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RESEARCH Open Access

The ultrastructure of book lung development in
the bark scorpion Centruroides gracilis
(Scorpiones: Buthidae)
Roger D Farley

Abstract

Background: Near the end of the nineteenth century the hypothesis was presented for the homology of book
lungs in arachnids and book gills in the horseshoe crab. Early studies with the light microscope showed that book
gill lamellae are formed by outgrowth and possibly some invagination (infolding) of hypodermis (epithelium) from
the posterior surface of opisthosomal limb buds. Scorpion book lungs are formed near the bilateral sites of earlier
limb buds. Hypodermal invaginations in the ventral opisthosoma result in spiracles and sac-like cavities (atria). In
early histological sections of embryo book lungs, widening of the atrial entrance of some lamellae (air channels, air
sacs, saccules) was interpreted as an indication of invagination as hypothesized for book gill lamellae. The
hypodermal infolding was thought to produce the many rows of lamellar precursor cells anterior to the atrium.
The ultrastructure of scorpion book lung development is compared herein with earlier investigations of book gill
formation.

Results: In scorpion embryos, there is ingression (inward migration) of atrial hypodermal cells rather than
invagination or infolding of the atrial hypodermal layer. The ingressing cells proliferate and align in rows anterior to
the atrium. Their apical-basal polarity results in primordial air channels among double rows of cells. The cuticular
walls of the air channels are produced by secretion from the apical surfaces of the aligned cells. Since the
precursor cells are in rows, their secreted product is also in rows (i.e., primordial air channels, saccules). For each
double row of cells, their opposed basal surfaces are gradually separated by a hemolymph channel of increasing
width.

Conclusions: The results from this and earlier studies show there are differences and similarities in the formation
of book lung and book gill lamellae. The homology hypothesis for these respiratory organs is thus supported or
not supported depending on which developmental features are emphasized. For both organs, when the epithelial
cells are in position, their apical-basal polarity results in alternate page-like channels of hemolymph and air or
water with outward directed hemolymph saccules for book gills and inward directed air saccules for book lungs.

Background
At the end of the ninteenth century and in the early
twentieth century numerous papers were published
comparing the development of book gills in the horse-
shoe crab with the development of book lungs in ara-
chnids, especially spiders. As reviewed by Farley [1], this
work was done with the hypothesis that these respira-
tory structures are homologous, e.g., the internal book
lungs in the opisthosoma were derived by insinking of

the anlage that had previously resulted in external book
gills of an aquatic ancestor. There have been diagrams
and much discussion about how an ancient ancestor
with lamellate gills like extant horseshoe crabs could
have given rise to arachnid book lungs [2-12]. Recent
investigations of horseshoe crab, scorpion and spider
embryos report similar patterns of gene expression at
the bilateral opisthosomal sites where book gills or book
lungs eventually form [13-17].
In early studies with the light microscope and histolo-

gical sections, the air sacs (air channels, lamellae, sac-
cules) of developing spider and scorpion book lungs
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were suggested to be infoldings of the hypodermis from
the spiracular invagination (primordial atrium) posterior
to opisthosomal limb buds. This process was thought to
be similar to the small amount of invagination that may
occur along with outgrowth folds for book gill develop-
ment at the posterior surface of branchial appendages in
horseshoe crabs [2-10,18-22]. Slight widening of the air
sac entrance at the atrial wall was interpreted as indica-
tions of hypodermal infolding. The presumed infoldings
were thought to result in the parallel rows of lamellar
precursor cells anterior to the atrium. In the spider spe-
cies they examined, Montgomery [23] and Janeck [24]
reported that the initial widenings of the air sac
entrance are transitory, and the air sacs are formed
from aligned cells in a cluster derived from the
hypodermis.
More recently for the spider Cupiennius salei [25], the

segment polarity gene engrailed-1 is reported to be
expressed as five stripes at the site where lamellae origi-
nate posterior to the second opisthosomal limb buds.
The primordial site is invaginated and covered ventrally
by the posterior folding and flattening of the preceding
limb bud, as reported in earlier histological studies
[8,23]. Also in C. salei, the developmental gene pdm/
nubbin is expressed in a striped pattern possibly related
to lamellar formation [15].
In his diagram of histological sections of scorpion

embryos, Brauer [19] showed some small folds in the
atrial wall. This was considered as evidence of hypoder-
mal invagination like that proposed for book gills
[17,22,26] although the presumptive folds were not actu-
ally shown to be related to the formation of book lung
lamellae.
As pointed out earlier [1], lamellate respiratory organs

are important for our understanding of evolutionary his-
tory and taxonomic relationships, but modern proce-
dures are needed for a more detailed comparison of cell
activity during book gill and book lung development.
The main objective herein is to use transmission elec-
tron microscopy (TEM) to examine cell ultrastructure
during formation of scorpion book lungs. The results
can then be used where relevant and helpful for evolu-
tionary hypotheses and further comparative studies.
The scanning electron microscope (SEM) was used in

recent developmental investigations of the respiratory
organs in the scorpion [27] and horseshoe crab [1]; the
present investigation is a continuation of that effort.
The SEM study of book lung development in scorpions
[27] provides an overview of the process, but the SEM is
limited in the resolution of cell detail. Also, tissue pre-
paration requires dissection and/or fracturing to expose
components for viewing. This has potential for cell
damage and/or loss, with emphasis on the surface fea-
tures of the tissue or organ. In the present study, whole

book lungs were removed, and sections were cut at suc-
cessive stages of development in embryos and first and
second instars.
Book lung formation in scorpions is a slow and gra-

dual process [27]. It begins in the embryo with the
appearance of a spiracle and a sac-like invagination (pri-
mordial atrium) just inside the spiracle. Lamellar devel-
opment continues through birth and the first molt that
occurs 1-2 weeks after the newborn first instars (pro-
nymphs) climb up on the mother’s back. The book lung
gradually becomes a functional respiratory organ with
about 50 lamellae in the active and foraging second
instar. The book lung cuticle is replaced in subsequent
molts [28], and lamellae are increased in size and num-
ber so there are more than 150 in the adult. The earlier
[27] and present investigations show a complex develop-
mental process of cell proliferation, migration, alignment
and secretion of cuticular materials. The result is a
stable and highly ordered series of page-like air and
hemolymph channels.
Information about scorpion anatomy and morphology

and the general organization of scorpion book lungs and
horseshoe crab book gills is provided in earlier publica-
tions [1,29-31].

