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A Linear Surrogate for Optimizing Functions of an Orthogonal Matrix with 

Applications in Wave Function Theory 

 

Zhenling Wang and Martin Head-Gordon 

Department of Chemistry, University of California, and, 

Chemical Sciences Division, Lawrence Berkeley National Laboratory, 

Berkeley CA 94720, USA 

 

Abstract 
The technique of surrogate optimization is to use a simpler function to approximate a 

complex function that is time-consuming to evaluate. We show that the maximum of a 

special type of surrogate function 𝑓(𝑈) = Tr(𝐴𝑈), 𝑈 ∈ 𝑂(𝑛) is at 𝐴!(𝐴𝐴!)1/2 , and that 

there is one and only one local maximum both in 𝑆𝑂(𝑛) and 𝑂(𝑛) − 𝑆𝑂(𝑛). This function 

𝑓(𝑈)  has been found to be useful in various aspects of electronic structure theory, 

including proving the Carlson-Keller theorem, and localizing orbitals. As one other 

example, we apply it here to optimize the ground state of molecules using the Generalized 

Valence Bond wavefunction.  

 

Keywords 
surrogate optimization, orthogonal matrix, orbital localization, Generalized Valence Bond 

theory 
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1. Introduction 

Optimization problems are ubiquitous in quantum chemistry, and sometimes the objective 

function is hard to evaluate. For example, in geometry optimization, we are finding local 

minima (or saddle points) on molecular potential energy surfaces, and in self-consistent 

field (SCF) orbital optimization, we are trying to reach the minimum on a Grassman 

manifold. Both problems are non-trivial due to the computational cost of evaluating the 

objective function and its gradients at a large number of trial points. Therefore, we can 

achieve a considerable speedup if we construct an approximate function that is fast to 

evaluate – this is the idea of surrogate optimization. Recently, this idea has attracted 

some interest in chemistry, with research emphasis particularly on using machine learning 

to do geometry optimization[1–4]. There are also applications in experimental design[5], 

predicting molecular properties[6] and calculating the electronic structure[7,8]. 

 

It is uncommon to see surrogate optimization discussed in electronic structure theory. 

There is one common example: the Roothaan step in SCF optimization[9] updates the 

density matrix by finding the global minimum (or a saddle point in exotic cases[10–12]) of a 

surrogate function, 𝐸 = Tr(𝑃𝐹), where 𝐹 is the current Fock matrix (taken as constant) in 

an orthogonal basis. This surrogate function is directly optimized by diagonalizing 𝐹 , 

yielding the density matrix as 𝑃 = ∑ 𝐶#𝐶#!$
#%1  where 𝐶# are the orthonormal eigenvectors 

corresponding to the 𝑂 (number of electrons) lowest eigenvalues: 𝐹𝐶# = 𝐶#𝜀#. Apart from 

this classic example, and the two machine-learning-relevant papers mentioned above, 

there is only one highly developed idea – the second-order convergence method[13]. For 

instance, in multi-configuration SCF (MCSCF)[13–16] and generalized valence bond (GVB) 

theory[17,18], we want to minimize the system energy 𝐸 , which is a function of an 

orthogonal matrix 𝐸(𝑈). 𝑈 can be written as the matrix exponential of an antisymmetric 

matrix 𝑈 = exp(Δ) , and second-order convergence suggests expand 𝐸  either to the 

second order of Δ and minimize the surrogate analytically or to the second order of 𝑇 =

𝑈 − 𝐼 and minimize it iteratively. In this paper, however, we will find the exact extremum 

point of a 𝑈-linearized surrogate function Tr(𝐴𝑈), without the need to further approximate 

𝑈 by a polynomial or to iteratively solve a set of non-linear equations.  
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Based on the following lemma, we can find the exact extremum of 𝑓(𝑈) = Tr(𝐴𝑈). 

Lemma 1    Given 𝐴 ∈ ℝ&×& an invertible matrix and 𝑓: 𝑆𝑂(𝑛) → ℝ defined by 

𝑓(𝑈) = Tr(𝐴𝑈), 

then 𝑓 has one and only one local maximum. Following standard notation[19], 𝑆𝑂(𝑛) refers 

to the special orthogonal group of rotation matrices with determinant equal to 1, in contrast 

to the more general orthogonal group, 𝑂(𝑛), which also includes e.g. reflection matrices. 

Subotnik and co-workers attempted to prove it[20], and claimed that the maximum point of 

𝑓 is 

𝑈1 = 𝐴!(𝐴𝐴!)(1/2. 

However, this is incorrect, consider 

𝐴 = 9 1
−1
:, 

The resulting 𝑈1 will be 

𝑈1 = 9 1
−1
: ∉ 𝑆𝑂(𝑛), 

which is clearly contradictory. In this paper, we will give an accurate statement and 

complete proof of this lemma in Section 2. Then, several applications are considered in 

Section 3, including orbital orthogonalization, where another proof of the Carlson-Keller 

theorem[21] is given, orbital localization, where we ensure that the hidden conjecture made 

by Subotnik et al. is actually reasonable, and finally orbital optimization in GVB theory. 

