounded with 

intermediate surfaces. The machining features from CAPP are actually the description of each 

member in this family. Based on the particular characteristics, the machining agent generates the 

corresponding intermediate surfaces. In the following section, parametric implicit model will be 

introduced to present the evolution from initial surface to the desired surface for a generic 

machining feature. 

4.5 Trivariate Representation 

In order to illustrate the geometry morphing of machining process, we need a modeling 

methodology that can represent the cut volume as a 3D solid, instead of describing it by 

specifying the boundary surfaces as CAD modelers do. It in some cases is trivial and inefficient, 

while the more natural method for CAM is to deal with the object in 3D space as a solid 

described by parametric function in terms of three variations. This set of description schemes is 

the so-called trivariate representation and is a direct extension of 2D patch. The trivariate 

equation can be used to represent either the explicit or implicit solids. 

The following is a general form of trivariate equations for explicit solid: 



67 

 

))(),(),(()F( wvuzwvuywvuxu,v,w ,,,,,,         …(4-1) 

For      1,0,1,0,1,0  wvu ; 

To render this model in the conventional surface-based rendering system, the trivariate-

represented model usually needs to be converted to B-rep [68, 69]. But as a method of creating, 

modifying and visualizing freeform geometric models, trivariate representation is efficient and 

has been shown to be useful for manipulating the dynamic behavior of the object, such as 

deformation, animation, etc. Examples of explicit models are B-spline hyperpatch [68], COONs, 

Swept Volume [69] and Loft Volume, etc. 

4.6 Parametric Implicit Solid Modeler(PISM) 

4.6.1 Boundary surfaces of cut volume 

When the trivariate equation is in the form of implicit function, the solid represented by this 

type of equation is implicit solid modeling (ISM). ISM represents a solid as the set of points at 

which an implicit global defining function takes on a value less than a given threshold value. 

One common feature essential to all solid modeling methods is creating a surface that partitions 

the space into two regions. The natural mathematical description of such a spatially partitioned 

region consists of an implicit function ),,( zyxF  and a cutoff value associated with the surface, 

where the interior and exterior of the solid can be set as 
0),,( fzyx F and

0),,( fzyx F  

respectively. This implicit form supplies a very convenient way for modelers to perform various 

operations on the geometrical model. 
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The parametric form of ISM in 3D dimension space is 0),,,,,( wvuzyxF , for

     1,0,1,0,1,0  wvu , which is implemented to map the coordinate set of interior points to 

the normalized parametric space. The parametric form of ISM has been shown to be very useful 

for structured grids, typically employed for FEM problems and FDL problems. One good 

example is the ellipse equation used to generate the interior grids based on the boundary surfaces 

where the mapped parametric set (u, v, w) equals 0 or 1. 


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           …(4-2) 

Given the implicit properties of smoothness and continuity, it has shown many advantages 

over other grid methods. Most of the existing solid modelers accommodate the creation and 

manipulation of the complete, unambiguous mathematical representations for 3-D objects. The 

usual purpose is to provide information needed to perform the calculations associated with the 

process of geometric design, visualization, and calculation of the shape-related properties such as 

volume, mass, moments of inertia, surface area, and convex hulls. Solid modelers usually do not 

support just one category of scheme, but combine all these methods to reach an optimized trade 

off, allowing data exchanges between different models. 

The machining feature can be described in a variety of ways. Various representation schemes 

can be used in the commercial CAD programs. Inspired by the work of Yang et al.[70], in the 

current research boundary-fitted structured grids are selected to represent the surface in the form 
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of a network of curvilinear coordinate lines, as shown is Figure 4-5. One-to-one mapping can be 

established between 3D and parametric domain, and the curvilinear grid points also conform to 

the solid boundaries. Various parametric representations of freeform surfaces have been studied 

thoroughly in many works: B-spline surface [71], NURBS surface [45], COONs patch [46], 

sixteen-point form, four-curve form, ruled surface, Bezier surface, etc. Most of the 

parameterization methods design surfaces are based on the interpolation of driving nets or 

driving curves, of which the initiative curves are generated, based on design parameters or 

constraints, and then faired along the boundaries. While a few algorithms, e.g. ruled surface and 

COONs patch, can derive the iso-parametric patches directly from boundary curves or surfaces, 

they are all linear interpolation technology and are too simple to be used for more complicated 

cases, such as surfaces with trimmed edges. 
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Figure 4-3 illustrates the new parameterization method for trimmed surface[60, 61], where So 

in Fig. 4-3(a) represents the original surface; C1, C0, D1, D0 the bounding curves of Sa, which is a 

portion of So trimmed by C1, C0, D1, and D0. If we set the function of So as 

 

])1,0[,()),(),,(),,((),(  vuvuzvuyvuxSvuS oo
       …(4-3) 

The parametric curves of C1, C0, D1, D0 in (u, v) space can be represented as C1’, C0’, D1’, D0’ 
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Figure 4-3 Two-phase mapping of boundary-conformed grids 
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as shown in Figure 4-3(b). Sa represents the 2D parametric domain of Sa. These four parametric 

curves in terms of [0,1]  ) ,( s,tts  can form a new parametric space )(s,t . The domain Sa can 

subsequently be extracted to a unit square Sa in )(s,t space as shown in Figure 4-3(c), and iso-

ti’s network in Figure 4-3(d) is the new boundary-conformed iso-parametric curve. The resultant 

boundary-conformed grids after the second phase mapping back to the xyz object space are 

illustrated in Figure 4-3(e). 

In the first phase of mapping, C1’, C0’, D1’, D0’ in (u, v) can be obtained easily with RE 

techniques. Assuming these four parametric curves can be represented as, 


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
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
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           …(4-4) 

The major problem is how to grid the domain Sa with the boundary interpolation. Thus far, there 

are three methods available to solve this problem: algebraic interpolation, partial differential 

equations, and hyperbolic systems. 

If a similar concept is extended to the domain of 3D volume description, we can obtain a new 

evolution algorithm based on structured parametric grids. Figure 4-4 illustrates the mapping 

between physical space and the parametric space. The volume V in physical space represents the 

cut volume. Assuming f6 as the face on the rough stock, f5 the corresponding to-be-manufactured 

feature, and each of them enclosed by four edges, since both of these two surfaces have 
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equivalent topology, we can link them with four edges, l1, l2, l3, l4. Eventually, the internal grids 

in physical space can be obtained by mapping it to an orthogonal cubic in parametric space. 

From the perspective of surface morphing, the transformation between these two surfaces falls 

into the problem of structured grid generation, which uses a network of curvilinear coordinates to 

represent the 3D volume such that a one-to-one mapping can be determined between the physical 

and parametric space. 

l1, l2, l3, l4 is the swept trace of the four vertices on the surface. If they are described as a 

function in terms of the time parameter l1(t), l2(t), l3(t), l4(t), the interim surface at any instant 

time t can be represented as: 

 

][ 10, r,s,tF(r,s,t) ,           … (4-5) 

Where the boundary condition applies on the surface, i.e. 
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50 f)F(r,s,  ; 
61 f)F(r,s,  ; 

10 f,t)F(r,  ; 
31 f,t)F(r,  ; 

20 f,s,t)F(  ; 41 f,s,t)F(  ; 

The boundary conditions on the edges are: 

100 l,t),F(  ; 
210 l,t),F(  ;

401 l,t),F(  ;
311 l,t),F(   

1000 l),s,F(  ; 
610 l),s,F(  ;

1201 l),s,F(  ;
811 l),s,F(   

900 l),F(r,  ; 
510 l),F(r,  ; 

1101 l),F(r,  ; 
7l),F(r, 11  

On the vertices: 

)(l),,F( 0000 1 ; )(l),,F( 0010 2 ; )(l),,F( 0001 4 ; )(l),,F( 0011 3  

)(l),,F( 1100 1 ; )(l),,F( 1110 2 ; )(l),,F( 1101 4 ; )(l),,F( 1111 3  

 

4.6.2 Laplace solution of PISM 

Imposing these boundary conditions, the algorithm in our scheme involves two phases: 

initialization and fairing. 

Initialization: The purpose of this phase is to obtain initial grids from known boundaries. This is 

done directly by linear interpolation from the boundaries in the algebraic grid generation 
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technique that builds the grid by using transfinite interpolation in parametric form and taking the 

Boolean sum of the interpolation projectors as:  

tsrtstrsrtsrtsr PPPPPPPPPPPPPPP        … (4-6) 

where the shearing transformation between two opposite surfaces is expressed as: 

)1,,()()0,,())(1(
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        ... (4-7) 

The sum 
tsr PPP   represents the interpolant, namely 
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…. (4-8) 

where )(rf , )(sg and )(th are the interpolation functions, and the simplest form is r, s, t. Higher 

order interpolation function can be used to control the distribution of the grid points. 

In order to coincide with the boundary values on the edge, it is necessary to construct a 

second order interpolant 
sr PP , 

tr PP , 
ts PP , that contains all the redundant boundary interpolants, 

namely: 
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Similarly, the third order is used to fit the values on the vertices: 

 

  







































)(1

)(

)0,0,0()1,0,0(

)0,1,0()1,1,0(
)(1)())(1(

)(1

)(

)0,0,1()1,0,1(

)0,1,1()1,1,1(
)(1)()(

th

th

FF

FF
sgsgrf

th

th

FF

FF
sgsgrfPPP tsr

               ... (4-12) 

Assuming the boundary surfaces and edges result from COONs interpolation, one can 

simplify Equation (4-11) to: 
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… (4-13) 

Figure 4-5 shows the initiative result from the above interpolation. Equation (4-13) is 

actually not a generic form of derived interpolation function. The traditional process planning is 



76 

 

normally based on this parameterization model. COONs method is a linear method, and it 

therefore preserves the discontinuity of boundary geometries. It is inaccurate in the cases in 

which the boundary surfaces are not well interpolated. In addition, the grid generated by means 

of COONs is simple and might contain self-intersection for complicated shapes. Because it is a 

first-order interpolation, the discontinuity on the boundary surface will be propagated to the 

intermediate surfaces. The grid will probably exceed the constraints of the boundary surface, and 

the second phase is therefore implemented to smooth and fair the grid through nonlinear 

interpolation. 

Fairing: Due to the limitations of COONs interpolation, a further adaptation and smoothing of 

the interior grid is implemented to smooth the overlapping or nonlinear portions. By introducing 

the partial differential equation, elliptic equation offers a natural smoothing effect that inhibits 

jumps or discontinuities, and this makes them ideally suitable for re-adaptation. Due to its 

propensity to minimize tension energy, elliptic equations are able to smooth boundary data, and 

this affords a most desirable property. Many elliptic equations are based on Laplace’s equation 

                           

Figure 4-5 Case of concave surface, with COONs 

Interpolation  
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that is well known as the smoothing operator. Laplace’s equation is most appropriate in a 

computational fluid dynamic, which is used to describe the non-viscous steady and 

incompressible flow, i.e. 
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With boundary condition: 
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where (r, s, t) are the parametric set of (x, y, z). When the points are located on the boundary 

surfaces, one of the parameters should be a constant of 0 or 1. The coordinates of interior grids 

are derived from the boundaries. To utilize these ideas for mesh generation, it is more convenient 

to transform these equations so that (x, y, z) become the dependent variables. In such a case, it is 

then possible to apply boundary conditions to (x, y, z), which in general will be the known 

boundary. Transforming the variable in (4-14) leads to 

0)rrr(2rrr 231312332211  rtstrsttssrr                 … (4-15) 

where 

r =(x, y, z)
T
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ij  is the ij-th cofactor of the Jacobian matrix: 
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It has been proved [72] that these coupled nonlinear partial differential equations maximize 

mesh smoothness. The solution of this equation system can be obtained by linearization and an 

overridden representation of the derivatives, i.e. the residual on a square mesh with 

tsr khtjhsihr  ,,  can be represented with the override value of previous nodes: 
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… (4-16) 

The overridden difference form of Jacobian matrix is represented as: 
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Where ),,( tsr hhh are the increments of parameters arrayed along the direction of r, s and t. 

