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ABSTRACT OF THE DISSERTATION 

 

Stability as a Criterion for Metabolic Systems 

 

by 

 

Matthew Theisen 

Doctor of Philosophy in Bioengineering 

University of California, Los Angeles, 2016 

Professor James C. Liao, Chair 

 

Simulation of metabolic systems with kinetic models requires a large number of 

parameter values, which are either difficult or impossible to obtain experimentally.  Network 

information, such as stoichiometry, reversibility and steady state flux, can be used to determine 

mechanistically realistic rate laws, and these can be used to constrain the parameter space to only 

those values which satisfy the constraints.  Until now, stability has been overlooked when 

considering kinetic metabolic models. However, dynamical stability and robustness to 

perturbation are important qualities for living organisms, since they may encounter changing 

environments or stochastic variation across time or within populations. Considering stability can 

both provide constraints on the parameter space and be used to interpret the response of the 

model to queries about the performance of the metabolic system under various perturbations. I 

have used stability analysis to predict the performance of many metabolic systems, with an 

emphasis on providing guidance for experimental efforts and uncovering biological significance.  
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 The uses of stability analysis have encompassed several projects. Optimization of a novel 

methanol condensation cycle (MCC) was accomplished by tuning the amount of an irreversible 

phosphoketolase enzyme to a local productivity and stability maximum, as predicted by stability 

analysis and confirmed by in vitro experimentation.  Several other in vitro enzymatic were 

subjected to stability analysis, and predictions matched previously published experimental 

results. 

Stability analysis was also applied to several microbial systems to maximize production 

of a desired compound: n-butanol in Escherichia coli, isobutanol in Clostridium thermocellum 

and lipids in Yarrowia lipolytica.  In these systems, production simulations matched the 

observations and predictions for further production improvements were made. 

Stability analysis was also applied to gain biological understanding of the significance of 

structural features of the Calvin-Bassham-Benson (CBB) pathway in plants. The 

phosphate/glyceraldehyde-3-phosphate translocator was identified as more important for stability 

than a proposed glucose-6-phosphate shunt.  Further, productivity was increased after 

overexpression of sedoheptulose-1,7-biosphosphatase, but not RuBiSCO, in agreement with 

previous experimental reports. 

The importance of stability in analysis of metabolic systems is affirmed by this work, and 

the techniques demonstrated here pave the way for even further explorations. 
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1. Introduction 

1.1 Background 

Increasing availability of natural gas has spurred interest in the conversion of single-carbon 

(C1) compounds, with particular interest in methanol.1  Methane, the main component of natural 

gas, can be converted to methanol by a variety of methods including chemical conversion at the 

wellhead2, while upgrading methanol to multi-carbon compounds remains difficult.3,4  Concerns 

over the climate effects of carbon dioxide have spurred action to minimize its release into the 

atmosphere.  Thus, more carbon-efficient methods for the utilization of methanol represents a goal 

which would address strong societal needs in these areas.  As a reference point, natural enzymatic 

pathways for methanol processing would allow for a maximum of 67% carbon efficiency from 

methanol to higher alcohols, due to decarboxylation during the pyruvate dehydrogenase step.5  To 

address this need, we have developed the methanol condensation cycle (MCC).6  MCC converts 

one-carbon methanol to longer carbon-chain alcohols like n-butanol with 100% theoretical carbon 

efficiency.   

Metabolic simulation tools have great promise to guide the development of new enzymatic 

pathways like MCC.  One of the most popular tools developed so far is flux balance analysis 

(FBA).  FBA uses stoichiometric information about a pathway to predict characteristics of the 

pathway like theoretical yield.7  However, FBA is unable to utilize kinetic information about a 

pathway or organism.  In general, functions (i.e. Michaelis-Menten) which relate enzymatic-

reaction rate to substrate concentrations and parameters (Vmax, Km, etc.) are available.8  However, 

a major difficulty in using kinetic models is obtaining accurate parameters.9  A relatively new 

method for simulation of metabolic systems called ensemble modelling allows for kinetic 

simulation without a priori knowledge of parameters.10,11 This is accomplished by using network 
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information, like steady state enzyme fluxes to constrain guesses about enzyme parameters to 

realistic values. 

This simulation strategy may be helpful in the design of a methylotrophic E. coli strain.  

There are three critical enzymes for methylotrophy (growth on methanol): alcohol dehydrogenase 

(Adh), 3-hexulose-6-phosphate synthase (Hps) and 3-hexulose-6-phosphate isomerase (Phi).  My 

preliminary results have shown that methanol consumption by E. coli is possible, and that it can 

be converted to biomass.  Further, literature reports have identified methanol assimilation in E. 

coli.12 However it is likely that levels of other enzymes, especially related to carbon rearrangement 

and glycolysis may require expression at different levels to accommodate the high carbon flux 

required for primary metabolism. 

MCC bypasses the decarboxylating enzyme pyruvate dehydrogenase (Pdh) which 

generates key metabolic intermediate acetyl-CoA.  Instead, it generates acetyl-CoA from acetyl-

phosphate produced by phosphoketolase.  The productivity of the pathway is hypothesized to have 

a local maximum relative to the concentration of phosphoketolase.  Further, the pathway can be 

shown to be fully catalytic by analyzing 13C labelling patterns of MCC products formed by reacting 

unlabeled sugar phosphates with 13C labelled formaldehyde.  In silico modelling of the cycle can 

be performed to confirm our understanding of experimental results. 

Ensemble modelling and its extension ensemble modelling robustness analysis (EMRA) 

are relatively new methods for simulating metabolic systems.10,13  In this work, EMRA and 

stability more broadly, will be demonstrated as useful tools for pathway development.  Literature 

accounts have reported enzymatic systems with anomalous productivity characteristics.6,14,15  For 

example, a glycolysis system showed decreasing productivity with increasing feed rate.14 EMRA 

is a way to unify these anomalies with theoretical understanding. 
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Methylotrophic and non-methylotrophic organisms have fundamentally different 

metabolism.  For example, the highly studied methylotroph Bacillus methanolicus MGA3 is not 

capable of growth on glucose and its only known multi-carbon growth source is mannitol.16  There 

are very few reports of organisms which can utilize both glucose and methanol, with the most 

recent of such reports dating from the 1980s.  These organisms have relatively long lag phases on 

both substrates.17,18  Thus, it is possible that there are fundamental metabolic trade-offs that make 

simultaneous compatibility with methanol and glucose difficult.  Elucidation of these fundamental 

differences will be attempted with ensemble modelling, yielding potential experimental insights.  