This lemma, as pointed out by an anonymous reviewer, is equivalent to the “orthogonal 

Procrustes problem”[22] used in many other fields, including psychometrics[23], 

crystallography[24,25], computer science[26], bioinformatics[27], and is a special case of the 

Wahba’s problem[28]. But as we have mentioned before, this type of surrogate approach 

is rare in electronic structure theory. We hope this paper might attract some interest in 

proposing and analyzing new surrogate optimization models in this field. 

 

2. Lemma and its Proof 

2.1. Global Maximum 
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Subotnik et al.’s maximum point is actually correct in 𝑂(𝑛). That the global maximum is 

indeed 𝑈1 is not difficult to prove. 

Lemma 2    Given 𝐴 ∈ ℝ&×& an invertible matrix and 𝑓: 𝑂(𝑛) → ℝ defined by 

𝑓(𝑈) = Tr(𝐴𝑈), 

then the unique global maximum of 𝑓 is at 𝑈1. 

 

Proof 

We perform singular value decomposition (SVD) on 𝐴, to obtain 

𝐴 = 𝐹Σ𝐺! , 

where 𝐹, 𝐺 ∈ 𝑂(𝑛)  and 𝛴  is diagonal with all diagonal values (singular values of 𝐴 ) 

positive. Now, 

Tr(𝐴𝑈) = Tr(𝐹𝛴𝐺!𝑈) = Tr[𝛴(𝐺!𝑈𝐹)], 

where 𝐺!𝑈𝐹 ∈ 𝑂(𝑛) . As 𝐺!𝑈𝐹  is orthogonal, its diagonal elements must not have 

absolute values larger than 1, so 

Tr[𝛴(𝐺!𝑈𝐹)] ≤ Tr(𝛴), 

and the equality is achieved only when 

𝐺!𝑈𝐹 = 𝐼& ⇔ 𝑈 = 𝐺𝐹!; 

here 𝐼& is the identity matrix. Actually, as 𝐴𝐴! = 𝐹𝛴2𝐹!, we know that 

(𝐴𝐴!)(1/2 = 𝐹𝛴(1𝐹! , 

so 

𝑈1 = 𝐴!(𝐴𝐴!)(1/2 = 𝐺𝐹! . 

□ 

 

For the case that 𝑓 is restricted on 𝑆𝑂(𝑛), the location of the maximum depends on 

whether det𝐴 is positive or negative. 

Lemma 2’    Given 𝐴 ∈ ℝ&×& is an invertible matrix with SVD 𝐴 = 𝐹𝛴𝐺! (𝛴 is sorted to 

have larger values on the upper left part of the matrix) and 𝑓: 𝑆𝑂(𝑛) → ℝ defined by 

𝑓(𝑈) = Tr(𝐴𝑈), 

then the unique global maximum of 𝑓 is  

(a) at 𝐺𝐹! = 𝑈1 if det𝐴 > 0; 
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(b) at 𝐺𝐿𝐹! = 𝑈(1  if det𝐴 < 0 and the smallest singular value of 𝐴 is non-degenerate; 

here 𝐿 = diag(1, ⋯ ,1, −1). 

 

Proof 

(a) follows immediately from Lemma 2 as 𝐺!𝑈𝐹 ∈ 𝑆𝑂(𝑛), we only need to prove (b). 

We still write 

Tr(𝐴𝑈) = Tr[𝛴(𝐺!𝑈𝐹)] = Tr(𝛴𝑃), 

and this time 𝑃 ∈ 𝑂(𝑛) − 𝑆𝑂(𝑛). We denote the 𝑖th diagonal element of matrix 𝛴 as 𝜎)), 

and clearly 

Tr(𝛴𝑃) =I𝜎))𝑃))
)

=I(𝜎)) − 𝜎&&)𝑃))
)

+ 𝜎&& Tr(𝑃) 

            ≤I(𝜎)) − 𝜎&&) ⋅ 1
)

+ 𝜎&& ⋅ (𝑛 − 2) =I𝜎))
)

− 2𝜎&& 

            = Tr(𝛴) − 2𝜎&&, 

where Tr(𝑃), being the sum of all eigenvalues of 𝑃, cannot exceed 𝑛 − 2 as det𝑃 = −1. 

The equality is reached, when 𝜎&& ≠ 𝜎&(1,&(1, only in the case that 

𝑃11 = ⋯𝑃&(1,&(1 = 1, 

and 

Tr(𝑃) = 𝑛 − 2, 

meaning  

𝑃 = 𝐿 = M
1

⋱
1

−1

O. 

Also, if 𝜎&& = 𝜎&(1,&(1, the maximum point is not unique, as  

𝑃ʹ = diag(1, ⋯ ,1, −1,1) 

satisfies Tr(𝛴𝑃ʹ) = Tr(𝛴) − 2𝜎&&  as well. Thus, if conditions in (b) are satisfied, the 

maximum point of 𝑓 is 

𝐺!𝑈𝐹 = 𝐿 ⇔ 𝑈 = 𝐺𝐿𝐹! = 𝑈(1. 

