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Summary

This report concerns vehicle fault detection and identification. The design of a vehicle health

monitoring system based on analytical redundancy approach is described. A residual generator

and a residual processor are designed to detect and identify actuator and sensor faults of the

PATH Buick LeSabre. The residual generator, which includes fault detection filters and parity

equations, uses the control commands and sensor measurements to generate the residuals which

have a unique static pattern in response to each fault. Then, the residual processor interrogates the

residuals by matching the residuals to one of several known patterns and computes the probability

of each pattern defined hypothesis. The vehicle health monitoring system is first evaluated using

simulated data generated by a high-fidelity vehicle simulation. Then, it is evaluated using empirical

data recorded when driving a PATH Buick LeSabre at Crow’s Landing. Finally, a real-time testing

environment is developed using Linux operating system and C language. This allows the vehicle

health monitoring system to be evaluated in real-time on a PATH Buick LeSabre. The real-

time evaluation at Crow’s Landing demonstrates that the vehicle health monitoring system can

detect and identify actuator and sensor faults as expected even under various disturbances and

uncertainties including sensor noise, road noise, system parameter variations, unmodeled dynamics

and nonlinearities.
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Chapter 1

Introduction

This report concerns vehicle fault detection and identification. A vehicle health monitoring ap-

proach based on analytical redundancy is described. A system view of vehicle health monitoring is

summarized by Figure 1.1. Vehicle dynamics are driven by throttle, brake and steering commands,

and various unmeasured exogenous influences such as road noise and actuator faults. Sensors

measure a possible nonlinear function of the dynamic states and are corrupted by noise, biases

and faults of their own. The vehicle health monitoring system uses the control commands and

sensor measurements to generate the conditional probability of each fault hypothesis. The fault

hypothesis probabilities are generated in two stages. In the first stage, a residual generator formed

as a combination of fault detection filters and parity equations generates the residuals which have

a unique static pattern with a given fault or no-fault condition. In the second stage, a residual

processor interrogates the residuals by matching the residuals to one of several known patterns.

The pattern matching is done with a probabilistically based algorithm so the residual processor

generates the fault hypothesis probabilities rather than a simple binary announcement. A simple

threshold mapping could be added very easily to produce a binary announcement if that were

needed. The fault hypothesis probabilities are passed to a vehicle health management system de-

veloped by the UC Berkeley team. The vehicle health management system determines the impact

of the possible fault on safe vehicle operation and adjusts control laws if necessary to accommodate

a degraded operating condition.

In the previous report, residual generator is developed for the longitudinal dynamics of the

vehicle and evaluated in real time on a PATH Buick LeSabre. The result is also included here. In

this report, the brake actuator and longitudinal accelerometer fault detection filters are redesigned

to enhance the performance. In addition, the residual generator for the lateral dynamics of the ve-
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Figure 1.1: A system view of vehicle health monitoring and management

hicle and the residual processor are also developed. Then, the completed vehicle health monitoring

system is evaluated in real time on a PATH Buick LeSabre at Crow’s Landing.

In Chapter 2, the background of the fault detection filter is briefly discussed. The idea of the

fault detection filter is to combine control commands and sensor measurements with known system

dynamics to obtain an analytical redundancy. The fault detection filter is designed to have an

invariant subspace structure that forces the residual to take on a prescribed and fixed direction in

response to a fault. References (Massoumnia, 1986; White and Speyer, 1987; Douglas and Speyer,

1996, 1999) describe the fault detection filter in detail and some of our early results in defining

fault detection filter design algorithms.

In Chapter 3, the nonlinear vehicle simulation of the PATH Buick LeSabre is briefly discussed.

The PATH Buick LeSabre has two actuators (throttle actuator and brake actuator) and seven

sensors (manifold pressure sensor, engine speed sensor, longitudinal accelerometer, front wheel

speed sensors, rear wheel speed sensors, throttle sensor and brake sensor) that control or measure

the longitudinal dynamics of the vehicle. There are one actuator (steering actuator) and four

sensors (lateral accelerometer, yaw rate sensor, front wheel speed sensors and rear wheel speed

sensors) that control or measure the lateral dynamics of the vehicle. Since the fault detection filter

is model-based, linear vehicle models are derived for the purpose of fault detection filter design.

In Chapter 4, fault detection filters are developed for the longitudinal dynamics of the vehicle

to detect and identify the brake actuator, engine speed sensor, longitudinal accelerometer, front

wheel speed sensor and rear wheel speed sensor faults. In Chapter 5, fault detection filters are

developed for the lateral dynamics of the vehicle to detect and identify the steering actuator, lateral
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accelerometer, front wheel speed sensor and rear wheel speed sensor faults. In Chapter 6, brake

actuator fault detection filters and longitudinal accelerometer fault detection filters are redesigned.

Chapter 7, parity equations are developed to detect the throttle actuator, throttle sensor, brake

actuator, brake sensor, manifold pressure sensor and engine speed sensor faults. By combining the

residuals generated by the fault detection filters and parity equations, the residuals have a unique

static pattern in response to each fault. The pattern constructed by the fault detection filters can

be used to define fault conditioned hypothesis when the residual processor is designed in Chapter 8.

Therefore, a fault in any actuators or sensors on the PATH Buick LeSabre can be detected and

identified with probability.

In Chapters 9 and 10, fault detection filters and parity equations designed for the vehicle

longitudinal dynamics are first evaluated using simulated data generated by the vehicle simulation.

Then, fault detection filters and parity equations are evaluated using empirical data recorded

when driving a PATH Buick LeSabre at Crow’s Landing. Finally, a real-time testing environment

is developed using Linux operating system and C language to evaluate fault detection filters in

real-time on a PATH Buick LeSabre. The real-time evaluation at Crow’s Landing demonstrates

that the fault detection filters can detect and identify actuator and sensor faults as expected even

under various disturbances and uncertainties including sensor noise, road noise, system parameter

variations, unmodeled dynamics and nonlinearities.

In Chapters 11, the completed vehicle health monitoring system composed of a residual gen-

erator and residual processor are first evaluated using simulated data generated by the vehicle

simulation and empirical data recorded at Crow’ landing. Second, the health monitoring system is

evaluated in real-time on a PATH Buick LeSabre when the actuator and sensor faults are simulated

and imposed by UCLA laptop. Then, the health monitoring system is evaluated in real-time on a

PATH Buick LeSabre when the actuator and sensor faults are directly injected by PATH vehicle

computer. In this case, the reaction of the vehicle controller to each fault is encountered when eval-

uating the health monitoring system. Finally, real steering actuator and real brake actuator faults

are created by the driver and the performance of the health monitoring system is evaluated. The

real-time evaluation at Crow’s Landing demonstrates that the vehicle health monitoring system

can detect and identify actuator and sensor fault under various disturbances and uncertainties.

In Chapter 12, the fault detection filter design algorithm (Chen and Speyer, 1999a; Chen et al.,

2002) used in Chapter 4 is discussed in detail. The design algorithm is based on an optimization
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problem where the transmission from the target fault, the fault to be detected, is maximized and

the transmission from the nuisance faults, the faults to be blocked, is minimized. Furthermore, the

transmission from the sensor noise, process noise and plant uncertainties is minimized. Therefore,

the geometric structure of the fault detection filter is approximated in the presence of these dis-

turbances to any degree determined by the designer by using the weightings of the transmissions.
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Chapter 2

Fault Detection Filter Background

Any system under automatic control demands a high degree of reliability in order to operate

properly. If a fault develops in the plant, the controller will not work properly because it is designed

based on the nominal plant. The controller also relies on the health of the sensors and actuators.

If a sensor fails, the controller’s command will be generated using incorrect measurements. If an

actuator fails, the controller’s command will not be applied properly to the plant. To avoid these

situations, one needs a health monitoring system capable of detecting a fault as it occurs and

identifying the faulty component. This process is called fault detection and identification.

The most common approach to fault detection and identification is hardware redundancy which

is the direct comparison of the outputs from identical components. This approach requires very

little computation. However, hardware redundancy is expensive and limited by space and weight.

An alternative is analytical redundancy which uses the modeled dynamic relationship between

system inputs and measured system outputs to form a residual process. Nominally, the residual

is nonzero only when a fault has occurred and is zero at other times. Therefore, no redundant

components are needed. However, additional computation is required.

A popular approach to analytical redundancy is the detection filter which was first introduced

by (Beard, 1971) and refined by (Jones, 1973). It is also known as Beard-Jones detection filter. A

geometric interpretation and a spectral analysis of the detection filter are given in (Massoumnia,

1986) and (White and Speyer, 1987), respectively. Design algorithms have been developed (Douglas

and Speyer, 1996, 1999; Chen and Speyer, 2002) which improve the detection filter robustness. The

idea of a detection filter is to place the reachable subspace of each fault into invariant subspaces

which do not overlap each other. Then, when a nonzero residual is detected, a fault can be
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announced and identified by projecting the residual onto each of the invariant subspaces. In this

way, multiple faults can be monitored in one filter.

In a related approach, the unknown input observer (Massoumnia et al., 1989; Frank, 1990;

Patton and Chen, 1992) simplifies the detection filter problem by dividing the faults into two

groups: a single target fault and possibly several nuisance faults. The nuisance faults are placed in

an invariant subspace which is unobservable to the residual. Therefore, the residual is only sensitive

to the target fault, but not to the nuisance faults. Although only one fault can be monitored in

each unknown input observer, there are some benefits. For example, one gains additional flexibility

which can be used to improve robustness and time-varying systems can be treated (Chung and

Speyer, 1998; Chen and Speyer, 1999a,b, 2000).

In this chapter, the background of the fault detection filter is given. In Section 2.1, the fault

models are given. In Section 2.2, the detection filter is briefly discussed. In Section 2.3, the

unknown input observer is briefly discussed.

2.1 Fault Modeling

In this section, the models of the plant, actuator and sensor faults are given (Beard, 1971; White

and Speyer, 1987; Chung and Speyer, 1998). Consider a linear time-invariant system,

ẋ = Ax + Bu (2.1a)

y = Cx (2.1b)

where u is the control input and y is the measurement. The ith actuator fault can be modeled as

an additive term in the state equation (2.1a) (Beard, 1971; White and Speyer, 1987).

ẋ = Ax + Bu + Faµa

where Fa is the ith column of B and µa is an unknown and arbitrary scalar function of time that is

zero when there is no fault. The failure mode µa models the time-varying amplitude of the actuator

fault while the failure signature Fa models the directional characteristics of the actuator fault. For

example, a stuck ith actuator fault can be modeled as ui + µa = c where ui is the control command

of the ith actuator and c is the position where the ith actuator is stuck. A bias ith actuator fault

can be modeled as µa = c where c is the bias. The plant fault can be modeled similarly to the

actuator fault by pulling out the corresponding entries in the A matrix.
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The ith sensor fault can be modeled as an additive term in the measurement equation (2.1b)

(Beard, 1971; White and Speyer, 1987).

y = Cx + Esµs (2.2)

where Es is a column of zeros except a one in the ith position and µs is an unknown and arbitrary

scalar function of time that is zero when there is no fault. The failure mode µs models the

time-varying amplitude of the sensor fault while the failure signature Es models the directional

characteristics of the sensor fault. For the purpose of fault detection filter design, an input to

the state equation (2.1a) which drives the measurement in the same way that µs does in (2.2) is

obtained as in (Chung and Speyer, 1998). Define a new state x̄,

x̄ = x + fsµs

where Es = Cfs. Assume C has full row rank. Then, fs = C−rEs where C−r is the right inverse

of C. Then, (2.2) can be written as

y = Cx̄

and the dynamic equation of x̄ is

˙̄x = Ax̄ + Bu +
[

fs f̄s

] [
µ̇s

−µs

]
(2.3)

where f̄s = Afs. Therefore, for fault detection filter design, the sensor fault is modeled as a two-

dimensional additive term in the state equation as in (2.3). The interpretation of (2.3) is that f̄s

represents the sensor fault magnitude direction and fs represents the sensor fault rate direction.

This suggests that a possible simplification when information about the spectral content of the

sensor fault is available. If it is known that the sensor fault has persistent and significant high

frequency components, the fault direction could be approximated by the fs direction. Or, if it is

known that the sensor fault has only low frequency components, such as in the case of a bias, the

fault direction could be approximated by the f̄s direction.

2.2 Beard-Jones Detection Filter

In this section, the detection filter is briefly discussed from the geometric point of view (Massoum-

nia, 1986; Douglas, 1993). Following the development in Section 2.1, any plant, actuator and sensor
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fault can be modeled as an additive term in the state equation. Therefore, a linear time-invariant

system with q faults can be modeled as

ẋ = Ax + Bu +
q∑

i=1

Fiµi (2.4a)

y = Cx (2.4b)

Assume Fi are monic so that µi 6= 0 imply Fiµi 6= 0.

The detection filter is a linear observer in the form of

˙̂x = Ax̂ + Bu + L(y − Cx̂) (2.5)

and the residual is

r = y − Cx̂

By using (2.4) and (2.5), the dynamic equation of the error e = x− x̂ is

ė = (A− LC)e +
q∑

i=1

Fiµi

and the residual can be written as

r = Ce

The detection filter gain L is chosen such that A− LC is stable and there exists an invariant

subspace Ti for each fault Fi. Ti is called the minimal (C,A)-unobservability subspace or the

detection space of Fi. Assume (C,A) is observable and the invariant zeros of (C, A, Fi) have the

same geometric and algebraic multiplicities. Ti can be found by

Ti = Wi ⊕ Vi (2.6)

where Wi is the minimal (C, A)-invariant subspace of Fi given by the recursive algorithm

W0
i = 0 (2.7a)

Wk+1
i = ImFi ⊕A(Wk

i

⋂
KerC) (2.7b)

and Vi is spanned by the invariant zero directions of (C,A, Fi). When dimFi = 1, the recursive

algorithm (2.7) implies

Wi = Im
[

Fi AFi · · · AkiFi

]
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where ki is the smallest non-negative integer such that CAkiFi 6= 0.

It is assumed that CT1 · · ·CTq are independent, that is,

CTi ∩
∑

j 6=i

CTj = 0

If they are not independent, the faults can only be detected, but not identified. This condition is

called output separability. If the faults are not output separable, then usually, the designer needs

to discard some faults from the design set. It is also assumed that (C, A, [ F1 · · ·Fq ]) does not have

more invariant zeros than (C, A, F1) · · · (C, A, Fq). If it does, the extra invariant zeros will become

part of the eigenvalues of A− LC. This condition is called mutual detectability. For more details,

please refer to (Massoumnia, 1986; Douglas, 1993). For the design algorithms to form the detection

filter gain L, please refer to (White and Speyer, 1987; Douglas and Speyer, 1996, 1999; Chen and

Speyer, 2002).

When there is no fault, the residual generated by the detection filter is zero after the transient

response due to the initial condition error because A− LC is stable. When the fault µi occurs, the

residual becomes nonzero, but only in the direction of CTi because

ImFi ⊆ Ti

(A− LC)Ti ⊆ Ti

Hence, the fault can be identified by projecting the residual onto each CTi by using a projector Ĥi

that annihilates [CT1 · · · CTi−1 CTi+1 · · · CTq ]
4
= CT̂i.

Ĥi : Y → Y , Ker Ĥi = CT̂i , Ĥi = I − CT̂i[(CT̂i)T CT̂i]−1(CT̂i)T

where Y is the output space. The projected residual Ĥir is nonzero only when the fault µi is nonzero

and is zero even when other faults µj 6=i are nonzero. Therefore, by monitoring Ĥ1r · · · Ĥqr, every

fault can be detected and identified.

2.3 Unknown Input Observer

In this section, the unknown input observer is briefly discussed (Massoumnia et al., 1989). The

unknown input observer simplifies the detection filter problem by dividing the faults into two
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groups: a single target fault and possibly several nuisance faults. Consider a linear time-invariant

system with q faults,

ẋ = Ax + Bu +
q∑

i=1

F̄iµ̄i (2.8a)

y = Cx (2.8b)

Let µ1 = µ̄i be the target fault and µ2 = [ µ̄T
1 · · · µ̄T

i−1 µ̄T
i+1 · · · µ̄T

q ]T be the nuisance fault. Then,

(2.8) can be rewritten as

ẋ = Ax + Bu + F1µ1 + F2µ2 (2.9a)

y = Cx (2.9b)

where F1 = F̄i and F2 = [ F̄1 · · · F̄i−1 F̄i+1 · · · F̄q ].

The unknown input observer is a linear observer in the form of

˙̂x = Ax̂ + Bu + L(y − Cx̂) (2.10)

and the residual is

r = Ĥ(y − Cx̂)

By using (2.9) and (2.10), the dynamic equation of the error e = x− x̂ is

ė = (A− LC)e + F1µ1 + F2µ2

and the residual can be written as

r = ĤCe

The unknown input observer gain L is chosen such that A− LC is stable and there exists a detection

space T2 for the nuisance fault F2. The projector Ĥ is chosen to annihilate CT2, i.e.,

Ĥ : Y → Y , Ker Ĥ = CT2 , Ĥ = I − CT2[(CT2)T CT2]−1(CT2)T

When there is no fault, the residual generated by the unknown input observer is zero after

the transient response due to the initial condition error because A− LC is stable. When the

nuisance fault occurs, the residual is still zero because the nuisance fault is contained in T2 which

is unobservable to the residual. When the target fault occurs, the residual is nonzero if F1 and T2

are independent. If ImF1 ⊆ T2, the target fault cannot be detected. This condition is similar to
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the output separability condition, but less restrictive because there is no detection space formed

for the target fault. Furthermore, mutual detectability condition is not required because there

is only one detection space formed. Therefore, by monitoring the residual, the target fault can

be detected. Although only one fault can be monitored in each unknown input observer, there

are some benefits. For example, one gains additional flexibility which can be used to improve

robustness and time-varying systems can be treated (Chung and Speyer, 1998; Chen and Speyer,

1999a,b, 2000). Note that multiple unknown input observers are needed to detect multiple faults.

2.4 Generalized Shiryayev Sequential Probability Ratio Test

In this section, the Generalized Shiryayev sequential probability ratio test (GSSPRT) (Malladi

and Speyer, 1999) is briefly discussed. This test is a generalized result of Speyer and White

(Speyer and White, 1984) who approached the change detection problem based on the results

of Shiryayev (Shiryayev, 1977) and using a dynamic programming formulation. Under certain

condition, this Generalized Shiryayev SPRT detects the change in hypothesis (i.e., occurrence of

a disruption) in a sequence of conditionally independent measurements in minimum time. In the

dynamic programming formulation, the measurement cost, the cost of false alarm and the cost of

miss-alarm are considered. The algorithm is shown to be optimal in infinite time case.

Here, the propagation equation for the posterior probability of disruption conditioned on the

measurement sequence will be introduced first. This recursive formula provides the posterior prob-

ability of each hypothesis online and also plays a central role in the dynamic programming analysis.

Then, the assumptions that made behind the derivation are discussed and investigated when the

recursive formula is applied to our application. The propagation equation of the probability of

each hypothesis based on the measurement history is shown below.

Fk+1,i =
P (θi ≤ tk+1/Xk) · fi(xk+1)∑m
i=0 P (θi ≤ tk+1/Xk) · fi(xk+1)

(2.11)

P (θi ≤ tk+1/Xk) = Fki + p̃i(1− Fki) ∀i 6= 0 (2.12)

P (θ0 ≤ tk+1/Xk) =
∏

i
(1− P (θi ≤ tk+1/Xk)) ∀i 6= 0 (2.13)

F0,i = πi (2.14)
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where

Fki : P (θi ≤ tk/Xk),

θi : Time of transition to hypothesisHi,

Xk : Measurement history up to tk,

p̃i : A priori probability of transition to hypothesisHifrom tkto tk+1∀k,

fi(·) : Probability density function of x givenHi,

m + 1 : Number of hypothesis,

πi : P (θi ≤ t0).

The propagation equation (2.11) is derived from Bayes Rule under the following assumptions:

The measurement sequence xk is conditionally independent or equivalently, P (Xk/θi ≤ tk) =

P (xk/θi ≤ tk)P (xk−1/θi ≤ tk) · · · P (x1/θi ≤ tk). Which means that the measurement sequence

is assumed to be independent when a disruption occured. Furthermore, the statistical properties

of the measurements (i.e., the probability density function fi(·)) are assumed known before and

after disruption for all hypotheses. The priori transition probability p̃i is assumed to be known and

constant for all stage. However, the analysis remains the same even if the transition probability is

stage dependent. Finally, the a priori probability πi is also assumed to be known for all hypotheses.

The validity of the above assumptions are investigated when the recursive formula is applied to

our application. First, it is likely that each of the residual process generated by the fault detection

filter is time correlated. In our application, the collection of residuals generated at each time

instant is considered independent static pattern which can be associated to one of the pre-defined

hypothesis.

Second, the distribution of the measurement sequence is assumed to be known before and after

disruption. In practice, the magnitude of the failure is not known priori. The statistical properties

of the distribution defined for all failure hypotheses may not be completely known. To deal with

this uncertainty, if one of the parameters α of the density function fi(·) is not known and assumed

to follow its own distribution (i.e., a density function ψα(·) defined over Ω), the conditional density

function fi(·) can be formulated as

fi(·) =
∫

Ω
fi(x/η) · ψα(η) · dη (2.15)
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Third, the probability of transition p̃i and the a priori probability πi are not known. Both of

them are treated as design parameters. In general, a smaller p̃i is chosen when noisy measurement

sequence is processed. The a priori probability πi is assumed to be a small number. These

two parameters are not sensitive in the algorithm and should not affect the performance when

reasonable values are assumed.
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Chapter 3

Vehicle Dynamics

In this chapter, the nonlinear vehicle simulation of the PATH Buick LeSabre is discussed. Since

the fault detection filter is model-based, linear vehicle models are derived for the purpose of fault

detection filter design. In Section 3.1, the nonlinear vehicle simulation is briefly discussed. In

Section 3.2, linear vehicle models are derived numerically from the nonlinear vehicle simulation. In

Section 3.3, the sensors installed on the PATH Buick LeSabre and the measurements of the linear

vehicle models are listed. In Section 3.4, model reduction is applied to the linear vehicle models.

In Section 3.5, the actuator and sensor fault models are derived.

3.1 Nonlinear Vehicle Simulation

A high-fidelity six degree-of-freedom nonlinear vehicle model described in (Douglas et al., 1996,

1997) is used as a starting point. The nonlinear vehicle model has twenty-five states and three

control inputs.

States: xma : Manifold air mass.

xwe : Engine speed.

xx : Longitudinal position.

xvx : Longitudinal velocity.

xy : Lateral position.

xvy : Lateral velocity.

xz : Vertical position.

xvz : Vertical velocity.
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xφ : Roll angle.

xp : Roll rate.

xθ : Pitch angle.

xq : Pitch rate.

xψ : Yaw angle.

xr : Yaw rate.

xwfl
: Front left wheel speed.

xwfr
: Front right wheel speed.

xwrl
: Rear left wheel speed.

xwrr : Rear right wheel speed.

xlfl
: Front left suspension length.

xlfr
: Front right suspension length.

xlrl
: Rear left suspension length.

xlrr : Rear right suspension length.

xα : Throttle state.

xTb
: Brake state.

xγ : Steering state.

Control inputs: uα : Throttle command.

uTb
: Brake command.

uγ : Steering command.

A computer simulation of this nonlinear vehicle model is implemented in C++ with vehicle pa-

rameters chosen for the PATH Buick LeSabre.

3.2 Linear Vehicle Model

Since the fault detection filter is model-based, linear vehicle models are derived for the purpose of

fault detection filter design. The linearized dynamics of the vehicle are derived numerically from

the nonlinear vehicle simulation using a central differences method. An analytical approach taking
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partial derivatives is impractical because the nonlinear vehicle model is too complicate. The central

differences method is described in detail in (Douglas et al., 1996, 1997). Two linear vehicle models

are derived at different nominal operating points where the vehicle is travelling straight ahead on

a flat road. The first linearization is done at 20 meters per second which is 45 miles per hour. The

second linearization is done at 24 meters per second which is 54 miles per hour. The vehicle is in

the third gear for both linearizations.

Since the vehicle is not in a turn, the linear longitudinal dynamics decouple completely from

the linear lateral dynamics. The linear longitudinal vehicle model has fourteen states and two

control inputs.

States: xma : Manifold air mass.

xwe : Engine speed.

xx : Longitudinal position.

xvx : Longitudinal velocity.

xz : Vertical position.

xvz : Vertical velocity.

xθ : Pitch angle.

xq : Pitch rate.

xw̄f
: Sum of front wheel speeds.

xw̄r : Sum of rear wheel speeds.

xl̄f
: Sum of front suspension lengths.

xl̄r : Sum of rear suspension lengths.

xα : Throttle state.

xTb
: Brake state.

Control inputs: uα : Throttle command.

uTb
: Brake command.
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The linear lateral vehicle model has eleven states and one control input.

States: xy : Lateral position.

xvy : Lateral velocity.

xφ : Roll angle.

xp : Roll rate.

xψ : Yaw angle.

xr : Yaw rate.

xw̃f
: Difference of front wheel speeds.

xw̃r : Difference of rear wheel speeds.

xl̃f
: Difference of front suspension lengths.

xl̃r
: Difference of rear suspension lengths.

xγ : Steering state.

Control input: uγ : Steering command.

In this report, the fault detection filter is developed for the longitudinal dynamics and lateral

dynamics of the vehicle.

3.3 Vehicle Measurements

There are nine sensors installed on the PATH Buick LeSabre that measure the longitudinal dy-

namics of the vehicle.

ymp : Manifold pressure sensor.

yωe : Engine speed sensor.

yax : Longitudinal accelerometer.

yωfl
: Front left wheel speed sensor.

yωfr
: Front right wheel speed sensor.

yωrl
: Rear left wheel speed sensor.

yωrr : Rear right wheel speed sensor.
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yα : Throttle sensor.

yTb
: Brake sensor.

Since the dynamics of the vehicle naturally decompose into longitudinal and lateral components,

the following processed wheel speed sensors form a more natural set of measurements:

yω̄f
: Sum of front wheel speed sensors.

yω̄r : Sum of rear wheel speed sensors.

yω̃f
: Difference of front wheel speed sensors.

yω̃r : Difference of rear wheel speed sensors.

For the longitudinal dynamics of the vehicle, the wheel speed difference measurements, yω̃f
and

yω̃r , are not relevant. Therefore, there are seven measurements associated with the longitudinal

dynamics of the vehicle.

ymp : Manifold pressure sensor.

yωe : Engine speed sensor.

yax : Longitudinal accelerometer.

yω̄f
: Sum of front wheel speed sensors.

yω̄r : Sum of rear wheel speed sensors.

yα : Throttle sensor.

yTb
: Brake sensor.

Since throttle and brake sensors, yα and yTb
, measure control inputs rather than states, the linear

longitudinal vehicle model has only five measurements:

ymp : Manifold pressure sensor.

yωe : Engine speed sensor.

yax : Longitudinal accelerometer.

yω̄f
: Sum of front wheel speed sensors.

yω̄r : Sum of rear wheel speed sensors.
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There are seven sensors installed on the PATH Buick LeSabre that measure the lateral dynamics

of the vehicle.

yr : Yaw rate sensor.

yay : Lateral accelerometer.

yωfl
: Front left wheel speed sensor.

yωfr
: Front right wheel speed sensor.

yωrl
: Rear left wheel speed sensor.

yωrr : Rear right wheel speed sensor.

yγ : Steering sensor.

Since the dynamics of the vehicle naturally decompose into longitudinal and lateral components,

the following processed wheel speed sensors form a more natural set of measurements:

yω̄f
: Sum of front wheel speed sensors.

yω̄r : Sum of rear wheel speed sensors.

yω̃f
: Difference of front wheel speed sensors.

yω̃r : Difference of rear wheel speed sensors.

For the lateral dynamics of the vehicle, the sum of wheel speed measurements, yω̄f
and yω̄r , are

not relevant. Therefore, there are five measurements associated with the lateral dynamics of the

vehicle.

yay : Lateral accelerometer.

yr : Yaw rate sensor.

yω̃f
: Difference of front wheel speed sensors.

yω̃r : Difference of rear wheel speed sensors.

yγ : Steering sensor.

Since steering sensors, yγ , measure control inputs rather than states, the linear lateral vehicle
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model has only four measurements:

yay : Lateral accelerometer.

yr : Yaw rate sensor.

yω̃f
: Difference of front wheel speed sensors.

yω̃r : Difference of rear wheel speed sensors.

3.4 Linear Model Reduction

By examining the linear longitudinal model derived when the vehicle is travelling at 20 m/s, the

longitudinal position state xx is unobservable and therefore is truncated. After the truncation,

the thirteenth-order model has eigenvalues: −313.77, −201.40, −90.91, −53.29, −26.95, −10.12±
15.99i, −5.01 ± 7.59i, −14.44, −9.75, −1.25 and −0.032. Observe that three of these eigenvalues

are significantly faster than the rest. By inspection of the eigenvectors, it is determined that the

fast eigenvalues are associated with the states xω̄f
, xω̄r and xα. A model reduction is applied by

dynamic truncation with a steady-state correction (Prakash, 1994). First, the derivatives of the

fast states xω̄f
, xω̄r and xα are set to zero. Then, these linear equations are solved for the fast

states in terms of the remaining states: xma , xωe , xvx , xz, xvz , xθ, xq, xl̄f
, xl̄r and xTb

. Finally, the

result is substituted into the state equations of the remaining states. This process is described in

more detail in (Douglas et al., 1996, 1997). The eigenvalues of the reduced-order model are −53.43,

−28.37, −9.43 ± 16.84i, −5.04 ± 7.42i, −13.79, −9.74, −1.25 and −0.034 which are close to the

eigenvalues of the full-order model. Also, the frequency responses of the reduced-order and full-

order models are close to each other. The same procedure is also applied to the linear longitudinal

model derived when the vehicle is travelling at 24 m/s. Both reduced-order models are given in

Appendix A.

By examining the linear lateral model derived when the vehicle is travelling at 20 m/s, the

lateral position state xy and the yaw angle xψ are unobservable and therefore are truncated. After

the truncation, the ninth-order model has eigenvalues: −283.30, −198.03, −80.00, −22.18±22.45i,

−36.17, −5.45± 4.46i, and −8.50. Observe that three of these eigenvalues are significantly faster

than the rest. By inspection of the eigenvectors, it is determined that the fast eigenvalues are

associated with the states xw̃f
, xw̃r and xγ . A model reduction is applied by dynamic truncation
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with a steady-state correction (Prakash, 1994). First, the derivatives of the fast states xw̃f
, xw̃r

and xγ are set to zero. Then, these linear equations are solved for the fast states in terms of

the remaining states:xvy , xφ, xp, xr, xl̃f
and xl̃r

. Finally, the result is substituted into the state

equations of the remaining states. This process is described in more detail in (Douglas et al.,

1996, 1997). The eigenvalues of the reduced-order model are 22.64± 22.73i, −36.16, −5.12± 4.83i,

−8.41 which are close to the eigenvalues of the full-order model. Also, the frequency responses

of the reduced-order and full-order models are close to each other. All the lateral fault detection

filters are designed using the linear lateral model derived when the vehicle is travelling at 20 m/s.

However, an additional model, which is obtained by modifing this reduced order model, is used to

design lateral accelerometer fault detection filter. Both models are given in Appendix A.

3.5 Actuator and Sensor Fault Models

From Section 3.4, the longitudinal dynamics of the vehicle is represented by a tenth-order linear

model.

ẋ = Ax + Bu

y = Cx

where u has two control inputs and y has five measurements. From Section 2.1, the longitudinal

dynamics of the vehicle with two actuator and five sensor faults can be modeled as

ẋ = Ax+Bu+Fuαµuα +FuTb
µuTb

+Fymp
µymp

+Fywe
µywe

+Fyax
µyax

+Fyw̄f
µyw̄f

+Fyw̄r
µyw̄r

y = Cx

where Fuαµuα represents the throttle actuator fault, FuTb
µuTb

represents the brake actuator fault,

Fymp
µymp

represents the manifold pressure sensor fault, Fywe
µywe

represents the engine speed sensor

fault, Fyax
µyax

represents the longitudinal accelerometer fault, Fyw̄f
µyw̄f

represents the front wheel

speed sensor fault and Fyw̄r
µyw̄r

represents the rear wheel speed sensor fault. The actuator fault

directions Fuα and FuTb
are one-dimensional. Fuα is the first column of the B matrix and FuTb

is

the second column of the B matrix. The sensor fault directions Fymp
, Fywe

, Fyax
, Fyw̄f

and Fyw̄r

are two-dimensional and obtained by using (2.3). The actuator and sensor fault directions are

given in Appendix A.
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From Section 3.4, the lateral dynamics of the vehicle is represented by a sixth-order linear

model.

ẋ = Ax + Bu

y = Cx + Du

where u has one control inputs and y has four measurements. Note that the system matrix D of the

reduced order model is non zero after the model reduction technique is applied. From Section 2.1,

the lateral dynamics of the vehicle with one actuator and four sensor faults can be modeled as

ẋ = Ax+Bu+Fuγµuγ +Fyay
µyay

+Fyrµyr +Fyw̃f
µyw̃f

+Fyw̃r
µyw̃r

y = Cx + Du

where Fuγµuγ represents the steering actuator fault, Fyay
µyay

represents the lateral accelerometer

fault, Fyrµyr represents the yaw rate sensor fault, Fyw̃f
µyw̃f

represents the front wheel speed sensor

fault and Fyw̃r
µyw̃r

represents the rear wheel speed sensor fault. Since the D matrix is non-zero,

the actuator fault directions Fuγ is two-dimensional and obtained by combining the column of the

B matrix and direction obtained from (2.3). The sensor fault directions Fyay
, Fyr , Fyw̃f

and Fyw̃r

are two-dimensional and obtained by using (2.3). The actuator and sensor fault directions are

given in Appendix A.
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Chapter 4

Longitudinal Fault Detection Filter
Design

In this chapter, fault detection filters are designed to detect and identify actuator and sensor

faults for the longitudinal dynamics of the vehicle. From Sections 3.2 and 3.3, there are two

actuators and seven sensors on the PATH Buick LeSabre that control or measure the longitudinal

dynamics of the vehicle.

Actuators: uα : Throttle actuator.

uTb
: Brake actuator.

Sensors: ymp : Manifold pressure sensor.

ywe : Engine speed sensor.

yax : Longitudinal accelerometer.

yw̄f
: Sum of front wheel speed sensors.

yw̄r : Sum of rear wheel speed sensors.

yα : Throttle sensor.

yTb
: Brake sensor.

Since throttle and brake sensors measure control inputs rather than states, the linear longitudinal

vehicle model has only five measurements. Therefore, throttle and brake sensor faults cannot be

detected by using the fault detection filter. However, they will be detected by using the parity

equation in Chapter 7.

From Section 3.5, the linear longitudinal vehicle model with two actuator and five sensor faults
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is

ẋ = Ax+Bu+Fuαµuα +FuTb
µuTb

+Fymp
µymp

+Fywe
µywe

+Fyax
µyax

+Fyw̄f
µyw̄f

+Fyw̄r
µyw̄r

y = Cx

Fault detection filters were designed based on this vehicle model to detect and identify these seven

faults. However, as explained in Section 4.2, fault detection filters designed for the throttle actuator

and manifold pressure sensor are not robust when the vehicle operates far from the nominal point.

Therefore, fault detection filters are designed to detect and identify only five faults: brake actuator,

engine speed sensor, longitudinal accelerometer, front wheel speed sensor and rear wheel speed

sensor faults. The throttle actuator and manifold pressure sensor faults will be detected by using

the parity equation in Chapter 7.

In Section 4.1, two design considerations that are specific to the fault detection filter design for

the longitudinal dynamics of the vehicle are discussed. In Section 4.2, the robustness of the fault

detection filter is enhanced through two approaches. In Section 4.3, the five faults to be detected

and identified by the fault detection filter are grouped into three sets. In Section 4.4, the design

algorithm of the fault detection filter is given. In Section 4.5, the reduced-order fault detection

filter is discussed. In Section 4.6, fault detection filters are designed for each set of faults.

4.1 Special Design Considerations

Two design considerations arise that are specific to the fault detection filter design for the longi-

tudinal dynamics of the vehicle. In Section 4.1.1, it is a conditioning problem that arises from the

model reduction done in Section 3.4. In Section 4.1.2, it is an output separability problem.

4.1.1 Ill-Conditioned Fault Direction

The first step of the fault detection filter design is to check if the two actuator and five sensor faults

are output separable. If the faults are not output separable, they can only be detected, but not

identified. In order to check the output separability, the detection space of each fault is obtained

by using (2.6). For the throttle actuator and five sensor faults, the detection spaces are given by

the fault directions themselves, that is,

Ti = ImFi
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because CFi 6= 0 and (C,A, Fi) does not have any invariant zero. For the brake actuator fault,

CFuTb
6= 0 only holds for the reduced-order vehicle model. For the full-order vehicle model,

CFuTb
= 0. Therefore, FuTb

should be considered as a very weakly observable direction. For

the fault detection filter design, a second fault direction AFuTb
is added to the brake actuator fault

and its detection space becomes

TuTb
= Im

[
FuTb

AFuTb

]

The modified brake actuator fault direction is given in Appendix A. Therefore, the dimension of

the detection space of the throttle actuator fault is one. The dimension of the detection spaces of

the brake actuator and five sensor faults is two.

4.1.2 Output Separability

In order to check the output separability, CTi is obtained for each fault. The dimension of CTuα

is one. The dimension of CTuTb
, CTymp

, CTywe
, CTyax

, CTyw̄f
and CTyw̄r

is two. The sum of the

dimension of each CTi is thirteen. Since it is larger than the dimension of the output space which

is five, these seven faults are not output separable. Therefore, they are grouped into several sets

where the faults in each set are output separable in Section 4.3. Then, fault detection filters are

designed for each set of faults in Section 4.6.

Before grouping the faults into several sets, the output separability between each fault is ex-

amined, that is,

CTi ∩ CTj 6=i = 0

By examining the singular values of [CTi CTj 6=i ], every pair of faults is output separable except

two pairs. The longitudinal accelerometer fault and rear wheel speed sensor fault are not output

separable because CTyax
and CTywr

are not independent. Since CTyax
* CTywr

and CTywr
* CTyax

,

these two faults can be detected and identified by grouping them into different sets.

The throttle actuator fault and manifold pressure sensor fault are not output separable either.

From (2.3), Fymp
= [ fymp

f̄ymp
] where fymp

represents the fault rate direction and f̄ymp
represents

the fault magnitude direction. These two faults are not output separable because ImFuα = Im fymp
.

Since CTuα ⊂ CTymp
, grouping these two faults into different sets will not work. One solution is to

model the manifold pressure sensor fault as Fymp
= f̄ymp

. Then, these two faults become output

separable. However, this design decision could make it difficult to detect a manifold pressure
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sensor fault that is noisy but with small amplitude. Also, a manifold pressure sensor fault rate will

stimulate the throttle actuator residual. However, a throttle actuator fault could never stimulate

the manifold pressure sensor residual. In summary, as long as the manifold pressure sensor fault

spectral components are low frequency, the throttle actuator fault and manifold pressure sensor

fault can be identified.

4.2 Fault Detection Filter Robustness Enhancement

Since the fault detection filter is designed based on the linear model linearized from the nonlinear

model at a single nominal point, the filter might not be robust when the vehicle is operating

far from the nominal point. In Section 4.2.1, the nonlinearity is modeled as an additive term in

the state equation. In Section 4.2.2, the robustness of the fault detection filter is enhanced by

considering the nonlinearity as a fault. In Section 4.2.3, the robustness of the fault detection filter

is enhanced by decoupling the nonlinearity from the linear model.

4.2.1 Nonlinearity Direction Identification

In this section, the nonlinearity is modeled as an additive term in the state equation (Patton and

Chen, 1992; Douglas et al., 2004).

ẋ = Ax + Bu + Fnµn

where Fn represents the nonlinearity direction to be determined and µn represents the nonlinearity

amplitude. Define w
4
= Fnµn and assume w is slowly time-varying. Then, the following system can

be formed.

[
ẋ
ẇ

]
=

[
A I
0 0

] [
x
w

]
+

[
B
0

]
u

x =
[

I 0
] [

x
w

]

An observer based on this system can be obtained.

[ ˙̂x
˙̂w

]
=

[
A I
0 0

] [
x̂
ŵ

]
+

[
B
0

]
u + L

(
x− [

I 0
] [

x̂
ŵ

])

where the observer gain L is chosen to make the observer stable. The inputs of the observer, u and

x, are determined as followed. First, the control input u is chosen as a step. Then, this control
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input is applied to the nonlinear vehicle simulation to obtain the state x. Finally, u and x are

applied to the observer to estimate w. After the transient response, ŵ becomes a constant vector

and Fn is the normalized ŵ. By choosing u as different step and sinusoidal functions, several Fn’s

are obtained. By examining all Fn’s, it seems that the most important directions are

Fn2 =
[

1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0

]T

(4.1)

This indicates that the state equations of the manifold air mass and engine speed states are most

nonlinear among the ten states. It also indicates that the dynamics of the engine are more nonlinear

than the rest of the longitudinal dynamics of the vehicle.

4.2.2 Nonlinearity Fault

In this section, the robustness of the fault detection filter is enhanced by considering the nonlinearity

as a fault.

ẋ = Ax + Bu + Fnµn

where Fn = Fn2 represents the apriori known nonlinearity fault direction and µn represents the

unknown and arbitrary nonlinearity fault amplitude. Since the nonlinearity is considered as a

fault, the fault detection filter will place the nonlinearity into an invariant subspace. Hence, the

nonlinearity is isolated from the actuator and sensor faults and does not affect the residuals used

for detecting and identifying these faults. Therefore, the robustness of the fault detection filter is

enhanced.

It is desired to model the nonlinearity as a fault whose dimension is as small as possible

because the number of the faults that can be identified by a fault detection filter is limited due to

the output separability condition. Therefore, it is desired to obtain a one-dimensional nonlinearity

fault direction from (4.1). Different linear combinations of the two directions in (4.1) have been

used to represent the nonlinearity for the fault detection filter design. It is found that by using Fn

as

Fn1 =
[

1 0 0 0 0 0 0 0 0 0
]T (4.2)

the fault detection filter is most robust. However, the nonlinearity fault and throttle actuator

fault are not output separable because ImFn1 = Im Fuα . Therefore, this approach can only be

used to enhance the robustness of the fault detection filter that detects and identifies the brake
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actuator and five sensor faults. (4.2) indicates that the state equation of the manifold air mass

state is most nonlinear among the ten states. It also indicates that the nonlinearity affects the

longitudinal dynamics of the vehicle in a way similar to the throttle actuator fault. Hence, it is

difficult to identify the throttle actuator fault from the nonlinearity by using the fault detection

filter. Therefore, the throttle actuator fault will be detected by using the parity equation in

Chapter 7.

