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a b s t r a c t 

Radiant slab systems have the potential to significantly reduce energy consumption in buildings. How- 

ever, control of radiant slab systems is challenging. Classical feedback control is inadequate due to the

large thermal inertia of the systems and heuristic feed-forward control often leads to unacceptable in- 

door comfort and may not achieve the full energy savings potential. Model predictive control (MPC) is

now attracting increasing interest in the building industry and holds promise for radiant systems. How- 

ever, an often-cited barrier to its implementation in the building industry is the high computational cost

and complexity relative to the feedback controls used in conventional systems. The objectives of this

study were to (i) verify the correct operation of an open source MPC toolchain developed for radiant

slab systems, and (ii) demonstrate its efficacy in a test facility. A matched pair of cells in the FLEXLAB

building test facility at the Lawrence Berkeley National Laboratory was used in the study. The proposed

MPC toolchain was implemented in one cell and the performance compared to that of the other cell,

which used a conventional heuristic control strategy. The results showed that the simplified MPC ap- 

proach applied in the toolchain worked as expected and realized energy savings over the conventional

control strategy. The MPC yielded 42% chilled water pump power reduction and 16% cooling thermal

energy savings, while maintaining equal or better indoor comfort.
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1. Introduction

Heating, ventilation, and air conditioning (HVAC) systems ac-

count for about 44% of the total energy use in U.S. buildings [1] .

The energy consumption of HVAC systems has been shown to be

sensitive to the quality of the control; enhanced control strategies

can yield savings of 2% −16% [2] while incorrect control and other

control-related faults can increase consumption by ∼10%. 1 

Most HVAC systems found in buildings constructed after the

1980s use forced air systems, typically variable-air-volume (VAV)

distribution systems [5] in North America. Forced air systems, or

all-air systems, are designed to provide an indoor air heat balance

to maintain occupant thermal comfort. These all-air systems can

respond relatively quickly to changes in zone air temperatures due

to the low thermal inertia of the air in the occupied space. Thus,
∗ Corresponding author.

E-mail address: xpang@lbl.gov (X. Pang).

i  

o

1 A meta-study of commissioning identified 16% median actual savings from
retro-commissioning [3],  and a study of 481 operational issues identified in exist- 

ing commercial buildings found that control problems accounted for > 75% of the

causes of energy waste [4].
onventional feedback controllers are generally adequate for this

ype of application. 

Radiant heating and cooling systems meet 50% or more of

he thermal load in the occupied space through long-wave radi-

nt exchange. Radiant systems offer several advantages over typ-

cal all-air HVAC systems, enabling them to reduce HVAC energy

onsumption while maintaining equal or better occupant thermal

omfort [6] . As a result, radiant systems are finding increasing ap-

lication in high performance buildings [7] , with over half of the

ero net energy buildings in North America using radiant systems

8] . This current study is focused on hydronic radiant slab cooling

ystems, also called thermally activated building systems [9] . These

systems use tubes embedded in the slab to circulate chilled water

hrough the slab and use relatively large areas, typically the whole

oor, ceiling, or both surfaces, for heat exchange, thereby reduc-

ng the temperature difference between the chilled water and the

ccupied space [9] . The advantages are: 

• improved heat transport efficiency from the use of water rather

than air,

http://crossmark.crossref.org/dialog/?doi=10.1016/j.enbuild.2018.05.013&domain=pdf
mailto:xpang@lbl.gov
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• higher chilled water supply temperatures than are used in all-

air systems, enabling greater use of water-side free cooling [10] ,

and
• the ability to control the building’s thermal mass for energy

storage [11,12] .