□ 

 

2.2. Local Maximum when 𝒅𝒆𝒕	𝑨 > 𝟎 
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To find any local maximum, we first consider the case that det𝐴 > 0 . In this case, 

because 𝐺!𝑆𝑂(𝑛)𝐹 = 𝑆𝑂(𝑛), the problem is equivalent to finding the local maximum of 

𝑓(𝑈) = Tr(𝛴𝑈), 

where 𝛴 is a positive sorted diagonal matrix, i.e., 

𝛴 =

⎝

⎜
⎛
𝜎1𝐼+1

𝜎2𝐼+2
⋱

𝜎,𝐼+!⎠

⎟
⎞
, 

where 𝑘1, 𝑘2, ⋯ , 𝑘, are the multiplicity of singular values 𝜎1 > 𝜎2 > ⋯ > 𝜎, > 0, and 𝐼+ is 

the identity matrix of dimension 𝑘.  

 

Any local maximum must satisfy two conditions: first it must be a stationary point, and 

second its function value must not be smaller than that of a point in its neighborhood. The 

condition for a stationary point is presented in the Lemma 3 below. 

Lemma 3    Given a positive sorted diagonal matrix 𝛴 (the definition of such matrices is 

given above), the stationary points of function 𝑓: 𝑆𝑂(𝑛) → ℝ defined by 𝑓(𝑈) = Tr(𝛴𝑈) 

are 

𝑈 =

⎝

⎜
⎛
𝑈+1

𝑈+2
⋱

𝑈+!⎠

⎟
⎞
, 

where 𝑈+1 , 𝑈+2 , ⋯ , 𝑈+! are symmetric orthogonal matrices of dimensions 𝑘1, 𝑘2, ⋯ , 𝑘,. 

 

Proof 

At a certain stationary point candidate 𝑈0, we consider a shifted function 𝑓0: 𝑆𝑂(𝑛) → ℝ 

and 

𝑓0(𝑈) = Tr(𝛴𝑈0𝑈), 

and we write 𝑈 = exp(𝛥)  where 𝛥  is antisymmetric. Differentiating with respect to 

elements of 𝛥 at the point 𝛥 = 0 gives 

𝜕𝑓0
𝜕𝛥-.

_
/%0

=I(𝛴𝑈0))#
𝜕𝑈#)
𝜕𝛥-.

_
/%0),#

 

(2) 

(1) 
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         	     =I(𝛴𝑈0))#`𝛿#-𝛿). − 𝛿#.𝛿)-b
),#

 

         	     = (𝛴𝑈0).- − (𝛴𝑈0)-. . 

Therefore, stationary point 𝑈0 must have 𝛴𝑈0 = (𝛴𝑈0)!. We claim that every 𝑈 satisfying 

𝛴𝑈 = (𝛴𝑈)!  has the form in Equation (2), and if that is verified, Lemma 3 is proved.  

 

Let 

𝑈 = M

𝑢11 𝑢12 ⋯ 𝑢1&
𝑢21 𝑢22 ⋯ 𝑢2&
⋮ ⋮ ⋱ ⋮
𝑢&1 𝑢&2 ⋯ 𝑢&&

O, 

and 𝛴 = diag(𝜎11, ⋯ , 𝜎&&) where 𝜎11 ≥ 𝜎22 ≥ ⋯ ≥ 𝜎&& > 0. Thus, 

𝛴𝑈 = M

𝜎11𝑢11 𝜎11𝑢12 ⋯ 𝜎11𝑢1&
𝜎22𝑢21 𝜎22𝑢22 ⋯ 𝜎22𝑢2&
⋮ ⋮ ⋱ ⋮

𝜎&&𝑢&1 𝜎&&𝑢&2 ⋯ 𝜎&&𝑢&&

O, 

and as 𝛴𝑈 is symmetric, the squared norm of its first row must be equal to that of its first 

column, i.e.,  

𝜎112 (𝑢112 + 𝑢122 +⋯+ 𝑢1&2 ) = 𝜎112 𝑢112 + 𝜎222 𝑢212 +⋯+ 𝜎&&2 𝑢&12 . 

However, 𝑈  is orthogonal, so 𝑢112 + 𝑢122 +⋯+ 𝑢1&2 = 𝑢112 + 𝑢212 +⋯+ 𝑢&12 = 1 , which 

means 

𝜎112 = 𝜎112 𝑢112 + 𝜎222 𝑢212 +⋯+ 𝜎&&2 𝑢&12 ≤ 𝜎112 (𝑢112 + 𝑢212 +⋯+ 𝑢&12 ) = 𝜎112 , 

so, for 𝑖 = 2, ⋯ , 𝑛, either 𝜎))2 = 𝜎112  or 𝑢)1 = 𝑢1) = 0. Considering that 𝛴  has the form in 

Equation (1), we know that 𝑈 must now be of the form 

𝑈 = M

𝑈+1
∗ ∗ ∗
∗ ⋱ ∗
∗ ∗ ∗

O, 

where 𝑈+1 is a 𝑘1 × 𝑘1 matrix and ∗ stands for a part that is not yet determined. Because 

the first 𝑘1 rows of 𝑈 are orthonormal, 𝑈+1 is orthogonal. Also, as 𝛴𝑈 is symmetric, 𝜎1𝑈+1 

is symmetric, and thus 𝑈+1 is symmetric.  

