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Abstract 

The contemporary usage of hydrologic models has been to rely on a single model to perform the 

simulation and predictions. Despite the tremendous progress, efforts and investment put into 

developing more hydrologic models, there is no convincing claim that any particular model in 

existence is superior to other models for various applications and under all circumstances. This 

results to reducing the size of the plausible model space and often leads to predictions that may 

well-represent some phenomena or events at the expenses of others. Assessment of predictive 

uncertainty based on a single model is subject to statistical bias and most likely underestimation 

of uncertainty. This endorses the implementation of multi-model methods for more accurate 

estimation of uncertainty in hydrologic prediction.  

In this study, we present two methods for the combination of multiple model predictors using 

Bayesian Model Averaging (BMA) and Sequential Bayesian Model Combination (SBMC). Both 

methods are statistical schemes to infer a combined probabilistic prediction that possess more 

reliability and skill than the original model members produced by several competing models. 

This paper discusses the features of both methods and explains how the limitation of BMA can 

be overcome by SBMC.  Three hydrologic models are considered and it is shown that multi-

model combination can result in higher prediction accuracy than individual models.   

1. Introduction

 Over the past two decades significant effort has gone into development of watershed models 

by hydrologists. These models have been used to simulate and predict the behavior of the 

underlying physical processes in the natural system. The reliability on these models to accurately 

and precisely predict the nonlinear and complex behavior of the hydrologic system is dependent 

on the perception of the modeler from the governing processes in the system, followed by model 
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conceptualization, mathematical and computer modeling. Hydrologic and water resources 

engineers often use these models for calculating the watershed runoff, water resources planning 

and management including reservoir operation, storm water management, water distribution 

system and groundwater protection. Prediction with these models are often deterministic, relying 

on the most probable forecast without explicitly accounting for the uncertainty in the incomplete 

system representation (model structural uncertainty) or the uncertainty in the system initial 

condition, in the observation of system input and output and also in the parameters that identify 

the system. It is obvious that quantifying these uncertainties is necessary to evaluate model 

quality and predictive competence.  

 Owing to availability of massive data from various sources including ground-based and 

remotely-sensed observations, hydrologists have developed various types of models including 

data-driven or black box models, conceptual models and also physically-based models for both 

lump and distributed representation of a hydrologic system. The general practice by hydrologist 

and water resources engineers is to use a single model by complete reliance that the model can 

perform the simulation to their best advantage ignoring the fact that there is no such a perfect 

model in existence that fully represent the processes in all conditions (Beven 2006; Smith et al., 

2004). Most of the predictive uncertainty analysis techniques developed by far are implemented 

on single models which are believed to result in underestimation of uncertainty and 

overconfidence in the model predictive capability. Multi-model combination methods have 

recently been advocated to benefit from the strength of various models in predicting the 

hydrologic variable of interest (Neuman, 2003; Duan et al., 2007; Ajami et al., 2007; Vrugt and 

Robinson, 2007). These studies have been motivated by the Bayesian Model Averaging (BMA) 

development by Raftery et al., (1993, 2003, 2005) and Hoeting et al., (1999). BMA prediction is 

essentially the weighted average of the individual model predictions which has gained popularity 

in recent years. The BMA aims at providing the unconditional mean and variance of the 

predictant on the basis of several model forecasts. The main characteristic of the BMA is to rely 

on a set of time-invariant weighting parameters that are assumed to be normally distributed. 

Experience with modeling and simulation have shown that various models may perform 

differently at different periods (e.g. wet season vs. dry season or dry soil vs. wet soil initial 

condition) and reliance on just one model for simulating the processes in all conditions would be 

overconfidence on the model. Assuming the fixed parameter weight, as part of BMA technique, 
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does not provide the flexibility to models participate dynamically according to the conditions. 

Therefore, in this study we present a sequential Bayesian model combination method to 

overcome the fixed parameter assumption in the BMA method and the results are interpreted.    

2. Multi-model Methods in Predictive Uncertainty Analysis

2.1. Bayesian Model Averaging (BMA)

 Bayesian Model Averaging (BMA) is a statistical method which was originally developed to 

combine inferences and prediction from several statistical models (Leamer 1978; Kass and 

Raftery 1995). In other word, BMA was designed to postprocess the forecast model ensembles to 

deduce a predictive probability density function (PDF) of combined prediction that is more 

skillful and reliable than that of the original model members (model ensemble). Raftery et al.  

2005) extended the BMA application to the ensemble of dynamic models (mainly weather 

forecasting models). The BMA predictive PDF of a quantity of interest is a weighted average of 

PDFs providing that the individual forecasts are unbiased or bias-corrected. 