Methods
Gravid females of Centruroides gracilis [32] were pur-
chased from a supplier (Strictly Reptiles, Hollywood,
FL). Information about taxonomy and life history is pro-
vided by Francke and Jones [33], Sissom and Lourenço
[34], Ades [35] and Fet et al. [36]. For taxonomy of spi-
der species mentioned herein, the new Platnick catalog
[37] is available on-line.
Maintenance of animals and the dissection and pre-

paration of tissues for SEM were done as described by
Farley [27]. For TEM, microscissors and forceps were
used to remove the spiracle, booklungs and attached
soft cuticle from embryos, while only the spiracle and
booklungs were removed from the first and second
instars. Tissues were fixed 6-12 hours (23-25°C) in
2.5% glutaraldehyde in 0.1 M cacodylate buffer. The
tissues were washed in 0.1 M buffer and postfixed (1-2
days) in 1% OsO4 in 0.1 M cacodylate buffer. Tissues
were dehydrated in a graded series of ethanol and
embedded in Spurr’s [38] plastic. Ultrathin sections
were cut on a RMC MT-X microtome (Boeckeler
Instruments) and collected on grids pretreated with
formvar or parlodion. The sections were stained with
alcoholic uranyl acetate and lead citrate [39] and
examined at 120 kv with a FEI Tecnai 12 (formerly
Philips) electron microscope. Semi-thin sections were
stained with warming and a mixture of 0.5 g toluidine
blue, 0.5 g sodium borate and 20 ml of methyl alcohol
in 200 ml H2O.
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Results
Shown herein are typical examples of lamellar formation
in successive developmental stages, but early book lung
development is a continuum rather than a series of dis-
crete steps related to the age of the individual. Within
each scorpion there is a longitudinal gradation in the
rate at which the book lungs develop, with the poster-
iormost pair (opisthosomal segment 7) the most
advanced. In the early embryo, the limb buds of the
third mesosomal segment gradually develop the features
of pectines that temporarily overlap on the ventral sur-
face of segment four [27,40-42]. The book lungs of this
segment begin developing later than all those more pos-
terior as the pectines separate from the ventral surface
of the segment [27]. Additionally, within each book lung
there is a gradation in the formation of lamellae; the
most advanced lamellae are in the medial and central
part of the book lung while the lateral edge has lamellae
forming from newly aligned cells. Little or none of the
book lung cuticle is shed as exuvium in the first molt
[27], so most of the initial lamellae continue differentia-
tion in the second instar.

Epithelial proliferation, ingression and alignment
As reported earlier [27,40-43], the limb buds on
opisthosomal segments 4-7 disappear well before spira-
cles appear on the ventral surface. The entire segment 1
disappears while the limb buds on segment 2 become
the genital operculum and those on segment 3 become
the pectines. The spiracles are initially near the posterior
margin of segments 4-7 (Figure 1). Also at the posterior
segment margin, small flap-like primordial sternites

appear about the same time as the spiracles (Figure 1).
In later stages of the embryo and beyond, the sternites
increase in size, and the spiracles are seen at a more
anterior location, apparently as a result of differential
growth of the tissues [27].
The spiracles open into the atrium, a sac-like cavity

formed by invagination of the external hypodermis at
the spiracle site (Figures 2A, B and 3). The invaginated
hypodermis consists of a layer of epithelial cells with
apical-basal polarity, i.e., a thin cuticle at their apical
surface and a basement membrane at their basal surface
(Figure 2A, B). From this invaginated epithelium, the
cells appear to proliferate and migrate inward (ingress)
and arrange themselves in rows anterior to the atrium
(Figures 2A, B and 3). As evident in the following fig-
ures, this alignment of the book lung precursor cells is
the structural foundation for the regular pattern of
page-like lamellae.
Figures 2A, B and 3 are book lung examples with

increasing differentiation and development of the air
sacs. As shown in these figures, the cuticle wall of the
atrium becomes thinner where lamellae are forming,
and the basement membrane is disrupted where cells
are migrating inward. In Figure 3, an epithelial layer and
basement membrane are no longer evident since the
epithelial cells have apparently dispersed inward. The air
sacs in Figure 3 are more prominent than those in Fig-
ure 2A, B, and some air sacs in Figure 3 are especially
wide and dense as a result of their granular contents
(described in more detail below).
Figures 2A, B and 3 have regions where the precursor

cells are not yet organized into double rows separated
by developing air sacs. Some cells at this stage are
shown in the electron micrograph of Figure 4. These
cells are irregular in shape and show no indication of
the apical-basal polarity that is prominent in subsequent
stages (Figures 5, 6, 7, 8, 9, 10, 11). The cells have many
fine particles, probably ribosomes and granules; the lat-
ter may eventually become part of the cuticular walls of
the air sacs (Figures 12, 13, 14).

Apical-basal polarity, secretion
Beginning at the atrium, the aligned precursor cells soon
begin to show indications of the polarity that is com-
mon among epithelial cells, i.e., secretion at the apical
surface while the basal surface is in contact with hemo-
lymph where nutrient transport can occur [44]. This dif-
ference in activity between the apical and basal surfaces
of the aligned cells results in a regular pattern of devel-
oping air sacs among double rows of cells (Figures 2A,
B and 3, 6, 7, 8, 9, 10, 11). Since the precursor cells are
in parallel rows, their secreted product (i.e., primordial
air sacs) are also in parallel rows. Air sacs separated by
double rows of cells were observed in early light

Figure 1 Ventral view of embryo opisthosoma with spiracles
(Sp) and small flap-like sternites (St) starting to form.
Centruroides gracilis, supine. SEM. The spiracles evident here are near
the posterior margin of segments 4, 5 and 6. The spiracles on
segment 4 are only partially visible because the pectines (Pe) from
segment 3 still overlap on the ventral surface of segment 4. The
spiracles are open with no closing mechanism until after the first
molt (second instar). Scale, 200 μm.
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microscopic studies of book lung development in spider
embryos [8,9,18,20,21,23,24,45]. Some of these authors
also observed slight widening at the atrial entrance of a
few air sacs. As described in Background, this widening

was hypothesized to be evidence of hypodermal invagi-
nation (infolding) as the basis for the cell alignment
anterior to the atrium.
In this scorpion investigation, some widening of the

air sac entrance was seen for some more advanced air

Figure 2 Proliferation and migration of precursor book lung cells
from the invaginated epithelium (E) of the atrium (At). Light
micrographs (LM), ventral views, semi-thin sections. Centruroides
gracilis. A. Newborn first instar. The air sacs (AS) in this book lung are at
an early stage and barely discernible. Little or no widening is evident
at the atrial origin of the air sacs. The cuticular wall (Cu) of the atrium is
absent or very thin at the sites where air sacs are forming. The
epithelial cells of the atrial wall are in a distinct layer where lamellae
are not being formed; a basement membrane (BM) is present at the
basal surface of these cells. The cells in the epithelial layer toward the
left in the photo are more numerous as though proliferating near the
site where air sacs are forming. On either side of the region of
developing air sacs, the basement membrane is absent or disrupted
and the precursor cells appear to be migrating inward (asterisks). B.
Embryo book lung with some air sacs more advanced than those in
Figure 2A. Inside the wall of the atrium, epithelial cells (E) of the
hypodermis form a layer with a basement membrane (BM) at their
basal surface. The cuticular wall (Cu) of the atrium is much thinner at
the site where air sacs are forming. The primordial air sacs (AS)
separate aligned precursor cells into double rows. Some cells
(asterisks), not yet aligned into rows, appear to be dispersing inward
from the atrial epithelium, and at these sites the basement membrane
is disrupted or absent. Some widening (W) of the air sac entrance is
evident at the atrial origin of two air sacs. In the lateral region (right) of
the book lung, the developing air sacs are barely evident among cells
not yet aligned. Scales, 20 μm.

