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(red) and Zeb1 (orange) induced EMT while Ovol2 (blue) induced MET as
compared to the empty vector control (green). C) Stochastic simulations for
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(green), high basal production rate of Zeb1 ZEB1 (red, Zeb1 mRNA basal
production rate was raised to 0.01 µM/hr) and high basal production rate
of Ovol2 (blue, Ovol2 basal production rate was raised to 2 µM/hr). Initial
conditions are all at I1 state. D) The histogram shows the expression status
of CD44. M states (Snail; red and Zeb1; orange) correlate with high CD44
expression while cells in E state (Ovol2; blue) show low CD44 expression as
compared to empty vector control (green). MCF7 is shown as a representa-
tive cell type in the E state with low CD44 expression. E) Ovol2 reprograms
MDA-MB231 cells from M- to E- state. Cells were analyzed after 6 days of
control (red) or Ovol2-expressing (blue) lentiviral infection. F) Stochastic
simulations with a basal parameter set (red) and high basal production rate
of Ovol2 (blue, Ovol2 basal production rate was raised to 2 µM/hr). Initial
conditions are all at M state. . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Stepwise induction of EMT in MCF10A cells by different doses of TGFβ.
A) Cells were treated with various concentrations of TGFβ for 10 days and
analyzed for Ecad/Vim expression by flow cytometry. Each panel shows a su-
perimposed image of two treatment conditions. Note that the 25 µM TGFβ
treatment gave rise to a heterogeneous population containing I2 cells and M
cells (orange). B) The corresponding steady states of the cellular phenotypes
(indicated as colored dots) observed under various TGFβ concentrations in A
are mapped to the bifurcation diagram shown in Figure 2.1B. C) An illustra-
tive summary of phenotypic transitions in the four-state system. Solid arrow
represents transition with experimental evidence from this study. Dotted ar-
row represents hypothetical transition without experimental evidence. . . . . 17

2.4 Stochastic simulations for stepwise I1-I2-M transitions upon TGFβ treatment.
Stochastic simulation (started at I1 state) for a population of 2000 cells at
three concentration of TGFβ. Green: no TGFβ (I1 state). Red: high (10
units) TGFβ concentration (M state). Cyan: intermediate (2.5 units) TGFβ
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2.5 Roles of EMT-promoting and -inhibiting factors in the four-state EMT sys-
tem. A) Two-parameter bifurcation diagram with respect to external TGFβ
and Ovol2 basal production rate. The red curves were computed by extend-
ing the saddle-node bifurcation points obtained in one parameter bifurcation
analysis (Figure H.5), and they define different parameter regions that can be
mono-stable, bi-stable, tri-stable or tetra-stable depending on the number of
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viewed as an area where multiple phenotypes co-exist (II-V). The size of each
phenotype region is an indication of robustness of the phenotype when the
two signals are varied. Green star: a basal parameter set and an intermediate
TGFβ concentration that together give rise to four phenotypes. B, C) One-
parameter bifurcation diagrams of Ecad with respect to external TGFβ (B)
and Ovol2 basal production rate (C). Solid curve: stable steady state. Dashed
curve: unstable steady state. A basal parameter set (blue) and a perturbed
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3.1 Four population dynamics models for four distinct EMT systems: two-state,
three-state, four-state, and five-state transitions. In each model, E denotes
the epithelial population, M mesenchymal population, and Ii the population
corresponding to the ith intermediate state. In each model, the blue arrows
describe the transitions of cells between two populations, where the arrow
heads describe the direction of each transition. The black arrows indicate cell
death, the yellow arrows the self-renewal of (stem) cells in the intermediate
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3.2 Comparison of the noise attenuation property between the two-state and
three-state EMT systems in terms of the effects on the mesenchymal pop-
ulation size. A) Multiplicative noise is introduced to the epithelial and mes-
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intermediate (three-state system), and mesenchymal populations. Top two
panels are the time-course trajectories that represent the normalized number
of mesenchymal cells NM/µ(NM) over a period of 10 days. To obtain the nor-
malization, we perform stochastic simulations on the steady state population
of mesenchymal cells, then divide the mesenchymal population size at each
time point by its mean value obtained over the 10-day period. In the middle
two panels, the normalized mesenchymal population size is plotted against the
number of times that particular size occurs. Yellow: two-state EMT, green:
three-state EMT. Bottom two panels display the quantification of the noise
attenuation performance of the two-state and three-state systems using the
mean and standard deviation of the coefficients of variation (CV) of the mes-
enchymal population. The mean is plotted here in the form of a bar graph
(blue), while the standard deviation is described by the red error bar. . . . . 37
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the time-course trajectories that represent the normalized number of epithe-
lial cells NE/µ(NE) over a period of 10 days. Middle two panels illustrate
the distribution of the different population sizes of the normalized epithelial
population. Here, the normalized epithelial population size is plotted against
the number of times that particular size occurs. The color coding scheme
for each system is similar to that of Figure 3.2. Bottom two panels display
the quantification of the noise attenuation performance of the two-state and
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3.4 Comparison of the noise attenuation property between the two-state and
three-state EMT systems on the average population size. A) Noise is in-
troduced to epithelial and mesenchymal populations. B) Noise is introduced
to the epithelial, intermediate (three-state system), and mesenchymal pop-
ulations. Top panels: trajectories of normalized average number of cells
Navg/µ(Navg) over 10 days. Middle panels: distribution of the different sizes
of the normalized average population using the color coding scheme of Figure
3.2. Bottom panels: quantification of the noise attenuation performance of
both systems. C) Sensitivity analysis of the parameters representing unique
cell transition rates in the three-state EMT system. Here, we plot the mean
of the average change in the average CV as bar graphs (blue) accompanied by
red error bars that describe the standard deviation of the average change. . . 39
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5.5 Comparison of the orders of convergence of the following methods: IIF1-
Maruyama, IIF2-Maruyama, Euler Maruyama, and ETD2-Maruyama used to
solve Eq.(5.18) with additive noise. Subplots A and B represent the orders
of convergence of all the methods in the scenario that the noise amplitude
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terms, whose values are fixed to be a = 0.1 and b = −1. Subplots C and
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compared to those of the reaction and noise terms, whose values are fixed to
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lowing methods: IIF1-Maruyama, IIF2-Maruyama, Euler Maruyama, and
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Epithelial-mesenchymal transition (EMT) is an instance of cellular plasticity that plays crit-

ical roles in development, regeneration and cancer progression. While many regulatory el-

ements have been identified to induce EMT, the complex process underlying such cellular

plasticity remains poorly understood. Utilizing a systems biology approach integrating mod-

eling and experiments, we found multiple intermediate states contributing to EMT and that

the robustness of the transitions is modulated by transcriptional factor Ovol2. In particular,

we observed that adding the mutual inhibition relationship between Ovol2 and EMT inducer

Zeb1 generates a novel four-state system consisting of two distinct intermediate phenotypes

that differ in differentiation propensities and are favored in different environmental condi-

tions. These intermediate states correspond to various forms of stem-like cells in the EMT

system, but the function of the multi-step transition or the multiple stem cell phenotypes

is unclear. Here, we used mathematical models to show that multiple intermediate pheno-

types in the EMT system help to attenuate the overall fluctuations of the cell population

in terms of phenotypic compositions, thereby stabilizing a heterogeneous cell population in

the EMT spectrum. We found that the ability of the system to attenuate noise on the

intermediate states depends on the number of intermediate states, indicating the stem-cell

population is more stable when it has more sub-states. We then attempted to bridge the gap

between discrete and continuum modeling of the EMT system by incorporating the EMT

xix



core regulatory network into our heterogeneous cell population dynamics model to create a

multiscale EMT model. Our model can capture the larger-scale population growth dynamics

while acknowledging the intracellular interactions between proteins within each individual

cell. From the two types of noise we introduced into our model, we observed that the dif-

ferences in the noise design prompted distinctive behaviors in the proliferative capability of

our heterogeneous population. Our findings also revealed the challenges encountered when

integrating noise into a dynamic EMT model such as the multiscale model and the complex

role noise plays in modulating the different phenotypic fractions of the population. Lastly,

we present a class of semi-implicit integration factor methods and demonstrate its good ac-

curacy, efficiency, and stability properties compared to existing methods. This new class of

methods, which is easy to implement, will have broader applications in solving stochastic

reaction-diffusion equations arising from models in biology and physical sciences.
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Chapter 1

Introduction

1.1 Epithelial-Mesenchymal transition (EMT)

Epithelial-mesenchymal transition (EMT) is an extreme form of cellular plasticity that is

involved in morphogenesis, tissue regeneration and cancer progression. In addition, EMT

has been shown to promote stem cell properties, as differentiated epithelial cells that have

undergone a round of EMT gain multipotency and self-renewal capability [12, 31, 78]. Dur-

ing EMT, epithelial cells undergo dramatic changes in cell morphology and behavior to form

mesenchymal cells. These changes include loss of cell-to-cell junction, loss of cell polarity and

acquisition of migratory and invasive properties [14, 50]. The migratory behavior of newly

formed mesenchymal cells is critical for the formation of internal organs during embryonic

development [14], and it is also involved in cancer metastasis, which often requires the dis-

semination of cancerous epithelial cells from the primary tumors and subsequent invasion

of distant tissues and organs [78]. After arriving at their destinations, mesenchymal cells

sometimes revert to epithelial cells to settle, proliferate, and differentiate, via a process called

mesenchymal-epithelial transition (MET), suggesting that EMT is a reversible process [5].
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Recent theories and experiments showed that EMT does not give rise to terminal mesenchy-

mal phenotype in some biological scenarios [76, 100, 115]. In other words, intermediate

epithelial-mesenchymal phenotype may be generated by partial EMT. In addition, it was

hypothesized that partial EMT is responsible for collective migration and invasiveness of

cancer cells [76]. With the ability to migrate collectively, cancer cells can maintain some

cell-cell adhesion and move in concert, while bypassing many constraints that are imposed

on individually migrating cells [24, 47, 112]. These observations and hypothesis strongly

suggest that EMT is a multi-step transition, and various degrees of the transition may have

distinct physiological outcomes.

There is a growing interest in investigating the implications of partial EMT towards cancer

growth and progression. Cells with hybrid phenotype are not only perceived to be apoptosis-

resistant, but the generation of cancer stem cells (CSCs) has also been identified with the

partial EMT state, posing more challenges for devising efficient cancer treatments [29, 48].

Furthermore, the classifications of CSCs into different categories along the EMT spectrum

pose important questions on the varying responses CSCs might have to cancer drugs [4, 67].

Consequentially, effective cancer treatment must be tailored to target different differentiated

states within the CSC population.

Previous studies have identified key transcription factors (TFs) and microRNAs (miRNAs)

that are involved in the regulation of EMT. In particular, mutual inhibition loops formed

between Zeb1 and miR200 [6], and between Snail and miR34a [93] are critical components in

the regulatory network [84]. Mathematical modeling suggested that these mutual inhibition

loops govern a tristable system, in which cells can be stabilized at an epithelial (E) state,

a mesenchymal (M) state, or an intermediate state exhibiting expression of signature genes

of both E and M in a variable fashion [76, 100]. The intermediate state identified by these

models is proposed to associate with cancer cells that exhibit collective migration during

tumorigenesis [76], implicating the clinical relevance of the ternary switch in cell plasticity.
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1.2 An Ovol2-Zeb1 mutual inhibitory circuit governs

bidirectional and multi-step transition between Ep-

ithelial and Mesenchymal states

In recent experimental studies, it was shown that transcription factor Ovol2 restricts EMT

by directly inhibiting EMT-inducing factors including Zeb1, and that these regulations are

critical for proper morphogenesis and for maintaining epithelial lineages in mammary gland

and skin epidermis [61, 108]. However, the precise role of Ovol2 in the context of the well-

studied core molecular network that controls EMT dynamics remains to be elucidated. In

addition, it is unclear how EMT-inhibiting transcriptional factors like Ovol2 and EMT-

promoting transcription factors like Zeb1 interact integratively to regulate the intermediate

state.

From our collaboration with Xing Dai’s lab, our collaborators Watanabe and Villarreal-

Ponce provide new experimental evidence suggesting a direct regulation of Ovol2 by Zeb1,

which together with previous reports of Ovol2 inhibition of Zeb1 [61, 91, 108] demonstrates

the existence of an Ovol2-Zeb1 mutual inhibition circuit. We then present a mathematical

model that includes this new regulation, revealing two, rather than one, intermediate states

with distinct propensities to differentiate into E and M states. We show that the Ovol2-Zeb1

mutual inhibition circuit is essential for the existence and robustness of both intermediate

states in this model, and experimentally validate a specific prediction of the model, namely

that Ovol2 is able to reprogram any given state to an E state. Furthermore, Watanabe

and Villarreal-Ponce describe experimental results suggesting that mammary epithelial cell

line MCF10A represents one of the intermediate states that exhibit a bidirectional poten-

tial to differentiate into both E and M states. Our four-state model of the EMT process is

consistent with the observations which show four epigenetic states in multi-step EMT [99],

multiple epithelial/mesenchymal stem cell phenotypes [3] and four distinct types of ovarian
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cancer cells in the EMT spectrum [42]. In addition, Strauss et al. identify a heterogeneous

hybrid EMT stage that is composed of two phenotypically different subpopulations from the

analysis of epithelial and mesenchymal traits in ovarian cancer [96]. These results help rein-

force the notion of an EMT process with multiple intermediate steady states. Together, our

findings uncover a new layer of complexity of the dynamic, multi-step transitions between E

and M states and unravel key regulatory mechanisms that control such transitions.

1.3 Controlling stochasticity in EMT through multiple

intermediate cellular states

Previous theoretical studies suggested the role of heterogeneity in cell population and its

feedback control in stem cell regeneration [62]. However, it is unclear why the epithe-

lial/mesenchymal cell population needs these multiple intermediate states, or why the stem

cells in the EMT spectrum need to have several subtypes. In particular, what performance

objective does the system evolve to achieve by having multiple intermediate states at the

expense of simplicity of cellular phenotypes?

To address these questions, we built and compared a series of mathematical models contain-

ing various number of intermediate states in EMT spectrum. By analyzing the behaviors of

the system in facing noise in cell populations, we found that multiple intermediate pheno-

types in the system help to attenuate the overall fluctuations of the cell population in terms

of phenotypic compositions, suggesting their ability to stabilize a heterogeneous cell popu-

lation. When we compared the models with at least one intermediate state, we found that

the number of intermediate states positively correlates with the ability to attenuate noise on

the intermediate states, indicating that the stem-cell population is more stable when it has

more sub-states. These results suggest a performance objective that the EMT system might
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have evolved to achieve by having multiple intermediate phenotypes, and it sheds light on

the general principles of heterogeneous stem cell population in term of systems design.

1.4 A multiscale model of a heterogeneous population

with cell state transitions in EMT and MET direc-

tions

Previous research, including our modeling of the four-state EMT process, employs the EMT

regulatory network as the main framework to understand the mechanisms that govern the

process and classify the different transition stages of EMT based on the gene expression

levels of key proteins [47, 48, 76, 100, 115]. However, this discrete (individual-based) frame-

work does not encompass all the cellular activities that take place in a heterogeneous cell

population since the focus is only on the changes that happen within one entity, i.e one

cell. On the other hand, continuum (population-based) models are population-centric, thus

it tends to overlook the genetic or epigenetic regulatory mechanisms at the individual cell

level and cannot describe the EMT process where individual cell effects are important [19].

As a result, hybrid models that unite discrete and population-based approaches are increas-

ingly favored in cancer modeling. The multiscale approach has been successfully adapted in

the past to model the E-cadherin-β-Catenin pathway and tumor formation in breast cancer

[86, 90]. In this section, we attempted to bridge the gap between the discrete EMT and the

continuum models by delivering a cohesive multiscale representation that incorporates the

regulatory network into the population dynamics. Hence, the word “multiscale” is used in

the title of this thesis as an all-encompassing term that can be understood both as “discrete

and continuum” and as “gene regulation and cell population dynamics”. The formulation of
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the multiscale model enables cell lineage tracing of every cell in the heterogeneous population

as well as monitoring the progression of gene expressions per cell. Our model is capable of

capturing the larger-scale population growth dynamics while acknowledging the intracellular

changes that happen within each individual cell. Essentially, the multiscale model facilitates

the study of cell proliferation through tracking the variations in expression levels of different

genes that are present in all the cells.

To construct our multiscale model, we considered four different populations corresponding

to four different phenotypes in the EMT spectrum. We ascribed stem-like state to the I1

phenotype and allowed all cells to divide a finite number of times before dying, with the

exception of stem cells. We then introduced two different types of noise into our model

and observed that the differences in the noise design prompted different behaviors in the

proliferative capability of our heterogeneous population. While the first type of noise favors

the proliferation of stem cell population I1, leading to an exponential growth in cell popula-

tion, the second type of noise shows a diminishing I1 population, with the initial epithelial

population contributing the most to the overall population throughout the different cell cy-

cles being considered. In addition, the potential landscapes of the heterogeneous population

generated by the two noises illustrate distinct differentiation propensities of the two inter-

mediate states. Our findings reveal the challenges encountered when integrating noise into

a dynamic EMT model such as the multiscale model and the complex role noise plays in

modulating the different phenotypic fractions of the population.
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1.5 An integration factor method for stochastic and

stiff reaction-diffusion systems

Lastly, we shift out attention to the simulation aspect of EMT modeling. We discuss the

different numerical techniques with wide-ranging applications to solving systems of stochastic

differential equations used to mathematically model complex biological systems.

Complex patterns can be extensively found in nature, from the skin of zebrafish to the

disposition of feather buds in chicks and hair follicles in mice. Often, those patterns are

created by biochemical reactions along with diffusions of the molecules in a cellular or multi-

cellular systems [57]. Such biological systems, which may be described in reaction-diffusion

equations, are constantly subjected to stochastic effects such as noises and environmental

perturbations. The stochastic effects on the biochemical reactions at the single-cell level can

result in heterogeneous responses of cellular populations and influence their behaviors [110].

Previous studies on stochasticity reveal the adaptation of biological systems to noise, which

can be characterized by the systems’ strategies to combat noise, whether by attenuating or

exploiting it [106, 110]. For example, spatial stochastic effects help to either prompt the

tight localization of proteins or enhance the response to the directional change of a moving

pheromone input, resulting in a more robust cell polarization [60]; and the boundary of gene

expression domains is sharpened as a result of gene-switching prompted by intracellular noise

[116]. It has become increasingly important to incorporate these stochastic effects into the

reaction-diffusion equations for better understanding of biological systems.

One can describe a biological system in terms of the following stochastic reaction-diffusion

equations:

∂U

∂t
= a

∂2U

∂x2
+ f(U) + g(U)Ẇ (x, t) (1.1)
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where Ẇ (x, t) is a standard two-dimensional Wiener process.

One typical way of solving Eq.(1.1) numerically is to apply central difference first to the

diffusion and then use the temporal explicit scheme to solve the subsequent system [33],

such as using the explicit Euler method [18] or the two, three, and four-stage explicit Runge

Kutta schemes for the system containing additive noise and one-dimensional Wiener process

in [23]. Another common approach is using the Galerkin projection of the stochastic partial

differential equation (SPDE) and then applying the numerical scheme to a finite-dimensional

version of the SPDE. For example, Exponential Time Differencing (ETD) scheme may be

applied to the Galerkin projection of the SPDE [44, 45]. One other such example is the Lord

and Rougemont scheme, which is derived through Galerkin projection and an integrating

factor approach [73]. This scheme is most effective for SPDE with Gevrey regularity, and

more improvement may be made on such schemes by taking advantage of the Itô-Taylor

expansion [73].

While explicit temporal schemes may be directly implemented for various spatial discretiza-

tion, including finite element and Galerkin methods [35], to deal with the stability constraint

associated with the diffusions, one can treat the diffusion term implicitly, while treating other

terms explicitly [33] such as implicit Euler and Crank-Nicolson schemes [18]. Higher order

methods [55] can be achieved using Galerkin projection and the linear-implicit versions of

strong Taylor schemes [44]. Non-uniform time discretization on Brownian motion can also

be obtained for implicit Euler scheme [81].

Stochastic stiffness arises from large differences in the magnitudes of Lyapunov exponents

[54], resulting in the presence of different time scales. As in the deterministic case, explicit

methods face step-size constraint when used to solve stiff stochastic systems [65]. The time-

step constraint can be improved with the modification of the stochastic term by adding more

terms from the Itô-Taylor expansion for higher order of accuracy and stability. One of the

most well-known schemes stemmed from this construction is the Milstein scheme [54]. Treat-

ing the stochastic term implicitly is also one of the popular approaches [8, 37, 80, 107], albeit
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computationally expensive. Hence, a class of explicit methods known as Chebyshev methods

are derived, which have better mean-square stability than explicit Euler method and are not

as computationally expensive as implicit methods [1]. A combination of different numerical

schemes into one method can also be seen, such as the case of the Composite Euler scheme

[9]. For this scheme, at each temporal step, the stochastic differential equation is either

solved by implicit Euler method or semi-implicit Euler method. The Composite method has

similar order of convergence 1/2 to the Euler Maruyama method but better stability.

Most of the methods mentioned so far are derived to combat the stochastic stiffness through

the improvement of the stochastic term, which can be costly and not as effective if the

stiffness only occurs in the deterministic term. In such case, methods that treat the de-

terministic term implicitly while keeping an explicit treatment of the stochastic term are

preferred [8]. Here, we propose a new approach to the problem of stiffness caused by the

deterministic term, more specifically the reaction term in Eq.(1.1). The approach is based on

the semi-Implicit Integration Factor (IIF) methods [69, 82, 83, 104], which has been found to

be effective for the stiff reaction-diffusion equations with better stability constraints imposed

on the time steps associated with both reaction and diffusion. In this approach, the time-step

constraint for the diffusion term arising due to the inverse of the eigenvalues of the diffusion

matrix, which can be large in magnitude, is resolved by treating the linear diffusion term

exactly using Integration Factor (IF) methods. Such treatment results in an exponential

function of the diffusion term and an integral of the nonlinear reaction term, which is then

treated using implicit approach through the Lagrange interpolation to deal with its stiffness.

Appropriate choices of approximation schemes lead to decoupling on the treatment for the

diffusions and reactions such that one only needs to solve nonlinear systems with the size

of the original PDEs. The IIF methods also have exceptional stability properties and its

second-order version is absolutely stable. For higher-dimensional problems, the compact IIF

(cIIF) method [82] is a great improvement on computational efficiency without altering the

stability properties of the IIF methods [83].
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In the last section of this thesis, we exploit the simple structure of the IIF methods as well as

their desirable stability properties and efficiency for solving the system in Eq.(1.1). Because

of the nice decoupling properties in the IIF method, we will treat the deterministic diffusion

and reaction terms in a similar fashion [83], while dealing with the stochastic term explicitly

as in the Euler Maruyama method [38]. We compare this approach with similarly constructed

schemes whose main difference is in the treatment of the deterministic part of the equation,

which can be approximated using ETD, Crank-Nicolson, or Implicit Euler methods. When

all of the properties such as order of accuracy, mean errors, and stability region are taken

into consideration, the new approach shows many advantages. We also take advantage of

the low computational cost of the cIIF methods to similarly construct a stochastic method

that can be applied to higher-dimensional problems. The paper is organized as followed. We

first present the construction of the method for systems with additive noise or multiplicative

noise, along with linear stability analysis and their comparisons with several other methods.

