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Statistical Methods for Analyzing Ancient DNA from Hominins

Montgomery Slatkin1

1 Department of Integrative Biology, University of California, Berkeley, CA 94720-3140, USA

Abstract

In the past few years, the number of autosomal DNA sequences from human fossils has grown 

explosively and numerous partial or complete sequences are available from our closest relatives, 

Neanderthal and Denisovans. I review commonly used statistical methods applied to these 

sequences. These methods fall into three broad classes: methods for estimating levels of 

contamination, descriptive methods, and methods based on population genetic models. The latter 

two classes are largely methods developed for the analysis of present-day genomic data. When 

they are applied to ancient DNA (aDNA), they usually ignore the time dimension. A few methods, 

particularly those concerned with inferring something about selection or ancestor-descendant 

relationships, take explicit account of the ages of aDNA samples.
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Although mitochondrial DNA (mtDNA) sequences have been obtained from human fossils 

since the 1980s and from Neanderthals since 1997, only since 2010 have nuclear DNA 

sequences been obtained in any abundance. A variety of statistical methods have been 

applied to hominin aDNA but only a few are widely used.

“Model free” methods

Some methods of analyzing aDNA data are purely descriptive. Principal components 

analysis (PCA) is the most commonly used. PCA assumes nothing about population genetics 

and is in that sense model free. Other methods (notably D- and F-statistics), make some 

assumptions about population genetics but do not yield estimates of population genetic 

parameters. They are used primarily to test for the occurrence of admixture. Other methods 

discussed later are based on population genetic models and estimate parameters of those 

models.
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Principal components analysis

In population genetics, PCA is usually performed by finding the eigenvalues and 

eigenvectors of the matrix of covariances of allele frequencies between all pairs of 

individuals. [1] The highest order eigenvectors indicate the directions in the high 

dimensional allele-frequency space which account for most of the covariance. Often the 

individuals are plotted on the plane spanned by the first two eigenvectors. An example is 

shown in Figure 1. Relative distances in this space indicate their overall similarity. PCA is 

convenient because it is both easy to use and may provide a visually compelling result. For 

example, in an analysis of European populations, Novembre et al. [2] found a close 

correspondence between the geographic locations of individuals and their locations in 

principal components space.

Ancient DNA sample are routinely combined with present-day samples in PCA. Usually the 

goal is to determine which present-day population an ancient sample is closest to. Drawing 

inferences about the relationship between the ancient and present-day samples requires 

additional assumptions. Skoglund et al. [3] showed that time differences in samples can be 

reflected in one of the principal component axes. Duforet-Frebourg and I [4] found that the 

sufficient migration between the time the ancient sample was taken and the present day can 

cause the ancient sample to not cluster with its present-day counterpart.

D-statistics

D-statistics are unusual in that they were first used with aDNA and have since been applied 

to present-day samples. They provided key evidence that Neanderthals and modern humans 

admixed. [5] D-statistics are computed for sets of four samples whose relationships are 

represented by a tree as shown in Figure 2. For analyzing Neanderthal admixture, H1 and H2 

are two different present-day human genomes, N is the Neanderthal genome and C is the 

chimp genome. At each site, one nucleotide is chosen randomly from each genome and 

counts are made of sites at which both C and N differ and H1 and H2 differ. (H1, H2,N,C) is 

the percentage of sites at which N and H2 share alleles. If there had been no admixture 

between N and both H1 and H2, then D(H1, H2,N,C) is expected to be 0. If there is 

admixture between N and H2, then D will be positive.

D provides a sensitive test for admixture because of the symmetry inherent in the population 

tree if there is no admixture. The symmetry takes account of incomplete lineage sorting 

provided the ancestral population has no geographic substructure. Furthermore, because sites 

are counted only if two copies of both alleles are seen, D is relatively insensitive to different 

levels of sequencing error in different genomes. [6] That is important because, if one of the 

genomes is from a fossil, its error rate is likely to be higher. In fact, in general it is unwise to 

assume the same error rate for sequences obtained in different laboratories using different 

sequencing platforms.. D does not directly estimate the admixture rate unless detailed 

assumptions are made about the branch lengths of the population tree, the time of admixture 

and the history of population sizes. [6]
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F-statistics

F-statistics, which are closely related to D, were introduced by Patterson et al. [7]. Like D, 

F-statistics are used primarily to test for admixture. They are somewhat different from 

Wright’s F-statistics (FIS, FST etc.) [8]. Here, the term F-statistics will be used only for those 

defined by Patterson et al. There are three F-statistics, denoted by F2(P1, P2), F3(P1; P2, P3) 

and F4((P1, P2,; P3, P4) where the P’s are the populations being compared. These statistics 

are designed to quantify the amount of genetic drift on different parts of a population tree. 