Figure 3 Some air sacs (AS) with dense and opaque contents
in a book lung more advanced than those in Figure 2A,B. LM,
ventral view, semi-thin section. Centruroides gracilis, newborn first
instar. The portions of air sacs evident here are more prominent
than in Figure 2A,B, and some air sacs (AS) are wider and more
dense than the others because of the granular contents (see
below). The air sacs are formed between double rows of cells. Some
widening (W) of the air sac entrance is evident at the atrial origin of
two air sacs. The asterisks indicate cells that are not yet aligned into
rows or separated by primordial air sacs. Probably as a result of the
proliferation and inward migration of cells, the atrium (At) no longer
has an epithelial layer with basement membrane (compare with
earlier stages in Fig. 2A,B). Scale, 20 μm.

Figure 4 Book lung precursor cells (C) not yet aligned anterior to
the atrium. Centruroides gracilis, embryo. TEM. The cells have irregular
shape and many small particles, possibly ribosomes and granules.
Primordial air sacs, hemolymph channels and apical-basal polarity are
not yet evident among these cells. N, nucleus. Scale, 2 μm.
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sacs (Figures 2B, 3), but not in the initial stages of air
sac formation (Figures 2A, 6, 7) as would be expected if
infolding of the atrial wall hypodermis had resulted in
the cell alignment for the air sacs. As noted in Back-
ground, some presumptive folds in the atrial wall were
interpreted as evidence for atrial wall invagination in the
formation of book lung lamellae in scorpion embryos,
although a relationship between folds and lamellae was
not shown [19,22]. The structures diagramed as folds
may have been small widenings of the air sac entrance
as observed in the book lungs of spider embryos.
In the initial stages of air sac formation, a thin line of

osmiophilic material suggests merocrine secretion from
the apical surface of the aligned cells (Figures 5, 6), and
the release of apical portions (apocrine secretion) of
these cells (Figures 6, 7, 8) forms an elongate channel of
cell fragments (Figures 8, 9, 10, 11). In later stages,
entire cells are disrupted (holocrine secretion, Figure
12), increasing space for hemolymph at the base of the
remaining cells and contributing components to the
cuticular walls of the air channel (Figures 12, 13).
Figures 6, 7 and 8 show early stages of cell fragmenta-

tion from the apical surface of the aligned cells. This
process starts near the atrium, and continues anteriorly
among the cell rows. It is sometimes difficult to

recognize the location of the future air sacs and hemo-
lymph channels among the disrupted cell components,
and there is no widening of the air sac entrance at the
atrial wall where the cell fragmentation is occurring
(Figures 2A, 6, 7). The cell fragments are surrounded by
a plasma membrane, and the fragments contain vesicles
and granules (Figures 6, 7, 8) as in the cells of origin. In
addition, the fragments are in a narrow and elongate
lumen that is somewhat dense (Figures 8, 9, 10, 11) as
though a fluid is present with material secreted from the
apical surface of the adjacent cells.

Fusion of cell fragments, cuticle formation
Within the primordial air channels, the cell fragments
appear to fuse together to form more elongate strands of
membrane-bound cytoplasm (Figures 8, 9, 10, 11). The
fragments and secretions from the aligned cells apparently
contain enzymes and molecular components for cuticle
since electron-opaque particles are formed within the cell
fragments. The dense particles appear especially at the
outer membrane of the cell fragments (Figures 8, 9, 10,
11) where they coalesce in the formation of a continuous
cuticular wall (Figures 9, 10). There are regions of
increased density and thickness of the outer covering of

Figure 5 Early stage in the development of air sacs (AS)
among parallel, double rows of book lung precursor cells
anterior to the atrium. First instar, Centruroides gracilis. TEM. At this
site somewhat inward from the atrium, the air sac channels begin
with osmiophilic material (asterisks) that is apparently the result of
merocrine secretion and/or enzyme action at the apical surface of
the aligned cells. The basal surface of these cells is in contact with
the primordial hemolymph channels (H), about 0.2 μm in width;
one region (H’) appears to be widening (~1.0 μm). Irregular wider
regions like this gradually become more common. N, nucleus. Scale,
2 μm.

Figure 6 Atrial lumen (At) with early indications of air sacs (AS)
that are separated by double rows of aligned cells. First instar,
Centruroides gracilis. TEM. In some places closer to the atrium, the
cells are releasing elongate fragments of cytoplasm as an early step
in the development of the air sacs while farther inward there are
only dense secretions (asterisks) that show the initial site of air sac
formation (Fig. 5). No widening of the air sac entrance is evident at
the sites where these early air sacs are forming. In these early
stages, it is often difficult to identify where the air sac and
hemolymph channels will be formed among the cells. N, nucleus; H,
primordial hemolymph channel. Scale, 5 μm.
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the conjoined cell fragments (Figures 9, 10). Thin lines of
electron-opaque material (presumptive merocrine secre-
tion) can also be seen at the apical surface of the cells
adjacent to the developing air sacs (Figures 8, 9, 10). The
initial cuticular wall of the developing air sac is apparently
produced by formation and coalescence of dense, elec-
tron-opaque material within the cell fragments and
secreted at the apical surface of the precursor cells.
In these early stages of book lung development, cells

with large (~1 μm dia.) electron-opaque granules are
sometimes seen among the other precursor cells. Exam-
ples were seen where these cells release fragments with
large granules that become part of the developing air
sac. Once inside the primordial air sac, these granules
make the air sac somewhat wider and more dense than
the other air sacs without these granules (Figures 3, 11).
The center of the granules becomes lucent (Figure 11)
as though the material is removed and/or migrating
toward the periphery of the granule where fusion of the
fragments and coalescence of the dense material can
result in a continuous cuticular wall. This process may
be similar to the coalescence of small particles at the
periphery of cell fragments in the primordial air sacs
(Figures 8, 9, 10, 11).
As shown in Figures 8, 9, 10 and 11, the outer wall of

the air sac fragments gradually becomes dense and

thicker, so that the former cell fragments enclosed in
plasma membrane are now cuticle-enclosed air sac com-
ponents, labeled as CuC in Figures 12 and 13. The cell
fragments and more advanced cuticle-enclosed compo-
nents appear to fuse and form a continuous, elongate
structure (Figures 9, 10, 11, 12). Some cells adjacent to
the air sacs are disrupted as they release granules and
vesicles that appear to increase the thickness of the cuti-
cle walls (Figure 12). The disruption leaves cell debris
and additional space for fluid in the primordial hemo-
lymph channels. Granules and vesicles from the dete-
riorating cells are often seen in contact with the inside
and outside of the cuticular walls as though merging
with the wall and/or releasing components that become
part of the wall (Figures 13, 14). This process of cuticle
formation in scorpion embryos was also observed in ear-
lier studies with SEM [27] and TEM [46].