For fault detection filters that detect the brake actuator and manifold pressure sensor faults,

they are still not robust even with the nonlinearity modeled by Fn1 . For the brake actuator fault,

the robustness of the fault detection filter can further be enhanced by modeling the nonlinearity

with Fn2 which includes Fn1 . Now the fault detection filter that detects the brake actuator fault

becomes robust. For manifold pressure sensor fault, the nonlinearity cannot be modeled by Fn2

because these two faults are not output separable, i.e., ImFn2 = Im Fymp
. (4.1) indicates that

the nonlinearity affects the longitudinal dynamics of the vehicle in a way similar to the manifold

pressure sensor fault which includes the throttle actuator fault. Hence, it is difficult to identify the

manifold pressure sensor fault from the nonlinearity by using the fault detection filter. Therefore,

the manifold pressure sensor fault will be detected by using the parity equation in Chapter 7.

In summary, fault detection filters will be designed to detect and identify five faults: brake

actuator, engine speed sensor, longitudinal accelerometer, front wheel speed sensor and rear wheel

speed sensor faults. For the four sensor faults, the nonlinearity is modeled as the fault Fn1 . For

the brake actuator fault, the nonlinearity is modeled as the fault Fn2 . The throttle actuator and

manifold pressure sensor faults will be detected by using the parity equation in Chapter 7.

4.2.3 Nonlinearity Decoupling

In this section, the robustness of the fault detection filter is enhanced by decoupling the nonlinearity

from the linear model. From Section 3.4, the longitudinal dynamics of the vehicle is represented

by a tenth-order linear model.

ẋ = Ax + Bu (4.3a)

y = Cx (4.3b)
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Since (4.2) indicates that the state equation of the manifold air mass state is most nonlinear among

the ten states, (4.3) is rewritten as

[
ẋma

˙̄x

]
=

[
A11 A12

A21 A22

] [
xma

x̄

]
+

[
B1 0
0 B2

] [
uα

uTb

]
(4.4a)

[
ymp

ȳ

]
=

[
C1 0
0 C2

] [
xma

x̄

]
(4.4b)

where x̄ and ȳ contain all the states and measurements except manifold air mass and manifold

pressure, respectively. Note that C1 is a scalar. From the second row of (4.4a) and (4.4b), a

subsystem that is decoupled from the nonlinearity associated with the manifold air mass state is

formed.

˙̄x = A22x̄ +
[

A21
C1

B2

] [
ymp

uTb

]
(4.5a)

ȳ = C2x̄ (4.5b)

Note that the throttle command is no longer an input and the manifold pressure measurement is

now an input. Since the nonlinearity associated with the manifold air mass state is completely

decoupled, the robustness of the fault detection filter designed based on this subsystem should

improve. However, the throttle actuator fault cannot be detected because this subsystem is in-

dependent of the throttle command. Therefore, this subsystem can only be used to design fault

detection filters that detect and identify the brake actuator and five sensor faults. Note that this

approach of enhancing the robustness of the fault detection filter is similar to the approach of con-

sidering the nonlinearity as the fault Fn1 in the sense that both approaches reduce the effect of the

nonlinearity associated with the manifold air mass state. However, there is no output separability

issue between the throttle actuator fault and manifold pressure sensor fault if (4.5) is used.

Since (4.1) indicates that the state equation of the engine speed state is second most nonlinear

after the manifold air mass state, it may be desired to decouple the nonlinearity associated with

the engine speed state in addition to the manifold air mass state from the linear model. Therefore,

(4.3) is rewritten as

[
ẋ1

ẋ2

]
=

[
Ã11 Ã12

Ã21 Ã22

] [
x1

x2

]
+

[
B̃1 0
0 B̃2

] [
uα

uTb

]
(4.6a)

[
y1

y2

]
=

[
C̃1 0
0 C̃2

] [
x1

x2

]
(4.6b)
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where

x1 =
[

xma xwe

]T

x2 =
[

xvx xz xvz xθ xq xl̄f
xl̄r xTb

]T

y1 =
[

ymp ywe

]T

y2 =
[

yax yl̄f
yl̄r

]T

From the second row of (4.6a) and (4.6b), a subsystem that is decoupled from the nonlinearity

associated with the manifold air mass and engine speed states is formed.

ẋ2 = Ã22x2 +
[

Ã21C̃
−1
1 B̃2

] [
y1

uTb

]
(4.7a)

y2 = C̃2x2 (4.7b)

Note that the throttle command is no longer an input and the engine speed measurements is now

an input. The manifold pressure measurement is not an input because the first column of Ã21C̃
−1
1

is zero. Since the nonlinearity associated with the manifold air mass and engine speed states is

completely decoupled, the robustness of the fault detection filter designed based on this subsystem

should further improve. However, the throttle actuator and manifold pressure sensor faults cannot

be detected because this subsystem is independent of the throttle command and manifold pressure

measurement. Furthermore, the fault detection filter designed based on this subsystem can identify

less number of faults than the fault detection filter designed based on (4.5) because (4.7) has less

number of measurements than (4.5). Note that this approach of enhancing the robustness of the

fault detection filter is similar to the approach of considering the nonlinearity as the fault Fn2 in

the sense that both approaches reduce the effect of the nonlinearity associated with the manifold

air mass and engine speed states.

4.3 Fault Configuration

In this section, the approach in Section 4.2.2 is used to enhance the robustness of the fault detection

filter, i.e., to consider the nonlinearity as a fault. There are five faults to be detected and identified

by the fault detection filter: brake actuator, engine speed sensor, longitudinal accelerometer, front

wheel speed sensor and rear wheel speed sensor faults. Since the sum of the dimensions of CTuTb
,

CTywe
, CTyax

, CTyw̄f
and CTyw̄r

is ten which is larger than the dimension of the output space
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which is five, these five faults are not output separable. Therefore, they are grouped into several

sets where the faults in each set are output separable. Note that the nonlinearity is modeled as

the fault Fn1 for the four sensor faults and Fn2 for the brake actuator fault.

Since CTFn1
= 1, the four sensor faults are grouped into two sets where each set has two sensor

faults and Fn1 . From Section 4.1.2, the longitudinal accelerometer fault and rear wheel speed

sensor fault cannot be in the same set because they are not output separable. Then, there are

two possible combinations to group these four faults. The first combination is to put Fwe and Fax

in one set; Fwf
and Fwr in the other. The other combination is to put Fwe and Fwr in one set;

Fax and Fwf
in the other. Note that all four sets of faults are not mutually detectable, but with

the extra invariant zeros in the left-half plane. In next section, fault detection filters are designed

using the first combination for no particular reason.

Since CTFn2
= 2, the brake actuator fault cannot be grouped with any of the sensor faults

because of the output separability condition. Therefore, the brake actuator fault is paired with a

sensor fault which is modeled only by its fault magnitude direction. The rear wheel speed sensor

fault is chosen for no particular reason. This design decision could allow the rear wheel speed sensor

fault rate to stimulate the brake actuator residual because it is not placed in an invariant subspace.

However, since the rear wheel speed sensor fault is also detected by another fault detection filter,

the brake actuator fault can be detected and identified.

In summary, the three fault detection filter sets are

Fault detection filter set no. 1 ywe : Engine speed sensor.

yax : Longitudinal accelerometer.

n1 : Nonlinearity.

Fault detection filter set no. 2 yω̄f
: Front wheel speed sensors.

yω̄r : Rear wheel speed sensors.

n1 : Nonlinearity.

Fault detection filter set no. 3 uTb
: Brake actuator.

yω̄r : Rear wheel speed sensors (magnitude direction only).

n2 : Nonlinearity.
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This fault configuration can also be used for the fault detection filter design by not including the

nonlinearity if the approach in Section 4.2.3 is used to enhance the robustness of the fault detection

filter, i.e., to decouple the nonlinearity from the linear model.

4.4 Fault Detection Filter Design Algorithm

In this section, a design algorithm of the fault detection filter is given. The fault detection filter

designed for the PATH Buick LeSabre is the unknown input observer because it is more robust

than Beard-Jones detection filter with respect to the nonlinearity that occurs when the vehicle

operates far from the nominal point. However, one unknown input observer is needed for detecting

one fault.

From Section 2.3, consider a linear time-invariant system,

ẋ = Ax + Bu + F1µ1 + F2µ2 (4.8a)

y = Cx (4.8b)

where F1 is the target fault to be detected and F2 is the nuisance fault to be blocked. The unknown

input observer is a linear observer in the form of

˙̂x = Ax̂ + Bu + L(y − Cx̂) (4.9a)

and the residual is

r = Ĥ(y − Cx̂) (4.9b)

One design algorithm (Chen and Speyer, 1999a; Chen et al., 2002) for the unknown input observer

is to maximize the sensitivity of the residual to the target fault using the weighting Q1 and minimize

the sensitivity of the residual to the nuisance fault using the weightings Q2 and γ. Furthermore,

the sensitivity of the residual to the sensor noise is minimized using the weighting V . The unknown

input observer gain L is derived by solving an algebraic Riccati equation

0 = AP + PAT − PCT V −1CP +
1
γ

F2Q2F
T
2 − F1Q1F

T
1 (4.10)

and

L = PCT V −1 (4.11)
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The projector Ĥ is obtained by

Ĥ = I − CT2[(CT2)T CT2]−1(CT2)T (4.12)

where T2 is the detection space of the nuisance fault. More details of this design algorithm are

given in Chapter 12.

4.5 Reduced-Order Fault Detection Filter

In this section, the reduced-order fault detection filter is derived for (4.9). From Chapter 12, the

unknown input observer places the nuisance fault into its detection space which is unobservable to

the residual in the limit when γ → 0. Therefore, the nuisance fault is completely blocked from the

residual. Furthermore, a reduced-order unknown input observer can be obtained by truncating the

unobservable subspace. Note that the eigenvalues of the unknown input observer associated with

the unobservable subspace go to −∞. When it is not in the limit (i.e., γ is small), the nuisance

fault is partially blocked and the unknown input observer has some fast eigenvalues associated with

some weakly observable states. These weakly observable states approximate the detection space

of the nuisance fault. Therefore, model reduction is needed to reduce the order of the unknown

input observer when it is not in the limit. In Section 4.5.1, the reduced-order unknown input

observer is derived by identifying and truncating the weakly observable states. In Section 4.5.2,

the reduced-order unknown input observer is derived by using balance realization.

4.5.1 Weakly Observable State Truncation

In this section, the reduced-order unknown input observer is derived for (4.9) by identifying and

truncating the weakly observable states. The unknown input observer (4.9a) and the residual

(4.9b) are rewritten as

˙̂x = Āx̂ + B̄

[
u
y

]
(4.13a)

r = C̄x̂ + D̄

[
u
y

]
(4.13b)

where Ā = A− LC, B̄ = [B L ], C̄ = −ĤC and D̄ = [ 0 Ĥ ]. By applying a state transformation

x̂T = T x̂
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where T = UT and U is the left singular vectors of the observability grammian of (C̄, Ā), i.e.,

Wo =
∫ ∞

0
eĀT tC̄T C̄eĀt dt

4
= UΣUT

(4.13) becomes

˙̂xT = TĀT T x̂T + TB̄

[
u
y

]
(4.14a)

r = C̄T T x̂T + D̄

[
u
y

]
(4.14b)

and its observability grammian is

∫ ∞

0
eTĀT T T tTC̄T C̄T T eTĀT T t dt =

∫ ∞

0
TeĀT tT T TC̄T C̄T T TeĀtT T dt

= T

∫ ∞

0
eĀT tC̄T C̄eĀt dtT T = TWoT

T = Σ

Therefore, the states of the unknown input observer are rearranged in the order from most observ-

able to least observable. The degrees of the observability of the states are indicated by the singular

values of Wo, i.e., the diagonal elements of Σ. If some singular values are significant smaller than

the others, the states associated with the small singular values are weakly observable and might

be truncated. Therefore, (4.14) is partitioned as

[ ˙̂xT1
˙̂xT2

]
=

[
Ā11 Ā12

Ā21 Ā22

] [
x̂T1

x̂T2

]
+

[
B̄1

B̄2

] [
u
y

]

r =
[

C̄1 C̄2

] [
x̂T1

x̂T2

]
+ D̄

[
u
y

]

where x̂T1 is the states associated with the large singular values and x̂T2 is the states associated

with the small singular values. Then, the reduced-order unknown input observer is derived by

truncating the states x̂T2.

˙̂xT1 = Ā11x̂T1 + B̄1

[
u
y

]

r = C̄1x̂T1 + D̄

[
u
y

]

4.5.2 Balance Realization

In this section, the reduced-order unknown input observer is derived for (4.9) by using balance

realization (Moore, 1981). Instead of only considering the system observability as in Section 4.5.1,

34



balance realization considers both system controllability and observability. The use of balance

realization to the unknown input observer is different from the use of balance realization to the

plant. For the plant, the controllability is associated with the control inputs for the purpose of the

controller design and the observability is associated with the measurements for the purpose of the

observer design. However, the unknown input observer is already a design product whose purpose

is to detect the target fault using the residual. Therefore, for the unknown input observer, the

controllability should be associated with the target fault and the observability should be associated

with the residual even though the inputs of the unknown input observer are control commands and

measurements. This becomes clear when the residual is written in terms of the error e = x− x̂ by

using (4.8) and (4.9) in the absence of the nuisance fault.

ė = (A− LC)e + F1µ1 (4.15a)

r = ĤCe (4.15b)

Therefore, balance realization is applied to (4.15) which becomes

ėT = T (A− LC)T T eT + TF1µ1

r = ĤCT T eT

where eT = Te and T is the transformation that makes the controllability grammian of (T (A−
LC)T T , TF1) and the observability grammian of (ĤCT T , T (A− LC)T T ) equal and diagonal. T

can be found by using the function ”balreal” in MATLAB. The error is rearranged in the order

from most controllable and observable to least controllable and observable. The degree of the

controllability and observability of the error is indicated by the hankel singular values, i.e., the

diagonal elements of the controllability and observability grammians. If some hankel singular values

are significantly smaller than the others, the error associated with the small hankel singular values

is weakly controllable and observable, and might be truncated. Therefore, the transformation T is

applied to the unknown input observer (4.13) and the last few states associated with the smallest

hankel singular values can be truncated by following the same procedure in Section 4.5.1.

4.6 Fault Detection Filter Design

In this section, fault detection filters are designed for the three sets of faults determined in Sec-

tion 4.3 by using the design algorithm in Section 4.4 and the model reduction techniques in Sec-
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tion 4.5. In Section 4.6.1, two unknown input observers are designed for the first set of faults which

are the engine speed sensor and longitudinal accelerometer faults. In Section 4.6.2, two unknown

input observers are designed for the second set of faults which are the front wheel speed sensor and

rear wheel speed sensor faults. In Section 4.6.3, two unknown input observers are designed for the

third set of faults which are the brake actuator and rear wheel speed sensor magnitude faults.

4.6.1 Fault Detection Filter Set No. 1

In this section, one unknown input observer is designed to detect the engine speed sensor fault

and one unknown input observer is designed to detect the longitudinal accelerometer fault. From

Sections 3.5 and 4.2.2, the linear longitudinal vehicle model with engine speed sensor, longitudinal

accelerometer and nonlinearity faults is

ẋ = Ax + Bu + Fywe
µywe

+ Fyax
µyax

+ Fn1µn1

y = Cx

where A, B, C, Fywe
and Fyax

are derived when the vehicle is travelling at 24 m/s and given in

Appendix A.2. Fn1 is given by (4.2).

For the first unknown input observer,

˙̂x = Ax̂ + Bu + L(y − Cx̂)

r = Ĥ(y − Cx̂)

The target fault is the engine speed sensor fault F1 = Fywe
and the nuisance fault is the nonlinearity

and longitudinal accelerometer faults F2 = [ Fn1 Fyax
]. For the unknown input observer design,

F2 = [Fuα Fyax
] is used because ImFn1 = ImFuα . The weighting of the target fault is chosen

as Q1 = 0.1I2. The weightings of the nuisance fault are chosen as Q2 = I3 and γ = 10−8. The

weighting of the sensor noise is chosen as V = I5. The unknown input observer gain L is obtained

by solving the Riccati equation (4.10) and (4.11). The projector Ĥ is obtained by using (4.12)

where T2 = [ Tuα Tyax
]. The Riccati matrix P , unknown input observer gain L and projector Ĥ

are given in Appendix B.1.

The eigenvalues of the unknown input observer are −1.826 · 108, −5.044 · 105, −9.998 · 103,

−59.386, −25.301, −7.175 ± 8.948i, −6.926, −4.003 and −1.250. Observe that three of these

eigenvalues are significantly faster than the rest because γ is very small and the dimension of the
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detection space of the nuisance fault is three. Furthermore, the singular values of the observability

grammian of the unknown input observer are 4.04 · 104, 1.44 · 104, 45.11, 12.87, 0.17, 6.29 · 10−3,

6.10 ·10−7, 1.31 ·10−13, 1.40 ·10−15 and 6.73 ·10−21. Observe that three of these singular values are

significantly smaller than the rest. Therefore, the model reduction technique in Section 4.5.1 is used

to truncate the three least observable states of the unknown input observer. The reduced-order

unknown input observer is

˙̂xr = Arx̂r + Br

[
u
y

]

r = Crx̂r + Dr

[
u
y

]

where Ar, Br, Cr, and Dr are given in Appendix B.1. The eigenvalues of the reduced-order

observer are −59.387, −25.301, −7.175 ± 8.948i, −6.926, −4.003 and −1.250 which are closed

to the full-order observer. The frequency response from the engine speed sensor and longitudinal

accelerometer faults to the residuals is shown in Figure 4.1. The left figure is the full-order observer

and the right figure is the reduced-order observer. The solid line represents the engine speed sensor

fault and the dotted line represents the longitudinal accelerometer fault. Figure 4.1 shows that

both observers can detect the engine speed sensor fault and block the longitudinal accelerometer

fault.

For the second unknown input observer, the target fault is the longitudinal accelerometer fault

F1 = Fyax
and the nuisance fault is the nonlinearity and engine speed sensor faults F2 = [ Fuα Fywe

]

because ImFn1 = Im Fuα . The weightings are chosen as

Q1 = 0I2 , Q2 = I3 , γ = 10−8 , V =




1 0 0 0 0
0 1 0 0 0
0 0 10−2 0 0
0 0 0 103 0
0 0 0 0 105




The unknown input observer gain L is obtained by solving the Riccati equation (4.10) and (4.11).

The projector Ĥ is obtained by using (4.12) where T2 = [ Tuα Tywe
]. The Riccati matrix P , un-

known input observer gain L and projector Ĥ are given in Appendix B.1.

The eigenvalues of the unknown input observer are −2.030 · 106, −5.044 · 105, −9.595 · 103,

−14.229, −10.790 ± 17.647i, −7.597 ± 0.591i, −1.370 and −1.216. Observe that three of these

eigenvalues are significantly faster than the rest because γ is very small and the dimension of the
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Figure 4.1: Frequency response of the unknown input observer that detects the engine speed sensor
fault

detection space of the nuisance fault is three. Furthermore, the singular values of the observability

grammian of the unknown input observer are 1.50 · 104, 5.99 · 103, 16.33, 4.22, 0.24, 5.57 · 10−2,

2.64 · 10−3, 3.28 · 10−11, 3.75 · 10−13 and 9.82 · 10−16. Observe that three of these singular values

are significantly smaller than the rest. Therefore, the model reduction technique in Section 4.5.1

is used to truncate the three least observable states of the unknown input observer. However, the

eigenvalues of the reduced-order observer are not close to the full-order observer. Therefore, only

the two least observable states are truncated. Then, one more state is truncated by using the

model reduction technique in Section 4.5.2. The reduced-order unknown input observer is given

in Appendix B.1. The eigenvalues of the reduced-order observer are −14.229, −10.790 ± 17.646i,

−7.598± 0.583i, −1.371 and −1.215 which are closed to the full-order observer. The frequency re-

sponse from the engine speed sensor and longitudinal accelerometer faults to the residuals is shown

in Figure 4.2. The left figure is the full-order observer and the right figure is the reduced-order

observer. The solid line represents the engine speed sensor fault and the dotted line represents the

longitudinal accelerometer fault. Figure 4.2 shows that both observers can detect the longitudinal

accelerometer fault and block the engine speed sensor fault.
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Figure 4.2: Frequency response of the unknown input observer that detects the longitudinal ac-
celerometer fault

4.6.2 Fault Detection Filter Set No. 2

In this section, one unknown input observer is designed to detect the front wheel speed sensor fault

and one unknown input observer is designed to detect the rear wheel speed sensor fault. From

Sections 3.5 and 4.2.2, the linear longitudinal vehicle model with front wheel speed sensor, rear

wheel speed sensor and nonlinearity faults is

ẋ = Ax + Bu + Fyw̄f
µyw̄f

+ Fyw̄r
µyw̄r

+ Fn1µn1

y = Cx

where A, B, C, Fyw̄f
and Fyw̄r

are derived when the vehicle is travelling at 20 m/s and given in

Appendix A.1. Fn1 is given by (4.2).

For the first unknown input observer, the target fault is the front wheel speed sensor fault

F1 = Fyw̄f
and the nuisance fault is the nonlinearity and rear wheel speed sensor faults F2 =
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[ Fuα Fyw̄r
] because ImFn1 = ImFuα . The weightings are chosen as

Q1 = 0.1I2 , Q2 = I3 , γ = 10−8 , V =




1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0.01 0
0 0 0 0 0.01




The unknown input observer gain L is obtained by solving the Riccati equation (4.10) and (4.11).

The projector Ĥ is obtained by using (4.12) where T2 = [ Tuα Tyw̄r
]. The Riccati matrix P , un-

known input observer gain L and projector Ĥ are given in Appendix B.2.

The eigenvalues of the unknown input observer are −3.879 · 106, −5.034 · 105, −3.215 · 104,

−53.312, −14.011, −8.588 ± 16.082i, −4.066, −1.250 and −1.035. Observe that three of these

eigenvalues are significantly faster than the rest because γ is very small and the dimension of the

detection space of the nuisance fault is three. Furthermore, the singular values of the observability

grammian of the unknown input observer are 8.87, 0.50, 0.43, 0.20, 9.38·10−3, 2.57·10−4, 1.25·10−7,

2.33 ·10−12, 3.13 ·10−17 and 3.92 ·10−20. Observe that three of these singular values are significantly

smaller than the rest. Therefore, the model reduction technique in Section 4.5.1 is used to truncate

the three least observable states of the unknown input observer. The reduced-order unknown input

observer is given in Appendix B.2. The eigenvalues of the reduced-order observer are −53.312,

−14.011, −8.588± 16.082i, −4.065, −1.250 and −1.035 which are closed to the full-order observer.

The frequency response from the front wheel speed sensor and rear wheel speed sensor faults to

the residuals is shown in Figure 4.3. The left figure is the full-order observer and the right figure

is the reduced-order observer. The solid line represents the front wheel speed sensor fault and the

dotted line represents the rear wheel speed sensor fault. Figure 4.3 shows that both observers can

detect the front wheel speed sensor fault and block the rear wheel speed sensor fault.

For the second unknown input observer, the target fault is the rear wheel speed sensor fault

F1 = Fyw̄r
and the nuisance fault is the nonlinearity and front wheel speed sensor faults F2 =

[ Fuα Fyw̄f
] because ImFn1 = Im Fuα . The weightings are chosen as

Q1 = 0I2 , Q2 = I3 , γ = 10−8 , V =




10−4 0 0 0 0
0 10−4 0 0 0
0 0 10−5 0 0
0 0 0 103 0
0 0 0 0 104



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Figure 4.3: Frequency response of the unknown input observer that detects the front wheel speed
sensor fault

The unknown input observer gain L is obtained by solving the Riccati equation (4.10) and (4.11).

The projector Ĥ is obtained by using (4.12) where T2 = [ Tuα Tyw̄f
]. The Riccati matrix P ,

unknown input observer gain L and projector Ĥ are given in Appendix B.2.

The eigenvalues of the unknown input observer are −8.583 ·107, −5.034 ·107, −316.23, −49.565,

−13.880, −9.033±16.665i, −1.652±1.297i and −1.250. Observe that three of these eigenvalues are

significantly faster than the rest because γ is very small and the dimension of the detection space

of the nuisance fault is three. Furthermore, the singular values of the observability grammian of

the unknown input observer are 1.59 ·104, 7.38 ·102, 53.26, 6.72, 2.03, 0.18, 4.83 ·10−7, 3.02 ·10−13,

2.00 · 10−13 and 8.02 · 10−19. Observe that three of these singular values are significantly smaller

than the rest. Therefore, the model reduction technique in Section 4.5.1 is used to truncate the

three least observable states of the unknown input observer. The reduced-order unknown input

observer is given in Appendix B.2. The eigenvalues of the reduced-order observer are −49.565,

−13.880, −9.033±16.652i, −1.652±1.297i and −1.250 which are closed to the full-order observer.

The frequency response from the front wheel speed sensor and rear wheel speed sensor faults to

the residuals is shown in Figure 4.4. The left figure is the full-order observer and the right figure

is the reduced-order observer. The solid line represents the front wheel speed sensor fault and the

41



10
−4

10
−2

10
0

10
2

10
4

−250

−200

−150

−100

−50

0

50
Full−order filter

rad/s

db

10
−4

10
−2

10
0

10
2

10
4

−250

−200

−150

−100

−50

0

50
Reduced−order filter

rad/s
db

Figure 4.4: Frequency response of the unknown input observer that detects the rear wheel speed
sensor fault

dotted line represents the rear wheel speed sensor fault. Figure 4.4 shows that both observers can

detect the rear wheel speed sensor fault and block the front wheel speed sensor fault.

4.6.3 Fault Detection Filter Set No. 3

In this section, one unknown input observer is designed to detect the brake actuator fault and one

unknown input observer is designed to detect the rear wheel speed sensor magnitude fault. From

Sections 3.5, 4.2.2 and 4.3, the linear longitudinal vehicle model with brake actuator, rear wheel

speed sensor magnitude and nonlinearity faults is

ẋ = Ax + Bu + FuTb
µuTb

+ f̄yw̄r
µ̄yw̄r

+ Fn2µn2

y = Cx

where A, B, C, FuTb
and f̄yw̄r

(the second column of Fyw̄r
) are derived when the vehicle is travelling

at 24 m/s and given in Appendix A.2. Fn2 is given by (4.1).

For the first unknown input observer, the target fault is the brake actuator fault F1 = FuTb
and

the nuisance fault is the nonlinearity and rear wheel speed sensor magnitude faults F2 = [Fn2 f̄yw̄r
].

For the unknown input observer design, F2 = [ Fymp
f̄yw̄r

] is used because ImFn2 = ImFymp
. The
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weightings are chosen as Q1 = 1500I2, γ = 10−4 and

Q2 =




1 0 0
0 1 0
0 0 10000


 , V =




4 · 105 0 0 0 0
0 4 · 106 0 0 0
0 0 4 · 104 0 0
0 0 0 2 · 104 0
0 0 0 0 2 · 104




The unknown input observer gain L is obtained by solving the Riccati equation (4.10) and (4.11).

The projector Ĥ is obtained by using (4.12) where T2 = [ Tymp
f̄yw̄r

] because Cf̄yw̄r
6= 0 and

(C,A, f̄yw̄r
) does not have any invariant zero. The Riccati matrix P , unknown input observer

gain L and projector Ĥ are given in Appendix B.3.

The eigenvalues of the unknown input observer are −1.921 · 103, −54.966, −21.653, −14.468,

−13.163± 7.956i, −5.461± 6.727i, −1.250 and −0.323. Observe that only one of these eigenvalues

is significantly faster than the rest because γ is not small enough to approximately induce the

whole detection space of the nuisance fault. Note that the dimension of the detection space is

three. Therefore, the model reduction technique in Section 4.5.1 is used to truncate the least

observable state of the unknown input observer. However, the eigenvalues of the reduced-order

observer are not close to the full-order observer. Therefore, the model reduction technique in

Section 4.5.2 is used to truncate the least controllable and observable state of the unknown input

observer. The reduced-order unknown input observer is given in Appendix B.3. The eigenvalues

of the reduced-order observer are −54.878, −21.654, −14.534, −13.162± 7.957i, −5.461± 6.727i,

−1.250 and −0.323 which are closed to the full-order observer. The frequency response from the

brake actuator and rear wheel speed sensor faults to the residuals is shown in Figure 4.5. The

left figure is the full-order observer and the right figure is the reduced-order observer. The solid

line represents the brake actuator fault and the dotted line represents the rear wheel speed sensor

fault. Figure 4.5 shows that the residuals are sensitive to the rear wheel speed sensor fault in the

high frequency because only the magnitude direction is used to model the rear wheel speed sensor

fault. Therefore, the unknown input observer cannot identify the brake actuator and rear wheel

speed sensor faults if the spectral components of the faults are high frequency. However, since the

rear wheel speed sensor fault is also detected by another unknown input observer in Section 4.6.2,

these two faults can be detected and identified by using the unknown input observers for both sets.

For the second unknown input observer, the target fault is the rear wheel speed sensor mag-

nitude fault F1 = f̄yw̄r
and the nuisance fault is the nonlinearity and brake actuator faults F2 =
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Figure 4.5: Frequency response of the unknown input observer that detects the brake actuator
fault

[ Fymp
FuTb

] because ImFn2 = Im Fymp
. The weightings are chosen as Q1 = 0, Q2 = I4, γ = 10−8

and V = I5. The unknown input observer gain L is obtained by solving the Riccati equation (4.10)

and (4.11). The projector Ĥ is obtained by using (4.12) where T2 = [ Tymp
TuTb

]. The Riccati

matrix P , unknown input observer gain L and projector Ĥ are given in Appendix B.3.

The eigenvalues of the unknown input observer are −5.165·105, −1.661·105, −206.82, −40.567±
5.974i, −23.762, −7.144± 4.308i and −4.958± 7.888i. Observe that three of these eigenvalues are

significantly faster than the rest because γ is very small. However, the unknown input observer does

not approximately induce the whole detection space of the nuisance fault because the dimension

of the detection space is four. Therefore, the model reduction technique in Section 4.5.1 is used

to truncate the three least observable states of the unknown input observer. However, the eigen-

values of the reduced-order observer are not close to the full-order observer. Therefore, the model

reduction technique in Section 4.5.2 is used to truncate the three least controllable and observable

states of the unknown input observer. However, the eigenvalues of the reduced-order observer are

still not close to the full-order observer. The hankel singular values of the unknown input observer

are 0.59, 0.33, 7.05 · 10−2, 2.17 · 10−2, 3.10 · 10−3, 9.58 · 10−4, 5.70 · 10−4, 3.49 · 10−7, 3.60 · 10−14

and 2.22 · 10−16. By truncating the states associated with the hankel singular values 5.70 · 10−4,
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Figure 4.6: Frequency response of the unknown input observer that detects the rear wheel speed
sensor fault

3.60 · 10−14 and 2.22 · 10−16, the eigenvalues of the reduced-order observer are −39.795± 14.048i,

−23.706, −6.390±5.634i, −4.823±8.104i which are closed to the full-order observer. The reduced-

order unknown input observer is given in Appendix B.3. The frequency response from the brake

actuator and rear wheel speed sensor faults to the residuals is shown in Figure 4.6. The left figure

is the full-order observer and the right figure is the reduced-order observer. The solid line rep-

resents the brake actuator fault and the dotted line represents the rear wheel speed sensor fault.

Figure 4.6 shows that both observers can detect the rear wheel speed sensor fault and block the

brake actuator fault.
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Chapter 5

Lateral Fault Detection Filter Design

In this chapter, fault detection filters are designed to detect and identify actuator and sensor

faults for the lateral dynamics of the vehicle. From Sections 3.2 and 3.3, there are one actuator

and four sensors on the PATH Buick LeSabre that control or measure the lateral dynamics of the

vehicle.

Actuators: uγ : Steering actuator.

Sensors: yay : Lateral accelerometer.

yr : Yaw rate sensor.

yw̃f
: Difference of front wheel speed sensors.

yw̃r : Difference of rear wheel speed sensors.

From Section 3.5, the linear lateral vehicle model with one actuator and four sensor faults is

ẋ = Ax+Bu+Fuγµuγ +Fyay
µyay

+Fyrµyr +Fyw̃f
µyw̃f

+Fyw̃r
µyw̃r

y = Cx + Du

Fault detection filters were designed based on this vehicle model to detect and identify these five

faults. Note that using the original lateral model, fault detection filter designed for the lateral

accelerometer is not robust when the vehicle operates far from the nominal point. Therefore, the

modified lateral model is used to design the lateral accelerometer fault detection filter.

In Section 5.1, the output separability of the faults are checked. In Section 5.2, the five faults to

be detected and identified by the fault detection filters are grouped into three sets. In Section 5.3,

fault detection filters are designed for each set of faults.
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5.1 Output Separability

In this section the output separability of the actuator fault and the four sensor faults are checked.

Before checking the output separability, the detection space Ti is obtained for each fault using

(2.6). It is found that the dimension of CTuγ , CTyay
, CTyr , CTyw̃f

and CTyw̃r
is two. The sum of

the dimension of each CTi is ten. Since it is larger than the dimension of the output space which

is four, these five faults are not output separable. Therefore, they are grouped into several sets

where the faults in each set are output separable in Section 5.2. Then, fault detection filters are

designed for each set of faults in Section 5.3.

Before grouping the faults into several sets, the output separability between each fault is ex-

amined, that is,

CTi ∩ CTj 6=i = 0

By examining the singular values of [CTi CTj 6=i ], every pair of faults is output separable except

one pair. The steering actuator fault and lateral accelerometer fault are not output separable. From

(2.3), Fuγ = [ fuγ f̄uγ ] and Fyay
= [ fyay

f̄yay
] where fuγ , fyay

represent the fault rate direction and

f̄uγ , f̄yay
represent the fault magnitude direction. These two faults are not output separable because

they have the same fault rate direction, fuγ = fyay
. Since CTuγ * CTyay

and CTyay
* CTuγ , these

two faults can be detected and identified by grouping them into different sets.

5.2 Fault Configuration

In this section, the five faults are grouped into three sets respectively. The five faults to be detected

and identified by the fault detection filter are steering actuator fault, lateral accelerometer fault,

yaw rate sensor fault, front wheel speed sensor fault and rear wheel speed sensor fault. Since the

dimension of the detection space of each fault is two and the dimension of the output space is four.

Only two faults can be grouped together in each set where the faults are output separable.

Since the steering actuator fault and the lateral accelerometer fault are not output separable,

they can not be grouped in the same set. Therefore, the steering actuator fault is grouped with

any of the other three sensor fault. The front wheel speed sensor fault is chose to pair with the

steering actuator fault with no particular reason. With no particular reason, the yaw rate sensor

fault is paired with the rear wheel speed sensor fault and the lateral accelerometer fault is paired

with rear wheel speed sensor fault.
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In summary, the three fault detection filter sets are

Fault detection filter set no. 4 uγ : Steering actuator.

yω̄f
: Front wheel speed sensors

Fault detection filter set no. 5 yr : Yaw rate sensor.

yω̃r : Rear wheel speed sensors.

Fault detection filter set no. 6 yay : Lateral accelerometer.

yω̃r : Rear wheel speed sensors.

5.3 Lateral Fault Detection Filter Design

In this section, fault detection filters are designed for the three sets of faults determined in Sec-

tion 5.2 by using the design algorithm in Section 4.4. In Section 5.3.1, two unknown input observers

are designed for the fourth set of faults which are the steering actuator and front wheel speed sen-

sors faults. In Section 5.3.2, two unknown input observers are designed for the fifth set of faults

which are the yaw rate sensor and rear wheel speed sensors faults. In Section 5.3.3, two unknown

input observers are designed for the sixth set of faults which are the lateral accelerometer and rear

wheel speed sensors faults.

5.3.1 Fault Detection Filter Set No. 4

In this section, one unknown input observer is designed to detect the steering actuator fault and one

unknown input observer is designed to detect the front wheel speed sensors fault. From Sections 3.5

and 4.2.2, the linear lateral vehicle model with steering actuator and front wheel speed sensor is

ẋ = Ax + Bu + Fuγµuγ + Fyw̃f
µyw̃f

y = Cx + Du

where A, B, C, D, Fuγ and Fyw̃f
are derived when the vehicle is traveling at 20 m/s and given in

Appendix A.1.

For the first unknown input observer,

˙̂x = Ax̂ + Bu + L(y − Cx̂−Du)

r = Ĥ(y − Cx̂−Du)
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The target fault is steering actuator fault F1 = Fuγ and the nuisance fault is the front wheel speed

sensor faults F2 = Fyw̃f
. The weighting of the target fault is chosen as Q1 = 0I2. The weighting

of the nuisance fault is chosen as Q2 = 100I2 and γ = 10−6. The weighting of the sensor noise V

is an diagonal matrix with 0.1, 105, 100 and 0.1 on the main diagonal line. The unknown input

observer gain L is obtained by solving the Riccati equation (4.10) and (4.11). The projector Ĥ is

obtained by using (4.12) where T2 = Tyw̃f
. The Riccati matrix P , unknown input observer gain L

and projector Ĥ are given in Appendix B.1.

The eigenvalues of the unknown input observer are −3.68 · 106, −530.34, −52.43, −11.77 and

−7.22±2.90i. Observe that two of these eigenvalues are significantly faster than the rest because γ is

very small and the dimension of the detection space of the nuisance fault is two. The reduced-order

unknown input observer is obtained by dropping the two least observable states using dynamic

truncation with a steady-state correction (Prakash, 1994). The reduced-order unknown input

observer is

˙̂xr = Arx̂r + Br

[
u
y

]

r = Crx̂r + Dr

[
u
y

]

where Ar, Br, Cr, and Dr are given in Appendix B.1. The eigenvalues of the reduced-order

observer are −52.89, −11.66, and −7.27±−2.88i which are closed to the full-order observer. The

frequency response from the steering actuator and front wheel speed sensor faults to the residuals

is shown in Figure 5.1. The left figure is the full-order observer and the right figure is the reduced-

order observer. The solid line represents the steering actuator fault and the dotted line represents

the front wheel speed sensor fault. Figure 5.1 shows that both observers can detect the steering

actuator fault and block the front wheel speed sensor fault.

For the second unknown input observer, the target fault is the front wheel speed sensor fault

F2 = Fyw̃f
and the nuisance fault is steering actuator fault F1 = Fuγ . The weighting of the target

fault is chosen as Q1 = 0I2. The weighting of the nuisance fault is chosen as Q2 = 100I2 and

γ = 10−6. The weighting of the sensor noise is V = I4. The unknown input observer gain L is

obtained by solving the Riccati equation (4.10) and (4.11). The projector Ĥ is obtained by using

(4.12) where T2 = Fuγ . The Riccati matrix P , unknown input observer gain L and projector Ĥ

are given in Appendix B.1.
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Figure 5.1: Frequency response of the unknown input observer that detects the steering actuator
fault

The eigenvalues of the unknown input observer are−2.92·107, −9.23·105, −35.87, −1.26±22.96i

and −7.71. Observe that two of these eigenvalues are significantly faster than the rest because γ is

very small and the dimension of the detection space of the nuisance fault is two. The reduced-order

unknown input observer is obtained by dropping the two least observable states using dynamic

truncation with a steady-state correction (Prakash, 1994). The reduced-order unknown input

observer is given in Appendix B.1. The eigenvalues of the reduced-order observer are −35.87,

−1.26±22.96i and −7.71 which are closed to the full-order observer. The frequency response from

the front wheel speed sensors and the steering actuator faults to the residuals is shown in Figure 5.2.

The left figure is the full-order observer and the right figure is the reduced-order observer. The

solid line represents the steering actuator fault and the dotted line represents the front wheel speed

sensor fault. Figure 5.2 shows that both observers can detect the front wheel speed sensor fault

and block the steering actuator fault.

5.3.2 Fault Detection Filter Set No. 5

In this section, one unknown input observer is designed to detect the yaw rate sensor fault and one

unknown input observer is designed to detect the rear wheel speed sensors fault. From Sections 3.5
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Figure 5.2: Frequency response of the unknown input observer that detects the front wheel speed
sensor fault

and 4.2.2, the linear lateral vehicle model with yaw rate sensor and rear wheel speed sensor is

ẋ = Ax + Bu + Fyrµyr + Fyw̃r
µyw̃r

y = Cx + Du

where A, B, C, D, Fyr and Fyw̃r
are derived when the vehicle is traveling at 20 m/s and given in

Appendix A.1.

For the first unknown input observer,

˙̂x = Ax̂ + Bu + L(y − Cx̂−Du)

r = Ĥ(y − Cx̂−Du)

The target fault is yaw rate sensor fault F1 = Fyr and the nuisance fault is the rear wheel speed

sensor faults F2 = Fyw̃r
. The weighting of the target fault is chosen as Q1 = 0I2. The weighting of

the nuisance fault is chosen as Q2 = 100I2 and γ = 10−4. The weighting of the sensor noise V is

an diagonal matrix with 0.1, 105, 10−4 and 10−4 on the main diagonal line. The unknown input

observer gain L is obtained by solving the Riccati equation (4.10) and (4.11). The projector Ĥ is
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obtained by using (4.12) where T2 = Tyw̃r
. The Riccati matrix P , unknown input observer gain L

and projector Ĥ are given in Appendix B.1.

The eigenvalues of the unknown input observer are −1.78 · 103, −37.25, −29.30, −9.94, −4.52

and −3.39. Observe that one of these eigenvalues are significantly faster than the rest. The

reduced-order unknown input observer is obtained by dropping the least observable states using

dynamic truncation with a steady-state correction (Prakash, 1994). The reduced-order unknown

input observer is

˙̂xr = Arx̂r + Br

[
u
y

]

r = Crx̂r + Dr

[
u
y

]

where Ar, Br, Cr, and Dr are given in Appendix B.1. The eigenvalues of the reduced-order

observer are −37.25, −29.31, −9.94, −4.51 and −3.39 which are closed to the full-order observer.

The frequency response from the yaw rate sensor and rear wheel speed sensor faults to the residuals

is shown in Figure 5.3. The left figure is the full-order observer and the right figure is the reduced-

order observer. The solid line represents the yaw rate sensor fault and the dotted line represents

the rear wheel speed sensor fault. Figure 5.3 shows that both observers can detect the yaw rate

sensor fault and block the rear wheel speed sensor fault.