Further, overexpression and knockout targets will be identified by using ensemble modelling 

robustness analysis (EMRA).13,19   

1.2 Importance of Cycles in Metabolism 

The metabolism of life is a complex network of reactions.  There are thousands of different 

reactions occurring even in a relatively simple life-form such as the bacterium Escherichia coli.  

However, many of these reactions occur with very little flux, and therefore it is often useful to 

break down metabolism into ‘pathways’, often focusing on the pathways that are highest in flux—

the so-called primary metabolism.  The exploration of these pathways and their variations is a 

major emphasis of this work. 

 Some pathways form a simple linear sequence (Fig 1-1), like glycolysis.  Ignoring cofactors 

for the moment (NADH, ATP), glycolysis is a linear pathway, with each successive metabolite 

being converted to the next—without any complexities like branching or cycles.  Glycolysis is one 

of the most important pathway for life, and is a highly conserved pathway found in almost all 

forms of life. It takes the energy locked up in the chemical bonds of glucose, and makes it available 

for the uses of life. 
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Fig. 1-1) Example of simple linear pathway. As substrate increases, pathway flux increases. Depletion of intermediates does not 
adversely affect pathway performance. 

 

 However, cyclic pathways have an equally, if not more important role in the chemistry of 

life.  In general, the class of C1 biochemistry (single carbon compound chemistry), relies heavily 

on metabolic cycles, many of which are complex and have multiple branch points. These pathways 

include the Calvin-Bassham-Benson (CBB) pathway, used by plants for the fixation of carbon 

dioxide into sugars, and the ribulose monophosphate (RuMP) pathway of methanol assimilation. 

 Why is C1 biochemistry so important? Carbon dioxide is a low energy molecule, and the 

carbon contained in it can be used, along with some other source of energy (reducing power from 

NADPH, for instance), to form the organic molecules which make up life. To form carbon 

skeletons (sugars) in this way power the rest of life on this planet, one carbon dioxide needs to be 

bonded with other carbons, a feat which allows the rest of life to flourish.  

 Why are cycles so important to C1 biochemistry? Chemically it is infeasible to bond two 

C1 molecules directly to a C2. No enzymes are known which can accomplish this reaction, so 

instead, the C1 molecule must be incorporated into a longer molecule, as is the case in the CBB 

and RuMP pathways, where a C1 is incorporated into a C5 molecule to form a C6.  The C6 



5 

  

molecule is then reshuffled back down to a C5, such that 5xC6 molecules shuffle down to 6xC5 

molecules, resulting in a net gain fixed carbon (Fig 1-2). 

 

Fig. 1-2) Most C1 metabolism uses cycles. The reaction C1 + C1 = C2 is mechanistically unfeasible. Thus, C1 molecules like 
carbon dioxide and methanol must be incorporated into longer carbon chains (usually C5 sugars) to complete assimilation. 

 
 Given the importance and complexity of C1 metabolism, we need to understand how it can 

fail. A critical difference between linear pathways and cycles is that, in the case of cycles, if an 

intermediate is depleted, the pathway can no longer operate (Fig 1-3).  

 

Fig. 1-3) Cyclic metabolism relies on the presence of intermediates for pathway function. For example, if the pathway cyclic 
intermediates are depleted, the addition of more starting substrate (S) will not result in more production. 
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1.3 Demonstrating Instability in a Simplified Metabolic Cycle 

To demonstrate how we may begin to understand the stability of cyclic pathways, I 

defined a ‘simplified’ version of a cyclic pathway (Fig 1-4), and analyzed when it would fail, 

finding an analytical solution mathematically. 

                                        

Fig. 1-4) Simplified version of MCC pathway.  Graphs showing B’ vs. B for different parameter values, showing that for some 
values, a non-zero stable steady state exists. 
 

The system is kinetically defined as mass action with the following equations.  B, C and F 

are assumed to have no initial concentration, only A. 

A k AS 2k BC 2k A  

B k AS k B k BC k A  

C k B k BC k A  

B k F 

B C F 0 

.		1	 1	 	
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Where ki is rate constant i and capital letters indicate metabolite concentrations. The system is 

conserved, meaning the total amount of metabolites in the cycle (A, B, C) is constant.  This can be 

found by observing the following: 

 

2  

0  

0  

 

 

.		2	 	

 

Where εi indicates extent of reaction i.  To find the nature of the steady state equation set Eqn. 1a) 

equal to zero.  It is then possible to solve for A in terms of only Ao, B, S and k parameters using 

2e).  At this point, substituting this expression for A into Eqn. 1b) would yield an ‘A-static’ 

derivative of B—meaning that given A has stabilized, what is the time change of B?  The result is 

the following: 

 

B
1
2
Sk A B

3
4
B

k
4k

BS
k

16k
S Bk k

k

8k
S

k
4k

BS  

.		3	

 

The roots of this equation would indicate the overall steady state—where A, B and C are not 

changing.  The roots are: 
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B 0; B
k

k
S k A k

k S 2k k S 4k
 

.		4	

The second root of B must be positive for a non-zero steady state to exist.  Thus:  

A
k
k

 

.		5 

 This is a beginning discussion on the importance of cycles in metabolism, and the role 

stability plays in performance of metabolic systems, both of which are major themes and will 

receive much more sophisticated treatments throughout. 

2. Methanol Condensation Cycle & Methanol Growth 

2.1 Methanol Condensation Cycle (MCC) 

2.1.1 MCC Introduction 

This chapter discusses work on developing the methanol condensation cycle (MCC) and 

attempts to engineer E. coli for growth on methanol.  MCC (Fig. 2-1) uses methanol dehydrogenase 

to convert methanol to formaldehyde.  From there, hexulose-phosphate synthase (Hps) us used to 

incorporate formaldehyde into ribulose-5-phosphate (Ru5P).  Phosphoketolase then cleaves 

fructose-6-phosphate (F6P) to erythrulose-4-phosphate and acetyl-phosphate.  Carbon is then 

rearranged to regenerate Ru5P. 
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Fig. 2-1. Full version of MCC pathway. (Enzyme and compound names in Appendix B) 
 

One concern in the implementation of MCC is the presence of a ‘kinetic trap’ whereby 

phosphoketolase completely consumes five- and six-carbon sugar phosphates (F6P, X5P, R5P, 

Ru5P).  This leaves only G3P and/or E4P which cannot react with each other in the presence of 

only MCC enzymes.  Phosphoketolase is known to be irreversible20 and its thermodynamic 

properties (ΔG = -40 kJ/mol) support this interpretation.  In contrast, other enzymes of the cycle 

(Rpe, Rpi, Tkt, Tal, Phi) are highly reversible. 