 

Similarly, we can apply the same argument to the (𝑘1 + 1)th row and (𝑘1 + 1)th column, 

getting similar results; finally, we will arrive at 
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𝑈 =

⎝

⎜
⎛
𝑈+1

𝑈+2
⋱

𝑈+!⎠

⎟
⎞
, 

where 𝑈+1 , 𝑈+2 , ⋯ , 𝑈+! are symmetric orthogonal matrices but their determinants are not 

necessarily positive. 

□ 

 

We know that the function value of a local maximum cannot be smaller than that of a point 

in its neighborhood, and we will test this requirement at all stationary points; the result is 

Lemma 4. 

Lemma 4    Given the matrix 𝛴 and function 𝑓 as in Lemma 3, at all stationary points, only 

𝑈 = 𝐼& can be a local maximum, and as 𝑈 = 𝐼& is the global maximum point (Lemma 2’), 

it is indeed a local maximum. 

 

Proof 

Firstly, 𝑈 can be diagonalized: 

𝑈 = 𝑊𝛬𝑊! , 

where 𝑊  is a block diagonal orthogonal matrix 𝑊 = diag`𝑊+1 , ⋯ ,𝑊+!b  and 𝛬  is a 

diagonal matrix with elements 1 or -1; we write 𝛬  in a block diagonal form 𝛬 =

diag`𝛬+1 , ⋯ , 𝛬+!b . Notice that 𝑊+1 , ⋯ ,𝑊+!  are all orthogonal matrices, and 𝑈+" =

𝑊+"𝛬+"𝑊+"
!  for all 𝑖.  

 

We will prove this lemma in two steps: considering 𝑈 being a stationary point and a local 

maximum of 𝑓, we will first show that each block of 𝑈 cannot have two -1 eigenvalues, 

and then we will show that all -1 eigenvalues are in the same block of 𝑈. With these two 

claims, 𝑈  can have only one -1 eigenvalue at most; considering that det𝑈 > 0 , all 

eigenvalues must be 1, and thus 𝑈 = 𝑊𝑊! = 𝐼&. 

 

To see that each block of 𝑈  cannot have two negative eigenvalues, without losing 

generality we can assume that the first two eigenvalues of the first block 𝑈+1 are -1, i.e., 
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𝛬+1 = diag(−1, −1, ±1, ⋯ ,±1), 

where ±1 stands for elements that can be either 1 or -1. We can build, for 𝜃 ∈ [0,2𝜋), 

𝛬+1
ʹ = diagm9 cos𝜃 sin𝜃

− sin𝜃 cos𝜃: ,±1, ⋯ ,±1n, 

𝛬ʹ = diag`𝛬+1
ʹ , 𝛬+2 , ⋯ , 𝛬+!b, and 𝑈ʹ = 𝑊𝛬ʹ𝑊!. It is clear that for any neighborhood of 𝑈 

in 𝑆𝑂(𝑛), there exists a 𝜃  that is close but not equal to 𝜋 satisfying that 𝑈ʹ  is in that 

neighborhood. But we see that  

Tr(𝛴𝑈ʹ) − Tr(𝛴𝑈) = Tr(𝛴𝑊(𝛬ʹ − 𝛬)𝑊!) 

                              = 𝜎1 Tr`𝑊+1`𝛬+1
ʹ − 𝛬+1b𝑊+1

! b 

                              = 𝜎1 Tr 9`𝛬+1
ʹ − 𝛬+1b𝑊+1𝑊+1

! : 

                              = 𝜎1 Tr`𝛬+1
ʹ − 𝛬+1b = 2𝜎1(cos𝜃 + 1) > 0, 

so 𝑈 cannot be a local maximum. 

 

In the case that two different blocks have -1 eigenvalues, we can assume that the first 

eigenvalues of the first two blocks 𝑈+1 , 𝑈+2 are -1. 𝛬ʹ  can be built similarly as before, for 

a 𝜃 ∈ [0,2𝜋) that is close but not equal to 𝜋,  

𝛬ʹ = diag

⎝

⎜⎜
⎜
⎛

⎝

⎜⎜
⎛

cos𝜃 sin𝜃
±1

⋱
− sin𝜃 cos𝜃

±1
⋱⎠

⎟⎟
⎞

(+12+2)×(+12+2)

, 𝛬+3 , ⋯ , 𝛬+!

⎠

⎟⎟
⎟
⎞
, 

and it can be ensured that such 𝜃 exists for any neighborhood of 𝑈 such that matrix 𝑈ʹ =

𝑊𝛬ʹ𝑊! is in that neighborhood. We can calculate that 

  Tr(𝛴𝑈ʹ) − Tr(𝛴𝑈) 

= Tr(𝛴𝑊(𝛬ʹ − 𝛬)𝑊!) 

= Tr

⎝

⎜
⎜
⎜
⎛
m
𝜎1𝐼+1

𝜎2𝐼+2
nm
𝑊+1

𝑊+2
n

⎝

⎜⎜
⎛

cos𝜃 + 1 sin𝜃
0

⋱
− sin𝜃 cos𝜃 + 1

0
⋱⎠

⎟⎟
⎞
m
𝑊+1

!