For the second unknown input observer, the target fault is the rear wheel speed sensor fault

F1 = Fyw̃r
and the nuisance fault is the yaw rate sensor fault F2 = Fyr . The weighting of the

target fault is chosen as Q1 = 0I2. The weighting of the nuisance fault is chosen as Q2 = 100I2

and γ = 10−6. The weighting of the sensor noise is V = I4. The unknown input observer gain L is

obtained by solving the Riccati equation (4.10) and (4.11). The projector Ĥ is obtained by using

(4.12) where T2 = Fuγ . The Riccati matrix P , unknown input observer gain L and projector Ĥ

are given in Appendix B.1.

The eigenvalues of the unknown input observer are −3.06 · 106, −1.00 · 104, −84.57, −35.68,

−14.70 and −7.86. Observe that two of these eigenvalues are significantly faster than the rest

because γ is very small and the dimension of the detection space of the nuisance fault is two. The

reduced-order unknown input observer is obtained by dropping the two least observable states using

dynamic truncation with a steady-state correction (Prakash, 1994). The reduced-order unknown

input observer is given in Appendix B.1. The eigenvalues of the reduced-order observer are −84.57,
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Figure 5.3: Frequency response of the unknown input observer that detects the yaw rate sensor
fault

−35.68, −14.70 and −7.86 which are closed to the full-order observer. The frequency response from

the rear wheel speed sensors and the yaw rate sensor faults to the residuals is shown in Figure 5.4.

The left figure is the full-order observer and the right figure is the reduced-order observer. The

solid line represents the yaw rate sensor fault and the dotted line represents the rear wheel speed

sensor fault. Figure 5.4 shows that both observers can detect the rear wheel speed sensor fault and

block the yaw rate sensor fault.

5.3.3 Fault Detection Filter Set No. 6

In this section, one unknown input observer is designed to detect the lateral accelerometer fault

and one unknown input observer is designed to detect the rear wheel speed sensors fault. From

Sections 3.5 and 4.2.2, the linear lateral vehicle model with lateral accelerometer and rear wheel

speed sensor is

ẋ = Ax + Bu + Fyay
µyay

+ Fyw̃r
µyw̃r

y = Cx + Du
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Figure 5.4: Frequency response of the unknown input observer that detects the rear wheel speed
sensor fault

When designing the unknown input observer to detect lateral accelerometer fault, A, B, C, D, Fuγ

and Fyw̃f
are from the modified model which is obtained form modifying the lateral model derived

when the vehicle is traveling at 20 m/s. The modified model is given in Appendix A.1.

For the unknown input observer that detects lateral accelerometer fault,

˙̂x = Ax̂ + Bu + L(y − Cx̂−Du)

r = Ĥ(y − Cx̂−Du)

The target fault is lateral accelerometer fault F1 = Fyay
and the nuisance fault is the rear wheel

speed sensor faults F2 = Fyw̃r
. The weighting of the target fault is chosen as Q1 = 0I2. The

weighting of the nuisance fault is chosen as Q2 = 100I2 and γ = 10−6. The weighting of the sensor

noise V is an diagonal matrix with 100, 106, 10−4 and 0.01 on the main diagonal line. The unknown

input observer gain L is obtained by solving the Riccati equation (4.10) and (4.11). The projector

Ĥ is obtained by using (4.12) where T2 = Tyw̃r
. The Riccati matrix P , unknown input observer

gain L and projector Ĥ are given in Appendix B.1.

The eigenvalues of the unknown input observer are −4.45 · 105, −9.98 · 102, −39.75, −9.55,

−4.98 and −0.29. Observe that two of these eigenvalues are significantly faster than the rest
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Figure 5.5: Frequency response of the unknown input observer that detects the lateral accelerometer
fault

because γ is very small and the dimension of the detection space of the nuisance fault is two. The

reduced-order unknown input observer is obtained by dropping the two least observable states using

dynamic truncation with a steady-state correction (Prakash, 1994). The reduced-order unknown

input observer is

˙̂xr = Arx̂r + Br

[
u
y

]

r = Crx̂r + Dr

[
u
y

]

where Ar, Br, Cr, and Dr are given in Appendix B.1. The eigenvalues of the reduced-order observer

are −39.75, −9.55, −4.98 and −0.29 which are closed to the full-order observer. The frequency

response from the lateral accelerometer and rear wheel speed sensor faults to the residuals is shown

in Figure 5.5. The left figure is the full-order observer and the right figure is the reduced-order

observer. The solid line represents the lateral accelerometer fault and the dotted line represents

the rear wheel speed sensor fault. Figure 5.5 shows that both observers can detect the steering

actuator fault and block the front wheel speed sensor fault.

For the unknown input observer that detects the rear wheel speed sensor fault, the original

lateral model is used and the target fault is the rear wheel speed sensor fault F1 = Fyw̃r
and the
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nuisance fault is lateral accelerometer fault F2 = Fyay
. The weighting of the target fault is chosen

as Q1 = 0I2. The weighting of the nuisance fault is chosen as Q2 = 100I2 and γ = 10−6. The

weighting of the sensor noise is V = I4. The unknown input observer gain L is obtained by

solving the Riccati equation (4.10) and (4.11). The projector Ĥ is obtained by using (4.12) where

T2 = Fyay
. The Riccati matrix P , unknown input observer gain L and projector Ĥ are given in

Appendix B.1.

The eigenvalues of the unknown input observer are −1.69 · 105, −1.36 · 102, −38.95, −32.53,

−0.18 and −0.062. Observe that two of these eigenvalues are significantly faster than the rest

because γ is very small and the dimension of the detection space of the nuisance fault is two. The

reduced-order unknown input observer is obtained by dropping the two least observable states using

dynamic truncation with a steady-state correction (Prakash, 1994). The reduced-order unknown

input observer is given in Appendix B.1. The eigenvalues of the reduced-order observer are −38.95,

−32.54, −0.18 and −0.062 which are closed to the full-order observer. The frequency response

from the rear wheel speed sensors and the lateral accelerometer faults to the residuals is shown

in Figure 5.6. The left figure is the full-order observer and the right figure is the reduced-order

observer. The solid line represents the steering actuator fault and the dotted line represents the

front wheel speed sensor fault. Figure 5.6 shows that both observers can detect the rear wheel

speed sensor fault and block the lateral accelerometer fault.
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Figure 5.6: Frequency response of the unknown input observer that detects the rear wheel speed
sensor fault
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Chapter 6

Modified Longitudinal Fault
Detection Filter Design

In this chapter, the longitudinal accelerometer fault detection filter from fault detection filter

set No.1 is re-designed. Together with the engine speed sensor fault detection filter from the fault

detection filter set No.1, a new fault detection filter set N0.1’ is formed. Furthermore, the brake

actuator fault detection filter from fault detection filter set No.3 is also redesigned. Together with

the rear wheel speed sensor fault detection filter from the fault detection filter set No.3, a new fault

detection filter set N0.3’ is formed. In Sections 6.1 an unknown input observer is designed to detect

the lateral accelerometer fault using one dimensional fault modeling technique. In Sections 6.2 an

unknown input observer is designed to detect the brake actuator fault after the dynamical equation

for brake state is changed.

6.1 Fault Detection Filter Set No. 1’

In this section, the unknown input observer which detects the longitudinal accelerometer fault

from the fault detection filter set no.1 is re-designed using the one dimensional fault modeling

technique. Then, the re-designed filter is paired with the unknown input observer which detects

the engine speed sensor fault from the fault detection filter set no.1 to form the fault detection filter

set no.1’. The robustness of the longitudinal accelerometer fault detection filter is enhanced by

modeling external disturbances as nonlinearity faults. The new unknown input observer can detect

an longitudinal accelerometer fault with smaller magnitude. The one dimensional fault modeling

technique is used so that more fault directions can be considered when designing the unknown

input observer. From Section 4.2.2 and using the one dimensional fault modeling technique shown
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in Section 6.1.1 to model the faults, the longitudinal vehicle model with longitudinal accelerometer,

engine speed sensor and nonlinearity faults is




ẋ
µ̇1

µ̇2

µ̇3


 =




A 0 0 0
01×10 −1 0 0
01×10 0 −1 0
01×10 0 0 −1







x
µ1

µ2

µ3


 +

[
B

03×2

]
u + Fyax

µyax
+ Fyωe

µyωe
+ Fn1µn1 + Fn2µn2

y =




0 0 0
0 1 0

C 1 0 1
0 0 0
0 0 0







x
µ1

µ2

µ3




where A, B, and C are derived when the vehicle is traveling at 24m/s and given in Ap-

pendix A.2. The fault directions Fywe
, Fyax

, Fn1 and Fn2 are given in Appendix B.7.

For the design of the unknown input observer, target fault is the longitudinal accelerome-

ter fault F1 = Fyax
and the nuisance fault is the nonlinearity and engine speed sensor faults

F2 = [Fn1 Fn2 Fyax
]. The weighting of the target fault is chosen as Q1 = 0. The weightings

of the nuisance fault are chosen as Q2 = I4 and γ = 10−6. The weighting of the sensor noise is an

diagonal matrix with 1, 10−4, 5, 105 and 1 on the main diagonal line. The unknown input observer

gain L is obtained by solving the Riccati equation (4.10) and (4.11). The projector Ĥ is obtained

by using (4.12) where T2 = [ Tn1 Tn2 Tyωe
]. The Riccati matrix P , unknown input observer gain

L and projector Ĥ are given in Appendix B.7.

The eigenvalues of the unknown input observer are −1.933 · 105, −1.442 · 105, −2.236 · 104,

−1.0001 · 102, −3.7956 · 101, −9.9147e± 16.707i, −3.206e± 46.803i, −3.721, −13.839, −1.250 and

−1.000 Observe that four of these eigenvalues are significantly faster than the rest because γ is

very small and the dimension of the detection space of the nuisance fault is four. By dropping the

four most unobservable states with steady state error correction, the reduced-order unknown input

observer is

˙̂xr = Arx̂r + Br

[
u
y

]

r = Crx̂r + Dr

[
u
y

]

where Ar, Br, Cr, and Dr are given in Appendix B.7. The eigenvalues of the reduced-order

observer are −37.977, −13.837, −9.9147 ± 16.707i, −3.721, −3.206 ± 4.680i, −1.250 and −1.000
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Figure 6.1: Frequency response of the unknown input observer that detects the longitudinal ac-
celerometer fault

which are closed to the full-order observer. The frequency response from the engine speed sensor

and longitudinal accelerometer faults to the residuals is shown in Figure 6.1. The left figure is

the full-order observer and the right figure is the reduced-order observer. The solid line represents

the engine speed sensor fault and the dotted line represents the longitudinal accelerometer fault.

Figure 6.1 shows that both observers can detect the longitudinal accelerometer fault and block the

engine speed sensor fault.

6.1.1 One Dimensional Fault Modeling

In this section, the one dimensional sensor and actuator fault modeling technique is briefly intro-

duced. Consider a linear system,

ẋ = Ax + Bu

y = Cx

where u is the control input and y is the measurement. All system variables belong to real vector

spaces. System matrices A, B and C can be time varying.
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A sensor fault can be modeled as

ẋ = Ax + Bu

y = Cx + Esµs

Where Es is an one dimensional vector with all elements equal to zero except an element which

equals to one at ith row. Assuming that the time-varying sensor fault magnitude µs can be

represented by the first order differential equation

µ̇s = −ksµs + ksµ̄s

and appended to the state space equation of the linear model, we obtain
[

ẋ
µ̇s

]
=

[
A 0
0 −ks

] [
x
µs

]
+

[
B
0

]
u +

[
0
ks

]
µ̄s

y =
[

C Es

] [
x
µs

]

The direction of the sensor fault becomes
[

0
1

]
which is time invariant.

On the other hand, the actuator fault can be modeled similarly. When the system matrix D is

non-zero, the ith actuator fault has the same direction as the ith column of the B and D matrix.

An actuator fault can be modeled as an additive term in the state and measurement equations

ẋ = Ax + Bu + biµa

y = Cx + Du + diµa

where bi is the ith column of the B matrix and di is the ith column of the D matrix. Again, by

assuming that the time-varying actuator fault magnitude µa can be represented by the first order

differential equation

µ̇a = −kaµa + kaµ̄a

and appended to the state space linear model
[

ẋ
µ̇a

]
=

[
A bi

0 −ka

] [
x
µa

]
+

[
B
0

]
u +

[
0
ka

]
µ̄a

y =
[

C di

] [
x
µa

]
+ Du

An time invariant actuator fault direction can be formed as
[

0
1

]
.
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6.2 Fault Detection Filter Set No. 3’

In this section, the unknown input observer which detects the brake actuator fault from the fault

detection filter set no.3 is re-designed to accelerate the response to the fault by modifying the

dynamical equation for the brake state. The new unknown input observer is shown to have a faster

response to the brake actuator fault. Then, the re-designed filter is paired with the unknown input

observer which detects the rear speed sensors fault from the fault detection filter set no.3 to form

the fault detection filter set no.3’.

From the longitudinal vehicle model in Section 3.4, the dynamical equation for the brake state

is

ẋTb
= −1.25xTb

+ 1.25uTb

where xTb
is the brake state and uTb

is the brake command. In order to accelerate the response to

the brake actuator fault. The dynamical equation for the brake state is changed to

ẋTb
= −10xTb

+ 10uTb

and an unknown input observer is redesigned to detect the brake actuator fault using the model

with the modified dynamical equation.

From Sections 3.5, 4.2.2 and 4.3, the linear longitudinal vehicle model with brake actuator, rear

wheel speed sensor magnitude and nonlinearity faults is

ẋ = Ax + Bu + FuTb
µuTb

+ f̄yw̄r
µ̄yw̄r

+ Fn2µn2

y = Cx

where A, B, C, FuTb
and f̄yw̄r

(the second column of Fyw̄r
) are derived when the vehicle is traveling

at 24 m/s and given in Appendix B.8. Fn2 is given by (4.1). When designing the unknown input

observer to detect brake actuator fault, the target fault is the brake actuator fault F1 = FuTb
and the

nuisance fault is the nonlinearity and rear wheel speed sensor magnitude faults F2 = [Fn2 f̄yw̄r
].

For the unknown input observer design, F2 = [ Fymp
f̄yw̄r

] is used because ImFn2 = ImFymp
. The

weightings are chosen as Q1 = 1500I2, γ = 10−2 and

Q2 =




100 0 0
0 100 0
0 0 10000


 , V =




2.5 · 10−8 0 0 0 0
0 2.5 · 10−5 0 0 0
0 0 2.5 · 10−5 0 0
0 0 0 5 · 10−4 0
0 0 0 0 5 · 10−4



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The unknown input observer gain L is obtained by solving the Riccati equation (4.10) and (4.11).

The projector Ĥ is obtained by using (4.12) where T2 = [ Tymp
f̄yw̄r

]. The Riccati matrix P ,

unknown input observer gain L and projector Ĥ are given in Appendix B.8.

The eigenvalues of the unknown input observer are −6.074 · 103, −55.952, −19.111, −16.268,

−13.294±7.592i, −10.000, −5.305±6.639i and −1.097,. Observe that only one of these eigenvalues

is significantly faster than the rest because γ is not small enough to approximately induce the whole

detection space of the nuisance fault. Note that the dimension of the detection space is three.

Therefore, the model reduction technique in Section 4.5.1 is used to truncate the least observable

state of the unknown input observer. However, the eigenvalues of the reduced-order observer are

not close to the full-order observer. Therefore, the model reduction technique in Section 4.5.2 is

used to truncate the least controllable and observable state of the unknown input observer. The

reduced-order unknown input observer is given in Appendix B.8. The eigenvalues of the reduced-

order observer are −55.951, −19.111, −16.268, −13.294±7.592i, −10.000, −5.305±6.639i, −1.097,

which are almost equal to the full-order observer. The frequency response from the brake actuator

and rear wheel speed sensor faults to the residuals is shown in Figure 6.2. The left figure is the

full-order observer and the right figure is the reduced-order observer. The solid line represents the

brake actuator fault and the dotted line represents the rear wheel speed sensor fault. Figure 6.2

shows that the residuals are sensitive to the rear wheel speed sensor fault in the high frequency

because only the magnitude direction is used to model the rear wheel speed sensor fault. Therefore,

the unknown input observer cannot identify the brake actuator and rear wheel speed sensor faults

if the spectral components of the faults are high frequency. However, since the rear wheel speed

sensor fault is also detected by another unknown input observer in Section 4.6.2, these two faults

can be detected and identified by using the unknown input observers for both sets.
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Figure 6.2: Frequency response of the unknown input observer that detects the brake actuator
fault
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Chapter 7

Parity Equation Design

In this chapter, parity equations are derived to detect the throttle actuator, throttle sensor,

brake actuator, brake sensor, manifold pressure sensor and engine speed sensor faults. The parity

equation is a static or dynamic function of the control commands and measurements. When

the actuators and sensors involved do not have any fault, the residual of the parity equation

is zero. When one of the actuators or sensors involved has a fault, the residual of the parity

equation becomes nonzero. Therefore, the parity equation can detect the actuator and sensor

faults. However, it cannot identify which fault has occurred.

There are three parity equations derived for the PATH Buick LeSabre. The first parity equation

is a function of the throttle command and throttle measurement. From the vehicle simulation in

Section 3.1,

ẋα = −90xα + 90uα (7.1)

where xα is the throttle state and uα is the throttle command. Since the throttle sensor measures

the throttle state, the first parity equation is

r = xα − yα

In order to reduce the effect of the throttle sensor noise, a first-order low pass filter with the pole

assigned at −5 is used. Therefore, the first parity equation becomes

ṙ = −5r + 5(xα − yα) (7.2)

Since the dynamics of (7.1) are much faster than the dynamics of (7.2), the fast mode can be

dropped and the first parity equation becomes

ṙ = −5r + 5(uα − yα)
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The residual is zero when there is no throttle actuator or throttle sensor fault. The residual

becomes nonzero when any of these two faults occurs. Therefore, this parity equation can detect

the throttle actuator and throttle sensor faults, but cannot identify these two faults.

The second parity equation is a function of the brake command and brake measurement. From

the vehicle simulation in Section 3.1,

ẋTb
= −1.25xTb

+ 1.25uTb

where xTb
is the brake state and uTb

is the brake command. Since the brake sensor measures the

brake state, the second parity equation is

r = xTb
− yTb

The residual is zero when there is no brake actuator or brake sensor fault. The residual becomes

nonzero when any of these two faults occurs. Therefore, this parity equation can detect the brake

actuator and brake sensor faults, but cannot identify these two faults.

The third parity equation is a function of the throttle command, manifold pressure measurement

and engine speed measurement. From the vehicle simulation in Section 3.1, the derivative of the

manifold air mass state is a nonlinear function of the manifold air mass state, engine speed state

and throttle state.

ẋma = f(xma , xwe , xα)

ẋα = −90xα + 90uα

Since the engine speed is measured, the manifold air mass state can be estimated by integrating

˙̂xma = f(x̂ma , ywe , xα)

ẋα = −90xα + 90uα (7.3)

Since the manifold air mass is linear with the manifold pressure, i.e.,

ymp = 19.3272 · xma

the third parity equation is

r = ymp − 19.3272 · x̂ma
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In order to reduce the effect of the disturbances, a first-order low pass filter with the pole assigned

at −5 is used. Therefore, the third parity equation becomes

ṙ = −5r + 5(ymp − 19.3272 · x̂ma) (7.4)

Since the dynamics of (7.3) are much faster than the dynamics of (7.4), the fast mode can be

dropped and the third parity equation becomes

˙̂xma = f(x̂ma , ywe , uα)

ṙ = −5r + 5(ymp − 19.3272 · x̂ma)

The residual is zero when there is no throttle actuator, manifold pressure sensor or engine speed

sensor fault. The residual becomes nonzero when any of these three faults occurs. Therefore, this

parity equation can detect the throttle actuator, manifold pressure sensor and engine speed sensor

faults, but cannot identify these three faults.

Although these three parity equations can detect the faults, none of them can identify a fault

by itself. But by combining the parity equations with the unknown input observers in Section 4.6,

unique residual patterns are presented allowing each fault to be identified. The patterns are

summarized in Figures 7.1 to 7.3. In these figures, each row represents a bias (hard) fault in

an actuator or sensor. The columns are the residual responses to the given fault conditions. In

Figure 7.1, the first and second rows represent a bias fault in the throttle actuator and throttle

sensor, respectively. The first and second columns are responses of the residuals of the first and

third parity equations, respectively. Figure 7.1 shows that the throttle actuator and throttle sensor

faults can be identified by combining the residuals of the first and third parity equations because

the residual pattern is unique in response to each fault. In Figure 7.2, the first and second rows

represent a bias fault in the brake actuator and brake sensor, respectively. The first and second

columns are responses of the residuals of the second parity equation and the unknown input observer

that detects the brake actuator fault in Section 4.6.3, respectively. Figure 7.2 shows that the brake

actuator and brake sensor faults can be identified by combining the residuals of the second parity

equation and the unknown input observer that detects the brake actuator fault because the residual

pattern is unique in response to each fault. In Figure 7.3, the first, second and third rows represent

a bias fault in the manifold pressure sensor, engine speed sensor and longitudinal accelerometer,
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respectively. The first, second and third columns are responses of the residuals of the first parity

equation, the unknown input observer that detects the engine speed sensor fault and the unknown

input observer that detects the longitudinal accelerometer fault in Section 4.6.1, respectively. This

figure shows that the manifold pressure sensor, engine speed sensor and longitudinal accelerometer

faults can be identified by combining the residuals of the third parity equation and the unknown

input observers that detect the engine speed sensor and longitudinal accelerometer faults because

the residual pattern is unique in response to each fault.

68



Manifold
Pressure
Sensor

Engine
Speed
Sensor

Fault

Residual Fault Detection
Filter for Engine
Speed Sensor

3rd Parity
Equation

Longitudinal
Accelerometer

Fault Detection Filter
for Longitudinal
Accelerometer

Figure 7.3: Residual patterns

69



Chapter 8

Residual Processor Design

In this chapter, residual processor is designed to compute probability of fault conditioned hy-

potheses using the residual pattern constructed by the residual generator. since the longitudinal

and lateral vehicles dynamics are decoupled and the residual generator is designed for the longi-

tudinal and lateral mode separately, the design of the residual processor is also spited into two

parts respectively. One part processes the residuals generated by the fault detection filters and

algebraic parity equations designed for the longitudinal mode. The another part responses to the

fault detection filters designed for the lateral mode. Dividing the residual processor into two parts

can also reduce the dimension of the input vector and thus, shorten the computation time.

When designing the residual processor for the vehicle longitudinal mode, the residuals of six

fault detection filters from fault detection filter set no.1’, no.2 and no.3’ and two parity equations

from parity equation no.1 and no.2 are used. There are five elements from each filter residual

and one form each parity equation residual. Therefore, the number of the input elements to the

longitudinal residual processor is 32 in total. This leads to intensive computations. To reduce the

complexity of the problem and shorten the processing time, the norm of the residual of each filter

and parity equation is used instead. Then, the input vector of the longitudinal residual processor

has only eight elements. On the other hand, there are six fault detection filters from fault detection

filter set no.4, no.5 and no. 6 designed for the vehicle lateral mode. There are four elements from

each filter residual and the total number of the input elements to the lateral residual processor is

24. Similarly, the norm of the residual of each filter is used instead. Then, the input vector of the

lateral residual processor has only six elements. Another advantage of using just the norm is that

only one hypothesis is enough when defining a failure hypothesis. Without the norm operating on

the residual, two hypotheses are needed to define one fault. One hypothesis is needed to define
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the positive fault scenario and the another hypothesis is associated to the negative fault scenario.

However, the disadvantage of spiting the design of the residual processor into two parts and using

the norm of the residual as the input is that when a fault occurs in the wheel speed sensor, it is

not known that whether the fault is in the left wheel or in the right wheel. The problem can be

solved by checking the sign of the residual of the wheel speed detection filters after a front wheel

speed senor or rear wheel speed sensor fault is announced.

The output of the longitudinal residual processor are the probabilities of no fault, throttle

(actuator or sensor) fault, brake actuator fault, brake sensor fault, engine speed sensor fault,

longitudinal accelerometer fault, sum of front wheel speed sensor fault and sum of rear wheel

speed sensor fault. On the other hand, The probability of no fault, steering actuator fault, lateral

accelerometer fault, yaw rate sensor fault, the difference of the front wheel speed sensor fault and

the difference of rear wheel speed sensor fault are the outputs of the lateral residual processor.

In Section 8.1 the design of the longitudinal residual processor is discussed and in Section 8.2 the

design of the lateral residual processor is discussed.

8.1 Longitudinal Residual Processor Design

In the design of the longitudinal residual processor, fifteen hypotheses are defined totally. A no fault

hypothesis, also known as null hypothesis in tradition, is defined for the case before any disruption.

Two fault hypotheses are defined for each fault direction. Among these two fault hypotheses, the

first hypothesis is defined for targeting to smaller magnitude of failures. The second hypothesis is

defined for failures with larger magnitude. For each fault, the probability of the fault is just the

sum of the probability of these two hypotheses. Although the mean of the residual sequence or

correspondingly, the magnitude of the failure is already assumed to have a uniform distribution to

encounter the variation of the failure magnitude, two hypotheses corresponding to different size of

the fault are still designed. This is to ensure that a small fault can be detected in a shorter time.

The following is the order of the fault detection filter residuals to the input of the longitudinal

residual processor and is selected with no particular reason:

1. The residual of front wheel speed sensor fault detection filter from the filter set no. 2.

2. The residual of rear wheel speed sensor fault detection filter from the filter set no. 2.
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3. The residual of brake actuator fault detection filter from the filter set no.3’.

4. The residual of rear wheel speed sensor fault detection filter from the filter set no.3’.

5. The residual of engine speed sensor fault detection filter from the filter set no. 1’.

6. The residual of longitudinal accelerometer fault detection filter from the filter set no. 1’.

7. The residual of the first parity equation.

8. The residual of the second parity equation.

Now, we are ready to define the hypothesis conditioned density functions. For the problem at

hand, it is assumed that the input vector generated at each time instant is Gaussian distributed.

Following the formulation shown in (2.15), a Gaussian distributed random vector x ∈ Rn where

x ∼ N (mi, Λxi) with the mean mi ∈ Rn and mi ∼ Unif [bi, bi + 2 ·m∗
i ] ∀m∗

i ≥ 0 where bi ∈ Rn,

the probability density function can be written as

fi(x) =
1

4n ·Πjm∗
ij

· [erf{ 1√
2
· Λ−1/2

xi
· (x− bi)} − erf{ 1√

2
· Λ−1/2

xi
· (x− bi − 2 ·m∗

i )}]

Note that Gaussian model may not be the most accurate assumption. Other probability density

functions can be chosen to propagate the posterior probability. The analysis in the Shiryayev test

still remains the same.

The mean of the conditional probability density under each of the given hypothesis are deter-

mined from the simulation. For example, if the magnitude of all the filter residuals are smaller than

0.5 when no fault presents, the mean of the input residual vector can be assumed to be uniformly

distributed between 0 and 0.5 when defining the null hypothesis. To define a particular failure

hypothesis, the corresponding fault with a variety of magnitude are introduced in the simulation.

Then, the corresponding magnitude of the residuals are recorded and the range of the mean can

be determined accordingly. The fifteen failure hypotheses have the following distribution: Hi :

x ∼ N (mi,Λxi) with mi ∼ Unif [bi, bi + 2 ·m∗
i ] and bi,m

∗
i ∈ Rn.

For the null hypothesis, the covariance Λxi is a diagonal matrix with 0.01, 0.1, 0.1, 0.001, 0.1, 0.1,

0.1 and 0.1 on the main diagonal line. The range of the mean is defined as bi = [ 0 0 0 0 0 0 0 0 ]

and m∗
i = [ 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 ].

72



For the small throttle actuator fault hypothesis, the covariance Λxi = 0.01I8. The range of the

mean is defined as bi = [ 0 0 0 0 0 0 0.5 0 ] and m∗
i = [ 0.25 0.25 0.25 0.25 0.250.25 0.5 0.25 ].

For the large throttle actuator fault hypothesis, the covariance Λxi = 0.01I8. The range of the mean

is defined as bi = [ 0 0 0 0 0 0 1.5 0 ] and m∗
i = [ 0.25 0.25 0.25 0.25 0.25 0.25 1 0.25 ].

For the small brake actuator fault hypothesis, the covariance Λxi is a diagonal matrix with 0.01,

0.001, 0.1, 0.001, 0.01, 0.1, 0.01 and 0.1 on the main diagonal line. The range of the mean is defined

as bi = [ 0 0 0.5 0 0 0 0 0.5 ] and m∗
i = [ 0.2507 0.3004 0.50000.2500 0.2804 0.32 0.25 0.5 ].

For the large brake actuator fault hypothesis, the covariance Λxi is a diagonal matrix with 0.01,

0.001, 0.1, 0.001, 0.01, 0.1, 0.01 and 0.1 on the main diagonal line. The range of the mean is defined

as bi = [ 0 0 1.5 0 0 0 0 1.5 ] and m∗
i = [ 0.2520 0.4012 1.0000 0.2500 0.3413 0.46 0.25 1 ].

For the small brake sensor fault hypothesis, the covariance Λxi is a diagonal matrix with 0.1,

0.1, 0.001, 0.1, 0.1, 0.1, 0.1 and 0.1 on the main diagonal line. The range of the mean is defined as

bi = [0 0 0 0 0 0 0 0.5 ] and m∗
i = [ 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.5 ]. For the large

brake sensor fault hypothesis, the covariance Λxi is a diagonal matrix with 0.1, 0.1, 0.001, 0.1, 0.1,

0.1, 0.1 and 0.1 on the main diagonal line. The range of the mean bi = [ 0 0 0 0 0 0 0 1.5 ]

and m∗
i = [ 0.25 0.25 0.25 0.25 0.25 0.25 0.25 1 ].

For the small engine speed sensor fault hypothesis, the covariance Λxi is a diagonal matrix with

0.01, 0.01, 0.02, 0.001, 0.01, 0.1, 0.1 and 0.1 on the main diagonal line. The range of the mean is de-

fined as bi = [1.2513 1.1904 0.9628 0 0.5000 0 0 0 ] and m∗
i = [0.5000 0.5000 0.5000 0.3437 0.5000 0.2500 0.25 0.25 ].

For the large engine speed sensor fault hypothesis, the covariance Λxi is a diagonal matrix with 0.08,

0.08, 0.08, 0.008, 0.08, 0.8, 1 and 1 on the main diagonal line. The range of the mean is defined as

bi = [ 3.0026 2.8808 2.4256 0 1.5000 0 0 0 ] and m∗
i = [ 1.3756 1.3452 1.2314 0.5310 1.0000 0.2500 0.25 0.25 ].

For the small longitudinal accelerometer fault hypothesis, the covariance Λxi is a diagonal ma-

trix with 0.1, 0.001, 0.01, 0.001, 0.1, 0.1, 0.1 and 0.1 on the main diagonal line. The range of the

mean is defined as bi = [ 0 0 0 0 0 0.5 0 0 ] and m∗
i = [ 0.2667 0.2808 0.3314 0.2507 0.2500 0.5000 0.25 0.25 ].

For the large longitudinal accelerometer fault hypothesis, the covariance Λxi is a diagonal matrix

with 0.1, 0.001, 0.01, 0.001, 0.1, 0.01, 0.1 and 0.1 on the main diagonal line. The range of the mean is

defined as bi = [ 0 0 0 0 0 1.5 0 0 ] and m∗
i = [ 0.3001 0.3425 0.49400.2522 0.2500 1.0000 0.25 0.25 ].

For the small sum of front wheel speed fault hypothesis, the covariance Λxi is a diagonal matrix

with 0.1, 0.1, 0.001, 0.1, 0.01, 0.1, 0.1 and 0.1 on the main diagonal line. The range of the mean is de-

fined as bi = [ 0.5000 0 0.3968 0.5718 0 0 0 0 ] and m∗
i = [ 0.5000 0.2500 1.5000 0.5000 0.4957 12 0.25 0.25 ].
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For the large sum of front wheel speed fault hypothesis, the covariance Λxi is a diagonal matrix with

0.5, 0.5, 0.05, 0.5, 0.05, 0.5, 0.1 and 0.1 on the main diagonal line. The range of the mean is defined

as bi = [ 1.5000 0 1.2937 1.6436 0.4828 0.4160 0 0 ] and m∗
i = [ 1.0000 0.2500 4.5000 1.0359 0.7457 35 0.25 0.25 ].

For the small sum of rear wheel speed fault hypothesis, the covariance Λxi is a diagonal matrix

with 0.1, 0.1, 0.3, 0.1, 0.01, 0.1, 0.1 and 0.1 on the main diagonal line. The range of the mean is de-

fined as bi = [ 0 0.5 0 0.5 0 0 0 0 ] and m∗
i = [ 0.2500 0.5000 0.25000.5000 0.4963 12 0.25 0.25 ].

For the large sum of rear wheel speed fault hypothesis, the covariance Λxi is a diagonal matrix with

0.5, 0.5, 1, 0.5, 0.05, 0.5, 0.1 and 0.1 on the main diagonal line. The range of the mean is defined as

bi = [0 1.5000 0 1.5000 0.4853 0 0 0 ] and m∗
i = [ 0.2500 1.0000 0.2500 1.0000 0.7463 35 0.25 0.25 ].

The priori probability of transition p̃i is assumed to be 10−11 and the a priori probabilities πi

is chosen to be 0.001.

8.2 Lateral Residual Processor Design

The lateral residual processor is designed similarly. A null hypothesis is defined for the case with

no fault presented. Two hypotheses are defined for each fault direction except steering actuator

fault. Three hypotheses are defined for the steering actuator fault when small, medium and large

magnitude of the fault are considered.

The following is the order to the input of the lateral residual processor and is selected with no

particular reason:

1. The residual of steering actuator fault detection filter from the filter set no. 1.

2. The residual of front wheel speed sensor fault detection filter from the filter set no. 1.

3. The residual of yaw rate sensor fault detection filter from the filter set no.2.

4. The residual of rear wheel speed sensor fault detection filter from the filter set no.2.

5. The residual of lateral accelerometer fault detection filter from the filter set no. 3.

6. The residual of rear wheel speed sensor fault detection filter from the filter set no. 3.

The twelve hypothesis have the following distribution: Hi : x ∼ N (mi, Λxi) with mi ∼
Unif [bi, bi + 2 ·m∗

i ] and bi,m
∗
i ∈ Rn.
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For the null hypothesis, the covariance Λxi is a diagonal matrix with 0.1, 1, 0.001, 0.01, 0.1

and 1 on the main diagonal line. The range of the mean is defined as bi = [ 0 0 0 0 0 0 ] and

m∗
i = [ 0.25 0.25 0.25 0.25 0.25 0.25 ].

For the small steering actuator fault hypothesis, the covariance Λxi is a diagonal matrix with

0.1, 0.01, 1, 0.01, 0.2 and 0.01 on the main diagonal line. The range of the mean is defined as

bi = [ 0.5000 0 0.6833 0 0.3931 0 ] and m∗
i = [ 0.5000 0.2500 0.5000 0.2870 0.5000 0.2638 ].

For the medium steering actuator fault hypothesis, the covariance Λxi is a diagonal matrix with

0.01, 0.01, 0.01, 0.01, 0.1 and 0.01 on the main diagonal line. The range of the mean is defined as

bi = [ 1.5000 0 1.8666 0 1.2862 0 ] and m∗
i = [ 1.00000.2500 1.0917 0.3610 0.9466 0.2915 ]. For

the large steering actuator fault hypothesis, the covariance Λxi is a diagonal matrix with 0.1,

0.01, 0.1, 0.1, 0.1 and 0.01 on the main diagonal line. The range of the mean is defined as

bi = [ 3.5000 0 4.2332 0 3.0724 0 ] and m∗
i = [ 1.5000 0.2500 1.6833 0.4720 1.3931 0.3331 ].

For the small lateral accelerometer fault hypothesis, the covariance Λxi is a diagonal matrix

with 0.1, 0.01, 1, 0.01, 0.01 and 0.01 on the main diagonal line. The range of the mean is defined

as bi = [ 0 0 0 0 0.5000 0 ] and m∗
i = [ 0.2803 0.2552 0.3117 0.3607 0.5000 0.2500 ]. For the

large lateral accelerometer fault hypothesis, the covariance Λxi is a diagonal matrix with 0.01,

0.01, 0.001, 0.01, 0.01 and 0.01 on the main diagonal line. The range of the mean is defined as

bi = [ 0 0 0 0 1.5000 0 ] and m∗
i = [ 0.3410 0.2656 0.4353 0.5820 1.0000 0.2500 ].

For the small yaw rate sensor fault hypothesis, the covariance Λxi is a diagonal matrix with

0.1, 0.01, 0.001, 0.01, 10 and 0.01 on the main diagonal line. The range of the mean is defined as

bi = [ 0.3123 0 0.5000 0 0 0 ] and m∗
i = [ 0.5000 0.2529 0.5000 0.2500 0.2996 0.2540 ]. For

the large yaw rate sensor fault hypothesis, the covariance Λxi is a diagonal matrix with 0.1,

0.01, 0.1, 0.01, 0.3 and 0.01 on the main diagonal line. The range of the mean is defined as

bi = [ 1.1246 0 1.5000 0 0 0 ] and m∗
i = [ 0.9062 0.2586 1.0000 0.2500 0.3988 0.2620 ].

For the small difference of front wheel speed fault hypothesis, the covariance Λxi is a diagonal

matrix with 0.1, 0.01, 0.01, 0.01, 0.1 and 0.01 on the main diagonal line. The range of the mean is de-

fined as bi = [ 00.5000 0 0.8950 3.4900 1.0660 ] and m∗
i = [ 0.2500 0.5000 0.3594 0.5000 0.5000 0.5000 ].

For the large difference of front wheel speed fault hypothesis, the covariance Λxi is a diagonal matrix

with 0.1, 0.01, 0.01, 0.01, 0.1 and 0.01 on the main diagonal line. The range of the mean is defined as

bi = [ 0 1.5000 0 2.2790 7.4800 2.6320 ] and m∗
i = [ 0.2500 1.0000 0.5784 1.1943 2.4950 1.2830 ].
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For the small difference of rear wheel speed fault hypothesis, the covariance Λxi is a diagonal ma-

trix with 0.1, 0.01, 0.01, 0.01, 0.01 and 0.01 on the main diagonal line. The range of the mean is de-

fined as bi = [ 0 0.2042 0 0.5000 0 0.5000 ] and m∗
i = [ 0.2918 0.5000 0.2500 0.5000 0.2500 0.5000 ].

For the large difference of rear wheel speed fault hypothesis, the covariance Λxi is a diagonal matrix

with 0.1, 0.01, 0.01, 0.01, 0.01 and 0.01 on the main diagonal line. The range of the mean is defined

as bi = [ 0 0.9084 0 1.5000 0 1.5000 ] and m∗
i = [ 0.3752 0.8521 0.2500 1.0000 0.2500 1.0000 ].

This time, the priori probability of transition p̃i is assumed to be 10−9 and the a priori proba-

bilities πi is chosen to be 0.001.
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Chapter 9

Fault Detection Filter Set No.1, No.2
and No.3 Evaluation

In this chapter, fault detection filter set no.1, no.2 and no.3 are first evaluated using simulated

data generated by the vehicle simulation. Then, the three fault detection filter sets are evaluated

using empirical data recorded when driving a PATH Buick LeSabre at Crow’s Landing. Finally,

a real-time testing environment is developed using Linux operating system and C language. This

allows the fault detection filters to be evaluated in real-time on a PATH Buick LeSabre. The

real-time evaluation at Crow’s Landing demonstrates that the fault detection filters can detect

and identify actuator and sensor faults as expected even under various disturbances and uncer-

tainties including sensor noise, road noise, system parameter variations, unmodeled dynamics and

nonlinearities.

In Section 9.1, the norms of the residuals generated by the fault detection filters are scaled to

one when their associated faults of certain magnitudes occur. In Section 9.2, fault detection filters

are evaluated using vehicle simulation. In Section 9.3, fault detection filters are evaluated using

empirical data. In Section 9.4, the experiment setup (i.e., the real-time testing environment) is

discussed. From Sections 9.5 to 9.9, fault detection filters are evaluated in real-time on a PATH

Buick LeSabre under different scenarios. In Section 9.10, two issues regarding the fault detection

filters are discussed and recommendations are made for future improvement.

9.1 Residual Scaling

Before evaluating the fault detection filters, it is needed to decide how to examine the performance

of the fault detection filters. Since the residuals are zero vectors when there is no fault and nonzero
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vectors when their associated faults occur, the performance of the fault detection filters is examined

by checking the norms of the residuals. If the norms of the residuals are zero, there is no fault. If

the norm of one of the residuals is nonzero, the fault associated with the nonzero residual occurs.

When evaluating the fault detection filters, the norms of the residuals are scaled to one when

their associated faults of certain magnitudes occur. Therefore, the norm of each residual rises

to one when evaluated using the same linear model used for fault detection filter design with its

associated fault being a step with the magnitude given below.

Engine speed sensor fault: 20 rad/s

Longitudinal accelerometer fault: 1 m/s2

Front wheel speed sensor fault: 7.5 rad/s

Rear wheel speed sensor fault: 7.5 rad/s

Brake actuator fault: 200 Nt ·m

The scaling factors by which the norms of the residuals are divided are

Fault detection filter set no. 1 Engine speed sensor residual: 13.401

Longitudinal accelerometer residual: 665.560

Fault detection filter set no. 2 Front wheel speed sensor residual: 11.942

Rear wheel speed sensor residual: 6.767

Fault detection filter set no. 3 Brake actuator residual: 8.009

Rear wheel speed sensor residual: 4.662

If the magnitudes of the faults occurred are twice the magnitudes given above, the norms of the

residuals will rise to two. If the magnitudes of the faults occurred are half of the magnitudes given

above, the norms of the residuals will rise to one-half. The purpose of the scaling is to present the

performance of the fault detection filters in a clearer fashion, i.e., zero residuals represent no fault

and residuals of magnitude one represent the occurrence of their associated faults. Note that the

residuals can be scaled with respect to any other fault magnitudes if that were desired.
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9.2 Evaluation Using Vehicle Simulation

Fault detection filters are first evaluated using simulated data generated by the vehicle simulation.

The block diagram is shown in Figure 9.1. Since the fault detection filters are designed based

on the linearized vehicle dynamics derived from the nonlinear vehicle dynamics at certain nomi-

nal operating point, the nominal values of the control commands and measurements have to be

subtracted from the simulated data generated by the vehicle simulation before the fault detection

filters can use these data to generate the residuals. From Section 4.6, fault detection filter set no.