However, radiant slab systems are challenging to control due to

heir large thermal inertia. The time taken to respond to control

ignals is typically several hours or more [13] , making feedback

ontrol of zone temperature infeasible. Any attempt to switchover

uickly from heating to cooling or vice versa will result in wasted

nergy [14] and it is recommended that switchover time should

e greater than 24 h [15,16] . The problem, in cooling mode, now

ecomes managing the heat extraction rate while considering the

uilding’s thermal mass within a single day to avoid both under-

nd over-cooling of the space during occupied hours. Although

here is no clear consensus on a common control strategy, cur-

ent control methods for radiant slab systems typically use heuris-

ic feed-forward control, in which the supply water temperature

r flow rate is based on ambient wet-bulb temperature, occupancy

chedules or utility tariffs [17–19] , or some combination thereof, to

aintain a relatively constant slab temperature for all hours of the

ay. The advantage of this control strategy is that the peak cooling

apacity of the plant system can be reduced since the heat extrac-

ion rate is spread over 24 h but it may not allow for active control

f the thermal storage in the slab. Control of the thermal storage

n the slab enables load shifting, in which the load profile of the

VAC system is manipulated for the building stakeholders’ bene-

t. The operation of the HVAC system can be shifted to nighttime

ours where favorable weather conditions and electricity prices ex-

st [20] . The ability of the HVAC system to shift load also enables

 large fraction of the load of the building to participate in util-

ty demand response programs, which aim to stabilize power grids

21] .

The radiant slab research community has been actively devel-

ping control strategies, with the aim of exploiting the advantages

f radiant slab cooling systems discussed above. A major effort has

een undertaken in model predictive control (MPC) [19,22] . Model

redictive control (MPC) is an advanced control method that is

ow attracting increasing interest in the buildings industry [23–

5] . MPC can use forecasts of weather [26] , occupancy, and energy

rice signals [27,12,28] to manage thermal energy storage, e.g. in

adiant slabs, to improve occupant thermal comfort and reduce en-

rgy consumption and costs [12,23] . In MPC, an optimization prob-

em is solved on-line to obtain the current control action [29] .

PC returns a sequence of optimal control actions based on the

urrent state and dynamic model of the plant, system constraints,

nd minimization of a cost function; only the first control action

f the sequence is applied and the procedure is repeated at pre-

etermined intervals. An often cited barrier to its implementation

n the building industry is its high computational cost and com-

lexity. In this study, it was shown that with the proper model

tructure, the model can be identified and is accurate enough to

mplement real time control and realize energy savings over con-

entional controllers and the process can be simplified through the

se of an open source MPC toolchain. 

The main contributions of this experimental study are the

emonstration of a MPC model structure for radiant slab cooling

ystems that can be easily identified, robust, and accurate enough

o be used for real-time control and the direct comparison of MPC

o heuristic control based on a fixed operational schedule using a

atched pair of test cells. 

The rest of the paper is organized as follows. Section 2.1 de-

cribes the MPC controller used in this study with more detail.

ections 2.2 –2.4 describes the test facility, measurement instru-

entation, and experimental setup used to carry out this study.
ections 3 and 4 gives the experiment results and concluding re-

arks, respectively. 

. Methodology

.1. MPC controller 

The MPC controller has the goal of determining a binary con-

rol output (ON/OFF) of the radiant slab system that minimizes the

eighted combination of comfort violations and energy consump-

ion over a prediction horizon of N time steps. The control problem

s defined in Eq. (1 ) [31] . 

in
c k , h k

t+ N ∑ 

k = t

[
ρ max { x z,k − x max ,k , 0 , x min ,k − x z,k } + c k + h k 

]
sub ject to x k +1 

=
{ 

A cool x k + W cool d k i f c k = 1 , h k = 0 

A heat x k + W heat d k i f c k = 0 , h k = 1 

A coast x k + W coast d k i f c k = 0 , h k = 0 

∀ k ∈ { t, . . . , t + N − 1 } (1) 

here x k = [ x slab,k x z,k ] 
′ and d k = [ d sol,k d oat,k d hg,k ] 

′ are the

tate and disturbance vectors, respectively, x slab, k is slab temper-

ture [ °C], x z, k is zone operative temperature [ °C], d sol, k is solar

rradiance [W/m 

2 ], d oat, k is outdoor dry-bulb air temperature [ °C],

 hg, k is the sum of the heat gains from the lights, miscellaneous

oads and occupants [W], x max , k and x min , k are the maximum and

inimum bounds for the zone operative temperature [ °C], c k and

 k are indicator variables for the cold and hot water valves, respec-

ively, and ρ is the weight to adjust between comfort satisfaction

nd energy consumption. The subscript t indicates the actual time

hen the optimization takes place while k indicates the future pre-

ictions beyond time t . 