𝑊+2
!n

⎠

⎟
⎟
⎟
⎞
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= o𝜎1I𝑤+1,1)
2

+1

)%1

+ 𝜎2I𝑤+2,1)
2

+2

)%1

q(cos𝜃 + 1) = (𝜎1 + 𝜎2)(cos𝜃 + 1) > 0, 

where 𝑤+1,1) is an element in the first row of 𝑊+1 and 𝑤+2,1) is defined similarly; the last 

equality follows from the fact that 𝑊+1 ,𝑊+2 are orthogonal. The fact that Tr(𝛴𝑈ʹ) > Tr(𝛴𝑈) 

means 𝑈 cannot be a local maximum, so all -1 eigenvalues must be in the same block, 

and the proof is thus complete. 

□ 

 

With Lemma 3 and Lemma 4, we know that Lemma 1 is true when det𝐴 > 0, and the only 

local maximum is 𝑈1 = 𝐴!(𝐴𝐴!)(1/2. 

 

2.3. Local Maximum when 𝒅𝒆𝒕	𝑨 < 𝟎 

When det𝐴 < 0, 𝐺!𝑆𝑂(𝑛)𝐹 ≠ 𝑆𝑂(𝑛), but  

Tr(𝐴𝑈) = Tr(𝐹𝛴𝐺!𝑈) = Tr(𝛴𝐿𝐿𝐺!𝑈𝐹), 

where the matrix 𝐿 = diag(1, ⋯ ,1, −1), and now 𝐿𝐺!𝑆𝑂(𝑛)𝐹 = 𝑆𝑂(𝑛), so by defining 𝛴ʹ =

𝛴𝐿, it is sufficient to prove that function 𝑓(𝑈) = Tr(𝛴ʹ𝑈) has only one local maximum in 

𝑆𝑂(𝑛); here  

𝛴ʹ =

⎝

⎜
⎛
𝜎1𝐼+1

⋱
𝜎,(1𝐼+!#1

−𝜎,⎠

⎟
⎞
, 

and we need 𝜎, to be non-degenerate to ensure that the global maximum is unique. 

 

The proof of Lemma 3 does not require 𝛴 to be positive, it only requires elements with 

larger absolute values to be in the upper left part of the matrix, which is also the case of 

𝛴ʹ – nothing needs to be done there. The first part of Lemma 4, showing that two -1 

eigenvalues cannot be in the same block, requires the relevant 𝜎 to be positive; but the 

block in 𝛴ʹ  that has negative 𝜎  is only one-dimensional, meaning that finding two -1 

eigenvalues is naturally impossible. The second part of Lemma 4 is showing all -1 

eigenvalues are in the same block. The proof only requires the sum of 𝜎 in the relevant 
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blocks to be positive, but 𝜎1 > 𝜎2 > ⋯ > 𝜎, > 0 , so that requirement is satisfied. 

Therefore, Lemma 3 and Lemma 4 are applicable to 𝑓(𝑈) = Tr(𝛴ʹ𝑈), giving the only local 

maximum at 𝑈 = 𝐼&, which means that Lemma 1 is also true in this case and that the local 

maximum is  

𝐿𝐺!𝑈𝐹 = 𝐼& ⇔ 𝑈 = 𝐺𝐿𝐹! = 𝑈(1. 

 

Finally, the complete form of Lemma 1 is summarized and relabeled below,  

Lemma 5    Given 𝐴 ∈ ℝ&×& an invertible matrix with its SVD 𝐴 = 𝐹𝛴𝐺! (𝛴 is sorted to 

have larger values on the upper left part of the matrix) and function 𝑓: 𝑆𝑂(𝑛) → ℝ defined 

by 

𝑓(𝑈) = Tr(𝐴𝑈), 

then 𝑓 has one and only one local maximum. The maximum point is 

(a) at 𝐺𝐹! = 𝐴!(𝐴𝐴!)(1/2 = 𝑈1 if det𝐴 > 0; 

(b) at 𝐺𝐿𝐹! = 𝑈(1  if det𝐴 < 0 and the smallest singular value of 𝐴 is non-degenerate, 

where 𝐿 = diag(1, ⋯ ,1, −1). 

 

3. Applications 

3.1. Löwdin Symmetric Orthogonalization 
Löwdin symmetric orthogonalization[29] is a method to orthogonalize orbitals. For a set of 

 linearly independent orbitals {𝜙)})%1&  with their coefficient matrix 𝐶0 and overlap matrix 

𝑆0, symmetric orthogonalization 

𝐶1 = 𝐶0𝑆0
(1/2 

orthogonalizes the set. The coefficient matrix  of any orthogonalized set u𝜙)ʹ v)%1
&  can be 

conveniently written as 

𝐶 = 𝐶0𝑆0
(1/2𝑈, 

where 𝑈 is an arbitrary matrix in 𝑂(𝑛). The Carlson-Keller theorem[21,30–32] claims that the 

symmetric orthogonalized orbital set resembles the original set most, i.e., 𝑈 = 𝐼 

minimizes the function 

n

C
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𝑓(𝑈) =Iw𝜙) − 𝜙)ʹ |𝜙) − 𝜙)ʹ y
&

)%1

= 2𝑛 − 2Iw𝜙)|𝜙)ʹ y
&

)%1

= 2𝑛 − 2Tr`𝑆0
1/2𝑈b, 

and we know directly from Lemma 5 that the global minimum point is indeed 𝑈 = 𝐼, and 

that 𝑈 = 𝐼 is also the only local minimum in 𝑆𝑂(𝑛). 