Next, we compare the new method with other methods on linear SODEs and SPDEs on

their orders of accuracy and stability constraints. Then, we use this approach to study a

nonlinear activator-substrate system of two diffusion species and lastly, make our conclusion.
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Chapter 2

Ovol2-Zeb1 Loop Governs Multi-step

Epithelial-Mesenchymal Transition

2.1 Results

2.1.1 A regulatory network containing Ovol2-Zeb1 mutual repres-

sion results in multiple intermediate states and a four-state

EMT system

Mutual inhibition loops between EMT-inducing TFs and miRNAs (e.g. Zeb1-miR200 and

Snail-miR34a) are critical for robust control of EMT/MET [84]. Recent studies on Ovol2’s

direct inhibition of Zeb1 [61, 108], coupled with the discovery of the repression of Ovol2’s

expression by Zeb1 (Appendix A), raise questions about the functions of the Ovol2-Zeb1

mutual inhibition loop in governing the EMT process.

To dissect the role of the Ovol2-Zeb1 loop in EMT dynamics, we incorporated this regulation,

as well as the negative regulation of TGFβ signaling by Ovol2 [108] into a framework that

11



has been successfully used to formulate a 3-state EMT system [115]. The new model thus

contains three mutual inhibition loops: Zeb1-miR200, Snail-miR34a and Ovol2-Zeb1, Figure

2.1A. To examine how the system might be stabilized at various stages of EMT, we performed

bifurcation analysis with respect to external TGFβ as an EMT inducer. Interestingly, four

distinct stable steady states corresponding to four cell phenotypes emerged with the addition

of the Ovol2-Zeb1 loop, Figure 2.1B. In particular, two intermediate states appeared between

a terminal E state and an M state, Figure 2.1B. We named the intermediate state closer to

the E state I1, and the one closer to the M state I2. The dynamic feature of the four-state

system is consistent with the recently proposed sequential cell-state transition in which more

than one intermediate states may exist [99], and it is also compatible with existing EMT

models [76, 100, 115] in terms of possible ternary switch in the system (I1-I2-M, E-I1-I2, E-I1-

M or E-I2-M, depending on specific external stimulation). Importantly, our model predicted

that elevated production of Ovol2 is able to reprogram all other states to the terminal E

state, Figure 2.1C. We will return to this notion later.

2.1.2 Stochastic simulations and experimental evidence consis-

tently support the 4-state model and validate the repro-

gramming ability of Ovol2

From experimental results, Xing Dai’s lab independently confirmed the existence of two

intermediate states during the transition from epithelial to mesenchymal phenotypes (Fur-

ther explanations are included in Appendix B and Figure 2.2A). They also concluded that

overexpressing Ovol2’s gene expression can reprogram I1 state into an E state as well as

reprogram M-state cells into an E state, (Appendix B, Figure 2.2B and E). To compare

these observations with our mathematical model, we performed stochastic simulations with

the basal model upon fluctuations in gene/protein expression (see details in Methods). We
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Figure 2.1: Incorporation of an Ovol2-Zeb1 mutual repression module results in the obser-
vation of four distinct states in EMT. A) Influence diagram of the EMT/MET system. Blue
icon: epithelial promoting factor. Yellow icon: mesenchymal promoting factor. Hexagon:
extracellular input. B, C) One-parameter bifurcation diagrams of E-cadherin (Ecad) with
respect to external TGFβ (B) and Ovol2 basal production rate (C). Solid curve: stable
steady state. Dashed curve: unstable steady state. In B, only transition between I1 and I2

is reversible when TGFβ level is varied. In C, varying Ovol2 alone does not result in any
reversible transition, but it can possibly reverse the following TGFβ-induced transitions:
E-I1, E-I2 and E-M.
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started simulation with the initial condition at I1 state (Figure 2.2C, green). Remarkably, at

high basal production rates of Zeb1 and Ovol2 (Figure 2.2C, red and blue), the simulation

produced similar Ecad/Vim expression patterns of these populations as those observed in

the experiments. These observations demonstrate the bidirectional differentiation potential

of MCF10A cells towards two opposite directions (i.e., I1 to E or I1 to M) and provide

evidence for the opposing roles of Ovol2 and Snail/Zeb1 in the dynamic EMT system of

MCF10A cells. In addition, results of stochastic simulations for control M-state cells and

Ovol2-overexpressed M-state cells using the corresponding conditions are in good agreement

with experimental results, Figure 2.2F. Interestingly, a time series experiment revealed that

the downregulation of Vim precedes the induction of Ecad, suggesting that upon Ovol2 ex-

pression these cells first lose their memory of the M state and then acquire the E phenotype,

Figure H.4.

Consistent with previous findings [115], a high dose of TGFβ resulted in a complete con-

version of cells to what appears to be the M state, whereas low dose of TGFβ induced the

appearance of two new populations in a heterogeneous culture that are likely I2 (previously

termed P state for partial EMT in Zhang et al. [115]) and M states (Figure 2.3A and B and

Figure 2.4). Of note, in both mathematical modeling and experiments, the I2 state appears

less stable than I1, as it 1) shows more vulnerability when facing fluctuations (Figure 2.4);

2) entails a narrow range of Ovol2 concentration in the absence of strong TGFβ signaling

(Figure 2.1C); and 3) is barely distinguishable from the M or I1 state experimentally and

in simulations (Figure 2.3A and Figure 2.4). The degree of separation of the different cell

populations in our study is less remarkable than that reported [115], possibly due to the

dynamic nature of I2 and the subtle differences in experimental conditions.

Taken together, these experimental results support our computational discovery of a four-

state dynamic system. Moreover, they highlight the ability of Ovol2 in reprogramming both

I1-and M-state cells into a terminal E state, as predicted by our model. The EMT phenotypes

and the cell state transitions that we have discovered through modeling and experiments are
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summarized in Figure 2.3C.

2.1.3 Critical regulatory controls in maintaining the four states

First, we explored the roles of Ovol2 in regulatory control of the four states. Through bifurca-

tion analysis with respect to external TGFβ and basal production rate of Ovol2 representing

examples of EMT-inducing and -suppressing signals that are responsive to changes of the

tissue microenvironment, we found these two signals to produce various combinations of cell

phenotypes (Figure 2.5A(I)). Clearly, Ovol2 basal production rate exerted positive and neg-

ative effects on the robustness of E and M states, respectively (Figure 2.5A, blue and pink

areas), and this is consistent with the demonstrated role of Ovol2 in preventing EMT and

inducing MET ([91, 108] and this study). The effect of Ovol2 on the two intermediate states

can be either positive or negative. Stability of I1 can be maintained when the strengths of

Ovol2 and TGFβ signals are approximately proportional, with low levels of both giving rise

to the most robust condition (Figure 2.5A, cyan area). In contrast, stability of I2 requires

a minimum rate of Ovol2 basal production, but its robustness increases with higher levels

of both Ovol2 and TGFβ (Figure 2.5A, orange area). In a specific case, when TGFβ sig-

nal was increased by 10-fold, higher Ovol2 basal production rate was required to retain the

stability of both I1 and I2 states and to prevent the cells from differentiating into M state

(Figure 2.5B, blue and orange triangles). Conversely, when Ovol2 basal production rate was

increased, higher TGFβ signal strength was required to retain two stable intermediate states

and to prevent the cells from differentiating into E state (Figure 2.5C, blue and orange dia-

monds). Overall, our analysis suggests that Ovol2 production tends to stabilize E state and

destabilize M state, and that the two intermediate states are favored in two distinct condi-

tions (high- versus low-signals) but both require the proper balance between EMT-inducing

(e.g. TGFβ) and -suppressing signals (e.g. signals that induce Ovol2 expression).
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Figure 2.2: Experimental evidence for bidirectional potential of MCF10A cells. A, B, D,
E) Flow cytometric analysis of epithelial marker (Ecad) and mesenchymal marker (Vim)
profiles. A) Direct comparison of MCF10A with luminal (epithelial)-type cancer cell line
MCF7 and basal (mesenchymal)-type cancer cell line MDA-MB231. MCF10A (green) falls
in the intermediate state between MCF7 (blue) and MDA-MB231 (red). Analyses were
performed at 90 to 100% confluency. B) Bidirectional potential of MCF10A cells. E(I)MT
and M(I)ET was induced by forced expression of transcription factors Snail or Zeb1, and
Ovol2, respectively. After 6 days of lentiviral infection, Snail (red) and Zeb1 (orange) induced
EMT while Ovol2 (blue) induced MET as compared to the empty vector control (green).
C) Stochastic simulations for a population of 2000 cells in three different conditions: basal
parameter set (green), high basal production rate of Zeb1 ZEB1 (red, Zeb1 mRNA basal
production rate was raised to 0.01 µM/hr) and high basal production rate of Ovol2 (blue,
Ovol2 basal production rate was raised to 2 µM/hr). Initial conditions are all at I1 state. D)
The histogram shows the expression status of CD44. M states (Snail; red and Zeb1; orange)
correlate with high CD44 expression while cells in E state (Ovol2; blue) show low CD44
expression as compared to empty vector control (green). MCF7 is shown as a representative
cell type in the E state with low CD44 expression. E) Ovol2 reprograms MDA-MB231 cells
from M- to E- state. Cells were analyzed after 6 days of control (red) or Ovol2-expressing
(blue) lentiviral infection. F) Stochastic simulations with a basal parameter set (red) and
high basal production rate of Ovol2 (blue, Ovol2 basal production rate was raised to 2
µM/hr). Initial conditions are all at M state.
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Figure 2.3: Stepwise induction of EMT in MCF10A cells by different doses of TGFβ.
A) Cells were treated with various concentrations of TGFβ for 10 days and analyzed for
Ecad/Vim expression by flow cytometry. Each panel shows a superimposed image of two
treatment conditions. Note that the 25 µM TGFβ treatment gave rise to a heterogeneous
population containing I2 cells and M cells (orange). B) The corresponding steady states of
the cellular phenotypes (indicated as colored dots) observed under various TGFβ concentra-
tions in A are mapped to the bifurcation diagram shown in Figure 2.1B. C) An illustrative
summary of phenotypic transitions in the four-state system. Solid arrow represents tran-
sition with experimental evidence from this study. Dotted arrow represents hypothetical
transition without experimental evidence.
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Figure 2.4: Stochastic simulations for stepwise I1-I2-M transitions upon TGFβ treatment.
Stochastic simulation (started at I1 state) for a population of 2000 cells at three concentration
of TGFβ. Green: no TGFβ (I1 state). Red: high (10 units) TGFβ concentration (M state).
Cyan: intermediate (2.5 units) TGFβ concentration (a mixture of I2 and M populations
can be obtained at the low-noise condition). At high TGFβ concentration, the system is
monostable at M state. At intermediate TGFβ concentration, the system is bistable at M
or I2 state. See Figure 2.1B.
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Next we reduced the strength of the Zeb1-Ovol2 mutual inhibition loop to determine its

specific role in the four-state system. This led to no significant effect on the robustness

of E state, moderately positive effect on that of M state (Figure 2.6, middle column, blue

and pink areas), but significantly reduced robustness of the two intermediate states (Figure

2.6, middle column, cyan and orange areas). A complete blockage of the mutual inhibition

loop resulted in a very small I1 region, and complete disappearance of the I2 region (Figure

2.6, right column). The role of the Ovol2-Zeb1 loop appeared distinct from that of the

miR34a-Snail and miR200-Zeb1 mutual inhibition loops, as at least one of the miRNA-TF

loops becomes dispensable for I2 (but not I1) when the other is intact (Figure 2.7, left and

middle columns). This said, a complete blockage of both miRNA-TF loops abolished the

intermediate states (Figure 2.7, right column). Partial blockage of each mutual inhibition

loop gave rise to complex effects on the robustness of the two intermediate states (Table 2.1

and Figure H.6), but these effects are consistent with the finding of redundancy between

the two miRNA-TF loops in terms of maintaining I2 state. Interestingly, partial blockage of

miR200-Zeb1 resulted in a merge of the I1 and I2 regions, forming a large, continuous inter-

mediate region (Figure H.6). Collectively, these results suggest that while all three mutual

inhibition loops contribute to the existence and robustness of the two intermediate states,

the strength of the Ovol2-Zeb1 loop is more critical.
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Figure 2.5: Roles of EMT-promoting and -inhibiting factors in the four-state EMT system.
A) Two-parameter bifurcation diagram with respect to external TGFβ and Ovol2 basal
production rate. The red curves were computed by extending the saddle-node bifurcation
points obtained in one parameter bifurcation analysis (Figure H.5), and they define different
parameter regions that can be mono-stable, bi-stable, tri-stable or tetra-stable depending
on the number of possible stable phenotypes (see labels), and each multi-stable region can
be viewed as an area where multiple phenotypes co-exist (II-V). The size of each phenotype
region is an indication of robustness of the phenotype when the two signals are varied. Green
star: a basal parameter set and an intermediate TGFβ concentration that together give
rise to four phenotypes. B, C) One-parameter bifurcation diagrams of Ecad with respect
to external TGFβ (B) and Ovol2 basal production rate (C). Solid curve: stable steady
state. Dashed curve: unstable steady state. A basal parameter set (blue) and a perturbed
parameter set (orange) are compared in each plot. Triangles and diamonds denote the
conditions under which both I1 and I2 are stable.
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Figure 2.6: Roles of the Ovol2-Zeb1 mutual inhibition loop in the four-state EMT system.
Comparison of the basal model (left column), reduced Ovol2-Zeb1 mutual inhibition (middle
column), and blocked Ovol2-Zeb1 mutual inhibition (right column) on the four phenotypes.
Each subplot is a two-parameter bifurcation diagram similar to Figure 2.5A. Subplots in
each column highlight the various phenotypes in one condition. Shaded areas are highlighted
phenotypes. Colors of the shading correspond to the colored labels on the right.
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Figure 2.7: Roles of the miR34a-Snail and miR200-Zeb1 mutual inhibition loops in the
four-state EMT system. Comparison of removing miR34a-Snail mutual inhibition (left col-
umn), miR200-Zeb1 mutual inhibition (middle column), or both (right column) on the four
phenotypes. Each subplot is a two-parameter bifurcation diagram similar to Figure 2.5A.
Subplots in each column highlight the various phenotypes in one condition. Shaded areas
are highlighted phenotypes. Colors of the shading correspond to the colored labels on the
right.
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2.1.4 Distinct differentiation propensities of the two intermediate

states

We next used stochastic modeling to examine how likely a population of cells at the two

intermediate states differentiates into E or M state when gene/protein expression fluctuates.

We chose a condition under which the four states are stable (Figure 2.5A, green star). Sim-

ulations were performed under this condition for two populations of cells originating from

I1 and I2 respectively (Figure 2.8A and F). When fluctuations were small, cells stayed in

the basins of attraction of their initial steady state by the end of the simulation (Figure

2.8A and D). Large fluctuations triggered both E(I)MT and M(I)ET of the cells originally

in I1, resulting in a heterogeneous population containing E and M phenotypes, whereas the

same level of fluctuations triggered E(I)MT of the cells originally in I2 (Figure 2.8B and E

and Figure H.7). Thus, the I1 and I2 cells have distinct differentiation propensities, with

I1 cells more likely to differentiate into E state, whereas I2 cells more likely into M state.

These simulations also allowed us to infer that E and M states are more stable than the

intermediate states, and that I1 is more stable than I2 under the particular conditions tested

(Figure 2.8C and F).

We also asked whether changing Ovol2 production rate can affect the differentiation propen-

sities from the I1 state. We reduced the basal production rate of Ovol2 by 20% and performed

stochastic simulations starting from I1 as in Figure 2.8A and B. We found that this reduced

Ovol2 production rate enabled more cells to settle at M state, and fewer cells to settle at

I1 or E state (compare Figure 2.8B and H). We speculate that this is due to the reduced

stability of E and I1 states, and/or the reduced energy barrier from I1 to I2 and M states

(Figure 2.8I), providing a possible thermodynamic explanation for the role of Ovol2 in pre-

venting EMT and inducing MET. Conversely, increased basal production of Ovol2 enabled

some of the cells from I2 state to settle at E state instead of M state in the presence of large

fluctuations (Figure 2.8J, K and L; compare panels E and K). These results suggest that
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Mutual Knockdown Example of Major effect on
inhibition loop condition parameter setting intermediate states

miR34a-Snail
Partial removal

0.1%1/J2200 Disappearance of I1

and decrease of I2

25%KSR, 25%1/J134 Decrease of both I1 and I2

50%KSR, 50%1/J134 Decrease of I1

0.1%KSR Disappearance of I1

Complete removal 0.1%KSR, 0.1%1/J134 and increase of I2

miR200-Zeb1

Partial removal

90%1/J2200 Decrease of I2

75%1/J2200 Merge of I1 and I2

50%K1 Decrease of I1

and increase of I2

25%K1, 25%1/J2200 Disappearance of I1

and increase of I2

i.e I1 and I2 merge
Complete removal 0.1%K1, 0.1%1/J2200 to form a large

intermediate state where
this intermediate state
is closer to I2 than I1

miR34a-Snail and Complete removal 0.1%KSR, 0.1%1/J134, Disappearance of
miR200-Zeb1 0.1%K1, 0.1%1/J2200 both I1 and I2

Ovol2-Zeb1
Partial removal

50%1/JO Increase of I2

50%1/J2zeb Decrease of I1 and I2

25%1/JO, 25%1/J2zeb Decrease of I1 and
disappearance of I2

Complete removal 0.1%1/JO, 0.1%1/J2zeb Tiny I1 region and
disappearance of I2

Table 2.1: Influence of blocking mutual inhibition loops on the two intermediate states

the differentiation propensities of the two intermediate states can be regulated by tuning the

level of Ovol2 expression.

2.2 Discussion

Our study provides both modeling and experimental evidence for a new intermediate state

that lies between E and M states in addition to the recently observed intermediate state

[76, 100, 115]. Previous studies based on epigenetic modifications predicted that multiple

intermediate states may exist between terminal E and M states, and they may contribute
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Figure 2.8: Distinct differentiation propensities of the two intermediate states. A, B, D,
E) Stochastic simulations for a population of 5000 cells in four different conditions. Basal
parameter set and intermediate external TGFβ concentration (0.5) were used (green star
in Fig 6A). A) Initial condition: I1; small fluctuations. B) Initial condition: I1; large
fluctuations. D) Initial condition: I2; small fluctuations. E) Initial condition: I2; large
fluctuations. G, H) Stochastic simulations for a population of 5000 cells initially at I1 state.
Ovol2 basal production level was reduced by 20% from basal parameter. J, K) Stochastic
simulations for 5000 cells initially at I2 state. Ovol2 basal production level was increased by
100% from basal parameter. C, F, I, L) Metaphoric energy landscapes (green curves) for
I1 (C), I2 (F) initial conditions, and reduced (I) or increased (L) Ovol2 basal expression
rate. Orange circle represents the initial condition.

25



to phenotypic plasticity in a continuous manner [99]. Additionally, Huang et al. classified

43 ovarian carcinoma cell lines into four subgroups, including an E-like intermediate and

an M-like intermediate states in the EMT spectrum, based on expression patterns of signa-

ture EMT genes [42]. To our knowledge, our work is the first unequivocal demonstration

of two intermediate states in EMT. Previous theoretical study revealed four types of sta-

ble states during T cell differentiation [41]; a common feature of that and our study is the

inclusion of multiple (a minimum of three) positive feedback loops (including mutual inhibi-

tion).We anticipate that as the complexity of modeling increases by adding more regulatory

elements, even more intermediate states may be observed, with the most extreme scenario

being a spectrum of metastable or stable cell phenotypes lying between the terminal E and

M states. A unique and interesting feature of our four-state model is that intermediate

states are not necessarily metastable; instead they can be stable with no (I1) or high (I2)

EMT-inducing/inhibitory forces. It is the balance between these two opposing forces that is

critical for maintaining the intermediate states.

Given the assumptions we make in our mathematical model, we have shown that the Ovol2-

Zeb1 mutual inhibition loop is necessary for maintaining a four-state system. On one hand,

this highlights the unique importance of the role of Ovol2 in EMT. On the other hand, the

model leaves open the possibility that a four-state system could be governed by other un-

known TFs that might be involved in a similar mutual inhibition loop. As discussed above,

with additional positive feedback loops (> 3), it is conceivable that additional intermediate

states will emerge. As such, our model provides a framework for identifying and analyzing

multiple intermediate phenotypes in EMT, and suggests a general and unique role of TF-

based mutual inhibition loop in this system. With a proposed Ovol-Zeb1 mutual inhibition

loop, a recent modeling study suggested important roles of Ovol2 in controlling the previ-

ously established three-state EMT system [46]. This is in agreement with our findings that

Ovol2 is critical for both intermediate states.

What is the advantage of having intermediate state(s)? Such state can be a “hybrid” state,
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where cells exhibit both, albeit partial, “E” and “M” phenotypes. Indeed, during mammary

gland morphogenesis, some epithelial cells at the tips of growing ducts express mesenchy-

mal markers while simultaneously retaining epithelial integrity, suggesting that they are in

a naturally occurring “hybrid” state [27]. In this case, a “hybrid” phenotype would enable

the cells to undergo collective migration, by which they invade the surrounding stroma as a

coherent epithelial front to facilitate branching morphogenesis. The same may be true for

metastatic cancer cells as they acquire a mesenchymal phenotype to invade the surrounding

tissue and colonize distant sites as epithelial tumors. Alternatively, an intermediate state

can be a “näıve” state, where cells are devoid of typical epithelial and mesenchymal features.

Along this line, we note our experimental observation that MCF10A cells seem to first lose

their initial phenotypes (E or M), and then gain their destination phenotypes (M or E)

during the factors-directed state transitions (Figure 2.2). Traveling through a “näıve” state

could be a useful mechanism to erase memories of old lineages, thus creating a window of

opportunity for expanded differentiation plasticity as desired for multipotent stem cells.

Why multiple intermediate states then? Chuong and Widelitz proposed the interesting idea

that stem cell states can be regulated depending on the physiological needs of tissues to

generate different numbers of intermediate stops on their journey to differentiation [16]. The

same concept may be applicable to the EMT system, as having multiple intermediate states

offers additional facets of regulation to more precisely control the temporal and spatial flux

of epithelial cells through their differentiation/dedifferentiation pathway to adapt to various

tissue environments or topology. Regardless of whether cells adopt an intermediate fate to

gain “hybrid” behavior (e.g., collective migration) or to dedifferentiate to a naive state for

lineage plasticity, the more intermediate states there are, the more thermodynamic traps

that would be. Thus having more than one intermediate state would create a more control-

lable energy barrier so that cells do not easily fall into the mesenchymal state, which we

know from previous studies is largely irreversible [115]. Non-genetic heterogeneity and spon-

taneous conversion among subpopulations have been documented for hematopoietic stem
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cells and breast cancer cells [12, 13, 32, 67]. Theoretical analysis of these dynamic processes

often involves the assumption that gene regulatory networks can generate multiple stem-like

states that are adjacent in state space [13, 32, 43, 119]. Our model presents a good example

in which a network of three mutual inhibition loops is capable of giving rise to two adjacent

states that may be associated with subpopulations of cells having distinct propensities for

differentiation or tumorigenesis. The unstable nature of the I2 state under conditions ex-

amined and the phenotypic similarities between I1 and I2 states prevented us from further

characterizing the molecular differences between the two intermediate cell populations and

their corresponding cellular behaviors. As such, the functional significance of having two

intermediate states has yet to be experimentally established.

We have demonstrated bidirectional transitions of MCF10A cells upon Zeb1/Snail overex-

pression (I1-M transition), TGFβ treatment [I1-(I2)-M transition] and Ovol2 overexpression

(I1-E transition) (Figure 2.3B). It is tempting to ask which extracellular signaling molecules

can trigger Ovol2 upregulation and the subsequent transition to E state under physiolog-

ical conditions. Among the possible candidates is a BMP signal as it is known to induce

MET [91, 108] and to positively regulate Ovol2 expression during embryonic stem cell dif-

ferentiation [117]. Identification of Ovol2-inducing external signals that can induce MET of

MCF10A cells will enable a finer analysis of the dynamic process of MET as well as further

experimental validation of our mathematical model.