Because they focus on genetic drift and not mutation they assume that the all alleles are 

present in an ancestral population. That constraint is satisfied if all sites analyzed were 

determined to be polymorphic in a population that is an outgroup to those analyzed. For 

human populations, that condition cannot be satisfied in most cases. In practice, F-statistics 

are applied to both SNP array data and whole genome data without taking account of the 

effect of new mutations. Patterson et al. [7] found by simulation that in some cases, mutation 

does not affect conclusions drawn.

F2 is defined to be the average across loci of (p1 − p2) where p1 and p2 are the frequencies of 

a diallelic SNP in P1 and P2. F2 is additive along branches of a tree. F2 measures the time 

separating P1 and P2 in units of the effective size of the intermediate population. Mutation 

will change this interpretation somewhat because the influx of variants by mutation depends 

on the history of population sizes, not merely the overall effective size.

F3 (P1;P2,P3) is the average of (p1 − p2)(p1 − p3) across sites. It will be positive for any three 

populations that have a tree-like history—for example H1, H2 and N in Figure 1—but it can 

be negative if P1 is the product of admixture between P2 and P3. This statistic is often used 

as a test for admixture. F4(P1,P2;P3,P4) is the average of (p1 − p2)(p3 − p4) across sites. It 

quantifies the covariance between the accumulated differences between P1 and P2 and 

between P3 and P4. If these two pairs do not share a branch of a population tree, then the 

covariance will be zero, a conclusion that is unaffected by incomplete lineage sorting. 

F4(P1,P2;P3,P4) can be regarded as the numerator of D(P1,P2,P3,P4) . Using F4 to test for 

admixture is equivalent to Cavalli-Sforza and Piazza’s [9] test of treeness.

Linkage disequilibrium and introgressed fragments

Admixture from one population to another results in the production of hybrid offspring that 

carry one parental chromosome from each population. Subsequent interbreeding and 

recombination break down introgressed chromosomes into shorter fragments. Several 

methods have used this process both to provide evidence of admixture and to estimate the 

time when admixture took place. There are two classes of methods. One uses the extent of 

linkage disequilibrium between pairs of sites. The method rolloff [7] is of this type. 

Sankararaman et al. [10] used a similar method to estimate the date of admixture from 

Neanderthals into human populations.

The other class of methods uses the lengths of fragments that derive from another 

population. These methods have been particularly useful for characterizing admixture from 

Neanderthals into humans because Neanderthal and humans differ sufficiently that 
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identifying introgressed Neanderthal fragments is relatively easy. Several groups have taken 

this approach. [11-15]

Population genetic models

George Box’s dictum "All models are wrong but some are useful"[16] applies with special 

force in population genetics. It is hopeless to think that the complexity of human history can 

be represented by any model. Yet, the right model can capture the essential events that 

account for broad patterns in genomic data. Many computer-intensive methods have been 

developed to estimate model parameters, among others dadi [17], fastsimcoal2 [18], and G-
PhoCS [19]. None of these widely used programs is tailored to aDNA. When they are used 

with ancient samples, the effective size in the branch leading to the ancient sample is 

reduced to reflect the shorter time available for genetic drift to act.

TreeMix

Pickrell and Pritchard [20] developed the program TreeMix to both test for whether a set of 

samples fits a population tree and, if they do not, which admixture events were mostly likely 

to have occurred. TreeMix has been widely applied to aDNA samples combined with 

present-day samples because, although it is model-based, it does not require an assumption-

rich model. It begins by assuming that populations sampled have a history represented by a 

population tree. It then tests the tree hypothesis against alternative models that allow for 

admixture between different branches of the tree. It adds admixture events until the data are 

adequately explained. TreeMix achieves its computational speed by approximating the 

process of genetic drift by a Gaussian random walk.

Inferring the history of population sizes

The demographic history of a population determines the distribution of pairwise coalescence 

times in a population. This fact has been exploited by several programs that reconstruct the 

history of population size by estimating the coalescent time distribution. If a genome is 

sequenced to sufficient depth that heterozygotes can be identified with high confidence, even 

a single genomic sequence can be used. Li and Durbin [21] developed PSMC (for pairwise 

sequentially Markovian coalescent), a model that efficiently estimates past population sizes 

of a single population. Refinements of this type of method have been developed by Sheehan 

et al. [22] and Schiffels and Durbin [23]. PSMC is popular for the same reasons that 

TreeMix is. Although PSMC is based on a model of genetic drift, it makes few assumptions 

because it needs to model only the population ancestral to the population sampled.