The optimization problem in (1) can be equivalently formulated

s a mixed-integer linear program; the steps are described briefly

elow. The reader is referred to Borrelli et al. [32] for a more in-

epth discussion of MPC and hybrid system modeling. The tem-

erature violation cost in (1) is formulated as a maximum of three

inear pieces. This cost term is transformed into a linear program

y means of slack variables. At each time step, a slack variable is

ntroduced and set greater than or equal to the three linear pieces

t that time step. The temperature violation cost then becomes the

um of the slack variables. Next, the switched system dynamics can

e formulated in simplified form as follows for each time step k . 

 k +1 = z 1 + z 2 + A coast x k + W coast d k (2a) 

 1 = 

{
A cool x k + W cool d k − A coast x k − W coast d k i f c k = 1 

0 i f c k = 0 

(2b) 

 2 = 

{
A heat x k + W heat d k − A coast x k − W coast d k i f h k = 1 

0 i f h k = 0 

(2c) 

 k + h k ≤ 1 (2d) 

The remaining switched dynamics are then reformulated as

ixed-integer linear constraints as follows. 

M 1 c k + z 1 ≤ A cool x k + W cool d k − A coast x k − W coast d k (3a) 

 1 c k − z 1 ≤ −A cool x k − W cool d k + A coast x k + W coast d k (3b) 

 1 ( 1 − c k ) + z 1 ≤ 0 (3c) 

M 1 ( 1 − c ) − z 1 ≤ 0 (3d) 
k 
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Fig. 1. System diagram of the MPC toolchain.
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−M 2 h k + z 2 ≤ A heat x k + W heat d k − A coast x k − W coast d k (3e)

m 2 h k − z 2 ≤ −A heat x k − W heat d k + A coast x k + W coast d k (3f)

m 2 ( 1 − h k ) + z 2 ≤ 0 (3g)

−M 2 ( 1 − h k ) − z 2 ≤ 0 (3h)

where 

M 1 = max ( A cool x k − W cool d k − A coast x k + W coast d k ) 

m 1 = min ( A cool x k − W cool d k − A coast x k + W coast d k ) 

M 2 = max ( A heat x k − W heat d k − A coast x k + W coast d k ) 

m 2 = min ( A heat x k − W heat d k − A coast x k + W coast d k ) . 

This is sometimes referred to as the big-M formulation of the

switched affine system. 

In Feng et al [30] , a similar MPC formulation was implemented

in MATLAB. The modeling language YALMIP was used to formu-

late the mixed-integer linear program and the commercial solver

Gurobi was used to solve the problem. Unfortunately, the soft-

ware toolchain was accessible only to users with academic or paid

commercial licenses. In order to make the software more freely

available and transparent to users, it was decided to rewrite the

toolchain using only open-sourced software. 

In the current implementation, Julia has replaced MATLAB as

the programming language while COIN 

–OR Branch and Cut (CBC)

has replaced Gurobi as the mixed-integer solver. Julia offers an op-

timization modeling language, named JuMP, as part of its optimiza-

tion package JuliaOpt. JuliaOpt also includes the necessary modules

to interface with third-party solvers such as CBC. The optimization

problem was modeled using JuMP but reformulated using the big-

M method to express the switched-system dynamics (this was un-

necessary in YALMIP since YALMIP allowed for logical constraint

switching). The JuMP formulation is then passed to CBC using the

JuliaOpt interface. CBC, while slower than Gurobi for larger prob-

lems, solves the problem in reasonable time given the control sam-

pling interval (1 hour). All system dynamics and optimization solu-

tion data are saved using the HDF5 data format. HDF5 is a fast and

space-efficient way to store and transfer data and has interfaces for

most popular language, such as Python, MATLAB, Julia and C/C ++ .