1 and 3 are designed based on the linear vehicle model derived at 24 m/s and fault detection filter

set no. 2 is designed based on the linear vehicle model derived at 20 m/s. The nominal values of

the control commands and measurements at 24 m/s are

Throttle command: 10.2261 deg

Brake command: 0 Nt ·m

Manifold pressure measurement: 35.8241 psi

Engine speed measurement: 254.2849 rad/s

Longitudinal acceleration measurement: 0 m/s2

Sum of front wheel speed measurements: 162.3495 rad/s

Sum of rear wheel speed measurements: 156.7578 rad/s

The nominal values of the control commands and measurements at 20 m/s are

Throttle command: 8.6805 deg

Brake command: 0 Nt ·m

Manifold pressure measurement: 35.2509 psi

Engine speed measurement: 212.7200 rad/s

Longitudinal acceleration measurement: 0 m/s2

Sum of front wheel speed measurements: 135.2920 rad/s

Sum of rear wheel speed measurements: 130.6160 rad/s

Now fault detection filters can be evaluated using simulated data generated by the vehicle simula-

tion as shown in Figure 9.1. The evaluation shows that the fault detection filters can detect and
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identify actuator and sensor faults as expected. However, the evaluation is not shown here because

the fault detection filters are evaluated in real-time on a PATH Buick LeSabre in later sections

which present a more interesting and practical evaluation.

9.3 Evaluation Using Empirical Data

Next, fault detection filters are evaluated using empirical data recorded when driving a PATH Buick

LeSabre at Crow’s Landing. The block diagram is shown in Figure 9.2. Before evaluating the fault

detection filters, a comparison is made between the vehicle simulation and empirical data. Since

the simulation does not match the empirical data on some control commands and measurements,

a transformation is derived to approximately match the simulation and empirical data when the

vehicle is travelling at different constant speeds. Then, the transformation is applied to the control

commands and measurements of the empirical data before the fault detection filters use these data

to generate the residuals. The transformation is derived as followed.

First, the manifold pressure measurements are obtained from the empirical data when the

vehicle is travelling at constant speeds of 20, 22, 24, 26 and 28 m/s, respectively. This is plotted

as the ’circle’-line in Figure 9.3. The manifold pressure measurement at each vehicle speed is the

average of four manifold pressure measurements obtained from two experiments at Crow’s Landing

when the vehicle was travelling in both directions. Then, the manifold pressures are obtained from

the simulation when the vehicle is travelling at constant speeds of 20, 21, 22, 23, 24, 25, 26, 27

and 28 m/s, respectively. This is plotted as the ’square’-line in Figure 9.3. It is clear that the

simulation does not match the empirical data. This might be caused by engine modeling error,

which causes the simulation deviates from real vehicle, or sensor error, which causes the empirical

data deviates from real vehicle. Therefore, a transformation is obtained to match the simulation

and empirical data approximately.

ȳmp =
ymp + 47

2.5

where ymp is from the empirical data and ȳmp is the transformed manifold pressure measurement

which is plotted as the ’triangle’-line in Figure 9.3. Figure 9.3 shows that the transformed manifold

pressure measurement matches the simulation and therefore can be used by the fault detection fil-

ters to generate residuals. Note that the fault detection filters consider the ’circle’-line in Figure 9.3

to be the nominal (fault-free) measurements and any further deviations are considered as faults.
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Figure 9.1: Fault detection filter evaluation using vehicle simulation
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Figure 9.2: Fault detection filter evaluation using empirical data
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Figure 9.3: Manifold pressure from the simulation and empirical data

For the engine speed measurement, the transformation is derived similarly as shown in Fig-

ure 9.4. The ’circle’-line represents the engine speed measurement from the empirical data. The

’square’-line represents the engine speed from the simulation. A transformation is obtained to

match the simulation and empirical data approximately.

ȳwe = 1.0913
(

ywe

2π

60

)
+ 4.4468

where ywe is from the empirical data and ȳwe is the transformed engine speed which is plotted

as the ’triangle’-line. In the transformation, 2π
60 is used because the units of the engine speed in

the simulation and empirical data are rad/s and rpm, respectively. Note that the fault detection

filters consider the ’circle’-line in Figure 9.4 to be the nominal (fault-free) measurements and any

further deviations are considered as faults.

For the longitudinal acceleration measurement, there is a noisy bias in the longitudinal ac-

celerometer as shown in Figure 9.5. In the top figure, the vehicle reaches constant speed after 40th

second. However, the longitudinal acceleration in the bottom figure has a mean of 0.5623 m/s2

between 40th and 120th seconds. Therefore, a transformation is used to subtract this bias.

ȳax = yax − 0.5623
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Figure 9.4: Engine speed from the simulation and empirical data

where yax is from the empirical data and ȳax is the transformed longitudinal acceleration. Note that

the fault detection filters consider the longitudinal acceleration with this bias to be the nominal

(fault-free) measurement and any further deviations are considered as faults. If a more accurate

accelerometer is installed in the future, this transformation will not be needed or a smaller bias

will be subtracted in the transformation.

For the front and rear wheel speed measurements, the simulation matches the empirical data.

However, the units of the wheel speed in the simulation and empirical data are rad/s and m/s,

respectively. Therefore, a transformation is used to transform the wheel speeds in m/s to rad/s.

ȳw̄f
=

ywfl
+ ywfr

0.2957

ȳw̄r =
ywrl

+ ywrr

0.3066

where ywfl
, ywfr

, ywrl
and ywrr are the four wheel speed measurements from the empirical data, and

ȳw̄f
and ȳw̄f

are the transformed wheel speeds. Note that 0.2957 and 0.3066 are the approximate

radius of the front and rear tires in the simulation, respectively.

For the throttle command, the transformation is derived similarly to the manifold pressure

measurement as shown in Figure 9.6. The ’circle’-line represents the throttle command from
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Figure 9.5: Vehicle speed and longitudinal acceleration from the empirical data

the empirical data. The ’square’-line represents the throttle command from the simulation. A

transformation is obtained to match the simulation and empirical data approximately.

ūα =
uα + 7.25

2.5

where uα is from the empirical data and ūα is the transformed throttle command which is plotted

as the ’triangle’-line.

For the brake command, a different approach has to be used because the brake command is zero

when the vehicle is travelling at constant speed. Since the brake command in the empirical data

is the brake pressure in the master cylinder and the brake command in the simulation is the brake

torque applied to the four wheels, a transformation is needed to transformed the brake pressure into

the brake torque. This is done by using the fault detection filter that detects the brake actuator

fault. First, a 50 psi brake command as shown in the top figure of Figure 9.7 was applied to the

vehicle, and the control commands and measurements were recorded. Then, the fault detection

filter that detects the brake actuator fault uses these measurements and throttle command with

zero brake command to generate the residual shown in the middle figure of Figure 9.7. The residual

increases from 0.05 to 0.2 because the brake commands to the vehicle and fault detection filter

are different and this difference represents a brake actuator fault. Since this 50 psi brake actuator
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Figure 9.6: Throttle command from the simulation and empirical data

fault causes 0.15 or 0.25 increase in the residual depending on the signs of 0.05 and 0.2, and 200

Nt ·m brake actuator fault would cause the residual to increase by one, 50 psi brake pressure is

equivalent to 30 or 50 Nt ·m brake torque. Therefore, the transformation could be ūTb
= 0.6uTb

or

ūTb
= uTb

where uTb
is the brake pressure from the empirical data and ūTb

is the equivalent brake

torque. In order to determine which transformation is correct, the fault detection filter uses the

control commands and measurements recorded to generate the residual which should remain small

if the correct transformation is used. The residual generated by using ūTb
= uTb

is shown in the

bottom figure of Figure 9.7. A 70 psi brake command was also applied to the vehicle to evaluate

both transformations. It turns out the transformation should be

ūTb
= uTb

Now the fault detection filters can be evaluated using empirical data recorded when driving a

PATH Buick LeSabre at Crow’s Landing as shown in Figure 9.2. The evaluation shows that the

fault detection filters can detect and identify actuator and sensor faults as expected. However,

the evaluation is not shown here because the fault detection filters are evaluated in real-time on a

PATH Buick LeSabre in later sections which present a more interesting and practical evaluation.

86



0 2 4 6 8 10 12 14 16 18 20
0

20

40

60
Brake command

ps
i

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

Brake actuator residual when there a brake actuator fault

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3
Brake actuator residual when there is no fault

Time , sec

Figure 9.7: Brake command and brake actuator residuals

9.4 Experiment Setup

In this section, a real-time testing environment is developed using Linux operating system and C

language to evaluate the fault detection filters in real-time on a PATH Buick LeSabre as shown

in Figure 9.8. The fault detection filters are written in C code and executed on a laptop running

Linux operating system. The laptop is connected to the computer in the trunk of the PATH Buick

LeSabre through a serial port. An input/output interface is developed to allow the data, control

commands and sensor measurements, be transmitted from the PATH computer to the UCLA laptop

every twenty-one millisecond. The UCLA laptop checks its serial port buffer and downloads the

data if the complete set of data is in the buffer. Then, the fault detection filter code is executed

to generated the residuals. This process requires much less than twenty-one millisecond. After the

residuals are generated, the UCLA laptop proceeds to check the serial port buffer and waits for

the next set of data.

From Sections 9.5 to 9.9, fault detection filters are evaluated in real-time on a PATH Buick

LeSabre at Crow’s Landing under different scenarios. Before evaluating the fault detection filters,

it is needed to decide how to generate the actuator and sensor faults. Since it is not practical to

really break the actuators or sensors, most faults are simulated by the computer. For the sensor
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Figure 9.8: Experiment setup

fault, it is simulated by superimposing the fault onto the measurement, i.e., the faulty measurement

is the sum of the correct measurement and the sensor fault. For fault detection filter evaluation,

this is as real as an actual sensor fault because the faulty measurement that the fault detection

filters use is the same whether the fault is generated by the actual sensor or simulated by the PATH

computer or UCLA laptop. However, it is important that the sensor fault simulated is realistic in

the sense that it represents how the sensor fails.

For the actuator fault, it is simulated by giving the fault detection filters a different control

command than the control command applied to the vehicle. The difference between these two

control commands will be the actuator fault because it can be viewed that the fault detection

filters receive the correct control command, but the vehicle receives a different control command

due to an actuator fault. For example, if an actuator has a bias, the control command applied

to the fault detection filters will be the control command applied to the vehicle subtracted by the

bias. If an actuator is stuck, the control command to the vehicle will be a constant and the control

command to the fault detection filters would be any control command decided by the designer.

From Sections 9.5 to 9.8, fault detection filters are evaluated in real-time on a PATH Buick

LeSabre at Crow’s Landing with actuator and sensor faults simulated by the UCLA laptop. The

faults are simulated as bias with magnitudes given below.

Engine speed sensor fault: 175 rpm

Longitudinal accelerometer fault: 1 m/s2

Front wheel speed sensor fault: 2.218 m/s

Rear wheel speed sensor fault: 2.299 m/s

Brake actuator fault: 200 psi
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After applying the transformation in Section 9.3, these fault magnitudes are equivalent to the

fault magnitudes in the vehicle simulation that are used to scale the residuals in Section 9.1. In

Section 9.9, fault detection filters are evaluated in real-time on a PATH Buick LeSabre at Crow’s

Landing with a brake actuator fault generated by stepping on the brake pedal. Since this additional

brake is only applied to the vehicle, but not to the fault detection filters, this creates a real brake

actuator fault for fault detection filter evaluation.

9.5 Evaluation Scenario No. 1: Constant Vehicle Speed

In this section, fault detection filters are evaluated in real-time on a PATH Buick LeSabre at Crow’s

Landing when the vehicle is travelling at a constant speed of 22 m/s (49.5 mph). Figure 9.9 shows

the vehicle speed and throttle command generated by the controller designed by Dr. Xiao-Yun Lu

at Richmond Field Station. The figure is plotted along the data point instead of time and each

data point represents twenty-one milliseconds. For example, one thousand data points in the figure

represents a time interval of twenty-one seconds.

Figure 9.10 shows the performance of the fault detection filter set no. 1. The first row is the

engine speed sensor residual and the second row is the longitudinal accelerometer residual. The

first column shows both residuals when there is no fault. The second column shows both residuals

when an engine speed sensor fault occurs after 4000th data point. The engine speed sensor fault

is a bias with magnitude of 175 rpm. The third column shows both residuals when a longitudinal

accelerometer fault occurs after 4000th data point. The longitudinal accelerometer fault is a bias

with magnitude of 1 m/s2. Figure 9.10 shows that when each fault occurs, only the associated

residual rises to one while the other residual remains very small. Therefore, fault detection filter

set no. 1 can detect and identify the engine speed sensor and longitudinal accelerometer faults.

Figure 9.11 shows the performance of the fault detection filter set no. 2. The first row is the

front wheel speed sensor residual and the second row is the rear wheel speed sensor residual. The

first column shows both residuals when there is no fault. The second column shows both residuals

when a front wheel speed sensor fault occurs after 4000th data point. The front wheel speed sensor

fault is a bias with magnitude of 2.218 m/s. The third column shows both residuals when a rear

wheel speed sensor fault occurs after 4000th data point. The rear wheel speed sensor fault is a bias

with magnitude of 2.299 m/s. Figure 9.11 shows that when each fault occurs, only the associated
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Figure 9.9: Vehicle speed and throttle command

residual rises to one while the other residual remains very small. Therefore, fault detection filter

set no. 2 can detect and identify the front and rear wheel speed sensor faults.

Figure 9.12 shows the performance of the fault detection filter set no. 3. The first row is

the brake actuator residual and the second row is the rear wheel speed sensor residual. The first

column shows both residuals when there is no fault. The second column shows both residuals

when a brake actuator fault occurs after 4000th data point. The brake actuator fault is a bias

of magnitude 200 psi. The third column shows both residuals when a rear wheel speed sensor

fault occurs after 4000th data point. The rear wheel speed sensor fault is a bias of magnitude

2.299 m/s. Figure 9.12 shows that when each fault occurs, only the associated residual rises to

one while the other residual remains very small. Therefore, fault detection filter set no. 3 can

detect and identify the brake actuator and rear wheel speed sensor faults. Note that the brake

actuator residual rises approximately to 0.2 very briefly when the rear wheel speed sensor fault

occurs because only the fault magnitude direction is used to model the rear wheel speed sensor

fault direction in Section 4.6.3.
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Figure 9.10: Residuals of the fault detection filter set no. 1
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Figure 9.11: Residuals of the fault detection filter set no. 2
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Figure 9.12: Residuals of the fault detection filter set no. 3

9.6 Evaluation Scenario No. 2: Increasing Vehicle Speed

In this section, fault detection filters are evaluated in real-time on a PATH Buick LeSabre at Crow’s

Landing when the vehicle speed increases from 20 to 28 m/s (45 to 63 mph). The vehicle first

reaches a constant speed of 20 m/s. Then, the vehicle increases speed to 28 m/s by increasing the

throttle angle. Figure 9.13 shows the vehicle speed and throttle command. The figure is plotted

along the data point instead of time and each data point represents twenty-one milliseconds. For

example, one thousand data points in the figure represents a time interval of twenty-one seconds.

Figure 9.14 shows the performance of the fault detection filter set no. 1. The first row is the

engine speed sensor residual and the second row is the longitudinal accelerometer residual. The

first column shows both residuals when there is no fault. The second column shows both residuals

when an engine speed sensor fault occurs after 4000th data point. The engine speed sensor fault

is a bias with magnitude of 175 rpm. The third column shows both residuals when a longitudinal

accelerometer fault occurs after 4000th data point. The longitudinal accelerometer fault is a bias

with magnitude of 1 m/s2. Figure 9.14 shows that when each fault occurs, only the associated

residual rises to one while the other residual remains very small. Therefore, fault detection filter

set no. 1 can detect and identify the engine speed sensor and longitudinal accelerometer faults.
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Note that the residuals increase a little around 3300th data point due to the nonlinearity when

increasing the throttle angle.

Figure 9.15 shows the performance of the fault detection filter set no. 2. The first row is the

front wheel speed sensor residual and the second row is the rear wheel speed sensor residual. The

first column shows both residuals when there is no fault. The second column shows both residuals

when a front wheel speed sensor fault occurs after 4000th data point. The front wheel speed sensor

fault is a bias with magnitude of 2.218 m/s. The third column shows both residuals when a rear

wheel speed sensor fault occurs after 4000th data point. The rear wheel speed sensor fault is a bias

with magnitude of 2.299 m/s. Figure 9.15 shows that when each fault occurs, only the associated

residual rises to one while the other residual remains very small. Therefore, fault detection filter

set no. 2 can detect and identify the front and rear wheel speed sensor faults. Note that the

residuals increase to 0.45 around 3300th data point due to the nonlinearity when increasing the

throttle angle.

Figure 9.16 shows the performance of the fault detection filter set no. 3. The first row is

the brake actuator residual and the second row is the rear wheel speed sensor residual. The first

column shows both residuals when there is no fault. The second column shows both residuals

when a brake actuator fault occurs after 4000th data point. The brake actuator fault is a bias of

magnitude 200 psi. The third column shows both residuals when a rear wheel speed sensor fault

occurs after 4000th data point. The rear wheel speed sensor fault is a bias of magnitude 2.299

m/s. Figure 9.16 shows that when each fault occurs, only the associated residual becomes large

while the other residual remains very small. Therefore, fault detection filter set no. 3 can detect

and identify the brake actuator and rear wheel speed sensor faults. Note that the brake actuator

residual increases a little around 3300th data point due to the nonlinearity when increasing the

throttle angle. Also note that the brake actuator residual rises approximately to 0.5 very briefly

when the rear wheel speed sensor fault occurs because only the fault magnitude direction is used

to model the rear wheel speed sensor fault direction in Section 4.6.3.

9.7 Evaluation Scenario No. 3: Decreasing Vehicle Speed

In this section, fault detection filters are evaluated in real-time on a PATH Buick LeSabre at Crow’s

Landing when the vehicle speed decreases from 24 to 18 m/s (54 to 40.5 mph). The vehicle first
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Figure 9.13: Vehicle speed and throttle command
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Figure 9.14: Residuals of the fault detection filter set no. 1
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Figure 9.15: Residuals of the fault detection filter set no. 2

3000 4000 5000 6000
0

0.5

1

1.5

2
No fault

B
ra

ke
 r

es
id

ua
l

3000 4000 5000 6000
0

0.5

1

1.5

2
Brake fault

3000 4000 5000 6000
0

0.5

1

1.5

2
Rear wheel speed fault

3000 4000 5000 6000
0

0.5

1

1.5

2

Data point

R
ea

r 
w

he
el

 s
pe

ed
 r

es
id

ua
l

3000 4000 5000 6000
0

0.5

1

1.5

2

Data point
3000 4000 5000 6000
0

0.5

1

1.5

2

Data point

Figure 9.16: Residuals of the fault detection filter set no. 3
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reaches a constant speed of 24 m/s. Then, the vehicle decreases speed to 18 m/s by decreasing the

throttle angle. Figure 9.17 shows the vehicle speed and throttle command. The figure is plotted

along the data point instead of time and each data point represents twenty-one milliseconds. For

example, one thousand data points in the figure represents a time interval of twenty-one seconds.

Figure 9.18 shows the performance of the fault detection filter set no. 1. The first row is the

engine speed sensor residual and the second row is the longitudinal accelerometer residual. The

first column shows both residuals when there is no fault. The second column shows both residuals

when an engine speed sensor fault occurs after 4000th data point. The engine speed sensor fault

is a bias with magnitude of 175 rpm. The third column shows both residuals when a longitudinal

accelerometer fault occurs after 4000th data point. The longitudinal accelerometer fault is a bias

with magnitude of 1 m/s2. Figure 9.18 shows that when each fault occurs, only the associated

residual rises to one while the other residual remains very small. Therefore, fault detection filter

set no. 1 can detect and identify the engine speed sensor and longitudinal accelerometer faults.

Note that the residuals increase a little around 3600th data point due to the nonlinearity when

decreasing the throttle angle.

Figure 9.19 shows the performance of the fault detection filter set no. 2. The first row is the

front wheel speed sensor residual and the second row is the rear wheel speed sensor residual. The

first column shows both residuals when there is no fault. The second column shows both residuals

when a front wheel speed sensor fault occurs after 4000th data point. The front wheel speed sensor

fault is a bias with magnitude of 2.218 m/s. The third column shows both residuals when a rear

wheel speed sensor fault occurs after 4000th data point. The rear wheel speed sensor fault is a bias

with magnitude of 2.299 m/s. Figure 9.19 shows that when each fault occurs, only the associated

residual rises to one while the other residual remains very small. Therefore, fault detection filter

set no. 2 can detect and identify the front and rear wheel speed sensor faults. Note that the

residuals increase a little around 3600th data point due to the nonlinearity when decreasing the

throttle angle.

Figure 9.20 shows the performance of the fault detection filter set no. 3. The first row is

the brake actuator residual and the second row is the rear wheel speed sensor residual. The first

column shows both residuals when there is no fault. The second column shows both residuals

when a brake actuator fault occurs after 4000th data point. The brake actuator fault is a bias of
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Figure 9.17: Vehicle speed and throttle command

magnitude 200 psi. The third column shows both residuals when a rear wheel speed sensor fault

occurs after 4000th data point. The rear wheel speed sensor fault is a bias of magnitude 2.299

m/s. Figure 9.20 shows that when each fault occurs, only the associated residual rises to one while

the other residual remains very small. Therefore, fault detection filter set no. 3 can detect and

identify the brake actuator and rear wheel speed sensor faults. Note that the residuals increase a

little around 3600th data point due to the nonlinearity when decreasing the throttle angle.

9.8 Evaluation Scenario No. 4: Increasing and Decreasing Vehicle
Speed

In this section, fault detection filters are evaluated in real-time on a PATH Buick LeSabre at Crow’s

Landing when the vehicle speed increases from 24 to 28 m/s (54 to 63 mph) then decreases to 24

m/s. The vehicle first reaches a constant speed of 24 m/s. Then, the vehicle increases speed to 28

m/s by increasing the throttle angle. Finally, the vehicle decreases speed to 24 m/s by decreasing

the throttle angle. Figure 9.21 shows the vehicle speed and throttle command. The figure is plotted

along the data point instead of time and each data point represents twenty-one milliseconds. For

example, one thousand data points in the figure represents a time interval of twenty-one seconds.
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Figure 9.18: Residuals of the fault detection filter set no. 1
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Figure 9.19: Residuals of the fault detection filter set no. 2
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Figure 9.20: Residuals of the fault detection filter set no. 3

Figure 9.22 shows the performance of the fault detection filter set no. 1. The first row is the

engine speed sensor residual and the second row is the longitudinal accelerometer residual. The

first column shows both residuals when there is no fault. The second column shows both residuals

when an engine speed sensor fault occurs after 4000th data point. The engine speed sensor fault

is a bias with magnitude of 175 rpm. The third column shows both residuals when a longitudinal

accelerometer fault occurs after 4000th data point. The longitudinal accelerometer fault is a bias

with magnitude of 1 m/s2. Figure 9.22 shows that when each fault occurs, only the associated

residual rises to one while the other residual remains very small. Therefore, fault detection filter

set no. 1 can detect and identify the engine speed sensor and longitudinal accelerometer faults.

Figure 9.23 shows the performance of the fault detection filter set no. 2. The first row is the

front wheel speed sensor residual and the second row is the rear wheel speed sensor residual. The

first column shows both residuals when there is no fault. The second column shows both residuals

when a front wheel speed sensor fault occurs after 4000th data point. The front wheel speed sensor

fault is a bias with magnitude of 2.218 m/s. The third column shows both residuals when a rear

wheel speed sensor fault occurs after 4000th data point. The rear wheel speed sensor fault is a bias

with magnitude of 2.299 m/s. Figure 9.23 shows that when each fault occurs, only the associated
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Figure 9.21: Vehicle speed and throttle command

residual rises to one while the other residual remains very small. Therefore, fault detection filter

set no. 2 can detect and identify the front and rear wheel speed sensor faults.

Figure 9.24 shows the performance of the fault detection filter set no. 3. The first row is

the brake actuator residual and the second row is the rear wheel speed sensor residual. The first

column shows both residuals when there is no fault. The second column shows both residuals

when a brake actuator fault occurs after 4000th data point. The brake actuator fault is a bias

of magnitude 200 psi. The third column shows both residuals when a rear wheel speed sensor

fault occurs after 4000th data point. The rear wheel speed sensor fault is a bias of magnitude

2.299 m/s. Figure 9.24 shows that when each fault occurs, only the associated residual becomes

large while the other residual remains very small. Therefore, fault detection filter set no. 3 can

detect and identify the brake actuator and rear wheel speed sensor faults. Note that the brake

actuator residual rises approximately to 0.2 very briefly when the rear wheel speed sensor fault

occurs because only the fault magnitude direction is used to model the rear wheel speed sensor

fault direction in Section 4.6.3.
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Figure 9.22: Residuals of the fault detection filter set no. 1
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Figure 9.23: Residuals of the fault detection filter set no. 2
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Figure 9.24: Residuals of the fault detection filter set no. 3

9.9 Evaluation Scenario No. 5: Real Brake Actuator Fault

In this section, fault detection filters are evaluated in real-time on a PATH Buick LeSabre at Crow’s

Landing with a real brake actuator fault. Figure 9.25 shows the vehicle speed. The vehicle first

reaches a constant speed of 24 m/s (54 mph). Then, a real brake actuator fault is generated by

stepping on the brake pedal around 3400th data point which causes the vehicle speed decreases to

18 m/s (40.5 mph). The figure is plotted along the data point instead of time and each data point

represents twenty-one milliseconds. For example, one thousand data points in the figure represents

a time interval of twenty-one seconds.

Figure 9.26 shows the performance of the fault detection filter set no. 3. The top figure is the

brake actuator residual and the bottom figure is the rear wheel speed sensor residual. It is clear

that the brake actuator residual becomes large when the real brake actuator fault occurs while

the rear wheel speed sensor residual remains small. Therefore, fault detection filter set no. 3 can

detect the brake actuator fault. Note that the brake actuator residual becomes small again after

releasing the brake pedal.
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Figure 9.25: Vehicle speed
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Figure 9.26: Residuals of the fault detection filter set no. 3
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9.10 Issues and Recommendation

In this section, two issues regarding fault detection filters are discussed and recommendations

are made for future improvement. The first issue is that the fault detection filters developed in

Section 4.6 only work when the vehicle is in the third gear. Therefore, fault detection filters have

to be developed for each gear and when the vehicle switches gears, the fault detection filters also

have to switch.

The second issue is that some fault detection filters do not perform well when the throttle angle

is very small. Figure 9.27 shows the vehicle speed and throttle command. Figures 9.28 to 9.30 show

the performance of the fault detection filters examined in the same way as previous sections. When

the throttle command is near 5 degrees just before 6000th data point, three of the six fault detection

filters have small spikes around the same region. This is due to the inconsistency of the engine

speed between the vehicle simulation and empirical data. This is shown in Figure 9.31 where the

dashed line is the engine speed from the vehicle simulation using the throttle angle in Figure 9.27

and the solid line is the engine speed from the empirical data after applying the transformation

in Section 9.3. Figure 9.31 shows that when the throttle angle is small, just before 6000th data

point, the engine has some irregular behaviors which are not captured by the vehicle simulation.

When the throttle angle becomes even smaller as in Figure 9.32, the performance of these three

fault detection filters become worse as in Figures 9.33 to 9.35. Also, the inconsistency of the engine

speed between the vehicle simulation and empirical data becomes larger as in Figure 9.36. Since

fault detection filters are designed based on the linear models derived from the nonlinear vehicle

simulation, a more accurate engine model in the vehicle simulation will be needed in order to

improve the performance of these three fault detection filters regarding this issue.
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Figure 9.27: Vehicle speed and throttle command
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Figure 9.28: Residuals of the fault detection filter set no. 1
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Figure 9.29: Residuals of the fault detection filter set no. 2
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Figure 9.30: Residuals of the fault detection filter set no. 3
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Figure 9.31: Engine speed
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Figure 9.32: Vehicle speed and throttle command
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Figure 9.33: Residuals of the fault detection filter set no. 1
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Figure 9.34: Residuals of the fault detection filter set no. 2
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Figure 9.35: Residuals of the fault detection filter set no. 3
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Figure 9.36: Engine speed
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Chapter 10

Parity Equation Evaluation

In this chapter, parity equations are evaluated using empirical data recorded when driving a

PATH Buick LeSabre at Crow’s Landing. In Section 10.1, the first parity equation is evaluated.

In Section 10.2, the second parity equation is evaluated. In Section 10.3, the third parity equation

is evaluated.

10.1 Parity Equation No. 1

In this section, the first parity equation is evaluated using empirical data. Before evaluating the

parity equation, the throttle command and throttle measurement are compared in Figure 10.1.

The top left figure is when the vehicle speed is constant at 22 m/s as in Section 9.5. The top

right figure is when the vehicle speed increases from 20 to 28 m/s as in Section 9.6. The bottom

left figure is when the vehicle speed decreases from 24 to 18 m/s as in Section 9.7. The bottom

right figure is when the vehicle speed increases from 24 to 28 m/s then decreases to 24 m/s as

in Section 9.8. Figure 10.1 shows that there is always an error in throttle actuator or throttle

sensor. Furthermore, this error is not a constant, but is ranged from almost zero to four degrees.

Therefore, the first parity equation in Chapter 7 is modified as

ṙ = −5r + 5(uα − yα + 2)

where 2 is used to partially offset the error.

The first parity equation is evaluated under four scenarios. The first scenario is when the

vehicle speed is constant at 22 m/s which is the top left figure of Figure 10.1. Figure 10.2 shows

the absolute value of the residual when there is no fault, a throttle actuator fault and a throttle

sensor fault, respectively. Both faults are bias with magnitude of 5 degrees and occur after 4000th
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Figure 10.1: Throttle command and throttle measurement

data point. Note that the residual of the first parity equation is not scaled and represents the

magnitude of the fault. The second scenario is when the vehicle speed increases from 20 to 28 m/s

which is the top right figure of Figure 10.1. Figure 10.3 shows the absolute value of the residual

when there is no fault, a throttle actuator fault and a throttle sensor fault, respectively. The third

scenario is when the vehicle speed decreases from 24 to 18 m/s which is the bottom left figure of

Figure 10.1. Figure 10.4 shows the absolute value of the residual when there is no fault, a throttle

actuator fault and a throttle sensor fault, respectively. The fourth scenario is when the vehicle

speed increases from 24 to 28 m/s then decreases to 24 m/s which is the bottom right figure of

Figure 10.1. Figure 10.5 shows the absolute value of the residual when there is no fault, a throttle

actuator fault and a throttle sensor fault, respectively. Figures 10.2 to 10.5 show that the first

parity equation can detect the throttle actuator and throttle sensor faults. Note that the residuals

in the left figures of Figures 10.2 to 10.5 are nonzero when there is no fault because there is an

error in throttle actuator or throttle sensor.
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Figure 10.2: Parity equation no. 1: constant vehicle speed
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Figure 10.3: Parity equation no. 1: increasing vehicle speed
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Figure 10.4: Parity equation no. 1: decreasing vehicle speed
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Figure 10.5: Parity equation no. 1: increasing and decreasing vehicle speed
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Figure 10.6: Parity equation no. 2: constant vehicle speed

10.2 Parity Equation No. 2

In this section, the second parity equation is evaluated using empirical data under the same four

scenarios used in Section 10.1. The first scenario is when the vehicle speed is constant at 22 m/s.

Figure 10.6 shows the absolute value of the residual when there is no fault, a brake actuator fault

and a brake sensor fault, respectively. Both faults are bias with magnitude of 200 psi and occur

after 4000th data point. Note that the residual of the second parity equation is not scaled and

represents the magnitude of the fault. The second scenario is when the vehicle speed increases

from 20 to 28 m/s. Figure 10.7 shows the absolute value of the residual when there is no fault, a

brake actuator fault and a brake sensor fault, respectively. The third scenario is when the vehicle

speed decreases from 24 to 18 m/s. Figure 10.8 shows the absolute value of the residual when

there is no fault, a brake actuator fault and a brake sensor fault, respectively. The fourth scenario

is when the vehicle speed increases from 24 to 28 m/s then decreases to 24 m/s. Figure 10.9 shows

the absolute value of the residual when there is no fault, a brake actuator fault and a brake sensor

fault, respectively. Figures 10.6 to 10.9 show that the second parity equation can detect the brake

actuator and brake sensor faults.
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Figure 10.7: Parity equation no. 2: increasing vehicle speed
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Figure 10.8: Parity equation no. 2: decreasing vehicle speed
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Figure 10.9: Parity equation no. 2: increasing and decreasing vehicle speed

10.3 Parity Equation No. 3

In this section, the third parity equation is evaluated using empirical data. Since the third parity

equation is derived from the engine model of the vehicle simulation, the transformation in Sec-

tion 9.3 is applied to the throttle command, manifold pressure measurement and engine speed

measurement of the empirical data before the third equation uses these data to generate the resid-

ual. However, the nominal values of the throttle command, manifold pressure measurement and

engine speed measurement do not need to be subtracted from these data because the third parity

equation is derived from the nonlinear vehicle model, not the linear vehicle models.

The third parity equation is evaluated under the same first two scenarios used in Section 10.1.

The first scenario is when the vehicle speed is constant at 22 m/s. Figure 10.10 shows the absolute

value of the residual when there is no fault, a throttle actuator fault, a manifold pressure sensor

fault and an engine speed sensor fault, respectively. All three faults are bias with magnitudes of

5 degrees, 7.5 psi and 175 rpm, respectively, and occur after 4000th data point. Note that the

residual of the third parity equation is not scaled. The second scenario is when the vehicle speed

increases from 20 to 28 m/s. Figure 10.11 shows the absolute value of the residual when there is no

fault, a throttle actuator fault, a manifold pressure sensor fault and an engine speed sensor fault,
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Figure 10.10: Parity equation no. 3: constant vehicle speed

respectively. Figure 10.10 shows that the third parity equation can detect the throttle actuator,

manifold pressure sensor and engine speed sensor faults when the vehicle speed is a constant.

However, Figure 10.11 shows that the third parity equation cannot detect these three faults when

the vehicle speed increases. Therefore, the third parity equation cannot detect these three faults.

This indicates that the engine model in the vehicle simulation is not accurate enough because the

third parity equation is derived from this engine model and there is no design parameter involved.

A more accurate engine model is needed in order to improve the performance of the third parity

equation.
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Chapter 11

Vehicle Health Monitoring System
Evaluation

In this chapter, the performance of the vehicle health monitoring system composed of residual

generator and residual processor is first evaluated using simulated data generated by the vehicle

simulation and empirical data recorded at Crow’s landing. Second, the health monitoring system is

evaluated in real-time on a PATH Buick LeSabre when the actuator and sensor faults are simulated

and imposed by UCLA laptop. Then, the health monitoring system is evaluated in real-time on

a PATH Buick LeSabre when the actuator and sensor faults are directly injected by the PATH

vehicle computer. Finally, real steering actuator and real brake actuator faults are created by the

driver and the performance of the health monitoring system is evaluated. The real-time evaluation

at Crow’s Landing demonstrates that the vehicle health monitoring system can detect and identify

actuator and sensor fault under various disturbances and uncertainties.

In Section 11.1, the norms of the residuals generated by the fault detection filters are scaled to

one when their associated faults of certain magnitudes occur. In Section 11.2, the health monitoring

system is evaluated using vehicle simulation. In Section 11.3, fault detection filters are evaluated

using empirical data. In Section 11.4, the experiment setup (i.e., the real-time testing environment)

is discussed. From Sections 11.5 to 11.7, the health monitoring system is evaluated in real-time on

a PATH Buick LeSabre under different scenarios.

11.1 Residual Scaling

In this section, the norms of the residuals of fault detection filter set no.1’, no.2, no.3’, no.4, no.5

and no.6 are scaled to one when their associated faults of certain magnitudes occur. Therefore,
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the norm of each residual rises to one when evaluated using the same linear model used for fault

detection filter design with its associated fault being a step with the magnitude given below.

Engine speed sensor fault: 20 rad/s

Longitudinal accelerometer fault: 0.4 m/s2

Front wheel speed sensor fault: 7.5 rad/s

Rear wheel speed sensor fault: 7.5 rad/s

Brake actuator fault: 200 Nt ·m

Lateral accelerometer fault: 1 m/s2

Yaw rate sensor fault: 0.035 rad/s

Steering actuator fault: 0.015rad

The scaling factors by which the norms of the residuals are divided are

Fault detection filter set no. 1’ Engine speed sensor residual: 13.401

Longitudinal accelerometer residual: 0.8592

Fault detection filter set no. 2 Front wheel speed sensor residual: 11.942

Rear wheel speed sensor residual: 6.767

Fault detection filter set no. 3’ Brake actuator residual: 2.4540

Rear wheel speed sensor residual: 4.662

Fault detection filter set no. 4 Steering actuator residual: 14.7020

Front wheel speed sensor residual: 6.1252

Fault detection filter set no. 5 Yaw rate sensor residual: 30.1302

Rear wheel speed sensor residual: 4.5394

Fault detection filter set no. 6 Lateral accelerometer residual: 1.6235

Rear wheel speed sensor residual: 3.9230

If the magnitudes of the faults occurred are twice the magnitudes given above, the norms of the

residuals will rise to two. If the magnitudes of the faults occurred are half of the magnitudes given

above, the norms of the residuals will rise to one-half. The purpose of the scaling is to present the
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performance of the fault detection filters in a clearer fashion, i.e., zero residuals represent no fault

and residuals of magnitude one represent the occurrence of their associated faults. Note that the

residuals can be scaled with respect to any other fault magnitudes if that were desired.

11.2 Evaluation Using Vehicle Simulation

Before evaluating the vehicle health monitoring system using simulated data generated by the vehi-

cle simulation. Similar to the fault detection filters designed for the longitudinal vehicle dynamics,

the lateral fault detection filters are designed based on the linearized vehicle dynamics derived

from the nonlinear vehicle dynamics at certain nominal operating point, the nominal values of the

control commands and measurements have to be subtracted from the simulated data generated by

the vehicle simulation before the fault detection filters can use these data to generate the residuals.

From Section 5.3, fault detection filter set no. 4, 5 and 6 are designed based on the linear vehicle

model derived at 20 m/s. Since the model is derived when the vehicle is traveling straight ahead.

The nominal values of the control commands and measurements corresponded to the vehicle lateral

dynamics are all zeros.

Now the vehicle health monitoring system can be evaluated using vehicle simulation. The

evaluation shows that heath monitoring system detect and identify actuator and sensor faults with

probability as expected. However, the evaluation is not shown here because the health monitoring

system is evaluated in real-time on a PATH Buick LeSabre in later sections which present a more

interesting and practical evaluation.

11.3 Evaluation Using Empirical Data

Before evaluating the fault detection filters using empirical data recorded when driving a PATH

Buick LeSabre at Crow’s Landing, a comparison is made between the vehicle simulation and em-

pirical data. Since the simulation does not match the empirical data on some control commands

and measurements, a transformation is derived to approximately match the simulation and em-

pirical data. Then, the transformation is applied to the control commands and measurements of

the empirical data before the fault detection filters use these data to generate the residuals. The

transformation is derived as followed.
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Figure 11.1: Lateral accelerometer from empirical data

First, the lateral accelerometer measurements are obtained from the empirical data when the

vehicle is traveling straight ahead at constant speeds of 20, 22, 24, 26 and 28 m/s, respectively.

This is represented by the six lines plotted in Figure 11.1. Each pair of the ’circle’-line, ’square’-

line and ’triangle’-line represent the data obtained from the same set of experiment. The lateral

accelerometer measurement at each vehicle speed is the average of the lateral accelerometer mea-

surements in each run obtained from three experiments at Crow’s Landing when the vehicle was

traveling straight ahead in both directions. Since the vehicle is traveling straight ahead, the lat-

eral accelerometer measurement is expected to be zero. Figure 11.1 shows that there is a bias in

the lateral accelerometer and range between 0 m/s2 and 0.2 m/s2 approximately. Therefore, a

transformation is used to subtract this bias,

ȳay = yay − 0.1

where yay is from the empirical data and ȳay is the transformed lateral acceleration.

Second, the yaw rate sensor measurements are obtained from the empirical data when the

vehicle is traveling straight ahead at constant speeds of 20, 22, 24, 26 and 28 m/s, respectively.

Similarly, this is plotted in Figure 11.2. The yaw rate sensor measurement at each vehicle speed is

the average of the yaw rate measurements in each run recorded at Crow’s Landing when the vehicle
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Figure 11.2: Yaw rate sensor from empirical data

was traveling straight ahead in both directions. Since the vehicle is traveling straight ahead, the

yaw rate sensor measurement is also expected to be zero. Figure 11.2 shows that there is a bias

with magnitude of -0.008 rad/s in the yaw rate sensor approximately. Therefore, a transformation

is used to subtract this bias.

ȳr = yr + 0.008

where yr is from the empirical data and ȳay is the transformed yaw rate sensor.

Next, the empirical data generated when the vehicle is traveling on the magnetic curve track

at constant speed of 20 m/s is obtained. Then, the steering command from the empirical data

is used in the simulation to generate longitudinal accelerometer, yaw rate, front wheel speed and

rear wheel speed measurements. In Figure 11.3, the lateral accelerometer measurements from

the empirical data after subtracting the bias is plotted by the solid line and is compared to the

simulation which is plotted by the dotted line on the first row of the figure. Similarly, on the first

row of the Figure 11.4, Figure 11.5 and Figure 11.6, the empirical data which is plotted by solid line

is compared to the simulation which is plotted by the dotted line respectively. Note that the yaw

rate sensor measurements form the empirical data is plotted after the bias is subtracted. It is clear

that the simulation does not match the empirical data. Here, the empirical data of each individual
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Figure 11.3: Lateral accelerometer from the simulation and empirical data
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Figure 11.4: Yaw rate from the simulation and empirical data
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Figure 11.5: Front wheel speed from the simulation and empirical data
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Figure 11.6: Rear wheel speed from the simulation and empirical data
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sensor measurements can be directly translated to match the simulation respectively or the steering

command from the empirical data can be translated to generate simulated measurements that

match the empirical data if possible. The later approach is chosen because only one translation is

needed. It is found that the following transformation can be used to translate the steering command

which generates simulated yaw rate, front wheel speed and rear wheel speed measurements that

match the empirical data.

ūγ = −0.43
(
uγ

π

180 · 17

)
(11.1)

where uγ is from the empirical data and ūγ is the transformed steering command. In the above

transformation, the negative sign is used such that the definition of the sign associated to the

turning direction of the vehicle is consistent in both simulation and the real vehicle. Since the

steering command from the empirical data measures the turning angle of the hand wheel in degree.