Figure 7 Cell fragmentation as an early stage in the
development of air sacs (AS) among double rows of book lung
precursor cells. No widening of the air sac entrance is evident at
the origin of the air sacs in the cuticular wall (Cu) of the atrium (At),
but two streams of elongate cell fragments separate a double row
of cells from adjacent rows. The cells contain many small particles
(P), possibly ribosomes and/or granules. The latter may contribute to
the formation of air sac cuticle in later stages (e.g., Figs. 12, 13). N,
nucleus. Scale, 2 μm.

Figure 8 Early air sac (AS) consisting of a single row of cell
fragments (F) of similar width. First instar, Centruroides gracilis. The
aligned cells release fragments of cytoplasm from their apical
surface (apocrine secretion). This results in a narrow channel (~1 μm
wide) filled with cell fragments about the same width. The cells (N,
nucleus) are commonly tapered toward the primordial channel as
fragments are released. The cell fragments are initially enclosed in
plasma membrane that gradually becomes thicker and more dense
with presumptive cuticle (Figs. 9, 10, 12, 13). Small dense particles
(P) at the periphery of the fragments are apparently formed from
components inside the fragments and/or secreted from the apical
surface of adjacent precursor cells. In addition to the cell fragments,
the channel contains some osmiophilic material (probably fluid). The
asterisks indicate short lengths of electron-opaque material that
apparently results from merocrine secretion and/or enzyme action
at the apical surface of the cells. The basal surface of the aligned
cells is in contact with the primordial hemolymph channels (H) that
are wider in some locations (H’). Scale, 2 μm.
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As shown in Figures 2A, B, 3, 4, 5, 6, 7, 8, 9, 10, 11
and 12, the precursor cells (~ 3-8 μm wide) are much
larger than the early air sacs. The width of the air sacs
is determined by the amount and size of the material
released from the apical surface of the aligned cells.
The latter apparently release similar quantities since
each of the resulting channels has a fairly uniform
width throughout their length. In these early stages of
development, the channel width varies from a dense
line (~ 0.1 μm, Figures 5, 6) to an elongate row of
fragments 1-2 μm in width (Figures 8, 9, 10, 11). With
the loss of cells and likely exchange of materials across
the basal surface of the aligned cells, the examples of
hemolymph channels herein increase in width from ~
0.3 μm (Figures 8, 9, 10, 11) to ~ 6 μm (Figures 15,
16, 17).

Formation of space holders (trabeculae)
Within the air channel lumen, trabeculae may be
formed by fusion of the cuticularized walls of the former
cell fragments (Figures 12, 13). Cells attached to the
developing cuticle walls of the channel can also extend
processes into the lumen of the air sac (Figure 14).
These processes often contain granules and vesicles that
may become part of the cuticle. Apparently, the cellular
processes continue elongation into the lumen, make
contact with the opposite wall and become cuticularized.
Trabecular formation results in many space holders that
help hold the cuticle walls in place and prevent their
collapse and blockage of air flow in the narrow and
elongate channels. Space holders that connect with both
walls of the air channel (bridging trabeculae, cross
bridges) is the only type seen in the present investiga-
tion of the early stages of book lung development,
although numerous other types of space holders are
found in adult scorpions [30]. In this investigation, there
are many examples of trabeculae that do not extend all
the way to the opposite wall (Figures 14, 15, 16, 17),

Figure 9 Fusion and cuticularization of cell fragments (F) in
developing air sacs (AS). First instar, Centruroides gracilis. TEM. The
small fragments form an elongate row in a narrow channel that
contains electron-opaque material, probably a fluid. The ends of the
fragments make contact and appear to fuse together forming a
more elongate structure. The initial plasma membrane of the cell
fragments gradually becomes thicker and more dense as in cuticle
formation. Small dense particles (P) at the periphery of the
fragments are apparently formed from components inside the
fragments and/or secreted from the apical surface of adjacent
precursor cells (C). In some locations, these particles form a line
(asterisks) as an early stage in development of a cuticular wall. The
aligned precursor cells (N, nucleus) are commonly tapered toward
the developing air sac, as though these cells have released or are
about to release fragments. The cells have Golgi bodies (Go) and
presumptive ribosomes, granules and vesicles (V) that are indicative
of synthetic activity for cuticle formation (e.g., Figs. 12, 13, 14). H,
primordial hemolymph channel. Scale, 2 μm.

Figure 10 Fusion and cuticularization of cell fragments in the
primordial air sac. First instar, Centruroides gracilis. TEM. Here at the
anterior end of an elongating air sac, cell fragments in the air sac
lumen appear to be fusing together (F, F’) to form a continuous tube.
The periphery of the fragments has varying thickness of electron-
opaque material, an indication that cuticularization and formation of
the cuticle wall of the air sac is more advanced in some places (black
asterisk). Dense particles (P) are present inside and at the periphery of
the fragments as though aggregating from components inside the
fragment. The thick osmiophilic material near the tip of the air sac
(white asterisk) may result from aggregation of particles at the
periphery of the fragment and/or secretion from the adjacent cells.
At this stage, most of the aligned precursor cells (C) appear to be
intact except for releasing cell fragments at their apical surface
(apocrine secretion). The primordial hemolymph channel (H) is still
narrow (~0.3 μm) at this site. Scale, 1 μm.
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possibly because the space holder is incomplete or the
entire bridging trabecula was not evident in the section.
As shown in Figure 15 (first instar), a regular pattern

of lamellae results from the somewhat disorderly pro-
cess of cell secretion and disruption described above.
Trabeculae that partially and completely span the width
of the air channels are abundant in the example of Fig-
ure 15. The air sacs contain little cell debris and are
nearly open for passage of air except for the slender tra-
beculae. A thin layer of epithelial cells is attached to the
hemolymph surface of the air sacs. These cells form a
hypodermis in position to produce page-like replace-
ment cuticle in later molts.
Some of the first instars examined in this investigation

were thought to be close to their first molt, but in the
sections there was no indication that lamellar epithelial
cells were secreting new cuticle walls as preparation for
the first molt. As shown in an example of first-molt
exuvium [27], some replacement of lamellar cuticle may
be needed only in the distal parts of the posteriormost
booklungs.