This ensures that there is a reliable way for cross-platform soft-

ware to access the information generated by the Julia code. 

The MPC toolchain consists of two main modules, model identi-

fication and control optimization. The system diagram is shown in

Fig. 1 . The model identification module receives time-series system

response data from the radiant slab system concerned to identify

a simplified, switched-system model. The module solves a nonlin-

ear least squares optimization problem to fit the model parameters

A , A , A coast , W , W and W coast to the data. The model
cool heat cool heat 
arameters are saved in HDF5 file format to be accessed by other

odules. 

The finite-horizon optimization module reads the system model

arameters from the HDF5 file as well as the current system

tate variables and disturbances passed in from the radiant system

oncerned as function arguments. The optimization module then

olves the energy cost minimization problem defined in Eq. (1 ) to

rrive at the control inputs to the radiant system concerned to ap-

ly at the current time. The control inputs are also stored in HDF5

ormat for later access. 

.2. Test facility 

The experiments were carried out in the Facility for Low En-

rgy eXperiments (FLEXLAB [33] ) at the Lawrence Berkeley Na-

ional Laboratory (LBNL). FLEXLAB has four test beds, as shown in

ig. 2 , and each test bed consists of two side-by-side cells with the

ame dimensions and construction. The thermal isolation resulting

rom the near adiabatic walls between adjacent cells allows their

erformance to be analyzed independently. The test bed used in

his study consists of a pair of matched cells (1A and 1B, shown in

ig. 2 ), each is 9.14 m × 6.09 m × 4.88 m with a floor area of 56 m 

2

nd has PEX tubing embedded in a dense concrete topping slab

00 mm thick. The two cells share a chiller and boiler plant and

ach cell has dedicated secondary loops for chilled water and hot

ater as shown in Fig. 3 . The secondary chilled water and hot wa-

er supply temperature can be maintained at desired set points by

ixing the supply and return water using a three-way modulating

alve. The water temperatures and flow rates of both the primary

nd secondary loops were measured. The conventional control sce-

ario was implemented in Cell 1A and the MPC was implemented

n Cell 1B In this study, the focus was on the cooling performance.

The radiant slab system inside the cell is shown in Fig. 4 . Hot

ater or chilled water is selected using automated control valves

ith manual overrides. The radiant slab system is divided into four

ub-systems, each containing multiple circuits of PEX tubing, serv-

ng floor areas of 19.5 m 

2 , 9.6 m 

2 , 5.8 m 

2 and 21.1 m 

2 , respectively.

he nominal diameter of the tubing is 15.9 mm, and the internal

iameter is 12.7 mm, with a tube spacing of 0.23 m on center. 

Single-pane clear windows are used on the south façades of the

wo cells and the window area is 10.76 m 

2 (5.88 m (L) × 1.83 m

H)). 

In order to simulate a typical office, workspaces consisting of

hermal manikins, desks and partitions were set up, together with

rtificial lights, as shown in Fig. 5 . The manikins were wound with

eating tape and the supply voltage adjusted to produce sensi-

le heat dissipation rates of ∼80 W each, corresponding to the

etabolic rate of sedentary office workers in a low humidity en-

ironment. The advantage of the thermal manikins is that their

adiative/convective splits, and the characteristics of their thermal

lumes, are more realistic than the heated cylinders specified in

he European Standard E 14240. The total overhead lighting power

s ∼180 W in each cell. Ping pong ball sensors were used to mea-

ure the operative temperature in both cells. 

.3. Instrumentation 

FLEXLAB is well instrumented with research-grade sensors and

eters. The most relevant measurements in the experiments re-

orted here are listed in Table 1 . 

The room operative temperature was approximated by the av-

rage of the readings of three grey-painted ping-pong ball globe

hermometers, as shown in Fig. 5 . Humphreys reported that for

ow air velocity ( < 0.15 m/s), a 40 mm diameter globe has radiative

nd convective losses in the same ratio as the human body [34] .

he three ping-pong ball sensors were placed on desks near the



Fig. 2. General view of the test facility.