If y is the variable of interest to be forecasted (predictant), D = [d1, d2, …, dn] is the vector of 

observations (calibration data) and M = [M1,M2, …, Mk] denotes the ensemble of individual 

model predictions, then the posterior distribution of y is represented as follows.   

∑
=

=
K

k
kk DMpMypDyp

1
)|()|()|( (1) 

Where, )|( kMyp is the forecast PDF according to model Mk and )|( DMpw kk = is the posterior 

probability of prediction from model Mk given in below: 
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Where, )( kMp is the prior probability of model kM being the true model and )|( kMDp is the 

likelihood of model kM . The model posterior probability or the model weights should sum up to 

unity, that is, 1
1

=∑
=

K

k
kw . In the absence of prior knowledge in selecting the models at the 

beginning of prediction, all models are treated equally, i.e., kMp k /1)( = . This assumption 

simplifies the posterior probability presented by (2) to )|()|( kk MDpDMp = meaning that the 
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posterior of model Mk can be regarded as likelihood of calibration model Mk in predicting y. The 

likelihood of model Mk , in fact, quantifies the probability of success of model Mk to closely fit 

the observation D.  

 One of the challenges in BMA application lies in estimating the parameters, weights wk and 

variance. One method proposed by Raftery et al. (2005) is to employ the Expectation-

Maximization (EM) algorithm as an iterative procedure. BMA is essentially a post-processing of 

existing retrospective model simulations or hindcastings and the )|( YMP k does not change with 

time meaning that once they are obtained, they remain fixed and used for for rest of the 

prediction. In the next section, we explain a procedure on sequentially estimating the )|( YMP k

enabling the procedure be applied in real time forecasting. 

2.2. Sequential Bayesian Model Combination (SBMC)  

The posterior distribution presented in eq. (2) as the original form of Bayes law is in the 

batch form where the available historical data is taken for the uncertainty estimation through that 

conditional probability. However, this form makes no attempt to include information from new 

observations when becoming available. The flexibility required to use the new information is 

provided by a sequential Bayesian scheme. Moradkhani et al. (2005a &b) showed that the 

methods based on sequential Bayesian estimation seem better able to benefit from the temporal 

organization and structure of information achieving better conformity of the model output with 

observations.   In the multi-model selection process, it is intuitive that if certain models give 

better predictions than others for a specific portion of the process (time period), those models 

should be given higher level of participation in predicting the quantity of interest while still not 

ignoring the level (probability) of success of other models in prediction, i.e., using them may 

generate a better solution than using a fixed weighting factor as is done in BMA method. 

Therefore, implementing the model recursively provides a flexible framework to update models’ 

posterior probability using newly-available observations (Hsu et al., 2008). 

 Let yt denote the observation of predictive variable at time t and )|( 11 −− tjt DMp  be the model 

prior distribution of the jth model at time t, then the model posterior distribution in sequential 

form is written as: 
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where ai and bj are parameters, and y(t) and r(t) are the observed streamflow and rainfall 

sequences, respectively. The time unit t is one day, and εt+1 is the error of streamflow estimation. 

The case study uses three previous time intervals of rainfall and streamflow observations as the 

inputs to the model (i.e., n1 = n2 = 2). 

ANN models are black box or data-driven models that 

have been found suitable in many hydrology studies 

including streamflow prediction and precipitation 

estimation (Hsu et al., 1995; Moradkhani et al., 2004; 

Hong et al., 2005). In this study we used the Self 

Organizing Radial Basis (SORB) model developed by 

Moradkhani et al. (2004) (Figure 3). 

4. Study Test Basin

The Leaf River Basin with 1949 km2 area is located north of Collins, Mississippi and was

chosen as the test basin in this study. We used 36 years (1953~1988) of daily rainfall and 

streamflow data for this basin.  For the models to be used in one-time-increment forward 

forecasting, their parameters must be calibrated from a set of historical data. For the two 

conceptual models, SAC-SMA and HyMOD, we used 11 years of data just for the calibration 

period as suggested by Yapo et al. (1996) to obtain the stable and reliable parameters. We used 

the same number of years for the ARX and ANN models in order for their parameters to be 

calibrated.  