In summary, our work identifies transcriptional factor Ovol2 and its mutual inhibition rela-

tionship with Zeb1 as critical additions to the known EMT regulatory network. Specifically,

these new regulatory elements are important for attaining and maintaining the two inter-

mediate states. Furthermore, their experimental perturbations allowed us to observe the

bidirectionality of transitions from the intermediate states. Together, our study offers a

framework for understanding the molecular strategies and design principles by which epithe-

lial stem, progenitor, or cancer cells achieve multipotency or collective migration.
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Chapter 3

Multiple Cell States Reduce Noise in

EMT

3.1 Mathematical models and stochastic simulation of

multiple-state EMT models

3.1.1 Model construction

We explored the functional significance of the intermediate states in the EMT process by

adapting the population dynamics to modelling the transition from epithelial to mesenchy-

mal phenotypes. Each steady state in the transition was portrayed by a population of cells

that assumed the phenotype reflective of that state. In other words, an n-state EMT system

has n different populations of cell, with one of them being epithelial cells and another being

mesenchymal cells. Hence there is a total of n− 2 groups that represent the cell populations

of different intermediate stages. In this paper, we discussed the population dynamics for four

different systems: two-state, three-state, four-state, and five-state EMT processes (Figure
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Figure 3.1: Four population dynamics models for four distinct EMT systems: two-state,
three-state, four-state, and five-state transitions. In each model, E denotes the epithelial
population, M mesenchymal population, and Ii the population corresponding to the ith in-
termediate state. In each model, the blue arrows describe the transitions of cells between
two populations, where the arrow heads describe the direction of each transition. The black
arrows indicate cell death, the yellow arrows the self-renewal of (stem) cells in the interme-
diate states, and the green arrows that point towards the mesenchymal population indicate
a constant influx of cells into this population.
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3.1). In each system, each population of cells was characterized by death rate and transition

rates from/to another population. The populations that corresponded to the intermediate

states were given stem cell features, described by self-renewal rates and lower death-rates

than other types of cells. We modeled the population of each cell phenotype with a linear

ordinary differential equation (ODE), where we introduced a constant influx of cells to the

mesenchymal population under the assumption that mesenchymal cells are mobile and inva-

sive. With this influx, all of the matrix systems in our models are nonsingular. The ODE

that depicts the change in the population size of a particular cell phenotype Pi, i = 1, 2, ..., n,

is as follows:

dPi
dt

=
∑
k 6=i

αkiPk −
∑
k 6=i

αikPi − diPi + siPi (3.1)

where αki is the cellular conversion rate from Pk to Pi, di is the death rate, and si is the

self-renewal rate where si = 0 if the phenotype of the cell population Pi is epithelial or

mesenchymal. The cellular conversion rates, death rates, and self-renewal rates all assume

constant values. In addition, if Pi describes the population of mesenchymal cell, then

dPi
dt

=
∑
k 6=i

αkiPk −
∑
k 6=i

αikPi − diPi + siPi + IM (3.2)

with IM being the constant influx of cells into the mesenchymal population. For our simu-

lations, we chose the range for our parameter values to be between 1e−5 and 10, with the

death rates di of the “stem cell” populations to be between 1e−5 and 1e−2 to reflect the

lower death rates of stem cells. Meanwhile, since the epithelial and mesenchymal popula-

tions were assumed to have higher death rates, we chose the death rates to be between 0.05

and 10. The quantity of cell population is in arbitrary unit. One time unit in our model

corresponds to one day.

In order to explore the noise attenuation properties of each population dynamics model, we

introduced multiplicative noise σiPidWi to our ODE system via multiple means, where σi is
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the noise coefficient and Wi describes the Standard Brownian motion. This noise is referred

to as “input noise” in this paper. First, we added noise to the epithelial and mesenchymal

populations, then observed the effects that noise introduction had on each individual popula-

tion as well as overall. Next, we added noise to one intermediate population besides the two

existing noises on epithelial and mesenchymal cells, and finally we introduced multiplicative

noise to each cell population. To ensure consistency between the population fluctuations, we

chose the noise coefficient σi = 1 for all i = 1, 2, ...n.

3.1.2 Model comparison through Differential Evolution algorithm

To compare various models with distinct number of parameters, we used Differential Evo-

lution (DE) to optimize these models with respect to their ability to attenuate noise, and

we subsequently compared the optimized parameter sets in terms of the noise attenuation

property. DE is a method for improving a set of parameter values (i.e., a parameter vector

x, as above) with respect to an objective function, Φ(x), by generating a sequence of trial

parameter vectors by processes of reproduction and selection [89]. Reproduction generates

an offspring parameter vector u from a parent parameter vector x by diversification. If the

offspring performs better than the parent, then the cost value produced by the objective

function for the offspring is less than that of the parent, i.e. Φ(u) < Φ(x). In this case,

the parent vector x is replaced by the offspring vector u in the next generation. The DE

algorithm was previously shown to be efficient in optimizing models for biological systems

[39]. With this algorithm, we iteratively searched for a newer set of parameter values that

provided a better cost to the objective function Φ(x) than the previous set until the cost

converged to the most optimal value. We chose the cost to be the average coefficient of vari-

ation of the population size for all phenotypes, i.e. the sum of the coefficients of variation

of all the cellular populations divided by the number of states in a particular EMT system
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that we study. As a result, a lower cost value implies an overall reduction in fluctuations in

each cell population and is thus desirable. We applied the optimization algorithm ten times

to obtain ten sets of parameters with their corresponding cost values.

During DE, parameter vectors evolve from generation to generation. Each generation (in-

dexed by t = 0, 1, ...) consists of N parameter vectors xj, j = 1, ..., N . Hence, the real

number xij(t) is the value of the ith parameter in the jth parent in the tth generation. Let

uj(t) be the parameter vector for the single offspring of the jth parent in the tth generation.

The components of this vector, uij(t) for i = 1, ..., D, are constructed in two steps (mutation

and crossover). Then, given the two parameter vectors xj(t) and uj(t), a decision is made

as to which one is propagated to generation t+ 1. The following three operations propagate

parameter vectors from one generation to the next:

1. Mutation: First, we create a “mutant” vector vj(t) by perturbing a parental vector

xj(t). In our DE approach, we let the perturbation vector be the difference between

the parameter vectors of two additional parents, j′ and j′′, chosen at random from the

tth generation of parents. All three parents must be different. The “mutant” vector is

defined by:

vj(t) = xj(t) + F · (x′j(t)− x′′j (t)) (3.3)

where F is a scalar, 0 < F < 1, that determines how “aggressive” the mutation is.

2. Crossover: Next we allow for crossover between the parental parameter set xj(t) and

the mutant parameter set vj(t). Component-wise, the offspring vector uj(t) receives a

parameter value from the mutant vector with probability C (the crossover probability)
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or from the parent vector with probability 1− C:

ui,j(t) =


vi,j(t), if rand(0, 1) ≤ C

xi,j(t), otherwise

(3.4)

i = 1, 2, ..., D and j = 1, 2, ..., N.

We choose C = 0.5 so that parental values and mutant values have equal chances to be

in the offspring vector.

3. Selection: Depending on their relative performances, xj(t) or uj(t) passes on to the

next generation. There are two possibilities here. For “greedy” selection, the offspring

replaces its parent if it is superior:

xj(t+ 1) =


uj(t), if Φ(uj(t)) < Φ(xj(t))

xj(t), otherwise

(3.5)

For “non-greedy” selection, the condition for replacement is:

Φ(uj(t)) ≤ Φ(xj(t)) (3.6)

We implement DE using the Matlab code available in Price and Storn’s algorithm for DE

[95].
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3.1.3 Application of Fluctuation Dissipation Theorem

To measure the fluctuations on each cell population, we calculated the coefficient of variation

of the population size for each cell phenotype from the covariance matrix that we found

using the Fluctuation Dissipation Theorem [52, 58]. The Fluctuation Dissipation Theorem

helps to predict the behaviors of a system in thermal equilibrium by establishing a relation

between the frictional force and random force created by the Brownian particle’s impacts

with surrounding molecules. We applied the version of the Fluctuation Dissipation Theorem

mentioned in [51] to our system of linear stochastic ODEs:

dP = AP(t)dt+ Γ(P(t))dWt (3.7)

where A is a constant matrix and Γ(P(t))dWt represents the multiplicative noise term.

Γ(P(t)) is a diagonal matrix whose ith entry is σiPi(t). With this application of the Fluc-

tuation Dissipation Theorem, we found the covariance matrix Σ for the equilibrium system

through the formula

AΣ + ΣAT = −Γ2(Pss(t)) (3.8)

with Pss(t) being the steady states of the deterministic system dP/dt = AP(t).

To quantify the noise attenuation performance of each EMT system, we aggregate the results

of ten different optimization simulations using the DE algorithm [89] and calculate the mean

and standard deviation of the coefficients of variation that describe the fluctuations in a

specific population. Figures 3.2-3.8.

35



3.1.4 Sensitivity analysis

In our sensitivity analysis, we defined our parameters as follows: kij describes the cellular

transition rate from the population in the i-state to the population in the j-state where i,

j = E, M, I, 1, 2, and 3. Here, E denotes epithelial state, M mesenchymal state, I the

intermediate state in the three-state EMT system, and 1, 2, and 3 denote the three interme-

diate states I1, I2, and I3 in the four-state and five-state systems. The parameter ksI is the

self-renewal rate of the intermediate population in the three-state EMT system while the

parameters ks1, ks2, and ks3 are the self-renewal rates of the I1, I2, and I3 populations in the

five-state process.

The sensitivity of each parameter is measured by the average change in the average coeffi-

cient of variation upon perturbation by 50%. For some transition rates, a positive change in

the parameter value due to perturbation results in a significantly smaller average coefficient

of variation but this parameter value can be discounted because it lies outside the designated

value range that we used in our optimization algorithm Figures 3.4 and 3.8.

3.2 Results

3.2.1 Intermediate states reduce stochastic fluctuations in EMT

We first asked if the intermediate state helps to attenuate the fluctuations in E and M cells.

We used two optimized parameter sets for a two-state (E and M) model and a three-state (E,

I and M) model for comparison, and we obtained two representative trajectories under the

influence of identical level of input noise in E and M states. When we compared these two

trajectories in terms of the fractions of M cells (Figure 3.2A), we found that the fluctuations
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Figure 3.2: Comparison of the noise attenuation property between the two-state and three-
state EMT systems in terms of the effects on the mesenchymal population size. A) Multi-
plicative noise is introduced to the epithelial and mesenchymal populations. B) Multiplica-
tive noise is introduced to the epithelial, intermediate (three-state system), and mesenchymal
populations. Top two panels are the time-course trajectories that represent the normalized
number of mesenchymal cells NM/µ(NM) over a period of 10 days. To obtain the normal-
ization, we perform stochastic simulations on the steady state population of mesenchymal
cells, then divide the mesenchymal population size at each time point by its mean value
obtained over the 10-day period. In the middle two panels, the normalized mesenchymal
population size is plotted against the number of times that particular size occurs. Yellow:
two-state EMT, green: three-state EMT. Bottom two panels display the quantification of
the noise attenuation performance of the two-state and three-state systems using the mean
and standard deviation of the coefficients of variation (CV) of the mesenchymal population.
The mean is plotted here in the form of a bar graph (blue), while the standard deviation is
described by the red error bar.
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Figure 3.3: Comparison of the noise attenuation property between the two-state and three-
state EMT systems in terms of the effects on the epithelial population size. A) Multiplicative
noise is introduced to epithelial and mesenchymal populations. B) Multiplicative noise is
introduced to the epithelial, intermediate (three-state system), and mesenchymal popula-
tions. Top two panels are the time-course trajectories that represent the normalized number
of epithelial cells NE/µ(NE) over a period of 10 days. Middle two panels illustrate the dis-
tribution of the different population sizes of the normalized epithelial population. Here, the
normalized epithelial population size is plotted against the number of times that particular
size occurs. The color coding scheme for each system is similar to that of Figure 3.2. Bottom
two panels display the quantification of the noise attenuation performance of the two-state
and three-state systems.
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Figure 3.4: Comparison of the noise attenuation property between the two-state and three-
state EMT systems on the average population size. A) Noise is introduced to epithelial
and mesenchymal populations. B) Noise is introduced to the epithelial, intermediate (three-
state system), and mesenchymal populations. Top panels: trajectories of normalized average
number of cells Navg/µ(Navg) over 10 days. Middle panels: distribution of the different sizes
of the normalized average population using the color coding scheme of Figure 3.2. Bottom
panels: quantification of the noise attenuation performance of both systems. C) Sensitivity
analysis of the parameters representing unique cell transition rates in the three-state EMT
system. Here, we plot the mean of the average change in the average CV as bar graphs
(blue) accompanied by red error bars that describe the standard deviation of the average
change.
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in the fraction of M cells were reduced by 3.6% after adding the intermediate state. To

exclude the possibility that the reduction of fluctuations is due to the lack of input noise

in the intermediate state, we compared the two-state model and the three-state model with

noise in all of the three states, and the latter model still showed discernible reduction of

fluctuations in fraction of M cells under this condition (Figure 3.2B). We performed similar

analysis on the fraction of E cells, and we found that when the input noise was only in E and

M states, the three-state model performed significantly better than the two-state in terms of

minimizing the fluctuations in E cells (Figure 3.3A), but when the input noise was in all the

states, adding intermediate state resulted in a moderate increase of the fluctuations (Figure

3.3B). These results suggest that the intermediate state attenuates the fluctuations in M

cells, and it may decrease or increase the fluctuations in E state depending on the source of

noise.

We quantified the average fluctuations of all cellular states with the two-state and the three-

state models. When we added noise on E and M states, the average cellular fluctuations

were markedly reduced in the presence of the intermediate state (Figure 3.4A), and there

was still a moderate reduction of average fluctuations when the noise was on all cellular

states (Figure 3.4B). This suggests that the overall performance of the three-state model is

better than that of the two-state model in terms of stability of phenotypic compositions.

We next asked which cellular state transition rates are critical for maintaining the stability.

By perturbing the parameters representing the rates transitions among the three cellular

states (input noise was added to all three states), we found that the performance of noise

attenuation in the three-state system is most sensitive to three parameters: the transition

rate from I to E (kIE), the transition rate from I to M (kIM) and the transition rate from M

to I (kMI) (Figure 3.4C). These results suggest that the transitions involving the intermedi-

ate states are important for noise attenuation, and they further corroborate the advantage

of the intermediate state. They correlation between these transition rates and the ability of

the system to attenuate noise may be tested in future experiments.
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3.2.2 Multiple intermediate states enhance noise attenuation

Next, we explored the advantages of modeling the EMT system with multiple steady states.

Using identical input noise on E and M populations, we examined the noise buffering property

of three different EMT models: three-state, four-state, and five-state transitions. Analysis

of the fluctuations in M cells demonstrates a reduction in noise effects in systems with more

than one intermediate states, as evident by the normalized trajectories of the fraction of M

cells and the coefficient of variation that reflects the variability of the mesenchymal pop-

ulation size (Figure 3.5A). In addition, five-state system filters noise more efficiently than

four-state system. Similarly, when we introduced noise to one intermediate population in

addition to the E and M populations, we observed the same correlation between the number

of intermediate populations in an EMT system and the noise attenuation property of that

system (Figure 3.5B). We also confirmed this result by adding noise to all the populations

in every EMT system, where the five-state system achieved the best noise filtering results,

followed closely by the four-state system (Figure 3.5C). From analyzing the responses of the

average intermediate population to noise with similar approach, we found that the popula-

tions of the five-state and four-state systems outperformed that of the three-state system in

attenuating noise at the intermediate levels, regardless of how noise was introduced to the

different populations (Figure 3.6A-C). This suggests that the number of stem cell sub-states

correlates with their ability to reduce the fluctuations of stem cell population. When we

studied the effects of noise on the fraction of E cells, we did not observe a similar trend to

that of the M and I cells. When input noise was added to E and M populations only, the

epithelial population of the five-state system was more susceptible to the fluctuations (Figure

3.7A) while the epithelial population of the same system showed the least variability when

noise was also added to one intermediate population (Figure 3.7B). With noise in every state,
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Figure 3.5: Comparison of the noise attenuation property between the three-state, four-state,
and five-state EMT systems in terms of the effects on the mesenchymal population size. A)
Multiplicative noise is introduced to epithelial and mesenchymal populations. B) Multiplica-
tive noise is introduced to the epithelial, mesenchymal, and one intermediate populations.
C) Multiplicative noise is introduced to all the populations. Top three panels are the time-
course trajectories that represent the normalized number of mesenchymal cells NM/µ(NM)
over a period of 10 days. To obtain the normalization, we perform similar stochastic sim-
ulations to those in Figures 3.2-3.4. Middle three panels illustrate the distribution of the
different population sizes of the normalized mesenchymal population. Here, the normalized
mesenchymal population size is plotted against the number of times that particular size oc-
curs. Green: three-state EMT, blue: four-state EMT, red: five-state EMT. Bottom three
panels display the quantification of the noise attenuation performance of the three-state,
four-state, and five-state systems.
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Figure 3.6: Comparison of the noise attenuation property between the three-state, four-state,
and five-state EMT systems in terms of the effects on the average intermediate population
size. A) Multiplicative noise is introduced to epithelial and mesenchymal populations. B)
Multiplicative noise is introduced to the epithelial, mesenchymal, and one intermediate pop-
ulations. C) Multiplicative noise is introduced to all the populations. Top three panels are
the time-course trajectories that represent the normalized average number of cells taken over
all the intermediate states NI,avg/µ(NI,avg) over a period of 10 days. Middle three panels
illustrate the distribution of the different population sizes of the normalized average inter-
mediate population. Here, the normalized average intermediate population size is plotted
against the number of times that particular size occurs. The color coding scheme for each
system is similar to that of Figure 3.5. Bottom three panels display the quantification of the
noise attenuation performance of the three-state, four-state, and five-state systems.
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Figure 3.7: Comparison of the noise attenuation property between the three-state, four-state,
and five-state EMT systems in terms of the effects on the epithelial population size. A) Mul-
tiplicative noise is introduced to epithelial and mesenchymal populations. B) Multiplicative
noise is introduced to the epithelial, mesenchymal, and one intermediate populations. C)
Multiplicative noise is introduced to all the populations. Top three panels are the time-course
trajectories that represent the normalized number of epithelial cells NE/µ(NE) over a period
of 10 days. Middle three panels illustrate the distribution of the different population sizes
of the normalized epithelial population. Here, the normalized epithelial population size is
plotted against the number of times that particular size occurs. The color coding scheme for
each system is similar to that of Figure 3.5. Bottom three panels display the quantification
of the noise attenuation performance of the three-state, four-state, and five-state systems.
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Figure 3.8: Comparison of the noise attenuation property between the three-state, four-state,
and five-state EMT systems in terms of the effects on the average population size. A) Mul-
tiplicative noise is introduced to epithelial and mesenchymal populations. B) Multiplicative
noise is introduced to the epithelial, mesenchymal, and one intermediate populations. C)
Multiplicative noise is introduced to all the populations. Top three panels are the time-
course trajectories that represent the normalized average number of cells Navg/µ(Navg) over
a period of 10 days. Middle three panels illustrate the distribution of the different popula-
tion sizes of the normalized average population. The color coding scheme for each system
is similar to that of Figure 3.5. Bottom three panels display the quantification of the noise
attenuation performance of all the EMT systems. D) Sensitivity analysis of the parameters
representing unique cell transition rates in the five-state EMT system. Here, we plot the
mean of the average change in the average CV as bar graphs (blue) accompanied by red
error bars that describe the standard deviation of the average change.
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the difference in the performance of each system in filtering noise at the epithelial level was

not discernible (Figure 3.7C). These results suggest that when the number of intermediate

state varies, there might be a tradeoff between attenuating noise in E cells and other cells.

Lastly, we quantified the overall performance of each EMT system by considering the fluc-

tuations on the average population of all cellular states. In the scenario where noise is only

introduced to the E and M states, the five-state system performs the best at suppressing

noise, while the four-state system displays better noise attenuation than the three-state

system (Figure 3.8A). With the addition of noise in one intermediate state, the four-state

and the five-state EMT processes demonstrate improvement in noise attenuation from their

three-state counterpart by 6.9% and 9.6% respectively (Figure 3.8B). Likewise, we confirmed

our results with the addition of noise to all cellular populations and concluded that the EMT

system achieves better noise attenuation property when more intermediate states are taken

into consideration (Figure 3.8C).

Using the five-state EMT process with noise in every state, we analyzed the sensitivity of

the parameters that described the cellular transition/self-renewal rates. For our analysis,

we examined the average change in the average coefficient of variation of all five popula-

tions upon perturbing each parameter. We performed the optimization procedure ten times,

whereupon, we carried out the perturbations each time and presented our results in Figure

3.8D. We found that the parameters that described the transition rate from any intermediate

population I1, I2, or I3 to the epithelial population (k1E, k2E, k3E) are most sensitive to their

own perturbations, resulting in a marked increase in the average coefficient of variation,

therefore a decrease in noise buffering ability of this EMT system. Besides those three tran-

sition rates, the cellular transitions from the mesenchymal population to the intermediate

populations (kM1, kM2, kM3) , also show considerable sensitivity to perturbations. We thus

recognize the crucial roles that the intermediate states such as the I1, I2, and I3 states play in

ensuring the better noise attenuation performance of the five-state system. The significance

of the transitions between intermediate states and the others reinforce the notion that having
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multiple intermediate states is beneficial to reducing the effects of the fluctuations on the

overall population.

3.3 Discussion

Studying the multi-step and reversible dynamics of EMT is essential for understanding the

roles of EMT in various biological processes such as development and cancer progression.

Previous studies revealed multiple intermediate states lying between terminal epithelial and

mesenchymal states [40, 42, 85, 99], and this is consistent with the observations that epithe-

lial cell populations show remarkable heterogeneity in normal and tumor tissues [59, 113].

These intermediate states are associated with stemness and invasiveness during cancer pro-

gression [29, 49], but the functions of these multiple intermediate states and the complex

transitions among all the phenotypic states are unclear. In this study, we used mathematical

models to show that systems with multiple intermediate (stem cell) states have advantages in

attenuating fluctuations of the heterogeneous cell population, and this effect is particularly

beneficial for maintaining stable fractions of stem cells in cell populations, thus providing a

strategy for maintaining homoeostasis in facing stochasticity of cell fate changes. The pos-

sible performance objective at systems level suggests a new design principle for multi-step

EMT and other multi-state systems involving transitions among diverse types of cells.

Complex networks in biological systems have been extensively studied in terms of design

principles and performance objectives [66, 101]. However, most of these studies focused on

intracellular networks of molecular interactions and influence, and much less is known for

networks formed by phenotypic transitions among cell types [34]. We showed that the later

type of networks can carry rich information in terms of performance objectives such as fa-

cilitating noise attenuation. This finding improves our understanding of systems design at
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tissue level, and suggests that the formation of cellular states and the transitions among

them may have evolved to reach performance objectives that are beneficial to the organisms.

It is likely that multiple performance objectives are influencing the evolution of the cellular

networks, and further studies are needed to identify these objectives.

Due to the stochastic nature of biochemical reactions and fluctuating environmental condi-

tions, many biological systems are designed to attenuate noise such that stable response to

signals can be attained [15, 105]. Intermediate states and regulators have been previously

found to improve the robustness of developmental patterning [10]. Our finding that adding

intermediate cell states can reduce the fluctuations in cell population provides another strat-

egy for noise attenuation at tissue level. The fluctuations that we included in our simulations

represent the stochasticity of cell division [98], cell death [26] and phenotypic transitions [13],

all of which were previously observed in experiments. Nonetheless, the sources of these types

of noise are mostly molecular fluctuations that affect various types of rates of the cellular

activities [118]. In order to describe the dynamics of the noise in more details, future models

will need to incorporate the stochastic dynamics of biomolecules into the framework.