Fig. 3. Schematic diagram of the chilled and hot water plant.

Table 1

Measurements in the experiment along with the accuracy ratings.

Measurement Accuracy

Room operative temperature ±0.2 K 

Radiant slab water flow rate ±1% 

Radiant slab chilled water supply and return temperature ±0.1 K 

Slab temperature ±0.1 K 

Global horizontal irradiance ±5% or ±10 W/m 

2 

Circulation pump power ±2% of reading 

Total lighting power ±1% of reading 

Total manikin power ±1% of reading 

w  

s

 

s  

s  

a  

a  

r  

p

2

2

 

b  

c  

t  

c  

p

indow, in the middle of the cell and at the back of the cell re-

pectively. 

The slab temperatures were measured by three immersion-type

ensors installed in thermowells that are about 13 mm below the
urface, along the cell’s North-South center line. The sensors are

t 1.8 m, 4.6 m and 7.6 m from the south wall (the window) and

re positioned halfway between adjacent tubes. The average of the

eadings from these three sensors was used to represent the tem-

erature of the slab. 

.4. Experiment 

.4.1. Preparation 

The seven circuits of the radiant slab system in each cell were

alanced to ensure an even distribution of water flow rate in each

ircuit. The secondary chilled water pump speeds were adjusted

o supply 26.5 lpm of water to each radiant slab system and each

ircuit had a flow rate of 3.8 lpm. The chilled water supply tem-

erature was fixed at 11 °C. 



Fig. 4. Radiant slab manifold system diagram.

Fig. 5. Test cell setup.
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The manikins and lights of both cells were controlled by digi-

tal plug-in timers and programmed to be on from 8 am to 6 pm.

The average internal load in Cell 1A was 571.7 W (391.5 W from

manikins and 180.2 W from lights) and 600.7 W in Cell 1B (424.8 W

from manikins and 175.9 W from lights). The internal heat gain in

1B (running the MPC) was ∼5% greater than the internal heat gain

in 1A. 

FLEXLAB uses a customized control system that has a Python

interface to execute control commands and access its database. The

Simple Measuring and Actuation Profile (sMAP) [35] developed at

the University of California, Berkeley, is used for data archiving.

All automated control devices had been tested and calibrated for

proper operation. 

2.4.2. Validation of MPC toolchain 

Validation of the MPC toolchain involved testing of the model

identification module and the finite-horizon optimization module,

shown in Fig. 1 . The computer that ran the MPC toolchain used

64-bit Ubuntu 16.04 as the operating system and had an i7-860

2.80 GHz quad core processor.
The process used to validate the model identification module

s shown in Fig. 6 . A Python script was developed to execute

tep-tests of the radiant system in Cell 1B to produce time se-

ies data for model identification. The data were stored in sMAP

nd then exported manually to a csv file, which was then passed

o the model identification module where the model parameters

ere identified and saved in HDF5 file format. Lastly, the identified

odel took inputs from the time series data and computed predic-

ions. The model identification module is considered validated if

he model parameters are successfully identified and the resulting

odel can predict the radiant system performance reasonably well

nd meet the following criteria: a Coefficient of Variation of the

oot-Mean-Square Error (CV[ RMSE ]) < 10% and a Normalized Mean

ias Error (NMBE) < 5% [36] . 

V(RMSE) = 

√ ∑ n
i =1 ( y i − ˆ y i ) 

2 

n −1

ȳ 
(4)

MBE = 

∑ n
i =1

(
y i − ˆ y i 

)
( n − 1 ) × ȳ 

(5)
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Fig. 6. Procedure for testing and validating the model identification module.
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Fig. 7. Procedure for testing and validating the optimization module.
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here, 

y i = measured hourly data, 

ˆ y i = model predicted hourly data, 

ȳ = average measured data, 

n = number of data points. 