 

This result can be directly generalized to weighted orthogonalization[33]. In that case, the 

function to be minimized is 

𝑔(𝑈) =I𝑤)w𝜙) − 𝜙)ʹ |𝜙) − 𝜙)ʹ y
&

)%1

= 2I𝑤)

&

)%1

− 2I𝑤)w𝜙)|𝜙)ʹ y
&

)%1

= 2I𝑤)

&

)%1

− 2Tr`𝑊𝑆0
1/2𝑈b, 

here the positive weights are {𝑤)})%1&  and the matrix 𝑊 is a diagonal matrix 

𝑊 = diag(𝑤1, 𝑤2, ⋯ , 𝑤&). 

From Lemma 5, we know that the global minimum point of  is 

𝑈 = 𝑆0
1/2𝑊(𝑊𝑆0𝑊)(1/2, 

so the matrix of the weighted orthogonalized orbital set is 

𝐶 = 𝐶0𝑊(𝑊𝑆0𝑊)(1/2, 

which is the same as the classic result, and we also know that 𝑈 is the only local minimum 

in 𝑆𝑂(𝑛). The fact that the local minimum is unique justifies iterative algorithms designed 

for these processes[34]. 

 

3.2. Surrogate Optimization in Orbital Localization 
Orbital localization techniques are crucial to understanding chemical bonding, and also 

underpin most of the linear scaling algorithms in quantum chemistry. Three important 

examples are Boys[35,36], Pipek-Mezey[37], and Edmiston-Ruedenberg[38] localization, 

which maximize the following functionals of 𝑈 ∈ 𝑂(𝑛) given a set of orthonormalized 

orbitals {𝜙)})%1& . 

Boys: 𝑓4(𝑈) =I|⟨𝜙)|𝒓|𝜙)⟩|2
&

)%1

, 

Pipek-Mezey: 𝑓56(𝑈) =II|⟨𝜙)|𝑃7|𝜙)⟩|2
8$

7%1

&

)%1

, 

g
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Edmiston-Ruedenberg: 𝑓9:(𝑈) =I⟨𝜙)𝜙)|
1
𝑟
|𝜙)𝜙)⟩

&

)%1

, 

where in 𝑓56, 𝑁7 is the number of atoms and 𝑃7 is the projection operator onto the space 

spanned by the atomic orbitals of atom 𝐴. These functionals are not linear with respect to 

𝑈 , so Lemma 5 cannot be utilized directly. However, we can easily write surrogate 

functions and hope that a series of surrogate optimizations will converge to the global 

maximum. In other words, we write surrogate functions 

Boys: 𝑓4ʹ (𝑈) =Iw𝜙)|𝒓|𝜙),0y
&

)%1

⋅ w𝜙),0|𝒓|𝜙),0y, 

Pipek-Mezey: 𝑓56ʹ (𝑈) =IIw𝜙)|𝑃7|𝜙),0yw𝜙),0|𝑃7|𝜙),0y
8$

7%1

&

)%1

, 

Edmiston-Ruedenberg: 𝑓9:ʹ (𝑈) =Iw𝜙)𝜙),0�
1
𝑟 �𝜙),0𝜙),0y

&

)%1

, 

where u𝜙),0v)%1
&  is a fixed set of orbitals. All three surrogate functionals can be recast into 

the form of Tr(𝐴𝑈); for example, 𝑓4ʹ (𝑈) can be written as 

𝑓4ʹ (𝑈) =Iw𝜙)|𝒓|𝜙),0y ⋅ w𝜙),0|𝒓|𝜙),0y
&

)%1

=II𝑈#)w𝜙#,0|𝒓|𝜙),0y ⋅ w𝜙),0|𝒓|𝜙),0y
&

#%1

&

)%1

= Tr(𝐴4𝑈), 

where the elements of 𝐴4 are 

(𝐴4))# = w𝜙#,0|𝒓|𝜙),0y ⋅ w𝜙),0|𝒓|𝜙),0y. 

Similarly, the 𝐴 matrices for Pipek-Mezey and Edmiston-Ruedenberg are 

(𝐴56))# =Iw𝜙#,0|𝑃7|𝜙),0yw𝜙),0|𝑃7|𝜙),0y
8$

7%1

, 

(𝐴9:))# = w𝜙#,0𝜙),0�
1
𝑟 �𝜙),0𝜙),0y. 

Therefore, a primitive iterative algorithm looks like: 

1. For the current set of orbitals (matrix 𝐶), calculate 𝐴; 

2. Compute the optimal 𝑈 based on Lemma 5; 

3. Update 𝐶 = 𝐶𝑈, and if 𝑈 ≈ 𝐼, stop, otherwise go back to Step 1. 
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The algorithm can be accelerated by extrapolation techniques, for example DIIS, as 

studied in Subotnik et al.’s paper[20]. It is worth mentioning that although Lemma 5 

promises that each line-search step we will move to the global maximum of the surrogate 

function, the algorithm does not promise to converge to the global maximum point of the 

problem. The computational cost of the algorithm for all three localization techniques 

scales as 𝑂(𝑁3), where 𝑁 is the number of the basis set functions. 