Hemolymph channels
Figure 16 shows an example of book lung lamellae from
a second instar within 24 hours after the first molt on
the mother’s back. The lamellae appear to be at a simi-
lar stage of development as those in the advanced first
instar of Figure 15. Some cells attached to the hemo-
lymph surface of the air sac wall appear to be deteriorat-
ing while others are intact and may continue to replace
cuticle shed in later molts [27]. The air sacs have some
bridging trabeculae that were probably formed by fusion
of small air sac components with larger ones. The
hemolymph channel contains much cell debris, appar-
ently from the double row of precursor cells that were
previously aligned between the developing air sacs. The
width of the hemolymph channel here is ~ 4 μm, i.e.,
the approximate width of two epithelial cells side-by-
side.
Figure 17 provides further evidence that the width of

the hemolymph channel may be related to the width of
two precursor cells. While many precursor cells deterio-
rate (Figures 12, 16), others remain as part of a thin

Figure 11 Large, electron-opaque granules (G) in an early air
sac (AS). Embryo, Centruroides gracilis. TEM. Cells with such granules
as much as ~1 μm dia. are sometimes seen in the developing book
lung tissue of embryos and first and second instars. These cells
contribute cytoplasmic granular portions to the developing air sacs
(Fig. 3). The result as shown here is a linear series of these granules
that gradually become more lucent in their center. As shown in
Figures 8, 9 and 10, small dense particles aggregate at the periphery
of the cell fragments (F) as though an early stage in the formation
of a continuous cuticular wall. The pale center of some large
granules (G) suggests a similar movement of material toward the
periphery where the separate fragments can fuse and form
continuous cuticular walls on either side of the air channel (Figs. 12,
13, 14, 15, 16, 17). H, primordial hemolymph channel; N, nucleus.
Scale, 2 um.

Figure 12 Formation of space holders (asterisks) and longer
lengths of air sacs as a result of fusion and cuticularization of
former cell fragments, now cuticle-enclosed components (CuC)
of the air sac. First instar, Centruroides gracilis. TEM. Compared with
earlier stages (Figs. 8, 9, 10, 11), the outer wall of these components
is now relatively thick (~0.1-0.2 μm) and dense. The walls of these
components appear to fuse (asterisk) and form a bridging trabecula
(space holder) that helps hold the developing cuticular walls in
place (Figs. 13, 15, 16, 17). Many of the aligned precursor cells like
this one (N, nucleus) release their contents and deteriorate
(holocrine secretion) between the developing air sacs, thereby
resulting in hemolymph channels (H) with increasing width and
space for passage of fluid. Granules (G) and vesicles (V) from these
cells appear to increase the thickness of the cuticular walls (Cu, Fig.
13) of the developing air sacs. Scale, 2 μm.
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epithelium attached to the air sac wall (Figures 15, 16)
[27]. The two cells in Figure 17 have made contact
across the hemolymph space. They may be primordial
pillar cells described as the space holders for the hemo-
lymph channels of adult book lungs in scorpions and
spiders [30,45,47-50].
Cells with large (~1 μm dia.), electron-opaque gran-

ules did not appear to be abundant among the book
lung tissue in the early stages of this investigation. Short
lengths of air sacs contain these granules (Figures 3, 11),
but most primordial air sacs are formed from secreted
cell fragments that lack such granules (Figures 2A, B
and 3, 8, 9, 10). Some granular cells were seen in the
hemolymph channels of the book lungs of second
instars. These are probably hemolymph-borne granulo-
cytes; their presence is expected as the book lungs
become functional for the active and foraging second
instars. There may be different types of these granular
cells, although their morphology is similar in the stages
examined herein. Granulocytes have been described in
scorpion hemolymph [51,52], and an investigation with
TEM showed the opisthosomal lateral lymphoid and
supraneural glands are likely sources of such cells [52].

Discussion
Epithelial cell invagination, proliferation, ingression and
alignment
As reviewed by Fristrom [44], epithelial cells are charac-
terized by a stable apical-basal polarity that is main-
tained throughout development, and their lateral
surfaces have intercellular junctions that connect them
to adjacent cells. In recent years, there is much research
on the molecular basis for the polarity in epithelial cells
[53-58] as well as their intercellular junctions
[44,55,57,59-61]. Tyler [62] concludes that epithelial
cells appear first in the Eumetazoan blastula and are a
prominent feature in subsequent adult tissues. The char-
acteristic apical-basal polarity of these cells, a critical
factor in the present investigation, may also have arisen
very early in stem metazoans.
Epithelial cells commonly exist in sheets and provide

protective coverings and barriers for the external surface
and for tubes, vessels and channels inside the animal.
They are commonly in a single layer with a basement
membrane secreted from their basal surface. Fristrom
[44] notes that invertebrates sometimes have epithelial
cells without a basement membrane, i.e., the cell basal
surfaces are directly in contact with hemolymph as in
Figures 15, 16 and 17. In arthropods, including scor-
pions, an important and typical example of epithelium is

Figure 13 Formation of space holders (asterisk) and longer
lengths of air sac as a result of fusion and cuticularization of
the former cell fragments, now cuticle- enclosed components
(CuC) of the air sac. First instar, Centruroides gracilis. TEM. Small
dense granules (G, 20-30 nm dia.) from the adjacent aligned cells (e.
g., Fig. 12) appear to fuse with the developing cuticular wall (Cu),
giving it a granular texture (GT) at some sites where the wall is
forming. This process appears to be similar to cuticularization
observed with SEM [1,27]. The fused cuticle from adjacent
components (CuC) may continue as space holders (bridging
trabeculae) evident in more advanced air sacs (e.g., Figs. 15, 16, 17).
Scale, 200 nm.