Once the model identification module had been validated, val-

dation of the finite-horizon optimization module followed, as

hown in Fig. 7 . Radiant slab radiant systems have large time con-

tants, with the response time of the surface temperature to a

ontrol input being several hours [14] . In this study, the control

orizon, N, had been empirically set to 12 h, and the optimiza-

ion problem run every hour, using a time-step of one hour. At

ach time step, only the control at the current time was applied.

ew values of the state variables and disturbances were sampled

t each time-step and the cycle repeated. 

The outside air temperature and sky cover forecast data were

btained from the U.S. National Weather Service website [37] . The
orecast global horizontal irradiance values on each day were de-

ermined using historical data measured at FLEXLAB on a day a

ear previously for which the forecast sky cover profile was closely

imilar. For example, the forecast of global horizontal irradiance on

ct 11th, 2017 consisted of hourly data measured on Oct 6th, 2016,

he sky cover profile on Oct 6th, 2016 being closely similar to the

orecast sky cover on Oct 11th, 2017. 

A Python script was developed to obtain the state variables, i.e.

he slab temperature and the zone operative temperature, and the

isturbances, i.e. the solar irradiance, the outdoor air temperature

nd the internal heat gains, from the FLEXLAB data acquisition sys-

em and pass them to the finite-horizon optimization module at

ach time step. Using the identified model parameters, the finite-

orizon optimization module solves the optimization problem de-

ned in Eq. (1 ). The finite-horizon optimization module is consid-

red validated if a solution is presented and the computing time is

ess than the time step. 

.4.3. MPC vs. heuristic control comparison 

After the MPC toolchain was validated, its effectiveness was

valuated by comparing its performance to that of a heuristic con-

rol strategy that turns the radiant slab system on three hours

rior to occupancy and turns it off one hour before occupancy

nds. A typical office building occupancy schedule of 8:00 to 18:00

as used and the internal loads (the manikins and the lights) were

nabled/disabled on the same schedule. Soft constraints and no

ard constraints were imposed on the operative temperature. x max 

nd x min were set to 26 °C and 19 °C, respectively, for hours be-

ween 7:00 and 17:00 and 47 °C and 10 °C for all other hours. No

onstraints were imposed on the slab temperature but some is-



Fig. 8. Internal conditions in the “free response” mode.

Fig. 9. Internal conditions in the “radiant slab activated” mode.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10. “Radiant slab activated” model identification and validation.
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sues to consider in practice are condensation on the slab surface

and thermal discomfort that may arise from the close contact of

occupant’s feet with a cold surface. Various values of the variable

ρ were tested and a value of 100 was found to yield a reason-

able trade-off between energy use and thermal discomfort, based

on engineering judgment. Python scripts were developed to read

the control signals from the HDF5 file, send them to the FLEXLAB

and return the system outputs to the optimization block. 

Before the MPC vs. heuristic control experiment, it was neces-

sary to compare Cell 1A and Cell 1B in the “free response” and the

“radiant slab activated” modes side by side to assess how closely

the two cells matched each other and ensure the two cells start off

at the similar initial conditions for the MPC vs. heuristic control

experiment. In the “free response” mode, there is no mechanical

cooling or heating and the changes in the interior conditions are

the results of the weather and internal gain disturbances, whereas

in the “radiant slab activated” mode, the radiant slab systems in

both cells are activated with the chilled water flow rate at 26.5

lpm and the chilled water temperature at ∼11 °C. 

The “free response” experiment took place during Sep 23 – 25,

2017, and the “radiant slab activated” experiment took place during

Sep 27 – 29, 2017. The results were shown in Figs. 8 and 9 respec-

tively. In the “free response” experiment, Cell 1A started off with

the operative temperature at 31.86 °C and the slab temperature at

29.35 °C, and Cell 1B started off with the operative temperature at

29.94 °C and the slab temperature at 26.82 °C, at noon. The differ-

ences between the initial operative temperatures and between the

slab temperatures were 1.92 K and 2.53 K respectively. In the “radi-

ant slab activated” experiment, Cell 1A started off with the opera-
ive temperature at 37.19 °C and the slab temperature at 32.80 °C,