 

As the determinant of 𝐴 is not necessarily positive here (cf. the previous section where 

det𝐴 is always positive), we should briefly discuss this question. Since the occupied 

orbitals are orthogonal to each other, one can expect that 𝐴56  and 𝐴9:  are strictly 

diagonal dominant. So, they must have positive determinants in most chemical systems 

because the diagonal elements of these two matrices are always positive. On the other 

hand, 𝐴4 , being heavily dependent on the position of the origin, does not share this 

property and may have a negative determinant. Figure 1 plots the smallest singular value 

(𝜎,) of the relevant 𝐴 matrices in some linear alkane systems. By the lemma, 2𝜎, is the 

difference of the maximum value of Tr(𝐴𝑈) in 𝑆𝑂(𝑛) and 𝑂(𝑛) − 𝑆𝑂(𝑛), a parity-violating 

difference. And, from the figure, it can be seen that restricting 𝑈 to be on 𝑆𝑂(𝑛) (which is 

what Subotnik et al. had conjectured) will not be inaccurate because either det𝐴 is always 

positive or 𝜎,  is too small (around 10(6). 𝜎,  is also showing a monotonic decay as 𝑛 

increases for the cases of Pipek-Mezey and Edmiston-Ruedenberg. Finally, it needs to 

be noted that 𝑓4 , 𝑓56 , 𝑓9: are all even functions; in other words,  

𝑓`𝑆𝑂(𝑛)b = 𝑓`𝑂(𝑛)b. 
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It is only because we linearize 𝑓 to 𝑓 ʹ that a parity-violating difference occurs. 

 

3.3. Surrogate Optimization in Generalized Valence Bond Theory 
The idea of preparing a linearized surrogate function in the previous section can also be 

applied to other branches of quantum chemistry. We will briefly look at an example of the 

active-active mixing in the minimal basis generalized valence bond (GVB) theory[39]. In 

contrast to conventional SCF orbital optimization, where only occupied-virtual orbital 

mixings affect the energy (Grassman manifold), all active-active rotations affect the GVB 

energy (Stieffel manifold) which typically makes optimization more challenging[18,40,41]. For 

simplicity, we will study a closed-shell system with frozen cores. The spatial part of the 

perfect pairing (PP) VB wavefunction is 

𝛹 = 𝑨o�`𝑐;)𝜙;)𝜙;) + 𝑐<)𝜙<)𝜙<)b

&%

)%1

q, 

where 𝑨 is the antisymmetrizer, 𝑛- is the number of electron pairs, 𝑐;) , 𝑐<) > 0 and 𝑐;)2 +

𝑐<)2 = 1. All 𝜙 orbitals are normalized and are orthogonal to each other. Goddard et al.[17,42] 

have derived the energy associated with this GVB-PP wavefunction, 𝛹: 

Figure 1 The smallest singular value of A matrix in some linear alkane systems. det A is 
always positive except for the boxed part of the Figure. PM stands for Pipek-Mezey and 
ER for Edmiston-Ruedenberg. The basis set is def2-SV(P). 
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𝐸 =I 2𝑓)ℎ))ʹ
&

)%1

+ I`𝑎)#𝐽)# + 𝑏)#𝐾)#b
&

),#%1

, 

here 𝑛 = 2𝑛- is the number of active orbitals, 𝑓) = 𝑐)2 is the orbital occupation coefficients, 

ℎ))ʹ = w𝜙)|𝒉ʹ|𝜙)y and  

𝒉ʹ = 𝒉 +I`2𝑱# −𝑲#b

&&

#%1

. 

In the last formula, 𝑛= is the number of frozen (doubly occupied) orbitals, 𝒉 is the usual 

one-electron Hamiltonian, and 𝑱# , 𝑲# are standard Coulomb and exchange operators for 

frozen orbital 𝑗; 𝐽)# = w𝜙)𝜙#|𝜙)𝜙#y, 𝐾)# = w𝜙)𝜙)|𝜙#𝜙#y. The two-electron coefficients 𝑎)# , 𝑏)# 

are 

𝑎)# = 2𝑓)𝑓# , 𝑏)# = −𝑓)𝑓# ,     if 𝑖, 𝑗 are not in the same pair;        1 

𝑎)# = 𝑓) , 𝑏)# = 0,    if 𝑖 = 𝑗;              1 

𝑎)# = 0, 𝑏)# = −�𝑓)𝑓#,   if 𝑖 ≠ 𝑗 but are in the same pair. 

 

One should notice that 𝐸 is a function of {𝜙)})%1&  and {𝑓)})%1& . As Lemma 5 only finds the 

maximum of a function of an orthogonal matrix, using the lemma to simultaneously 

optimize {𝜙)})%1&  and {𝑓)})%1&  is not possible. We can, however, propose a two-step 

algorithm as below: 

1. Fixing {𝑓)})%1& , optimize {𝜙)})%1& , which can be achieved by a surrogate function as will 

be described below; 

2. Fixing {𝜙)})%1& , optimize {𝑓)})%1& , which is an algebraic, 𝑛-  variables, constrained 

optimization problem; 

3. Check if self-consistency is reached, and if yes, stop, otherwise go back to Step 1. 

We will not discuss Step 2 in detail as it is not the main topic of this paper. 