MCC can be approximately modeled by a simple metabolic cycle of the form shown in 

Chapter 1.  Due to the simple nature of this cycle, the conditions under which it will reach a stable 

steady state can be solved for analytically.  The solution requires the irreversible enzyme rate 

(represents phosphoketolase) to be slower than the reversible enzyme rate (stands for Rpe, Rpe, 

Tkt, Tal).  Additionally, the total amount of cycle intermediate must be higher than the ratio of the 

two rates.  This requirement for maintenance of cycle intermediates is reminiscent of the well-

known feature of the TCA cycle, cataplerosis.21  TCA intermediates are replenished via pyruvate 

carboxylase or phosphoenolpyruvate carboxylase in response to acetyl-CoA flux which allows the 

cycle to continue functioning.22 
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Fig. 2-2. Ensemble Modelling Robustness Analysis (EMRA) of the core MCC pathway.  Y-axis represents the stability of the 
system.  Specifically, it is the fraction of parameter sets that have a stable steady state.  X-axis represents the log10 fold change of 
enzyme amount. Phosphoketolase (Fpk) shows a local maximum in robustness relative to enzyme amount while other enzymes 
show only increasing robustness for increasing amounts. 

 

2.1.2 Ensemble Robustness Analysis of MCC in vitro 

Ensemble Model Robustness Analysis (EMRA) is a method which analyzes the robustness 

of metabolic systems using only knowledge of the stoichiometry of the system and a pre-

determined reference steady state13.  Values for enzymatic parameters like Km can be randomly 

drawn such that the reference steady state is maintained.  Then, each set of parameters can be 

inspected for robustness by ‘perturbing’ the system by altering the amount of various enzymes.  

Some sets of parameters may be observed to become unstable at various levels of perturbation.  

This instability is detected by noting the sign of the real part of the eigenvalues of the Jacobian.23 

A model of an in vitro MCC system (not including other cell metabolism) was developed 

which included the stoichiometry of the system, the reversibilities of the enzymes and the reference 

steady state.  Using the ensemble modelling robustness analysis method, the robustness of the 

pathway to changes in each enzyme was analyzed. (Fig. 2-2)  The reversible carbon rearrangement 
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enzymes (Rpe, Rpi, Tkt, Tal) must be present at a high level for maximum robustness and 

productivity.  The irreversible enzyme, phosphoketolase (Fpk), shows a local maximum for 

robustness with both too little and too much being harmful for productivity, while all other 

enzymes have only increasing robustness with increasing amount. 

2.1.3 Demonstration of catalytic MCC 

Demonstrating the recycling feature of MCC is key to proving its overall function.  This is 

because product can be formed using carbon only from the sugar phosphate intermediates, without 

incorporating significant amounts of foromaldehyde.  An assay tested the core of MCC, going 

from formaldehyde to acetate. 13C labelled formaldehyde was added to unlabeled ribose-5-

phosphate (R5P).   

 

 

Fig. 2-3. A) Tracing 13C labelled carbon as it works through the cycle, generation of isotope 62 (M+2) requires a fully catalytic 
cycle where carbon is successfully regenerated.  B) Acetic acid standard mass scatter showing m/z = 60 is the dominant peak.  In 
an in vitro assay using purified enzymes, m/z = 62 was identified as the dominant peak, indicating fully catalytic cycle. 
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There are three distinguishable isotopes of acetic acid: the unlabeled 60-isotope (M), the 

single-labeled 61-isotope (M+1) and the double-labelled 62-isotope (M+2).  The 62 (M+2) isotope 

is only generated in a fully catalytic process (Fig 2-3A), where carbon is turned over through the 

cycle at least twice.  In fact, 62 is the dominant isotope detected in the labelling experiment (Fig 

2-3B). 

For this experiment, acetic acid was quantified on GC/MS.  A standard curve for acetate 

was generated with relative standard deviation (RSD) of 3-7%.  Quantifying acetate and its 

isotopes has previously been reported using the 60/61/62 m/z peaks as the ‘quant’ ions.24  Using 

60/61/62 as a quant ion is beneficial since in unlabeled acetate, 60 is a lone peak without 

surrounding peaks (Fig 2-3B).25  Thus, it is very straightforward to quantify each isotope of acetic 

acid present when using 13C substrates for production.   

2.1.4 Demonstration of an in vitro kinetic trap in MCC 

To confirm the existence of a kinetic trap in MCC, in vitro assays of MCC using purified 

enzymes were carried out.  These assays tested the core of MCC, going from formaldehyde to 

acetate.  13C labelled formaldehyde was added to unlabeled ribose-5-phosphate (R5P). Varying the 

amount of phosphoketolase (Fpk) enzyme used in the reaction mixture was shown to cause a local 

maximum in the amount of acetic acid produced (Fig 2-4, bars) in the reaction mixture.  This 

confirms the algebraic cycle analysis (Appendix A) as well as the EMRA analysis from Fig. 3. 
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Fig. 2-4. Results of in vitro (bars, N=3, SSD shown) and in silico (lines) experiments for batch conversion of formaldehyde to 
acetic acid.  Total acetic acid and isotope distributions shown. 

 

Additionally, the distribution of acetic acid isotopes generated at each Fpk level was 

measured.  A kinetic model of the system including 13C labelling effects was constructed (Fig. 2-

4, lines).  Time domain simulation of the experiment also showed a similar trend for overall acetic 

acid production and the distribution of acetic acid isotopes generated by the 13C formaldehyde.  

The simulation used a kinetic Michaelis-Menten model using Km values randomly selected over 

a 10-fold range and Vmax values (besides Fpk) randomly selected over a 3-fold range.  The average 

of ten scenarios was taken.  

2.1.5 Formaldehyde feeding of MCC for higher production in cycle 

 To push production higher, formaldehyde feeding assays were performed.  An excessive 

initial bolus of formaldehyde was found to be ineffective [Data not shown].  This may because of 
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formaldehyde enzyme toxicity.  Formaldehyde is known to be reactive to proteins by causing 

cross-linking.26     

 To reduce the concentration in the reaction mixture formaldehyde feeding was performed 

at 5 mM/hr for 4 hours with an initial bolus of 5mM formaldehyde and 2 mM R5P.  A control 

without transaldolase (Tal) was used to illustrate the impact of carbon recycling on cycle 

performance.  Additionally, a no feed control was also used.   