nd Cell 1B started off with the operative temperature at 34.42 °C
nd the slab temperature at 28.62 °C. The differences between the

nitial operative temperatures and between the slab temperature

ere 2.77 K and 4.18 K, respectively. It took about 42 h for the “free

esponse” and 36 h for the “radiant slab activated” to reach static

tates. As can be seen from Figs. 8 and 9 , the two cells matched

ach other well in both the “free response” mode and the “radi-

nt slab activated” mode. The average difference of the operative

emperatures was 0.11 K and of the slab temperatures was 0.19 K

n the “free response” mode and 0.16 K and 0.03 K, respectively, in

he “radiant slab activated” mode. 

. Results and discussions

.1. Validation of MPC toolchain 

As the study focused on the cooling performance, the switched

iscrete model, described in Eq. (1 ), could only select the modes

ooling or coasting; thus, only the model parameters for the two

odes needed to be identified. Step-tests were performed to iden-

ify model parameters A cool , A coast , W cool , and W coast . The step-tests

ere run to collect two datasets of 12 hours in the cooling mode

n which a step change of the chilled water flow from 0 to 26.5

pm was executed with the manikins and the lights operating

n the schedule from 8:00 to 18:00. State and disturbance vari-

bles, i.e. the room operative temperature, the slab temperature,

he manikins and lighting power, the outside air temperature, and

he global horizontal irradiance, were monitored at one-hour in-

ervals. One 12 h dataset was used to identify the model parame-

ers and the other to validate them. The same procedure was used

or the coasting model parameter, with two datasets of 24 h. The

odel parameters were successfully identified and the comparison

etween the predictions and the measurements is presented be-

ow. 

Fig. 10 presents the results of the cooling mode model iden-

ification and validation. Two datasets were used to validate the

obustness of the identified model with different disturbances. The

op chart shows the model prediction vs. the actual measurement

sing the same dataset for the model identification. The middle

nd bottom charts show the model prediction vs. actual measure-

ent using different datasets. The data used in the bottom chart

Validation 2) were generated using similar disturbances as the

raining data, while the data in the middle chart (Validation 1) was

enerated with disturbances that were considerably different from

he training data, as shown in Fig. 11 . The slab temperature showed



Fig. 11. Disturbances of the identification and validation datasets.

Fig. 12. “Free response” model identification and validation.
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Fig. 13. Distribution of computation time for solving the MPC problem.

Table 2

CV(RMSE) and NMBE of the validation dataset.

Operation Dataset Variable CV(RMSE) NMBE

Cooling Validation 1 Operative temperature 5.2% −3.4%

Cooling Validation 1 Slab temperature 3.4% −3.2%

Cooling Validation 2 Operative temperature 2.1% −0.2%

Cooling Validation 2 Slab temperature 1.5% 1.4%

Coasting Validation Operative temperature 2.4% 1.7%

Coasting Validation Slab temperature 1.5% 1.2%
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ess deviation than the room operative temperature. The maximum

oom operative temperature error was ±1.8 °C. 

Fig. 12 shows the results of the coasting mode model identifi-

ation and validation. The model identified for the coasting mode

as better performance than the cooling mode, and the maximum

perative temperature error is within ±1.0 °C. 
Fig. 14. Snapshot of Finite-Horizon 
Table 2 shows the CV(RMSE) and NMBE of the validation

atasets. The two coefficients are both well below the 10% for

V(RMSE) and 5% for NMBE requirements. 

The Finite-Horizon Optimization module was also validated suc-

essfully. Optimal solutions were presented at each time step dur-

ng the validation period of 24 h. Fig. 13 shows the distribution of

he computation time to solve the MPC problem. The computing

ime for each time step varied from 6.68 to 9.87 s with a mean of

.33 s. Fig. 14 shows a snapshot of its running status. 