Since the range of the parameter space is unit [0, 1], maximal i, j, k are, respectively, determined 

by )/1,/1,/1( tsr hhh . 

If 
n

r kj,i,  represents the unknown coordinates at the point (i, j, k) at iteration level n, it follows 

that the solution to Equation (4-15) can be obtained using the over-relaxation scheme: 

)](3[ 332211,,,,

nnnn

kjikji  

kj,i,

n1n
Rrr                 … (4-18) 

The solution of Equation (4-16) renders discrete parameterizations of 3D grids. This method 

is the general one; it can be applied to either simple or complex solid models bounded by eight 

facets. The inherent smoothing property of Laplace’s equation ensures that the mesh points are 

smoothly distributed. Usually, the grid points will become more closely spaced near convex 

boundaries, while the mesh spacing will be sparser near concave boundaries. 

Figures 4-6 to 4-9 compare the converging speed of Laplace iteration for the case shown in 

Figure 4-4. The X-axis represents the iteration number, and the Y-axis the corresponding 

deviation of each loop. Figure 4-6 depicts the convergent curve of the grids initialized with the 

COONs interpolation, Figure 4-7 shows the convergence by means of simplified COONs generic 

formula, and Figure 4-8 compares these two initialization methods. Based on these figures and 

other cases that have been observed, the following conclusions are obtained: 
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Figure 4-6 Convergent line of Laplace with COONs  
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Figure 4-7 Convergent line of Laplace with simplified initialization    
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i. The convergence of Laplace is independent from the density of the mesh. As a matter of fact, 
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both Figure 4-7 and Figure 4-8 have verified that the convergent iteration increases with the 
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Figure 4-8 Effect of the mesh density on the convergence 
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number of intermediate surfaces. Also, if the distance between initial surface and desired surface 

increases, Laplace needs more iteration to reach convergence.  

ii. However, the initial grids affect the convergent speed of Laplace. A more reasonable 

initialization scheme can dramatically speed up the convergent marching. 

4.7 Case study 

4.7.1 Results of surface morphing 

Figure 4-10, 4-11 and 4-12 illustrate three cases of morphing with different geometry 

characteristics. The surface in Figure 4-10 has two features, a dome and a cylinder. They are 

connected with first-order continuity: the left picture represents the target surface and initial 

surface; the middle picture is the expanded view of the intermediate surfaces calculated with 

PISM; the right picture represents the generated surfaces selected for machining. In Figure 4-11, 

these two features are disconnected. It can be seen that Laplace PISM can converge and generate 

smooth intermediate surfaces in both scenarios after a few iterations. Figure 4-12 is another case 

with a deep cavity. In comparison to the linear interpolation method as shown in Figure 4-5, 

Laplace PISM provides intermediate surfaces with no self-intersections and excess. Normally, 

the weakness of Laplace PISM is its convergence speed. With an increase in mesh, it will take a 

longer time to reach the solution. 
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Figure 4-11 morphing of surface with discontinuous feature 

                                         

Figure 4-12 Morphing of cavity surface 

 

 

 

  

   

                         

Figure 4-10 Morphing of surfaces with first-order continuity 

ontinuity 
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4.7.2 Comparison of tool path 

The intermediate surfaces generated by Laplace are actually composed of iso-parametric 

curves that supply the tool path of intermediate steps for roughing machining. For the case as 

shown in Figure 2-6 and Figure 2-7, Figure 4-13 illustrates a comparison of the tool path 

generated from morphing-based multistage machining and that from conventional parallel offset 

(a) Morphing based roughing  (b) Parallel offset roughing  

Figure 4-14 Comparison of cut surface 

                          

staircase 

mark 

             

Figure 4-13 Comparison of tool path 

 

(b) Tool path of parallel offset (a) Tool path of morphing 
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roughing process. The simulation for both cases is conducted in Siemens NX8 with the same 

CAD model, same tolerance and in-process stock, and the tool path generated with a ball mill 

tool of a diameter of 8 mm. There are five levels of cut. Tool path in Figure 4-13(a) is generated 

from a morphing strategy, and Figure 4-13(b) illustrates the tool path from the parallel cutting. It 

can be seen that the tool path in the higher level has redundant passes with the lower level ones 

along the bottom level.   

Figure 4-14(a) shows the roughness of the cutter surface with morphing style machining 

strategy, and Figure 4-15(b) shows the parallel offset machining strategy. Figure 4-14(a) shows a 

better finish on the final surface than Figure 4-14(b). In Figure 4-14(b), the parallel rough 

machining leaves a stage case shape of the blade surface, while the morphing strategy does not 

have the same problem. In order to clean up the extra material around the corner, additional 

machining steps are needed, called semi-finish and finish machining, which will introduce extra 

machining time. Based on the simulation result of Siemens NX8, Table 4-2 compares the 

performance of these two methods. If both feed rates are 250 mmpm, morphing-based roughing 

is slightly slower than the parallel offset roughing, but since the parallel offset method cannot 

fully removed the material, additional machining process is required to clean up the stair case 

marks around the corner of the boundary surfaces, and therefore the total performance of the 

morphing method should be better than the parallel offset method. Table 4-2 lists some 

simulation data comparing the efficiency of these two methods. In the morphing strategy, 

roughing takes a little longer than parallel cutting, but because additional processes are required 
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to clean up the corners before it is ready for finishing, the total time used by parallel offset 

roughing might be longer than the morphing roughing. 

 

 

 

 Morphing-based strategy Parallel offset strategy 

Tool Description 

Ball mill tool with 6mm 

diameter, 20mm/length, 10mm/ 

flute length 

Ball mill tool with 6mm 

diameter, 20mm/length, 10mm/ flute 

length 

Feed Rate 250 mmpm 250 mmpm 

Performance time 

1:15:55.6 1:13:28.0 

Table 4-2 Comparison of simulation data 
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5  

REVIEW OF CNC MACHINING AND 
TOOL PATH GENERATION 

 

5.1 Review of CNC machining 

Numerically controlled (NC) machines are the machine tools programmed to automate the 

manufacturing process. NC machines follow a sequence of preprogrammed instructions, and 

drive the cutting tools to drill, turn, bore, or mill different parts in various shapes.  

As the most commonly used form of programmable automation today, CNC machine 

received their instructions from a microcomputer. NC and CNC machines rank just after CAD in 

terms of most popular CIM technologies. It has become a popular technology to automate the 

process from design to manufacturing, increasing productivity, improving quality, meeting 

customer needs faster, and offering more flexibility. Therefore, most setups of Computer 

Integrated Manufacturing System are based on the frameworks of CNC machines. Generally, 

modern CNC machines have two types of applications, as shown in Figure 5-1: 
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1)  One is the duplication of a physical object from measured data [64, 65], normally called 

prototyping, where the shape of original object is measured and rebuilt virtually via reverse 

engineering. The geometrical information is partially unavailable due to the discreteness of 

measured points. A prototyping procedure normally includes three steps: (1) create measure data  

(2) rebuild the physical object with measuring devices in the form of a geometric model and (3) 

realizing the geometric model by means of CNC machining or prototyping machining(3D 

printer). The second phase creates a bottleneck in the automation of duplication procedures. It 

falls into an open area involving many disciplines [64, 65 and 76]. 

2) Another category is production of CAD models, where the geometrical information of the 

Physical  

object 

Interpolated 

discrete points 

Digitalized 

(measured) data 
Geometrical model 

Obtained by RE  

 

Tessellated B-rep 

Model (STL format) 

Design 

Concept 

Tool path 

Manufacturing 

commands 

                  Figure 5-1 Process of integrated manufacturing 
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design is interpolated into the controlling commands of CNC machine. Differing from the first 

case, the graphical data has to be identified as a sequence of features [77, 61]. Each of them will 

be processed individually with different setup instruction, tools and cutting methods. 

The CNC cutter driven by a predefined program traces and changes the shape of the rough 

stock into the designed profile by removing the material. According to Daniel C.H. Yang [61], 

Lartigue [71] and others, a CAM system for CNC machining planning usually has three modules: 

tool path generation, interpolation and command generation, as shown in Figure 5-1. After a 

CAD model is built, CAPP block identifies the features used to compose the geometrical model 

and divide them into single primitives with lower level configurations. For each of these, a 

detailed fabrication process plan will be established. This fabrication plan contains not only the 

setup instructions and other configurations but also a set of commands that control the motion of 

the machine. In order to generate the controlling commands, each feature that is to be cut is 

interpolated as a cluster of curves, called tool paths, as shown in Figure 1-3. Interpolation starts 

with the CAD model by approximating these tool paths by a set of line or circular segments. The 

maximum chordal deviation is calculated for each segment. In cases the deviation is greater than 

the prescribed tolerance; the curve is subdivided until the chordal deviation is less than the 

tolerance. Then, each approximating segment is further processed by an interpolator, which 

converts the path into a sequence of discrete points incremented by VΔT, where V is the specified 

cutting feed rate and ΔT is a fixed-time interval. 

For the cases of duplicating physical objects, reverse engineering (RE) is adopted to obtain 

the geometrical model based on the information provided by the measured data, as shown in 

Figure 1-3. However, some papers [64] present schemes through which 3-axis NC tool paths (for 
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roughing and finishing) can be directly generated from measured data. Figure 5-2 illustrates the 

terminologies of cutting tools, cut center (CL), scallop surface, and their relations to the desired 

surface. 

5.2 Multistage rough machining 

In most cases, the material cannot be removed by only one pass since the depth of the cut 

volume exceeds the permissible depth of cut. Instead, the machining procedure begins with stock 

material going into three phases: rough cutting, semi-finish and finish, as shown in Figure 4-1. 

Rough cutting brings the material to near shape, semi-finish performed on the near shape brings 

it to within the dimension tolerance, and the finishing machining is used to polish or to keep the 

surface within the finishing tolerance. The tool path for each of these phases has to be generated 

with different considerations. For example, the tool path for rough cutting should be designed to 

be productive; for the last two steps, there is more compromise between the speed and surface 

quality. 

5.3 Current methods of tool path planning 

5.3.1 Finish Machining 

Methods of tool path generation for finish machining of three-axis CNC can be divided into 

three categories [79]: 

i. The Apt-based real-time method: Explicit tool drive surfaces are introduced in this method. 

The tool paths are defined along the intersection curves between the designed surfaces and 

driving surfaces. At each step, numerical iteration searches are made to locate the cutter 
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position within a specified tolerance limit. The disadvantage of this method is that the 

iterative computation is time consumptive and there is no certainty that the iteration 

converges, especially for irregular geometry. 

ii. The Euclidean machining method, in which the tool path is generated within the frame of 

work-piece space in Euclidean coordinate system. According to how the individual tool paths 

are generated, Cartesian methods are classified into guide-planes [79], Z-map [64], pocket 

approaches [80, 81], iso-scallop [82, 83] or iso-phote [84]. The Cartesian machining 

generates the tool paths from surface represented either by parametric functions or from 

measured data points. 

iii. The parametric machining method. The tool paths are generated on the parametric space. 