It is first divided by 17 to obtain the steering angle of the front wheels and then transform from

deg to rad/s which is the unit used in the simulation.

For the front and rear wheel speed measurements, the units of the wheel speed in the simula-

tion and empirical data are rad/s and m/s, respectively. Therefore, a transformation is used to

transform the wheel speeds in m/s to rad/s.

ȳw̃f
=

ywfl
− ywfr

0.2957
(11.2)

ȳw̃r =
ywrl

− ywrr

0.3066
(11.3)

where ywfl
, ywfr

, ywrl
and ywrr are the four wheel speed measurements from the empirical data,

and ȳw̃f
and ȳw̃f

are the transformed difference of wheel speeds. Note that 0.2957 and 0.3066 are

the approximate radius of the front and rear tires in the simulation, respectively.

After using transformations (11.1), (11.2) and (11.3), the second row of Figure 11.4, Figure 11.5

and Figure 11.6 show that the empirical data match the simulation approximately in this three

measurements. The fault detection filters from the fault detection filter set no.4, no.5 and the fault

detection filter that detects the rear wheel speed sensor fault from filter set no.6 will use empirical

data after above transformations to generate residuals.

Although not showing here, the measurements of the lateral accelerometer from the empirical

data does not match the simulation using the above transformation. Therefore, instead of trans-

forming the empirical data to match the simulation, a modified linear model is used such that the
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simulated data will match the empirical data. In addition, the following transformation is used

in the lateral accelerometer measurement so that the definition of the vehicle turning direction is

consistent.

ȳay = −(yay − 0.1) (11.4)

The second row of Figure 11.3 shows that the lateral accelerometer measurements form the em-

pirical data match the simulation from the modified linear model. Note that lateral accelerometer

fault detection filter from filter set no.6 is designed using the modified linear model and the residual

is generated using the empirical data after the transformations in the lateral accelerometer, front

wheel speed and rear wheel speed measurements (11.4), (11.2) and (11.3).

Now the vehicle health monitoring system can be evaluated using vehicle simulation. The

evaluation shows that heath monitoring system detect and identify actuator and sensor faults with

probability as expected. However, the evaluation is not shown here because the health monitoring

system is evaluated in real-time on a PATH Buick LeSabre in later sections which present a more

interesting and practical evaluation

11.4 Experiment Setup

In this section, a real-time testing environment is developed using Linux operating system and C

language to evaluate the vehicle health monitoring system in real-time on a PATH Buick LeSabre.

The health monitoring system is written in C code and executed on a laptop running Linux

operating system. The laptop is connected to the computer in the trunk of the PATH Buick LeSabre

through a serial port. An input/output interface is developed to allow the data, control commands

and sensor measurements, be transmitted from the PATH computer to the UCLA laptop every

twenty-one millisecond. The UCLA laptop checks its serial port buffer and downloads the data if

the complete set of data is in the buffer. Then, the health monitoring system code is executed to

generated the fault detection filter residuals and probability of each possible failure. This process

requires much less than twenty-one millisecond. After the residuals and failure probabilities are

generated, the UCLA laptop proceeds to check the serial port buffer and waits for the next set of

data.

From Sections 11.5 to 11.7, vehicle health monitoring system is evaluated in real-time on a

PATH Buick LeSabre at Crow’s Landing under different scenarios. For the first part of the eval-

127



uation, actuator faults and sensors are imposed by the UCLA laptop after the correct control

commands and sensor measurements are transmitted from the PATH vehicle computer to the lap-

top. In this case, the control commands and the sensor measurements used by the controller are

free of disruption and the fault is ”opened-loop” since it is not circulated in the control loop. For

the second part of the evaluation, the sensor faults are imposed by the PATH vehicle computer.

In this case, the fault is ”closed-loop” because the vehicle controller use the corrupted sensor mea-

surements to generate control commands of the vehicle and the vehicle health monitoring system

use these control commands and sensor measurements to generate filter residuals and failure prob-

abilities. In the last part of the evaluation, real steering actuator fault and real brake actuator

fault are created manually by turning the steering wheel and stepping on the brake pedal while

the vehicle is traveling on the magnetic curve track under automatic control.

In Sections 11.5 the vehicle health monitoring system is evaluated in real-time on a PATH

Buick LeSabre at Crow’s Landing with actuator and sensor faults simulated by the UCLA laptop.

The faults are simulated as bias with magnitudes given below.

Engine speed sensor fault: 175 rpm

Longitudinal accelerometer fault: 0.4 m/s2

Front wheel speed sensor fault: 2.218 m/s

Rear wheel speed sensor fault: 2.299 m/s

Brake actuator fault: 200 psi

Throttle actuator fault: 4 deg

Steering actuator fault: 14.610 deg

Lateral accelerometer fault: 1 m/s2

Yaw rate sensor fault: 0.035 rad/s

Throttle sensor fault: 4 deg

Brake sensor fault: 200 psi

After applying the transformation in Section 11.3, these fault magnitudes are equivalent to the

fault magnitudes in the vehicle simulation that are used to scale the residuals in Section 11.1.
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Figure 11.7: Vehicle speed, throttle and steering commands

In Section 11.6, health monitoring system is evaluated in real time when the sensor faults are

injected by the vehicle computer. The magnitude of failure is different to that shown above in

some sensors and will be specified in each evaluation. In Section 11.7, health monitoring system is

evaluated in real-time on a PATH Buick LeSabre at Crow’s Landing with a brake actuator fault

generated by stepping on the brake pedal and a steering actuator fault generated by manually

turning the steering wheel by the driver. The magnitude of the two actuator faults are not known

in this case because the additional brake and steering are not measured. Since this additional

brake or steering is only applied to the vehicle, but not to the control commands used by the

health monitoring system, this creates a real steering actuator fault and brake actuator fault for

vehicle health monitoring system evaluation.

11.5 Evaluation Scenario No. 1: Opened Loop Fault

In this section, the vehicle health monitoring system is evaluated in real-time on a PATH Buick

LeSabre at Crow’s Landing. All of the simulated actuator faults and sensor faults are imposed

by the UCLA laptop after the measurements are received from the PATH vehicle computer. The

vehicle measurements are created when the vehicle is traveling on the magnetic curve track with
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Figure 11.8: Engine speed sensor fault occurs

speed from 20 to 28 m/s (45 to 63 mph). The vehicle first reaches a constant speed of 20 m/s

(45 mph). Then, the vehicle increases speed to 28 m/s (63 mph) by increasing the throttle angle.

Figure 11.7 shows the vehicle speed, throttle and steering command.

Figure 11.8 shows the performance of the residual generator designed for the vehicle longitudinal

dynamics when an engine speed sensor fault occurs after 15th second. The engine speed sensor

fault is a bias with magnitude of 175 rpm. The first row is the residuals of fault detection filter

set no. 1’, the second row is the residuals of fault detection filter set no. 2, the third row is the

residuals of fault detection filter set no. 3’ and the fourth row shows the residuals from 1st and

2nd parity equation. The longitudinal residual processor process this residual pattern and generate

the probability of each defined hypothesis. Figure 11.9 shows that the probability of engine speed

sensor fault goes from zero to one immediately after the fault occured. Therefore, the engine speed

sensor fault can be detected and identified with probability by the health monitoring system. The

residual generator and processor designed for the vehicle lateral dynamics are not shown here

because they will not respond to this fault.

Figure 11.10 shows the performance of the residual generator designed for the vehicle longitudi-

nal dynamics when an longitudinal accelerometer fault occurs after 15th second. The longitudinal
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Figure 11.9: Engine speed sensor fault occurs
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Figure 11.10: Longitudinal accelerometer fault occurs
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Figure 11.11: Longitudinal accelerometer fault occurs

accelerometer fault is a bias with magnitude of 0.4m/s2. Figure 11.11 shows that the probability

of longitudinal accelerometer fault goes from zero to one quickly. Therefore, the longitudinal ac-

celerometer fault can be detected and identified with probability by the health monitoring system.

The residual generator and processor designed for the vehicle lateral dynamics are not shown here

because they will not respond to this fault.

Figure 11.12 and Figure 11.14 show the performance of the residual generator designed for the

vehicle longitudinal dynamics and the vehicle lateral dynamics respectively when a fault occurs in

front left wheel speed sensor after 15th second. The front wheel speed fault is a bias with magnitude

of 2.218 m/s. In Figure 11.14, the first row is the residuals of fault detection filter set no. 4, the

second row is the residuals of fault detection filter set no. 5 and the third row is the residuals of

fault detection filter set no. 6. Figure 11.13 and Figure 11.15 show that the probability of front

wheel speed sensor fault goes from zero to one immediately after the fault occured. Therefore,

the front wheel speed sensor fault can be detected and identified with probability by the health

monitoring system. Note that the residual generator and processor designed for both longitudinal

and lateral vehicle dynamics respond to the front wheel speed sensor fault but the system can not

identify whether the fault occurs in the front left wheel or front right wheel. This identification
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Figure 11.12: Front wheel speed sensor fault occurs
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Figure 11.13: Front wheel speed sensor fault occurs
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Figure 11.14: Front wheel speed sensor fault occurs
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Figure 11.15: Front wheel speed sensor fault occurs
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Figure 11.16: Rear wheel speed sensor fault occurs

task can be easily accomplished by checking the sign of the fault detection filter residuals and is

not discussed here.

Figure 11.16 and Figure 11.18 show the performance of the residual generator designed for the

vehicle longitudinal dynamics and the vehicle lateral dynamics respectively when an fault occurs in

rear left wheel speed sensor after 15th second. The rear wheel speed fault is a bias with magnitude

of 2.299 m/s. Figure 11.17 and Figure 11.19 show that the probability of rear wheel speed sensor

fault goes from zero to one immediately after the fault occured. Therefore, the rear wheel speed

sensor fault can be detected and identified with probability by the health monitoring system.

Note that the residual generator and processor designed for both longitudinal and lateral vehicle

dynamics respond to the rear wheel speed sensor fault but the system can not identify whether the

fault occurs in the rear left wheel or rear right wheel. This identification task can be accomplished

by checking the sign of the fault detection filter residuals and is not discussed here.

Figure 11.20 shows the performance of the residual generator designed for the vehicle longitu-

dinal dynamics when a brake actuator fault occurs after 15th second. The brake actuator fault is

a bias with magnitude of 200 psi. Figure 11.21 shows that the probability of Brake actuator fault

goes from zero to one quickly. Therefore, the brake actuator fault can be detected and identified
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Figure 11.17: Rear wheel speed sensor fault occurs
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Figure 11.18: Rear wheel speed sensor fault occurs
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Figure 11.19: Rear wheel speed sensor fault occurs
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Figure 11.20: Brake actuator fault occurs
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Figure 11.21: Brake actuator fault occurs

with probability by the health monitoring system. The residual generator and processor designed

for the vehicle lateral dynamics are not shown here because they will not respond to this fault.

Figure 11.22 shows the performance of the residual generator designed for the vehicle longi-

tudinal dynamics when a throttle actuator fault occurs after 15th second. The throttle actuator

fault is a bias with magnitude of 2 deg. Figure 11.23 shows that the probability of Throttle fault

goes from zero to one quickly. Therefore, the health monitoring system can detect a fault occurs

in either throttle actuator or throttle sensor but can not identified whether the fault is in actuator

or sensor. The residual generator and processor designed for the vehicle lateral dynamics are not

shown here because they will not respond to this fault.

Figure 11.24 shows the performance of the residual generator designed for the vehicle lateral

dynamics when a steering actuator fault occurs after 15th second. The steering actuator fault is a

bias with magnitude of 14.61. deg. In Figure 11.24, the first row is the residuals of fault detection

filter set no. 4, the second row is the residuals of fault detection filter set no. 5 and the third row is

the residuals of fault detection filter set no. 6. Figure 11.25 shows that the probability of steering

actuator fault goes from zero to one quickly. Therefore, the steering actuator fault can be detected

and identified with probability by the health monitoring system. Note that the residual generator
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Figure 11.22: Throttle actuator fault occurs

0 10 20 30 40 50
0

0.5

1

Null hypothesis

0 10 20 30 40 50
0

0.5

1

Brake actuator fault hypothesis

0 10 20 30 40 50
0

0.5

1

Engine speed sensor fault hypothesis

0 10 20 30 40 50
0

0.5

1

Longitudinal accelerometer fault hypothesis

0 10 20 30 40 50
0

0.5

1

Front wheel speed sensor fault hypothesis

0 10 20 30 40 50
0

0.5

1

Rear wheel speed sensor fault hypothesis

0 10 20 30 40 50
0

0.5

1

Throttle fault hypothesis

Time (sec)
0 10 20 30 40 50

0

0.5

1

Brake sensor fault hypothesis 

Time (sec)

Figure 11.23: Throttle actuator fault occurs
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Figure 11.24: Steering actuator fault occurs
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Figure 11.25: Steering actuator fault occurs
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Figure 11.26: Lateral accelerometer fault occurs

and processor designed for vehicle longitudinal dynamics are not shown here because they will not

respond to this fault.

Figure 11.26 shows the performance of the residual generator designed for the vehicle lateral

dynamics when a lateral accelerometer fault occurs after 15th second. The lateral accelerometer is

a bias with magnitude of 1 m/s2. Figure 11.27 shows that the probability of lateral accelerometer

fault goes from zero to one immediately. Therefore, the lateral accelerometer fault can be detected

and identified with probability by the health monitoring system. Note that the residual generator

and processor designed for vehicle longitudinal dynamics are not shown here because they will not

respond to this fault.

Figure 11.28 shows the performance of the residual generator designed for the vehicle lateral

dynamics when a yaw rate sensor fault occurs after 15th second. The yaw rate sensor fault is a

bias with magnitude of 0.035 rad/s. Figure 11.29 shows that the probability of yaw rate sensor

fault goes from zero to one immediately. Therefore, the yaw rate sensor fault can be detected

and identified with probability by the health monitoring system. Note that the residual generator

and processor designed for vehicle longitudinal dynamics are not shown here because they will not

respond to this fault.
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Figure 11.27: Lateral accelerometer fault occurs
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Figure 11.28: Yaw rate sensor fault occurs
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Figure 11.29: Yaw rate sensor fault occurs
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Figure 11.30: Throttle sensor fault occurs
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Figure 11.31: Throttle sensor fault occurs

Figure 11.30 shows the performance of the residual generator designed for the vehicle longitu-

dinal dynamics when a throttle sensor fault occurs after 15th second. The throttle sensor fault is a

bias with magnitude of 4 deg. Figure 11.31 shows that the probability of Throttle fault goes from

zero to one quickly. Therefore, the health monitoring system can detect a fault occurs in either

throttle actuator or throttle sensor but can not identified whether the fault is in actuator or sensor.

The residual generator and processor designed for the vehicle lateral dynamics are not shown here

because they will not respond to this fault.

Figure 11.32 shows the performance of the residual generator designed for the vehicle longitu-

dinal dynamics when a brake sensor fault occurs after 15th second. The brake sensor fault is a

bias with magnitude of 200 psi. Figure 11.21 shows that the probability of Brake sensor fault goes

from zero to one quickly. Therefore, the brake sensor fault can be detected and identified with

probability by the health monitoring system. The residual generator and processor designed for

the vehicle lateral dynamics are not shown here because they will not respond to this fault.
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Figure 11.32: Brake sensor fault occurs
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Figure 11.33: Brake sensor fault occurs
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Figure 11.34: Vehicle speed and fault magnitude

11.6 Evaluation Scenario No. 2: Closed Loop Fault

In this section, the vehicle health monitoring system is evaluated in real-time on a PATH Buick

LeSabre at Crow’s Landing when the vehicle is traveling on the magnetic curve track. A simulated

bias fault is imposed in engine speed sensor, longitudinal accelerometer, vehicle speed sensor,

throttle actuator, throttle sensor and brake sensor by the PATH computer respectively. Note

that, since the vehicle controller command is generated without using lateral accelerometer sensor

measurement and yaw rate sensor measurement. For this two sensor, no difference will be made

between imposing the fault by the PATH vehicle computer or imposing the fault by the UCLA

laptop. Therefore, these two sensor faults are not simulated by the PATH vehicle computer in this

section. As for the brake actuator fault and steering actuator fault, they will be created manually

and the corresponding performance of the vehicle health monitoring system will be evaluated in

next section.

Figure 11.34 shows the vehicle speed and the imposed engine speed sensor fault. The vehicle

increases speed from 20 m/s (45 mph) to 28 m/s (63 mph) when traveling on the magnetic curve

track. Figure 11.35 shows the performance of the residual generator designed for the vehicle

longitudinal dynamics when an engine speed sensor fault occurs around 22nd second. The engine
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Figure 11.35: Engine speed sensor fault occurs

speed sensor fault is a bias with magnitude of 200 rpm. The first row is the residuals of fault

detection filter set no. 1’, the second row is the residuals of fault detection filter set no. 2, the third

row is the residuals of fault detection filter set no. 3’ and the fourth row shows the residuals from

1st and 2nd parity equation. Note that the engine speed sensor residual goes above one because

the magnitude of the fault is bigger than 175 rpm where the residual is scaled to one. Figure 11.36

shows that the probability of engine speed sensor fault goes from zero to one immediately after

the fault is imposed. Therefore, the engine speed sensor fault can be detected and identified with

probability by the health monitoring system. The residual generator and processor designed for

the vehicle lateral dynamics are not shown here because they will not respond to this fault.

Figure 11.37 shows the vehicle speed and the imposed longitudinal accelerometer fault. The

vehicle increases speed from 20 m/s (45 mph) to 28 m/s (63 mph) when traveling on the magnetic

curve track. Figure 11.38 shows the performance of the residual generator designed for the vehicle

longitudinal dynamics when an longitudinal accelerometer fault occurs around 17th second. The

longitudinal accelerometer fault is a bias with magnitude of 0.4 m/s2. The first row is the residuals

of fault detection filter set no. 1’, the second row is the residuals of fault detection filter set no.

2, the third row is the residuals of fault detection filter set no. 3’ and the fourth row shows the
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Figure 11.36: Engine speed sensor fault occurs
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Figure 11.37: Vehicle speed and fault magnitude
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Figure 11.38: Longitudinal accelerometer fault occurs

residuals from 1st and 2nd parity equation. Figure 11.39 shows that the probability of longitudinal

accelerometer fault goes from zero to one shortly after the fault is imposed. Therefore, longitudinal

accelerometer fault can be detected and identified with probability by the health monitoring system.

The residual generator and processor designed for the vehicle lateral dynamics are not shown here

because they will not respond to this fault.

Figure 11.40 shows the vehicle speed and the imposed wheel speed fault. Note that the vehicle

speed increased from 20 m/s to 27.5 m/s instead of from 20 m/s to the expected 28 m/s due to the

presence of a 2 m/s wheel speed sensor fault. The vehicle controller used the average of the speed

from the four wheels to track the vehicle speed. Since a bias of 2 m/s fault is imposed in one of

the four wheel the actual vehicle speed is reduce by 0.5 m/s. Figure 11.41 and Figure 11.43 show

the performance of the residual generator designed for the vehicle longitudinal dynamics and the

vehicle lateral dynamics respectively when an front wheel speed sensor fault occurs around 22nd

second. In Figure 11.43, the first row is the residuals of fault detection filter set no. 4, the second

row is the residuals of fault detection filter set no. 5 and the third row is the residuals of fault

detection filter set no. 6. Figure 11.42 and Figure 11.44 show that the probability of front wheel

speed sensor fault goes from zero to one immediately. Therefore, the front wheel speed sensor fault
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Figure 11.39: Longitudinal accelerometer fault occurs
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Figure 11.40: Vehicle speed and fault magnitude
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Figure 11.41: Front wheel speed sensor fault occurs

can be detected and identified with probability by the health monitoring system.

Figure 11.45 and Figure 11.47 show the performance of the residual generator designed for the

vehicle longitudinal dynamics and the vehicle lateral dynamics respectively when an rear wheel

speed sensor fault occurs around 22nd second. Figure 11.46 and Figure 11.48 show that the

probability of rear wheel speed sensor fault goes from zero to one immediately. Therefore, the

rear wheel speed sensor fault can be detected and identified with high probability by the health

monitoring system.

Figure 11.49 shows the vehicle speed and the imposed throttle actuator fault. The vehicle

increases speed from 20 m/s (45 mph) to 28 m/s (63 mph) when traveling on the magnetic curve

track. Figure 11.50 shows the performance of the residual generator designed for the vehicle

longitudinal dynamics when an throttle actuator fault occurs around 4th second. The throttle

actuator fault is a bias with magnitude of 4 deg. Figure 11.51 shows that the probability of

throttle actuator fault goes from zero to one in about a second after the fault is imposed. This

shows that, the health monitoring system can detect a fault occurs in either throttle actuator or

throttle sensor although it can not identified whether the fault is in actuator or sensor. The residual

generator and processor designed for the vehicle lateral dynamics are not shown here because they
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Figure 11.42: Front wheel speed sensor fault occurs
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Figure 11.43: Front wheel speed sensor fault occurs
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Figure 11.44: Front wheel speed sensor fault occurs
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Figure 11.45: Rear wheel speed sensor fault occurs
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Figure 11.46: Rear wheel speed sensor fault occurs
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Figure 11.47: Rear wheel speed sensor fault occurs
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Figure 11.48: Rear wheel speed sensor fault occurs
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Figure 11.49: Vehicle speed and fault magnitude
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Figure 11.50: Throttle actuator fault occurs

will not respond to this fault.

Figure 11.52 shows the vehicle speed and the imposed throttle sensor fault. The vehicle increases

speed from 20 m/s (45 mph) to 28 m/s (63 mph) when traveling on the magnetic curve track.

Figure 11.53 shows the performance of the residual generator designed for the vehicle longitudinal

dynamics when an throttle sensor fault occurs around 4th second. The throttle actuator fault is

a bias with magnitude of 4 deg. Figure 11.54 shows that the probability of throttle sensor fault

goes from zero to one in about a second after the fault is imposed. This shows that, the health

monitoring system can detect a fault occurs in either throttle actuator or throttle sensor although

it can not identified whether the fault is in actuator or sensor. The residual generator and processor

designed for the vehicle lateral dynamics are not shown here because they will not respond to this

fault.

Figure 11.55 shows the vehicle speed and the imposed brake sensor fault. In this case, the

vehicle speed stay constant at 20 m/s (45 mph) when traveling on the magnetic curve track.

Figure 11.56 shows the performance of the residual generator designed for the vehicle longitudinal

dynamics when the brake sensor fault occurs around 1st second. The brake sensor fault is a bias

with magnitude of 200 psi. Figure 11.57 shows that the probability of brake sensor fault goes from
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Figure 11.51: Throttle actuator fault occurs
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Figure 11.52: Vehicle speed and fault magnitude
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Figure 11.53: Throttle sensor fault occurs
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Figure 11.54: Throttle sensor fault occurs
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Figure 11.55: Vehicle speed and fault magnitude

zero to one in about one second after the fault is imposed. Therefore, brake sensor fault can be

detected and identified with probability by the health monitoring system. The residual generator

and processor designed for the vehicle lateral dynamics are not shown here because they will not

respond to this fault.

We experienced a real fault in the wheel speed sensor that was not artificially introduced

into real data. The performance of the fault detection filter and residual processor is given in

Figure 11.58. The left figure shows the measurement of the wheel speed sensor on the front left

wheel. Around the 64th second, there was a drop in the measurement indicating that a real fault

occurred and went away in a very short period of time. The middle figure shows the residual

associated with the front left wheel speed sensor fault. When there was no fault, this residual was

very small. When a front left wheel speed sensor fault occurred, this residual became very large.

This shows that the fault detection filter performed well. The right figure shows the probability of

the front left wheel speed sensor fault. When the front left wheel speed sensor fault occurred, its

probability went from 0 to 1 showing that the faulty sensor was correctly picked by the residual

processor.
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Figure 11.56: Brake sensor fault occurs
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Figure 11.57: Brake sensor fault occurs
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Figure 11.58: Residual generator and processor: wheel speed sensor

11.7 Evaluation Scenario No. 3: Real Actuator Fault

In this section, the vehicle health monitoring system is evaluated in real-time on a PATH Buick

LeSabre at Crow’s Landing when the vehicle is traveling on the magnetic curve track at constant

speed. A real steering actuator fault is created by manually turning the steering wheel by the

driver when the vehicle is under automatic control. Similarly, a real brake actuator fault is created

by stepping on the brake padel by the driver when the vehicle is under automatic control.

Figure 11.59 shows the vehicle speed and the steering angle. The vehicle is first driven to 20

m/s on the magnetic curve track then the driver created the steering actuator fault by turning the

steering wheel manually when the vehicle is still under automatic control. The vehicle is deviated

from the original maneuver by this interruption and the experiment is terminated shortly after this

action for safety concern. Figure 11.60 shows the performance of the residual generator designed

for the vehicle lateral dynamics when the steering actuator fault is created between the 3rd and

the fourth second. The first row is the residuals of fault detection filter set no. 4, the second row

is the residuals of fault detection filter set no. 5, the third row is the residuals of fault detection

filter set no. 6. Figure 11.61 shows that the probability of steering actuator fault goes from zero

to one almost immediately after the fault is created. This experiment demonstrates that steering
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Figure 11.59: Vehicle speed and steering angle

actuator fault can be detected and identified with probability by the health monitoring system.

The residual generator and processor designed for the vehicle lateral dynamics are not shown here

because they will not respond to this fault.

Figure 11.62 shows the vehicle speed and the throttle command. The vehicle is first driven to

24 m/s on the magnetic curve track then the driver created the brake actuator fault by stepping on

the brake padel manually when the vehicle is still under automatic control. From the second row

of Figure 11.62, it is shown that the vehicle controller tried to compensate this fault by increasing

the throttle angle in order to keep the desired vehicle speed. Figure 11.63 shows the performance

of the residual generator designed for the vehicle longitudinal dynamics when the brake actuator

fault is created around 23rd second. The first row is the residuals of fault detection filter set no.

1’, the second row is the residuals of fault detection filter set no. 2, the third row is the residuals

of fault detection filter set no. 3’. Figure 11.64 shows that the probability of brake actuator fault

goes from zero to one almost immediately after the fault is created. This experiment demonstrates

that brake actuator fault can be detected and identified with probability by the health monitoring

system. The residual generator and processor designed for the vehicle lateral dynamics are not

shown here because they will not respond to this fault.
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Figure 11.60: Steering actuator fault occurs
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Figure 11.61: Steering actuator fault occurs
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Figure 11.62: Vehicle speed and throttle commands
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Figure 11.63: Brake actuator fault occurs
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Figure 11.64: Brake actuator fault occurs
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Chapter 12

Optimal Stochastic Fault Detection
Filter

n this chapter, a design algorithm, called optimal stochastic fault detection filter, is determined

for the unknown input observer. The objective of the filter is to monitor a single fault, called

the target fault, and block other faults, called the nuisance faults, in the presence of the process

and sensor noises. The filter is derived by maximizing the transmission from the target fault

while minimizing the transmission from the nuisance faults. The transmission is defined on the

projected output error by using a matrix projector to be derived from solving the optimization

problem. Therefore, the residual is affected primarily by the target fault and minimally by the

nuisance faults. The transmission from the process and sensor noises is also minimized so that

the filter is robust with respect to these disturbances. Since certain types of model uncertainties

can be modeled as additive noises (Patton and Chen, 1992; Douglas et al., 2004), the filter can

also be made robust to these model uncertainties. A related approach can be found in (Lee, 1994;

Brinsmead et al., 1997).

In the limit where the weighting on the nuisance fault transmission goes to infinity, the filter

blocks the nuisance faults completely. It is shown that the filter places the nuisance faults into

a minimal (C, A)-unobservability subspace for time-invariant systems and a similar invariant sub-

space for time-varying systems. A minimal (C, A)-unobservability subspace implies that there is a

projector H̃ induced from the nuisance fault directions such that (H̃C,A− LC) has an unobserv-

able subspace where L is the filter gain (Massoumnia, 1986; Massoumnia et al., 1989). Therefore,

the filter recovers the geometric structure of the unknown input observer in the limit and extends

the unknown input observer to the time-varying case. These limiting results are important in
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ensuring that both fault detection and identification can occur. For time-invariant systems, the

nuisance fault directions are generalized to prevent the invariant zeros of the nuisance faults or

their mirror images from becoming part of the eigenvalues of the filter.

The limiting behavior of the filter can also be determined by using a perturbation method.

Further, the perturbation method captures the asymptotic behavior of the filter near the limit. In

(Chung and Speyer, 1998; Chen and Speyer, 2000), the Goh transformation in singular optimal

control theory (Bell and Jacobson, 1975; Moylan and Moore, 1971) is used to determine the filter in

the limit. However, the Goh transformation cannot determine the asymptotic behavior of the filter.

Although the Goh transformation leads to an elegant general form, the perturbation method is

more direct and insightful. The asymptotic result also provides a more robust numerical algorithm

to solve the Riccati equation near the limit which is ill-conditioned because of the large parameters.

In Section 12.1, the system model and three essential assumptions about the system are given.

The problem is formulated in Section 12.2 and its solution is derived in Section 12.3. In Section 12.4,

the limiting properties of the filter are determined. In Section 12.5, the asymptotic behavior of the

filter is determined. In Section 12.6, numerical examples are given.

12.1 System Model and Assumptions

In this section, the system model and three assumptions about the system that are needed in order

to have a well-conditioned unknown input observer are given. Consider a linear system,

ẋ = Ax + Buu (12.1a)

y = Cx (12.1b)

where u is the control input and y is the measurement. All system variables belong to real vector

spaces, x ∈ X , u ∈ U and y ∈ Y. System matrices A, Bu and C can be time-varying. To design

any linear observer, Assumption 12.1 is required (Kwakernaak and Sivan, 1972a).

Assumption 12.1. For time-varying systems, (C, A) is uniformly observable. For time-invariant

systems, (C, A) is detectable.

Following the development in (Beard, 1971; White and Speyer, 1987; Chung and Speyer, 1998),

any plant, actuator and sensor fault can be modeled as an additive term in the state equation
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(12.1a). Therefore, a linear system with q failure modes can be modeled by

ẋ = Ax + Buu +
q∑

i=1

F̄iµ̄i (12.2a)

y = Cx (12.2b)

where µ̄i belong to real vector spaces and F̄i can be time-varying. The failure modes µ̄i are unknown

and arbitrary functions of time that are zero when there is no failure. The failure signatures F̄i

are maps that are known. A failure mode µ̄i models the time-varying amplitude of a failure while

a failure signature F̄i models the directional characteristics of a failure. Assume the F̄i are monic

so that µ̄i 6= 0 imply F̄iµ̄i 6= 0. Since the unknown input observer is designed to detect only one

fault and block other faults, let µ1 = µ̄i be the target fault and µ2 = [ µ̄T
1 · · · µ̄T

i−1 µ̄T
i+1 · · · µ̄T

q ]T

be the nuisance fault. Then, (12.2) can be rewritten as (Massoumnia et al., 1989)

ẋ = Ax + Buu + F1µ1 + F2µ2 (12.3a)

y = Cx (12.3b)

where F1 = F̄i and F2 = [ F̄1 · · · F̄i−1 F̄i+1 · · · F̄q ]. There are two assumptions about the system

(12.3) that are needed in order to have a well-conditioned unknown input observer.

Assumption 12.2. F1 and F2 are output separable.

Assumption 12.2 ensures that the unknown input observer can isolate the target fault from the

nuisance fault (Massoumnia et al., 1989; Chung and Speyer, 1998). The definition of the output

separability is CT1 ∩ CT2 = ∅ where T1 and T2 are the invariant subspaces in which the target fault

and nuisance fault are placed, respectively. More details about these invariant subspaces are given

in Section 12.4.1. In Remark 6 of Section 12.4.3, the output separability assumption is relaxed by

imposing a less restrictive condition since the optimal stochastic fault detection filter only creates

an invariant subspace for the nuisance fault, but not the target fault.

Assumption 12.3. For time-invariant systems, (C,A, F1) does not have invariant zeros at origin.

Assumption 12.3 ensures that, for time-invariant systems, the residual is nonzero in steady state

when the target fault occurs. Consider a linear observer with dynamics and residual,

˙̂x = Ax̂ + Buu + L(y − Cx̂)

r = y − Cx̂
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When the target fault occurs, the dynamic equation of the error, e = x− x̂, and the residual can

be written as

ė = (A− LC)e + F1µ1

r = Ce

For a bias target fault, the steady-state residual will be zero if (C,A− LC, F1) has an invariant zero

at origin (Chen, 1984). Since the filter gain L does not change the invariant zero, (C,A− LC, F1)

has an invariant zero at origin if and only if (C,A, F1) has an invariant zero at origin. Therefore,

to ensure a nonzero residual in steady state when the target fault occurs, (C, A, F1) cannot have

invariant zeros at origin.

12.2 Problem Formulation

In this section, the optimal stochastic fault detection filter problem is formulated. Consider a linear

system similar to (12.3),

ẋ = Ax + Buu + Bww + F1µ1 + F2µ2 (12.4a)

y = Cx + v (12.4b)

where w is the process noise, v is the sensor noise, and Bw can be time-varying. Assume that the

unknown and arbitrary failure amplitudes µ1, µ2, and the disturbances w, v are zero mean, white

Gaussian noises with variances

E [µ1(t)µ1(τ)T ] = Q1δ(t− τ) (12.5a)

E [µ2(t)µ2(τ)T ] = Q2δ(t− τ) (12.5b)

E [w(t)w(τ)T ] = Qwδ(t− τ) (12.5c)

E [v(t)v(τ)T ] = V δ(t− τ) (12.5d)

and the initial state is a random vector with variance

E [x(t0)x(t0)T ] = P0 (12.5e)

where E[•] is the expectation operator. µ1, µ2, w and v are assumed to be uncorrelated with each

other and with x(t0).
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The objective of the optimal stochastic fault detection filter problem is to find a filter gain L

for the linear observer,

˙̂x = Ax̂ + Buu + L(y − Cx̂) , x̂(t0) = E[x(t0)] (12.6)

and a projector Ĥ for the residual,

r = Ĥ(y − Cx̂) (12.7)

such that the residual is affected primarily by the target fault µ1 and minimally by the nuisance

fault µ2, process noise w, sensor noise v and initial condition error x(t0)− x̂(t0). By using (12.4)

and (12.6), the dynamic equation of the error, e = x− x̂, is

ė = (A− LC)e + F1µ1 + F2µ2 + Bww − Lv

Then, the error can be written as

e(t) = Φ(t, t0)e(t0) +
∫ t

t0

Φ(t, τ)(F1µ1 + F2µ2 + Bww − Lv)dτ (12.8)

subject to
d

dt
Φ(t, t0) = (A− LC)Φ(t, t0) , Φ(t0, t0) = I (12.9)

Note that e(t0) is a zero mean random vector with variance P0. The residual (12.7) can be written

as

r = Ĥ(Ce + v)

Now a cost criterion is needed for deriving L and Ĥ. If the cost criterion is associated with the

residual, it is unusable from the statistical viewpoint since the variance of the residual generates

a δ-function due to the sensor noise. Therefore, the cost criterion will be associated with the

projected output error ĤCe. In order to determine the cost criterion, define

h1(t)
4
= ĤC

∫ t

t0

Φ(t, τ)F1µ1dτ (12.10a)

h2(t)
4
= ĤC

∫ t

t0

Φ(t, τ)F2µ2dτ (12.10b)

hv(t)
4
= ĤC

[
Φ(t, t0)e(t0) +

∫ t

t0

Φ(t, τ)(Bww − Lv)dτ

]
(12.10c)

From (12.8), h1 represents the transmission from µ1 to ĤCe. h2 represents the transmission from

µ2 to ĤCe. hv represents the transmission from w, v and e(t0) to ĤCe. The objective of the
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optimal stochastic fault detection filter problem is to make ĤCe sensitive to µ1, but insensitive to

µ2, w, v and e(t0). Thus, h2 and hv are to be minimized while h1 is to be maximized.

Therefore, the optimal stochastic fault detection filter problem is to find the filter gain L and

the projector Ĥ which minimize the cost criterion,

J = tr
{

1
γ

E[h2(t)h2(t)T ] + E[hv(t)hv(t)T ]− E[h1(t)h1(t)T ]
}

(12.11)

where t is the current time and γ is a positive scalar. Making γ small places a large weighting on

reducing the nuisance fault transmission. The trace operator forms a scalar cost criterion of the

matrix output error variance. Note that the power spectral densities Q1 and Q2 can be considered

as design parameters. Since no assumption is made on the failure amplitudes, its white noise

representation is a convenience. However, the power spectral densities Qw and V and the variance

P0 can have physical values. Q1 and Qw are non-negative definite. Q2, V and P0 are positive

definite. When Q1 increases, the transmission from the target fault increases. When Q2 increases,

the transmission from the nuisance fault reduces. When Qw, V and P0 increase, the transmission

from the process noise, sensor noise and initial condition error reduces, respectively.

Since the effect of the process and sensor noises on the residual is explicitly minimized, the

filter is robust with respect to these disturbances. Certain types of model uncertainties can also be

modeled as additive noises (Patton and Chen, 1992; Douglas et al., 2004). Therefore, the filter can

be made robust to these model uncertainties. In Section 12.4, it is shown that the filter recovers

the geometric structure of the unknown input observer in the limit as γ → 0 and the nuisance fault

is completely blocked. When it is not in the limit, the filter is an approximate unknown input

observer and the nuisance fault is partially blocked. Since the filter does not need to block the

nuisance fault completely, the filter structure is less constrained which leads to a potentially more

robust unknown input observer.

12.3 Solution

In this section, the minimization problem given by (12.11) is solved. By using (12.5) and (12.10),

the cost criterion, rewritten as

J = tr
[
ĤC

∫ t

t0

Φ(t, τ)
(

LV LT +
1
γ

F2Q2F
T
2 − F1Q1F

T
1 + BwQwBT

w

)
Φ(t, τ)T dτ CT Ĥ

+ĤCΦ(t, t0)P0Φ(t, t0)T CT Ĥ
]
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is to be minimized with respect to L and Ĥ subject to (12.9) and that Ĥ is a projector. To put

the minimization problem in a more transparent context, J is manipulated in the following. By

adding the zero term

tr
{

ĤCΦ(t, t)P (t)Φ(t, t)T CT Ĥ − ĤCΦ(t, t0)P (t0)Φ(t, t0)T CT Ĥ

−ĤC

∫ t

t0

d

dτ
[Φ(t, τ)P (τ)Φ(t, τ)] dτ CT Ĥ

}

to J and using (12.9),

J = tr
{

ĤC

∫ t

t0

Φ(t, τ)
[
(L− PCT V −1)V (L− PCT V −1)T − Ṗ + AP + PAT − PCT V −1CP

+
1
γ

F2Q2F
T
2 − F1Q1F

T
1 + BwQwBT

w

]
Φ(t, τ)T dτ CT Ĥ

+ĤCΦ(t, t0)[P0 − P (t0)]Φ(t, t0)T CT Ĥ + ĤCP (t)CT Ĥ
}

Then, the minimization problem can be rewritten as

min
L,Ĥ

tr
[
ĤC

∫ t

t0

Φ(t, τ)(L− PCT V −1)V (L− PCT V −1)T Φ(t, τ)T dτ CT Ĥ + ĤCP (t)CT Ĥ

]

(12.12)

subject to (12.9) and that Ĥ is a projector where

Ṗ = AP + PAT − PCT V −1CP +
1
γ

F2Q2F
T
2 − F1Q1F

T
1 + BwQwBT

w , P (t0) = P0 (12.13)

By inspection, the optimal filter gain is

L∗ = PCT V −1 (12.14)

By applying (12.14) to (12.12), the minimization problem reduces to

min
Ĥ

tr[ĤCP (t)CT Ĥ]

subject to that Ĥ is a projector. This is an eigenvalue problem. The solution for the optimal Ĥ

depends on the rank of Ĥ. If the rank is chosen as one, the optimal projector is

Ĥ∗ = ρmρT
m (12.15)

where ρm is the eigenvector of CP (t)CT associated with the smallest eigenvalue λm and m = dimY.

The minimal cost associated with (12.15) is λm. Alternately, (12.15) can be written as

Ĥ∗ : Y → Y, Ker Ĥ∗ = Im
[

ρ1 · · · ρm−1

]
, Ĥ∗ = I − [

ρ1 · · · ρm−1

] [
ρ1 · · · ρm−1

]T (12.16)
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where ρi, i = 1 · · ·m− 1, are the eigenvectors of CP (t)CT and their associated eigenvalues λ1 ≥ λ2

≥ · · · ≥ λm−1.

In Sections 12.4 and 12.5, it is shown that CP (t)CT has p2 infinite eigenvalues in the limit

as γ → 0 and p2 large eigenvalues near the limit when γ is small where p2 = dimF2. Since the

remaining m− p2 eigenvalues are very small compared to the p2 large eigenvalues, the rank of Ĥ

can be chosen as m− p2 and the optimal projector is

Ĥ∗ =
[

ρm ρm−1 · · · ρp2+1

] [
ρm ρm−1 · · · ρp2+1

]T (12.17)

The minimal cost associated with (12.17) is
∑m

i=p2+1 λi. Alternately, (12.17) can be written as

Ĥ∗ : Y → Y, Ker Ĥ∗ = Im
[

ρ1 · · · ρp2

]
, Ĥ∗ = I − [

ρ1 · · · ρp2

] [
ρ1 · · · ρp2

]T (12.18)

Note that both (12.16) and (12.18) are optimal projectors depending on the rank chosen. In

Sections 12.4 and 12.5, it is shown that Im [ ρ1 · · · ρp2 ] contains the nuisance fault completely in

the limit and partially near the limit. Thus, Ker Ĥ∗ only needs to contain Im [ ρ1 · · · ρp2 ] in order

to block the nuisance fault. Furthermore, (12.18) allows more or equal target fault transmission

than (12.16) because Im [ ρ1 · · · ρp2 ] ⊆ Im [ ρ1 · · · ρm−1 ]. Therefore, (12.18) is a better choice than

(12.16). In Section 12.4, it is shown that (12.18) becomes equivalent to the projector used by the

unknown input observer in the limit.

Remark 1. For implementation of the optimal stochastic fault detection filter, the filter gain

(12.14) and the projector (12.18) have to be constructed continuously with respect to time because

in the cost criterion, t is the current time.