 

Fig. 2-5. A) In vitro conversion of formaldehyde to acetyl-phosphate.  In the feed condition, formaldehyde was fed during the first 
4 hours at 5 mM/hr.  B)  An Hps/Phi expressing strain of E. coli is resistant to formaldehyde up to 2 mM.  XB strain is wild type 
(XL1 Blue).  HP- is Hps/Phi expressing strain, no IPTG.  HP+ is Hps/Phi expressing strain, with IPTG. 
 

 The cycle was found (Fig. 2-5A) to perform conversion to 100% (theoretical conversion 

would be 25/2 + 2 = 14.5 mM) (within error).  In other experiments, when formaldehyde was fed 

at a faster rate, or for a longer time period, overall production at 24 hours was found to be less than 

100%.  

2.2 In vivo methylotrophy & Formaldehyde Tolerance 

2.2.1 Formaldehyde tolerance of E. coli 

In vivo formaldehyde toxicity is likely to be an issue considered during the induction of 

methylotrophy in E. coli and MCC production in E. coli.  Formaldehyde is known to be toxic to 
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cells.27 One possible mechanism for this toxicity is DNA-protein crosslinking27,28.  A 

formaldehyde-resistant strain of E.coli has been identified which uses plasmid-based expression 

of a formaldehyde dehydrogenase 29,30.  

Genes for the enzymes 3-hexulose-6-phosphate synthase (Hps) and 3-hexulose-6-

phosphate isomerase (Phi) were introduced into E. coli on a plasmid with an IPTG-inducible 

promoter to generate strain HP.  These genes have been functionally expressed as a bifunctional 

fusion protein in E. coli, but have not previously been shown to confer formaldehyde resistance 31.  

Cells were induced at OD600 0.4-0.6 with IPTG at 0.25 mM and allowed to grow overnight to 

saturation at 25 C.  Then they were then diluted to OD600 ~0.5 with LB while maintaining 

concentrations of IPTG and kanamycin.  Formaldehyde was added in three different 

concentrations, 0, 1 and 2 mM.  Additionally, three conditions of cells were tested: XL1-Blue 

(Commerical cloning strain from Agilent Technologies, XB), HP+ (+IPTG) and HP- (-IPTG). 

The results (Fig. 2-5B) show that at 2 mM formaldehyde, there is a significant difference 

between HP+ and the two other experimental types.  Specifically, HP +IPTG continues growing 

from about OD 0.5 to 0.9 in four hours while without IPTG and without plasmid, they advance to 

only about 0.6.  Formaldehyde tolerance may be an important part of allowing E. coli to become 

methylotrophic, since formaldehyde is a key intermediate in the consumption of methanol, and 

native methylotrophs have formaldehyde detoxification systems32,33.  No difference in behavior 

was observed at 0 and 1 mM formaldehyde and growth was normal (not shown).   

2.2.2 Methanol tolerance and consumption 

Wild type E. coli is relatively tolerant to methanol, growing at up to 8% methanol in LB 

(Fig. 2-6A).  Concentrations of up to 4% do not significantly affect E. coli growth.  Cells were 

grown to saturation, then diluted at 1% and allowed to grow to OD600 of approximately 0.4-0.5.  
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These exponential phase cells were then allowed to grow in LB with various methanol 

concentrations as shown.  The result shows that at 8% methanol, growth is significantly reduced, 

but still present.  This result is encouraging for bioprocessing of methanol with E. coli.  Longer 

chain alcohols like isobutanol completely stop growth at levels below 1%34, so the tolerance of up 

to 8% methanol is favorable for the use of methanol as a feedstock. 

 

Fig. 2-6) A) Methanol tolerance of exponentially growing JCL16 E. coli in LB with varying methanol concentrations. B) Methanol 
consumption by transformed strains of E. coli.  Media contained 2 g/L methanol.  Adh/Hps/Phi are the three genes required for 
methylotrophy while MutD5 is a mutator allele. 

Methanol consumption theoretically requires only three enzymes in E. coli: Adh, Hps and 

Phi, since the other enzymes of RuMP are already on the E. coli genome5,35.  Initial tests have 

shown that these three enzymes are indeed sufficient for some methanol consumption.  An 

inducible plasmid containing genes for all three enzymes was constructed and introduced to E. 

coli.  Another strain also containing   mutD5, a mutator allele, was also measured (Fig. 2-6B).  The 

strains were then grown and induced overnight.    The strains were then fed 50 mM MeOH (~2 

g/L) and grown for 24 hours.  Methanol was measured at four time points.    The net change in 

methanol was compared to native E. coli strains which do not have methanol assimilation genes 

and an evaporation control (LB Only). 

2.2.3 Partial methylotrophy by E. coli 
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 Partial methylotrophy (conversion of methanol to biomass) by E. coli has been 

demonstrated using JCL16 E. coli expressing Adh, Hps & Phi—the three RuMP genes not natively 

expressed by E. coli.  The cells were first induced in exponential phase and grown to saturation.  

After that, the cells were diluted with M9 and fed with 5% LB medium.  The cells were well mixed 

to ensure homogeneous distribution of cells and nutrients, then separated into two groups, one to 

which methanol was added, and a no methanol control.  The cells were also fed methanol daily 

(50 mM) throughout the experiment and IPTG was re-added on day 3.  This experiment was also 

performed with JCL16 wild type.   

 

Fig. 2-7) Partial methylotrophy by E. coli A) JCL16 E. coli transformed with the genes essential for methylotrophy shows additional 
growth in the presence of 100mM methanol. The base medium was M9 with 3% LB. B) The wild type control (JCL16) showed no 
additional growth with methanol. 

The wild type control showed no additional growth in the methanol condition (Fig. 2-7B), 

while the cells expressing Adh/Hps/Phi (Fig. 2-7A) showed significant additional growth with 

methanol.   
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3. Stability Predicts Productivity of in vitro Enzymatic Systems 

3.1 Introduction 

(Note: This chapter is from “Stability of Ensemble Models Predicts Prouctivity of Enzymatic 