Afterwards, the results are mapped onto the Cartesian space. This method is widely used in 

the commercial CAD/CAM programs. Typical parametric machining methods include offset, 

iso-parametric method [70], and iso-distance method [59]. 

5.3.2 Rough machining 

Most of the recent studies on tool path generation concentrate on the phase of finished 

cutting. However, it is usually the least amount of material that is removed during the cutting 

procedure. When parts such as molds and dies are machined, about 70% of the raw material is 

removed by rough cutting [65, 85]. Therefore, a minimization of the rough machining time can 

effectively improve the productivity. As shown in Figure 5-2, the rough machining of a 3D-

sculptured surface is usually converted to layer-by-layer 2D pocket cutting. When the desired 

sculptured surface is intersected with a set of parallel guiding planes, the area on these planes is 
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enclosed by intersection curves [45]. The cutter passes over the enclosed area and removes the 

volume, leaving small amount of material with staircase shapes, as shown in Figure 5-2. The 

most commonly used cutters for rough cutting are flat end tool or chamfer end mill. 

As shown in Figure 5-2, according to the main cutting direction (MCD) of tool path segments, 

the tool path patterns for rough cutting can be categorized as the zigzag tool path and the 

contour-offset tool path. Figure 5-2(a) shows the zigzag tool path that is normally generated from 

a set of parallel lines lying within the area to be machined. These line segments intersect the 

boundary elements or contours of inside islands, and are divided into several line segments. The 

final tool path is generated by merging all these segments by following certain specific rules. 

Figure 5-2(b) shows another pattern of tool path, called contour-offset pattern, where the 

boundary curve seeds the resulting tool path by iteratively offsetting itself. The main 

disadvantage of these two methods is that they are restricted to pockets the boundary elements of 

Figure 5-2 (a) zigzag tool path and (b) contour-offset tool path 

Islands 

Boundary  
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which are in specific shapes, such as line or quadric curves. Extremely time-consuming 

calculation is needed if the pocket is composed of complex topological pattern. 

In recent years, some studies have attempted to obtain more efficient and robust strategies of 

tool path generation for pocket cutting. Shaobin Tao et al. [63] and Huang et al. [66] propose a 

method based on pixel maps, by way of which the search of intersection points between the 

sweep line and the boundary is more efficient than before, and the boundary is therefore not 

restricted to specifics shapes. Meanwhile this method resolves the problems of boundary line 

elements being parallel to the sweep line in conventional approaches. However, this research 

only considers the 2D pocket, and the author did not mention how to convert the surface 

information into pixel maps. Y.N. Hu and Y.H. Chen [85, 86] present a robot-based approach 

that generates the tool path for rough machining using a grid height. This method takes the rough 

stock into account, but it is only limited to some special boundary conditions and fails to 

consider how to avoid the collision between bounding features and the cutting tool. In addition, 

the implementation of robot machining has some deficiencies, including lacks of stiffness and 

also the non-orthogonal movements during prototype machining. Y.S Huang [88] et al. 

developed an NC algorithm based on the grid height model that is obtained by Boolean operation 

subtracting the solid model from the model of rough material. With ray-casting method, this grid 

height model is represented with a spatial array of z heights. It will be changed automatically 

during the machining process and utilized as an image for further roughing and verification. 

Since the height changes on each grid of the spatial array need to be recorded as an image for 

every stage of the simulation process, the efficiency of this method depends extensively on the 

selection of grid size and the performance of the processor. 
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Other studies take into consideration the features and the topology of multi-features. Gan 

Ping [87] presented a method to assemble complicated, multi-featured surfaces into one using 

blending formulism, which has been verified to be efficient and robust. Balasubramaniam 

Mahadevan et al. [88] described an algorithm to generate NC paths directly from the shape of the 

part using geometric volume filling. One distinguishing feature of their research is that the slice 

planes are variably placed with special consideration of the important features, such as horizontal 

and vertical faces. Instead of using an infinitely long cylinder as in other systems, the cutting tool 

in their works is modeled as the tool assembly of shank, holder and cutting portion. 

5.4 Major machining deficiencies 

The cutting problems incurred in a machining process are normally the resulted of one or 

more of three primary reasons: gouge, collision and inaccessibility. As shown in Figure 5-3(a), 

gouging usually occurs on the concave surface when the local radius of curvature is smaller than 

the cutter radius. As shown in Figure 5-3(b), the collision problem happens when the non-cutting 

portion of the tool, such as tool neck, shank or holder, collides with stock surface or other 

bounding features. The examples shown in Figure 5-2(c) are also examples of collision problems, 

but they are practically called an “inaccessible area.” Inaccessibility is also caused by the tool 

enveloping a surface that cannot be exactly matched with the target surface. When the tool is 

removing the material from the stock by following the tool path, technically its envelope surface 

should be exactly matched with the target surface. In practice, however, it is impossible to move 

the tool continuously in such a way that its envelope can cover the whole target surface without 

any deviation. 
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Most of the commercial CAD/CAM systems will check the accessibility of the input model 

before launching the subroutine of tool path generation. This is called tool axis tiling, and is used 

to adjust the machining axis to the orientation of the part model and select the manufacturing 

direction that allows access all the required part features. After checking manufacturability, an 

acceptable cutting orientation will be defined to avoid the collision area as shown in Figure 5-

2(c). An alternative solution to avoid collision or inaccessible areas is to implement a collision 

detection process after the tool path is generated, so that the regions of the tool path will be 

trimmed away if it will introduce any collision. 

In 3-axis machining, the gouge and collision problems can also be resolved by selecting the 

correct tool size. In rough cutting, the issue of top-priority is to maximize the speed of material 

 
Figure 5-3 Major machining problems 
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removal, because the roughing process normally consumes the majority of the machining time. 

In most cases, the surface of the stock will receive heat treatment after the roughing process is 

completed, and it is therefore unnecessary to maintain a high precision on the surface. While a 

cutter with a larger radius removes more material in the unit time, the compromise is that a big 

radius introduces a higher possibility of overcut or undercut, especially in the complex areas as 

shown in Figure 5-3(a), (b). Therefore, the optimal tool selection is that which maximizes the 

tool size within the constraints to prevent collision and gouging. Most of the existing methods for 

tool selection are simulation-based and sequence the tools in a trial-error-correction process [66]. 

Bala and Chang [89] reported a method by which every tool in the tool library is projected along 

the spindle direction to form a set of circles. The largest tool the projected circles of which do 

not intersect with island or work-piece contours is then selected. On the same basis Lin [45] 

address a scheme that uses multiple tools for each cutting slice. The main consideration of this 

research is to increase the accessibility of each cutting slice, but the problem is that the NC 

machine has to reload tools frequently, while is time consuming. 

5.5 Major challenges of tool path generation 

No matter what method is used, the implementation of pocket cutting for rough machining 

has implicit deficiencies. None of these pocket-cutting–based attempts are directed to a generic 

purpose, and most of them are only valid for some specific applications. The scheme of adjusting 

the material stock slice by slice is inconsistent with the transformation of objects in the real 

world and will inevitably introduce many problems: 
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i. For different types of boundary surface and geometry features, there need to be corresponding 

algorithms to search the intersection curves. 

ii. There is a lack of concerns for the geometric generality of rough stock, and time consuming 

computational work is required for extracting features in the to-be-machined area of each 

layer. 

iii. In the industrial world there are two types of raw materials. The first type arises when the raw 

material already has a shape close to the final product, fabricated in advance by a preceding 

operation. The second type is that in which this differs from the finish-machined shape, 

usually encountered when parts are machined from rectangular blocks or cylinders. The 

existing systems produce the manufacturing plans for these two cases with different strategies: 

in the first case, cutter paths for rough cutting are generated from the offset of the final 

product; in the second case, the raw material is removed in layers by consecutive passes of the 

cutter. 

iv. Current tool path generation schemes for 2D pockets in rough machining are boundary un-

conformed and restricted to some specific boundary elements, such as line, arc etc. The 

generated tool path must be trimmed on the boundary entities, and reconnected with a step-

over movement or non-cutting movement.  

v. Different cutting strategies have to be implemented for finish cutting and rough cutting 

individually. Since the roughing cutting is a sequence of planner cutting, while finish cutting 

is cutting directly on the final geometry. Therefore the strategy of machining for these two 

cutting process are normally different. 
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6  

PARAMETERIZATION OF 
TESSELLATED SURFACE AND 
TOOL PATH GENERATION FOR 

FINISH MACHINING 
 

6.1 A new iso-parametric methodology for finish machining 

Advances in solid modeling systems have, on the one hand, improved the feasibility of the 

CAD/CAM integration, the complexity of existing CAD models has, on the other hand, 

introduced new challenges for the automatic generation of NC tool path. The diversity of 

mathematic representation for CAD model makes it very hard to process with a unified 

methodology. 

Meshed model is one of the most popular formats in contemporary solid modeling 

technology, CAD data transformation, prototyping and CNC machining. Due to its flexibility 
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and generality, it is widely used for rapid prototyping and Computer Aided Manufacturing. In the 

CAM-oriented model, each machining feature is identified and represented with the format of 

tessellated meshes. However, since the surface is defined with a set of polygonal vertices, the 

complexities of the meshed geometry and their topology make the generation of a tool path quite 

difficult. In practice, various methods have been attempted to obtain the tool path by 

interpolating the discrete faces with certain forms of parametric functions [90, 91]. As the 

indirect approaches, these methods either lack accuracy or are time consuming. Also because the 

local metric is easily lost due to the intrinsic smoothness of many existing interpolation functions, 

they are not robust and accurate especially when the local property is not smooth.  

Most operations of the current CAM systems are targeted on certain types of primitive 

geometry features, with which the geometry is represented in the forms of interpolation functions 

or parametric functions. A few examples include drilling operations, plan pocketing, and some 

COONs-based milling operations. Because these features are represented in mathematical 

formulations, different algorithms are applied on the basis of selected features and their boundary 

information. For the composite features that include complex geometries, additional routines are 

required to merge the tool paths generated from each single subset of surfaces. Meanwhile, 

intensive user interactions have to be involved in order to select the features to be machined. In 

the scenario of integration manufacturing, there is not yet a unified method whereby the tool path 

can be generated efficiently for any type of freeform surface. Because of this, the flexibilities of 

current CAD systems have been restrained by the manufacturability of CAM systems. 

The second issue comes from the boundary curves. Although the commercial CAD/CAM 

software provides various options of patterns to fit the tool path with boundary conditions, the 
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boundary geometries for 3D freeform surface with trimmed boundaries normally come from the 

intersect of the guiding plan and the target surface. The existing patterning algorithms lack 

intrinsic conformance to irregular boundaries. 

If data is measured directly from real objects, the measured surface is represented with 

polygonal facets or point clouds. In such cases there is no information of advanced features to be 

selected for tool path generation. A commonly used method is to reconstruct the features by 

identifying the local geometrical information, such as the continuity of normal direction. This 

additional step of reverse engineering will introduce errors, and is not a good strategy for finish 

machining. Some CAM systems now machine on a tessellated solid or surface model. Compared 

to machining directly on a solid or surface, machining on a tessellated model is a good 

alternative solution to minimize machining errors and improve machining performance. 