Multiple intermediate cell states may arise from complex gene regulatory networks with in-

terconnected positive feedback loops [40, 39]. It is conceivable that the formation of more

intermediate cells would require more complex gene regulatory networks, which in turn need

some other strategies and/or more energy to control. Therefore, the correlation between

the number of states and the ability to attenuate noise suggests that a tradeoff between the

simplicity of the gene regulatory network and noise attenuation may exist when the system

is subject to design via evolution.

Dynamic equilibrium of sub-states of stem cells is observed not only in the EMT system,

but also in hematopoietic and embryonic stem cell populations [36, 92, 109]. Moreover, it

was suggested that heterogeneity of cell population might be related to disseminated cancer

cell dormancy [94]. Although these sub-states of stem cells might represent distinct func-

tional entities in specific contexts, the recurring phenomena indicate that there might be
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advantages of this dynamic behavior at systems level. Our modeling work provides a general

framework to study the cell differentiation systems with multiple sub-states of stem cells, and

our conclusions with respect to the noise attenuation property of multiple stem cell states

can apply to other systems, such as embryonic stem cell and disseminated cancer cell [36, 94].

In addition, feedback control among multiple cellular states have been shown to be critical

to the growth and stability of cell populations [62, 68, 72]. Future works are warranted to

investigate the role of feedback controls involving the multiple intermediate states.

In conclusion, our computational analysis shows that the existence of multiple intermediate

states between epithelial and mesenchymal states and the transitions among these states are

able to attenuate the fluctuations of the fractions of cell population. We found a general

correlation between the number of states and the ability to attenuate fluctuations. In par-

ticular, the fluctuations of the stem cell populations are reduced by increasing the number

of intermediate states. These results improve the understanding of the intermediate states

in the EMT system in terms of performance objectives, and provide insights into the stem

cell systems with multiple sub-states in general.
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Chapter 4

Multiscale Model of a Heterogeneous

Population in the EMT Spectrum

4.1 Model Construction

4.1.1 Construction of multiscale model

We constructed a multiscale model to monitor the gene expression levels over time of key

proteins that are featured in our EMT gene regulatory network. Then we observed the

growth of the cell population of each phenotype under stochastic influences over time. In

our model, we made the following assumptions:

1. The initial population is composed of 100 cells, where 70% of the cells are epithelial,

10% I1, 10% I2, and 10% mesenchymal. Our inferences on the population proportions

of all the cell types are based on observations of developing mammary epithelial tissues

during puberty and pregnancy, with the majority of the cells being epithelial.
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Parameter Description Value
ri Intrinsic cell cycle length of a non-stem cell ri ∼ N (700, 200)
τi Intrinsic cell cycle length of a stem cell ri ∼ N (500 ∗ k, 50)
k Sum of the normalized concentrations of Varies

Zeb1 mRNA and Ovol2 protein of the cell
d Death rate of TD cells d ∼ N (1000, 100)

M Number of times a non-stem cell M ∼ U(2, 7)
divides before becoming TD cell

Table 4.1: List of parameter values used in the lineage dynamics

2. All cells divide at a normally-distributed rate. Every time a cell divides, it passes

the gene expression levels of all the EMT factors as initial conditions to its daughter

cells. We compare the gene expression levels of each daughter cell at equilibrium to

the expression levels of different steady states in the EMT spectrum to determine the

eventual cell fate of the daughter cell.

3. Stochastic effects are integrated into our model by adding two types of noise, whose

details will be elaborated on in the next section.

4. We ascribe stemness to cells in the I1 state. Stem cells can either undergo asymmetric

division to give rise to a stem cell and a non-stem cell or symmetric division to give rise

to two stem cells or two non-stem cells. Stem cells do not die and can divide infinitely.

5. All other types of cells including epithelial and mesenchymal cells eventually become

terminally differentiated (TD) cells. They divide a finite number of times N before

becoming TD cells. TD cells die at a normally-distributed rate d in Table 4.1.

We performed simulations of our multiscale model over a time span of seven average cell

division cycles. A comprehensive diagram of our multiscale model is included in Figure 4.1.
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Figure 4.1: A) Depiction of the multistage lineage dynamics involving non-stem cells (E, I2,
and M) and stem cells (I1). Non-stem cells divide a finite number of times before becoming
TD cells and die at a rate d while stem cells can divide indefinitely. ri is the intrinsic cell
cycle length for non-stem cells and τi is the intrinsic cell cycle length for stem cells. The
values of the death rate and cell cycle lengths are normally distributed. For parameter values,
review Table 4.1. Noise is introduced every time a cell divide. B) Schematic depiction of
the possible types of division. From left to right: a cell of type T can divide symmetrically
into two T cells to proliferate or it can also divide asymmetrically to produce one T cell and
one cell of a different type. Lastly, noise can induce T cell to produce two daughter cells
that are not T . These daughter cells can be of the same or different types.
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4.1.2 Experimentation with two different types of noise

In order to incorporate cell fate reprogramming to our multiscale model, we introduce various

types of noise to our EMT system independently. We first constructed noise by perturbing

the gene expressions of the mother cell upon its division into two daughter cells. In this

scenario, the perturbed expressions serve as the initial conditions for the simulations of the

daughter cells. We assume that the aggregate concentration of each gene in the daughter

cells remains unchanged from the respective gene’s concentration in the mother cell. Hence,

for each gene, the sum of the initial expressions of the daughter cells should be equal to two

times the amount of gene expression in the mother cell. From here on, we will refer to this

type of division noise as Type 1. We next introduce a different type of noise, which we will

refer to as Type 2. For Type 2 noise, we applied multiplicative noise to a few parameters that

model the key proteins of the EMT circuit upon cell division, including the concentration of

exogenous TGFβ level, the transcription rate of Snail1 mRNA, and the production rate of

miR-200, as described in Table 4.2.

We further experimented with Type 1 noise in two different ways. First, we simulated

gene fluctuations by allowing all gene expressions to simultaneously increase in one daughter

cell while decreasing these expressions by each gene’s corresponding amount in the second

daughter cell. In the second situation, we allowed the changes in gene expressions to be

uncorrelated in each daughter cell, i.e one gene can receive an enhancement in its expression

while another gene undergoes a reduction. We compare the effects on cell population from

these different fluctuations in Figures 4.2 and 4.3.
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Figure 4.2: A) The distribution of the population at the initial stage (initial conditions) in
terms of its phenotypic composition. B) The composition of each phenotype’s population
in terms of the phenotypes of its ancestors at the end of every cell cycle. The color scheme
to indicate the different phenotypes of the ancestor cells is depicted in (A). The proportion
of cells that is originated from E state (epithelial cells) is colored blue. The proportions of
cells that are originated from I1 and I2 states (two intermediate states) are colored green and
yellow respectively. The proportion of cells that is originated from M state (mesenchymal
cells) is colored red. Each figure in (B) corresponds to a different type of noise. The results
from this figure are obtained from one simulation.
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Figure 4.3: The distribution of the total cell population at the end of every cell cycle as well
as the distribution of each phenotypic fraction of that population in terms of the phenotypic
composition of each fraction’s ancestors. The pink dashed lines separate the different pro-
portions of the total population according to their appropriate phenotypes denoted by pink
letters on the left margin of each figure. Within each proportion (between two pink dashed
lines), the composition of that portion of the population is further broken up into smaller
fractions according to the phenotypes of the original ancestors (from the initial conditions).
These fractions share the same color-coding scheme as in Figure 4.2: E blue, I1 green, I2

yellow, and M red. The bar at the very left represents the initial makeup of the original
population, where 70% of the cells are epithelial, 10% I1, 10% I2, and 10% M. All the results
are obtained from one simulation of cellular activities for seven cell cycles. A) The distri-
bution of the cell population obtained from Type 1 correlated noise. B) The distribution of
the cell population obtained from Type 1 uncorrelated noise. C) The distribution of the cell
population obtained from Type 2 noise.
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Noise Type Noise term Value
Type 1 ng ∗ g ng ∼ N (0, 0.7) and |ng| <= 0.9

(correlated) ng: noise coefficient, g: gene sgn(ng) is the same for all genes g
Type 1 ng ∗ g ng ∼ N (0, 0.7) and |ng| <= 0.9

(uncorrelated)
Type 2 np ∗ p np ∼ N (0, 0.7) and |np| <= 0.9

np: noise coefficient,
p = TGF0, k200, ksnail

Values of p can be found in [40]

Table 4.2: List of the parameters used to construct two types of noise

4.2 Results

4.2.1 Type 1 and Type 2 noises exert distinctive effects on cell

fate reprogramming

In Figure 4.2, the singular pie on the very left describes the initial heterogeneous distribution

of the cell population where 70% of the population are cells of epithelial phenotype and 10%

of I1, I2, and mesenchymal phenotypes respectively. Each of the phenotype is color-coded in

the initial condition pie and we will adhere to this color-coding scheme for the rest of the

figure. The subsequent columns of pie charts are ordered by the division cycle time, where

the first column indicates the cell population at the end of the first division cycle and so on.

Each row of the figure corresponds to the aforementioned phenotypes indicated by the letter

E, I1, I2, and M. Each of the smaller pies represents the distribution of the cells of an indi-

cated phenotype at a specific cell division cycle according to the phenotypes of the original

ancestral cells from the initial conditions. For example, at the end of the second division

cycle, the I1 cells are either descended from I1 cells or M cells from the initial population,

with the majority of these cells descending from the initial I1 population, as indicated by a

major portion of the pie being colored green, Figure 4.2B Type 1 (correlated). We note that

Figure 4.2 corresponds to one simulation of cellular activities that spans a period of seven
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average cell division cycles.

When the changes in gene expressions are correlated in each daughter cell, we only observe

cell conversion in the MET direction, i.e there exists no instance where a cell of the initial

population gives rise to a descendant cell that belongs to a more mesenchymal phenotype

than that of its initial ancestor, which can be generalized to the lack of conversion in the

EMT direction between any two types of cells. However, if these gene fluctuations are un-

correlated, we observe some instances of cell conversion in EMT direction. For example,

starting at the end of the sixth division cycle, we observe that there is a portion of I2 cells

whose ancestors belong to the I1 phenotype, indicating that there must be some conversion

towards a more mesenchymal phenotype at some point during the course of the simulation.

We suspect that correlated noise only favors the MET direction. Although both EMT and

MET agents in the regulatory network undergo an increase (decrease) in gene expressions,

the MET agents have more influence on the network and consequently dictate the direction

of the cell fate of the daughter cells. Allowing the fluctuations to be uncorrelated mitigates

the effects of the MET agents’ influence. Between the correlated and uncorrelated Type 1

noises, correlated fluctuations yield relatively fewer cell state transitions than uncorrelated

ones.

Meanwhile, we observe a more active differentiation in both EMT and MET directions for

each cell phenotype throughout each cell cycle in the case of Type 2 noise, indicating that this

type of noise is able to achieve a more heterogeneous cell population in terms of their origins.

It is worth noting that the cellular population at the end of the seventh division cycle seems

to stabilize at similar distributions between all the different phenotypes. This similarity in

the contribution of all the different phenotypic populations to the final population of each

cell type has important implications in understanding how the EMT and MET processes

influence the growth of a cell population. If a delicate balance between the contribution of

different types of population is indeed inherent to the EMT and MET processes irrespective

of the final phenotype, then it will provide an explanation on how EMT and MET govern
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cell proliferation. We have yet to compare these simulation results with experimental data

but it is important to note that the simulation results displayed in this figure are consistent

between different independent simulations for all types of noise.

Another interesting observation from Figure 4.2 is that the final distribution for each phe-

notype bears great resemblance to the initial population distribution, suggesting that the

distribution of the initial population determines the distribution of the final population of

each phenotype. It is unclear whether changing the initial population distribution will also

result in the same equilibrium of final phenotypic contribution as observed here. It is thus

crucial to explore various sets of initial conditions in the future to ascertain a definitive con-

clusion on the role of the initial population distribution in regulating the different proportions

of cells in the final population for a particular cell type.

4.2.2 Type 1 and Type 2 noises exert different influences on the

proliferative potential of cells and the resulting population

Figure 4.3 represents a comprehensive description of the distribution of cell population at the

end of any cell cycle as well as the origins of each phenotypic proportion of that population.

The proportions of cells marked by different phenotypes E, I1, I2, and M are separated by

the pink dashed lines. The letters to the left of the initial conditions bar in the figure denote

the states in the EMT spectrum that each region enclosed by the pink dashed lines belongs

to. Similarly to Figure 4.2, the initial conditions bar describes the distribution of the initial

population where 70% of the cells belong to the E state and 10% belong to I1, I2, and M

states respectively. At any division cycle, we can trace the lineage of cells of a particular

phenotype using the same color-coding scheme as before. For example, at the end of the

fifth cycle in Figure 4.3B, the region of the bar that denotes I1 cells is split into two parts:

a big green region denoting I1 state and a smaller yellow region denoting I2 state. In other

words, all the cells in the I1 state at the end of this cycle are originated from either I1
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or I2 cells from the initial conditions. This figure also provides information on how many

percent of the population each phenotype occupies. At the end of the fifth cycle, the I1 cells

comprise approximately 45% of the total population, Figure 4.3B. Figure 4.3 is obtained

using only one simulation of cellular activities, but the results remain consistent between

different independent simulations.

We note that in the case of Type 1 noise, regardless of how fluctuations are included to

the initial conditions of the daughter cells, the I1 phenotype quickly dominates the total

population of the cells, comprising almost 80% of all the cells by the end of the seventh

cycle. We suspect that this type of noise cannot overcome the stem-cell property ascribed to

the I1 phenotype. Even though many I1 mother cells give rise to epithelial cells, the majority

of them still retain their I1 status and hence, stemness, and proliferate quickly to dominate

the total population. In the mean time, the proportion of cells that belong to each of the

other phenotypes declines over time. For the remaining analysis, we define ancestral cells to

be the cells from the initial conditions. We observe that for each phenotype, most of the cell

population is originated from ancestral cells of the same phenotype per each cycle while the

majority of the remaining cells come from the immediately adjacent phenotype in the EMT

direction. For example, at every division cycle, most of the cells of the epithelial phenotype

come from ancestral cells that are epithelial, while the remaining cells trace their origins

back to the adjacent phenotype in the EMT direction, which is I1 state in this scenario.

The main characteristic that distinguishes Type 1 correlated noise from uncorrelated noise

is that a significant proportion of I1 cells can trace their origin back to mesenchymal cells

starting with fourth cycle.

Unlike Type 1 noise, Type 2 noise results in a discernible decrease of I1 cells, i.e stem cells,

signifying that Type 2 noise does not favor the stem-cell phenotype and causes significant

fluctuations such that most of I1 cells differentiate to other cell types. This subsequently

affects the number of cells in the total population over time, as indicated by Figure 4.4. With

a significantly smaller proportion of stem cells, the total population obtained from Type 2
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noise is noticeably smaller than those obtained from the two cases of Type 1 noise. When we

examine the other phenotypes besides I1, we notice that the overall proportion of cells that

carry E phenotype decreases after three division cycles and eventually stabilizes at around

40-45%. The proportions of both I2 and M phenotypes increase then stabilize respectively

during the seven cycles, with the proportion of mesenchymal cells increasing by a significant

percentage. However, it is apparent that at every cycle, most of the total population traces

its lineage back to an epithelial ancestor, as evident by the domination of the blue region

in each of the bars. In other words, the epithelial population is mainly responsible for the

proliferation of other cell types. The other phenotypic populations contribute approximately

an equal amount to the total population as well as to the individual population per each

phenotype, albeit to a much lesser degree than the epithelial population. Figure 4.2 enables

the observation of the ancestry of cells with respect to one specific phenotype while Figure 4.3

provides us more insight into the ancestry of these cells with respect to the total population.

4.2.3 Different types of noise generate distinct energy landscapes

of the heterogeneous population

In the case of Type 1 noise where the gene expression fluctuations are correlated in each

daughter cell, we do not obtain any transition from one cell state to another in the EMT

direction. Since a more faithful multiscale model of the EMT process should involve cell

transitions in both directions, we will exclude this version of Type 1 noise for the remaining

of our analysis.

We further examine the effects of the two types of noise on a collection of cells that con-

stantly undergoes divisions and transitions between states, by studying the results acquired

from performing Principal Component Analysis (PCA) on the data derived from the gene

expression levels of all the cells. Figure 4.5 is a visualization of the data obtained from

two principal components for each type of noise at the end of the second, fifth, and seventh
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Figure 4.4: The growth of the cell population produced by each type of noise over a period
of seven cell cycles. The results are obtained from two simulations per noise type and are
plotted using the mean value of these two simulations. The red error bars depict the standard
deviation values obtained from two simulations for each type of noise.
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division cycles. We are able to identify the structure of a heterogeneous population of cells

belonging to different phenotypes in terms of their gene expression levels and follow the

evolution of this structure over many division cycles.

From Figure 4.5A, we observe that under the influence of Type 1 noise (uncorrelated ver-

sion), the many individual cells group themselves into four distinct clusters according to their

appropriate phenotypes. The four different phenotypic groups of cells are distinguished by

the color scheme mentioned above: blue for E state, green for I1 state, yellow for I2 state, and

red for M state. As expected, cells that are identified as I1 cells form the biggest cluster in

the PCA plot due to the facilitation of their proliferation by this type of noise. Throughout

the seven cell cycles, the four clusters maintain the same approximate distance from one

another, with the M cell cluster having a prominent separation from the other three clusters,

especially at the end of the seventh cycle. This implies that the M phenotype is relatively

more stable compared to the others and there is more difficulty for transitions between M

state and other states to take place. It is important not to associate the results of Figure

4.5 with the results of Figure 4.3. Figure 4.3 provides information on which portion of a cell

population of a particular phenotype can trace their lineage back to one of the phenotypes

included in the initial population, but does not take into account the transitions between

states from one cycle to the next.

On the other hand, Type 2 noise does not separate the different phenotypes into distinctive

clusters but separates the cell population into two distinct groups characterized by the two

different trajectories that they follow for their transitions between one state to another. We

observe from Figure 4.5B that at the end of the second cycle, two courses of cell transitions

begin to take shape. By the end of the fifth cycle, these two trajectories are clearly defined.

The upper trajectory is defined by four distinct steady states in the transition between ep-

ithelial and mesenchymal states. Cells that belong to the upper trajectory move through four

different states during their transition from E state to M state. Meanwhile, cells from the

lower trajectory skip the I1 state during their transition. Interestingly, the two trajectories
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start to merge once the cells in the upper trajectory pass the I1 state, signifying that the

paths to cell transition only differ at the beginning.

In order to have a clearer insight of how the different behaviors of the model under two types

of noise translate to distinct differentiation propensities of cells when subjected to various

stochastic effects, we implemented an algorithm developed by Chunhe Li [63, 64] and the

MATLAB code written by Suoqin Jin to draw a 3D global potential landscape of the data

derived from PCA. We present a 3D landscape corresponding to each plot of the gene ex-

pression levels in two principal components featured in Figure 4.6 and for each type of noise.

When we apply Type 1 noise to our multiscale model, the landscape topography is character-

ized by two wide potential energy wells where E and I1 states are, and two narrower wells for

the other two states by the end of the second cell cycle, Figure 4.6A. The narrowness of the

I2 well and especially of the M well imply that these two steady states are more stable than

the other states in the transition. In addition, the barrier height between E and I1 states

is low, with the barrier height between I1 and I2 state being significantly higher, signifying

that transitions between E and I1 states are relatively more likely than transitions between

I1 and I2 states. Consistent with the 2D visualization of the gene expression levels in Figure

4.5A, the basin of attraction for the M state is completely removed from the other states,

implying that transitions from other states to the M state are virtually impossible. In terms

of the differentiation propensities of the two intermediate states, both I1 and I2 cells are more

likely to differentiate to E state. By the end of the fifth cell division cycle, we observe that

all the barrier heights between all the states have been significantly lowered, with all the

local basins of attractions being equally large. Although the barrier height between I2 and

M state is still relatively high compared to the barriers between the other states, transitions

between these two states are now possible. The barrier height between E and I1 states is

slightly lower than than that between I1 and I2 states. We observe that I1 cells still favor

transition in the MET direction while I2 cells are still more likely to convert into I1 cells

than to differentiate into M cells. By the end of the seventh cycle, the M potential energy
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well is now narrow again, making transitions from and to this state unlikely.

With Type 2 noise, the landscape topography remains mostly unchanged throughout the

seven cycles. At the end of the second, fifth, and seventh cycles, we observe three potential

attractors, with the E well being most shallow and the I2 and M wells being more stable,

Figure 4.6B. There is no I1 well, indicating that I1 state is possibly only a transient state in

this multiscale model with this type of noise. The lack of I1 attractor helps elucidate Figure

4.5B, where there are two courses of cell transitions. There are two possible trajectories

for a cell’s transition, with one involving the transient state I1. The topography of this

landscape is also consistent with the shrinking percentage of the population that is I1 cells

over time and signifies that the population of stem cells makes up a very small portion of

the cell population. In addition, the positions of the E and I2 wells are such that epithelial

cells cascade down into the I2 basin of attraction, with a significantly lower barrier height

between E and I2 than that between I2 and M wells. This implies that epithelial cells are

more likely to spontaneously convert to cells in the intermediate state I2 and settle there. It

should be noted that some of the E cells will become I1 cells momentarily during that con-

version. In short, there is a less likelihood of these epithelial cells to spontaneously undergo

full EMT. Generally, with Type 1 noise, the energy that a cell must acquire to move to a

different steady state is significantly higher than that required for cellular state transitions

under Type 2 noise. These statistics corroborate and explain the results presented in Figures

4.2 and 4.3 that the rate of cell transitions between different states is generally lower in the

case of Type 1 noise. This apparent disparity in the properties of the two noises implies that

there are many more aspects of the multiscale model we need to consider before achieving

a faithful representation of the EMT process, especially how the different types of noise can

be combined and modulated.
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Figure 4.5: The 2D visualization of the heterogeneous population at the end of the second,
fifth, and seventh cycles obtained from one simulation of cellular activities for A) Type 1
(uncorrelated) noise and B) Type 2 noise with respect to the first and second principal
components (PC1 and PC2).
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Figure 4.6: The 3D potential landscapes of the heterogeneous population at the end of the
second, fifth, and seventh cycles obtained from one simulation of cellular activities for A)
Type 1 (uncorrelated) noise and B) Type 2 noise with respect to the first and second principal
components (PC1 and PC2). Each well in every subplot is a local basin of attraction.
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4.3 Discussion

Previous research studies the regulation mechanisms of the EMT process using a framework

based on the regulatory network. This framework involves modeling the core network us-

ing a system of ODEs with feedback control to identify important agents that exert the

most control on the cellular state transitions and essentially are responsible for initiating/

suppressing EMT [40, 47, 48, 76, 100, 115]. The limitations imposed on this framework is

that the cellular activities defined by changes in gene expressions which further represent

changes in the cell state, are confined within the context of one individual cell. Essentially,

the framework focuses only on the transition of one cell between one cell state and the next.

Our recent efforts to approach the EMT process from the population dynamics angle, by

monitoring the evolution of the different populations in the EMT spectrum over time, re-

sult in the demonstration of a correlation between the number of intermediate states and

the noise-attenuating ability of the overall cell population. More specifically, increasing the

number of intermediate states in the EMT spectrum helps reduce the fluctuations in the

population [97]. However, our model excluded the individual cellular dynamics prompted by

the interactions between different EMT promoting and suppressing agents.

We attempted to extend the modeling of the EMT process beyond the scope of one cell to

that of a heterogeneous population of cells while incorporating the gene regulatory network

into our multiscale model. In our model, each cell was equipped with the ability to divide

and proliferate, or differentiate, as well as subjected to cellular state changes triggered by

stochastic effects. We attributed finite division capacity to non-stem cells and designated a

population of one of the intermediate states, I1, to be the stem cell population. We explored

the relationship between stem cells with the whole population, as well as elucidated its role

in regenerating the depleted non-stem cell population from cell death. In order for stem cells

to replenish the other cellular populations, some of the stem cells must undergo differentia-

tion, hence, the introduction of noise to induce cellular state transitions. We experimented
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with two types of noise: Type 1 noise, which involves subjecting the mother cell to gene

fluctuations upon division, and Type 2 noise, which is characterized by parametric noise at

cell division.