 

For Step 1, we can linearize the energy function such that 

𝐸ʹ(𝑈) =I𝑓)w𝜙)|𝒉ʹ|𝜙),0y
&

)%1

+ I`𝑎)#w𝜙)𝜙#,0|𝜙),0𝜙#,0y + 𝑏)#w𝜙)𝜙),0|𝜙#,0𝜙#,0yb
&

),#%1

, 
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where u𝜙),0v)%1
&  is a fixed set of orbitals. We eliminate the factor of 2 to compensate for 

the fact that the two terms in 𝐸(𝑈) have different order with respect to 𝑈 (quadratic and 

quartic, respectively). Also, 

𝜙) =I𝑈#)𝜙#,0

&

#%1

, 

so 

𝐸ʹ(𝑈) =I𝑓)I𝑈+)

&

+%1

w𝜙+,0|𝒉ʹ|𝜙),0y
&

)%1

+ II𝑈+)`𝑎)#w𝜙+,0𝜙#,0|𝜙),0𝜙#,0y + 𝑏)#w𝜙+,0𝜙),0|𝜙#,0𝜙#,0yb
&

+%1

&

),#%1

, 

and by defining 

𝐻)+ʹ = 𝑓)w𝜙+,0|𝒉ʹ|𝜙),0y, 

and 

𝐺)+ =I`𝑎)#w𝜙+,0𝜙#,0|𝜙),0𝜙#,0y + 𝑏)#w𝜙+,0𝜙),0|𝜙#,0𝜙#,0yb
&

#%1

, 

𝐸ʹ(𝑈) can be cast into a familiar form 

𝐸ʹ(𝑈) = Tr(𝐻ʹ𝑈) + Tr(𝐺𝑈) = Tr[(𝐻ʹ + 𝐺)𝑈]. 

An iterative algorithm based on Lemma 5 for Step 1 is therefore natural. When the 

algorithm converges, we have 

(𝐻ʹ + 𝐺)! 9(𝐻ʹ + 𝐺)(𝐻ʹ + 𝐺)!:
(1/2

= 𝐼, 

meaning 

(𝐻ʹ + 𝐺)! = 𝐻ʹ + 𝐺, 

which coincides with the stationary point condition of the Fock operator; i.e., 

w𝜙)|𝑭) − 𝑭#|𝜙#y = 0,    ∀𝑖, 𝑗, 

where  

𝑭) = 𝑓)𝒉ʹ +I`𝑎)#𝑱# + 𝑏)#𝑲#b
&

#%1
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is the Fock operator of orbital 𝑖. The scaling of the algorithm is 𝑂(𝑛3𝑁), where 𝑁 is the 

number of atomic orbital basis functions, as we need to do an integral transformation to 

build 𝐺. 

 

We have tested the algorithm on CH4 with the minimal STO-3G basis set (Figure 2). To 

achieve stable convergence, on every iteration in Step 2, instead of transforming by the 

optimal 𝑈 , we use 𝑈1/2 , and we update {𝑓)})%1&  after every 5 iterations of orbital 

optimization. The {𝑓)})%1&  is optimized by the Rosen Gradient Projection method with 

Golden Section method on the line search steps. From the figure, it is clear that the 1-

pair GVB treatment is enough to achieve a qualitatively correct potential energy surface, 

although of course the 4-pair GVB wavefunction indeed acquires more correlation energy 

than the 1-pair wavefunction. At the bond length of 2.00 Å, it takes about 1500 iterations 

to converge, which is much slower comparing with about 25 iterations when using the 

geometric direct minimization method (GDM)[18] – how to stably accelerate the algorithm 

is a direction of future study. It is worth pointing out that this algorithm can, theoretically, 

also be applied to HF calculation, where {𝑓)})%1&  is fixed and we only need to optimize the 

Figure 2 Restricted HF and GVB-PP energy of CH4 with one of the C-H bonds stretched. “1 
pair” and “4 pairs” stand for the size of the active space. The basis set is STO-3G.  



19 
 

orbitals. However, this is not likely to be competitive with the Roothaan step, which exactly 

extremizes a surrogate function that is quadratic in 𝑈. 

 
4. Conclusion 

In this paper, we have presented the correct form and the complete proof of a lemma 

(Lemma 5), establishing that the function 𝑓(𝑈) = Tr(𝐴𝑈) has one local maximum point 

each in 𝑆𝑂(𝑛) and 𝑂(𝑛) − 𝑆𝑂(𝑛) with different function values. Various applications of the 

lemma in quantum chemistry were given, including orbital orthogonalization (Carlson-

Keller theorem and its weighted counterpart), orbital localization (Boys, Pipek-Mezey, and 

Edmiston-Ruedenberg), and orbital optimization (generalized valence bond). The 

surrogate optimization technique associated with this lemma is proved to be effective in 

those cases. Although the lemma itself only gives the precise optimal point to a very 

specific type of surrogate function, and surrogate optimization in SCF is routine, we 

believe that the full power of surrogate optimization has not yet been utilized in quantum 

chemistry. There is scope for future research utilizing the lemma in different chemical 

problems, as well as proposing other surrogate functions and studying their properties.  
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