Systems” in PLoS Computational Biology. Co-author Jimmy G Lafontaine Rivera provided 

valuable discussions and James Liao served as PI and corresponding author)36 

Metabolic systems typically operate either under a stable steady state or an oscillatory 

mode.  A non-oscillatory unstable system may result in multiple problems, including depletion of 

metabolites essential for growth, accumulation of toxic intermediates, or depletion of cofactors in 

the pathway—all ultimately leading to loss of production or cell death.  While systems with stable 

steady states or sustained oscillation have been studied extensively 37–42, to our knowledge 

metabolic systems prone to instability have not been investigated as much. Both stable (Fig. 3-1a) 

or unstable (Fig 3-1b) system have a mathematical steady state (or fixed point), but the unstable 

steady state is not realizable in the physical world because any deviations from the steady state are 

amplified. Therefore, through evolution the unstable systems are selected against or stabilized by 

various levels of controls. However, the issue of stability is particularly important when 

engineering a novel pathway or altering an existing one. 
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Fig. 3-1)  Schematic figure showing how instability can occur and how it can cause lower production in batch experiments.  a-b) 
In a one-dimensional dynamical system, the sign of dẋ/dx determines stability of a fixed point (ẋ = 0).  If the sign of dẋ/dx is 
negative (a), the system is stable to stochastic perturbations from the fixed point. In contrast, if dẋ/dx positive (b), the fixed point 
is unstable.  In a multivariate system, the analogous value is the maximum of the real parts of the eigenvalues of the Jacobian 
matrix. (i.e. if max(Re(Eig(Jac)))) is greater than 0 (the jacobian is singular), the fixed point will be unstable, if it is less than zero 
the fixed point will be stable unstable). c) (adapted from Lee, Rivera & Liao) Instability may be detected by using Ensemble 
Modelling Robustness Analysis.  Bifurcational robustness investigates the distance between the reference steady state and the 
bifurcation point. d)  A kinetic trap in which multiple reactions (v1 & v2) are competing for the same substrate (A).  If the enzyme 
catalyzing v1 increases greatly, it may cause instability by decreasing [A] so much that v2 can not continue. e)  Traditional sensitivity 
analysis calculates the sensitivity coefficient which represents the derivative of steady state production with respect to enzyme 
amount.  However, sensitivity analysis doesn’t investigate the likelihood of instability. 

Furthermore, even starting from a stable steady state system, increasing an enzyme activity 

beyond a specific level may result in system failure (see Fig. 3-1c, adapted from Lee et al. 2014 

13) because the system enters an unstable region, resulting in loss of a productive steady state. The 

likelihood of losing stability is characterized by bifurcational robustness using Ensemble Modeling 

for Robustness analysis (EMRA) 13.  Instability caused by enzyme perturbation has been predicted 

in proposed synthetic pathways and natural pathways in previous analyses13,43.  One means of 

stability loss, among other possibilities, is a kinetic trap (Fig. 3-1d), resulting from a metabolic 
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branch point within a cyclic pathway.   Upon perturbation, a kinetic trap may cause a sudden, 

unexpected, and qualitative change in dynamic behavior (Fig. 3-1c).  Since cyclic pathways are 

common in metabolism, particularly when cofactor recycling are involved, such examples are 

copious. The bifurcational robustness is a measure of how far an enzyme amount must be perturbed 

before bifurcation occurs (Fig. 3-1c).  Sudden system failure due to entering an unstable regime 

differs from the gradual deterioration of performance characterized by local sensitivity analysis.  

Sensitivity analysis, Biochemical Systems Theory 44–48,  or metabolic control analysis (MCA) 49 is 

concerned with identifying the sensitivity coefficient (Fig 3-1e), which is the derivative of steady 

state production flux with respect to enzyme amount. In this work, we further examine the 

tendency for a metabolic system to be unstable based on their intrinsic network structure, which is 

determined by the network stoichiometry and kinetic rate laws. One way that this work builds on 

global sensitivity analysis is in that it focuses heavily on what we term the bifurcational robustness 

(Fig 3-1c), rather than the value of the sensitivity coefficient. 

In previous uses of EMRA, unstable parameter sets found while constructing ensembles 

were discarded 13,43.  Here, we examine the intrinsic probability for a system to be unstable. This 

is fundamentally distinct from the tendency to bifurcate upon change from a stable steady state. In 

addition, previous EMRA simulations were applied to continuous processes.  However, production 

experiments using enzymatic systems—whether in vitro or in vivo—are often carried out as a batch 

system due to practical considerations.  Thus, it is unclear how simulations from a continuous 

mode can inform experimental strategies for new metabolic pathways which are investigated in 

batch or cell free experiments.  Using four metabolic systems, we showed that the instability 

problem discussed above is indeed an issue, even with batch experiments. Interestingly, this type 
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of abrupt change is observed in common biological systems, including glycolysis.   The results 

suggest that the stability issues may be more prevalent than previously appreciated.   

3.2 Systems Description 

We use the following enzymatic systems as examples for our investigation. Three of 

these systems have been described previously and some experimental data are available to 

validate our predictions. The other system (glucose to isoprene pathway) has not been 

experimentally investigated.  

 

Fig. 3-2)  Schematics showing four enzymatic systems which can be investigated by EMRA.  a) A methanol condensation cycle 
(MCC) which converts formaldehyde to acetyl-phosphate with 100% carbon efficiency.  Acetate can be generated enzymatically.  
b)  A molecular purge valve which dissipates reducing power in order to convert pyruvate to polyhydroxybutyrate (PHB) in a redox 
balanced way. c) A chimeric glycolysis system which converts glucose to lactate in a redox- and ATP-balanced route.  It uses a 
non-phosphorylating GapN to maintain ATP balance.  The corresponding route through standard Embden-Meyerhof-Parnas (EMP) 
glycolysis is shown with blue enzyme labels. d) Glucose to isoprene pathway which uses NADPH-dependent glyceraldehyde-3-
phosphate dehydrogenase (GAPDH) and pyruvate dehydrogenase (PDH).  An NADPH drain is required to maintain redox balance.  
This pathway is also ATP-balanced.  G6P inhibition is also considered in this system. 

 

3.2.1 Methanol Condensation Cycle (MCC)  
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Methanol condensation cycle (MCC) (Fig. 3-2a) is a metabolic pathway to convert 

methanol to higher alcohols with 100% theoretical carbon yield, in contrast to natural pathways 

like ribulose monophosphate (RuMP) which have a maximum of 67% theoretical carbon yield due 

to the decarboxylation of pyruvate 50.  The core of the pathway creates a C-C bond between two 

formaldehyde molecules derived from methanol for the generation of acetyl-phosphate, which can 

be enzymatically converted to acetate or ethanol.   