We found that Type 2 noise encouraged more cell state transitions in both EMT and MET

direction than Type 1 noise. Type 1 noise is further split into two subcategories. When all

the fluctuations in all the gene expressions of the mother cell upon division are uncorrelated

in the daughter cell, there are transitions in both EMT and MET direction, albeit relatively

fewer cells change fate towards a more mesenchymal direction. When the fluctuations are

correlated so that the gene expressions all increase or decrease in a daughter cell, there exist

transitions in the MET direction but no transitions towards a more mesenchymal potential.

In addition, Type 2 noise endows the stem cell population, i.e I1 population, with higher

differentiation and asymmetric division potentials, leading to a quickly diminishing stem-cell

proportion in the population, and consequently a significantly lower total population than

that obtained from Type 1 noise. On the contrary, for Type 1 noise, a very small percentage

of cells in each phenotypic group can trace their origins back to a stem cell in the initial

population. Next, we showed that the 3D landscape topography with respect to two prin-

cipal components of our model under Type 1 noise demonstrated the organization of the

population into four distinct clusters according to four different phenotypes. Throughout

the seven cycles, M phenotype remains the most stable with the least potential for cells to

transition to and from. Meanwhile, the I1 and I2 phenotypes become less stable over time,

resulting in more cell state transitions between I1 and I2 states as well as from I1 to E states

by the end of the seventh division cycle.

On the other hand, when examining the 3D landscape generated by Type 2 noise, we ob-

serve that the cell population arrange themselves according to two possible paths they can

commit to: one without the I1 state, and the other with a transient I1 state. The potential

energy well for the I1 state is non existent in the second path. Coupled with the low energy

barrier between the E and the I2 wells, these results explain the diminishing percentage of
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stem cells in the population over time. In general, when subjected to Type 1 noise, cells

need to overcome significantly higher energy barriers to initiate a state transition than when

under the influence of Type 2 noise. As a consequence, there is a much higher rate of cell

transitions between all the states in both EMT and MET directions with Type 2 noise than

with Type 1 noise.

The consistently different results arisen from introducing different types of noise into our

multiscale model illustrate the need to experiment with other noises, such as additive or

multiplicative noises on gene expressions to explore the strategic significance of different

types of noise in shaping the structure and distribution of a heterogeneous cellular popula-

tion, as well as in endowing different differentiation potentials to the stem cell population.

To reproduce a more faithful multiscale model of the EMT process, an inclusion of various

types of noise as well as experimental data in our multiscale model is necessary.

In short, our work attempts to bridge the gap between discrete analysis and population

dynamics modeling by incorporating the EMT core regulatory network into our previous

population model. In essence, our modeling work offers a framework for studying the reg-

ulation mechanism of cell proliferation through monitoring the changes in gene expression

levels prompted by interactions between various EMT agents.
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Chapter 5

An Integration Factor Method for

Stochastic Reaction-Diffusion Systems

5.1 Implicit Integration Factor methods

5.1.1 Construction of General Method

We consider the stiff reaction-diffusion equation with spatial white noise below:

∂U

∂t
= a

∂2U

∂x2
+ f(U) + g(U)

∂2W

∂x∂t
(5.1)

where a∂2U/∂x2 is the diffusion term and a is a nonnegative constant, f(U) is the reaction

term, and g(U)(∂2W/∂x∂t) is the noise term of two possible forms: g(U)(∂2W/∂x∂t) =

σ(∂2W/∂x∂t) for additive noise or g(U)(∂2W/∂x∂t) = σU(∂2W/∂x∂t) for multiplicative

noise. Here, σ is a constant to describe the level of noise. Also, ∂2W/∂x∂t denotes the

mixed second-order derivative of the Brownian sheet. A one-dimensional Brownian sheet is

70



a 2-parameter, centered Gaussian process B = B(s, t); s, t > 0 whose covariance is given by:

E(B(s, t)B(s′, t′)) = min(s, s′)×min(t, t′),∀s, s′, t, t′ ≥ 0. (5.2)

Before discussing the derivation of the numerical methods to solve Eq.(5.1), we briefly re-

view the Implicit Integration Factor methods (IIF) discussed in [83], which is crucial to the

construction of the IIF methods for a stochastic system. Using the semi-discretized form

dU/dt = aU + f(U) that is obtained after the discretization of the diffusion operator in

space, we multiply both sides of the equation by the integrating factor e−at and integrating

the equation over one time step from tn to tn+1 = tn +4t to get

U(tn+1) = U(tn)ea4t + ea4t
4t∫
0

e−aτf(U(tn + τ))dτ (5.3)

Using appropriate approximation of the integrands in
4t∫
0

e−aτf(U(tn + τ))dτ one derives rth-

order IIF scheme [83]:

Un+1 = ea4tUn +4t
(
αn+1f(Un+1) +

r−2∑
i=0

αn−if(Un−1)

)
, (5.4)

with αn+1,αn, αn−1,...,αn−r+2 defined as

αn−i =
e(i+1)a4t

4t

∫ 4t
0

r−2∏
j=−1,j 6=i

τ + j4t
(j − i)4t

dτ, −1 ≤ i ≤ r − 2. (5.5)
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Similarly for the stochastic reaction-diffusion systems, we first discretize the space using m

points with the spatial interval 4x. Let Ut be a vector whose ith-entry is the value of the

solution to Eq.(5.1) at the ith spatial point. A second-order central difference approximation

of ∂2U/∂x2 in Eq.(5.1) with periodic boundary condition U(x0, t) = U(xf , t) on the SPDE

as in [25], where x0 and xf indicate the endpoints of the spatial interval, leads to

dUt = aMUtdt+ f(Ut)dt+ g(Ut)
dWt√
4x

(5.6)

where

M =
1

(4x)2



−2 1 0 0 · · · 1

1 −2 1 0 · · · 0

0 1 −2 1 · · · 0

...
...

...
...

. . .
...

0 0 · · · 1 −2 1

1 0 · · · 0 1 −2


. (5.7)

Let ḡ(Ut) = g(Ut)/
√
4x and multiply both sides of this Eq.(5.6) by the integrating factor

e−aMs. We then have

e−aMsdUtn+s = aMe−aMsUtn+sds+ e−aMsf(Utn+s)ds+ e−aMsḡ(Utn+s)dWs (5.8)

e−aMsdUtn+s − aMe−aMsUtn+sds = e−aMsf(Utn+s)ds+ e−aMsḡ(Utn+s)dWs (5.9)
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4t∫
0

[e−aMsdUtn+s−aMe−aMsUtn+sds] =

4t∫
0

e−aMsf(Utn+s)ds+

4t∫
0

e−aMsḡ(Utn+s)dWs (5.10)

4t∫
0

d(e−aMsUtn+s) =

4t∫
0

e−aMsf(Utn+s)ds+

4t∫
0

e−aMsḡ(Utn+s)dWs (5.11)

Taking the integral of the left side gives

e−aM4tUtn+1 − Utn =

4t∫
0

e−aMsf(Utn+s)ds+

4t∫
0

e−aMsḡ(Utn+s)dWs (5.12)

Letting 4t = tn+1 − tn and with some more simplification, the equation above becomes

Utn+1 = eaM4t
(
Utn +

4t∫
0

e−aMsf(Utn+s)ds+

4t∫
0

e−aMsḡ(Utn+s)dWs

)
(5.13)

All we have left is evaluating the right side of Eq.(5.13). Observe the following numerical

approximation of the noise part of Eq.(5.13) [38]

4t∫
0

e−aMsḡ(Utn+s)dWs = ḡ(Utn)(Wtn+1 −Wtn) (5.14)

To approximate the deterministic part of Eq.(5.13), i.e eaM4t
(
Utn +

4t∫
0

e−aMsf(Utn+s)ds

)
,

we apply the IIF strategy using Eqs.(5.4) and (5.5). Coupling this evaluation with Eq.(5.14),
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Eq.(5.13) becomes

Un+1 = eaM4tUn +4t
(
αn+1f(Un+1) +

r−2∑
i=0

αn−if(Un−1)

)
+ eaM4tḡ(Un)4Wn (5.15)

where 4Wn = Wtn+1 − Wtn , Utn = Un, and αn+1,αn, αn−1,...,αn−r+2 are as described in

Eq.(5.5).

Let us denote ξ̄n to be a standard normally-distributed random vector and n to be the

indices of the temporal discretization points. We apply the standard Maruyama method to

the noise term along with the first order IIF method, denoted as IIF1, or the second order

IIF method, denoted as IIF2, to obtain

IIF1-Maruyama method

Un+1 = eaM4tUn +4tf(Un+1) + eaM4tg(Un)

√
4tξ̄n√
4x

(5.16)

IIF2-Maruyama method

Un+1 = eaM4t
(
Un +

1

2
4tf(Un)

)
+

1

2
4tf(Un+1) + eaM4tg(Un)

√
4tξ̄n√
4x

(5.17)

When the stochastic integral in Eq.(5.13) is approximated explicitly as in Eq.(5.14), the

strong order of convergence of the overall scheme is dominated by the root mean-square

order of the increments 4Wn, which is one-half [54]. For this reason, the strong order of

convergence for both of our methods will be consistent with those of most other methods

with the same approximation of the stochastic term, i.e the Euler Maruyama method. Let
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us illustrate this through approximating an SODE of the similar form

dUt = −aUtdt+ bUtdt+ g(Ut)dWt (5.18)

using IIF1 and IIF2 methods respectively. By using the standard Maruyama approximation

on the noise term, we obtain

IIF1-Maruyama method:

Un+1 = e−a4tUn + b4tUn+1 + g(Un)e−a4t4Wn (5.19)

IIF2-Maruyama method:

Un+1 = e−a4tUn +
1

2
e−a4tb4tUn +

1

2
b4tUn+1 + g(Un)e−a4t4Wn (5.20)

When the noise is additive, i.e.

g(Ut) = σ, (5.21)

the strong order of convergence for both methods is one, which is consistent with the strong

order of convergence of the Euler Maruyama method [54].

When the noise is multiplicative, i.e.

g(Ut) = σUt (5.22)

both methods share the same order of convergence of one-half with the Euler Maruyama

method [54].
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5.1.2 Stability Analysis

Additive noise

We first analyze the numerical stability of the IIF1-Maruyama and IIF2-Maruyama schemes

in Eqs.(5.19) and (5.20) when the stochastic differential equation has additive noise Eq.(5.21).

Following a previous study [54], we define U δ
nt to be a time discrete approximation of the

solution U(t) with maximum step size δ > 0 starting at time t0 at U δ
0 and Ū δ

nt to be the

corresponding approximation starting at Ū δ
0 . Then U δ

nt is asymptotically numerically stable

for a given stochastic differential equation if for any finite interval [t0, T ] there exists a positive

constant 4a such that for each ε > 0 and δ ∈ (0,4a) [54]:

lim
|Uδ0−Ūδ0 |→0

sup
t0≤t≤T

P

(
|U δ

nt − Ū
δ
nt| ≥ ε

)
= 0 (5.23)

and

lim
|Uδ0−Ūδ0 |→0

lim
T→∞

P

(
sup

t0≤t≤T
|U δ

nt − Ū
δ
nt | ≥ ε

)
= 0 (5.24)

with P (A) indicating the probability that event A occurs. We can analyze the asymptotic

stability of a numerical stochastic scheme as we do for the A-stability of deterministic dif-

ferential equations by studying the stability of the following class of complex-valued linear

test equations [54]:

dUt = λUtdt+ dWt (5.25)

where λ is a complex number with R(λ) < 0 and W is a real-valued standard Wiener process.
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Suppose that a numerical scheme with equidistant step size 4t ≡ δ applied to test equation

(5.25) with R(λ) < 0 can be written recursively as:

U4tn+1 = G(λ4t)U4tn + Z4tn (5.26)

where G is a mapping of complex plane C into itself and Z4tn are random variables that do

not depend on U4tn for n = 0, 1, 2, ..., then the set of complex values λ4t satisfying

R(λ) < 0 and |G(λ4t)| < 1 (5.27)

is the region of absolute stability of that scheme [54].

Our methods Eqs.(5.19) and (5.20) when applied to the linear test equation Eq.(5.25) are

reduced to:

U4tn+1 = eλ4tU4tn + σeλ4t4Wn (5.28)

Since |G(λ4t)| = |eλ4t| < 1 for any arbitrarily large value 4t > 0 given R(λ) < 0, we

can claim that both the IIF1-Maruyama and IIF2-Maruyama methods are absolutely stable

when noise is additive.

Multiplicative Noise

When the noise is multiplicative Eq.(5.22), we analyze the stability of each method using

mean-square stability analysis [54]. A method is mean-square stable if limn→∞E(|Un|2) = 0

where E(.) denotes the expected value. To apply this technique to evaluating the stability

region of both IIF-Maruyama methods aforementioned, we note that we can rewrite each
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method in the form:

Un+1 = h(a, b, σ,4t,4Wn)Un (5.29)

Squaring and then taking expectation of both sides of Eq.(5.29) coupled with the fact that

Wt is a standard Wiener process whose increment W (t)−W (s) is normally-distributed with

mean 0 and variance t− s, we obtain

E|Un+1|2 = H(a, b, σ,4t)E|Un|2 (5.30)

where H(a, b, σ,4t) = E(h(a, b, σ,4t,4Wn))2.

Eq.(5.30) demonstrates that limn→∞E(|Un|2) = 0, i.e, the numerical method is mean-square

stable if and only if H(a, b, σ,4t) < 1 [37].

For the IIF1-Maruyama method, the mean-square stability condition becomes

e−2a4t(1 + σ24t)− (1− b4t)2 < 0 (5.31)

For the IIF2-Maruyama method, the mean-square stability condition becomes

(2 + b4t)2 − (2− b4t)2e2a4t + 4σ24t < 0 (5.32)

We plot the stability regions of both IIF-Maruyama schemes on a plane whose axes are a4t

and b4t in Figure 5.1 and vary the value of σ24t. Note that the stability region in Figure

5.1 for each method is the region under the respective colored curve. The desired absolute
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stability region is the region where the diffusion and reaction coefficients are negative. In

terms of Eq.(5.18), this region is described as {(a, b) : a > 0 and b < 0}. In Figure 5.1A

when there is no noise term, both methods are unconditionally stable with respect to this

absolute stability region which is the inside of the square with dashed border. From Figure

5.1B and C, we observe that as the value of σ24t increases, the stability region of the IIF2-

Maruyama method shrinks at a faster rate than the stability region of the IIF1-Maruyama

method, resulting in the IIF1-Maruyama method having a larger stability region when the

noise term is large enough. As a result, the IIF1-Maruyama method has a more desirable

stability than the IIF2-Maruyama method in the case of more dominant noise.
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Figure 5.1: The stability regions of both IIF-Maruyama methods described in Eqs.(5.16)
and (5.17) for multiplicative noise. The stability region lies below the corresponding colored
curve. The desired absolute stability region is the region inside the square with dashed-
border.

Comparison with other methods in the case of Multiplicative Noise

For the purpose of stability-region comparison, we present three other methods used to solve

Eq.(5.18) and their constructions: The Euler Maruyama method [54] when it is applied to

Eq.(5.18) takes the form
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Euler Maruyama method

Un+1 = Un − a4tUn + b4tUn + g(Un)4Wn (5.33)

The order of accuracy for this method is 1/2 [54] and the mean-square stability analysis

when noise is multiplicative, i.e Eq.(5.22) gives the following stability condition:

−2a4t+ (a4t)2 − 2(a4t)(b4t) + 2b4t+ (b4t)2 + σ24t < 0 (5.34)

The next method is designed in a similar fashion to the construction of the IIF-Maruyama

methods with a modification on the approximation of the deterministic integral term of

Eq.(5.13). Direct application of the exponential time differencing method of order 2 on this

term leads to

ETD2-Maruyama method

Un+1 =

(
e−a4t +

b

a
(1− e−a4t)

)
Un + e−a4tg(Un)4Wn (5.35)

Since the stochastic integral term is approximated explicitly as in the IIF-Maruyama meth-

ods, the order of accuracy for the overall scheme is 1/2. Mean-square stability analysis gives

the following stability condition for the above method:

e−2a4t + 2(e−a4t − e−2a4t)
b4t
a4t

+

(
(1− e−a4t) b4t

a4t

)2

+ σ24te−2a4t − 1 < 0 (5.36)

The last scheme mentioned here is constructed similarly to the Euler Maruyama method

with the exception of the deterministic term being approximated using second-order Runge

Kutta method.

80



RK2-Maruyama method

Un+1 =

(
1 + (b− a)4t+

1

2
(b− a)24t2

)
Un + g(Un)4Wn (5.37)

The construction of the RK2-Maruyama scheme also exploits the explicit approximation of

the stochastic term as that of the Euler Maruyama scheme, so the order of accuracy for the

RK2-Maruyama scheme is still 1/2. The scheme’s mean-square stability condition is:

2((a4t)2+(b4t)2)+2(b4t−a4t)−4(ab)(b4t)+(b4t)3−3(b4t)2(a4t)+3(b4t)(a4t)2−(a4t)3

+
1

4
(b4t)4− (b4t)3(a4t) +

3

2
(a4t)2(b4t)2− (b4t)(a4t)3 +

1

4
(a4t)4 +σ24t < 0 (5.38)

To illustrate the performance of the IIF-Maruyama schemes in terms of stability analysis

in comparison with the above methods, we plot all the stability regions of each method for

different values of σ24t on a plane whose axes are a4t and b4t (Figure 5.2). In the same

figure, the region where unconditional stability is achieved for an ideal method is the region

inside the box with dashed boundary. Figure 5.3 is the enlarged version of Figure 5.2 so we

can observe better the changes in the absolute stability region for each method at different

values of σ24t.

In Figure 5.2A, i.e when there is no noise term, only the IIF-Maruyama methods are un-

conditionally stable, which is consistent with the stability of the deterministic IIF methods.

For very positive values of the diffusion term and very negative values of the reaction terms

(in terms of Eq.(5.18), this means that both a < 0 and b < 0), the Euler Maruyama, RK2-

Maruyama, and ETD2-Maruyama methods achieve better stability than the IIF-Maruyama

methods, as seen in the bottom left corner of each subplot of Figure 5.2A. However, the
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overall size of the absolute stability regions of the IIF-Maruyama methods is still larger than

those of the other methods.

With the increasing size of the multiplicative noise term, the stability region for each method

starts to shrink. More specifically, the stability regions for the Euler Maruyama and RK2-

Maruyama methods start to shrink in width along the line b = −a (i.e along the direction

in which the diffusion and reaction terms are equal) and become thin strips in Figure 5.2B

and C. Both of these regions disappear completely in the next plot, i.e Figure 5.2D when

the noise amplitude is high enough.

Meanwhile, the bottom-left corner of the stability region of the ETD2-Maruyama method re-

cedes significantly as the noise amplitude increases, resulting in a greater loss of the absolute

stability region than those of the IIF-Maruyama methods. Size comparison of the absolute

stability regions from both Figure 5.2B-D and Figure 5.3B-D indicates that the stability

region of the ETD2-Maruyama shrinks more than those of the IIF-Maruyama methods as

σ24t = 1 increases from 0 to 1.

From Figure 5.2B-D, we observe that the IIF-Maruyama methods have the greatest region

of absolute stability for any positive values of σ24t. Also, from Figure 5.3B-D, we observe

that the stability regions for both IIF-Maruyama methods shrink at a slower rate than those

of the other methods. As a result, both methods have the best absolute stability region

for large noise amplitude, as demonstrated by Figure 5.2D, when σ24t = 1. In addition,

the absolute stability region of the IIF1-Maruyama method shrinks more slowly than the

IIF2-Maruyama, as evidenced by Figure 5.3B-D where the dashed box indicates the ideal

absolute stability region. For this reason, the IIF1-Maruyama method achieves the largest

absolute stability region for large noise amplitude out of all the methods.

We conclude that at different values of the noise term, the IIF-Maruyama methods out-

perform the other methods in terms of the region of absolute stability. In particular, at
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σ24t = 1, both the IIF-Maruyama methods have a much greater region of absolute stability

than the rest of the methods.
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Figure 5.2: Comparison of stability regions of the following methods: IIF1-Maruyama, IIF2-
Maruyama, Euler Maruyama, RK2-Maruyama, and ETD2-Maruyama used to solve Eq.(5.18)
with multiplicative noise. The stability region for each method is shaded blue. The ideal
absolute stability region is the region inside the dashed box.
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5.2 Numerical Simulations

First, we compare the two IIF-Maruyama methods with the other methods when they are

applied to Eq.(5.1) for both cases of additive noise and multiplicative noise. Through choos-

ing different values of a, which corresponds to the size of diffusion, and different values of

b, which corresponds to the strength and stiffness of reactions, we evaluate the convergence

and stability of IIF-Maruyama methods.

5.2.1 Tests on Stochastic Ordinary Differential Equations

Here, we implement various methods to solve the linear stochastic ODE Eq.(5.18). Com-

parisons will be made between the two IIF methods, the Euler Maruyama, and the ETD2-

Maruyama methods. The comparisons concern the accuracy of these methods in situations

where the degree of stiffness is high or the noise amplitude is great. All the simulations

are done over 1000 independent paths with a time frame from 0 to 1 unless specified other-

wise. Numerical experiments were needed in order to decide on a sufficiently large number of

Brownian paths that will yield the desirable orders of convergence. All the results obtained

in this sub-section remain consistent for a greater number of Brownian paths. This notion is

confirmed when we increase the number of paths from 1000 to 2000 and subsequently 10000.

Additive Noise

Denote U4t to be the solution obtained numerically from using time step 4t. The order of

convergence for additive noise is the value γ such that there exists a constant C where

E|U4t − U4t/2| ≤ C4tγ (5.39)
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for4t sufficiently small. The order of convergence for the case, in which the explicit solution

(e.g to Eq.(5.18) with additive noise Eq.(5.21)) is unknown, is estimated by

Order of Convergence =

log

(
E|U4t − U4t/2|

/
E|U4t/2 − U4t/4|

)
log 2

. (5.40)

In our simulations, we start with 4t = 2−5 and decrease 4t by half for a total of 6 times.

1000 independent Brownian paths are generated and the final solution U4t on each path for

each time step 4t is calculated.

Next, we study the accuracy and stablity for both IIF-Maruyama methods and compare them

with the Euler Maruyama and ETD2-Maruyama methods in different scenarios, especially,

in the case in which the reaction term is dominant and the system becomes stiff.

In Figure 5.4, we plot all the mean errors of the numerical solutions obtained from the IIF-

Maruyama, Euler Maruyama, and ETD2-Maruyama methods while using different time steps

in the scenario where the reaction term is heavily stiff, i.e when the magnitude of the reaction

term is relatively large compared to the magnitudes of the diffusion and noise terms. Here,

the mean error is defined to be E|U4t − U4t/2| where U4t is the numerical solution resulted

from using each of the above methods with the time step 4t. From this figure, we observe

that both IIF-Maruyama methods maintain a low mean error as the time step4t increases in

size. When 4t becomes too large, i.e when 4t = 1/4, the mean errors of the solutions from

using Euler Maruyama and ETD2-Maruyama methods explode out of reasonable bounds.

Meanwhile, at the same time step, the mean errors of the numerical solutions resulted from

the two IIF-Maruyama methods remain consistently small when larger step size 4t is used.

This figure demonstrates that the IIF-Maruyama methods are highly effective whenever the

reaction-diffusion system has a dominant reaction term.