Figure 14 Formation of space holders by extension of cell
processes (Pr) into the lumen of the developing air sacs (AS).
First instar, Centruroides gracilis. TEM. Cells adjacent to the air sac
wall contain many vesicles (V) and granules (G) that are apparently
components for the thickening cuticular wall (Cu). The cell
processes (trabeculae) also contain vesicles and granules so
apparently the protrusions can gradually enlarge and extend across
the lumen, forming wall-to-wall (bridging) space holders (e.g., Figs.
15, 16, 17). H, primordial hemolymph channel. Scale, 1 μm.
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the hypodermal layer that secretes and replaces the cuti-
cle and forms many external and internal structures
[1,63-69].
Epithelial cells undergo many different morphological

changes during development; invagination of a specific
region of the epithelium (Figures 1, 2A, B) is a common
example [44,55]. The invagination often results from
constriction of the apical ends of the cells [70,71] with
the apical ends lining the concave surface, e.g., the atrial
cavity of book lungs (Figure 2A, B). In scorpion
embryos, the atrial wall initially consists of a layer of
hypodermal cells with a basement membrane at their
basal surface (Figure 2A, B).
As explained in Background, the invagination or

infolding of the atrial epithelium for each lamella of ara-
chnid book lungs was proposed to be a continuation of
the small amount of invagination that may occur along
with outgrowth (evagination) in the formation of book
gills of horseshoe crabs [7]. Slight widening at the atrial
origin of some spider air sacs was hypothesized to be an
indication of atrial wall infolding to provide the aligned
precursor cells for each air sac [8,9,18-21]. In other light
microscopic studies of spider embryos [23,24], the
authors noted some air sac widening at the atrial wall,

but this was not considered a necessary or characteristic
feature of air sac development.
In the present investigation, widening of the air sac

entrance was seen at the atrial origin of some advanced
lamellae (Figures 2B, 3) but not in the earliest stages of
lamellar formation (Figures 2A, 6, 7). Without folds or
invaginations from the atrial wall, the epithelial cells in
scorpion embryos appear to proliferate, ingress (migrate
inward) and organize themselves into parallel rows ante-
rior to the atrium (Figures 2A, B and 3, 5). Epithelial
ingression is a common developmental process involving
breakage of cell-cell adhesions, migration out of the
epithelial layer and formation of new cell-cell adhesions
[44,55,72]. As in Figures 2A, B and 3, there is typically a
loss of the basement membrane at the site of migration
from the epithelium [44].
Among vertebrates and invertebrates, the ability to

form a single row or layer of cells is a common feature
of epithelial morphogenesis [44,72-74]. Often a single
row, layer, cavity, tube or branching tube (e.g., tracheae,
bronchi, blood vessels) is formed, while in book lungs
the precursor cells organize themselves into multiple,
nonbranching rows parallel to each other. The book

Figure 15 Regular pattern of air sacs (AS) and hemolymph
channels (H) that result from developmental processes like
those described herein. First instar, Centruroides gracilis. TEM. There
is a thin epithelial layer (E) attached to the hemolymph surface of
the air sacs. The hemolymph channels (H) still have some cell
debris, but are nearly open for passage of fluid. Evident are many
bridging trabeculae (BT) that extend between the air sac walls.
These space holders apparently result from the fusion of smaller
cuticle-enclosed compartments (Figs. 12, 13) or extension of cell
processes (Fig. 14) and trabeculae (asterisks) into the lumen of the
developing air sacs. The air sacs here are ~1.5 μm wide while the
hemolymph channels are 5-7 μm wide. Scale, 5 μm.

Figure 16 A regular pattern of air sacs (AS) and hemolymph
channels (H) in the book lung of a newly molted second instar.
Centruroides gracilis. TEM. The first instars molt while on their
mother’s back, but the development of the book lungs continues
without interruption. Bridging trabeculae (BT) appear to be formed
by fusion of small cuticularized components (CuC, Figs. 12, 13) or by
cuticularization of cell processes that extend into the lumen of the
air sac (asterisk, Fig. 14). One cell (C) shown here in the hemolymph
channel (H) is ruptured and deteriorating while others may remain
intact and part of the epithelial layer (E) attached to the
hemolymph surface of the air sacs. The hemolymph channels at this
location are 3-4 μm wide and have a substantial amount of cell
debris. The air channels are 1.5-2.0 μm wide and are open for the
passage of air except for the trabeculae. Scale, 2 μm.
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lungs thus have much surface area for gas exchange
without the added complexity of epithelial branching. A
comparable nonbranching tracheal structure is the sieve
trachea of spiders (Mysmenidae) such as Calodipoena
incredula and Mysmenella samoensis (formerly Mys-
mena incredula and M. samoensis respectively [37,75].
Here, clusters of parallel, tubular tracheae extend for-
ward from a common atrium.

Epithelial cell polarity, secretion and lamellar formation
Initially in their ingression from the atrial epithelial
layer, the book lung precursor cells have irregular
shapes and show no sign of polarity (Figures 2A, B and
3, 4). Like epithelial-derived cells elsewhere (e.g., exo-
crine glands, tracheae, bronchi) [44], the aligned cells
anterior to the atrium soon show evidence of atrial-
basal polarity, i.e., secretion from the apical surface (Fig-
ures 5, 6, 7, 8, 9, 10, 11) while the basal surface is in
contact with the nutrient source (hemolymph). The
enzymes and molecular components for the exoskeleton
are secreted from the apical surface of the parent hypo-
dermal cells [1,29,63-69], and the material for the cuticle
of the air sacs is secreted from the apical surfaces of the
aligned book lung precursor cells (Figures 5, 6, 7, 8, 9,
10, 11).

As the aligned cells begin to release material from
their apical surface, their atrial-basal polarity results in
double rows of cells separated by primordial air sacs
(Figures 5, 6, 7, 8, 9, 10, 11). The apical secretion pro-
duces the air sacs while the hemolymph channels form
at the opposed bases of the aligned cells. The release of
electron-opaque material (Figures 5, 6; presumptive
merocrine secretion) and cell fragments (Figures 6, 7, 8,
9, 10, 11; apocrine secretion) is characteristic of the
early stages of lamellar formation. In more advanced
stages, entire cells are disrupted, releasing granules and
vesicles (holocrine secretion) that apparently contribute
to the thickening cuticular walls of the air sacs (Figures
12, 13, 14).
While secretion from the apical surface of epithelial

cells is a common feature [44,76-79], the cellular pro-
cess of air sac formation is distinctive as described here
for scorpions. The released cell fragments are similar in
width among the aligned cells (Figures 8, 9, 10, 11), and
the fragments fuse together to form an elongate channel
(Figures 8, 9, 10, 11, 12, 13, 15, 16) with gradually thick-
ening cuticular walls. A similar process of lamellar for-
mation may occur in other arachnids as suggested from
recent [50] and early studies of book lung lamellae in
adults [8,9,21,23,24,45].
For scorpion book lung lamellae, the cell fragments