Remark 2. The properties of the Riccati equation (12.13) are best established within the linear

quadratic regulator problem (Speyer, 1986) which can be viewed as a dual problem of the optimal

stochastic fault detection filter problem. Consider the following linear quadratic regulator problem,

min
u

J = min
u

1
2

∫ −t0

−t

(
‖ x(s) ‖2

1
γ

F2(−s)Q2(−s)F2(−s)T−F1(−s)Q1(−s)F1(−s)T +Bw(−s)Qw(−s)Bw(−s)T

+ ‖ u(s) ‖2
V (−s)

)
ds +

1
2
‖ x(−t0) ‖2

P0

subject to

ẋ(s) = A(−s)T x(s) + C(−s)T u(s)
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The solution is

u(s)∗ = −V (−s)−1C(−s)P̄ (s)x(s)

where

− ˙̄P (s) = A(−s)P̄ (s)+P̄ (s)A(−s)T−P̄ (s)C(−s)T V (−s)−1C(−s)P̄ (s)+
1
γ

F2(−s)Q2(−s)F2(−s)T

− F1(−s)Q1(−s)F1(−s)T + Bw(−s)Qw(−s)Bw(−s)T (12.19)

and P̄ (−t0) = P0. The minimal cost is

J∗ =
1
2
‖ x(−t) ‖2

P̄ (−t)

Since (AT , CT ) is controllable, P̄ (−t) is bounded from above. Therefore, if P̄ (−t) has a finite

escape time, P̄ (−t) goes to −∞ when Q1 is too large.

Let τ = −s, (12.19) becomes

˙̄P (−τ) = A(τ)P̄ (−τ) + P̄ (−τ)A(τ)T − P̄ (−τ)C(τ)T V (τ)−1C(τ)P̄ (−τ)

+
1
γ

F2(τ)Q2(τ)F2(τ)T − F1(τ)Q1(τ)F1(τ)T (12.20)

By comparing (12.13) and (12.20),

P (τ) = P̄ (−τ)

Then, P (t) = P̄ (−t) has a finite escape time and goes to −∞ when Q1 is too large. This can be in-

terpreted as an attempt to make the residual sensitive to the target fault. If Q1 is too large, the tar-

get fault could destabilize the filter. Therefore, Q1 has to be chosen small enough to avoid the finite

escape time. Note that P (t) does not have a finite escape time when Q1 = 0. This will be illustrated

by the numerical example in Section 12.6.4.

12.4 Limiting Case

In this section, the limiting properties of the optimal stochastic fault detection filter are determined

when γ → 0. It is shown that the nuisance fault is placed in an invariant subspace in the limit. For

time-invariant systems, this invariant subspace is equivalent to the minimal (C, A)-unobservability

subspace of F2. Therefore, the filter becomes equivalent to the unknown input observer in the

limit. For time-varying systems, there exists a similar invariant subspace. Therefore, the filter

extends the unknown input observer to the time-varying case. In Section 12.4.1, the geometric
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structure of the unknown input observer is given (Massoumnia et al., 1989). In Section 12.4.2, the

limiting properties of the filter are determined. In Section 12.4.3, the nuisance fault directions are

generalized for time-invariant systems to prevent the invariant zeros of the nuisance fault or their

mirror images from becoming part of the eigenvalues of the filter.

12.4.1 Geometric Structure of Unknown Input Observer

The unknown input observer places the nuisance fault into an invariant subspace which is unob-

servable to the residual (Massoumnia et al., 1989). This invariant subspace, denoted T2, is the

minimal (C,A)-unobservability subspace of F2 which can be obtained by (Wonham, 1985)

T2 = W2 ⊕ V2 (12.21)

W2 is the minimal (C,A)-invariant subspace of F2 given by (Chung and Speyer, 1998)

W2 =
[

f1 Af1 · · · Aδ1f1 f2 Af2 · · · Aδ2f2 · · · fp2 Afp2 · · · Aδp2fp2

]
(12.22)

where fi is the i-th column of F2 and δi is the smallest non-negative integer such that CAδifi 6= 0.

V2 is the subspace spanned by the invariant zero directions of (C, A, F2). Note that T2 is the

unobservable subspace of (H̃C, A− LC) (Massoumnia, 1986; Massoumnia et al., 1989) where L is

the filter gain and

H̃ : Y → Y , Ker H̃ = Im
[

CAδ1f1 CAδ2f2 · · · CAδp2fp2

]
(12.23)

Therefore, the nuisance fault is unobservable to the residual using H̃ as the projector. To ensure

that the target fault can be detected from the residual, F1 and F2 are required to be output

separable (Massoumnia et al., 1989) which is defined by

CT1 ∩ CT2 = ∅ ⇔ CW1 ∩ CW2 = ∅

where T1 is the minimal (C, A)-unobservability subspace of F1 and W1 is the minimal (C,A)-

invariant subspace of F1. Note that the output separability condition is a sufficient condition since

the unknown input observer does not need to place the target fault into an invariant subspace.

In Remark 6 of Section 12.4.3, the output separability condition is relaxed by imposing a less

restrictive condition.
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For time-varying systems, the minimal (C,A)-invariant subspace of F2 is (Chung and Speyer,

1998)

W2 =
[

b1,0 b1,1 · · · b1,δ1 b2,0 b2,1 · · · b2,δ2 · · · bp2,0 bp2,1 · · · bp2,δp2

]
(12.24)

The vectors bi,j , j = 0 · · · δi, are obtained from the iteration defined by the Goh transformation

(Bell and Jacobson, 1975; Moylan and Moore, 1971),

bi,0 = fi

bi,j = Abi,j−1 − ḃi,j−1

where fi is the i-th column of F2. δi is the smallest non-negative integer such that Cbi,δi 6= 0

for t ∈ [t0, t1]. For time-varying systems, the minimal (C,A)-unobservability subspace cannot be

obtained by (12.21) because the concept of invariant zero is for time-invariant systems only. The

time-varying extension of (12.23) is (Chung and Speyer, 1998)

H̃ : Y → Y , Ker H̃ = Im
[

Cb1,δ1 Cb2,δ2 · · · Cbp2,δp2

]
(12.25)

For time-varying systems, the output separability condition can be checked by (Chung and Speyer,

1998; Chen and Speyer, 2000)

CW1 ∩ CW2 = ∅

Remark 3. (12.22) and (12.24) are based on the assumption that

Rank (CW2) = p2 (12.26)

where p2 = dimF2. If Rank (CW2) < p2, a new basis for F2 with a lower or equal dimension can be

formed such that (12.26) is satisfied (Chen, 2000). Then, the new basis of F2 can be used in (12.22)

or (12.24) and consequently in (12.23) or (12.25).

12.4.2 Limiting Property

In this section, it is assumed that the Riccati matrix P is positive definite. From Remark 2 in

Section 12.3, there always exists positive definite P for some Q1. Then, P can be written as

P =
n∑

i=1

1
λ̄i

ρ̄iρ̄
T
i
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where λ̄−1
i is the i-th eigenvalue of P and ρ̄i is the associated eigenvector. In the limit as γ → 0,

P goes to infinity because of the term 1
γ F2Q2F

T
2 in (12.13). This implies that some λ̄i’s go to zero

in the limit. Define

Π
4
= P−1 =

n∑

i=1

λ̄iρ̄iρ̄
T
i

Then, P goes to infinity in the limit along the null space of Π. By using (12.13),

− d

dτ
(P−1) = P−1ṖP−1

= P−1A + AT P−1 − CT V −1C + P−1

(
1
γ

F2Q2F
T
2 − F1Q1F

T
1 + BwQwBT

w

)
P−1

Then,

−Π̇ = ΠA + AT Π + Π
(

1
γ

F2Q2F
T
2 − F1Q1F

T
1 + BwQwBT

w

)
Π− CT V −1C (12.27)

with initial condition Π(t0) = P−1
0 . Define

Π̄
4
= lim

γ→0
Π

In the limit, in order for (12.27) to have a solution,

Π̄F2 = 0 (12.28)

This indicates that Π̄ has a null space which contains F2. It turns out that Ker Π̄ is the key to

block the nuisance fault. Theorem 12.1 shows that Ker Π̄ is a (C,A)-invariant subspace. Therefore,

the optimal stochastic fault detection filter places the nuisance fault into an invariant subspace in

the limit.

Theorem 12.1. Ker Π̄ is a (C,A)-invariant subspace.

Proof. The filter can be written as

Π ˙̂x = ΠAx̂ + ΠBu + CT V −1(y − Cx̂)

When the nuisance fault occurs, the dynamic equation of the error can be written as

Πė = (ΠA− CT V −1C)e + ΠF2µ2
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By adding Π̇e to both sides and using (12.27),

d

dτ
(Πe) = −

[
AT + Π

(
1
γ

F2Q2F
T
2 − F1Q1F

T
1 + BwQwBT

w

)]
Πe + ΠF2µ2 (12.29)

In the limit, if the error initially lies in Ker Π̄, (12.29) implies that the error will never leave Ker Π̄

because of (12.28). Therefore, Ker Π̄ is a (C,A)-invariant subspace.

Other directions in Ker Π̄ are obtained now. For time-invariant systems, Ker Π̄ is related to the

minimal (C, A)-unobservability subspace of F2. For time-varying systems, Ker Π̄ is related to the

unobservable subspace of (H̃C, A− LC) where L is (12.14) and H̃ is (12.25). Theorem 12.2 shows

that Ker Π̄ contains the minimal (C, A)-invariant subspace of F2.

Theorem 12.2. Π̄W2 = 0 where W2 is (12.22) for time-invariant systems and (12.24) for time-

varying systems.

Proof. Consider the time-varying case first. From (12.28), Π̄b1,0 = 0 and

d

dτ
(Π̄b1,0) = ˙̄Πb1,0 + Π̄ḃ1,0 = 0 (12.30)

In the limit, by multiplying (12.27) by bT
1,0 from the left and b1,0 from the right and using (12.28),

1√
γ

F T
2 Π̄b1,0 = 0 (12.31)

By using (12.30), (12.27), (12.28) and (12.31),

Π̄b1,1 = Π̄(Ab1,0 − ḃ1,0) = CT V −1Cb1,0 = 0

Similarly, it can be shown that

d

dτ
(Π̄b1,1) = 0 ⇒ Π̄b1,2 = 0

By iterating this procedure, Π̄[ b1,0 b1,1 · · · b1,δ1 ] = 0. Similarly, it can be shown that Π̄[ bi,0 bi,1 · · ·
bi,δi ] = 0 for i = 2 · · · p2. Therefore, Π̄W2 = 0. For the time-invariant case, it can be shown

similarly.

For time-invariant systems, whether Ker Π̄ contains the invariant zero directions of (C, A, F2)

is discussed now. By using the result in (Massoumnia, 1986; Massoumnia et al., 1989), if Ker Π̄

does not contain the invariant zero directions, the invariant zeros will become part of the filter
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eigenvalues (i.e., the eigenvalues of A− LC). By using the result in (Kwakernaak, 1976), if there

exist left-half plane invariant zeros, part of the filter eigenvalues will be at the invariant zeros in

the limit. If there exist right-half plane invariant zeros, part of the filter eigenvalues will be at the

mirror images of the invariant zeros in the limit. This implies that Ker Π̄ contains the invariant

zero directions associated with the right-half plane invariant zeros, but not the invariant zero

directions associated with the left-half plane invariant zeros. In Section 12.4.3, the nuisance fault

directions are generalized so that Ker Π̄ contains all the invariant zero directions. Furthermore,

this generalization prevents the invariant zeros or their mirror images from becoming part of the

filter eigenvalues. This is important because the invariant zeros or their mirror images might be

ill-conditioned even though stable.

For time-invariant systems, Ker Π̄ ⊇ W2 from Theorem 12.2 and Ker Π̄ ⊇ V2 from the general-

ization of the nuisance fault directions in Section 12.4.3. Then, Ker Π̄ ⊇ T2. By using the result

in (Chung and Speyer, 1998; Chen and Speyer, 2000), it can be shown that Ker Π̄ ⊆ T2. There-

fore, Ker Π̄ is equivalent to the minimal (C,A)-unobservability subspace of F2 and the optimal

stochastic fault detection filter becomes equivalent to the unknown input observer in the limit. For

time-varying systems, Ker Π̄ ⊇ W2 from Theorem 12.2. By using the result in (Chung and Speyer,

1998; Chen and Speyer, 2000), Ker Π̄ is contained in the unobservable subspace of (H̃C, A− LC)

where L is (12.14) and H̃ is (12.25). Therefore, the optimal stochastic fault detection filter places

the nuisance fault into a similar invariant subspace in the limit and extends the unknown input

observer to the time-varying case.

Remark 4. Since P goes to infinity in the limit along Ker Π̄, CPCT goes to infinity along

C Ker Π̄. For time-invariant systems,

C Ker Π̄ = Im
[

CAδ1f1 CAδ2f2 · · · CAδp2fp2

]

because Ker Π̄ = T2. For time-varying systems,

C Ker Π̄ = Im
[

Cb1,δ1 Cb2,δ2 · · · Cbp2,δp2

]

because Ker Π̄ ⊇ W2 and Ker Π̄ is contained in the unobservable subspace of (H̃C, A− LC) where

L is (12.14) and H̃ is (12.25). Therefore, CPCT has p2 infinite eigenvalues in the limit because

dim(C Ker Π̄) = p2. Further, the p2 associated eigenvectors span C Ker Π̄. Therefore, the optimal
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projector (12.18) becomes equivalent to H̃ (12.23), used by the unknown input observer, in the limit

for time-invariant systems. For time-varying systems, (12.18) becomes equivalent to H̃ (12.25).

Note that the nuisance fault is contained in C Ker Π̄ in the output space Y in the limit because the

nuisance fault is contained in Ker Π̄ in the state space X .

Remark 5. By using the optimal filter gain (12.14) and the optimal projector (12.18), the

minimization problem (12.11) can be written as

1
γ

tr{E[h2(t)h2(t)T ]}+ tr{E[hv(t)hv(t)T ]} − tr{E[h1(t)h1(t)T ]} =
m∑

i=p2+1

λi

Then,
tr{E[h2(t)h2(t)T ]}+ γ tr{E[hv(t)hv(t)T ]}

tr{E[h1(t)h1(t)T ]} = γ

{
1 +

∑n
i=k2+1 λi

tr{E[h1(t)h1(t)T ]}
}

In the limit as γ → 0,
tr{E[h2(t)h2(t)T ]}
tr{E[h1(t)h1(t)T ]} → 0

This implies that the nuisance fault transmission is zero in the limit.

12.4.3 Nuisance Fault Direction Generalization

The invariant zero of (C, A, F2) is defined as z at which
[

zI −A F2

C 0

]

loses rank. The invariant zero direction ν is formed from a partitioning of the null space as
[

zI −A F2

C 0

] [
ν
ν̄

]
= 0 (12.32)

When fi, a column vector of F2, has a left-half plane invariant zero zi and the invariant zero

direction is called νi, Ker Π̄ contains Im [ fi Afi · · · Aδifi ], but not Im νi. Also, zi becomes one of

the filter eigenvalues in the limit. If the nuisance fault direction fi is replaced by νi, zi will not

become one of the filter eigenvalues. Furthermore, since Ker Π̄ contains Im [ νi Aνi · · · Aδi+1νi ]

which is equivalent to Im[ fi Afi · · · Aδifi νi ] by (12.32), this generalization will still block the

nuisance fault. Note that Ker Π̄ contains the invariant zero direction now. If the invariant zero

is in the right-half plane, this generalization prevents the mirror image of the invariant zero from

becoming one of the filter eigenvalues in the limit. If (C, A, νi) has invariant zeros, the same

procedure can be repeated until there is no invariant zero. If the invariant zero is associated with
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not just one, but several column vectors of F2, only one of these vectors needs to be replaced by

the invariant zero direction. This will be demonstrated by the numerical example in Section 12.6.3.

Remark 6. In order to be able to detect the target fault, F1 cannot intersect Ker Π̄ which is

unobservable to the residual, i.e., F1 ∩Ker Π̄ = ∅. If it does, the target fault will be difficult or im-

possible to detect because it is blocked from the residual along with the nuisance fault even though

the filter can still be derived by solving the minimization problem. This condition is less restrictive

than the output separability condition, CW1 ∩ CW2 = ∅, required by the unknown input observer

(Massoumnia et al., 1989; Chung and Speyer, 1998). For example, when F1 ∩Ker Π̄ = ∅, but

CW1 ∩ CW2 6= ∅, the optimal stochastic fault detection filter may still be able to detect the target

fault and block the nuisance fault since the filter only creates an invariant subspace for the nuisance

fault, but not the target fault.

12.5 Perturbation Analysis

In Section 12.4, the limiting properties of the Riccati matrices Π and P are determined. However,

what Π and P are in the limit and how they behave near the limit are still unknown. In (Chung

and Speyer, 1998; Chen and Speyer, 2000), the Goh transformation in singular optimal control

theory (Bell and Jacobson, 1975; Moylan and Moore, 1971) is used to determine Π in the limit.

However, the Goh transformation cannot determine Π near the limit. In this section, what Π and P

are in the limit and near the limit is determined by using a perturbation method. The asymptotic

expansions of Π and P are derived in which Π and P are explicitly expressed as functions of γ.

This gives an understanding of the properties of Π and P when γ is small, but not zero which is

the region where the filter design takes place. Although the Goh transformation leads to an elegant

general form, the perturbation method is more direct and insightful. The asymptotic results also

provide a more robust numerical algorithm to solve the Riccati equations near the limit which are

ill-conditioned because of the large parameters. In Section 12.5.1, Π is expanded around γ = 0.

This shows explicitly the characteristics of Π near and in the limit. In the limit, the result is

consistent with the one in (Chung and Speyer, 1998; Chen and Speyer, 2000) derived by using

the Goh transformation. In Section 12.5.2, the inverse of Π is derived. This shows explicitly the

characteristics of P near and in the limit.
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12.5.1 Expansion

In this section, Π is expanded around γ = 0 as

Π =
∞∑

i=0

γ
i
4 Πi (12.33)

By substituting (12.33) into (12.27) and collecting terms of common power, the equations used for

solving (12.33) are obtained in Lemma 12.3.

Lemma 12.3.

Π =
[

u1 u2

] ([
0 0
0 Π022

]
+ γ

1
4

[
0 0
0 Π122

]
+ γ

1
2

[
Π211 Π212

ΠT
212 Π222

]
+ γ

3
4

[
Π311 Π312

ΠT
312 Π322

]
+ · · ·

)[
uT

1

uT
2

]

where

F2Q2F
T
2 =

[
u1 u2

] [
σ 0
0 0

] [
uT

1

uT
2

]
= u1σuT

1

σ > 0 and [u1 u2 ] is unitary. Note that Imu1 = Im F2. Π022, Π211 and Π212 require the solution

to

0 = Π211σΠ211 −R11 (12.34a)

0 = Π211σΠ212 + AT
21Π022 −R12 (12.34b)

−Π̇022 = Π022A22 + AT
22Π022 −Π022Q22Π022 −R22 + ΠT

212σΠ212 (12.34c)

Π122, Π311 and Π312 require the solution to

0 = Π311σΠ211 + Π211σΠ311 (12.35a)

0 = Π211σΠ312 + AT
21Π122 + Π311σΠ212 (12.35b)

−Π̇122 = Π122(A22 −Q22Π022) + (A22 −Q22Π022)T Π122 + ΠT
212σΠ312 + ΠT

312σΠ212 (12.35c)

where
[

A11 A12

A21 A22

]
4
=

[
uT

1

uT
2

]
A

[
u1 u2

]
+

[
u̇T

1 u1 u̇T
1 u2

u̇T
2 u1 u̇T

2 u2

]

[
Q11 Q12

QT
12 Q22

]
4
=

[
uT

1

uT
2

]
(F1Q1F

T
1 −BwQwBT

w)
[

u1 u2

]

[
R11 R12

RT
12 R22

]
4
=

[
uT

1

uT
2

]
CT V −1C

[
u1 u2

]

The equations for the higher-order terms can be found in Appendix 12.7.1.
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Proof. See Appendix 12.7.1.

In Lemma 12.4, the solution of (12.34) and (12.35) is discussed when CF2 6= 0. In Lemma 12.5,

the solution is discussed when CF2 = 0 and C(AF2 − Ḟ2) 6= 0. The higher-order cases, such as

CF2 = C(AF2 − Ḟ2) = 0 and C[A(AF2 − Ḟ2)− d
dτ (AF2 − Ḟ2)] 6= 0, can be considered similarly.

Lemma 12.4. When CF2 6= 0,

Π =
[

u1 u2

]([
0 0
0 Π022

]
+ γ

1
2

[
Π211 Π212

ΠT
212 ΠT

212Π
−1
211Π212 + Π̄222

]
+ γ · · ·

)[
uT

1

uT
2

]
(12.36)

where

−Π̇022 = Π022(A22 −A21R
−1
11 R12) + (A22 −A21R

−1
11 R12)T Π022 + Π022(A21R

−1
11 AT

21 −Q22)Π022

− (R22 −RT
12R

−1
11 R12)

Π211 = R
1/2
11 (R1/2

11 σR
1/2
11 )−1/2R

1/2
11

Π212 = σ−1Π−1
211(R12 −AT

21Π022)

˙̄Π222 = Π̄222(−A22 + Q22Π022 + A21Π−1
211Π212) + (−A22 + Q22Π022 + A21Π−1

211Π212)T Π̄222

Proof. See Appendix 12.7.2.

In the limit, when CF2 6= 0,

Π =
[

u1 u2

] [
0 0
0 Π022

] [
uT

1

uT
2

]
(12.37)

Therefore, Ker Π ⊇ ImF2 in the limit because Imu1 = Im F2. This is consistent with Theorem 12.2

and the result in (Chung and Speyer, 1998; Chen and Speyer, 2000) derived by using the Goh

transformation. For time-invariant systems, the result in Section 12.4 implies that Π022 is positive

definite when (C,A, F2) does not have any invariant zero. If (C,A, F2) has invariant zeros, the

associated nuisance fault direction will be replaced by the invariant zero direction ν. Since Cν = 0

(12.32), the case where Cν = 0 and CAν 6= 0 is included in Lemma 12.5. Therefore, Ker Π = ImF2

and Π022 is positive definite.
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Lemma 12.5. When CF2 = 0 and C(AF2 − Ḟ2) 6= 0,

Π =
[

u1 u2v1 u2v2

]



γ
3
4 Π311 γ

1
2 Π2121 γ

1
2 Π2122

γ
1
2 ΠT

2121 γ
1
4 Π12211 γ

1
4 Π12212

γ
1
2 ΠT

2122 γ
1
4 ΠT

12212 Π02222







uT
1

vT
1 uT

2

vT
2 uT

2


 + · · ·

where [ v1 v2 ] is unitary and Im v1 = Im A21. Only the lowest-order term of each element is kept

for simplicity. The equation for each element can be found in Appendix 12.7.3.

Proof. See Appendix 12.7.3.

In the limit, when CF2 = 0 and C(AF2 − Ḟ2) 6= 0,

Π =
[

u1 u2v1 u2v2

]



0 0 0
0 0 0
0 0 Π02222







uT
1

vT
1 uT

2

vT
2 uT

2


 (12.38)

Since Im v1 = ImA21, u̇T
2 u1 = −uT

2 u̇1 from uT
2 u1 = 0, [ u1 u2 ] is unitary and Imu1 = ImF2,

Im[ u1 u2v1 ] = Im[u1 u2(uT
2 Au1 + u̇T

2 u1) ] = Im[u1 u2u
T
2 (Au1 − u̇1) ]

= Im[u1 (I − u1u
T
1 )(Au1 − u̇1) ] = Im[u1 Au1 − u̇1 ] = Im[F2 AF2 − Ḟ2 ]

Therefore, Ker Π ⊇ Im [F2 AF2−Ḟ2 ] in the limit. This is consistent with Theorem 12.2 and the

result in (Chung and Speyer, 1998; Chen and Speyer, 2000) derived by using the Goh trans-

formation. For time-invariant systems, the result in Section 12.4 implies that Π02222 is posi-

tive definite when (C, A, F2) does not have any invariant zero. If (C, A, F2) has invariant zeros,

the associated nuisance fault direction will be replaced by the invariant zero direction ν. Since

Cν = CAν = 0 (12.32), the case where Cν = CAν = 0 and CA2ν 6= 0 is included in the case where

CF2 = C(AF2 − Ḟ2) = 0 and C[A(AF2 − Ḟ2)− d
dτ (AF2 − Ḟ2)] 6= 0 which can be considered simi-

larly. Therefore, Ker Π = Im [F2 AF2−Ḟ2 ] and Π02222 is positive definite.

12.5.2 Analysis

In this section, the inverse of Π is derived. This shows explicitly the characteristics of P near and

in the limit. The discussion is limited to the time-invariant case because Π022 in (12.37) and Π02222

in (12.38) may not be invertible for the time-varying case. In Lemma 12.6, P is discussed when

CF2 6= 0. In Lemma 12.7, P is discussed when CF2 = 0 and CAF2 6= 0. The higher-order case,

such as CF2 = CAF2 = 0 and CA2F2 6= 0, can be considered similarly.
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Lemma 12.6. When CF2 6= 0,

P =
[
u1 u2

](
γ
−1
2

[
Π−1

211 0
0 0

]
+

[
Π−1

211(Π212Π−1
022Π

T
212 −Π411)Π−1

211 −Π−1
211Π212Π−1

022

−Π−1
022Π

T
212Π

−1
211 Π−1

022

]
+ · · ·

)[
uT

1

uT
2

]

(12.39)

Proof. By using Lemma 12.4 and matrix inversion lemma, P in the above form is obtained.

Lemma 12.7. When CF2 = 0 and CAF2 6= 0,

P =
[ [

u1 u2v1

]
u2v2

] [
Π̄11 Π̄12

Π̄T
12 Π−1

02222

] 


[
uT

1

vT
1 uT

2

]

vT
2 uT

2


 + · · · (12.40)

where

Π̄11 =
[

γ−3/4(Π311−Π2121Π−1
12211Π

T
2121)

−1 −γ−1/2Π−1
311Π2121(Π12211−ΠT

2121Π
−1
311Π2121)−1

−γ−1/2(Π12211−ΠT
2121Π

−1
311Π2121)−1ΠT

2121Π
−1
311 γ−1/4(Π12211−ΠT

2121Π
−1
311Π2121)−1

]

Π̄12 =
[

0
(Π12211 −ΠT

2121Π
−1
311Π2121)−1(ΠT

2121Π
−1
311Π2122 −Π12212)

]

Only the lowest-order term of each element is kept for simplicity.

Proof. See Appendix 12.7.4.

In the limit, when CF2 6= 0, Lemma 12.6 shows that P goes to infinity in the direction of

ImF2. When CF2 = 0 and CAF2 6= 0, Lemma 12.7 shows that P goes to infinity in the direction

of Im [F2 AF2 ].

Remark 7. By using the result in (Kwakernaak and Sivan, 1972b), for the time-invariant and

infinite-time case, under the assumption that (C, A, F2) does not have right-half plane invariant

zeros,

γP → 0 (12.41a)

L → 1
γ1/2

F2Q
1/2
2 UT V −1/2 (12.41b)

as γ → 0 where U is an arbitrary m by p2 matrix such that UT U = I.

By multiplying (12.39) and (12.40) by γ, (12.41a) is satisfied. By substituting (12.39) into

(12.14),

L → 1
γ1/2

u1Π−1
211u

T
1 CT V −1

185



as γ → 0. Then, L goes to infinity along the direction of 1
γ1/2 ImF2 which is consistent with

(12.41b). By substituting (12.40) into (12.14),

L → 1
γ1/2

u1Π−1
311Π2121(Π12211 −ΠT

2121Π
−1
311Π2121)−1vT

1 uT
2 CT

+
1

γ1/4
u2v1(Π12211 −ΠT

2121Π
−1
311Π2121)−1vT

1 uT
2 CT

as γ → 0. Then, L goes to infinity essentially along the direction of 1
γ1/2 ImF2 which is consistent

with (12.41b). Note that L also goes to infinity along the direction of 1
γ1/4 Im [AF2 F2 ]. Therefore,

the perturbation method is consistent with (Kwakernaak and Sivan, 1972b), but provides more

information about L and P than (Kwakernaak and Sivan, 1972b). The perturbation method can

also be applied to the singular optimal control problem to obtain a more precise interpretation of

the behavior of the Riccati equation near the singular surface.

12.6 Example

In this section, four numerical examples are used to demonstrate the performance and properties

of the optimal stochastic fault detection filter. In Section 12.6.1, the filter is applied to a time-

invariant system. In Section 12.6.2, the filter is applied to a time-varying system. In Section 12.6.3,

the null space of the Riccati matrix Π in the limit is discussed. In Section 12.6.4, the effect of the

target fault’s power spectral density Q1 on the Riccati matrix P and the filter is discussed.

12.6.1 Example 1

In this section, three cases are presented to show the performance of the optimal stochastic fault

detection filter. The time-invariant system is from (White and Speyer, 1987).

A =




0 3 4
1 2 3
0 2 5


 , C =

[
0 1 0
0 0 1

]
, F1 =




0
0
1


 , F2 =




5
1
1




F1 is the target fault direction. F2 is the nuisance fault direction. There is no process noise.

In the first case, the power spectral densities are chosen as Q1 = 1, Q2 = 1 and V = I. The

steady-state solutions to the Riccati equation (12.13) when γ = 10−4 and 10−6 are obtained, re-

spectively. Figure 12.1 shows the frequency response from both faults to the residual (12.7). The

left one is γ = 10−4 and the right one is γ = 10−6. In each figure, there are two solid lines repre-

senting the frequency response from the target fault to the residuals with projectors (12.18) and
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Figure 12.1: Frequency response from both faults to the residual

(12.23), respectively. Note that the two solid lines overlap. The dashdot line and the dashed line

represent the frequency response from the nuisance fault to the residuals with projectors (12.18)

and (12.23), respectively. This case shows that the nuisance fault transmission can be reduced by

using a smaller γ while the target fault transmission is not affected. Further, the projector (12.18),

derived from solving the minimization problem, is better than (12.23), used by other approximate

unknown input observers (Chung and Speyer, 1998; Chen and Speyer, 2000), at low frequency. This

suggests that (12.23) might not be the best choice for the approximate unknown input observer.

In the second case, Q2 = 1, V = I and γ = 10−6. The steady-state solutions to the Riccati

equation (12.13) when Q1 = 1 and 10 are obtained, respectively. The left figure of Figure 12.2

shows the frequency response from the target fault to the residual. This case shows that the target

fault transmission can be enhanced by using a larger Q1.

In the third case, Q1 = 1, Q2 = 1 and γ = 10−6. The steady-state solutions to the Riccati

equation (12.13) when V = I and 10I are obtained, respectively. The right figure of Figure 12.2

shows the frequency response from the sensor noise to the residual. This case shows that the sensor

noise transmission can be reduced by using a larger V .
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Figure 12.2: Frequency response from the target fault and the sensor noise to the residual

12.6.2 Example 2

A time-varying system is obtained by adding some time-varying elements to A and F2 matrices of

the time-invariant system in previous section. C and F1 matrices are kept the same.

A =



−cos(t) 3 + 2sin(t) 4

1 2 3− 2cos(t)
5sin(t) 2 5 + 3cos(t)


 , F2 =




5− 2cos(t)
1

1 + sin(t)




The Riccati equation (12.13) is solved with Q1 = 1, Q2 = 1, V = I and γ = 10−5 for t ∈ [0, 25].

Figure 12.3 shows the time response of the residual (12.7) when there is no fault, a target fault

and a nuisance fault, respectively. The left three figures use projector (12.18) and the right three

figures use projector (12.25). In each case, there is no sensor noise. The faults are unit steps that

occur at the fifth second. There is a transient response until about two seconds due to the initial

condition error. This example shows that the filter works well for time-varying systems. Further,

the projector (12.18), derived from solving the minimization problem, is better than (12.25), used

by other approximate unknown input observers (Chung and Speyer, 1998; Chen and Speyer, 2000).
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Figure 12.3: Time response of the residual

12.6.3 Example 3

In this section, four cases are presented to show the properties of the Riccati matrix Π in the limit.

The first case shows that Ker(Π|γ=0) contains the nuisance fault direction and the invariant zero

direction associated with the right-half plane invariant zero. One of the filter eigenvalues is near

the mirror image of the invariant zero. The second case shows that none of the filter eigenvalues

is near the mirror image of the invariant zero if the nuisance fault direction is modified. The third

case shows that Ker(Π|γ=0) contains only the nuisance fault direction, but not the invariant zero

direction associated with the left-half plane invariant zero. One of the filter eigenvalues is near the

invariant zero. The fourth case shows that Ker(Π|γ=0) contains the nuisance fault direction and

the invariant zero direction associated with the left-half plane invariant zero if the nuisance fault

direction is modified. Further, none of the filter eigenvalues is near the invariant zero.

In the first case, A and C matrices are the same as the example in Section 12.6.1 and

F1 =




1
−0.5
0.5


 , F2 =



−3
1
0




(C,A, F2) has an invariant zero at 3 and the invariant zero direction ν is [ 1 0 0 ]T . The power
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spectral densities are chosen as Q1 = 1, Q2 = 1 and V = I. The steady-state solutions to the

Riccati equation (12.27) when γ = 10−6 and Lemma 12.4 when γ = 0 are

Π|γ=10−6 =




0.0000 −0.0000 0.0000
−0.0000 0.0010 −0.0002

0.0000 −0.0002 0.0965


 , Π|γ=0 =




0 0 0
0 0 0
0 0 0.0965




This shows that Ker(Π|γ=0) contains the nuisance fault direction and the invariant zero direction

associated with the right-half plane invariant zero. The filter has an eigenvalue near the mirror

image of the invariant zero at -3.00002.

In the second case, the nuisance fault direction used for the filter design is changed to ν. The

power spectral densities are the same. The steady-state solutions to the Riccati equation (12.27)

when γ = 10−6 and Lemma 12.5 when γ = 0 are

Π|γ=10−6 =




0.0000 −0.0000 0.0000
−0.0000 0.0044 −0.0009

0.0000 −0.0009 0.0967


 , Π|γ=0 =




0 0 0
0 0 0
0 0 0.0965




This shows that Ker(Π|γ=0) contains F2 and ν. The filter does not have any eigenvalue near the

mirror image of the invariant zero.

The third case is obtained from modifying the first case such that the invariant zero is in the

left-half plane instead of the right-half plane. The system matrices are the same except

C =
[

1 0 0
0 0 1

]
, F2 =




1.5
2
1




(C,A, F2) has an invariant zero at -2 and the invariant zero direction ν is [ 0 1 0 ]T . The power

spectral densities are the same. The steady-state solutions to the Riccati equation (12.27) when

γ = 10−6 and Lemma 12.4 when γ = 0 are

Π|γ=10−6 =




9.8610 −6.1084 −2.5869
−6.1084 3.8176 1.5357
−2.5869 1.5357 0.8127


 , Π|γ=0 =




9.7791 −6.0530 −2.5626
−6.0530 3.7801 1.5192
−2.5626 1.5192 0.8055




This shows that Ker(Π|γ=0) contains only the nuisance fault direction, but not the invariant zero

direction associated with the left-half plane invariant zero. The filter has an eigenvalue near the

invariant zero at -1.9999.

In the fourth case, the nuisance fault direction used for the filter design is changed to ν. The

power spectral densities are the same. The steady-state solutions to the Riccati equation (12.27)
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when γ = 10−6 and Lemma 12.5 when γ = 0 are

Π|γ=10−6 =




0.0890 −0.0000 −0.1292
−0.0000 0.0000 −0.0000
−0.1292 −0.0000 0.1951


 , Π|γ=0 =




0.0866 0 −0.1299
0 0 0

−0.1299 0 0.1949




This shows that Ker(Π|γ=0) contains F2 and ν. The filter does not have any eigenvalue near the

invariant zero.

12.6.4 Example 4

This example shows how the target fault’s power spectral density Q1 affects the Riccati matrix P

and the filter. The system matrices are

A =
[ −3 2
−5 −1

]
, C =

[
1 0
0 1

]
, F1 =

[
1
0

]
, F2 =

[
0
1

]

F1 is the target fault direction. F2 is the nuisance fault direction. There is no process noise.

The steady-state solutions to the Riccati equation (12.13) with Q2 = 1, V = I and γ = 10−5 are

obtained for Q1 between 0 and 12. When Q1 is larger than 12.99, there exists a finite escape time.

The upper two figures of Figure 12.4 show how Q1 affects the definiteness of P by plotting the

eigenvalues of P versus Q1. When Q1 increases, one of the eigenvalues becomes smaller showing that

P is less positive definite and eventually, P becomes indefinite. The lower two figures of Figure 12.4

show how Q1 affects the filter eigenvalues. When Q1 increases, one of the filter eigenvalues moves

towards the imaginary axis. Note that it is possible that the filter is stable while P is indefinite.

This is very different from (Chung and Speyer, 1998; Chen and Speyer, 2000) where Π, the inverse

of P , is used because while P is indefinite and does not have a finite escape time, Π has a finite

escape time. This implies that the optimal stochastic fault detection filter may be made more

sensitive to the target fault than (Chen and Speyer, 2000).
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Figure 12.4: Eigenvalues of the Riccati matrix P and the filter for different Q1

12.7 Appendix

12.7.1 Proof of Lemma 12.3

By substituting (12.33) into (12.27) and collecting terms of common power,

γ−1 : 0 = Π0Q̄2Π0 (12.42a)

γ−3/4 : 0 = Π1Q̄2Π0 + Π0Q̄2Π1 (12.42b)

γ−1/2 : 0 = Π2Q̄2Π0 + Π1Q̄2Π1 + Π0Q̄2Π2 (12.42c)

γ−1/4 : 0 = Π3Q̄2Π0 + Π2Q̄2Π1 + Π1Q̄2Π2 + Π0Q̄2Π3 (12.42d)

γ0 : −Π̇0 = Π0A + AT Π0 − CT V −1C + Π4Q̄2Π0 + Π3Q̄2Π1 + Π2Q̄2Π2 + Π1Q̄2Π3 + Π0Q̄2Π4

−Π0Q̄1Π0 (12.42e)

γ1/4 : −Π̇1 = Π1A + AT Π1 + Π5Q̄2Π0 + Π4Q̄2Π1 + Π3Q̄2Π2 + Π2Q̄2Π3 + Π1Q̄2Π4 + Π0Q̄2Π5

−Π1Q̄1Π0 −Π0Q̄1Π1 (12.42f)

γ1/2 : −Π̇2 = Π2A + AT Π2 + Π6Q̄2Π0 + Π5Q̄2Π1 + Π4Q̄2Π2 + Π3Q̄2Π3 + Π2Q̄2Π4 + Π1Q̄2Π5

+ Π0Q̄2Π6 −Π2Q̄1Π0 −Π1Q̄1Π1 −Π0Q̄1Π2 (12.42g)
...
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where Q̄2 = F2Q2F
T
2 and Q̄1 = F1Q1F

T
1 −BwQwBT

w .

From (12.42a), Ker Π0 contains F2. Then, Π0 can be written as

Π0 =
[

u1 u2

] [
0 0
0 Π022

] [
uT

1

uT
2

]
= u2Π022u

T
2 (12.43)

where Π022 is to be determined. (12.42b) is trivially satisfied because of (12.43). By substituting

(12.43) into (12.42c), Π1 can be written as

Π1 =
[

u1 u2

] [
0 0
0 Π122

] [
uT

1

uT
2

]
= u2Π122u

T
2 (12.44)

where Π122 is to be determined. (12.42d) is trivially satisfied because of (12.43) and (12.44).

By using (12.43) and (12.44), (12.42e) becomes

−Π̇0 = Π0A + AT Π0 − CT V −1C + Π2Q̄2Π2 −Π0Q̄1Π0 (12.45)

Let

Π2 =
[

u1 u2

] [
Π211 Π212

ΠT
212 Π222

] [
uT

1

uT
2

]
(12.46)

By multiplying (12.45) by [u1 u2 ]T from the left and [u1 u2 ] from the right and substituting

(12.43) and (12.46), (12.34) is obtained. Note that (12.34) is solved for Π022, Π211 and Π212.

By using (12.43) and (12.44), (12.42f) becomes

−Π̇1 = Π1(A− Q̄1Π0) + (A− Q̄1Π0)T Π1 + Π2Q̄2Π3 + Π3Q̄2Π2 (12.47)

Let

Π3 =
[

u1 u2

] [
Π311 Π312

ΠT
312 Π322

] [
uT

1

uT
2

]
(12.48)

By multiplying (12.47) by [u1 u2 ]T from the left and [u1 u2 ] from the right and substituting

(12.43), (12.44), (12.46) and (12.48), (12.35) is obtained. Note that (12.35) is solved for Π122, Π311

and Π312.

By using (12.43) and (12.44), (12.42g) becomes

−Π̇2 = Π2(A− Q̄1Π0 + Q̄2Π4) + (A− Q̄1Π0 + Q̄2Π4)T Π2 + Π3Q̄2Π3 −Π1Q̄1Π1 (12.49)

Let

Π4 =
[

u1 u2

] [
Π411 Π412

ΠT
412 Π422

] [
uT

1

uT
2

]
(12.50)
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By multiplying (12.49) by [u1 u2 ]T from the left and [u1 u2 ] from the right and substituting

(12.43), (12.44), (12.46), (12.48) and (12.50),

0 = Π411σΠ211 + Π211σΠ411 + Π311σΠ311 + Π211A11 + AT
11Π211 + Π212A21 + AT

21Π
T
212 + Π̇211

(12.51a)

0 = Π211σΠ412 + AT
21Π222 + Π411σΠ212 + AT

11Π212 + Π212A22 + Π211A12

−Π212Q22Π022 −Π211Q12Π022 + Π311σΠ312 + Π̇212 (12.51b)

−Π̇222 = Π222(A22 −Q22Π022) + (A22 −Q22Π022)T Π222 + ΠT
212(A12 −Q12Π022 + σΠ412)

+ (A12 −Q12Π022 + σΠ412)T Π212 + ΠT
312σΠ312 −Π122Q22Π122 (12.51c)

Note that (12.51) is solved for Π222, Π411 and Π412. In (12.51a) and (12.51b), Π̇211 and Π̇212 are

known by taking the derivative of (12.34a) and (12.34b). The same procedure can be done for the

higher-order terms if needed.