.2. MPC vs. heuristic control 

Side-by-side measurements were made for a period of eight

ays, starting on Oct 11th, 2017. The internal loads were reduced

y ∼75% to emulate low load conditions from Oct 16th to Oct 18th.

he results were shown in Figs. 15–17 . The comparison focuses on

he room operative temperature and the energy performance. As

he two cells share the same chiller, there is no direct measure-

ent of the chiller electricity consumption of each case. The cool-
Optimization running status.



Fig. 15. Comparison of the average room operative temperature.

Fig. 16. Comparison of the rate of thermal energy consumption.

Fig. 17. Comparison of the pump power consumption and the corresponding energy

consumption.
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ing thermal energy, calculated as the product of the chilled wa-

ter capacity rate and the difference between the chilled water sup-

ply and return temperatures of the radiant slab system, was used

as a proxy for the chiller electricity consumption. The energy per-

formance consists of two components, the cooling thermal energy

and the chilled water pumping energy. 

Fig. 15 compares the room operative temperature. As can be

seen from the figure, most of the time, the room operative temper-

atures in both cases were maintained within the set-point range

from 19 °C to 26 °C (indicated by the shade area) during the oc-

cupied hours of 8:0 0–18:0 0. The exceptions mainly occurred in

the early morning where the room operative temperatures in both

cases were lower than 19 °C and the performance of the heuristic

control is worse than that of the MPC. This behavior is an inherent

characteristic of radiant slab systems as they rely on the thermal
ass of the slab to store sufficient cooling capacity in the early

orning. However, with carefully selected value of the variable ρ ,

 trade-off between energy use and the thermal discomfort can be

chieved to reduce overcooling in the early morning. On Oct 14th

nd 15th, the high outside air temperature and clear sky resulted

n an increased cooling load which approached the cooling capac-

ty of the radiant slab system in both cells, and thus the room op-

rative temperature in both cells were slightly higher than 26 °C. 

Fig. 16 compares the rate of consumption of thermal energy

hile Fig. 17 compares the pump power consumption. The upper

hart shows the cumulative value and the lower chart shows the

nstant measurement. The cumulative thermal energy consump-

ion using the MPC was 503.0 MJ and was 598.9 MJ using heuris-

ic control, yielding a thermal energy saving of 16.0% during the

ight days of the experimental period, which indicates a 16.0%

hiller electricity savings from the MPC. The cumulative chilled wa-

er pump electricity consumption with the MPC was 11.6 kWh and

ith the heuristic control was 20.2 kWh, yielding an electricity sav-

ng of 42.6%. The savings are more substantial when the system

perates at partial load conditions, i.e. when the room cooling load

s smaller than the cooling capacity of the radiant slab. When the

oom cooling load approaches the cooling capacity of the radiant

lab, the benefit of MPC diminishes. As can be seen from the data

n Oct 15th, the MPC only shifted the operating hours of the pump

nd the total pump running time was just one hour less than that

ith the conventional control. 

. Conclusions

The open source MPC toolchain was tested and validated in the

LEXLEB test facility. The identified model reasonably represented

he performance of the radiant slab system with a CV(RMSE) less

han 10% and a NMBE less than 5%. The Finite-Horizon Optimiza-

ion module successfully solved the optimization problem and the

verage computing time was 7.33 s per zone for a one hour time-

tep. In order for the computation time to be small compared

o the time-step in a large building, which could have 10 0–1,0 0 0

ones, some form of parallel processing would be required, possi-

ly using a graphics card; further investigation is required. 

During the eight day experimental period, the MPC yielded

2.6% chilled water pumping energy reduction and 16.0% cooling

hermal energy savings when compared to the conventional con-

rol of the radiant slab system, while maintaining equal or better

ndoor comfort. 

The MPC toolchain needs to perform step tests of the radiant

lab system to collect data for model identification. The data can

e obtained actively or passively depending on the actual condi-

ions. The passive approach is preferred as the normal operation of

he radiant system would not be interrupted. This is essential for

he MPC toolchain to be widely accepted and applied in the HVAC

ndustry. Therefore, future research is needed to investigate how

he data collected passively would impact the model accuracy and

ow model accuracy would impact the performance of the MPC

oolchain. 
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