Testing for direct ancestry

Rasmussen et al. [24] developed a test for direct ancestry of an aDNA sequence that is 

essentially model-free, even though it is presented in the context of coalescent theory. The 

test is especially convenient because it is applicable to pairs of sequences, one present-day 

and the other ancient. It is a likelihood ratio test of whether the length of the branch leading 

to the aDNA sequence is zero. If the branch is non-zero in length, then a maximum 

likelihood estimate of the relative branch lengths scaled by effective population sizes is 

obtained.
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If aDNA samples are of different age are available, the method of projections [25] can be 

used to test whether those samples come from a lineage directly ancestral to a present-day 

population. [26]

Contamination

A major problem with analyzing hominin aDNA is contamination by present-day humans. 

Based only on the DNA sequences themselves, contaminating reads are difficult to 

distinguish from those endogenous to the source of the aDNA. For Neanderthals and 

Denisovans, the mtDNA sequences are sufficiently different that contaminating human 

mtDNA is easily detected. It is possible, however, that levels of mtDNA and nuclear DNA 

contamination differ. If the archaic individual was a female, the extent of contamination is 

indicated by the amount of Y-chromosome DNA detected. It is also possible to directly 

estimate the level of nuclear contamination from the presence of heterozygous aDNA sites 

[5,27].

Skoglund et al. [28] developed a method that uses the tendency of aDNA fragments to carry 

distinctive miscoding lesions to estimate the probability that each fragment is endogenous. 

Racimo et al. [29] took a different approach and used an explicit model of the archaic and 

present-day populations to jointly estimate the level of contamination of the archaic sample 

and the time of divergence of archaic and contaminating populations. Applying this method 

to different potentially contaminating populations allows identification of the source of 

contamination with some confidence.

Time sequence of samples

When aDNA is available from samples of different age, it is possible to approximate the 

changes in allele frequency of individual loci [30,31]. Several method have been developed 

both to test for selection and to estimate selection intensity. [32-35] As increasing numbers 

of aDNA is sequenced, more data will be available for the application of these methods. 

These methods all assume that the ancient and present-day DNA all come from the same 

population lineage, something that may be difficult to test for.

Branch shortening

An aDNA sequence is from a population lineage that is shorter than the lineage leading to 

any present-day sample. As a consequence, the aDNA sequence has had somewhat less time 

to accumulate mutations, a phenomenon called branch shortening. If the error rate in the 

aDNA sequence is low enough, branch shortening can be detected. In fact, detecting branch 

shortening is another way to verify that the aDNA sequence is endogenous. If the age of the 

fossil yielding the aDNA sequence is known, then the extent of branch shortening provides 

an estimate of mutation rates. Fu et al. [12] were able to estimate nuclear, Y-chromosome 

and mtDNA mutation rates using this method.
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Discussion

Methods for analyzing aDNA data will flourish as more aDNA data become available. 

Methods will focus increasingly on whole-genome sequences. Although many methods for 

analyzing present-day sequences have been applied to aDNA, they do not take account of 

the additional complexity that aDNA creates. Sequence quality may be lower both because 

only low coverage may be obtained and because aDNA is subject to post-mortem 

modification. Furthermore, the age difference between ancient and present-day sequences 

may not be adequately taken account of. Analyzing aDNA gives access to a time dimension 

which had been previously been unseen. New methods will have to take better advantage of 

the ages of aDNA sequences.

One shortcoming of most analysis aDNA samples is shared by most current analysis of 

present-day samples. The starting point is a population tree, possibly with some admixture 

represented by connections among branches. This is convenient for modelers because 

samples are usually identified with named populations and most population genetics theory 

is developed in terms of randomly mating populations. Yet human populations are dispersed 

widely. True population distinctness may be rare even for island populations. The 

assumption of a population tree with or without admixture may be a reasonable starting 

point but little effort has been expended on testing the adequacy of that modeling 

framework. Unfortunately, accounting for the real geographic structure of gene flow and 

isolation-by-distance is difficult and taking account of spatial variation in population density 

adds to the difficulty. At present, we do not know what effect complexities in population 

structure might have on conclusions drawn from tree-based models. Future modelers will 

have to take up this challenge sooner or later.
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Figure 1. 
Example of principle components analysis. Plots of the first two eigenvectors for some 

African populations in the CEPH–HGDP dataset. (Figure 4 from reference [1]).
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Figure 2. 
Illustration of population tree. In the application of D-statistics to Neanderthals, H1 and H2 

were two different genomes from human populations (e. g. French and Yoruban), N was the 

Neanderthal, and C was the reference chimpanzee.
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