are initially enclosed in a typical plasma membrane (Fig-
ures 6, 7, 8). Later, the covering of the fragments
appears thicker and more dense as though cuticle is
forming. The electron-opaque structures in the micro-
graphs give some indication of how cuticularization
occurs, but the process is uncertain. There are electron-
opaque particles at the periphery of the fragments as
though material in the fragment has begun to aggregate
and/or form cuticle by enzyme action (Figures 9, 10,
11). These peripheral particles and the dense and thick-
ened fragment walls may also be all or partially formed
from the contents of fluid in the narrow and elongate
lumen that contains the cell fragments (Figures 8, 9, 10,
11). Whatever the process, the cuticular wall of the air
sac components is 50-200 nm thick in Figures 12 and
13.
As described above, an important feature of cuticulari-

zation is the apparent aggregation and/or formation of
cuticle at the periphery of the cell fragments where
fusion of the fragments can result in a continuous cuti-
cle wall. The cells with large, electron-opaque granules
may add larger quantities of cuticle primordia to the
developing air sacs (Figures 3, 11), i.e., the peripheral
coalescence of the presumptive cuticle material (Figure
11) helps form a continuous wall from the fused cell
fragments in the developing air sac.
In an earlier study with SEM, entire small cells

appeared to become aligned and enclosed within the

Figure 17 Presumptive primordial space holder across the
hemolymph channel (H) of a second instar book lung.
Centruroides gracilis. TEM. Many cells deteriorate in the primordial
hemolymph channel (Figs. 12, 16), resulting in space for passage of
hemolymph. The two intact cells (C) shown here make contact
across the channel lumen. These may be precursor pillar cells for
the pillar type space holders that earlier workers report are a
common feature in the book lung hemolymph channels of adult
scorpions and spiders [30,45,47-50]. AS, air sac; BT, bridging
trabeculae; asterisk, non-bridging trabecula. Scale, 2 μm.
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cuticular walls of the developing air sacs [27], while in
the present investigation with TEM the air sacs are
formed from cell fragments of larger aligned cells. This
difference in cell contribution to lamellar formation
results from a difference in the stage of development
and the location within the book lung where the devel-
opmental process is viewed with the two different types
of microscopes. Most of the sections in the present
study were taken at an early stage and parallel to the
aligned cells and developing lamellae. The earlier SEM
study [27] showed the dorsal surfaces of lamellae at suc-
cessive stages of development.
In the present investigation, the lamellar precursor

cells are 3-8 μm in width (Figures 2A, B and 3, 4, 5, 6,
7, 8, 9, 10, 11, 12, 14, 17) while the primodial air sacs
are much smaller, increasing in width from ~0.5 μm
(Figures 5, 6) to 2-3 μm (Figures 9, 10, 11, 13, 14, 15,
16, 17). Cell fragments rather than entire cells become
part of the early air sacs. In the TEM sections observed
herein, small cells 2 × 4 μm were sometimes seen
among the larger ones, but they were not seen to
become enclosed within the developing air sacs. In the
early stages, each row of cell fragments is ~1 μm dia. or
less, so even the smallest cells are too large to become
part of the early air sac.
In the earlier study with SEM [27], it appears that the

lamellae are increased in length, height and number by
addition of material at (respectively) the anterior, dorsal
and lateral edges of the book lung. A porous membrane
overlies the dorsal surface of the book lungs [80,81], and
this was removed so the SEM could be used to view the
developing lamellae from the dorsal aspect. The growth
regions of the book lung, thus exposed, have many
small cells 2 × 4 μm, and these small cells appear to
become aligned and surrounded by cuticle as they
become part of the vertical growth of more advanced
and wider (2-3 μm) lamellae. Openings in the lamellae
showed cells and/or large granules deteriorating and
apparently providing cuticle components [27].

Development of space holders
As pointed out by Farley [1,27] book lung space holders
are described in numerous earlier papers; most helpful
is the comprehensive treatise by Kamenz and Prendini
[30]. The present investigation is the first to provide
ultrastructural information about the formation of book
lung space holders in the early stages of development.
In the book lungs of adult scorpions, the proximal

one-third to one-fifth of the air sac lamellae have brid-
ging trabeculae while the remaining distal portion has
other types of nonbridging trabeculae that are firmly
attached to only one wall of the air sac [30]. As reported
in that study, for adult Centruroides gracilis the distal
part of each lamella has a reticulate network of cuticular

veins that serve as nonbridging space holders while brid-
ging trabeculae are present in the smaller proximal part
of the lamellae. A similar lamellar pattern of bridging
and nonbridging trabeculae is present in adult spiders.
For spider lamellae, Purcell [8] concluded that the prox-
imal portion with bridging trabeculae is formed by new
growth during the preceding intermolt period, while the
distal part of the lamellae has nonbridging trabeculae
attached to only one wall because there is temporary
obstruction by the lamellar exuvium during the molt.
The replacement of book lung cuticle has not yet been

studied in advanced scorpion instars, but present results
suggest that Purcell’s [8] hypothesis may be applicable.
The lamellae in adult Centruroides gracilis have different
proximal and distal trabeculae [30] as in spiders, but in
the present investigation with embryos and early instars,
only partial or complete bridging trabeculae were seen
(Figures 15, 16, 17). These trabeculae probably provide
much stability for air sac walls in the early stages of
development when lamellar exuvia and replacement
cuticle are not yet factors.
The bridging trabeculae in scorpion embryos and first

instars may be formed by the fusion of smaller compo-
nents in the developing air channels (Figures 12, 13). In
more advanced stages, the lamellae have regions where
it appears that air sac components fused with others,
and bridging trabeculae were formed in the process
(Figures 15, 16). In Figures 15, 16 and 17, partial trabe-
culae are common, but it is not clear if they result from
sectioning of a bridging trabecula and/or incomplete
wall-to-wall growth.
Figure 14 shows the development of trabeculae by

extension of cell processes into the lumen of the devel-
oping air sac. The cell processes and adjacent cellular
debris contain vesicles and granules that may contribute
to cuticularization and extension of the processes to the
opposing wall. Space holders are being formed here
from processes that extend inward from both walls of
the air sac rather than one wall as occurs for nonbrid-
ging trabeculae [30]. In the opisthosomal appendages
and book gills of the horseshoe crab, trabeculae are
formed by cuticularization of cell processes from the
adjacent epithelial (hypodermal) cells [1].
Space holders are much less common in the hemo-

lymph channels as compared with the many trabeculae
in the air sacs [27]. In adult horseshoe crabs and adult
scorpions and spiders, the hemolymph space holders are
mainly cellular pillars, i.e., conjoined extensions of pillar
cells from opposed cuticle walls [30,47-50]. Examples
that may be the initial formation of cellular pillars are
provided in Figure 17 and earlier investigations [1,27].
The two conjoined cells of Figure 17 span the hemo-
lymph channel and may be retained as pillar cells, while
most of the cells in the primordial hemolymph channel
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become part of the epithelium attached to the air sac
wall (Figures 15, 16, 17) or they deteriorate and thereby
leave space for hemolymph (Figures 12, 16).