Remark 8. For time-invariant systems, [u1 u2 ] can be obtained from the singular value de-

composition of F2Q2F
T
2 and [ u̇1 u̇2 ] = 0. For time-varying systems, u1 and u2 have to be formed

differently. Since Imu1 = ImF2, u1 can be chosen as F2(F T
2 F2)−1/2. Since [u1 u2 ] is unitary, u2

has to satisfy uT
1 u2 = 0 and uT

2 u2 = I. Define U1 = I − u1u
T
1 . Since uT

1 U1 = 0, the first column of

u2, called u21, can be chosen as u21 = U1i(UT
1iU1i)−1/2 where U1i is any nonzero column of U1. Note

that uT
1 u21 = 0 and uT

21u21 = 1. Next, define U2 = I − [ u1 u21 ][ u1 u21 ]T . Since [u1 u21 ]T U2 = 0,

the second column of u2, called u22, can be chosen as u22 = U2i(UT
2iU2i)−1/2 where U2i is any

nonzero column of U2. Note that uT
1 [ u21 u22 ] = 0 and [u21 u22 ]T [ u21 u22 ] = I. Other direc-

tions of u2 can be obtained similarly. Note that u1 and u2 are not unique. The derivative of

u1 and u2 can also be obtained since u1 and u2 are explicitly written as functions of time.

12.7.2 Proof of Lemma 12.4

When CF2 6= 0, R11 is positive definite because Imu1 = Im F2. Then, from (12.34a),

Π211 = R
1/2
11 (R1/2

11 σR
1/2
11 )−1/2R

1/2
11

Note that Π211 is positive definite. From (12.34b),

Π212 = σ−1Π−1
211(R12 −AT

21Π022) (12.52)
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By substituting (12.52) into (12.34c) and using (12.34a),

−Π̇022 = Π022(A22 −A21R
−1
11 R12) + (A22 −A21R

−1
11 R12)T Π022 + Π022(A21R

−1
11 AT

21 −Q22)Π022

− (R22 −RT
12R

−1
11 R12) (12.53)

Therefore, the zeroth-order term Π0 (12.43) can be obtained by solving (12.53). Part of the second-

order term Π2 (12.46) can be obtained from (12.34a) and (12.52).

From (12.35a),

Π311 = 0 (12.54)

because σ and Π211 are positive definite. By substituting (12.54) into (12.35b),

Π312 = −σ−1Π−1
211A

T
21Π122 (12.55)

By substituting (12.55) into (12.35c),

Π̇122 = Π122(−A22 + Q22Π022 + A21Π−1
211Π212) + (−A22 + Q22Π022 + A21Π−1

211Π212)T Π122 (12.56)

Since (12.56) is a homogeneous equation and the initial condition is zero,

Π122 = 0 (12.57)

By substituting (12.57) into (12.55),

Π312 = 0 (12.58)

Therefore, the first-order term Π1 (12.44) is zero from (12.57). Part of the third-order term Π3

(12.48) is also zero from (12.54) and (12.58).

By substituting (12.54) into (12.51a) and (12.51b),

0 = Π411σΠ211 + Π211σΠ411 + Π211A11 + AT
11Π211 + Π212A21 + AT

21Π
T
212 + Π̇211 (12.59)

Π412 = −σ−1Π−1
211[A

T
21Π222 + Π411σΠ212 + AT

11Π212 + Π212A22 + Π211A12

−Π212Q22Π022 −Π211Q12Π022 + Π̇211] (12.60)

Define Π̄222
4
= Π222 −ΠT

212Π
−1
211Π212. By substituting (12.57), (12.58) and (12.60) into (12.51c) and

using (12.59),

˙̄Π222 = Π̄222(−A22 + Q22Π022 + A21Π−1
211Π212) + (−A22 + Q22Π022 + A21Π−1

211Π212)T Π̄222 (12.61)
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Therefore, the second-order term Π2 (12.46) can be obtained from (12.34a), (12.52) and (12.61).

Part of the fourth-order term Π4 (12.50) can be obtained from (12.59) and (12.60). In (12.59)

and (12.60), Π̇211 and Π̇212 are known by taking the derivative of (12.34a) and (12.52). The same

procedure can be done for the higher-order terms if needed, i.e., obtaining Π322 and Π422.

Remark 9. Since Π211 and Π212, the lowest-order terms of the (1,1) and (1,2) elements of the

expansion of Π, are obtained from the algebraic equations (12.34a) and (12.52), the initial condition

Π(t0) = P−1
0 cannot be completely satisfied. This is because the dimension of the differential Riccati

equation (12.27) is reduced in the limit as γ → 0. This leads to the occurrence of a boundary layer

(Nayfeh, 1973). Note that the expansion of Π (12.36) is valid everywhere except near τ = 0 and is

called the outer expansion. The inner expansion, which is only valid near τ = 0 and approximates

the boundary layer, can be obtained by using fast time scales (Nayfeh, 1973). Since the inner

expansion is only valid for a very short period of time, the focus will be placed on generating the

boundary layer which will be used as the initial condition of the outer expansion. Note that only

the (2,2) element of the outer expansion needs an initial condition. By applying a new fast time

scale ζ = τ/γ to (12.27) and substituting

Π = ΠIN
0 + γ1/2ΠIN

2 + γΠIN
4 + · · ·

where the superscript IN denotes the inner expansion, the collection of terms of common power

yields the asymptotic boundary layer dynamics as

γ−1 : − d

dζ
ΠIN

0 = ΠIN
0 Q̄2ΠIN

0 , ΠIN
0 (t0) = Π(t0)

γ−1/2 : − d

dζ
ΠIN

2 = ΠIN
2 Q̄2ΠIN

0 + ΠIN
0 Q̄2ΠIN

2 , ΠIN
2 (t0) = 0

...

The initial condition of the outer expansion is obtained by matching it with the steady-state

solution of the inner expansion (Nayfeh, 1973) as

Π022|τ=t0 = ΠIN
022|ζ→∞

Π222|τ=t0 = ΠIN
222|ζ→∞

Since Q̄2 = F2Q2F
T
2 is apriori known, Π022(t0) and Π222(t0) can be obtained apriori. The ini-

tial condition of the higher-order terms can be obtained similarly. Note that in the limit as
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γ → 0, the fast time scale ζ →∞ and there is an instant jump at the initial time. This is con-

sistent with the Goh transformation (Chung and Speyer, 1998; Bell and Jacobson, 1975).

Remark 10. By using (12.52) and (12.53),

−A22 + Q22Π022 + A21Π−1
211Π212 = −(A22 −A21R

−1
11 R12)− (A21R

−1
11 AT

21 −Q22)Π022

= (A22 −A21R
−1
11 R12)−Π−1

022(R22 −RT
12R

−1
11 R12) (12.62)

For the time-invariant and infinite-time case, given that (A22 −A21R
−1
11 R12)−Π−1

022(R22 −RT
12

R−1
11 R12), the closed-loop A matrix of (12.53), is stable. Then, from (12.61),

Π̄222 = 0

12.7.3 Proof of Lemma 12.5

When CF2 = 0, R11 = 0 and R12 = 0 because Imu1 = Im F2. From (12.34a),

Π211 = 0 (12.63)

because σ is positive definite. By substituting (12.63) into (12.34b),

Π022A21 = 0 (12.64)

Then, Π022 can be written as

Π022 =
[

v1 v2

] [
0 0
0 Π02222

] [
vT
1

vT
2

]
(12.65)

and

Π212 =
[

Π2121 Π2122

] [
vT
1

vT
2

]
(12.66)

where [ v1 v2 ] is unitary and Im v1 = Im A21. By multiplying (12.34c) by [ v1 v2 ]T from the left

and [ v1 v2 ] from the right and substituting (12.65) and (12.66),

0 = ΠT
2121σΠ2121 −R2211 (12.67a)

0 = ΠT
2121σΠ2122 + AT

2221Π02222 −R2212 (12.67b)

−Π̇02222 = Π02222A2222 + AT
2222Π02222 −Π02222Q2222Π02222 −R2222 + ΠT

2122σΠ2122 (12.67c)
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where
[

A2211 A2212

A2221 A2222

]
4
=

[
vT
1

vT
2

]
A22

[
v1 v2

]
+

[
v̇T
1 v1 v̇T

1 v2

v̇T
2 v1 v̇T

2 v2

]

[
Q2211 Q2212

QT
2212 Q2222

]
4
=

[
vT
1

vT
2

]
Q22

[
v1 v2

]

[
R2211 R2212

RT
2212 R2222

]
4
=

[
vT
1

vT
2

]
R22

[
v1 v2

]

Note that Π2121 cannot be determined uniquely from (12.67a) because it is not symmetric. However,

additional constraints will be obtained later to determine Π2121 with (12.67a). Since Imu1 = ImF2,

Cu1 = 0 and C(Au1 − u̇1) 6= 0. Since R2211 = vT
1 uT

2 CT V −1Cu2v1 and Im v1 = ImA21, R2211 is

positive definite because

AT
21u

T
2 CT V −1Cu2A21 = (uT

1 AT u2 − u̇T
1 u2)uT

2 CT V −1Cu2(uT
2 Au1 − uT

2 u̇1)

= (uT
1 AT − u̇T

1 )(I − u1u
T
1 )CT V −1C(I − u1u

T
1 )(Au1 − u̇1) = (Au1 − u̇1)T CT V −1C(Au1 − u̇1)>0

Therefore, , Π2121 is invertible. Then, from (12.67b),

Π2122 = σ−1Π−T
2121(R2212 −AT

2221Π02222) (12.68)

By substituting (12.68) into (12.67c) and using (12.67a),

−Π̇02222 = Π02222(A2222 −A2221R
−1
2211R2212) + (A2222 −A2221R

−1
2211R2212)T Π02222

+ Π02222(A2221R
−1
2211A

T
2221 −Q2222)Π02222 − (R2222 −RT

2212R
−1
2211R2212) (12.69)

Therefore, the zeroth-order term Π0 (12.43) can be obtained from (12.65) and (12.69). Part of the

second-order term Π2 (12.46) can be obtained from (12.63).

By substituting (12.63) into (12.35a), the equation becomes trivial. By substituting (12.63)

into (12.51a),

0 = Π311σΠ311 + Π212A21 + AT
21Π

T
212 (12.70)

By substituting (12.66) into (12.70),

0 = Π311σΠ311 + Π2121v
T
1 A21 + AT

21v1ΠT
2121 (12.71)

because vT
2 A21 = 0. Let

Π122 =
[

v1 v2

] [
Π12211 Π12212

ΠT
12212 Π12222

] [
vT
1

vT
2

]
(12.72)
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and

Π312 =
[

Π3121 Π3122

] [
vT
1

vT
2

]
(12.73)

By multiplying (12.35b) by [ v1 v2 ] from the right and substituting (12.63), (12.66) and (12.72),

Π12211 = −(AT
21v1)−1Π311σΠ2121 (12.74a)

Π12212 = −(AT
21v1)−1Π311σΠ2122 (12.74b)

Note that vT
1 A21 is invertible because ImA21 = Im v1. Since Π12211 is symmetric,

(AT
21v1)−1Π311σΠ2121 = ΠT

2121σΠ311(vT
1 A21)−1 (12.75)

By combining (12.75) with (12.67a) and (12.71), Π2121 and Π311 can be determine uniquely. By

multiplying (12.35c) by [ v1 v2 ]T from the left and [ v1 v2 ] from the right and substituting (12.65),

(12.66) (12.72) and (12.73),

0 = ΠT
2121σΠ3121 + ΠT

3121σΠ2121 + Π12211A2211 + Π12212A2221 + AT
2211Π12211 + AT

2221Π
T
12212

+ Π̇12211 (12.76a)

0 = ΠT
2121σΠ3122 + ΠT

3121σΠ2122 + AT
2221Π12222 + AT

2211Π12212 + Π12211A2212 + Π12212A2222

−Π12211Q2212Π02222 −Π12212Q2222Π02222 + Π̇12212 (12.76b)

−Π̇12222 = Π12222(A2222 −Q2222Π02222) + (A2222 −Q2222Π02222)T Π12222

+ ΠT
12212(A2212 −Q2212Π02222) + (A2212 −Q2212Π02222)T Π12212

+ ΠT
2122σΠ3122 + ΠT

3122σΠ2122 (12.76c)

From (12.76b),

Π3122 = −σ−1Π−T
2121(Π

T
3121σΠ2122 + AT

2221Π12222 + AT
2211Π12212 + Π12211A2212 + Π12212A2222

−Π12211Q2212Π02222 −Π12212Q2222Π02222 + Π̇12212) (12.77)
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By substituting (12.77) into (12.76c) and using (12.76a),

−Π̇12222 = Π12222(A2222 −Q2222Π02222 −A2221Π−1
2121Π2122)

+ (A2222 −Q2222Π02222 −A2221Π−1
2121Π2122)T Π12222

+ ΠT
12212(A2212 −Q2212Π02222) + (A2212 −Q2212Π02222)T Π12212

+ ΠT
2122Π

−T
2121(Π12211A2211+AT

2211Π12211+Π12212A2221+AT
2221Π

T
12212+Π̇12211)Π−1

2121Π2122

−ΠT
2122Π

−T
2121(Π12211A2212 −Π12211Q2212Π02222 + Π12212A2222 −Π12212Q2222Π02222

+ AT
2211Π12212 + AT

2221Π12222 + Π̇12212)

− (Π12211A2212−Π12211Q2212Π02222+Π12212A2222−Π12212Q2222Π02222+AT
2211Π12212

+ AT
2221Π12222 + Π̇12212)T Π−1

2121Π2122 (12.78)

Therefore, part of the second-order term Π2 (12.46) and part of the third-order term Π3 (12.48) can

be obtained by solving (12.67a), (12.71) and (12.75) and using (12.66) and (12.68). The first-order

term Π1 (12.44) can be obtained from (12.72), (12.74) and (12.78). Part of the third-order term

Π3 (12.48) can be obtained from (12.73), (12.76a) and (12.77). The same procedure can be done

for the higher order terms if needed, i.e., obtaining Π222 and Π322.

Therefore, Π can be expressed as

Π =
[

u1 u2

]



γ3/4Π311 γ1/2Π212

γ1/2ΠT
212

[
v1 v2

] [
γ1/4Π12211 γ1/4Π12212

γ1/4ΠT
12212 Π02222 + γ1/4Π12222

] [
vT
1

vT
2

]



[
uT

1

uT
2

]
+ · · ·

=
[

u1 u2v1 u2v2

]



γ3/4Π311 γ1/2Π2121 γ1/2Π2122

γ1/2ΠT
2121 γ1/4Π12211 γ1/4Π12212

γ1/2ΠT
2122 γ1/4ΠT

12212 Π02222 + γ1/4Π12222







uT
1

vT
1 uT

2

vT
2 uT

2


 + · · ·

Note that only the lowest-order term for each element is kept for simplicity.

Remark 11. By multiplying (12.64) by u2 from the left and substituting u̇T
2 u1 = −uT

2 u̇1,

Π0(Au1 − u̇1) = 0

Since Imu1 = Im F2, Π0(AF2 − Ḟ2) = 0. Therefore, Ker Π0 contains F2 and AF2.

Remark 12. The initial condition of Π02222 and Π12222 can be obtained by using a fast time scale

similarly as Lemma 12.4.
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12.7.4 Proof of Lemma 12.7

By using Lemma 12.5 and matrix inversion lemma,

P = Π−1 =
[

u1 u2v1 u2v2

]



γ3/4Π311 γ1/2Π2121 γ1/2Π2122

γ1/2ΠT
2121 γ1/4Π12211 γ1/4Π12212

γ1/2ΠT
2122 γ1/4ΠT

12212 Π02222



−1 


uT

1

vT
1 uT

2

vT
2 uT

2


 + · · ·

=
[ [

u1 u2v1

]
u2v2

] [
Π̄11 Π̄12

Π̄T
12 Π−1

02222

] 


[
uT

1

vT
1 uT

2

]

vT
2 uT

2


 + · · ·

where

Π̄11 =
[

γ−3/4(Π311−Π2121Π−1
12211Π

T
2121)

−1 −γ−1/2Π−1
311Π2121(Π12211−ΠT

2121Π
−1
311Π2121)−1

−γ−1/2(Π12211−ΠT
2121Π

−1
311Π2121)−1ΠT

2121Π
−1
311 γ−1/4(Π12211−ΠT

2121Π
−1
311Π2121)−1

]

Π̄12 =
[

γ−1/4[Π−1
311Π2121(Π12211 −ΠT

2121Π
−1
311Π2121)−1Π12212 − (Π311 −Π2121Π−1

12211Π
T
2121)

−1Π2122]
(Π12211 −ΠT

2121Π
−1
311Π2121)−1(ΠT

2121Π
−1
311Π2122 −Π12212)

]

Note that Π311, Π12211 and Π02222 are invertible from Appendix 12.7.3. By using (12.74a) and

(12.71),

Π12211 −ΠT
2121Π

−1
311Π2121 = ΠT

2121Π
−1
311(A

T
21v1)ΠT

2121(v
T
1 A21)−1

Since Π2121 is invertible, Π12211 −ΠT
2121Π

−1
311Π2121 is invertible. By using matrix inversion lemma,

(Π311 −Π2121Π−1
12211Π

T
2121)

−1 = Π−1
311 + Π−1

311Π2121(Π12211 −ΠT
2121Π

−1
311Π2121)−1ΠT

2121Π
−1
311

Then, Π311 −Π2121Π−1
12211Π

T
2121 is also invertible.

By using matrix inversion lemma and substituting (12.74) and (12.75), the coefficient of the

γ−1/4 term in (1, 1)-element of Π̄12 is zero.

Π−1
311Π2121(Π12211 −ΠT

2121Π
−1
311Π2121)−1Π12212 − (Π311 −Π2121Π−1

12211Π
T
2121)

−1Π2122

=Π−1
311Π2121(Π12211 −ΠT

2121Π
−1
311Π2121)−1(Π12212 −ΠT

2121Π
−1
311Π2122)−Π−1

311Π2122

=0

Then, Π̄12 remains finite in the limit.
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Chapter 13

Conclusion

Analytical redundancy is a viable approach to vehicle health monitoring. The vehicle health

monitoring system including residual generator and residual processor is evaluated in real-time on

a PATH Buick LeSabre at Crow’s Landing. The health monitoring system can detect and identify

vehicle actuator and sensor failures with probability under various disturbances and uncertainties

including sensor noise, road noise, system parameter variations, unmodeled dynamics and nonlin-

earities. The design as presented is intended to be packaged as a module to be used by the vehicle

health management system under development by the UC Berkeley team.
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Appendix A

Vehicle Dynamics Data

A.1 Linear Vehicle Model at 20 m/s

The reduced-order longitudinal model derived when the vehicle is traveling at 20 m/s is

ẋ = Ax + Bu

y = Cx

where

A =




−9.1179 −0.0737 0 0 0
378.1792 −52.6035 542.0456 −0.6104 −36160.7905

0 0.0539 −0.5598 0.0006 27.1410
0 −0.0001 0.0006 −0.0000 −448.3132
0 0 0.0011 1.0000 0
0 0 0 0 0
0 −0.0257 0.2633 −0.0003 −106.5309
0 0 0 0 66.3437
0 0 0 0 48.6827
0 0 0 0 0

0 0 0 0 0
38278.6530 −273.5986 18078.5219 0 −0.0549
−38.2600 0.3007 −17.8643 0.1238 −0.0019
−155.9259 20.0007 112.0907 112.0683 0.0000
−20.0010 0 0 0 0

0 1.0000 0 0 0
−540.7918 −0.1329 −62.1835 117.3693 0.0009
−70.2314 0 −39.2622 0 0

85.4589 0 0 −32.6411 0
0 0 0 0 −1.2500



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B =




2.6048 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 1.2500




C =




19.3272 0 0 0 0
0 1.0000 0 0 0
0 0.0539 −0.5598 0.0006 27.1410
0 0.0372 6.3838 −0.0072 −425.8747
0 0 6.5305 −0.0074 −426.4547

0 0 0 0 0
0 0 0 0 0

−38.2600 0.3007 −17.8643 0.1238 −0.0019
450.8173 −3.2222 212.9153 0 −0.0006

−748.6173 −3.2294 0 213.1967 −0.0010




The actuator fault directions are

Fuα =




2.6048
0
0
0
0
0
0
0
0
0




, FuTb
=




0
0
0
0
0
0
0
0
0

1.2500




The sensor fault directions are

Fymp
=




0.0517 −0.4718
0 19.5672
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0




, Fywe
=




0 −0.0737
1.0000 −55.7626
0.0010 −0.0000

−0.0000 −0.0404
0.0068 0.0217

−0.0011 −0.0006
−0.0006 0.0064

0.0157 −0.0889
0.0098 −0.0805
0.0000 −0.0000




, Fyax
=




0 −0.0000
0.0000 −0.0000

−0.0171 1.0000
0.0000 0.3660

−0.1198 −0.3738
0.0187 0.0011
0.0108 0.3736

−0.2784 1.6743
−0.1732 1.4217
−0.0002 0.0003



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Fyw̄f
=




0 −0.0000
0.0000 84.9095

−0.0012 0.0000
0.0000 0.5530

−0.0100 −0.0425
0.0021 0.0008
0.0008 −0.3221

−0.0199 −0.0364
−0.0126 0.1033
−0.0000 0.0000




, Fyw̄r
=




0 0.0000
−0.0000 0.0000

0.0001 −0.0000
−0.0000 0.5226

0.0001 0.0187
−0.0009 −0.0001
−0.0001 0.5477

0.0021 −0.0127
0.0015 −0.1268
0.0000 −0.0000




The modified brake actuator fault direction is

FuTb
=




0 0
0 −0.0549
0 −0.0019
0 0.0000
0 0
0 0
0 0.0009
0 0
0 0

1.2500 0




The reduced-order lateral model derived when the vehicle is traveling at 20 m/s is

ẋ = Ax + Bu

y = Cx + Du

where

A =




−8.3608 0.0006 −4.2079 −19.4511 0 0
0 0 1.0000 −0.0011 0 0

−22.7746 −841.1438 −11.4010 1.4370 285.9465 285.9420
0.2925 0.3148 0.1065 −8.4241 −0.2052 −0.0490

0 49.7578 0 0 −39.2622 0
0 36.5121 0 0 0 −32.6411




B =




100.6752
0

274.6695
56.3547

0
0




C =




−8.3608 0.0006 −4.2079 −19.4511 0 0
0 0 0 1.0000 0 0
0 −338.4411 −0.0058 −5.0733 225.6041 0
0 −319.8411 −0.0056 −4.8979 0 213.1967



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D =




100.6752
0
0
0




The steering actuator fault direction is

Fuγ =




−9.6077 0.0000
0.0002 4.8354

−4.8354 0.7967
0.0000 59.6801
0.0002 −0.0030
0.0002 −0.0016




The sensor fault directions are

Fyay
=




−0.0954 1.0000
0.0000 −0.0480

−0.0480 2.7204
0.0000 −0.0330
0.0000 0.0000
0.0000 0.0000




, Fyr =




−1.8563 0.0000
−0.0124 −0.9354
−0.9342 67.1423

1.0000 −9.0716
0.0039 −0.7690
0.0044 −0.5951




,

Fyw̃f
=




−0.0000 −0.0000
−0.0012 −0.0000
−0.0000 1.2472

0.0000 −0.0008
0.0026 −0.1630

−0.0018 0.0151




, Fyw̃r
=




−0.0000 0.0000
−0.0013 −0.0000
−0.0000 1.3197
−0.0000 −0.0001
−0.0019 0.0117

0.0028 −0.1372




The modified reduced-order lateral model derived when the vehicle is traveling at 20 m/s is

ẋ = Ax + Bu

y = Cx + Du

where

A =




−8.3608 0.0006 −3.3663 −19.4511 0 0
0 0 0 −0.0011 0 0

−22.7746 −841.1438 −9.1208 1.4370 285.9465 285.9420
0.2925 0.3148 0.1065 −8.4241 −0.2052 −0.0490

0 49.7578 0 0 −39.2622 0
0 36.5121 0 0 0 −32.6411




B =




398.0182
0

511.0140
52.4230

0
0



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C =




−− 8.3608 0.0006 −3.3663 −19.4511 0 0
0 0 0 1.0000 0 0
0 −338.4411 −0.0058 −5.0733 225.6041 0
0 −319.8411 −0.0056 −4.8979 0 213.1967




D =




234.1285
0
0
0




The steering actuator fault direction is

Fuγ =




−24.0967 163.8898
0.0005 −0.0000

−9.7020 −126.1342
−0.0000 60.5048

0.0005 −0.0054
0.0005 −0.0024




The sensor fault directions are

Fyay
=




−0.1029 1.0000
0.0000 0.0000

−0.0414 2.7214
−0.0000 −0.0345

0.0000 0.0000
0.0000 0.0000




, Fyr =




−2.0019 0.0000
−0.0124 −0.0011
−0.8060 67.1617

1.0000 −9.1005
0.0039 −0.7691
0.0044 −0.5953




,

Fyw̃f
=




−0.0000 0.0000
−0.0012 0.0000
−0.0000 1.2472
−0.0000 −0.0008

0.0026 −0.1630
−0.0018 0.0151




, Fyw̃r
=




−0.0000 −0.0000
−0.0013 −0.0000
−0.0000 1.3197

0.0000 −0.0001
−0.0019 0.0117

0.0028 −0.1372




A.2 Linear Vehicle Model at 24 m/s

The reduced-order longitudinal model derived when the vehicle is traveling at 24 m/s is

ẋ = Ax + Bu

y = Cx
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where

A =




−10.4692 −0.1177 0 0 0
327.7406 −53.2410 552.4915 −0.7238 −44121.7763

0 0.0550 −0.5721 0.0007 43.3440
0 −0.0001 0.0007 −0.0000 −448.3575
0 0 0.0013 1.0000 0
0 0 0 0 0
0 −0.0263 0.2684 −0.0004 −114.1535
0 0 0 0 66.3436
0 0 0 0 48.6827
0 0 0 0 0

0 0 0 0 0
46710.0274 −278.9203 22058.6614 0 −0.0672
−46.7168 0.3150 −21.8174 0.1475 −0.0019
−155.8232 23.9996 112.0991 112.0787 0.0000
−24.0000 0 0 0 0

0 1.0000 0 0 0
−536.7500 −0.1355 −60.2901 117.3615 0.0009
−70.2379 0 −39.2621 0 0

85.4543 0 0 −32.6411 0
0 0 0 0 −1.2500




B =




2.6100 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 1.2500




C =




19.3272 0 0 0 0
0 1.0000 0 0 0
0 0.0550 −0.5721 0.0007 43.3440
0 0.0456 6.2989 −0.0083 −503.0252
0 0 6.5316 −0.0086 −511.6989

0 0 0 0 0
0 0 0 0 0

−46.7168 0.3150 −21.8174 0.1238 −0.0019
532.5334 −3.1799 251.4872 0 −0.0008

−898.2125 −3.2312 0 255.8137 −0.0013



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The actuator fault directions are

Fuα =




2.6100
0
0
0
0
0
0
0
0
0




, FuTb
=




0
0
0
0
0
0
0
0
0

1.2500




The sensor fault directions are

Fymp
=




0.0517 −0.5417
0 16.9575
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0




, Fywe
=




0 −0.1177
1.0000 −57.2411
0.6802 −0.0000

−0.0006 −29.3339
0.0131 0.0031

−0.0001 −0.9488
−0.9488 −1.4008
−0.0027 0.9856
−0.0035 0.7435

0.0452 −0.0564




, Fyax
=




0 0.0000
−0.0000 0.0000
−11.5368 1.0000

0.0096 497.1906
−0.2217 −0.0415

0.0015 16.0924
16.0925 23.4975
0.0458 −16.6123
0.0596 −12.6107

−0.7659 0.9573




Fyw̄f
=




0 −0.0000
0.0000 87.7128

−1.0008 −0.0000
0.0008 43.5788

−0.0203 −0.0190
0.0008 1.3961
1.3961 1.8008
0.0044 −1.5758
0.0053 −1.0948

−0.0664 0.0831




, Fyw̄r
=




0 −0.0000
0.0000 0.0000
0.0067 −0.0000

−0.0000 0.1513
−0.0005 0.0160
−0.0007 −0.0093
−0.0093 0.4433

0.0000 0.0090
0.0002 −0.0899
0.0004 −0.0006




The modified brake actuator fault direction is

FuTb
=




0 0
0 −0.0672
0 −0.0019
0 0.0000
0 0
0 0
0 0.0009
0 0
0 0

1.2500 0



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Appendix B

Fault Detection Filter Design Data

B.1 Fault Detection Filter Set No. 1

For the unknown input observer that detects the engine speed sensor fault,

P =




1350.3961 0.8773 −0.0314 −0.0002 −0.0006 −0.0000
0.8773 5.8668 −2.8248 0.6544 −0.0557 0.0257
0.0109 −2.8069 1331282.9651 −902.0962 255849.7988 −166.3382

−0.0002 0.6556 −902.3711 135375.0589 −33.8725 4381.7814
0.0002 −0.0554 25584.9799 −33.8672 491.7016 −3.7318

−0.0000 0.0257 −166.3452 4381.7813 −3.7319 141.8424
−0.0152 4.0639 −1856976.7902 8035.9323 −35688.7429 451.3924
−0.0000 −0.0176 −5289.7022 −4518.5004 −101.1068 −145.7055
−0.0001 0.0250 −6881.4187 −3427.5537 −131.8300 −110.2308

0.0007 −0.1905 8.8376 182.6973 1698.4032 −3.1905

0.0437 0.0001 0.0002 −0.0021
4.0901 −0.0174 0.0250 −0.1917

−1856976.7777 −5289.7133 −6881.4257 88375.8659
8036.3158 −4518.4993 −3427.5533 182.6791

−35689.7427 −101.1070 −131.8301 1698.4033
451.4023 −145.7055 −110.2308 −3.1910

2590594.7134 7152.1045 9426.9054 −123261.3718
7152.0890 172.0752 141.9931 −359.2548
9426.8972 141.9931 122.5893 −462.9663

−123261.3702 −3.5926 −462.9667 5867.1766




L =




26099.3883 0.8773 0.0512 0.0380 0.0082
16.9551 5.8668 −0.0004 6.7545 −19.8160
0.2101 −2.8069 −115554.4186 1794.9442 −7332.2410

−0.0046 0.6556 −1049548.0051 11817831.2556 −4828272.2753
0.0040 −0.0554 −2207.9335 −109.8110 448.6574

−0.0002 0.0257 −3384.9513 38250.6225 −156276.0811
−0.2932 4.0639 155926.0255 56663.5647 −231504.3714
−0.0007 −0.0176 3967.4685 −39483.7585 161314.1750
−0.0010 0.0250 3260.0915 −29971.6775 122451.7627

0.0139 −0.1905 −7859.1627 2236.8301 −9138.6951



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Ĥ =




0 0 0 0 0
0 1.0000 −0.0000 −0.0000 0.0000
0 −0.0000 −0.0000 −0.0000 −0.0000
0 −0.0000 −0.0000 0.9435 0.2309
0 0.0000 −0.0000 0.2309 0.0565




The system matrices of the reduced-order unknown input observer that detects the engine speed

sensor fault are

Ar =




−2.6112 −13.6803 −0.2067 −0.1206 −0.0183 −0.0030 −0.0000
20.3806 −10.9582 −0.7697 −0.4295 −0.0628 −0.0102 −0.0000

−32.7359 −20.4715 −5.0764 −4.4745 −0.7705 −0.1241 −0.0005
133.7180 182.1011 4.2746 −1.8293 −0.8600 −0.1396 −0.0006
960.2666 1181.2292 46.4167 14.4348 −4.5592 −2.0047 −0.0082

38277.7073 46879.1449 1782.9267 571.5788 102.7921 −84.9319 0.1250
−21.9061 −27.7164 −1.0695 −0.2475 0.0475 0.0410 −1.2499




Br =




−0.0000 0.0000 −0.0014 −0.0046 0.0000 −0.0034 0.0040
−0.0000 −0.0000 −0.0052 0.0002 0.0000 −0.0000 0.0036
−0.0000 0.0002 −0.0390 −0.0669 0.0000 −0.0561 −0.1214
−0.0000 −0.0006 −0.0327 0.0357 0.0000 0.0206 0.2972
−0.0000 0.0024 −0.4472 −0.1386 0.0001 −0.1654 0.3921
−0.0000 −0.0007 −16.9515 −5.8652 0.0003 −6.7523 19.8120
−0.0000 −1.2491 0.0083 0.0046 0.0150 0.0043 −0.0253




Cr =




0 0 0 0 0 0 0
0.0001 0.0003 0.0023 0.0019 0.0264 0.9996 −0.0005

−0.0000 −0.0000 −0.0000 −0.0000 −0.0000 0.0000 −0.0000
446.2229 546.4967 20.7866 6.6644 1.2155 −0.2549 0.0011
109.2189 133.7622 5.0878 1.6312 0.2975 −0.0624 0.0003




Dr =




0 0 0 0 0 0 0
0 0 0 1.0000 −0.0000 −0.0000 0.0000
0 0 0 −0.0000 −0.0000 −0.0000 −0.0000
0 0 0 −0.0000 −0.0000 0.9435 0.2309
0 0 0 0.0000 −0.0000 0.2309 0.0565



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For the unknown input observer that detects the longitudinal accelerometer fault,

P =




1350.8879 266.5854 −0.0262 136.1869 −0.0151 4.4049
266.5896 170262.8626 6508.9493 82334.9066 116.7117 2662.1720
−0.0260 6508.9882 21565.8418 −5005.6858 429.3945 −213.0742
136.1887 82334.8973 −5007.0999 43838.5483 −104.0390 1433.1659
−0.0151 116.7125 429.3825 −104.3586 8.5587 −4.3975

4.4049 2662.1716 −213.1327 1433.1652 −4.3988 47.0093
6.5408 −5153.6161 −25211.8273 7446.3521 −502.2644 295.7731

−4.5756 −2792.8924 384.8176 −1545.7284 7.8439 −51.2852
−3.4520 −2120.2920 −389.1013 −962.6821 −7.6575 −29.9582

0.2603 590.5793 1382.2166 −233.6655 27.5243 −10.7759

6.5411 −4.5755 −3.4519 0.2603
−5153.5707 −2792.8931 −2120.2913 590.5768
−25214.1916 384.6827 −389.0190 1382.2609

7448.5812 −1545.7239 −962.6738 −233.7682
−502.2990 7.8409 −7.6555 27.5244

295.8664 −51.2850 −29.9579 −10.7802
30223.9170 −470.2072 372.5092 −1620.9983
−470.4125 58.3283 26.7537 21.3192

372.6527 26.7547 35.8833 −26.6255
−1621.1002 21.3095 −26.6193 88.8944




L =




26108.8944 266.5854 −9028.2973 1.1927 −0.0485
5152.4336 170262.8626 −5461121.3601 721.0816 −29.3485
−0.5031 6508.9882 18815.2750 −16.3659 0.9452

2632.1475 82334.8973 −2812414.1365 375.1583 −15.3728
−0.2922 116.7125 664.3428 −0.3671 0.0204
85.1349 2662.1716 −90968.1199 12.1755 −0.5000

126.4147 −5153.6161 −160603.2483 36.6987 −1.7576
−88.4328 −2792.8924 94413.8281 −12.7828 0.5294
−66.7171 −2120.2920 71191.3966 −9.0980 0.3627

5.0310 590.5793 −41617.7673 −0.3347 0.0305




Ĥ =




0.0000 0.0000 −0.0000 0.0000 −0.0000
0.0000 0.0000 0.0000 −0.0000 −0.0000

−0.0000 0.0000 0.9997 0.0043 −0.0175
0.0000 −0.0000 0.0043 0.9431 0.2316

−0.0000 −0.0000 −0.0175 0.2316 0.0572




The system matrices of the reduced-order unknown input observer that detects the longitudinal

accelerometer fault are

Ar =




−0.8716 −2.1026 −0.0197 −0.8059 0.1152 −0.0596 0.0026
2.1086 −11.5261 0.0381 −11.1299 1.3875 −0.6876 0.0539
0.0969 −1.1612 −0.2064 −16.0272 0.0812 −0.1561 −0.0959

−0.8065 11.1390 17.5935 −16.6956 4.5415 −2.3691 0.1428
0.1154 −1.3878 −0.4960 4.5432 −8.2802 5.9691 −0.7275

−0.0646 0.7740 0.2778 −2.6154 7.3702 −8.1520 −0.8765
−0.0235 0.2809 0.1005 −0.9619 3.4008 −5.8070 −7.9312




213



Br =




−0.0000 0.0252 −0.4438 0.0001 25.7333 −0.0173 −0.0053
0.0000 −0.0494 0.4764 −0.0003 −23.4140 0.2238 −0.0134

−0.0000 0.1250 0.0131 0.0001 −3.9325 −0.1427 0.0083
−0.0000 0.0149 −0.2193 −0.0001 1.9300 −0.0772 0.0044
−0.0000 −0.7810 0.0383 0.0008 0.2800 −0.1165 0.0067

0.0000 −0.8874 −0.0229 −0.0011 −0.3206 0.0091 −0.0005
−0.0000 0.3714 −0.0077 0.0014 −0.2179 −0.6073 0.0343




Cr =




−0.0000 −0.0000 0.0000 −0.0000 0.0000 0.0000 −0.0000
−0.0000 −0.0000 0.0000 −0.0000 0.0000 −0.0000 0.0000
−1.8112 −4.2680 1.3514 −1.2805 0.2243 0.2975 0.3400
24.4450 26.6033 0.3603 11.4006 −1.6085 0.8633 −0.0113
6.0410 6.6158 0.0634 2.8250 −0.3994 0.2066 −0.0091




Dr =




−0.0000 −0.0000 −0.0000 −0.0000 −0.0000 0.0000 −0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 −0.0000 0.0000
0.0000 0.0000 0.0000 0.0002 0.0005 −0.0000 0.0000

−0.0000 −0.0000 −0.0000 −0.0010 −0.0026 0.0000 −0.0000
−0.0000 −0.0000 −0.0000 −0.0003 −0.0007 0.0000 −0.0000




B.2 Fault Detection Filter Set No. 2

For the unknown input observer that detects the front wheel speed sensor fault,

P =




1347.7387 1.0123 0.0000 0.0002 0.0000 −0.0000
1.0123 −2.4387 −0.0042 −0.1867 −0.0004 0.0009
0.0000 −0.0042 −0.0006 0.0051 0.0002 −0.0004
0.0002 −0.1867 0.0051 7.5352 0.2726 −0.0038
0.0000 −0.0004 0.0002 0.2726 0.0099 −0.0016

−0.0000 0.0009 −0.0004 −0.0381 −0.0016 0.0027
0.0002 −0.0456 0.0058 7.9014 0.2855 −0.0395
0.0000 0.0012 0.0008 −0.0997 −0.0032 −0.0052

−0.0000 0.0019 −0.0007 −1.7695 −0.0636 0.0047
0.0000 −0.0000 0.0000 0.0000 0.0000 −0.0000

0.0002 0.0000 −0.0000 0.0000
−0.0456 0.0011 0.0019 −0.0000

0.0058 0.0008 −0.0007 0.0000
7.9014 −0.1000 −1.7695 0.0000
0.2855 −0.0032 −0.0636 0.0000

−0.0395 −0.0052 0.0047 −0.0000
8.2765 −0.1056 −1.8541 0.0000

−0.1056 0.0143 0.0330 0.0000
−1.8541 0.0330 0.4220 −0.0000

0.0000 0.0000 −0.0000 0.0000




214



L =




26048.0282 1.0123 0.0549 3.2197 −0.9448
19.5648 −2.4387 −0.2085 84.7913 0.02829
0.0000 −0.0042 −0.0090 −12.7643 4.6570
0.0044 −0.1867 12.7854 −17998.00250 −49056.6664
0.0002 0.0004 0.4626 −650.6146 −1753.1573

−0.0001 0.0009 −0.0637 90.6121 −24.3381
0.0046 0.0456 13.4050 −18857.1396 −51423.1919
0.0002 0.0012 −0.1697 238.7449 1264.2107

−0.0009 0.0019 −3.0025 4223.0119 11958.0119
0.0000 −0.0944 −0.0001 −0.0869 0.2596




Ĥ =




0 0 0 0 0
0 1.0000 −0.0000 0.0000 −0.0000
0 −0.0000 0.9925 0.0864 0.0000
0 0.0000 0.0864 0.0075 0.0000
0 −0.0000 0.0000 0.0000 −0.0000




The system matrices of the reduced-order unknown input observer that detects the front wheel

speed sensor fault are

Ar =




−2.1028 −3.1445 −3.8435 −0.9076 0.0212 0.0715 0.0004
16.9287 −9.9509 −7.3819 7.1109 0.1709 0.4484 0.0035
38.8452 −12.4570 −9.5425 7.3856 0.1856 0.4893 0.0037
40.2722 −18.8316 −16.6111 −0.0022 0.0204 0.1108 0.0001
−2.5487 0.1844 0.1947 −0.1674 −53.3130 0.1881 0.0002

−406.7329 188.9516 149.2547 −74.4922 0.8518 −14.6838 −0.8940
−7.8120 3.7123 2.9350 −1.4360 0.0135 −0.2657 −1.2538




Br =




−0.0000 0.0003 −0.0190 0.0033 0.0003 −0.1548 0.0000
−0.0000 0.0009 −0.0629 0.0104 0.0010 −0.3825 −0.0000
−0.0000 −0.0002 −0.0947 0.0139 0.0001 −0.4225 −0.0000
−0.0000 −0.0010 −0.0321 −0.0114 −0.0006 −0.1332 0.0000

0.0000 0.0001 19.5666 −2.4382 −0.2085 84.8923 0.0001
−0.0000 0.0249 −0.0842 0.1146 0.0072 −0.2197 0.0000
−0.0000 −1.2498 −0.0003 0.0021 0.0001 0.0009 0.0001




Cr =




0 0 0 0 0 0 0
0.0010 0.0032 0.0048 0.0016 −1.0000 0.0043 0.0000
6.0940 3.1614 2.8522 0.0294 −0.0267 −0.0865 −0.0006
0.4333 0.2248 0.2028 0.0021 −0.0019 −0.0061 −0.0000

−0.0000 −0.0000 −0.0000 −0.0000 −0.0000 0.0000 0.0000




Dr =




0 0 0 0 0 0 0
0 0 0 1.0000 −0.0000 0.0000 −0.0000
0 0 0 −0.0000 0.9950 0.0707 0.0000
0 0 0 0.0000 0.0707 0.0050 −0.0000
0 0 0 −0.0000 −0.0000 0.0000 −0.0000




215



For the unknown input observer that detects the rear wheel speed sensor fault,

P =




13.4776 0.0000 0.0000 −0.0000 0.0000 −0.0000
0.0000 8400.1741 −0.0004 54.7112 −4.2124 0.0779
0.0000 −0.0000 0.4801 −0.0001 3.9154 −0.8289

−0.0000 54.7112 −0.0005 0.3564 −0.0316 0.0014
0.0000 −4.2124 3.9154 −0.0316 31.9373 −6.7603