The primary advantage of the tessellation modeling and machining technique is that the 

mathematical description of the geometry is exchangeable and is easy to import from different 

software platform. Meanwhile it more straightforward than working with parametric surfaces, it 

is also accepted for the prototyping process. For a complex surface represented as a group of 

single entities, it can avoid missing data, or ambiguity.  However for a tessellated mesh model, 

most of the existing CAM systems generate the tool path by using iso-plane curves. All these 

method are expensive in terms of the computational time.  
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In current research, a new iso-parametric method is introduced to generate the tool path 

directly based on the tessellated surface. In comparison to the traditional iso-parametric methods, 

the new method vias the polygons directly and abandon the explicit parametric functions that are 

used to describe the machining features in the traditional methods. Figure 6-1 illustrates the 

major steps of this strategy, where the tool path is generated through the steps of mapping and 

reverse mapping. Assuming a polygon model that results from the tessellated CAD model or 
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measured surface is represented with Q(x, y, z) in Euclidean space, as shown in Figure 6-1(a), it 

has been proven that a meshed surface with single boundaries is hormeomorphic to a disk in 

parametric space R
2
. It can be flattened to a disk in R

2 
with the certain constraints on the 

boundaries. If P(u, v) represents the embedding of S in R
2
, P(u, v) owns the same topology as 

Q(x, y, z), as shown in Fig. 6-1(b), namely all the vertices of P have the same connectivity as the 

vertices of Q. By reverse mapping the parametric square with iso-u or iso-v curves, a 3D surface 

can be represented as a group of parametric grids, as shown in Fig 6-1(d). 

6.2 The parameterization of freeform surfaces 

Definition 1. A meshed surface is defined as point set P with manifold connectivity that is 

locally homeomorphic to a disk. 

Definition 2. Iso-curves of surface S is defined as a set of curves i.e. C that is conformal on the 

boundaries of the surface, and for any point Pc on the curves, one can always find the point Ps 

such that  sc PP  and  is any small positive. 

Additional Scenarios The primary target of this research is to map the set of topological points 

directly into a group of iso-curves that covers the entire domain and conforms to the boundaries. 

According to Gerson Elber [92], the iso-curves C of freeform surface S can be defined as a 

valid coverage of the surface with the required deviation of less than δ. specifically for a meshed 

surface, the commonly used iso-curves are iso-plane curve and iso-parametric curve. Iso-plane 

curve is formed by the intersection curve between the surface and a set of parallel planes. Iso-

parametric curve is generated by representing a 2D-manifold surface in Euclidean space with 



103 

 

two parameters RvuzvuyvuxP  )),(),,(),,(( v)-(u, . If one keeps one parameter member of (u, 

v) as a constant, the dimensionality of Q(u, v) is reduced to 1, namely  jvuQ ,  or  vuQ i , . 

Changing this constant value will produce a family of curves with single parameters, which are 

called iso-parametric curves. 

The local tangent space QTp can be equally described with a 2D Riemannian metric by using 

the form of inner product, i.e. , . One example of a Riemannian metric is the first fundamental 

form that is commonly used to describe the local tangent space in Euclidean space. It can be 

written in the notation of a metric tensor. 
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Where pu  and pv are two points in the tangent space at point p. Similarly, the second 

fundamental form can be written in a form of metric tensor 
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The third fundamental form is given by: 
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These three fundamental forms are commonly used to describe the local geometrical 

properties of freeform surface. For the purpose of surface parameterization, the distortion metric 

is the major metric to be preserved. In terms of first fundamental form, a surface mapping is 

undistorted (isometric) if and only if the first fundamental form I is identity, namely 

*I I             ...(6-4) 

Unfortunately, isometric mapping is only possible in cases of a developable surface, such as 

a flat surface or cylinder etc. In most cases, a best maps Q  P - f :  is the one that minimizes 

the distortion. In terms of first fundamental form, there are two distortion metrics that are 

normally used for the mapping measurement: one is angle preserving and the other is area 

preserving [93]. The first, angle-preserving method is conformal maps that preserve the tangent 

angles. For this map, the first fundamental form is an orthogonal matrix. 

 *vuI (I),(            ... (6-5) 

The second, area preserving method is called equiareal, and preserves the area ratio of each 

triangle. Its determinant of I is equal to a constant. 

1)det( I
           ... (6-6) 
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In most cases the area and angle cannot be preserved at the same time. Many maps in 

practice are the tradeoff between conformal maps and equiareal maps. Depending on a specific 

application, many studies [94, 95] define different sorts of energy functions. In terms of the first 

fundamental form, an optimal map is that which minimizes this energy, and it is called a 

harmonic map when Dirichlet Energy is being minimized. 

dsffE
S

D

2

2

1
)(  

          …(6-7)
 

Where f  is the gradient vector field. It has been proved that to find the minimal Dirichlet 

Energy is actually a weak form of Laplace equation. Many existing parameterization schemas are 

based on Dirichlet Energy [95-98]. The singular values of the first fundamental form are 

2

4)()( 22

min

bacca 
  and 

2

4)()( 22

max

bacca 
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   …(6-8)
 

Where
uu

a
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It can be proved that 

f is isometric  1maxmin    

f is conformal 
maxmin    
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f is equiareal 1maxmin   

Therefore, a map is conformal iff 04)( 22  bac . 

6.3 Parameterization of facet surface with arbitrary topology 

6.3.1 Mapping of faceted surface 

In case of facet surface, its mapping in parametric space is so called embedding. To 

parameterize the facet surface, the first issue is to preserve the connectivity of the vertices on S. 

Tutte [96] was the first to provide the most basic way to compute embedding by using 

barycentric coordinates with a weight matrix. The boundary vertices are mapped to a convex 

position and each interior vertex is simply a centroid of its adjacent vertexes. Computing the 

embedding involves solving a set of linear equations derived from the connectivity graph matrix. 

Floater [97] and Levy et al. [98] further proved that not only barycentric form but any convex 

linear combination of adjacent nodes can be used to generate the embedding of 3D meshed 

surface in a parametric plane. 

As shown in Figure 6-2(a), if the facet surface is represented as three sets, as {Q, E, F}, 

where {Q} is the set point {
3

i Rq  }, {E} is the edge set defined by any two neighboring 

vertices of Q, it can be defined as a set of its two ending vertices {qi, q j}. {F} is the face set that 

is constructed by the elements of {E}. For any point in Q, namely
3

i Rq  , it is a map from

2

i Rp  . 

Embedding points of Q in R
2 

have a linear relationship such that 
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   PPji ][ ,
,            …(6-9) 

where P is the set of pi. and ][ , ji  is a coefficient matrix that satisfies 

ji ,
=0 if 

Eqq ji },{
 and ji ,

>0 if 
Eqq ji },{

      

To form a one-to-one map between P and Q, the coefficients of its neighboring vertices must 

satisfy



n

j

ji

1

, 1 . As long as the coefficient matrix satisfies all the above conditions, embedding 

of {Q} on R
2
 can be found by solving the linear Equation (6-9). 

Figure 6-2 Centroid preserve in parametric space 

 

(a) Centroid in 3D space 

 

(b) Centroid in parametric space 
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With ][ , ji  changes, embedding is not unique. The simplest method [96] is to divide Q into 

two subsets, i.e. the set of the internal vertices and the set of vertices on the boundary, called QI 

and QE respectively. The embedding of boundary points is predefined, and therefore its 

corresponding coefficients on all other vertices are 0, except the one corresponding to itself, 

namely 










jifor

jifor
ji

1

0
,                  … (6-10) 

where Ei Qp 
 

When 
Ii Qp  , the coefficients on its neighboring vertices can be set equal, namely: 

 


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


jifor

Epjpiform
ji

,

0

/1
,                            …(6-11)  

Where m is equal to the total number of neighboring vertices to 
ip  

In the theory of Dirichlet Energy, the best embedding is usually defined as the one that can 

preserve the geometric properties and minimize the distortion of the original surface, as Equation 

(6-7) shows. Hence, the selection of ][ , ji  is intended primarily to minimize distortion. But with 

different applications, the selection of ][ , ji  has to meet various criteria. Specifically for tool 

path generation of finish machining, what we need control the scallop height of the cut surface to 

be consistent throughout in order that the surface can have better smoothness. That is, the 
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interval of the tool path that must be fairly distributed and cover the entire cut area. This is 

normally measured by the distribution of normal curvature. Particularly in facet model, one good 

way to preserve the normal vector is to determine the ][ , ji  by the area information of its 

surrounding facets. Particularly for a triangle model, the area of each facet is the cross product of 

its two edges. Therefore ][ , ji  of vertex qi, can be selected as weighted by the reverse factor of 

the cross product of the edges that are connected to qi,, namely, 
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,               … (6-12)

  

Where qk is the neighboring vertices of qi, namely Eqq jk },{ , and m is the total number of 

vertices of qi. ij qq   represents the area of the triangle formed by the central vertex and the two 

neighboring vertices, namely },,{ 1jji qqq . In the facet surface, it will be proved later that the 

normal direction is not continuous along the edge, and therefore the normal direction on the edge 

},{ ji qq  is adjusted by using the average value of the normal direction of its two adjacent 

triangles, namely 
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… (6-13) 

6.3.2 Reverse mapping 

After the triangle surface is mapped to an isomorphism embedded in 2D parametric space, 

embedding of this surface can be reversely mapped for any points in the parametric space. Fig. 3 

illustrates how to derive the embedding from the parametric space, namely p, to the Euclidean 

space, namely q. 

By using area coordinates, the map of p in Euclidean space, namely q is: 
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                   …(6-14) 

where  represents the area of the triangle. 

In addition, since the surface is discretized with small triangles, the first partial derivatives 

with respect to the parameters u and v in each triangle are: 
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It can be observed that with Equation (6-13), the first derivative is a constant in any triangle 

element. But on the boundary of any two triangles, the first derivative is not continuous. It can be 

adjusted by using the average of first derivative at its two adjacent triangles. 

  

Figure 6-3 Remapping from parametric space to Euclidean space 

6.3.3 Tool path generation for parameterized surface 

With the embedding formed from the parametric mapping, the original surface can easily be 

converted into a structured grid. The iso-parametric embedded curves are generated in the 

Euclidean space from parametric space by reverse mapping. Once these curves are obtained, the 

remaining task is to determine the step over between two consecutive tool paths. Theoretically 

the tool path can be obtained directly from each iso-parametric curves, as long as the interval of 

the iso-parametric curve is sufficiently small to keep the scallop height smaller than the required 

tolerance. But this solution compromises the overall machining efficiency, because too small a 

step over will cause many unnecessary passes. The optimal tool path pattern is to maximize the 

step over size of the tool path while keeping the scallop height within the required tolerance. 
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The theory to determine the step over of the adjacent tool path was originally developed for 

primitive surfaces by Chuang and Yang [99]. As shown in Figure 6-4, the path interval depends 

on the cutter radius, i.e. R; the signed radius of curvature along the intrinsic normal direction for 

iso-curve   is notated as 
  and scallop height allowance as h. The allowable path interval, dij, 

at point qij can be determined according to the surface geometry. Depending on geodesic 

curvature at qij being convex, concave, or flat, the path step over along the binormal direction 

will be: 

))((

)2)(2)(2(

Rh

hhRRhh
dij













                  …(6-16) 

 

where R is the tool radius and  represents a signed curvature radius that indicates the local 

concavity at qij. The surface is concave if   is less than 0 and convex if   is greater than 0. A 

special case of flat surface for curvature is great enough, then 

  hRhdij  22 (for flat)                             ... (6-17) 
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For most cases, the step over can be calculated by either Equation (6-16) or Equation (6-17). 