In this cycle, formaldehyde is incorporated into ribulose-5-phosphate (Ru5P) (Fig. 3-2a) to 

generate hexulose-6-phosphate (H6P) by hexulose phosphate synthase (Hps).  H6P is then 

isomerized to fructose-6-phosphate (F6P) which can be cleaved by phosphoketolase.  Erythrulose-

4-phosphate (E4P) and F6P can then recombine via transaldolase, transketolase and isomerases 

(Tal, Tkt, Rpe, Rpi) to regenerate Ru5P.  Alternately, xylulose-5-phosphate (X5P) can be cleaved 

by phosphoketolase, yielding G3P and acetyl-phosphate.  G3P is then shuffled with F6P by 

transketolase to generate E4P and X5P, which can proceed to regenerate Ru5P via Tal, Tkt, Rpe, 

and Rpi.  The X5P- and F6P-cleaving activities of phosphoketolase are referred to as Xpk and Fpk, 

respectively, and the pathway is investigated with different combinations of these activities. 

3.2.2 Pyruvate to poly-hydroxybutyrate  

A molecular purge valve for the production of polyhydroxybutyrate from pyruvate in vitro 

was demonstrated by Opgenorth et al (Fig. 3-2b) 15. This system needs special attention to achieve 

redox balance, since pyruvate has a more reduced oxidation state than the product.  To alleviate 

this cofactor imbalance, a method for dissipating excess reducing equivalents, termed a molecular 

purge valve, was designed for the conversion of pyruvate to downstream products like isoprene 

and poly(hydroxybutyrate) (PHB). Two different pyruvate dehydrogenases (PDH) were used in 

the system—one with cofactor specificity for NADPH and one with specificity for NADH.  The 
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downstream pathway enzymes use NADPH to reduce metabolites and an NADH oxidase (NoxE) 

to dissipate the generated NADH.  From two acetyl-CoA molecules, two enzymes are required to 

generate the final product PHB.   

3.2.3 A chimeric ATP-balanced glycolysis system  

A chimeric glycolysis system was demonstrated by Ye et al 14 (Fig. 3-2c).  Canonical 

Embden-Meyerhof-Parnas (EMP) glycolysis generates a net of two ATP per glucose.  In the 

chimeric system, a non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase (GAPN) was 

used.  This results in a system which is ATP balanced, making it more convenient for in vitro 

assays.  Additionally, the system is NADH balanced since the final product was lactate, which has 

the same redox state as glucose.  

3.2.4 Glucose to isoprene system 

A system is considered for the conversion of glucose to isoprene (Fig. 3-2d).  NADPH-

dependent glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and NADPH-dependent 

pyruvate dehydrogenase are used in the pathway.  NADPH is used since the downstream reactions 

in isoprene synthesis use NADPH.  The pathway converts three glucose to two isoprene molecules.  

Interestingly, this pathway is also ATP-balanced, with the ATP generated by the glycolytic 

pathway being used stoichiometrically downstream in the isoprene pathway reactions.  However, 

to maintain redox balance, NADPH must be drained from the system, potentially via an oxidase 

or similar enzyme.  This system is investigated both with and without a substrate-level regulation 

of glucokinase (GK) by G6P, implemented using an irreversible version of modular rate laws 8 

proposed by Liebermeister.  The kinetic form used is known as competitive inhibition, though 

many other kinetic forms are plausible.  Inhibition of this step by G6P is well-known.  For example, 
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a human enzyme catalyzing this reaction is G6P-inhibited 51.  These equations show the effective 

kinetic forms of glucokinase used without and with regulation: 

	 :	
, , , , 1

 

	 6 	 	 	

, , , , 1 6
, ,

1
 

3.3 Network intrinsic stability & bifurcational robustness upon perturbation 

 

 

Fig. 3-3) Characterizing intrinsic stability of different pathway systems.  a) For different pathways, two measures of intrinsic 
stability are presented.  First, in dark blue, is the fraction of unconstrained, random parameter sets which reach a productive steady 
state.  Second, in light blue, is the fraction of EMRA-determined parameter sets constrained to a steady state which are also stable.  
The intrinsic stability of pathways differs greatly between pathways, and also depending on which measure is used.  Thus, a rational 
method of pathway balancing would be useful.  (SD < 2% for all systems, n = 3 x 1000 parameter sets).  Since phoshoketolase has 
two activities, cleaving either F6P (called Fpk) or X5P (called Xpk), we investigated used a ratio of Fpk/Xpk activites, 1:3.  b) A 
representation of how steady state is not always stable.  After perturbation from a constrained steady state, the fraction of parameter 
sets which retain stability tends to decrease, and steady state flux may change.  Eventually, a parameter set may become unstable 
after perturbation. 

We used the four systems described in Fig. 3-2 to examine the stability problem. In 

particular, we investigated how network structure affects the intrinsic possibility of reaching 



25 

  

stability.  Previous EMRA work starts from an ensemble of parameter sets that give the same 

reference steady state, and discards the parameter sets that generate a Jacobian matrix with a real 

part of an Eigenvalue greater than zero, which indicates instability.   

However, experimental systems are not guaranteed to be stable or reach a steady state.  To 

place stability and steady state in a context which is more meaningful to experimental efforts, 

enzyme parameters were chosen completely at random, and the systems were then integrated in 

time domain to determine if a productive steady state was reached (Fig. 3-3a, dark blue bars).  This 

method is more representative of experimental efforts which often have either little or indirect 

control over enzyme amount or activity (in vivo), or don’t have rational methods for pathway 

balancing (both in vivo and in vitro).  Interestingly, the results show that pathways have very 

different likelihoods of resulting in a steady state (Fig. 3-3a, dark blue). The glucose to isoprene 

system had only 21% of randomly generated parameter sets reaching a non-trivial (non-zero) 

steady state.  This could be because it is a relatively large system in terms of enzyme number and 

uses two different cofactors (NADPH and ATP).  A large system may be less likely to reach a 

steady state.  If each enzyme has an acceptable range of values, then in a large system it is more 

likely that at least one of these values would be outside the range, resulting in system instability.  

However, when regulation of glucokinase was introduced via activation by ATP and inhibition by 

ADP, the likelihood of productivity jumped to 36% (Fig. 3-3a).  Overall, these results show that 

intrinsic pathway structure and kinetic forms (including regulation) have a strong influence on 

possibility of reaching a productive steady state.  The result is a varying, and sometimes low, 

likelihood of achieving stability and productivity.  Thus, finding rational ways to balance pathways 

is an important goal which can improve and accelerate the pathway development process.   
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If the enzyme parameters were first constrained to a fixed point by solving for parameter 

values which give reaction rates equal to the reference flux, then the probability of attaining 

stability is greatly increased.  While this is not practical in experiments, the method proves useful 

in model construction.  We found that (Fig. 3-3a, light blue bars) the fraction of fixed points which 

were stable varied depending on the network structure.  While most systems showed at least 99% 

of the parameter sets sampled to be at a stable steady state, the MCC (Xpk-only) system showed 

only 61% of parameter sets to be stable. Although for some systems the fraction of stable steady 

states is similar—5 systems which all show at least 99% stability by this measure—they have 

varying tendency to lose stability upon perturbation (Fig. 3-3b).   Starting from the reference state, 

where parameter sets are chosen under the fixed point constraint, the region of instability could 

grow when enzyme parameter changes (Fig. 3-3b). Depending on the structure of the system, the 

instability region might grow in a different fashion upon perturbation, and eventually some might 

lose stability. This shows that stability of fixed points in metabolic systems is not guaranteed and 

that stability could be a critical factor in metabolic systems. 