−0.0000 0.0779 −0.8289 0.0014 −6.7603 1.4311
0.0000 −31.8670 −0.3041 −0.2072 −2.4646 0.5248
0.0000 −3.6057 7.7377 −0.0316 63.1125 −13.3597

−0.0000 10.2121 4.9023 0.0614 39.9791 −8.4640
−0.0000 0.0021 0.0068 0.0000 0.0553 −0.0117

0.0000 0.0000 −0.0000 −0.0000
−31.8670 −3.6057 10.2121 0.0021
−0.3041 7.7377 4.9023 0.0068
−0.2072 −0.0316 0.0614 0.0000
−2.4646 63.1124 39.9791 0.0553

0.5248 −13.3597 −8.4640 −0.0117
0.3136 −4.8884 −3.1445 −0.0043

−4.8884 124.7212 79.0127 0.0109
−3.1445 79.0127 50.0742 0.0692
−0.0043 0.1093 0.0693 0.0001




L =




2604849.5282 0.3267 0.2260 −0.0000 −0.0000
6.3144 84001740.8773 39155631.5773 1.4762 0.4018
0.0000 −3.7417 −1.7494 −0.3896 −0.0000

−0.0863 54711.2396 255025.3875 0.0100 0.0026
0.0066 −42124.4425 −19635.3896 −3.1786 −0.0002

−0.0001 77.8761 362.9996 0.6727 0.0000
0.0503 −318670.3016 −148541.4335 0.2412 −0.0015
0.0057 −36056.6519 −16807.0133 −6.2807 −0.0002

−0.0161 102121.0951 47601.6248 −3.9770 0.0005
−0.0000 21.4675 10.0066 −0.0055 0.0000




Ĥ =




0 0 0 0 0
0 0.9967 0.0010 0.0000 0.0571
0 0.0010 0.9997 0.0000 −0.0172
0 0.0000 0.0000 −0.0000 −0.0000
0 0.0571 −0.0172 −0.0000 0.0036




The system matrices of the reduced-order unknown input observer that detects the rear wheel

speed sensor fault are

Ar =




−18.3467 13.8343 −1.4128 −0.3169 0.0812 0.0180 −0.0000
−60.2398 −37.5142 8.6861 2.4465 −0.4625 −0.1612 0.0002
−311.3778 108.6538 −25.2552 −6.8195 1.1422 0.5294 −0.0006

288.6782 −125.3455 22.4069 −1.2544 2.2319 −0.1410 −0.0004
−336.7032 84.3614 −11.1076 −5.8561 −0.1796 0.1124 0.0004

315.3908 −125.6428 9.9671 17.2843 −1.9060 −2.2633 −0.0017
1.5395 −0.5169 0.0403 0.0694 −0.0074 −0.0032 −1.2500




216



Br =




0.0000 −0.0000 0.0070 −0.0056 −0.0020 −0.0000 −0.0000
−0.0000 0.0000 −0.0067 0.0151 0.0141 0.0000 0.0000

0.0000 0.0001 0.0361 0.0499 0.0440 0.0000 −0.0000
−0.0000 −0.0002 −0.0569 0.0026 0.0201 0.0000 0.0000

0.0000 −0.0014 −0.0147 0.2132 0.2690 −0.0000 0.0000
−0.0000 0.0046 0.1328 −0.4160 −0.7034 −0.0000 −0.0000
−0.0000 −1.2500 0.0005 0.0020 −0.0011 0.0000 0.0000




Cr =




0 0 0 0 0 0 0
−330.6442 98.2020 −21.8516 −1.7461 0.3541 0.1728 −0.0003

16.6875 42.6023 −7.5703 −0.4180 −0.3162 0.7839 0.0008
−0.0000 0.0000 −0.0000 −0.0000 0.0000 0.0000 −0.0000
689.6625 −209.4661 46.4236 3.6914 −0.7096 −0.4377 0.0006




Dr =




0 0 0 0 0 0 0
0 0 0 0.1876 −0.0379 0.0000 −0.3886
0 0 0 −0.0379 0.9982 −0.0000 −0.0181
0 0 0 0.0000 −0.0000 −0.0000 −0.0000
0 0 0 −0.3886 −0.0181 −0.0000 0.8141




B.3 Fault Detection Filter Set No. 3

For the unknown input observer that detects the brake actuator fault,

P =




2882.0135 12267.5367 37.9168 −21.0952 1.9693 −0.6396
12267.5354 308056.8520 1246.1188 −4060.5875 −569.2969 183.2128

37.9167 1246.1182 116.2326 −2.6276 1.6775 0.1538
−21.0952 −4060.5876 −2.6276 1222.3514 123.3366 −71.1718

1.9693 −569.2969 1.6775 123.3365 14.1664 −7.5745
−0.6396 183.2128 0.1538 −71.1718 −7.5745 4.3888
−4.2081 −11375.3235 23.7973 3439.7259 371.4223 −208.9489

4.1640 −564.8578 1.9465 68.2810 9.0706 −4.4122
−0.4248 2015.0954 −2.7923 −697.5179 −74.1246 42.3463
−0.0912 20.0209 0.8768 −4.4715 −0.4510 0.2503

−4.2080 4.1640 −0.4248 −0.0911
−11375.3233 −564.8578 2015.0954 20.0214

23.7973 1.9465 −2.7923 0.8768
3439.7260 68.2810 −697.5179 −4.4715
371.4223 9.0706 −74.1245 −0.4510

−208.9489 −4.4122 42.3463 0.2503
10117.1559 220.7461 −2038.9690 −12.5519

220.7461 6.7152 −4.3140 −0.2420
−2038.9690 −43.1397 412.1722 2.5195
−12.5519 −0.2420 2.5195 −937.4862



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L =




0.1393 0.0031 0.0169 0.0264 −0.0140
0.5927 0.0770 −0.1992 14.9994 34.3581
0.0018 0.0003 0.0008 0.0220 −0.0514

−0.0010 −0.0010 0.1985 −4.6960 −9.4380
0.0000 −0.0001 0.0211 −0.5038 −1.0299

−0.0000 0.0000 −0.0122 0.2856 0.5722
−0.0002 −0.0003 0.5823 −13.7581 −27.8268

0.0002 −0.0001 0.0121 −0.2970 −0.6208
−0.0000 0.0005 −0.1180 2.7776 5.5954
−0.0000 0.0000 −0.0007 0.0173 0.0349




Ĥ =




−0.0000 0.0000 −0.0000 0.0000 0.0000
0.0000 0.0048 −0.0554 −0.0373 0.0162
0.0000 −0.0554 0.9954 0.0153 0.0357
0.0000 −0.0373 0.0153 0.7992 −0.3986

−0.0000 0.0162 0.0357 −0.3986 0.2007




The system matrices of the reduced-order unknown input observer that detects the brake actuator

fault are

Ar =




−0.2101 −0.4176 −0.4361 −0.3321 0.2321
0.3644 −1.3266 −3.0620 −2.3952 1.5825
0.3008 0.6353 −5.2125 −11.1865 6.1338

−0.2641 0.8994 11.1054 −12.3121 13.5706
0.1597 −0.2630 −6.1323 13.3667 −23.2125
0.0464 −0.1982 −1.0395 3.5386 −10.2716
0.0133 −0.0641 −0.2670 0.8970 −2.2092

−0.0101 0.0553 0.1738 −0.6078 1.4545
0.0002 −0.0056 0.0166 −0.0363 0.1297

−0.0486 0.0135 0.0100 −0.0010
−0.3386 0.0884 0.0696 −0.0061
−1.1834 0.3321 0.2466 −0.0251
−3.7134 0.9678 0.7384 −0.0709
11.1814 −2.6657 −2.0059 0.2023
−7.1829 4.1513 2.9411 −0.2784
−4.2447 −7.9414 −12.4384 1.2485

2.8240 12.5710 −57.9262 11.0403
0.0453 0.0183 1.3175 −14.5622




Br =




−2.3144 0.07317 −0.2337 −0.0196 −0.0463 −1.5175 1.7636
1.2777 −0.1003 0.0773 0.01122 −0.0212 2.0307 11.1707
2.0502 0.0168 0.2419 0.0295 −0.0744 5.7161 22.0243

−4.4776 0.0040 −0.2773 0.0293 −0.2106 8.8028 17.5472
−4.0121 0.0074 −0.0963 −0.1245 0.2643 −23.0380 −79.0805

5.6995 −0.0048 0.3514 −0.0189 0.1744 −6.5611 −5.1904
−2.9563 −0.0017 −0.3300 0.0017 0.0997 −2.0123 4.3232

8.9208 0.0017 −0.0326 −0.1093 0.4666 −25.5619 −67.1329
−30.6514 −0.0003 −1.6000 −0.0299 −0.2153 0.9092 4.10178



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Cr =




0.0000 0.0000 0.0000 0.0000 −0.0000 0.0000
−0.0044 −0.0025 −0.0045 −0.0030 0.0024 −0.0004
−0.0050 −0.0284 −0.0031 −0.0121 0.0028 −0.0022

0.1021 0.0887 0.1031 0.0810 −0.0565 0.0117
−0.0512 −0.0455 −0.0516 −0.0410 0.0284 −0.0060

−0.0000 0.0000 −0.0000
0.0002 0.0001 −0.0000

−0.0003 0.0004 0.0001
−0.0033 −0.0024 0.0003

0.0016 0.0012 −0.0001




Dr =




0 0 0.0000 0.0000 −0.0000 0.0000 0.0000
0 0 0.0000 0.0048 −0.0554 −0.0373 0.0162
0 0 0.0000 −0.0554 0.9954 0.0153 0.0357
0 0 0.0000 −0.0373 0.0153 0.7992 −0.3986
0 0 −0.0000 0.0162 0.0357 −0.3986 0.2007




For the unknown input observer that detects the rear wheel speed sensor fault,

P =




1377.4072 −1345.1875 0.0002 −0.0000 0.0000 −0.0000
−1345.1877 167089.6647 −0.2455 −0.0097 0.0000 −0.0006

0.0002 −0.2455 1.6555 −0.0900 0.0007 −0.0040
−0.0000 −0.0097 −0.0900 0.0287 −0.0004 0.0013

0.0000 0.0001 0.0007 −0.0004 0.0000 −0.0000
−0.0000 −0.0006 −0.0038 0.0013 −0.0000 0.0001
−0.0001 0.1266 −0.7585 0.0274 0.0003 0.0011
−0.0000 0.0012 0.0031 −0.0022 0.0000 −0.0001

0.0000 −0.0017 −0.0020 0.0018 −0.0000 0.0001
−0.0053 763.3994 518.1478 −152.7053 0.9950 −7.2292

−0.0001 0.0000 0.0000 −0.0015
0.1266 0.0012 −0.0017 763.3981

−0.7585 0.0031 −0.0020 518.1476
0.0274 −0.0022 0.0018 −152.7053
0.0003 0.0001 −0.0000 0.9950
0.0011 −0.0001 0.0001 −7.2292
0.3734 0.0009 −0.0004 −153.9051
0.0009 0.0003 −0.0002 8.9745

−0.0004 −0.0002 0.0002 −9.6547
−153.9052 8.9745 −9.6547 6032527.4369




L =




26621.4377 −1345.1875 −73.9881 −61.3445 0.0018
−25998.7245 167089.6647 9189.0096 7617.4060 −2.8878

0.0042 −0.2455 −2.0381 10.8594 15.1291
−0.0000 −0.0097 0.3155 −0.1735 −1.0195

0.0000 0.0000 −0.0022 0.0013 −0.0011
−0.0000 −0.0006 0.0146 −0.0043 −0.0442
−0.0020 0.1266 0.7897 −5.1712 −7.1746
−0.0000 0.0012 −0.0170 −0.0060 0.0134

0.0000 −0.0017 0.0174 0.0159 −0.0227
−0.1021 763.3994 −11487.2358 −2928.1231 −235.4026



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Ĥ =




0 0.0000 −0.0000 0.0000 0.0000
0.0000 0.0017 −0.0068 −0.0298 0.0282
0.0000 −0.0068 0.0270 0.1175 −0.1113
0.0000 −0.0298 0.1175 0.5118 −0.4850

−0.0000 0.0282 −0.1113 −0.4850 0.4596




The system matrices of the reduced-order unknown input observer that detects the rear wheel

speed sensor fault are

Ar =




−0.9982 −7.7591 5.5083 0.9952 0.3757 −0.1203 −0.0074
7.7591 −5.4436 24.6241 2.8246 1.1972 −0.3759 −0.0234
5.5083 −24.6241 −80.1984 −36.0645 −9.4182 3.1685 0.1938

−0.9952 2.8246 36.0645 −6.3110 −5.8000 1.5135 0.0980
0.3757 −1.1972 −9.4182 5.8000 −6.8531 6.3056 0.2702
0.1203 −0.3759 −3.1685 1.5135 −6.3056 −2.2406 −0.2780

−0.0074 0.0234 0.1938 −0.0980 0.2702 0.2780 −23.6762




Br =




−0.0000 0.0001 −0.0000 0.0289 −0.2484 −0.3089 0.3257
−0.0000 0.0001 −0.0000 0.0920 −2.4295 0.9907 4.9794

0.0000 0.0001 0.0000 0.0789 1.4367 −3.5826 −10.7436
−0.0000 0.0002 −0.0000 0.0093 −1.6499 1.8957 3.5332

0.0000 −0.0001 0.0000 0.0593 −0.6791 −0.5000 1.7267
0.0000 0.0000 0.0000 0.0437 −0.4816 −0.3826 1.0912

−0.0000 0.0002 −0.0000 0.1085 −1.6908 −0.3271 0.2197




Cr =




0.0000 0.0000 −0.0000 −0.0000 −0.0000 0.0000 −0.0000
−0.0454 −0.0788 0.1400 0.0218 0.0086 −0.0027 −0.0002

0.1788 0.3106 −0.5520 −0.0859 −0.0338 0.0108 0.0007
0.7793 1.3535 −2.4051 −0.3743 −0.1474 0.0469 0.0029

−0.7385 −1.2826 2.2791 0.3547 0.1397 −0.0444 −0.0028




Dr =




0 0 0 0.0000 −0.0000 0.0000 0.0000
0 0 0.0000 0.0017 −0.0068 −0.0298 0.0282
0 0 0.0000 −0.0068 0.0270 0.1174 −0.1113
0 0 0.0000 −0.0298 0.1174 0.5118 −0.4850
0 0 −0.0000 0.0282 −0.1113 −0.4850 0.4596




B.4 Fault Detection Filter Set No. 4

For the unknown input observer that detects the steering actuator fault,

P =




0.4566 0.1082 −3.9693 −0.0040 0.1621 0.2027
0.1082 0.2782 −8.0408 0.0029 0.4171 0.3493

−3.9693 −8.0408 276.5833 −0.1030 −17.5830 −9.7187
−0.0040 0.0029 −0.1030 0.0002 0.0080 0.0022

0.1621 0.4171 −17.5830 0.0080 1.348 0.4569
0.2027 0.3493 −9.7187 0.0022 0.4569 0.4574



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L =




1.2963 −403.5655 0.0728 0.8656
3.2874 287.9682 −3.8561 −1.4483

−112.8641 −10296.6743 −124652.3578 49.8742
0.0464 16.8030 82.8647 −0.0455
7.2476 799.4134 16298.0087 −3.5934
3.9158 218.5103 −1510.6887 −1.4182




Ĥ =




27315.1981 −11.5185 −0.0000 44557.8234
−1.1518 99999.9982 −0.0000 7.0612

0.0000 −0.0000 −0.0000 −0.0000
44557.8234 7.0612 0.0000 72684.8037




The system matrices of the reduced-order unknown input observer that detects the steering actautor

fault are

Ar =




−0.0916 9.2243 −0.0616 0.0075
−42.8837 −51.0755 3.3547 −1.1327

40.9895 2.6069 −4.5341 3.3056
−410.8559 −282.8797 −1.4552 −23.3848




Br =




−57.2253 −0.0370 8.0859 0.0001 −0.0274
−22.1764 0.1920 −36.5915 −0.0004 0.0516
−19.7201 −0.1053 40.3448 −0.0000 −0.0280
−60.5278 1.5424 −384.9448 −0.0020 0.7706




Cr =




−13.8394 −169.0823 5.6062 −2.0210
0.9990 −0.0647 0.0293 0.0513

−0.0000 0.0000 −0.0000 −0.0000
−22.5751 −275.8149 9.1452 −3.2967




Dr =




−27.4996 0.2732 −0.0001 −0.0000 0.4456
0.0116 −0.0001 1.0000 −0.0000 0.0001

−0.0000 0.0000 −0.0000 −0.0000 −0.0000
−44.8587 0.4456 0.0001 0.0000 0.7268




For the unknown input observer that detects the front wheel speed sensor fault,

P =




0.6621 −67.4219 5021.0610 −830.2164 −0.1382 −0.1560
−67.4219 0.6349 −20.6563 995.1970 −0.0482 −0.0250
5021.0611 −0.6563 2525.3198 −253.8937 −0.0937 −0.0967
−830.2165 995.1970 −253.8937 12283.1550 −0.6022 −0.3145
−0.1382 −0.0482 −0.0937 −0.6022 0.0007 0.0006
−0.1560 −0.0250 −0.0967 −0.3145 0.0006 0.0005




L =




−88593.2489 −830.2164 26970.1918 25569.4854
−18707.0275 995.1970 −32349.8415 −30669.9902
−47667.9716 −253.8937 8243.3226 7815.6314
−230910.8929 12283.1550 −399265.9380 −378532.6968

13.2634 −0.6022 19.5180 18.4837
7.8275 −0.3145 10.1843 9.6383



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Ĥ =




−0.0000 −0.0000 0.0000 0.0000
−0.0000 99950.1836 1619.3239 1535.2350

0.0000 1619.3239 47362.4973 −49904.1218
0.0000 15352.3497 −49904.1218 52687.3190




The system matrices of the reduced-order unknown input observer that detects the front wheel

speed sensor fault are

Ar =




−36.2342 −1.5478 −1.8193 0.1206
0.3156 −1.9216 2.8453 0.5286
1.4167 −53.4111 −5.7035 0.7588

−51.1979 −694.5874 −1.4598 −2.2517




Br =




−0.0000 0.0002 −0.0008 −0.0116 −0.0144
0.0000 0.0474 0.0224 −0.0424 −0.0288

−0.0000 −0.1701 0.0145 0.0541 0.0459
−0.0000 −1.9733 0.0374 0.0047 −0.4128




Cr =




−0.0000 0.0000 −0.0000 0.0000
−0.0667 −11.5203 −0.1195 −0.0281

−150.7044 −3.3634 −3.7735 0.2457
158.9567 3.1738 3.9763 −0.2601




Dr =




0.0000 −0.0000 −0.0000 0.0000 0.0000
0.0000 −0.0000 0.9995 0.0162 0.0154

−0.0002 0.0000 0.0162 0.4736 −0.4990
−0.0000 0.0000 0.0154 −0.4990 0.5269




B.5 Fault Detection Filter Set No. 5

For the unknown input observer that detects the yaw rate sensor fault,

P =




1.8444 −0.4528 −5.4053 −0.0031 −0.4915 0.6633
−0.4528 0.2772 1.0655 0.0001 0.3698 −0.4871
−5.4053 1.0655 966.8507 −0.0431 8.9698 −100.4749
−0.0031 0.0001 −0.0431 0.0002 −0.0013 0.0040
−0.4915 0.3698 8.9698 −0.0013 0.5756 −1.4838

0.6633 −0.4871 −100.4749 0.0040 −1.4838 11.2129




L =




738.3307 −306495.9332 4.2419 28.6286
−69.9443 10626.7607 −1.0411 −19.2518

−402234.5298 −4314889.5003 165.7673 −2176.6879
20.3817 17345.0267 −0.0327 0.0814

−3360.9379 −128749.8721 0.4666 −43.4654
41716.1602 398204.9094 −16.935 254.6869




Ĥ =




0.1835 −0.0000 0.3871 0
−0.0000 1.0000 0.0000 0.0000

0.3871 0.0000 0.8165 −0.0000
−0.0000 0.0000 −0.0000 0.0000



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The system matrices of the reduced-order unknown input observer that detects the yaw rate sensor

fault are

Ar =




−1.0867 717.8472 34.9830 21.7380 0.1384
−3841.6339 −3922.5524 −345.7994 −398.3940 −15.3762
−12088.6422 −2205.24279 −593.8635 −1329.9928 −48.1155
−23279.2039 −6720.9252 −44.4418 −2521.9813 −178.4867
−17646.7938 3814.4279 259.8930 −655.6364 −1400.9598




Br =




−5660.0838 −05.3948 928.3968 −0.0288 −0.0370
−2464.5993 13.1114 −3689.2901 0.0114 0.2585

1296.0719 13.1969 −12242.3063 −0.0470 −0.5114
−1220.1517 70.1672 −23927.9759 0.2824 −0.0647

2879.7364 48.4944 −17499.7027 0.3369 5.1328




Cr =




−6.2726 −157.0056 −7.6044 −8.6010 −0.3069
0.9938 0.0659 −0.0028 0.0935 0.0076

13.2318 −331.1921 −16.0409 −18.1431 −0.6474
0.0000 0.0000 0.0000 0.0000 −0.0000




Dr =




−18.4736 0.1835 −0.0000 0.3871 0
0.0021 −0.0000 1.0000 0.0000 0.0000

−38.9687 0.3871 0.0000 0.8165 −0.0000
0.0000 −0.0000 0.0000 −0.0000 0.0000




For the unknown input observer that detects the rear wheel speed sensor fault,

P =




34479.1400231.302317208.8498− 18554.5722− 71.2631− 80628.3736
231.302330.1262− 1935.9129152.688123.016817642.6319

17208.8478− 1935.9129155906.7618− 29166.0175− 1722.7413− 13460.2818
−18554.5719152.6881− 29166.018512674.5209266.314321982.2834

−71.263123.0168− 1722.7412266.314219.470515121.8121
−80.628417.6426− 1346.0282219.822815.121811763.0985




L =




0.7383 −306.4959 0.0042 0.0286
−0.0699 10.6268 −0.0010 −0.0193

−402.23458 −4314.8895 0.1658 −2.1767
0.0204 17.34503 −0.0000 0.0001

−3.3609 −128.7499 0.0005 −0.0435
41.7162 398.2049 −0.0169 0.2547




Ĥ =




0.8799 −0.0000 0.2137 0.2450
−0.0000 −0.0000 −0.0000 −0.0000

0.2137 −0.0000 0.6198 −0.4359
0.2450 −0.0000 −0.4359 0.5003




The system matrices of the reduced-order unknown input observer that detects the rear wheel

speed sensor fault are

Ar =




−37.2964 0.5502 0.0616 −1.6673
51.1162 −97.5659 7.1571 −1.0081
99.8539 −159.1525 −1.3655 2.8679

−16.3390 37.0212 −3.8432 −6.5857



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Br =




−1.8235 0.0210 −0.0000 −0.0084 −0.0165
101.4597 −0.8214 0.0000 −0.2048 0.0783
39.0193 −1.6040 0.0000 −0.6445 −0.1063

−55.8282 0.2969 −0.0000 0.1335 0.0394




Cr =




−11.1209 167.5528 2.0900 1.3049
0.0000 −0.0000 −0.0000 −0.0000

−170.4509 63.9043 4.2904 −3.6219
143.2289 26.4103 −2.7177 3.7991




Dr =




−88.5816 0.8799 −0.0000 0.2137 0.2450
0.0000 −0.0000 −0.0000 −0.0000 −0.0000

−21.5151 0.2137 −0.0000 0.6198 −0.4359
−24.6653 0.2450 −0.0000 −0.4359 0.5003




B.6 Fault Detection Filter Set No. 6

For the unknown input observer that detects the lateral accelerometer fault,

P =




0.0465 0.0003 −0.1191 0.0001 0.0004 0.0005
0.0003 0.1640 −0.0261 −0.0000 0.2458 −0.3526

−0.11912 −0.0261 391.7060 −0.0431 3.4291 −40.6287
0.0001 −0.0000 −0.0431 0.0000 −0.0004 0.0044
0.0004 0.2458 3.4291 −0.0004 0.3991 −0.9000
0.0005 −0.3526 −40.6287 0.0044 −0.9000 4.9868




L =




0.9973 99.9993 −0.0000 −0.0001
8.5174 −1.4610 −0.0000 −1.2763

−131677.4456 −43078.4862 0.0781 −86.5552
14.4073 5.5108 −0.0000 0.0095

−1153.9430 −381.3118 0.0007 −2.6816
13667.8461 4448.4573 −0.0081 11.7616




Ĥ =




0.2599 −0.0000 0.4386 0.0000
−0.0000 1.0000 0.0000 −0.0000

0.4386 0.0000 0.7401 0.0000
0.0000 −0.0000 0.0000 −0.0000




The system matrices of the reduced-order unknown input observer that detects the lateral ac-

celerometer fault are

Ar =




−38.3795 4.8261 0.4187 −0.0384
9.2680 −5.6671 −0.9146 0.0882
3.4650 −0.6965 −4.6438 0.3187

−8.8154 −62.1846 80.8520 −5.8822




Br =




−12.1973 −0.0180 0.3565 0.0000 −0.0000
−65.7380 −0.1581 2.2749 0.0000 0.0000

11.9367 −0.2361 −4.5318 0.0000 0.0000
−162.0592 −0.9589 −101.6535 0.0000 −0.0000



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Cr =




−178.1637 11.8465 0.9742 −0.0891
0.0717 0.6160 −0.7829 0.0570

−300.6254 19.9892 1.6438 −0.1504
−0.0000 0.0000 0.0000 −0.0000




Dr =




−− 60.8574 0.2599 −0.0000 0.4386 0.0000
0.0056 −0.0000 1.0000 0.0000 −0.0000

−102.6880 0.4386 0.0000 0.7401 0.0000
−0.0000 0.0000 −0.0000 0.0000 −0.0000




For the unknown input observer that detects the rear wheel speed sensor fault,

P =




18775.6157 −1.3587 −44271.4224 107.9244 −1.7258 −1.5188
−1.3587 0.0001 3.4201 −0.0080 0.0001 0.0001

−44271.4207 3.4201 120294.7856 −392.5539 4.4205 3.8564
107.9241 −0.0080 −392.5532 3.8499 −0.0114 −0.0094
−1.7258 0.0001 4.4204 −0.0114 0.0002 0.0002
−1.5188 0.0001 3.8564 −0.0094 0.0001 0.0001




L =




−10047.3215 107.9244 −222.1551 −171.7619
0.0015 −0.0080 0.0152 0.0113

−27169.0369 −392.5539 1138.7238 982.3336
344.2394 3.8499 −17.1592 −16.1408
−0.2289 −0.0114 0.0257 0.0204
−0.0999 −0.0094 0.0196 0.0151




Ĥ =




0.0000 0.0000 −0.0000 −0.0000
0.0000 0.9774 0.1079 0.1023

−0.0000 0.1079 0.4853 −0.4880
−0.0000 0.1023 −0.4880 0.5374




The system matrices of the reduced-order unknown input observer that detects the rear wheel

speed sensor fault are

Ar =




−0.1545 −0.2594 −0.0831 0.0006
6.4215 −35.6815 3.1008 −0.0252

−57.7884 1.6073 −34.2507 0.2877
340.0360 −252.9324 169.7429 −1.6481




Br =




−0.0179 −0.0000 0.0028 −0.0010 0.0009
−0.0108 0.0000 0.0000 0.0005 0.0006
−0.4381 0.0000 0.0186 −0.0110 −0.0001
−57.5668 −0.0000 2.7229 −1.3337 0.3131




Cr =




0.0000 0.0000 0.0000 −0.0000
−69.2553 0.3726 −32.4236 0.1944
−8.1664 150.6730 −10.1719 0.0860
−6.6996 −158.8483 3.5600 −0.0476




Dr =




0.0000 0.0000 0.0000 −0.0000
−69.2553 0.3726 −32.4236 0.1944
−8.1664 150.6730 −10.1719 0.0859
−6.6996 −158.8483 3.5600 −0.0476



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B.7 Fault Detection Filter Set No. 1’

For the redesigned unknown input observer that detects the longitudinal accelerometer fault,

The fault directions are

Fn1 =




1 0
0 1
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0




, Fn2 =




0
0
0
0
0
0
0
0
0
0
1
0
0




, Fywe
=




0
0
0
0
0
0
0
0
0
0
0
1
0




, Fyax
=




0
0
0
0
0
0
0
0
0
0
0
0
1




P =




517.3771 0.4986 0.0000 0.0000 −0.0000 0.0000 0.0000
0.4986 10172.7115 −22.1266 −33.2601 0.7575 −1.5775 −7.7329
0.0000 −22.1266 0.0673 0.0608 −0.0012 0.0030 0.0208
0.0000 −33.2601 0.0608 0.1427 −0.0036 0.0065 0.0218

−0.0000 0.7575 −0.0012 −0.0036 0.0001 −0.0002 −0.0004
0.0000 −1.5775 0.0030 0.0065 −0.0002 0.0003 0.0011
0.0000 −7.7329 0.0208 0.0218 −0.0004 0.0011 0.0076

−0.0000 3.5912 −0.0061 −0.0162 0.0004 −0.0007 −0.0022
0.0000 −2.6146 0.0050 0.0107 −0.0003 0.0005 0.0018
0.0000 −0.0000 0.0000 0.0000 −0.0000 0.0000 0.0000

−0.0020 −588.3614 1.5057 1.9624 −0.0447 0.0931 0.4563
0.0035 −9067.1113 20.8433 32.1731 −0.7363 1.5237 7.3609

0 0 0 0 0 0 0

−0.0000 0.0000 0.0000 −0.0020 0.0035 −0.0000
3.5912 −2.6146 0.0000 −588.3614 −9067.1113 −0.0000

−0.0061 0.0050 −0.0000 1.5057 20.8433 0.0000
−0.0162 0.0107 −0.0000 1.9624 32.1731 0.0000

0.0004 −0.0003 0.0000 −0.0447 −0.7363 −0.0000
−0.0007 0.0005 −0.0000 0.0931 1.5237 0.0000
−0.0022 0.0018 −0.0000 0.4563 7.3609 0.0000

0.0019 −0.0012 0.0000 −0.2119 −3.4824 −0.0000
−0.0012 0.0008 −0.0000 0.1543 2.5237 0.0000
−0.0000 0.0000 0.0000 0.0000 0.0000 −0.0000
−0.2119 0.1543 −0.0000 4506.6414 535.1276 0.0000
−3.4824 2.5237 −0.0000 535.1276 998740.8566 −0.0000

0 0 0 0 0 0



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L =




9999.4557 0.0001 0.1273 2290.2008 −0.0001
9.6361 0.1106 45.7446 3142966.8551 241.2583
0.0002 −0.0001 0.9990 43.5684 −0.4253
0.0002 −0.0001 −0.0003 62.6422 −0.9757

−0.0000 0.0000 0.0000 −1.4150 0.0235
0.0000 −0.0000 −0.0000 2.9786 −0.0458
0.0001 −0.0000 −0.0000 14.3553 −0.1821

−0.0000 0.0000 0.0000 −6.7362 0.1086
0.0000 −0.0000 −0.0000 4.9422 −0.0756
0.0000 −0.0000 −0.0000 0.0000 −0.0000

−0.0378 −0.0053 22359.6217 −5319.1705 −12.9277
0.0671 98.9674 0.4417 15118.1258 −234.1377

0 0 0 0 0




Ĥ =




0 0 0 0 0
0 −0.0000 −0.0000 −0.0000 0
0 0 0.0000 −0.0000 0
0 −0.0000 −0.0000 −0.0000 0
0 0 0 0 1.0000




The system matrices of the reduced-order unknown input observer that detects the longitudinal

accelerometer fault are

Ar =




−19.5509 4.3863 −1.4104 −1.0042 0.3063
−26.7579 −0.1929 1.2247 −0.6414 0.1392
−290.1396 −1.5247 −23.31397 −7.1116 2.7413

299.6871 84.5110 4.7030 −2.8455 2.9147
262.8337 −53.3404 52.2409 4.6176 −6.7242
693.7508 277.7750 −12.7216 10.1496 8.0912

−576.1701 −191.4395 −4.6230 −8.4284 −5.2343
1233.6486 286.2598 45.7112 23.5827 −2.4035
−6.2362 47.5666 −17.2031 −0.9607 3.5865

−0.2919 0.1424 0.0085 −0.0000
−0.1158 0.0441 0.0015 −0.0000
−2.7874 1.4705 0.0971 −0.0000
−2.9201 1.4236 0.0839 −0.0000

7.4792 −4.2246 −0.3096 0.0000
−15.5154 11.6344 1.0537 −0.0001

10.6074 −10.1904 −1.3603 0.0001
2.7809 −0.9357 −4.4433 0.0005

−4.6237 3.2850 0.5849 −1.2498



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Br =




0.0000 −0.0000 0.0000 0.0000 −0.0004 −0.0031 0.0042
−0.0000 0.0000 −0.0000 −0.0000 −0.0005 −0.0200 −0.0148

0.0000 −0.0000 0.0000 0.0000 0.1292 0.1250 0.0569
−0.0000 0.0000 −0.0001 −0.0000 0.0991 −0.2435 −0.1667
−0.0000 0.0001 −0.0002 −0.0000 0.9266 0.0735 −0.2972
−0.0000 0.0000 −0.0001 0.0000 −0.1001 −0.3536 −0.3245

0.0000 −0.0002 0.0001 −0.0000 −0.3109 0.3072 0.2947
−0.0000 0.0005 −0.0003 −0.0000 0.0904 0.1635 −0.9424
−0.0000 −1.2500 −0.0000 0.0030 0.0002 −0.0683 −0.0076




Cr =




0 0 0 0 0
0.0000 −0.0000 0.0000 0.0000 −0.0000

−0.0000 0.0000 −0.0000 −0.0000 0.0000
0.0000 −0.0000 0.0000 0.0000 −0.0000

−1056.9562 −50.9139 −112.1932 −15.3710 10.1939

0 0 0 0
0.0000 −0.0000 −0.0000 −0.0000

−0.0000 0.0000 0.0000 0.0000
0.0000 −0.0000 −0.0000 −0.0000

−6.8800 3.5132 0.2362 −0.0000




Dr =




0 0 0 0 0 0 0
0 0 0 −0.0000 −0.0000 −0.0000 0
0 0 0 0 0.0000 −0.0000 0
0 0 0 −0.0000 −0.0000 −0.0000 0
0 0 0 0 0 0 1.0000




B.8 Fault Detection Filter Set No. 3’

The reduced-order longitudinal model derived when the vehicle is traveling at 24 m/s with modified

dynamical equation for brake state is

ẋ = Ax + Bu

y = Cx
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where

A =




−10.4692 −0.1177 0 0 0
327.7406 −53.2410 552.4915 −0.7238 −44121.7763

0 0.0550 −0.5721 0.0007 43.3440
0 −0.0001 0.0007 −0.0000 −448.3575
0 0 0.0013 1.0000 0
0 0 0 0 0
0 −0.0263 0.2684 −0.0004 −114.1535
0 0 0 0 66.3436
0 0 0 0 48.6827
0 0 0 0 0

0 0 0 0 0
46710.0274 −278.9203 22058.6614 0 −0.0672
−46.7168 0.3150 −21.8174 0.1475 −0.0019
−155.8232 23.9996 112.0991 112.0787 0.0000
−24.0000 0 0 0 0

0 1.0000 0 0 0
−536.7500 −0.1355 −60.2901 117.3615 0.0009
−70.2379 0 −39.2621 0 0

85.4543 0 0 −32.6411 0
0 0 0 0 −10.0000




B =




2.6100 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 10.0000




C =




19.3272 0 0 0 0
0 1.0000 0 0 0
0 0.0550 −0.5721 0.0007 43.3440
0 0.0456 6.2989 −0.0083 −503.0252
0 0 6.5316 −0.0086 −511.6989

0 0 0 0 0
0 0 0 0 0

−46.7168 0.3150 −21.8174 0.1238 −0.0019
532.5334 −3.1799 251.4872 0 −0.0008

−898.2125 −3.2312 0 255.8137 −0.0013




229



The actuator fault directions are

Fuα =




2.6100
0
0
0
0
0
0
0
0
0




, FuTb
=




0
0
0
0
0
0
0
0
0

10.0000




The sensor fault directions are

Fymp
=




0.0517 −0.5417
0 16.9575
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0




, Fywe
=




0 −0.1177
1.0000 −57.2411
0.6802 −0.0000

−0.0006 −29.3339
0.0131 0.0031

−0.0001 −0.9488
−0.9488 −1.4008
−0.0027 0.9856
−0.0035 0.7435

0.0452 −0.4515




, Fyax
=




0 0.0000
−0.0000 0.0000
−11.5368 1.0000

0.0096 497.1906
−0.2217 −0.0415

0.0015 16.0924
16.0925 23.4975
0.0458 −16.6123
0.0596 −12.6107

−0.7659 7.6585




The modified brake actuator fault direction is

FuTb
=




0 0
0 −0.0672
0 −0.0019
0 0.0000
0 0
0 0
0 0.0009
0 0
0 0

10.0000 0




For the unknown input observer that detects the brake actuator fault designed using the linear
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model with modified dynamical equation for brake state,

P =




3029.8460 13098.0031 39.2427 −18.3812 1.5599
13098.0030 125187.7641 574.8844 −558.5685 −46.0205

39.2427 574.8844 32.5714 −4.3349 0.4952
−18.3812 −558.5685 −4.3349 382.2027 39.5097

1.5599 −46.0205 0.4952 39.5097 4.3184
−0.8136 13.9658 −0.0257 −22.8439 −2.4349
−2.2580 −1166.7878 4.8896 1098.4626 117.2042

3.3723 −31.7878 0.8587 21.8940 2.5604
−1.7024 195.6650 −0.5278 −222.7192 −23.6436
−0.3362 14.4783 1.24950 −11.4279 −1.1264

−0.8136 −2.2580 3.3723 −1.7024 −0.3360
13.9658 −1166.7878 −31.7878 195.6650 14.4800
−0.0258 4.8896 0.8587 −0.5278 1.2495
−22.8439 1098.4626 21.8940 −222.7192 −11.4279
−2.4349 117.2042 2.5604 −23.6436 −1.1264

1.4098 −67.1895 −1.3964 13.6227 0.6469
−67.1895 3224.9157 67.3384 −652.5464 −32.0163
−1.3964 67.3384 1.6460 −13.4906 −0.5830
13.6227 −652.5464 −13.4906 132.1769 6.4332
0.6469 −32.0163 −0.5830 6.4332 −7499.6938




L =




0.0015 0.3275 0.0182 0.2410 −0.1196
0.0063 3.1297 0.1066 17.8188 34.2939
0.0000 0.0144 0.0005 0.0845 −0.0842

−0.0000 −0.0140 0.0647 −15.0412 −30.1270
0.0000 −0.0012 0.0069 −1.5985 −3.2234

−0.0000 0.0003 −0.0040 0.9194 1.8408
−0.0000 −0.0292 0.1901 −44.0445 −88.4754

0.0000 −0.0008 0.0039 −0.9140 −1.8596
−0.0000 0.0049 −0.0386 8.9188 17.8910
−0.0000 0.0004 −0.0015 0.4403 0.8811




Ĥ =




0 −0.0000 −0.0000 0.0000 0.0000
−0.0000 0.0048 −0.0554 −0.0373 0.0162
−0.0000 −0.0554 0.9954 0.0153 0.0357
−0.0000 −0.0373 0.0153 0.7992 −0.3986
−0.0000 0.0162 0.0357 −0.3986 0.2007




The system matrices of the reduced-order unknown input observer that detects the brake actuator
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fault are

Ar =




−0.6173 1.6771 0.9911 −0.7484 0.8287
−1.9168 −4.8550 −4.9491 7.0811 −4.3788

0.5425 6.6218 −8.3009 5.8250 −8.8322
−0.4944 −3.8323 −9.4218 −12.5601 10.2690

0.2643 1.3993 8.1516 16.5017 −26.5402
0.1554 0.8923 −0.1307 3.6062 −10.6877
0.0561 0.3551 −0.5282 0.2861 −0.0154
0.0685 0.4335 −0.6502 0.3543 −0.1194
0.0007 −0.0010 0.0918 0.1892 −0.5395

−0.1728 0.0587 −0.0713 0.0086
0.8304 −0.3106 0.3922 −0.0481
1.7406 −0.5371 0.6211 −0.0737

−3.1357 1.0962 −1.4045 0.1729
13.2808 −3.7502 4.5709 −0.5536
−5.2437 3.8582 −4.2631 0.5214
−2.9807 −5.9883 17.1450 −1.7760
−3.0900 −17.1675 −60.9010 14.6327
−0.2726 0.4117 2.4421 −14.6185




Br =




−1.5314 0.0770 −0.0018 −0.8848 −0.0338 −3.9863 5.7606
−2.1386 0.1082 −0.0021 −0.7426 −0.0278 −3.7044 −19.6021

0.9830 −0.1145 −0.0001 −0.2975 0.0045 −5.0506 −14.3739
−3.9311 −0.0265 −0.0027 −0.5007 −0.0502 4.7696 9.2081
−3.0635 0.0338 −0.0009 −1.3081 0.0242 −23.3705 −77.8112

5.2283 −0.0048 0.0034 0.5248 0.0604 −6.7955 −11.9278
−2.8043 −0.0046 −0.0026 −0.6927 −0.0339 −1.5568 2.3557
−4.6428 −0.0057 0.0004 1.1522 0.0076 13.8596 33.9203
11.1815 0.0005 0.0058 1.2087 0.0714 −0.0712 −3.6028




Cr =




0.0000 0.0000 −0.0000 0.0000 −0.0000
0.0049 −0.0006 −0.0080 −0.0004 −0.0031

−0.0064 −0.0758 0.0791 0.0605 0.0005
−0.0990 0.1056 0.0805 −0.0638 0.0668

0.0492 −0.0560 −0.0368 0.0345 −0.0333

−0.0000 −0.0000 −0.0000 −0.0000
0.0007 −0.0002 0.0002 −0.0000

−0.0014 −0.0001 0.0005 −0.0001
−0.0138 0.0047 −0.0057 0.0007

0.0068 −0.0024 0.0029 −0.0004




Dr =




−0.0000 −0.0000 −0.0000 0.0000 −0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 −0.0000 0.0000 −0.0000 −0.0000
0.0000 0.0000 0.0000 −0.0000 0.0000 −0.0000 −0.0000

−0.0000 −0.0000 −0.0000 0.0000 −0.0000 0.0000 0.000
0.0000 0.0000 0.0000 −0.0000 0.0000 −0.0000 −0.0000



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