For 2D manifold surface represented in forms of tessellated meshes, the local area of the surface 

can be approximated to a flat surface, namely, Equation (6-17) can be used to simplify the 

calculation of the corresponding path interval dij. As shown in Figure 6-4, assuming the 

generated boundary conformal tool paths are in iso-v direction, denoted as
jΨ , and letting 

iΦ  be 

an iso-u curve, the path step over will be determined along the direction of
iΦ . By taking the first 

derivative of q with respect to v and u, we obtain the surface normal ),( vuqn at q: 
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Figure 6-4 Tool path interval and scallop height 
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Where T  and T  are the tangent vector at point q. If set 
S the binormal vector of iso-curve jΨ

at point qij , that is 

),(),(),( vuTvuvu  nS                                       ... (6-19) 

Binormal i.e. ),( vuS  is in most cases not co-linear with the tangent vector ),( vuT . The 

angle between ),( vuS  and ),( vuT  can be denoted as  , which can be calculated with 

),( vuS  and ),( vuT , namely 

),()cos( vuT S           ...(6-20) 

Thereafter, the path step over in the parametric space, ijv , is the path interval ijd divided by the 

derivative along the step over direction, namely 
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                      ... (6-21) 

 

where allowable path step over dij is taken as the component of ijP  along the binormal 

direction at point qij. The final path interval vij for the next iso-parametric curve to 
jΨ  is 
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determined by selecting the minimum path interval along the entire 
jΨ . The procedures to 

generate the tool paths based on the calculated sidesteps in parametric space are illustrated in 

Figure 6-4. First, let the boundary curve, )0,(uΨ , be the first tool path with parameter v = 0. With 

Equation (6-18), the interval of every point on )0,(uΨ  can be predicted. This process of tool path 

generation can be repeatedly applied to cover the entire surface. 

6.4 Case Study 

Figure 6-5 shows a parametric representation of a pocket feature. With the parametric 

implicit modeler, the cut surface can be converted to a parametric surface. With good tolerance, 

the tool path can be fitted to the real CAD surface very well. Figure 6-7 shows the tool path that 

is generated from iso-parametric surface, the step over of the tool path is not a constant. Based 

on Equation 6-20, the step over of the tool path is selected based on the input scallop height and 

the cutter radius. CL data is obtained by pulling the tool along the tool axis to avoid any gouging 

against the stock. For the CL shown in Figure 6-7(e), the tool axis is constantly pointing upward 

along the z axis. 
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Figure 6-5 Parametric representation of CAD model 

 

 

 

Figure 6-6 Iso-parametric tool path 
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(a) Original meshed surface (b) Parametric grid 

 

   

(c) Zag-pattern tool path (d) Zig-pattern tool path (e)  Cutter location 

Figure 6-7 Iso-parametric tool path with adaptive step over 

(Tool radius: 20, scallop height: 4) 
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6.5 Parameterization of surface with open hole 

In the real applications, the cut surface is not always topologically equivalent to a disk. The 

boundary geometries might trim the cutting surface and form the internal holes. Figure 6-8(a) 

shows another case where the surface has a hole. When the points are mapped to parametric 

space, any open area in the surface will leads to a similar hole in the parametric surface, as 

shown in Figure 6-8(b). The hole of the parametric surface might cause failure for the re-

sampling process as the point grids in the parametric space might end up falling into the open 

space as shown in Figure 6-8(b). Equation 6-4 has shown that the re-sampling of the parametric 

point must find a corresponding facet on the 3D surface in order to find the corresponding 

Euclidean coordinates; otherwise the re-sampling process will fail. In order to fill the gap while 

preserving the topology of the original surface, the open hole is degenerated to a singularity point 

in the parametric space. The singularity point can be chosen as any point, but to preserve the 

topology of the neighboring facet without flipping the normal direction, the singularity point 

must be located in the hole. The easiest method is to pick the center point of the points along the 

hole boundary as the singularity point. Figure 6-8(c) shows the singularity point after the merge, 

with the topology of the original surface preserved. Figure 6-8(d) shows the iso-parametric tool 

path in 3D space when the merged parametric point is re-sampled back onto the original 3D 

surface. Because of the intrinsic property of conformal mapping, it can be seen that the iso-

parametric tool path around the hole conforms to the boundary. 

The same methodologies can even be applied to surfaces with multiple holes. Figure 6-9 

shows the iso-parametric tool path for a surface with two holes. Figure 6-9(a) shows the two 
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singularity points in the parametric space, and Figure 6-9(c) shows the resultant iso-parametric 

tool path, which has quite good conformal property along the two holes. 

 

                      

(a) Original surface with hole             (b) Parametric surface with hole      

   

               

   (b) Parametric surface with merged point                   (d) iso-parametric toolpath  

Figure 6-8 Iso-parametric tool path for open surface 
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(b) Original surface with hole  (b) Parametric surface with hole  

   of random shape       

 

                    Figure 6-9 Iso-parametric tool path with two holes 
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7  

REAL TIME SIMULATION OF 
PARAMETRIC TOOL PATH 

 

7.1 Gouge-free CL data generation for parameterized surface 

7.1.1 Representation of cutting tools 

Simulation is a very important phase in CAM. As the last step after NC post, it verifies the 

NC code or tool path and ensures that the NC code does not crash the machine. There are two 

major types of simulation process: material removal and machine simulation. Each of them has 

different purposes. As shown in Figure 7-1, material removal is intended to visualize altering the 

shape of stock while the cutter is moving along the tool path. It verifies the cutting surface 

quality and accuracy of the tool path or NC code and provides information about the 

continuously changing geometry in the course of the cutting process. There are two major types 

of material removal simulation, each of which is needed individually for different phases of 

CAM process. The first is tool path verification, which removes material on the basis of the tool 
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path. This simulation is performed before the NC codes are generated, and it verifies the 

accuracy of the tool path. The second is NC code verification conducted after NC post. This 

interpolates the NC program into the machine commands, and drives a virtual tool to remove the 

material from virtual stock. By comparing the cut stock with the desired stock, this simulation 

verifies the accuracy of NC programs. 

 

Figure 7-1 Material removal simulation [7-1] 

 

Figure 7–2 Machine simulations [7-2] 



123 

 

As shown in Figure 7-2, the machine simulation basically mimics the machine movement 

driven by the NC program through a virtual machine, and visualizes the motion of the machine 

components. The major purpose of this simulation is to display the kinematics of all the moving 

parts and performs collision detection among the moving and non-moving objects in the 

workspace. 

When the cutter penetrates into the stock and removes material from it, it is geometrically 

represented by the Boolean subtraction of the cutter swept volume from the stock volume. The  

volume swept off by the moving tool subtracted from the volume of the in-process-stock results 

in the final shape of the work piece at the end of the material removal process. While the tool is 

moving along the tool path, the graphic engine visualizes the shape changes of in-process-stock. 

The core engine of simulation relies on the solid object modeling technology that is used in the 

CAM system. The subtraction of two solids can be converted as the Boolean operation of two B-

reps. However with the early stage of PC technology, there is no hardware with sufficient power 

to do the calculation required for a continuous Boolean operation while the tool is moving. 

Therefore, many technologies have emerged in the industry to simplify the modeling of solids. 

Many of them are quite successful. There are varieties of simulation technologies depending on 

the core modeling technologies. The voxel-based method was first proposed by Chappel [102] 

and developed by Oliver and Goodman [103]. The result of the preceding Computer Aided 

Design forms the source of the Computer Aided Manufacturing process. As shown in Figure 7-3, 

the surface is converted into a point cloud and the local normal vector of the surface is assigned 

to each point. When the tool is moving over the surface, it clips these vectors. The vectors 

consequently grow shorter and shorter as the tool approaches the desired surface in the course of 
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the cutting process. The final vectors show the remaining surface errors after the machining, i.e. 

vectors with positive length indicate excess material, while vectors with negative length indicate 

an undercut in the given area. The errors are displayed by the coloring or shading of the surface 

model. Hook [104, 105] introduced the concept of dexels, with the name derived from the 

abbreviation of depth elements that describe the whole cross-section of an object along a given 

line. A grid is laid onto a spatial plane, and a line is launched from each grid point perpendicular 

to the plane. Dexels are determined by the intersections of the ray array and the surface of the 

object: a dexel begins where the ray penetrates into the stock model, and ends where the line 

leaves it (at the back face). Dexels are described by the coordinates of the entering point and 

leaving point, but other attributes can be attached to them too, such as the normal vectors of the 

 

Figure 7-3 Vector-based simulation 

 

Swept Volume Vector Model 
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surface at the entering and leaving points. If the ray intersects the stock model more than once, a 

number of dexels are created, which are linked in the memory from the front up to the rearmost 

face. A multi-dexel or tri-dexel method was proposed by Benouamer et al. [106] to improve the 

sampling accuracy of the dexel model by creating three sets of dexels in three orthogonal 

directions, along the three respect coordinate axes. The volume is entirely described by each of 

the three dexel sets, so three complete dexel descriptions are created. With this procedure 

significant increases of sampling resolution can be reached with little growth of memory 

consumption [107]. In recent years, with the development of CPU/GPU, many technologies 

directly based on B-rep [108] have emerged. A simplified version of B-rep is represented by a 

collection of connected, non-overlapping triangles, without topological information. The 

computational growth rate of B-rep is 0 (1.5), which can cause problems in long tool paths. 

Fleisig and Spence [109] attempted to improve the efficiency of the method with topology and 

algorithm optimization. However, the computational efficiency of B-rep–based simulation slows 

dramatically with an increase in the number of triangles. Dexel-based technology is more 

consistent. Its performance is not influenced by the length of the cutting process. However, since 

the elements of dexel array are not topologically connected, it is very hard to connect the dexel 

with its neighbors to form a facet with which current GPU technologies are compatible. There 

are some temporary methods to display dexel model, but the visual quality of these is usually not 

as good as the regular B-rep model. Other technologies include pixel-based simulation [110, 111] 

and voxel-based simulation [112]. But all these modeling methods are based on either 2D image 

buffer or an approximation voxel model. The model is not rotatable while the tool is moving, and 

the simulation is not accurate, especially for very complicated geometry and varieties of tool axis. 

With the parameterization technology proposed in this research, the B-rep can be represented as 



126 

 

a triangle-based facet model, and thereafter parameterized into a grid type structure. This 

parametric representation is actually quite similar to the dexel model. However, it preserves the 

topology of the model as the regular B-rep does. Because the parametric surface is represented as 

an array of grid points, instead of randomly distributed dexels, it resolves the graphic problem of 

the dexel model. Parametric grid representation of CAD model simplifies the simulation process 

and also provides an exchangeable data structure that is compatible with any existing modeling 

standards. Therefore, it has both benefits of computational efficiency and high graphic quality. In 

addition, because the stock surface in this method is being tessellated as a parametric grid, it is 

not necessary to generate swept volume for the tool movement. Instead, the material removal of 

stock is calculated by “plunging” the tool with every grid. 