3.4 Stability of continuous systems can inform results of batch systems 
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Fig.3-4) Investigating the instability in the MCC pathway using Fpk/Xpk ratio as 1:3.  a) In a continuous system, an arbitrary 
parameter set determined by EMRA is perturbed up and down with respect to phosphoketolase, on the X-axis.  On the Y-axis, the 
continuous, steady state, acetate flux is plotted.  As phosphoketolase increases, the system bifurcates at ~1.5x increase.  b) Time 
domain simulation is performed, at different amounts phosphoketolase (PK). The final titer for each condition is plotted.  The 
production gradient appears gradual, but is the result of a sudden instability. c) The production rate for acetate is shown for each 
phosphoketolase amount over time.  In the stable condition (1x), production rate reaches a constant, implying the system enters a 
“pseudo-steady state”, until substrate depletes.  In the other conditions, production rate is never steady, but decreases over time.  d) 
The amount of acetate is plotted over time.  It is observed that as the amount of phosphoketolase increases beyond bifurcation, the 
production decreases. e) At the 1x and 2x conditions, the concentrations of G3P and F6P are plotted.  In the 1x condition, F6P is 
maintained at a nonzero-level throughout production, while in the 2x condition, it is quickly depleted and G3P accumulates.  f)  
The R5P & X5P levels are plotted with time in the 1x and 2x conditions. g) Data from Bogorad et al 50 shows that as 
phosphoketolase level increased, the amount of acetate produced by the cycle decreased, supporting a link between instability in a 
continuous system and production in an analogous batch system.  An icon shows this data is experimental. 
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EMRA uses continuous production models to simulate enzymatic systems.  However, 

many experiments, including in vivo and in vitro, are conducted as batch processes.  Thus, it’s not 

clear how a perturbation which causes bifurcation in a continuous system will inform the batch 

experiment.  Where a pseudo-steady state may exist, the pseudo-steady state behavior can be 

predicted by the continuous model. In these systems, if a parameter set resides in a domain where 

no stable steady state exists in the continuous mode, then no stable pseudo-steady state exists in 

the batch mode. This can be justified by locally linearizing the input function to convert a pseudo-

steady batch system to a continuous system. However, an experimentalist measuring only the 

product output at the end point would not detect the lack of stability. In this case, the product yield 

will gradually decrease even when the system has entered an instability region. 

To show how the existence of a continuous bifurcation could manifest itself in a batch 

system, we simulated a batch system in time domain.  First, stable parameter sets were generated 

via EMRA in a continuous MCC system using Fpk/Xpk ratio as 1:3.  Then, the parameter sets 

were integrated using the continuation method to increase the phosphoketolase level until 

instability occurs, increasing Vmax for Fpk & Xpk at the same ratio.  A representative parameter 

set is plotted in Fig. 4a to show the effect of increased phosphoketolase on continuous steady state 

acetate flux up to the point of instability.  As phosphoketolase increases, the flux towards product 

increases slightly before decreasing and finally becoming unstable. 

This parameter set was found to become unstable at a ~1.5-fold increase of 

phosphoketolase.  Different amounts of phosphoketolase perturbation (1x, 1.1x, 1.7x, 1.8x, 2x, 

10x – multiplier applied to both Fpk & Xpk Vmax values) were chosen to show the dynamic 

response of the system in a batch simulation.  All rate equations, parameter values and initial 

conditions were kept the same as in the continuously model (i.e. all starting metabolite 
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concentrations were normalized to unity), except that starting formaldehyde concentration was 

multiplied by 200 and the “in” and “out” reactions used in the continuous mode were eliminated 

to observe product accumulation in time domain simulation of the batch system.  200-fold increase 

in initial formaldehyde concentration was chosen arbitrarily to signify a batch reaction, in which 

the starting substrate was included as a single charge instead of being fed over time.  It was found 

to adequately demonstrate the phenomena we were interested in, though other values could have 

worked as well.  See Tables 1&2 in the method section 

Interestingly, the final batch production observed for this system decreases gradually as 

phosphoketolase (PK) amount (Fig. 3-4b) increases.  In the continuous system, the underlying 

phenomenon is instability, a step change in the nature of the steady state.  In the corresponding 

batch system, pseudo-steady state disappears because of instability. However, the product 

formation does not stop until key intermediates are depleted. Batch acetate production rate over 

time is plotted in Fig 4c.  For the stable 1x and 1.1x conditions, a pseudo-steady state was achieved 

in which acetate production rate reached a constant level, only decreasing when the formaldehyde 

had been consumed.  However, for the conditions which are past the instability point (1.7x – 10x), 

a steady rate of acetate production is never achieved.  Instead, the rate decreases monotonically 

until it reaches zero.  The productivity of the 10x condition falls the fastest, eventually resulting in 

the lowest production.  This shows that a decrease in production, even gradually, in a batch system 

could be associated with an instability issue in an analogous continuous system.  In Fig. 3-4d, the 

acetate concentration over time is plotted to show how the system evolves over time. 

For systems that are stable, because the initial concentration of the starting substrate is 

much higher than the Km value of the uptake system, the rate of input holds largely constant until 

the substrate concentration approaches the Km value. During this time, the system is operating 
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under a pseudo-steady state similar to a stable continuous system. This is seen in Fig, 4 for 1x and 

1.1x phosphoketolase concentrations. Thus, the property of continuous system simulation carries 

over, until substrate concentration approaches Km.  Thus, the system is run almost the same as in 

a continuous system in the first 50 min time units or so (Fig, 3-4c), when most of the acetate is 

produced (Fig 3-4d) 

For systems that are unstable (Fig. 3-4, 1.7x, 1.8x,  2x, 10x phosphoketolase 

concentrations), the output flux was not able to reach a steady-state (Fig. 3-4c), and it decreases 

rapidly from the start and approaches zero despite the presence of the initial substrate. The 

cumulative product formed (acetate) is the integral of flux over time (Fig. 3-4d), which decreases 

as the system moves further away from the bifurcation point. 