5. Analysis and Discussion

As mentioned in previous section, all models needed to be calibrated. The calibration of

SAC-SMA and HyMOD were done using the Shuffled Complex Evolution-UA (SCE-UA) 

developed by Duan et al. (1992). The SCE-UA is known as an effective and efficient global 

optimization technique which has been tested and used in many other disciplines. The calibration 

of ARX model and SORB-ANN were done by means of simple least square (SLS) method. The 

common purpose in hydrological prediction is to maximize the predictive accuracy, precision 

1
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Figure 3. Architecture of SORB-ANN model 
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and reliability. Although there are many ways to measure the model performance, in this study 

we used, Nash Sutcliffe (NSE), Root Mean Square Error (RMSE), Correlation coefficient (CC), 

and Percent Bias (PBIAS) as follows: 

∑∑ ==
−−−=

n

t mt
n

t tt yyyyNSE
1

2
1

2 )()ˆ(1 (7) 

1)ˆ(
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t tt yyyPBIAS
11

|ˆ|100 (10) 

We used these measures as different objective functions to calibrate each model. Therefore, by 

having four models and four objective functions, we create a sixteen-member ensemble of 

individual model predictions for the Leaf River basin. As a result, the model combination using 

BMA yields sixteen weights which are fixed for the whole period of simulation (calibration or 

evaluation). For the SBMC method, at each time of simulation, there exists sixteen-member 

ensemble which are changing throughout the simulation as explained in section 2.2. The 

verification statistics are seen for the individual models and also the model combination schemes 

in Figure 4.  

Figure 4. Verification statistics for both Calibration and evaluation periods 

 As seen in figure 4, the multi-model combination prediction resulted to better performance 

measures no matter what objective function used for the deterministic predictions resulted from 

the individual models. In other words, It is also seen that SBC outperforms BMA which is 
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believed to be due to the flexibility given to the time-varying weights which provides better 

adaptability of the model with real-time observation and showing that the posterior distribution 

of the models (weights) are subject to change due to climate variation.  

 We also extended our verification to probabilistic form. Probabilistic verification methods 

have been used extensively in the evaluation of meteorological and climate forecasts. One of the 

measures that is useful in our verification scheme is Ranked Probability Score (RPS) which is 

essentially the mean-squared error of the probability forecasts averaged over multiple events. In 

other words, RPS is the mean square error of probabilistic multi-category forecasts where 

observations are 1 (occurrence) for the observed category and 0 for all other categories. To 

generate forecast probability from the ensemble of models, the cumulative distribution function 

of all available historical observations is used to determine threshold streamflow values for non-

exceedence probability categories. The pre-specified categories we used in our study are 10%, 

35%, 70%, 90% and 100% nonexceedence. For example, the observed value for a given forecast 

category takes on the value of 1 if the observed flow value is less than the threshold for that 

category, otherwise the value is 0. The mathematical expression of RPS is given by: 

∑∑
==

<−<=−=
J

i
ii

J

i

i
t

i
tt threshobservedPthreshforecastPOFRPS

1

2

1

2 )]()([)( (11) 

where i
tF  is the forecast probability and i

tO is the observed value at each threshold category, 

i=1,…, J. The streamflow value for each day is treated as an event. The average RPS for a group 

of n evaluation period is given by: 

∑
=

=
n

t
tm RPS

n
RPS

1

1 (12) 

When RPS is viewed in absolute value, it may not be that meaningful, therefore, we use the Rank 

Probability Skill Score (RPSS) which is a skill score based on RPS values given as: 

%1001 ×⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−=

refRPS
RPSRPSS (13) 

RPSref  is the reference RPS value which here we computed from the original model ensemble. 

For the present study we found the two values of RPSS for each of BMA and SBC methods. 

RPSSBMA =43.8% and  RPSSSBC = 51.2% suggesting that in case of Bayesian Model Averaging, 
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we get 43.8% better prediction than that of the original ensemble predictions, and for Sequential 

Bayesian Combination about 51.2% better than the original ensemble predictions is resulted  

6. Summary and Conclusion

The motivation for this study stems from the fact that there is no such a perfect hydrologic

model available to date that performs best in all conditions. Therefore, we conducted an 

experiment to compare a well-known technique for multi-model combination, Bayesian Model 

Averaging (BMA), with Sequential Bayesian Model Combination (SBMC) for the one day ahead 

streamflow forecasting. Four hydrologic models were employed with different natures from 

times series type to black box and finally to conceptual models to provide deterministic forecast 

for the Leaf River Basin.  Both deterministic and probabilistic verifications were made. The 

results show that in its current implementation, SBMC achieves a slightly better performance in 

terms of forecast accuracy, precision and skill score. It appears that sequential estimation in 

general can take advantage of structural organization of information content in the data to find 

the flexible weights that can adapt to hydrometeorological condition better than when the whole 

process is treated in batch and the weighting parameters are estimated once and for all. 

 In the present study we used four hydrologic models for one basin; however, more models 

with different development philosophy can be employed where the procedure is applied over 

more basins with various climate conditions. 
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