 

Figure 7-4 Dexel-based simulation 

Dexel Starts Dexel End Dexel Chain 
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Assuming the machining tools have simple shapes, as shown in Figure 7-5(a), their 

geometrical models can be easily represented as a parametric function. Presuming the cutter to 

be a ball-end mill tool with radius R and an infinite rod, its mathematical description is: 
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where (XC, YC, ZC) is the coordinate vector of the cutter center, and (XCT, YCT, ZCT) represent 

the coordinates of the cutting surface. R is the radius. Considering the cut holder and shank as 

shown in Figure 7-5(b), a more precise model of the tool can be represented as: 

ls 

(a) ball end cutter (b) ball end cutter with 

holder and shank 
(c) fillet-end mill 

Figure 7-5 Geometrical model of cutting tools  
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There are also other types of cutting tools, such as fillet end mills or flat end mills etc. They 

can all easily be depicted in similar functions as Equation (7-2). In the current research the ball 

mill tool is implemented, with the cutting tip presumed to be an infinite rod with a semi-spherical 

end. 

7.1.2 Generation of cutter center location 

Once the tool path has been obtained, the precise estimation of the cut error is needed to 

determine the scallop height, pick feed and the cut center. The most straightforward way to do 

this is to offset the tool path points along the norm direction by the radius of the cutter. However, 

this method is faulty where local geometry has a small curvature radius. It is also impossible to 

derive an accurate norm direction based on the discrete parameterizations in the absence of 

differential properties, especially for our scheme where the surface is described in the form of the 

parametric gridded points. An alternative solution for this problem is to transfer it to a Maximal 

Marching Algorithm (MMA). As shown in Figure 7-6, if CL is located at ji,G , where i, j is the 

index number of the node in the array of grid matrix. 
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The initial set of the cut center location is represented as 

RGC  vwvw ,,
0

                    … (7-3) 

where w, v is the index number of cutter center location vw,
0

C , and R is an approximation of the 

cutter radius vector along the tool axis direction. The tool axis can be set as surface normal. 

Alternatively, in fixed axis machining, the tool axis is constantly along Z the axis. The X and Y 

components of R  are equal to 0, namely ),0,0( RR 
.
 

The steps of the process are described in detail as the following iteration. Presuming the 

cutter touches with the desired surface at the position of (w, v), the location of the cutter center in 

this case should be RGC
0  vwvw ,, . This is an initial position determined by the central point 

 
Figure 7-6 Node sorting process: the termination of (i, j) increment 
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of the tool and its corresponding grid on the desired surface. To ensure there is no interference 

between the cutter and the desired surface, let i, j iterate around grid point (w, v). Given the ball-

end cutter model, for each pair of (i, j) one needs to sort out all the grid nodes that are covered by 

the projection area of cutter tip along Z direction, that is: 

    222

,,,,
R00 CGCG 

vwjivwji
YYXX                  … (7-4) 

where (X, Y, Z) represents the components of the subscript vector. In order to expedite the 

process, the sorting process starts from the point at (w, v) that is located at the center of the 

projected area along the cutter axis. As shown in Figure 7-6, each loop moves from the center 

point and terminates at the first grid point that is not covered by the projection area of the cutter. 

If the grid node is located in the projection area of the cutter tips, check if it satisfies: 

   
jijijijijiji GC ZYYXXZ

,,,,,,

222
 00 CGCGR                 …(7-5) 

If No: Jump to the next grid by increasing/decreasing (i, j) pair by 1. 

If Yes: adjust vw,
0

C  by ΔCCC
01  vwvw ,, . Figure 7-7 has indicated the geometrical meaning of

C , which is the adjusted distance for the position of the tool center and ensures there is no 

over-cutting when the tool tip moves along the tool paths. C is the offset of the cutter along the 

tool axis, when the tool axis is along the Z axis, 
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Iterating through all the grids covered by the projection area of the tool along the tool axis, the 

final cutter gouge-free center coordinate, represented as vw
e

,C , can be obtained with Equation (7-

6). After all these iterations, the cutter will only contact the desired surface at one grid point, and 

all other grid nodes are located outside of the tool. If the grid size is sufficiently small, it is 

acceptable for there t be only one contact point between cutter and the desired surface when the 

cutter locates vw
e

,C , which is used to compose the tool path. 

 

Desired surface 

Figure 7-7 Maximal marching algorithm 
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7.2 Simulation of the iso-parametric tool path 

Once the cutter center is determined, the resulting scallop surface can be derived by iterating 

and adjusting the position of the grid points that are cut by the tool. The heights of the grid points 

on the initial scallop surface are adjusted based on the deviation distance between the tool 

surface and scallop surface. 

First initialize the grid of the cut surface as in-process stock. Let i, j increase/decrease around 

(w, v) iterating as shown in Figure 7-6. Each pair corresponds to one cutter location, where the 

material is removed from the initial surface. When the tool tip moves to a new position, i.e. Cw,v, 

verify if the material between the initial surface and the desired surface is removed by the tool. 

As shown in Figure 7-8, given a grid node on the initial surface, i,jG  , if it is located inside the 

tool when the tool is being placed at Cw,v, the material should be removed. In this case, the 

coordinate vector of i,jG should be adjusted to the lower position, at which machining surface has 

no interference against tool. Assuming the tool is a ball-end cutter, its geometrical model can be 

simplified to an infinite rod with a half-spherical end, as depicted in Equation (7-2), namely 
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where only the Z-coordinate of the cut surface needs to be changed, while other two coordinates 

keep the same value. Figure 7-9 shows the case in which i,jG  has already been adjusted before 

the cutter moves to Cw,v. However, i,jG  is possibly still inside of the tool, the cutter has moved 

to Cw,v, and consequently i,jG  should be adjusted to a lower position until there is no 

interference between the grid height of the grid node at (i, j) and the tool tip when it moves along 

the tool path. 

Previous cut or initial surface 

Machining surface 

Figure 7-8 Update of scallop surface 

Previous cut position  

Current cut position 

Updated i,jG  for previous cut 

Updated i,jG  for current cut 

Desired surface 
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7.3 Error evaluation 

The cutting error is the deviation between the actual cut surface and the desired surface along 

its normal direction. This definition applies only where the normal direction can be accurately 

obtained. Most applications, however, such as the facet model or dexel model, do not have an 

explicit description of normal direction at a specific point. It is time consuming to calculate the 

distance between the two surfaces with tessellated meshes time consuming 

Moreover, the scallop of the surface produces a major deviation from the target surface. 

Although the scallop height is controlled within the required criterion, the deviation can be 

longer along one axis than other. This happens especially easily for three axes CNC machine. As 

shown in Figure 7-10, the more reasonable definition of machining error on a point is the 

minimal distance of the nodes on scallop surface from the desired surface, that is 

 

Figure 7-9 Simulation of scallop surface 
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 s

jijiji MaxE ,,, GG                                                       …(7-7) 

where i,jG  is the grid point on the desired stock and 
S

ji,G  is the corresponding grid point on the 

scallop surface. Their difference does not always point to the normal direction of the desired 

surface. Measurement of distance between the two points represents exactly the shift of the grid 

point of the surface while the shape of stock is transforming. 
jiE ,
 is the max value of the shift 

value for all the grid points across the entire cut surface. 

 

S

ji,G  

Figure 7-10 New definition of Cutting Error for three-axis CNC 
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7.4 Case Study 

Figure 7-11, Figure 7-12 and Figure 7-13 have shown some results of simulation with this 

algorithm for a fixed axis tool path. It can be seen that this algorithm has provided a highly 

realistic picture of the machined surface as well as an accurate estimate of the deviation between 

the scallop and the desired surface. Its scallop height is relatively consistent along the entire cut 

surface, while the distribution of the tool path is not overly condensed; instead the step over is 

determined by surface curvature and the required scallop, as indicated in Equation 6-21. The 

curves in the pictures are the cutter center locations resulting from the algorithm discussed in the 

prior chapter. Figure 7-11 and Figure 7-12 compare the influence of tool path step over with the 

scallop height of the resulting cut surface. If the step over is bigger, the scallop is normally 

higher as long as the curvature of the surface does not change dramatically. 

On the other hand, Figure 7- 12 and Figure 7-13 show another scallop surface resulting from 

the tool path that is obtained for different tool sizes. It can be observed from these two pictures 

that the smaller tool normally has a smooth surface quality. However, a small tool needs a 

smaller step over, which will greatly change the time cost. As mentioned before, the best tool 

path is to optimize the step over of the tool path to eliminate the unnecessary passes and 

minimize the total cutting length, while controlling the scallop height within the required range. 

As shown in Figure 7-14, Figure 7-15 and Figure 7-16, the tool path passes are not distributed 

evenly on the surface. The density of passes varies according to the local curvature of the cut 

surface as well as the required scallop height. 
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Figure 7-11 The scallop surface by tool-nose of R0.05, 

 (Mesh size 200x200; tool path step over: 10 parametric increments) 

 

 

Figure 7-12  The scallop surface by tool-nose of R0.05 

 (Mesh size 200x200; tool path step over: 3 parametric increments)) 

 

 

 

Figure 7-13 The scallop surface by tool-nose of 0.02 

 (Mesh size 200x200; tool path step over: 3 parametric increments)) 
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Figure 7-14 Cut surface for the tool path with scallop control 

 

 

                           
 

Figure 7-15 The scallop surface by tool-nose of 5 

 (Mesh size 200x200; expected scallop height: 0.8) 

 

                    
Figure 7-16 The scallop surface by tool-nose of 5 

 (Mesh size 200x200; expected scallop height: 1.6) 
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8  

CONCLUDING REMARKS 
 

Based on a unified CAM model, this research attempted to develop a framework for the 

integration of design and manufacturing systems. Because in the current integration system the 

CAM process is based on the CAD model, there is no CAM-oriented model that is exchangeable 

with CAM process. Current research proposes a new scheme of data acquisition and data 

handling based on a CAM-oriented model that removes any manufacturing information from the 

design process. Instead, the CAM-oriented model only provides the geometrical information of 

cut volume by subtracting the designed stock from the in-process stock. Thereafter, the 

machining features are identified within the context of manufacturing process. Unlike STEP-NC, 

the semantics of the proposed CAD data is not dependent on the manufacturing context. Changes 

of manufacturing environment do not affect the data exchanges between CAD/CAM. It neither 

advocates that the design process should mimic or simulate the manufacturing process, nor that 

the CAM process should be built on the basis of the design; instead a CAM-oriented model is 

obtained from the CAD model by subtracting the design model from the in-process stock. The 
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CAM agents will identify the machining features in CAM-oriented model and convert it into a 

set of machining features based on the available manufacturing resources in real-time. The 

machine feature to be created depends on the real-world condition of the manufacturing 

workshop. Since the CAM-oriented model translates the CAD model into a set of features that is 

specifically compatible with CAM process, it can easily achieve automation for the tool path 

generation and NC post. Meanwhile, the conversion from CAD features to CAM features is not a 

one-to-one mapping; that is, one CAD feature can be designed or converted to multiple CAM 

operations and multiple features. It is up to the manufacturing engineers to specify the operation 

type in the context of the manufacturing facility. This data scheme increases the flexibility of 

process planning. This new concept does not promote CAD engineers to be experts in the 

manufacturing process, but the economics of design can be defined and dealt with by designers. 

The operational nature of manufacturing is still reflected on the manufacturing side. A 

manufacturing context is not needed as the foundation of a design language, such as operations, 

tolerances, etc. 

Once the machining feature is established with the CAM model, the geometric information of 

each feature can easily be processed in a unified manner. In order to show the merits of this new 

scheme, a unified method, particularly for freeform milling feature, is exploited to automate the 

process planning and tool path generation. Instead of the three phases that are adopted in the 

conventional manufacturing methods, with parameterization technology, current research unifies 

the whole machining process to several morphing surfaces. Since the shape of stock is altered in 

gradually approaching the desired shape, the surface quality will retain good finish quality and 

have minimal surface stress. Based on the same parameterization on each morphing surface, the 
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tool path can be generated specifically for finish milling. Also, the simulation can easily be 

performed on the basis of the same modeling data and algorithm. 