Comparison of book gill and book lung development
In spider embryos, the spiracles, atrium and primordial
air sacs develop posterior to opisthosomal limb buds;
book gills are formed from the posterior surface of
opisthosomal limb buds of the horseshoe crab
[1,6-9,18,20,21,45]. In scorpion embryos, the limb buds
have completely disappeared, except for those that
become the genital operculum and pectines, before
spiracles are evident on the ventral surface of opisthoso-
mal segments 4-7 (Figure 1) [27,40-43]. This does not
negate the possibility of book gill/book lung homology,
since embryo development is often modified for the
benefit of the embryo [[82], p. 128], as demonstrated by
the substantial developmental adaptations for oral feed-
ing in the more derived scorpion families [65,83-86].
As described above, infolding or invagination of the

atrial epithelium was not evident herein as a source of
the precursor cells for each lamella. Rather, there is
ingression of cells from the atrial epithelium (Figures
2A, B and 3), and their subsequent alignment, apical-
basal polarity and secretion result in the highly ordered
lamellae of the book lungs (Figures 15, 16). These devel-
opmental cell processes produce an arrangement of cells
and lamellae that would have occurred if infolding of
the atrial epithelium had been the source of the precur-
sor cells for each lamella. This raises the possibility that
such infolding was an ancestral condition that initiated
lamellar formation but is no longer evident in extant
scorpions. This hypothesis, however, requires replace-
ment of epithelial infolding with ingression in the evolu-
tionary history of the book lungs.
In the horseshoe crab, the outgrowth (evagination) of

the book gill lamellae from the posterior surface of
opisthosomal branchial appendages differs substantially
from the ingression process in extant scorpions (Figures
2A, B and 3) [1,6,7], but tissue sections and TEM stu-
dies are needed to provide further clarification of cell
activity in the formation of book gills. Book gill develop-
ment has been studied only with light microscopy
[6,7,87] and SEM [1] in the early stages of development;
information is lacking about the ultrastructure of book
gill and book lung formation in later instars before and
after molts.
As pointed out by Fristrom [44], epithelial cells are

transformed into nonpolarized mesenchyme cells during
gastrulation, but most commonly the epithelial-derived
cells have apical-basal polarity in their new location as
did the parent cells. This means that caution should be
used in inferring homology among similar patterns of
epithelial cells. Wherever they occur in animals,

epithelial cells tend to form sheets, layers and tubes, and
their apical-basal polarity and organizational patterns
are apparently very ancient [62]. Thus, organs with a
similar epithelial structure are not necessarily indicative
of a common ancestor (e.g., epithelial-derived exocrine
glands in vertebrates and invertebrates, tracheae and
bronchi, insect and spider tracheae).
The precursor cells for book gills are aligned in rows

by hypodermal evagination [1,7] while ingression and
alignment occur for scorpion book lungs (Figures 2A, B,
3, 5, 6, 7). Once positioned, the precursor cells have
some similar activities in the development of book gill
[1,7] and book lung lamellae: 1) cell proliferation, 2)
shaping of cuticular structures as a result of cell growth
and positioning relative to each other, 3) alignment of
cells side-by-side into rows as commonly occurs in the
hypodermis, 4) apical-basal polarity in these aligned
cells like that in the hypodermis, 5) cell synthesis, trans-
port and release of material for cuticle and 6) the cellu-
lar formation and cuticularization of space holders.
The results in this and earlier studies with SEM [1,27]

thus provide evidence pro and con for book gill/book
lung homology, depending on how much emphasis is
given to the specific developmental differences and simi-
larities. Page-like lamellae are the result for both respira-
tory organs, but both are formed from a cell type
(epithelium) that typically forms ducts, tubes, layers and
channels in a diversity of animals and organs.

Epithelial morphogenesis
Numerous model systems (e.g., tracheae, zebrafish sense
organs, bronchi, kidney tubules, vertebrate neural crest,
blood vessels) are presently being used to study the cel-
lular and molecular basis of epithelial morphogenesis
[70-74]. Cell activity with some stages like those of book
lung precursor cells occurs in an in vitro model using
Madin-Darby canine kidney (MDCK) epithelial cells
[73]. Starting from a cyst with a wall consisting of a sin-
gle layer of polarized (apical surface inward) epithelial
cells, cells can be stimulated to proliferate, ingress out-
ward from the wall and align side-by-side. The apical
surface of these aligned cells gradually produces a tubu-
lar lumen extending outward from the lumen of the ori-
ginal cyst. The resulting structure is somewhat like the
air sacs extending anteriorly from the scorpion atrium.
Among the model systems, tracheal development in

Drosophila is receiving much attention for the genetic
determination of cell activity during tubulogenesis
[74,88-90]. Some of the same genes and cell processes
involved in the formation of fruit fly tracheae are impli-
cated in the development of tubular structures in verte-
brates [90]. Cellular and genetic research for fruitfly
tracheae may be helpful for understanding book lung
development in scorpions since there are similar
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processes of epithelial morphogenesis in the formation
of these respiratory organs: 1) invagination of hypoder-
mis in forming the atrium, 2) cell migration, 3) expres-
sion of apical-basal polarity, 4) alignment of cells side-
by-side and presumably with formation of new cell-cell
connections, 5) secretion from the apical surface to
form a lumen and 6) emptying of the lumen to allow
passage of air [74,76,91].
The development of arachnid book lungs is another

example of epithelial morphogenesis with some features
well suited for comparative studies. The book lungs are
relatively large and tractable, even in embryos. There
are 2, 4, or 8 book lungs in each individual [1,30,49,50].
Lamellar development is a continuing process in succes-
sive molts, and within each book lung the same cell pro-
cesses are apparently repeated to make numerous
lamellae [27]. Finally, lamellate respiratory organs are
important for our understanding of evolutionary history
and taxonomic relationships [11,30,49,50,75,92-94].

Conclusions
The results herein show that some cellular activities are
similar for book gill and book lung formation, but there
are also important differences. The present investigation
thus provides evidence for and against the hypothesis
for book gill/book lung homology. The features of cell
alignment and apical-basal polarity described herein are
common among epithelial cells in animals, but the pre-
cursor cells for book gills and book lungs are distinctive
in organizing themselves into a compact mass of many
parallel, non-branching rows, i.e., the page-like pattern
of alternating hemolymph and air or water channels.
The genetic and molecular basis of epithelial morpho-

geneis is presently receiving much research attention
using model systems such as the tracheae of Drosophila.
Book lung formation in scorpions is another example of
epithelial cell morphogenesis, and many genetic and
molecular features now being demonstrated in model
systems in other animals may also be applicable for the
development of book lungs.
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