Figure 5.5 shows the orders of convergence for IIF1-Maruyama, IIF2-Maruyama, Euler
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Figure 5.4: Comparison of the mean errors E|U4t − U4t/2| of the numerical solutions to
Eq.(5.18) with additive noise obtained from the following methods: IIF1-Maruyama, IIF2-
Maruyama, Euler Maruyama, and ETD2-Maruyama, when the reaction term is heavily stiff.
The inserted figure shows the mean error comparison between different methods in more
detail. The parameter values are as followed: a = 1, b = −10, and σ = 0.1.
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Maruyama, and ETD2-Maruyama methods in different scenarios. Figure 5.5A and B rep-

resent the scenario where the noise amplitude is great compared to the magnitudes of the

diffusion and reaction terms. Figure 5.5C and D represent the scenario where the magnitude

of diffusion term is relatively large compared to those of the reaction and noise terms. In

both scenarios, all the methods share an order of convergence of one as expected and no sin-

gle method outperform the others. Figure 5.5 shows that both the IIF-Maruyama methods

are comparable to other methods in terms of accuracy in the additive-noise case.
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Figure 5.5: Comparison of the orders of convergence of the following methods: IIF1-
Maruyama, IIF2-Maruyama, Euler Maruyama, and ETD2-Maruyama used to solve Eq.(5.18)
with additive noise. Subplots A and B represent the orders of convergence of all the methods
in the scenario that the noise amplitude is relatively large compared to the magnitudes of
the diffusion and reaction terms, whose values are fixed to be a = 0.1 and b = −1. Subplots
C and D represent the scenario where the magnitude of the diffusion term is great compared
to those of the reaction and noise terms, whose values are fixed to be σ = 0.1 and b = −1.
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Multiplicative Noise

For SODE with multiplicative noise, because the explicit solution for the linear stochastic

ODE is known, the strong order of convergence can be estimated by the value γ if there

exists a constant C such that:

E|Un − U(τ)| ≤ C4tγ (5.41)

for any fixed τ = n4t ∈ [0, T ] where T is the final time and for 4t sufficiently small. Let

T = L4t for some time step 4t [38]. At τ = T , the order of convergence is calculated as

the following

Order of Convergence =

log

(
E|UL,4t − U(T )|

/
E|UL,4t/2 − U(T )|

)
log 2

(5.42)

where we denote UL,4t to be the numerical solution at t = T using time steps of size 4t each

and UL,4t/2 the numerical solution at time T using time steps of size 4t/2 each. To acquire

the value for E|UL,4t/2−U(T )|, we take the mean of |UL,4t/2−U(T )| over 1000 independent

Brownian paths, hence we call E|UL,4t/2 − U(T )| the mean error of the numerical solution.

First, we test the accuracy of the IIF-Maruyama, Euler Maruyama, and ETD2-Maruyama

methods when the magnitude of the reaction term is large and plot the mean errors of the

numerical solutions for each method in Figure 5.6A. The mean error for the multiplicative

case is defined to be E|Un−U(τ)| from Eq.(5.41). As in the additive case, when the reaction

term is highly dominant, the IIF-Maruyama methods maintain low mean errors even when

the time step 4t is relatively large. From this figure, we observe that when 4t is large

enough, i.e 4t = 1/8, the mean errors of the solutions obtained from using Euler Maruyama

and ETD2-Maruyama methods assume unreasonably large values and these two methods

become unstable. At the same time step, both the IIF-Maruyama methods still maintain
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stability, as evidenced by the reasonable mean errors resulted from the numerical solutions.

We conclude that the IIF-Maruyama methods give reliable results in the case where the

reaction-diffusion system is highly stiff in the reaction term.

Figure 5.6B shows that the orders of convergence for the IIF-Maruyama, Euler Maruyama,

and ETD2-Maruyama methods are consistently one-half when the noise term is dominant.

There is no real advantage of choosing one method over another in this scenario.

When the magnitude of the diffusion term is relatively large compared to those of the reaction

and the noise terms, we notice that the mean errors E|Un − U(τ)| obtained from the IIF-

Maruyama methods take much smaller values than those of the Euler Maruyama and ETD2-

Maruyama methods, as evidenced by Figure 5.6C and D. Although all the methods have

relatively small mean errors, the IIF-Maruyama methods have the smallest mean error values

and therefore are more accurate than the other methods.

5.2.2 Tests on Stochastic Partial Differential Equations

Now we apply IIF-Maruyama methods to the following stochastic PDEs and compare the

IIF methods with two other methods.

∂U

∂t
= a

∂2U

∂x2
+ bU + g(U)

∂2W

∂x∂t
. (5.43)

where 0 ≤ x ≤ 1 and t ∈ [0, 0.125] along with a periodic boundary condition U(0, t) = U(1, t).

We compare the orders of convergence from solving Eq.(5.43) in different scenarios among the

following schemes: First-Order IIF-Maruyama method (5.16), Second-Order IIF-Maruyama

method (5.17), Implicit-Euler Maruyama method, and Crank-Nicolson Maruyama method.
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Figure 5.6: Comparison of the mean errors and orders of convergence between the following
methods: IIF1-Maruyama, IIF2-Maruyama, Euler Maruyama, and ETD2-Maruyama, used
to solve Eq.(5.18) with multiplicative noise. Subplot A is the comparison of the mean
errors E|Un − U(τ)| of the numerical solutions when the reaction term is heavily stiff. The
parameters used here are a = 1, b = −20, and σ = 0.1. In the scenario that the noise
amplitude is relatively large compared to the magnitudes of the diffusion and reaction term,
all methods display similar orders of convergence, as seen in subplot B. The parameter values
for this subplot are a = 0.1, b = −0.02, and σ = 1. Finally, subplots C and D compare the
mean errors E|Un − U(τ)| of the numerical solutions when the diffusion term is dominant
using fixed parameters σ = 0.1 and b = −2. The time span for the simulations in subplot
A is one and the time span used in subplots B-D is one-half. For subplots A and D, the
inserted images show the mean errors of each method in more detail.
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The Implicit-Euler Maruyama method is constructed in the same way as the Euler Maruyama

method with the deterministic term being approximated using the backward-Euler method

of order one. The overall order of convergence for this method is 1/2 due to the explicit

approximation of the stochastic term as in the case of the Euler Maruyama method. Letting

M denote the diffusion matrix after applying finite difference to Eq.(5.43), the method takes

the following form,

Implicit-Euler Maruyama method

Uj+1 = Uj + aM4tUj+1 +4tf(Uj+1) + g(Uj)

√
4tξ̄j√
4x

. (5.44)

The construction of Crank-Nicolson method is also similar to that of the Euler Maruyama

method, with the exception of the approximation of the deterministic term using the Crank-

Nicolson method. For the same reason as the implicit-Euler Maruyama method, the overall

order of convergence remains 1/2 for this method:

Crank-Nicolson Maruyama method

Uj+1 = Uj +
aM4t

2
(Uj + Uj+1) +

1

2
4t(f(Uj) + f(Uj+1)) + g(Uj)

√
4tξ̄j√
4x

. (5.45)

We do not show the numerical results of the explicit Euler Maruyama scheme Eq.(5.33) and

ETD2-Maruyama scheme Eq.(5.35) due to their disadvantages in stability and the associated

computational cost.

To compute the order of convergence for each scheme mentioned, we use five different values

of the number of spatial steps: N1, N2,...N5 where N1 is a power of 2 and Ni+1 = 2Ni for

i = 1, ..., 4, and let the time step 4t = 1/(4Ni). The solutions are numerically calculated

over the time frame [t0, tf ] and generated over m different realizations of the Brownian sheet

92



W (t, x). More information on how the Brownian sheet is generated can be found in [25].

We record the difference at the final time between two solutions obtained using Ni and Ni+1

spatial steps and store this difference under the variable Si for i = 1, ...4. The difference is

the sum over m realizations of the sum of squared differences of the approximated solutions

over N1 spatial points, which are common to all solutions. Therefore, we obtain

Si =
m∑
j=1

N1∑
k=1

(
U i
j,k − U i+1

j,k

)2

, (5.46)

which offers a mean to calculate the numerical error of the scheme. Note that U i
j,k indicates

the approximated solution at space step xk = k/N1 and at final time, which is obtained

from using Ni spatial steps and jth independent realization of the Brownian sheet [18]. Then

the order of convergence can be estimated by log2R where the ratio R = Si/Si+1. When

using this method of computing the order of convergence, both Implicit-Euler Maruyama

and Crank-Nicolson Maruyama schemes converge with an order of 1/2 for both additive

and multiplicative noises [18]. As a result, we will use 1/2 as the standard value of the

order of convergence in the subsequent numerical comparisons. In this sub-section, we fix

m = 100. From our experimentation, increasing the value of m has no effects on the orders

of the convergence of each scheme. However, the values of {Si}4
i=1 will increase since these

quantities depend on the value of m. In our tests, when m = 500, the values of {Si}4
i=1 are

roughly five times larger than those obtained with m = 100. Similarly, if we increase m to

1000, {Si}4
i=1 are about ten times larger than their corresponding values when m = 100.

To compare the orders of convergence, we observe the following scenarios with both noises:

how the order of convergence for each scheme is affected when the degree of stiffness increases,

and whether each method still performs satisfactorily with large noise amplitude.
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Stiff reaction

Figure 5.7A and B plots the values {Si}4
i=1 obtained from the numerical solutions of Eq.(5.43)

with both additive and multiplicative noises versus the size of the space step when the

reaction term is stiff with respect to the diffusion and noise terms. The numerical methods

that are applied here are the IIF1-Maruyama, IIF2-Maruyama, Implicit-Euler Maruyama,

and Crank-Nicolson Maruyama methods. For both types of noise, all methods converge

with a rate of approximately 1/2. The Implicit-Euler Maruyama scheme along with the two

IIF-Maruyama schemes have an advantage over the Crank-Nicolson Maruyama scheme when

the values {Si}4
i=1 are considered.

In the interest of demonstrating the effectiveness of the IIF-Maruyama methods, we com-

pare the orders of convergence between all of the aforementioned methods Eqs.(5.16), (5.17),

(5.44), and (5.45) when the reaction term is extremely stiff for both additive and multiplica-

tive noises. When noise is additive, all methods have an order of convergence of 1/2. How-

ever, the Implicit-Euler Maruyama and the two IIF-Maruyama methods perform much better

than the Crank-Nicolson Maruyama method in terms of the mean errors {Si}4
i=1, as seen in

Figure 5.7C. In Figure 5.7D, for multiplicative noise, the Implicit-Euler Maruyama and the

IIF1-Maruyama methods converge at a much faster rate than 1/2 while the Crank-Nicolson

Maruyama and the IIF2-Maruyama schemes maintain the 1/2 order of convergence. When

using fewer number of space steps, the values Si obtained from the Implicit-Euler Maruyama

and IIF1-Maruyama methods are not as good as those of the other methods due to the large

convergence rate. For example, when the spatial step sizes are 1/64, 1/128, and 1/256, the

values S1 and S2 obtained from the IIF1-Maruyama and Implicit-Euler Maruyama methods

are larger than those of the IIF2-Maruyama and Crank-Nicolson Maruyama methods. On

the other hand, the IIF2-Maruyama method consistently has the smallest values for {Si}4
i=1,

making it the most desirable method for solving a stochastic partial differential equation with

an extremely stiff reaction term whose noise term can be either additive or multiplicative.
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Figure 5.7: Comparison of the values {Si}4
i=1 from Eq.(5.46) and orders of convergence of the

following methods: IIF1-Maruyama, IIF2-Maruyama, Implicit-Euler Maruyama, and Crank-
Nicolson Maruyama used to solve Eq.(5.43) with both additive and multiplicative noises in
the scenario where the reaction term is heavily stiff. Subplots A and B show the plots of
{Si}4

i=1 of all the methods when the reaction term b = −10. Subplots C and D display
plots of {Si}4

i=1 of all the methods when b = −50. For all the subplots, the values of the
reaction and noise terms are fixed to be a = 1 and σ = 0.1. In subplots A and B, the time
frame is chosen to be t ∈ [0, 0.125] and for the remaining two subplots, t ∈ [0, 0.025]. Also,
each plot contains the reference line of slope one-half for the purpose of order of convergence
comparison.
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Strong diffusion

We obtain the numerical solutions for Eq.(5.43) using the four methods when the diffusion

coefficient is large. Then we compare the values {Si}4
i=1 from Eq.(5.46) and the orders of

convergence of all methods by plotting {Si}4
i=1 versus the size of the space step along with a

reference line of slope one-half in Figure 5.8A and B. The Crank-Nicolson Maruyama method

is slightly more stable than the other methods for some large values of spatial step size but

does not maintain this stability if the space step assumes a larger value than those shown

in this figure. Both the IIF-Maruyama methods and the Implicit-Euler Maruyama method

achieve the best values for {Si}4
i=1, while the Crank-Nicolson Maruyama method has signifi-

cantly larger {Si}4
i=1 compared to them. When the spatial step size assumes a small-enough

value, the IIF-Maruyama schemes and the Implicit-Euler Maruyama schemes have compa-

rable orders of convergence with that of the Crank-Nicolson Maruyama scheme. With both

the mean errors and orders of convergence taken into consideration, it is more advantageous

to choose the IIF-Maruyama methods and the Implicit-Euler Maruyama method over the

Crank-Nicolson Maruyama scheme.

Large noise amplitude

Figure 5.8C and D contains similar plots to Figure 5.8A and B in the case where Eq.(5.43)

has a large noise term. For both additive and multiplicative noises, all methods have an order

of convergence of one-half. Also, for all methods, the values of {Si}4
i=1 are slightly larger than

the corresponding values obtained when the reaction term or diffusion term is stiff. Since

the calculation of {Si}4
i=1 contains a double sum, the magnitude of {Si}4

i=1 could become

quite large. Taking this into consideration, when the noise term has large magnitude, the

IIF-Maruyama methods and the Implicit-Euler Maruyama method outperform the Crank-

Nicolson Maruyama method significantly in terms of mean errors and thus are preferred.
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Figure 5.8: Comparison of the values {Si}4
i=1 from Eq.(5.46) and orders of convergence of the

following methods: IIF1-Maruyama, IIF2-Maruyama, Implicit-Euler Maruyama, and Crank-
Nicolson Maruyama used to solve Eq.(5.43). Subplots A and B are the plots of {Si}4

i=1 of
all the methods when the diffusion term is stiff. The values of the diffusion, reaction, and
noise terms are fixed to be a = 20, b = −1, and σ = 0.1 for all subplots. Subplots C and D
display plots of {Si}4

i=1 of all the methods when the noise term assumes a large value. For
these subplots, the values of the diffusion, reaction, and noise terms are fixed to be a = 2,
b = −1, and σ = 1. In this figure, all the simulations are run for 0.125 time units. Also,
each plot contains the reference line of slope one-half for the purpose of order of convergence
comparison.
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5.3 A Turing patterning system with noise

5.3.1 1-dimensional activator-substrate system

Finally we apply the IIF2-Maruyama scheme to a Turing patterning system that contains

noise to study how noise may affect the formation of patterns. We use the activator-substrate

system as an example, whose non-dimensional form is as followed [56, 71] :

∂A

∂t
= D

∂2A

∂x2
+ SA2 − A+ ρ (5.47)

∂S

∂t
=
∂2S

∂x2
+ µ(1− SA2). (5.48)

The boundary conditions are no-flux. The constant D measures the diffusion coefficient ratio

of activator to substrate. The parameters ρ and µ measures the production rates of activator

and substrate, respectively. This system has known homogeneous solutions:

A∗ = 1 + ρ, S∗ = (1 + ρ)−2 (5.49)

One of the features of the activator-susbtrate system Eqs.(5.47) and (5.48) is that the sub-

strate S can be consumed during the autocatalysis of activator A and the interactions be-

tween the activator and substrate of this system lead to the formation of spatially inhomo-

geneous patterns [56, 71]. Without noise, the inhomogeneous steady state patterns may be

obtained in the parameter ranges

ρ ∈ (0, 1), µ ∈
(

2

1 + ρ
− 1, 2

)
, D ∈

(
0.001,

1

µ

(√
2

1 + ρ
− 1

))
. (5.50)
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The initial guesses for the pattern (A0, S0) are chosen as [71]

A0 = A∗(1 + γδA(x)), S0 = S∗(1 + γδS(x)) (5.51)

where δA(x) and δS(x) are standard normally-distributed random variables with zero mean

and variance one. Different patterns can arise from a slight variations in initial conditions

[77]. If we choose the following parameters,

t ∈ [0, 101], x ∈ (0, 10), ρ = 0.01, µ = 1, D = 0.1, γ = 0.02, dx = 10/27, dt = dx/4.

(5.52)

the different permutations of our initial conditions in Eq.(5.51) result in six distinct combi-

nations of inhomogeneous steady state patterns for solutions A and S, similar to those in

Figure 5.9.

Now, we add multiplicative noise to the Eqs.(5.47) (5.48) to obtain:

∂A

∂t
= D

∂2A

∂x2
+ SA2 − A+ ρ+ εAA

∂2W

∂x∂t
, (5.53)

∂S

∂t
=
∂2S

∂x2
+ µ(1− SA2) + εSS

∂2W

∂x∂t
. (5.54)

Results

We implement the IIF2-Maruyama method described in Eq.(5.15) to Eqs.(5.53) and (5.54)

and examine the changes to the deterministic steady-state patterns when a multiplicative

noise is added to both Eqs.(5.47) and (5.48). For our implementation, the parameters from
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Eq.(5.52) are selected.

We want the time span for our simulations to be sufficiently long so that we can observe the

long term behaviors of the solutions A and S. More specifically, in our cases, we want to see

whether the long-term solutions assume any patterns observed in their deterministic steady-

state counterparts. Unlike the previous study for the deterministic equations [71] in which

fluctuations in the initial conditions are critically important in generating the patterns, we

fix the initial conditions A0 = A∗ and S0 = S∗ defined in Eq.(5.49).

Interestingly, we obtain similar patterns in spite of the uniform initial conditions when the

relatively small values to the noise coefficients, i.e εA = 0.005 and εS = 0.01, are given.

The six different combinations of patterns for the long time solutions A and S that exist

can be seen in Figure 5.9. We note that these six different combinations of patterns are the

same inhomogeneous steady state patterns obtained from solving the deterministic equations

Eqs.(5.47) and (5.48) [71]. Hence, adding multiplicative noise to the activator-substrate

system enables us to obtain the inhomogeneous steady-state patterns that are otherwise

obtained through the fluctuations of the initial conditions, as previously predicted [77].

Because each stochastic solution may reach a different steady state even with the same initial

conditions in a deterministic form, we perform 100, 500, and 1000 simulations to see which

combination of patterns shows up more frequently. In Table 5.1, we fix the initial conditions

as in Eq.(5.49) and choose the spatial step size to be dx = 10/26 and dx = 10/27. This

change in dx does not affect the frequency of presence of each combination of patterns. For

Table 5.2, the values of the initial conditions are randomly permuted as in Eq.(5.51) for each

independent path, while dx is fixed at 10/27. From these two tables, we see that the first

combination of patterns is consistently the most favored type of patterns, with a > 30%

chance of occurrence, with the second combination of patterns being the second most typical

combination of patterns. In addition, the frequency of appearance of each type of patterns is

independent of the effects of extra fluctuations on the initial conditions, as evidenced by Table
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Percentage of appearance
Spatial step size dx = 10/26 dx = 10/27

No. simulations 100 500 1000 100 500 1000
Pattern 1 35% 33.4% 34.4% 39% 35.8% 36.7%
Pattern 2 28% 26.4% 29% 25% 22.8% 26.1%

Patterns 3 and 5 23% 19.8% 18.9% 15% 20.2% 18.8%
Patterns 4 and 6 14% 20.4% 17.7% 21% 21.2% 18.4%

Table 5.1: Percentage of occurrence of each combination patterns for 100, 500, and 1000
different simulations. The initial conditions are uniformly fixed as in Eq.(5.49).

Percentage of appearance
No. simulations 100 500 1000

Pattern 1 41% 40.2% 37%
Pattern 2 30% 26.4% 26.7%

Patterns 3 and 5 15% 15.2% 18.1%
Patterns 4 and 6 14% 18.2% 18.2%

Table 5.2: Percentage of occurrence of each combination patterns for 100, 500, and 1000
different simulations. In this table, dx = 2−7 and the initial conditions are permuted as in
Eq.(5.51).

5.2. This implies that the first combination of patterns is likely to make up the standard type

of patterns that the long-term activator and substrate solutions are supposed to assume. The

lack of robustness in pattern formation of the activator and substrate levels can be improved

by adding growth factor to the system, in particular apical growth in the case of intrinsic

noise [77]. As the domain grows, the space between the activated regions (characterized by

the activator maxima or the substrate minima) is enlarged while the substrate concentration

is quickly diffusing and increasing. This increase in substrate prompts a higher production of

the activator at the side of the maxima in comparison to its center, resulting in the movement

of the activator maxima to regions with higher substrate concentration [56]. Attributing the

appropriate type of growth to the system can help stabilize the pattern formation over time

where the robust patterns for both activator and substrate levels are the first combination

of patterns.
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Figure 5.9: The six different combinations of steady-state patterns for long-term solutions
A and S to the one-dimensional stochastic system in Eqs.(5.53) and (5.54). The values for
the noise coefficients are εS = 0.01 and εA = 0.005.

Computational efficiency

Next, we discuss the computational efficiency of the two IIF-Maruyama methods used to

solve the Activator-Substrate system with multiplicative noise, Eqs.(5.53) and (5.54), by

comparing their performances with that of an explicit method, which we choose to be the

Euler Maruyama method. We keep all the parameter values as described previously Eq.(5.52)

with the exception of time, which is changed to t ∈ [0, 1]. In Table 5.3, the mean errors, the

order of convergence, and the computational time for each method are recorded. To calculate

the mean errors and the order of convergence, we carry out 100 different simulations and

apply Eq.(5.46). We choose dt = dx/2 for the IIF1-Maruyama method, dt = dx for the IIF2-

Maruyama method, and dt = (dx)2/3 for the Euler Maruyama method to ensure convergence.

In this table, we denote N to be the number of spatial grid points that partition the interval

(0,10). Besides N = 23, all methods display similar orders of convergence and mean errors of

similar magnitude. Next, we discuss the computational time in seconds of each method. Each

time listed in our table is the total time each method takes to compute the solution over 100
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different Brownian paths. For the computational time of both IIF-Maruyama methods, we

include the time it takes to calculate the exponential matrix using the Matlab function expm.

We observe that with coarser spatial grids, i.e when N = 23 and N = 24, the Euler Maruyama

method surpasses both IIF-Maruyama methods in terms of computational effort. With finer

grids, i.e N = 26 and 27, it takes the Euler Maruyama method twice as long as it takes the

IIF2-Maruyama method in computing the solutions over 100 Brownian paths. Similarly, the

IIF1-Maruyama method is put at a disadvantage with respect to computational speed when

the grids are coarse but quickly catches up to the Euler Maruyama method with refined grids.

We note that the second-order IIF-Maruyama method is more efficient than the first-order

IIF-Maruyama method. In addition, the second-order IIF-Maruyama method catches up to

the Euler Maruyama method much faster in improving its computational speed, which is

demonstrated by the similar speeds between these two methods when N = 24. Meanwhile,

the computational speed of the IIF1-Maruyama method does not catch up to that of the

Euler Maruyama method until N = 25. In short, due to the restriction of the temporal

step size that is required to maintain numerical stability, the Euler Maruyama scheme is less

computationally efficient than the IIF1-Maruyama and the IIF2-Maruyama schemes when

a finer spatial grid is required. Between the two IIF-Maruyama methods, the second-order

IIF-Maruyama method is more desirable for its computational efficiency than the first-order

IIF-Maruyama method.