As discussed above, future work in CAD/CAM integration will be targeted on the area of 

remote manufacturing systems, where the manufacturing context is not, or is only partially, clear. 

Consequently, full automation of CAD/CAM integration requires a simple, exchangeable 

semantics and unified scheme for data acquisition in CAM. 

The next stage of this research will focus on system synthesis and adding the new machining 

features for different operation types: 

i. Although the morphing algorithm of Laplace solution is feasible for most model. As a 

partially differential method, the current numerical solution for Laplace is not stable enough, 

and it generates parameterization anomalies as experienced in algebraic methods. As 

mentioned by Daniel C.H. Yang and Oulee. T. H. in their research [60], Laplace tends to 

provide parameterization with quite uneven grid distribution around the areas with high 

boundary irregularities. An alternative solution of this problem is to have a new 

parameterization strategy that can control the morphing of facet models directly with the 

constraints of boundary surfaces. 

ii. Extend the idea of morphing-based unified process planning to multi-axis lathe operation. 

Normally CNC lathe machine is applied to revolving feature that has 2D profile. 

iii. The same morphing-based planning can also be used for other manufacturing mechanisms. 

Machining is a subtractive process, that is, it consists in removing material from the stock. 

Some new manufacturing methods, such as composite manufacturing and 3D printing, are 
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additive. They obtain the desired shape by building up the material layer by layer. The 

morphing strategy can potentially be used to model the additive manufacturing process as well.  

iv. Create a prototype of this technology with the commercial software. The work includes 

building API in the commercial CAD software to convert the CAD model into a CAM-

oriented model, and developing a software package in CAM software to recognize the 

machining features and generates process planes as well as tool path. 
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Appendix A 

Object Oriented Programming and Design Pattern 

A-1 Definition 

Object Oriented Programming (OOP) is a programming philosophy, in which both the data type 

and the collection of operations are encapsulated into one data structure. The data structure 

becomes an object that includes both data and behavior of the object to be described. In addition, 

this programming mythology allows specifying the relationships between objects, i.e. objects can 

inherit characteristics from other objects. One of the principal advantages of object-oriented 

programming techniques over the procedural programming techniques is that they enable 

programmers to preserve the existing modules when a new type of object is to be added. A 

programmer can simply create a new object that inherits many of its features from existing 

objects. This makes object-oriented programs easier to expand its function-abilities without the 

risks to create any regressions on the existing module. The classes are usually divided into two 

major levels, one in the abstraction level is called abstract class, and one in the implementation 

level is called concrete class 

A-2 Definition 

Interface class (abstract class) is class that abstracts the object meaning from the real world. As 

opposed to the concrete class, it abstracts the behavior of object to be described and only defines 

generic methods in the class. Instead of actual implementing the actual behavior, it only provides 

semantic definition of the behaviors that are common among a specific type of objects. Those 

methods will be implemented later in specialized sub-classes. This is how we get interfaces-
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interfaces are the implementation of the abstract class. With the interface, the common behavior 

of target objects can be abstracted as core architecture through the unified interfaces to interact 

with each other. The actually implementation is defined with the concrete classes. 

A-3 Definition 

Concrete Class is a derived class of interface class. It provides implementations for the member 

functions that are not implemented in the base class. A derived class that actually implements all 

the missing functionality is called a concrete class.  

A-4 Definition 

Design Pattern is a general repeatable solution to a commonly occurring problem in OOP 

software design. Built on top of OOP classes, it describes the relationship between the objects 

and is a description or template for how to solve a problem that can be used in many different 

situations. Effective software design requires considering issues that may not become visible 

until later in the implementation. Design patterns can speed up the development process by 

providing tested, proven development paradigms. Reusing design patterns helps to prevent subtle 

issues that can cause major problems and improves code readability for coders and architects 

familiar with the patterns. Often, people only understand how to apply certain software design 

techniques to some specific problems. These techniques are difficult to apply to a broader range 

of problems. Design patterns provide general solutions, documented in a format that doesn't 

require specifics tied to a particular problem. In addition, patterns allow developers to 

communicate using well-known, well understood names for software interactions. Common 

design patterns can be improved over time, making them more robust than ad-hoc designs. There 
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are three major catergories of design pattern: creational design patterns, structure design patterns 

and Behavioral design patterns. 
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Appendix B 

Computational Geometry 

B-1. Definition  

A meshed surface is defined point set P with manifold connectivity that is locally hormorphic to 

a disk. 

B-2. Definition  

Iso-curve coverage of surface S is defined as a set of curves i.e. C that is conformed on the 

boundaries of the surface and for any point Pc on the curves, always can find the point Ps so that 

 sc PP  and  is any small positive.  

B-3 Definition 

Suppose for every point x in a manifold M, an inner product <·,·>x is defined on a tangent space 

TxM of M at x. Then the collection of all these inner products is called the Riemannian metric.  

B-3 Definition 

The metric tensor is defined abstractly as an inner product of every tangent space of a manifold 

such that the inner product is a symmetric, nondegenerate, bilinear form on a vector space. This 

means that it takes two vectors v, w as arguments and produces a real number <v, w> such that 

<kv, w>=k<v, w>=<v, kw>   
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<v+w, x>=<v, x>+<w, x>   

<v, w+x>=<v, w>+<v, x>   

<v, w>=<w, v>   

0>vv,<   with equality iff v=0 

B-4 Definition 

The inner product of 3R generates a quadratic form that takes vectors in the tangent space to the 

real line, that is, 3)(: RSTI pp  . Given a vector in the tangent plane, the first fundamental 

form is given by 

0
2
wwww  = >,< = )(Ip   

Given a parameterization f(u,v) of the surface, we can express the first fundamental form in 

the basis {xu, xv} . Recall that a tangent vector w is by definition the tangent of some curve s(t) = 

x(u(t), v(t)) with s(0) = p . Expanding the first fundamental form, we get  

Ip(w) =  Eu'
2
 + 2 F u' v' + G v'

2 

where E=<ru, ru>, F=<ru, rv>, G=<rv, rv> 
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B-4 Theorem 

Coordinate patches of surfaces f and f’ are isometric if and only if there exist parametrizations 

3: RVf   and 3RV:f  , respectively, with the same first fundamental form. 

B-5 Definition 

The area of an open continuous surface can be represented in terms of first fundmental form: 

dvduFEGdvduffArea
f

v

f

v
vu   2   

B-6 Definition 

Let Ip(w) =  Eu'
2
 + 2 F u' v' + G v'

2 
be the first fundamental form of  

Then the second fundamental form of s(u, v) is the first order form of its first derivative  

Ldu2
 + 2 M dudv + G dv2  

Where ns uuL  = , ns uvM  = , ns vv =G , and n is the normal vector 

B-6 Definition 

Definition 3.1. The Gaussian curvature K of a surface in R
3
 is 

2

2

FEG

MLN
K



-
 =  

It is independent of the parameterization 
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B-5 Theorem 

The Gaussian curvature depends only on the first fundamental form, which can be expressed as  
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 =  

This expression indicates that surfaces that have the same first fundamental form, or, 

equivalently, surfaces that are isometric, have the same Gaussian curvature. This is enough to 

conclude that the parabolic cylinder has 0 Gaussian curvatures, as it is isometric to another 

surface, the plane, with 0 Gaussian curvature. 

B-6 Definition 

The curvature of a curve is the signed inverse of the radius of the osculating circle, which is 

the circle tangent to the curve that also matches the second derivative of the curve. The sign is 

positive if the circle is on the same side of the surface as the normal vector, or negative if it is on 

the opposite side of the normal vector. 

B-7 Definition 

The principal curvatures of a point are the extremal values of the curvatures of all curves 

through that point obtained by intersecting the surface by all planes containing the normal vector.  
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B-8 Theorem 

The Gaussian curvature at a point is the product of the two principal curvatures at that point.  

Though we state this as a theorem, we can also define the Gaussian curvature to be the product 

of the two principal curvatures; the definitions are equivalent. Using this definition of Gaussian 

curvature, it is easy to see how the parabolic cylinder has 0 Gaussian curvature. At any point , 

there is a plane containing the normal whose planar curve is a straight line parallel to the y-axis. 

This curve has curvature 0, as the osculating circle has infinite radius, and this is a minimal value, 

so the Gaussian curvature is 0. 
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Append C 

Memory Management of stacked heap 

 Following functions define a new mechanism for the memory pool allocation. Deferent 

from the regular heap mechanism, the allocated memory of heap is always preserved for the 

expansion. When the allocated memory is exhausted, a new memory block is allocated, and the 

memory address of new memory block is appended to stacks of memory addresses. To delete the 

memory blocks, the stack elements are traversed to be freed. Following code is implemented as 

C style, with a structure ss_HEAP defined.  

 

#define HEAP_ALLOCATION_SIZE 100 

#define MAX_STORAGE_COUNT 50 

/* ****************************************************************** */  

typedef struct ss_HEAP 

{ 

char **heap_storage;     /* address stack of allocated heap blocks */ 

int storage_count;     /* count of used heap blocks */ 

int max_storage_count;              /* maximum size of heap stacks*/ 

int  heap_size;     /* current number of elements in ALL heap block */ 

int  heap_total_size;    /* maximum element number in ALL heap blocks */ 

int  heap_buffer_size;    /* realloc incremental number of elements, which is the 

number of elements for each newly allocated heap block */ 

int  element_size;   /* size of the allocated element type */ 

} ssHEAP; 

 

/* ****************************************************************** */ 

/** 

* function definition 

* @file  

*   

* This module contains a set of functions which allows for managment of dynamic data.  

* The data is stored in an object refered to as a heap. 

* The allocated memory are stacked chunks of memory blocks  

*  </pre> 

/* ****************************************************************** */  
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/***********************************************************************/  

/**  

 * Initializes a heap. 

 *  

 * @param heap1 

 */ 

void SMEM_initialize (char *heap1) 

{ 

 ssHEAP *heap2; 

 

 heap2 = (ssHEAP *)heap1; 

 

 if (heap2 == NULL) return; 

 heap2->heap_storage = (char**) calloc(MAX_STORAGE_COUNT, sizeof(char*)); 

 heap2->storage_count = -1; 

 heap2->max_storage_count = MAX_STORAGE_COUNT; 

 heap2->heap_size = 0; 

 heap2->heap_total_size = 0; 

 heap2->heap_buffer_size = HEAP_ALLOCATION_SIZE; 

 heap2->element_size = 0; 

 heap2->alloc_notify_func = NULL; 

 heap2->alloc_notify_data = NULL; 

} 

 

/***********************************************************************/ 

/**  

 * Creates and initializes a heap by specifying buffer size 

 *  

 * @param element_size 

 * @param buffer_size 

 *  

 * @return char* 

 */ 

char *SMEM_create (int element_size, int buffer_size) 

{ 

 ssHEAP *heap; 

 //return Null if the element_size is negative value 

 if (element_size < 1) return(NULL); 

 

 //Allocate the memory 

 heap = (ssHEAP *)calloc(1, sizeof(ssHEAP)); 

 if (heap == NULL) return(NULL); 

 

 //Initialize the memory 
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 SMEM_initialize((char *)heap); 

 

 heap->element_size = element_size; 

 heap->heap_total_size = 0; 

 SMEM_set_buffer_size((char*)heap, buffer_size); 

 

 return((char *)heap); 

} 

 

 

/***********************************************************************/  

/** 

 * Allows user to set incremental buffer size to size other than  

 * HEAP_ALLOCATION_SIZE.  

 *   

 * @param heap1 heap 

 * @param size new buffer size 

 *   

 */ 

void SMEM_set_buffer_size (char *heap1, int size) 

{ 

 ssHEAP *heap2; 

 

 heap2 = (ssHEAP *)heap1; 

 if (heap2 == NULL) return; 

 if (size < 1) return; 

 heap2->heap_buffer_size = size; 

} 

 

 

/***********************************************************************/  

/** 

 * loop through all the storage chunks and free heap only. 

 *   

 * @param heap1 heap 

 *   

 */ 

void SMEM_free (char *heap1) 

{ 

 ssHEAP *heap2; 

 int index; 

 heap2 = (ssHEAP *)heap1; 

 

 if (heap2 == NULL) return; 

 if (heap2->heap_storage) 
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 { 

  for (index = 0; index<heap2->max_storage_count; index++) 

  { 

   if (heap2->heap_storage[index]) 

     free(heap2->heap_storage[index]); 

  } 

  free(heap2->heap_storage); 

  heap2->max_storage_count = 0; 

 } 

 heap2->storage_count = -1; 

 heap2->heap_size = 0; 

 heap2->heap_total_size = 0; 

} 

 

 

/***********************************************************************/  

/** 

 * Frees heap storage and heap data. 

 *   

 * @param heap1 heap 

 *   

 */ 

void SMEM_destroy (char *heap1) 

{ 

 ssHEAP *heap2; 

 

 heap2 = (ssHEAP *)heap1; 

 

 if (heap2 == NULL) return; 

 SMEM_free((char *)heap1); 

 free(heap2); 

} 

 

 

/***********************************************************************/  

/** 

 * Copy and append the input data to heap.   

 * NOTES: Additional heap block will add if there is no enough space.  

 *   

 * @param heap1 heap 

 * @param element address of data being stored on heap  

 *   

 * @return index of element on heap  

 */ 

int SMEM_append_data (char *heap1, char *element) 
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{ 

 int   alloc_notify, ind = 0; 

 char  *ptr; 

 ssHEAP *heap2; 

 

 heap2 = (ssHEAP *)heap1; 

 

 if (heap2 == NULL)  

  return(-1); 

 if (element == NULL)  

  return(-1); 

 if (heap2->element_size < 1)  

  return(-1); 

 

 //Allocate the memory pool if the storage_count is negative 

 if (heap2->storage_count<0) 

 { 

  heap2->storage_count++; 

heap2->heap_storage[heap2->storage_count] = (char*)calloc(heap2->heap_buffer_size, 

heap2->element_size); 

  if (heap2->heap_storage[heap2->storage_count] == NULL)  

 return(-1); 

  heap2->heap_total_size = heap2->heap_buffer_size;  

 } 

 

 //If the assigned size is less than total allocated size, copy the data to the last available address 

 if (heap2->heap_size < heap2->heap_total_size) 

 { 

memcpy((heap2->heap_storage[heap2->storage_count]+heap2->element_size * (heap2-

>heap_size % heap2->heap_buffer_size)), element, heap2->element_size); 

  heap2->heap_size++; 

 } 

 

//If all the allocated memory block are assigned, allocated a new block and append is into //the 

storage stack  

 else 

 { 

  if (heap2->storage_count == heap2->max_storage_count -1) 

  { 

   heap2->max_storage_count += MAX_STORAGE_COUNT; 

heap2->heap_storage=(char**)realloc(heap2->heap_storage, 

    heap2->max_storage_count * sizeof(char*)); 

   for(ind = heap2->storage_count+1; ind<heap2->max_storage_count; ind++) 

   { 

    heap2->heap_storage[ind] = NULL; 
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   } 

  } 

  ptr =  (char *)calloc(heap2->heap_buffer_size, heap2->element_size); 

  if (ptr == NULL) return(-1); 

 

  heap2->heap_storage[++heap2->storage_count] = ptr; 

  heap2->heap_total_size += heap2->heap_buffer_size; 

 

memcpy((heap2->heap_storage[heap2->storage_count] + heap2->element_size * (heap2-

>heap_size % heap2->heap_buffer_size)), element, heap2->element_size); 

  heap2->heap_size++; 

 } 

 

 return (heap2->heap_size - 1); 

} 

 

 

/***********************************************************************/  

/**  

 * Create an element from the next unused address 

 * Notes: if there is no enough space, additional storage block will be added 

 * @param heap 

 *  

 * @return char* 

 */ 

char* SMEM_create_element(char *heap1) 

{ 

int   alloc_notify, ind = 0; 

 char  *ptr; 

 ssHEAP *heap2; 

 

 heap2 = (ssHEAP *)heap1; 

 if (heap2 == NULL) return(NULL); 

 if (heap2->element_size < 1) return(NULL); 

 

  //Allocate the memory pool if the storage_count is negative 

 if (heap2->storage_count < 0) 

 { 

heap2->heap_storage[++heap2->storage_count]=(char*)calloc(heap2-

>heap_buffer_size, heap2->element_size); 

  heap2->heap_total_size += heap2->heap_buffer_size;  

  alloc_notify = 0;     

  heap2->heap_size++; 

  if (heap2->heap_storage == NULL) 

   return(NULL); 
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  else 

   return heap2->heap_storage[heap2->storage_count]; 

 } 

   

//If the assigned size is less than total allocated size, copy the data to the last available 

address 

 if (heap2->heap_size < heap2->heap_total_size) 

 { 

  heap2->heap_size++; 

if((heap2->heap_size-1)%(heap2->heap_buffer_size)==0 && (heap2->heap_size-

1)/(heap2->heap_buffer_size)!=0) 

   heap2->storage_count++; 

 } 

 

//If all the allocated memory block are assigned, allocated a new block and append is into 

//the storage stack  

 else 

 { 

  if (heap2->storage_count == heap2->max_storage_count -1) 

  { 

   heap2->max_storage_count += MAX_STORAGE_COUNT; 

heap2->heap_storage = (char**) realloc(heap2->heap_storage, heap2-

>max_storage_count * sizeof(char*)); 

for(ind = heap2->storage_count+1;  

      ind<heap2->max_storage_count; 

     ind++) 

   { 

    heap2->heap_storage[ind] = NULL; 

   } 

  } 

  ptr =  (char *)calloc(heap2->heap_buffer_size, heap2->element_size); 

  if (ptr == NULL) return(NULL); 

 

  heap2->storage_count++; 

  heap2->heap_storage[heap2->storage_count] = ptr; 

  heap2->heap_total_size += heap2->heap_buffer_size; 

 

  heap2->heap_size++; 

 

} 

 

return(heap2->heap_storage[heap2->storage_count]+heap2->element_size  

*((heap2->heap_size - 1) % heap2->heap_buffer_size)); 

} 
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/***********************************************************************/  

/** 

 * Frees heap storage only. 

 *   

 * @param heap1 heap 

 *   

*/ 

void SMEM_flush (char *heap1) 

{ 

 ssHEAP *heap2; 

 

 heap2 = (ssHEAP *)heap1; 

 

 if (heap2 == NULL) return; 

 SMEM_free(heap1); 

} 

 

 

/***********************************************************************/  

/** 

 * Resets the number of elements stored on the heap to zero without freeing any memory. 

 * NOTES --- so the allocated member can be reused 

 * @param heap1 heap 

 *   

 */ 

void SMEM_reset (char *heap1) 

{ 

 ssHEAP *heap2; 

 

 heap2 = (ssHEAP *)heap1; 

 if (heap2 == NULL) return; 

 

 heap2->heap_size = 0; 

 heap2->storage_count = 0; 

} 

 

 

/***********************************************************************/  

/** 

 * Resets the number of elements stored on the heap to smaller value without freeing any 

memory. 

 *   

 * NOTE: CAN NOT be used if heap element contains allocated entity! 

 *   

 * @param heap1 heap 
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 * @param count count  

 *   

 */ 

void SMEM_set_count (char *heap1, int count) 

{ 

 ssHEAP *heap2; 

 

 heap2 = (ssHEAP *)heap1; 

 if (heap2 == NULL) return; 

 

 if (heap2->heap_size >= count) 

 { 

    heap2->heap_size = count; 

  heap2->storage_count = (int)(count/heap2->heap_buffer_size); 

 } 

} 

 

 

/***********************************************************************/  

/** 

 * Returns the number of elements in heap storage. 

 *   

 * @param heap1 heap 

 *   

 * @return number of elements on heap  

 *   

 */ 

int SMEM_get_count (char *heap1) 

{ 

 ssHEAP *heap2; 

 

 heap2 = (ssHEAP *)heap1; 

 if (heap2 == NULL) return(0); 

 

 return(heap2->heap_size); 

} 

 

 

/***********************************************************************/  

/** 

 * Gets the last item in the heap, decrements the number of  

 * items in heap and returns the number of items in heap or -1.  

 *   

 * Allows the heap to be used as a stack. 

 *   
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 * @param heap1 heap 

 * @param[out] element last element from heap  

 *   

 * @return number of elements on heap after operation is performed  

 *   

 */ 

int SMEM_get_last (char *heap1, char *element) 

{ 

 ssHEAP *heap2; 

 

 heap2 = (ssHEAP *)heap1; 

 if (heap2 == NULL) return(-1); 

 if (element == NULL) return(-1); 

 

 if (heap2->heap_size <= 0) return(-1); 

 

 heap2->heap_size--; 

heap2->storage_count = heap2->heap_size == 0 ? 0 : (int)(heap2->heap_size/heap2-

>heap_buffer_size); 

 

memcpy(element, (heap2->heap_storage[heap2->storage_count] + heap2->element_size 

* ((heap2->heap_size-1) % heap2->heap_buffer_size)), heap2->element_size); 

 

 return(heap2->heap_size); 

} 

 

 

/***********************************************************************/  

/** 

 * Gets the last item in the heap, decrements the number of  

 * items in heap and returns the number of items in heap or -1.  

 *   

 * Allows the heap to be used as a stack. 

 *   

 * @param heap1 heap 

 * @param[out] element last element from heap  

 *   

 * @return number of elements on heap after operation is performed  

 *   

 */ 

char * SMEM_retrieve_last (char *heap1) 

{ 

 ssHEAP *heap2; 

 char* element; 
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 heap2 = (ssHEAP *)heap1; 

 if (heap2 == NULL) return( NULL ); 

 

 if (heap2->heap_size <= 0) return(NULL); 

 

element = heap2->heap_storage[heap2->storage_count] + heap2->element_size * 

((heap2->heap_size - 1) % heap2->heap_buffer_size); 

 

 return element; 

} 

 

 

/***********************************************************************/  

/** 

 * Sets the memory allocation notify function. 

 *   

 * @param heap1 heap 

 * @param func address of function to be called everytime heap  

 *             storage changes. 

 * @param appdata application data passed to caller via "func" 

 *   

 */ 

void SMEM_set_alloc_notify_func (char *heap1, void (*func)(int, char *), char *appdata) 

{ 

 ssHEAP *heap2; 

 

 heap2 = (ssHEAP *)heap1; 

 if (heap2 == NULL) return; 

 

 heap2->alloc_notify_func = func; 

 heap2->alloc_notify_data = appdata; 

} 
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