5.3.2 2-dimensional activator-substrate system

For two or three-dimensional systems, direct application of IIF is costly because the storage

and computation of the exponential matrix eaM4t in the IIF methods may become very

large. Similarly to solving the deterministic systems in two or three dimensions, here we

use the compact integration factor methods (cIIF) [82], in which the discretized diffusion

operator is represented in a compact form that requires storage only proportional to the
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IIF1-Maruyama IIF2-Maruyama Euler Maruyama
dt = dx/2 dt = dx dt = (dx)2/3

N S Order Time(s) S Order Time(s) S Order Time(s)
23 3.52e-2 2.36 0.158 1.27e-2 0.61 0.014 1.41e-2 0.28 0.009
24 6.88e-3 0.65 0.154 8.35e-3 0.62 0.101 1.02e-2 0.47 0.051
25 4.38e-3 0.37 0.233 5.42e-3 0.69 0.194 6.74e-3 0.60 0.230
26 3.38e-3 0.93 0.614 3.35e-3 0.86 0.481 3.70e-3 0.86 1.093
27 1.77e-3 0.58 2.019 1.84e-3 0.68 1.208 2.14e-3 0.79 4.431

Table 5.3: The mean errors S defined in Eq.(5.46), orders of convergence, and computational
cost when solving the activator-substrate system with noise described in Eqs.(5.53) and
(5.54) obtained by each method: IIF1-Maruyama, IIF2-Maruyama, and Euler Maruyama.
The results are computed over 100 Brownian paths with N denoting the number of spatial
grid points that partition the interval (0,10).

number of unknowns instead of the square of the number of unknowns in the case of non-

compact IIF methods for the exponentials of matrices. cIIF methods can be combined with

the Maruyama method in the same manner as the integration of the IIF methods with the

Maruyama method, and both the cIIF and the IIF methods share the same desirable stability

properties [82].

Here we construct the cIIF-Maruyama methods by estimating the deterministic diffusion and

reaction terms using the cIIF methods and the stochastic term using the explicit Maruyama

approximation. To demonstrate the efficiency of the cIIF-Maruyama methods, we apply the

cIIF2-Maruyama method to the two-dimensional version of the activator-substrate system

with no-flux boundary conditions Eqs.(5.53) and (5.54) presented in the previous section.

Similarly to the one-dimensional case, we compute the solutions over the space (0, 10)×(0, 10)

using the steady states in Eq.(5.49) as the initial conditions. The time window for the

simulation is set to be t ∈ [0, 200] and dt = dx where dx = dy = 2−7 × 10. The rest of the

parameter values in Eq.(5.52) remain the same. Figure 5.10 displays the contour plot of one

of the final patterns of the solutions A and S .

The computational time it takes for the cIIF2-Maruyama method to compute one stochastic
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Figure 5.10: One of the final patterns obtained for long-term solutions A and S when solving
the two-dimensional stochastic system in Eqs.(5.53) and (5.54). The values for the noise
coefficients are εS = 0.01 and εA = 0.005.

solution to the two-dimensional activator-substrate system is 126.789 seconds for this case.

If we use the Euler-Maruyama method to solve this system using the same spatial step size,

it takes 206.740 seconds due to the restriction on the temporal step size, which we set to

be dt = (dx)2/5. In summary, due to the stability property, the cIIF-Maruyama methods

are as efficient in solving two dimensional stochastic reaction-diffusion systems as the one-

dimensional systems.

5.4 Conclusions and Discussion

By convention, stochastic stiffness is defined to be the result of the different time scales

caused by the large discrepancies in the magnitudes of the Lyapunov exponents [8, 54]. For

that reason, stochastic stiffness can occur in the deterministic term, stochastic term, or both.

When solving a stochastic differential equation, the problem of stiffness that stems from the

stochastic term has been studied previously [1, 8, 9, 37, 54, 65, 80, 107]. Here, we have
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focused on the treatment of stiffness of the reaction term for a stochastic reaction-diffusion

system. By taking advantage of the existing semi-implicit integrating factor method that is

both computationally efficient and absolutely stable at solving stiff deterministic reaction-

diffusion systems, we have developed a new class of temporal schemes for reaction-diffusion

systems with both additive and multiplicative noises. Similarly to the deterministic case, the

new numerical schemes presented remove the restriction imposed on the temporal step size

by the linear diffusion term by treating this term exactly while dealing with the stiff reaction

term through an implicit approximation. Numerical comparisons show that the construction

using the IIF technique to approximate the deterministic term allows the new methods to

achieve better stability and good efficiency. While the explicit treatment of the diffusion

in IIF naturally leads to good approximations on strong diffusion, the new IIF-Maruyama

methods mainly offer an efficient approach to deal with stiff reactions in a reaction-diffusion

systems. In general, this method is mostly effective when the reactions are very stiff while

diffusion is still important in a stochastic reaction-diffusion system.

The approach used here in combining IIF for reaction and diffusion and Maruyama for

the stochastic terms can be adapted in a straightforward fashion for compact IIF (cIIF)

methods [82], which is effective for systems in two or three dimensions. With the compact

representation for the differential operators, it would be more efficient in simulating 2D and

3D systems using cIIF than IIF-Maruyama. Another improvement on IIF-Maruyama is its

order of convergence.

In the case of multiplicative noise, the order of convergence of the IIF-Maruyama methods is

confined to a value of one-half. With the Euler Maruyama method, the order of convergence

can be improved by adding more terms from the Ito-Taylor expansion to construct methods

with higher order of accuracy such as the Milstein method [54]. Integrating such approach

with IIF method might lead to higher order of accuracy with similar stability property of IIF-

Maruyama. However, because the diffusion term is not well-defined for the Brownian sheet
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due to a lack of a well-defined spatial derivative for the Wiener process, a direct application

of the Milstein method to stochastic PDEs may only lead to half-order of convergence. To

deal with this difficulty, one might need to use the Q-Wiener process instead of the Brownian

sheet to approximate the diffusion [74]. Similarly to the IIF methods, which can be used

for the deterministic systems in various forms, spatial dimensions, and in combination with

other approaches for treating additional terms such as convections, IIF-Maruyama methods

may have broad applications in simulating stochastic partial differential equations in various

forms and containing stiff reactions.
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[11] A. Cano, M. A. Pérez-Moreno, and I. Rodrigo. The transcription factor snail controls
epithelial-mesenchymal transitions by repressing E-cadherin expression. Nature Cell
Biology, 2:76–83, 2000.

[12] C. L. Chaffer, N. Marjanovic, T. Lee, G. Bell, C. G. Kleer, and et al. Poised chromatin
at the Zeb1 promoter enables breast cancer cell plasticity and enhances tumorigenicity.
Cell, 154(1):61–74, 2013.

[13] H. H. Chang, M. Hemberg, M. Barahona, and et al. Transcriptome-wide noise controls
lineage choice in mammalian progenitor cells. Nature, 453:544–547, 2008.

[14] J. Chen, Q. Han, and D. Pei. EMT and MET as paradigms for cell fate switching. J
Mol Cell Biol, 4:66–69, 2012.

[15] M. Chen, L. Wang, C. C. Liu, and et al. Noise attenuation in the ON and OFF states
of biological switches. ACS Synth Biol, 2:587–593, 2013.

[16] C. M. Chuong and R. B. Widelitz. The river of stem cells. Cell Stem Cell, 4:100–102,
2009.

[17] R. Clewley. Hybrid models and biological model reduction with PyDSTool. PLoS
Comput. Biol., 8(e1002628), 2013.

[18] A. M. Davie and J. G. Gaines. Convergence of numerical schemes for the solution
of parabolic stochastic partial differential equations. Mathematics of Computation,
70(233):121–134, 2000.

[19] T. S. Deisboeck, Z. Wang, P. Macklin, and V. Cristini. Multiscale cancer modeling.
Annu. Rev. Biomed. Eng., 13, 2011.

[20] A. Diaz-Lopez, J. Diaz-Martin, G. Moreno-Bueno, and et al. Zeb1 and Snail1 engage
miR-200f transcriptional and epigenetic regulation during EMT. International Journal
of Cancer, 136:E62–73, 2015.

[21] A. Eger, K. Aigner, S. Sonderegger, B. Dampier, and et al. DeltaEF1 is a transcrip-
tional repressor of E-cadherin and regulates epithelial plasticity in breast cancer cells.
Oncogene, 24:2375–2385, 2005.

[22] B. Ermentrout. Simulating, Analyzing, and Animating Dynamical Systems: A Guide
to XPPAUT for Researchers and Students. Society for Industrial and Applied Mathe-
matics, 2002.

[23] I. Th. Famelis, F. Xanthos, and G. Papageorgiou. Numerical solution of stochastic dif-
ferential equations with additive noise by Runge-Kutta methods. Journal of Numerical
Analysis, Industrial and Applied Mathematics, 4(3-4):171–180, 2009.

109



[24] P. Friedl and D. Gilmour. Collective cell migration in morphogenesis, regeneration,
and cancer. Nature Reviews, Molecular Cell Biology, 10(7):445–457, 2009.

[25] J. G. Gaines. Numerical experiments with S(P)DE’s. In A. M. Etheridge, editor,
Stochastic Partial Differential Equations, volume 216 of London Math. Soc. Lecture
Note Ser., pages 55–71. Springer Berlin Heidelberg, 1995.

[26] S. Gaudet, S. L. Spencer, W. W. Chen, and et al. Exploring the contextual sensitivity
of factors that determine cell-to-cell variability in receptor-mediated apoptosis. PLoS
Comput Biol, 8, 2012.

[27] N. J. Godde, R. C. Galea, I. A. Elsum, and P. O. Humbert. Cell polarity in motion:
redefining mammary tissue organization through EMT and cell polarity transitions.
Journal of Mammary Gland Biol/ Neoplasia, 15:149–168, 2010.

[28] P. A. Gregory, C. P. Bracken, E. Smith, A. G. Bert, and et al. An autocrine
TGFβ/ZEB/miR-200 signaling network regulates establishment and maintenance of
epithelial-mesenchymal transition. Molecular Biology of the Cell, 22:1686–1698, 2011.

[29] A. Grosse-Wilde, A. F. D’Hérouël, E. McIntosh, G. Ertaylan, A. Skupin, and et al.
Stemness of the hybrid epithelial/ mesenchymal state in breast cancer and its associ-
ation with poor survival. PLoS One, 10(5):e0126522, 2015.

[30] S. Guaita, I. Puig, C. Franci, and et al. Snail induction of epithelial to mesenchymal
transition in tumor cells is accompanied by MUC1 repression and ZEB1 expression.
The Journal of Biological Chemistry, 277:39209–39216, 2002.

[31] D. Guo, B. Xu, X. Zhang, and M. M. Dong. Cancer stem-like side population cells in
the human nasopharyngeal carcinoma cell line CNE-2 possess epithelial mesenchymal
transition properties in association with metastasis. Oncol. Rep., 28(1):241–247, 2012.

[32] P. B. Gupta, C. M. Fillmore, G. Jiang, and et al. Stochastic state transitions give rise
to phenotypic equilibrium in populations of cancer cells. Cell, 146:633–644, 2011.
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mations of stochastic PDEs. Jour. Applied Math. Sto. Anal., 14:47–53, 2001.

[56] A. J. Koch and H. Meinhardt. Biological pattern formation: from basis mechanisms
to complex structures. Rev. Mod. Phys., 66:1481–1507, 1994.

[57] S. Kondo and T. Miura. Reaction-diffusion model as a framework for understanding
biological pattern formation. Science, 329(5999):1616–1620, 2010.

[58] R. Kubo. The fluctuation-dissipation theorem. Reports on Progress in Physics, 29:255–
284, 1966.

[59] D. A. Lawson, N. R. Bhakta, K. Kessenbrock, and et al. Single-cell analysis reveals a
stem-cell program in human metastatic breast cancer cells. Nature, 526:131–135, 2015.

[60] M. J. Lawson, B. Drawerr, M. Khammash, L. Petzold, and T. Yi. Spatial stochastic
dynamics enable robust cell polarization. PLoS Comput Biol, 9(7), 2013.

[61] B. Lee, A. Villarreal-Ponce, M. Fallahi, J. Ovadia, and et al. Transcriptional mecha-
nisms link epithelial plasticity to adhesion and differentiaton of epidermal progenitor
cells. Dev Cell, 29:47–58, 2014.

[62] J. Lei, S. A. Levin, and Q. Nie. Mathematical model of adult stem cell regeneration
with cross-talk between genetic and epigenetic regulation. Proc Natl Acad Sci U S A,
111:880–887, 2014.

[63] C. Li and J. Wang. Quantifying cell fate decisions for differentiation and reprogram-
ming of a human stem cell network: Landscape and biological paths. PLOS Compu-
tational Biology, 9(8):1–14, 2013.

[64] C. Li and J. Wang. Quantifying the landscape for development and cancer from a core
cancer stem cell circuit. Cancer Research, 75(13):2607–2618, 2015.

[65] T. Li, A. Abdulle, and E. Weinan. Effectiveness of implicit methods for stiff stochastic
differential equations. Commun. Comput. Phys., 3(2):295–307, 2008.

[66] W. A. Lim, C. M. Lee, and C. Tang. Design principles of regulatory networks: searching
for the molecular algorithms of the cell. Mol Cell, 49:202–212, 2013.

112



[67] S. Liu, Y. Cong, D. Wang, Y. Sun, L. Deng, and et al. Breast cancer stem cells transi-
tion between epithelial and mesenchymal states reflective of their normal counterparts.
Stem Cell Reports, 2(1):78–91, 2014.

[68] X. Liu, S. Johnson, and et al S. Liu. Nonlinear growth kinetics of breast cancer stem
cells: implications for cancer stem cell targeted therapy. Sci Rep, 3, 2013.

[69] X. Liu and Q. Nie. Compact integration factor methods for complex domains and
adaptive mesh refinement. Jour. Comp. Physics, 229:5692–5706, 2010.

[70] Y. Liu, S. El-Naggar, D. S. Darling, Y. Higashi, and et al. Zeb1 links epithelial-
mesenchymal transition and cellular senescence. Development, 135:579–588, 2008.

[71] W. Lo, L. Chen, M. Wang, and Q. Nie. A robust and efficient method for steady-state
patterns in reaction-diffusion systems. Jour. Comp. Physics, 231:5062–5077, 2012.

[72] W. C. Lo, C. S. Chou, K. K. Gokoffski, and et al. Feedback regulation in multistage
cell lineages. Math Biosci Eng, 6:59–82, 2009.

[73] G. J. Lord and J. Rougemont. A numerical scheme for stochastic PDEs with Gevrey
regularity. IMA Journal of Numerical Analysis, 24:587–604, 2004.

[74] Gabriel J. Lord, Catherine E. Powell, and Tony Shardlow. An introduction to compu-
tational stochastic PDEs. Cambridge Texts in Applied Mathematics, 2014.

[75] M. Lu, M. K. Jolly, R. Gomoto, B. Huang, and et al. Tristability in cancer-
associated microRNA-TF chimera toggle switch. The Journal of Physical Chemistry
B, 117:13164–13174, 2013.

[76] M. Lu, M. K. Jolly, H. Levine, J. N. Onuchic, and E. Ben-Jacob. MicroRNA-based
regulation of epithelial-hybrid-mesenchymal fate determination. Proc. Natl. Acad. Sci.
USA, 110:18144–18149, 2013.

[77] P. K. Maini, T. E. Woolley, R. E. Baker, E. A. Gaffney, and S. S. Lee. Turing’s
model for biological pattern formation and the robustness problem. Interface Focus,
2:487–496, 2012.

[78] S. Mani, W. Guo, M. Liao, E. N. Eaton, A. Ayyanan, and et al. The epithelial-
mesenchymal transition generates cells with properties of stem cells. Cell, 133(4):704–
715, 2008.

[79] D. S. Micalizzi, S. M Farabaugh, and H. L. Ford. Epithelial-mesenchymal transition
in cancer: parallels between normal development and tumor progression. Journal of
Mammary Gland Biol. Neoplasia, 15:117–134, 2010.

[80] G. N. Milstein, E. Platen, and H. Schurz. Balanced implicit methods for stiff stochastic
systems. Siam J. Numer. Anal., 35(3):1010–1019, 1998.

113



[81] T. Müller-Gronbach and K. Ritter. An implicit Euler scheme with non-uniform
time discretization for heat equations with multiplicative noise. BIT Numer Math,
47(2):393–418, 2007.

[82] Q. Nie, F. Wan, Y. Zhang, and X. Liu. Compact integration factor methods in high
spatial dimensions. Jour. Comp. Physics, 227:5238–5255, 2008.

[83] Q. Nie, Y. Zhang, and R. Zhao. Efficient semi-implicit schemes for stiff systems. Jour.
Comp. Physics, 214:521–537, 2006.

[84] M. A. Nieto. Epithelial plasticity: a common theme in embryonic and cancer cells.
Science, 342(e1234850), 2013.

[85] M. A. Nieto, R. Huang, R. Jackson, and J. P. Thiery. EMT: 2016. Cell, 166(1):21–45,
2016.

[86] K-A. Norton, M. M. McCabe Pryor, and A. S. Popel. Multiscale modeling of cancer.
bioRxiv, 033977, 2015.

[87] H. Peinado, M. Quintanilla, and A. Cano. Transforming growth factor beta-1 induces
snail transcription factor in epithelial cell lines: mechanisms for epithelial mesenchymal
transitions. The Journal of Biological Chemistry, 278:21113–21123, 2003.
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Appendices

A Experimental evidence confirms the existence of an

Ovol2-Zeb1 mutual inhibition loop (Chapter 2)

Mutual inhibition loops between EMT-inducing TFs and miRNAs (e.g. Zeb1-miR200 and

Snail-miR34a) are critical for robust control of EMT/MET [84]. Previous studies showed that

Zeb1 is directly inhibited by Ovol2 in mammary and skin epithelial cells [61, 108]. Zeb1 and

Ovol2 are expressed in a mutually exclusive pattern in clinical and cell line samples [91, 108],

raising the possibility that Zeb1 may also inhibit Ovol2 expression. Indeed, sequence analysis

revealed the presence of two conserved Zeb1 binding consensus sequences in the human and

mouse OVOL2 /Ovol2 promoters, one near the transcriptional start site (-335 bp and -111 bp

for human and mouse genes, respectively) and the other further upstream (-1546 bp and -1167

bp for human and mouse, respectively), Figure H.1A. Using chromatin immunoprecipitation

(ChIP) assay, Xing Dai’s lab detected Zeb1 binding to the downstream but not upstream

site, Figure H.1A. Furthermore, forced expression of Zeb1 in MCF10A human mammary

epithelial cells significantly decreased OVOL2 expression at a transcriptional level, whereas

Ovol2 overexpression led to reduced level of ZEB1 transcript as expected, Figure H.1B.

These results are consistent with direct repression of OVOL2 /Ovol2 expression by Zeb1,

and together with previously published data suggest the existence of an Ovol2-Zeb1 mutual
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inhibition loop.

B Experimental evidence supports the 4-state model

and validates the reprogramming ability of Ovol2

(Chapter 2)

Previous work stipulates that unstimulated MCF10A cells are in an epithelial state and

when stimulated by increasing concentrations of TGFβ they transition into first an interme-

diate (partial EMT) state and subsequently an M state [115]. However, by comparing the

expression of epithelial (E-cadherin or Ecad) and mesenchymal (Vimentin or Vim) markers

between MCF10A and two breast cancer cell lines well-characterized for their cellular states

(MCF7 = E state, MDA-MB231 = metastatic human breast cancer cells corresponding to an

M state), we found MCF10A cells to be likely in a state that is intermediate between typical

terminal E and M cells (Figure 2.2A, compare green population to others; Figure H.2). This

is consistent with a recent study showing that MCF10A cells tend to collectively migrate

[112], a feature that has been associated with the intermediate phenotype [76, 79, 114]. We

surmise that the natural state of these cells is I1, because a majority of them show low to

no Vim expression, suggesting more similarity to the terminal E than M cells.

To experimentally test whether Ovol2 is able to reprogram I1-state cells into an E state (Fig-

ure 2.1C), Xing Dai’s lab overexpressed Ovol2 in MCF10A cells using a lentiviral expression

system in which the Ovol2-expressing cells can be distinguished from uninfected cells by

bicistronic expression of GFP, Figure H.3. This led to significantly increased expression of

Ecad, and decreased expression of Vim as assessed by quantitative population analysis us-

ing flow cytometry (Figure 2.2B, blue population). Comparison with Ecad/Vim profiles in

Figure 2.2A reveals the similarity between Ovol2-reprogrammed cells and terminal E cells
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(MCF7). In contrast, overexpression of EMT inducers Snail or Zeb1 directed MCF10A cells

to an M phenotype (Figure 2.2B, red and orange populations). Consistent with previous

reports that EMT promotes stemness [12, 31, 78], the expression of a well-known cancer

stem cell marker CD44 [111] decreased upon Ovol2-induced transition to E and increased

upon Zeb1/Snail-induced transition to M, Figure 2.2D.

As bifurcation analysis also predicted the ability of Ovol2 to reprogram M-state cells into

an E state (Figure 2.1C), we tested the effect of Ovol2 overexpression on MDA-MB231 cells.

Indeed, forced expression of Ovol2 was able to convert these cells to exhibiting a pattern of

Ecad/Vim expression that is reminiscent of the terminal E state, Figure 2.2E. This finding

is consistent with previous reports of Ovol2 overexpression inducing epithelial features in

M-state cells [91, 108].

C Model construction (Chapter 2)

The framework of our model is from a recent publication by Zhang et al [115]. In that study,

Zhang et al. demonstrated that both Zeb1-miR-200 and Snail1-miR-34 loops can create

bistable switches. Therefore, this published model is also referred to as Cascading Bistable

Switches (CBS) model in that paper and herein. We added the following interactions to the

existing network in CBS model in order to consider regulations involving Ovol2:

1. Ovol2 inhibits Zeb1 expression [61, 108]

2. Ovol2 inhibits TGFβ expression [108]

3. Ovol2 inhibits TGFβ signaling, partly by inhibiting Snail expression [87, 108]

4. Zeb1 inhibits Ovol2 expression (evidence from this study)

Other regulations and the supporting experimental evidence are listed in Table G.1.

Details of modeling framework can be found in [115]. Briefly, law of mass action was used

to describe miRNA-mRNA interaction, and miRNA-mediated mRNA degradation was ex-
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plicitly considered. This framework was first introduced by Lu et al [75, 76]. Generalized

Hill function was used to describe transcriptional activation and inhibition by transcription

regulators other than miRNAs. We adjusted some parameter values from the CBS model in

order to examine the qualitative dynamic behavior that might be introduced by Ovol2-Zeb1

interactions.

Our model has 18 ordinary differential equations (ODEs) as follows:

d[snail1]t
dt

= k0snail+

ksnail

(
(([TGF ] + [TGF0])/J0snail)

n0snail

(1 + (([TGF ] + [TGF0])/J0snail)n0snail + ([OV OL2]/J1snail)n1snail)

)
(

1

1 + ([SNAIL]/J2snail)

)
− kdsnail([snail1]t − [SR])− kdSR[SR]

d[SNAIL]

dt
= kSNAIL([snail1]t − [SR])− kdSNAIL[SNAIL]

d[miR34]t
dt

= k034 +
k34

1 + ([SNAIL]/J134)n134 + ([ZEB]/J234)n234

− kd34([miR34]t − [SR])− (1− λSR)kdSR[SR]

d[SR]

dt
= Tk(KSR([snail1]t − [SR])([miR34]t − [SR])− [SR])

d[zeb]t
dt

= k0zeb + kzeb
([SNAIL]/J1zeb)

n1zeb

1 + ([SNAIL]/J1zeb)n1zeb + ([OV OL2]/J2zeb)n2zeb
− kd[zeb]([zeb]t

−
5∑
i=1

Ci
5[ZRi])−

5∑
i=1

kdZRiC
i
5[ZRi]

d[ZEB]

dt
= kZEB([zeb]t −

5∑
i=1

Ci
5[ZRi])− kdZEB[ZEB]

120



d[miR200]t
dt

= k0200 +
k200

1 + ([SNAIL]/J1200)n1200 + ([ZEB]/J2200)n2200

− kd200([miR200]t −
5∑
i=1

iCi
5[ZRi]− [TR])−

5∑
i=1

(1− λi)kdZRiCi
5i[ZRi]

− (1− λTR)kdTR[TR]

d[ZR1]

dt
= Tk(K1([miR200]t −

5∑
i=1

iCi
5[ZRi]− [TR])([zeb]t −

5∑
i=1

Ci
5[ZRi])− [ZR1])

d[ZR2]

dt
= Tk(K2([miR200]t −

5∑
i=1

iCi
5[ZRi]− [TR])[ZR1]− [ZR2])

d[ZR3]

dt
= Tk(K3([miR200]t −

5∑
i=1

iCi
5[ZRi]− [TR])[ZR2]− [ZR3])

d[ZR4]

dt
= Tk(K4([miR200]t −

5∑
i=1

iCi
5[ZRi]− [TR])[ZR3]− [ZR4])

d[ZR5]

dt
= Tk(K5([miR200]t −

5∑
i=1

iCi
5[ZRi]− [TR])[ZR4]− [ZR5])

d[tgf ]t
dt

= ktgf − kdtgf ([tgf ]t − [TR])− kdTR[TR]

d[TGF ]

dt
= k0TGF + kTGF ([tgf ]t − [TR])− kdTGF [TGF ]

d[TR]

dt
= Tk(KTR([miR200]t −

5∑
i=1

iCi
5[ZRi]− [TR])([tgf ]t − [TR])− [TR])

d[Ecad]

dt
= k0E +

kE1

1 + ([SNAIL]/J1E)n1E
+

kE2

1 + ([ZEB]/J2E)n2E
− kdE[Ecad]

d[V im]

dt
= k0V +

(
kV 1

([SNAIL]/J1V )n1V

1 + ([SNAIL]/J1V )n1V
+ kV 2

([ZEB]/J2V )n2V

1 + ([ZEB]/J2V )n2V

)
/(1 + [OV OL2]/J3V )− kdV [V im]

d[OV OL2]

dt
= k0O +

kO
1 + ([ZEB]/JO)nO

− kdO[OV OL2]

where
∑5

i=1 iC
i
5[ZRi] = 5[ZR1] + 2 ∗ 10[ZR2] + 3 ∗ 10[ZR3] + 4 ∗ 5[ZR4] + 5[ZR5], which

represents the total amount of miR-200 bound to Zeb1 mRNA. Each term of this summation

describes Ci
5 scenarios in which i number of miRNA molecules bind to Ci

5 possible binding

sites that each Zeb1 mRNA might have.
∑5

i=1C
i
5[ZRi] = 5[ZR1] + 10[ZR2] + 10[ZR3] +
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5[ZR4]+[ZR5] represents the total amount of complex formed by miR-200 and Zeb1 mRNA.

Meanings of the state variables are as follows:

[snail1]t: Concentration of Snail1 mRNA

[SNAIL]: Concentration of Snail protein

[miR34]t: Concentration of miR-34

[SR]: Concentration of complex formed by miR-34 and Snail1 mRNA

[zeb]t: Concentration of Zeb1 mRNA

[ZEB]: Concentration of Zeb1 protein

[miR200]t: Concentration of miR-200

[ZRi]: Concentrations of complexes formed by i miR-200 molecules and one Zeb1 mRNA

molecule

[tgf ]t: Concentration of TGFβ mRNA

[TGF ]: Concentration of endogenous TGFβ protein

[TR]: Concentration of complex formed by miR-34 and TGFβ mRNA

[Ecad]: Concentration of Ecad protein

[V im]: Concentration of Vim protein

[OV OL2]: Concentration of Ovol2 protein

D Stochastic simulations (Chapter 2)

To consider the effect of molecular fluctuations in gene regulatory networks, we introduced

uncorrelated multiplicative white noise to some of the ODEs as dxi/dt = fi(x1, x2, ..., xn) +

µxixidWi, i = 1, ..., n, where dWi is a Wiener process that can be discretized as dWi =
√
dtN (0, 1) where N (0, 1) denotes a normally distributed random variable with 0 mean and

unit variance, and µxi represents the amplitude of the fluctuation. We noticed that the fluctu-
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ations on EMT -inducing and -repressing factors may have different effects on noise-induced

phenotypic transitions (not shown), so we introduced the white noise to ODEs for Snail and

Ovol2 to represent the noise on these two groups of factors. To adapt to the heterogeneous

populations that we observed in flow cytometry experiments and to consider the additional

fluctuations due to detection inaccuracy, we also introduced white noise to ODEs for Ecad

and Vim. The basal values of the amplitude parameters for these four stochastic ODEs are

µSnail1 = 0.02, µO = 0.2, µE = 0.02, and µV = 0.02. To compare the effects of different levels

of fluctuations, we increased µSnail1 and/or µO by 10-fold in some of our analysis (Figures

2.2, H.3, H.5). Larger fluctuations for Ecad and Vim (µE = 0.07 and µV = 0.07) were used

to adapt to the experimental observations from flow cytometry (Figure 2.2).

To unambiguously determine the phenotypes by the end of the stochastic simulations (t =

500), we set the amplitude parameters µxi to 0 at t = 500 and continued the simulations

for another 100 time units so that each trajectory is settled at a deterministic steady state

(Figure H.5).

The high complexity of the system prevents us from more formal implementation of stochastic

simulations such as Gillespie algorithms. A more systematic study of the effects of fluctua-

tions and stochastic transitions among multiple states will be a subject of future studies.

E Analysis of the effects of specific regulations on cell

phenotypes (Chapter 2)

One-parameter bifurcation analysis was used to examine the change of the stable cell pheno-

types in response to change of a particular parameter (e.g. external TGFβ concentration or

basal production rate of Ovol2). Two-parameter bifurcation analysis was used to examine the

phenotypic changes in response to both EMT -inducing and -repressing parameters/signals.

The curves on the two-parameter bifurcation diagrams are continuation of the saddle-node
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bifurcation points that we obtained from the one-parameter bifurcation analysis (Figure

2.4). To simulate the overexpression experiment, we increased in basal production rates of

Ovol2 or Zeb1 by 10-fold (Figures 2.2 and H.3). To understand how each regulation of the

network contributes to overall performance of the system, we used ‘knockdown’ approach in

which we partially or completely removed certain regulations in the network and examined

the effect on the two-parameter bifurcation diagrams (see Figure 2.6). To simulate partial

removal of Zeb1-Ovol2 mutual inhibition, we increased the Michaelis constants of the inhi-

bitions between these two molecules (JO and J2zeb) by 2-fold. For complete removal, we

increased these parameters by 100-fold. Similar approaches were used to simulate complete

removal of TF-microRNA mutual inhibition loops, i.e. J134 and/or J2200 were increased

by 100-fold, whereas K1 and KSR (TF-microRNA binding/unbinding rate ratios) were de-

creased by 100-fold. Although it is challenging to systematically demonstrate the global

effect of a particular regulation in a large parameter space, we assume that this approach

gives a reasonable representation on their general functions. We did not analyze functions

of isolated ‘modules’ in the network since they have been discussed extensively in previous

computational analysis of the EMT system [75, 76, 100, 115]. Also, combination of mutual-

inhibition and auto-activation loops is a well-studied dynamic system in general, so detailed

analysis on Zeb1-Ovol2 module is not necessary.

F Methods (Chapter 2)

F.1 Cell lines

MCF10A, MCF7, MDA-MB-231 were purchased from ATCC. MCF7 and MDA-MB231 cells

were maintained in Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 10%

fetal bovine serum. MCF10A cells were grown in DMEM/F12 (1:1) medium with 5% horse
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serum, epidermal growth factor (10 ng/mL), cholera toxin (100 ng/mL) and insulin (0.023

IU/mL). For TGFβ treatment, cells were incubated with titrated concentrations of human

TGFβ1 protein (R & D systems) in complete culture medium for 10 days. The culture

medium was replaced daily and cells were passaged just before reaching full confluency.

F.2 Lentiviral expression system

Recombinant lentiviruses expressing Ovol2 using the pHIV-ZsGreen lentiviral construct was

described previously [108]. For Snail and Zeb1 expression, human SNAIL cDNA and mouse

Zeb1 cDNA were cloned into the XhoI/NotI and EcoRI sites of pHIV-ZsGreen, respectively.

Production and infection of lentiviruses were carried out as previously described [108]. Trans-

duction unit of viral solution was estimated by measuring GFP-positive population using a

flow cytometer.

F.3 Flow cytometry

For Ecad/Vim profiling, cells were fixed with 4% paraformaldehyde, permeabilized with

0.2% Triton X-100, and stained with the following primary and secondary antibodies and

reagents: anti-E-cadherin (Life Technologies, 1:500), anti-vimentin (Cell Signaling Tech-

nologies, 1:500), allophycocyanin (APC)-labeled anti-mouse IgG (Santa Cruz), Cy3-labeled

anti-rabbit IgG (Jackson Immuno). For CD44 staining, live cells were stained with phyco-

erythrin (PE)-conjugated anti-CD44 antibody (Biolegend). Live-cell sorting for GFP+ cells

was performed on a BD FACSAria equipped with FACS DiVa6.0 software operating at low

pressure (20 psi) using a 100-µm nozzle. Cell clusters and doublets were electronically gated

out. Cells were routinely double sorted and post-sort analysis typically indicated purities of

>90% with minimal cell death (<10%).
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F.4 ChIP assay

ChIP was performed with an anti-Zeb1 antibody (Santa Cruz) according to the pre-

viously described protocol [108]. The following primers were used to detect Ovol2

promoter regions: proximal site (forward, 5’-GTGATAGGGGTATGAAGCAGAGG-

3’ reverse, 5’-CACCAGGAAACTTGGGAGTG-3’) and distal site (forward, 5’-

AGCCCAGAAATCCGTTACCA-3’ reverse, 5’-CTCACTGCTGGAGGTTGTCT-3’).

F.5 RT-PCR

Total RNA was isolated using the TRIzol Reagent (Invitrogen) followed by cleaning

up and RNase-free DNaseI treatment using the RNeasy mini kit (QIAGEN). cDNA

was prepared using Retroscript Kit (Applied Biosystems) according to manufacturer’s

instructions. Realtime PCR was performed using a CFX96 qPCR system and SsoAdvanced

SYBR Green Supermix (Bio-rad). Comparative analysis was performed between the genes

of interest normalized by the house keeping genes GAPDH and ACTB. The following

primers were used: OVOL2 (forward, 5’-AGCTGTGACCTGTGTGGCAAG-3’ reverse, 5’-

ACGAATGCCTGTGTGTGTGC-3’), ZEB1 (forward 5’-TTGCTCCCTGTGCAGTTACA-

3’ reverse 5’-CGTTTCTTGCAGTTTGGGCA-3’), GAPDH (forward, 5’-

GGACCTGACCTGCCGTCTAGAA-3’ reverse, 5’-GGTGTCGCTGTTGAAGTCAGAG-

3’), and ACTB (forward, 5’-CTTCTACAATGAGCTGCGTG-3’ reverse, 5’-

GGGTGTTGAAGGTCTCAAAC-3’). For semi-quantitative PCR, the following

primers were used: CDH1 (forward, 5’-AAAGGCCCATTTCCTAAAAACCT-

3’ reverse, 5’-TGCGTTCTCTATCCAGAGGCT-3’), SNAI1 (forward, 5’-

CCTCCCTGTCAGATGAGGAC-3’ reverse, 5’-CCAGGCTGAGGTATTCCTTG-

3’), VIM (forward, 5’-GACGCCATCAACACCGAGTT-3’ reverse, 5’-

CTTTGTCGTTGGTTAGCTGGT-3’).
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F.6 Mathematical modeling

We used ordinary differential equations (ODEs) to model the regulatory network shown

in Figure 2.1A. The framework of the model stems from a recently published EMT model

[115], and the modeling details are described therein. This framework employs mass-action

dynamics to model microRNA-mRNA interactions with considerations of the microRNA

binding sites on their targets. This modeling strategy was introduced by Lu et al [75, 76].

As other transcription factor regulations, interactions involving Ovol2 were modeled with Hill

functions. Numerical bifurcation analysis was performed with PyDSTool [17]. To consider

fluctuations in gene expression, we added multiplicative white noise to some of the ODEs. To

determine which phenotype (basin of attraction) a cell adopts at the end of the simulations,

we set the noise terms to zero and let the simulation continue until it reached steady state

(Figure H.7). Lists of equations, parameters and assumptions can be found in supplementary

materials. Stochastic simulations were performed with XPPAUT [22].

G Supplementary tables (Chapter 2)

Table G.2: List of basal parameter values

Name Description Value

J1200 Michaelis constant of Snail-dependent inhibition 3µM

of miR-200 production

J2200 Michaelis constant of Zeb1-dependent inhibition 0.2µM

of miR-200 production

J134 Michaelis constant of Snail-dependent inhibition 0.15µM

of miR-34 production

Continued on next page
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Table G.2 – continued from previous page

Name Description Value

J234 Michaelis constant of Zeb1-dependent inhibition 0.35µM

of miR-34 production

JO Michaelis constant of Zeb1-dependent inhibition 0.9µM

of Ovol2 production

J0snail Michaelis constant of TGFβ-dependent Snail1 0.6µM

mRNA transcription

J1snail Michaelis constant of Ovol2-dependent inhibition of 0.5µM

Snail1 transcription

J2snail Michaelis constant of Snail self-inhibition 1.8µM

J1E Michaelis constant of Snail-dependent inhibition 0.1µM

of Ecad production

J2E Michaelis constant of Zeb1-dependent inhibition 0.3µM

of Ecad production

J1V Michaelis constant of Snail-dependent Vim production 0.4µM

J2V Michaelis constant of Zeb1-dependent Vim production 0.4µM

J3V Michaelis constant of Ovol2-dependent inhibition 2µM

of Vim production

J1zeb Michaelis constant of Snail-dependent Zeb1 transcription 3.5µM

J2zeb Michaelis constant of Ovol2-dependent inhibition 0.9µM

of Zeb1 transcription

K1 Binding/unbinding rate ratio for the first miR-200 1.0/µM

molecule and Zeb1 mRNA

K2 Binding/unbinding rate ratio for the second miR-200 1.0/µM

Continued on next page
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Table G.2 – continued from previous page

Name Description Value

molecule and Zeb1 mRNA

K3 Binding/unbinding rate ratio for the third miR-200 1.0/µM

molecule and Zeb1 mRNA

K4 Binding/unbinding rate ratio for the fourth miR-200 1.0/µM

molecule and Zeb1 mRNA

K5 Binding/unbinding rate ratio for the fifth miR-200 1.0/µM

molecule and Zeb1 mRNA

KTR Binding/unbinding rate ratio for the first miR-200 20/µM

molecule and TGFβ mRNA

KSR Binding/unbinding rate ratio for the first miR-34 molecule 100/µM

and Snail1 mRNA

TGF0 Concentration of exogenous TGFβ 0µM

Tk Timescale constant for all miRNA-mRNA 1000

binding/unbinding events

k0O Basal production rate of Ovol2 0.35µM/hr

k0200 Basal production rate of miR-200 0.0002µM/hr

k034 Basal production rate of miR-34 0.001µM/hr

k0snail Basal production rate of Snail1 mRNA 0.0005µM/hr

k0zeb Basal production rate of Zeb1 mRNA 0.003µM/hr

k0TGF Basal production rate of TGFβ 1.1µM/hr

k0E Basal production rate of Ecad 5µM/hr

k0V Basal production rate of Vim 5µM/hr

kE1 Production rate 1 of Ecad 15µM/hr

Continued on next page
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Table G.2 – continued from previous page

Name Description Value

kE2 Production rate 2 of Ecad 5µM/hr

kV 1 Production rate 1 of Vim 2µM/hr

kV 2 Production rate 2 of Vim 5µM/hr

kO Production rate of Ovol2 1.2µM/hr

k200 Production rate of miR-200 0.02µM/hr

k34 Production rate of miR-34 0.01µM/hr

ksnail Transcription rate of Snail1 mRNA 0.05µM/hr

ktgf Transcription rate of TGFβ 0.05µM/hr

kzeb Transcription rate of Zeb1 mRNA 0.06 µM/hr

kTGF Transcription rate of TGFβ protein 1.5µM/hr

kSNAIL Transcription rate of Snail protein 16µM/hr

kZEB Transcription rate of Zeb1 protein 16µM/hr

kdZR1 Degradation rate for complex of 1 Zeb1 mRNA 0.5/hr

and 1 miR-200 molecules

kdZR2 Degradation rate for complex of 1 Zeb1 mRNA 0.5/hr

and 2 miR-200 molecules

kdZR3 Degradation rate for complex of 1 Zeb1 mRNA 0.5/hr

and 3 miR-200 molecules

kdZR4 Degradation rate for complex of 1 Zeb1 mRNA 0.5/hr

and 4 miR-200 molecules

kdZR5 Degradation rate for complex of 1 Zeb1 mRNA 0.5/hr

and 5 miR-200 molecules

kdO Degradation rate of Ovol2 1.0/hr

Continued on next page
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Table G.2 – continued from previous page

Name Description Value

kd200 Degradation rate of miR-200 0.035/hr

kd34 Degradation rate of miR-34 0.035/hr

kdSR Degradation rate of complex Snail1 mRNA and miR-34 0.9/hr

kdE Degradation rate of Ecad 0.05/hr

kdV Degradation rate of Vim 0.05/hr

kdsnail Degradation rate of complex Snail1 mRNA 0.09/hr

kdtgf Degradation rate of TGFβ mRNA 0.1/hr

kdTR Degradation rate of complex TGFβ mRNA and miR-200 1.0/hr

kdzeb Degradation rate of Zeb1 mRNA 0.10/hr

kdSNAIL Degradation rate of Snail protein 1.6/hr

kdTGF Degradation rate of TGFβ protein 0.9/hr

kdZEB Degradation rate of Zeb1 protein 1.66/hr

n1200 Hill exponent of Snail-dependent inhibition of 3

miR-200 production

n2200 Hill exponent of Zeb1-dependent inhibition of 2

miR-200 production

n134 Hill exponent of Snail-dependent inhibition of miR-34 2

production

n234 Hill exponent of Zeb1-dependent inhibition of miR-34 2

production

nO Hill exponent of Zeb1-dependent inhibition of Ovol2 production 2

n0snail Hill exponent of TGFβ-dependent Snail1 mRNA transcription 2

n1snail Hill exponent of Ovol2-dependent inhibition of Snail1 2

Continued on next page
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Table G.2 – continued from previous page

Name Description Value

mRNA transcription

n1E Hill exponent of Snail-dependent inhibition of Ecad production 2

n2E Hill exponent of Zeb1-dependent inhibition of Ecad production 2

n1V Hill exponent of Snail-dependent Vim production 2

n2V Hill exponent of Zeb1-dependent Vim production 2

n1zeb Hill exponent of Snail-dependent Zeb1 transcription 2

n2zeb Hill exponent of Ovol2-dependent inhibition of 6

Zeb1 transcription

λ1 Recycle rate of miR-200 during degradation of complex of 0.5

1 Zeb1 mRNA and 1 miR-200 molecules

λ2 Recycle rate of miR-200 during degradation of complex of 0.5

1 Zeb1 mRNA and 2 miR-200 molecules

λ3 Recycle rate of miR-200 during degradation of complex of 0.5

1 Zeb1 mRNA and 3 miR-200 molecules

λ4 Recycle rate of miR-200 during degradation of complex of 0.5

1 Zeb1 mRNA and 4 miR-200 molecules

λ5 Recycle rate of miR-200 during degradation of complex of 0.5

1 Zeb1 mRNA and 5 miR-200 molecules

λSR Recycle rate of miR-34 during degradation 0.5

of complex Snail mRNA and miR-34

λTR Recycle rate of miR-200 during degradation 0.8

of complex TGFβ mRNA and miR-200
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Molecular influence Evidence
TGFβ upregulates Snail1 transcription [87]

Snail upregulates Zeb1 transcription [30]
Snail downregulates miR-34 transcription [53, 93]

miR-34 downregulates Snail production [53, 93]
Snail downregulates miR-200 transcription [20]
Snail downregulates its own transcription [88]

Snail downregulates Ecad production [11, 102]
Snail upregulates Vim production [102]

Zeb1 downregulates miR-200 transcription [6, 7]
miR-200 downregulates Zeb1 production [6, 7]

Zeb1 downregulates miR-34 transcription [2]
Zeb1 downregulates Ecad production [21]

Zeb1 upregulates Vim production [70]
miR-200 downregulates TGFβ production [28, 103]
Ovol2 downregulates TGFβ3 transcription [108]

Ovol2 downregulates TGFβ signaling [108]
Ovol2 downregulates Zeb1 transcription [61, 108]

Zeb1 downregulates Ovol2 production [40, 91]
Ovol2 downregulates Vim production [61, 108]

Table G.1: Experimental evidence supporting influence diagram

H Supplementary figures (Chapter 2)
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Figure H.1: Experimental evidence for Ovol2-Zeb1 mutual repression. A) Zeb1 binds to the
Ovol2 promoter in mouse mammary epithelial cells. Top, diagram showing the presence of
Zeb1 consensus motifs (triangles) in Ovol2 promoter. Bottom, ChIP-PCR using primers for
the upstream (left) and downstream sites (right). B) RT-quantitative PCR analysis showing
that OVOL2 and ZEB1 overexpression in MCF10A cells results in decreased level of Zeb1
and Ovol2 transcripts, respectively TSS, transcription start site.
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Figure H.2: MCF10A cells show intermediate expression levels of EMT-related genes. RT-
semi-quantitative PCR analysis of the indicated genes in three human breast cell lines. Two
biological replicates were performed for each gene in each type of cell line.
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Figure H.3: FACS profiles of epithelial/mesenchymal phenotypes upon forced expression
of the indicated TFs. Successfully infected population (GFP-positive) can be distinguished
from the uninfected population (GFP-negative) by GFP fluorescence (left panels). Ecad/Vim
profiles are visualized separately for GFP-positive and GFP-negative populations. Analysis
was performed on MCF10A cells five days after infection. Note that GFP-negative popu-
lation serves as an internal control. Only GFP-positive populations were analyzed in the
experiments for main figures.
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Figure H.4: Time series of Ecad/Vim profile change upon Ovol2 expression in MDA-MB231
cells. Cells were infected with Ovol2-expressing lentivirus and Ecad/Vim profile was analyzed
by flow cytometry at the indicated time points. Empty vector control at day 5 is shown at
the top.
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Figure H.5: Bifurcation diagram for Ecad with respect to external TGFβ. Solid curve: stable
steady state. Dashed curve: unstable steady state. Red dots: saddle-node bifurcation points
used for computing curves in Figure 2.5A.
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Figure H.6: Effects of partial blockage of mutual inhibition loops. Shown are comparisons
of the basal model (leftmost column), complete blockage (rightmost column), and partial
blockage (middle columns) of miR34a-Snail (A), miR200-Zeb1 (B) and Ovol2-Zeb1 (C) mu-
tual inhibition loops on the four phenotypes. Each subplot is a two-parameter bifurcation
diagram similar to Figure 2.5A. Subplots in each column highlight the various phenotypes in
one condition. Shaded areas are highlighted phenotypes. Colors of the shading correspond
to the colored labels on the right.
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Figure H.7: Stochastic transitions from I1 state to E and M states. Stochastic simulations
for a population of 2000 cells. The basal parameter set and initial condition at I1 were used
(as in Figure 2.8). TGFβ concentration was raised from 0 to 0.5 at t = 100. White noise
terms were set to zero at t = 500.
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