Additionally, we investigated the mechanism by which the bifurcation causes decreased 

production. In the 1x condition, F6P is maintained at a nonzero-level throughout production, while 

in the 2x condition, it is quickly depleted (Fig. 3-4e).  R5P and X5P are also shown to deplete 

quickly in the 2x condition (Fig. 3-4f).  Thus, it is the depletion of these cycle intermediates which 

causes cycle failure.  A previous experimental effort (Bogorad et al. 6, data reproduced in Fig. 3-

4g) showed that in in vitro enzymatic experiments, the batch production of acetate with from 

formaldehyde reached a local maximum with respect to phosphoketolase amount, supporting the 

EMRA analysis. In sum, EMRA could potentially have useful insights into experimental systems, 

by identifying enzymes which may be most sensitive to bifurcation, and how they affect the system 

in question.  

3.5 Systems Analysis 

3.5.1 EMRA predicts behavior of a molecular purge valve 
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Fig. 3-5) Stability of a biosynthetic purge valve for production of isoprenoids by dissipation of reducing equivalents.  a) Pathway 
schematic showing cofactor requirements. b) Stability profiles predicted by EMRA (n = 1000) as enzyme amounts vary.  It is 
shown that to maintain stability, high levels of PDHNADP and low levels of PDHNAD are required. c) Data from (14, Figure 4) which 
shows that a high ratio of PDHNADP: PDHNAD is required for optimal performance of the pathway.  Image analysis of line graph 
figure from reference yielded numerical data to generate the bar graph shown. (1) indicates NADH-dependent PDH and (2) 
indicates NADPH-dependent PDH.  An icon shows this data is experimental. 

A purge valve system converting pyruvate to PHB was analyzed (Fig 3-5a).  Each enzyme 

is represented by a canonical Michaelis-Menten kinetic rate law, and the reference flux is fixed 

since there are no degrees of freedom. EMRA methodology was implemented in this system to 

show the effects of perturbation of each enzyme.  High NADPH-dependent PDH (PDHNADPH) (Fig 

3-5b) and low NADH-dependent PDH (PDHNADH) resulted in the most stability for the pathway.  

PDHNADH must be low to prevent too much pyruvate from taking this route which generates 

unusable NADH reducing power, while PDHNADPH must be high to ensure that enough NADPH is 

generated to allow for 100% yield from acetyl-CoA to PHB.  The imbalance of these activities 

may cause system instability, according to EMRA.  Indeed, the PHB pathway was experimentally 



32 

  

demonstrated to have reduced production with a lower ratio of PDHNADPH:PDHNADH (Opgenorth, 

et al 15)(Fig. 3-5c), matching the results of EMRA. 

3.5.2 EMRA predicts chimeric glycolysis system’s sensitivity to glucose feed rate 

 

Fig. 3-6) The ATP-balanced synthetic chimeric glycolysis pathway from glucose to lactate (Ye et al14). a) Pathway schematic 
contrasting cofactor production between standard Canonical Embden-Meyerhof-Parnas (EMP) glycolysis (Gap & Pgk, red 
lettering) with the chimeric non-phosphorylating GapN system. b) EMRA stability profiles (n = 1000) as enzyme amounts and 
glucose feed rate (IN) vary.  Glucose feed rate is shown to produce moderate instability at higher levels.  c) Data from (Ye et al, 
Figure 6A14) which shows that increased glucose feed rate can cause lower production.  An icon shows this data is experimental.  
d-e) Simulation of fed-batch production of a sample parameter set for the chimeric glycolysis system.  Numerical integration of 
time domain behavior shows instability at higher feed rates caused by ATP depletion and resulting in lower overall lactate 
production.  Priming intermediates are fed in the same proportion as the experimental condition, and feed rates are also 
demonstrated in the same proportion (1, 2, 4). d) ATP concentration over time at the three different glucose feed rates. e) Lactate 
production over time at three different glucose feed rates. 

Another example of EMRA application is in a thermotolerant, cell-free glycolysis system 

which was demonstrated for the production of lactate from glucose by Ye et al (Fig 3-6a) 14.   

Canonical Embden-Meyerhof-Parnas (EMP) glycolysis generates two net ATP per glucose, (Fig. 

3-6a, Gap & Pgk enzymes).  However, in the chimeric system, to prevent cofactor imbalance, a 

non-phosphorylating glyceraldehade-3-phosphate dehydrogenase (GapN)52 was used—resulting 
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in a net balance of ATP and NADH from glucose to lactate.  Again, the system was modeled using 

EMRA methodology. The results show that increased glucokinase (GK) amount and glucose feed 

rate (Fig. 3-6b, GK, IN) may cause instability.  

This system was experimentally tested for lactate production at different glucose feed rates 

(Fig. 3-6c, adapted from Ye et al 14).  It was found that beyond a certain point, increasing glucose 

feed rate reduced lactate production, even if the same total amount of glucose had been fed, 

matching the instability to feed rate (IN) predicted by EMRA. The instability apparently occurs by 

the depletion of ATP by glucokinase.  ATP is required for both glucokinase and 

phosphofructokinase (PFK).  However, if glucose is fed too quickly, ATP may become depleted 

by glucokinase before it can be regenerated in lower glycolysis.  A time domain simulation of this 

system was carried out using initial conditions similar to the experimental conditions reported 14 

(Fig. 3-6d, e) and a parameter set from EMRA which became unstable after increase of feed rate.  

The time domain simulation showed that at reference feed rate (1x), ATP level is maintained and 

lactate production continues.  However, at 4x feed rate, the ATP is depleted and the lactate 

production stops. 

EMRA was also carried out on canonical EMP glycolysis converting glucose to lactate and 

similar instabilities were found (Not shown). In both systems, reduction in PFK activity was shown 

to strongly increase chance of instability.  This is because once a metabolite is past PFK, it may 

be used to regenerate ATP, so it’s important to ensure that the flux past PFK is sufficient to supply 

ATP for all of upper glycolysis.  However, it’s more paradoxical that an increase in an enzyme 

would cause productivity and instability issues, particularly glucokinase, or even feed rate. 

3.5.3 EMRA predicts unstable enzymes in uncharacterized system from glucose to isoprene 
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Fig. 3-7) An NADPH-dependent pathway from glucose to isoprene.  a) A pathway schematic showing an outline of the enzymatic 
reactions, cofactor flow, and regulation added (glucokinase). b) EMRA profiles for all (n = 1000) enzymes in the unregulated 
isoprene pathway in blue. EMRA profiles for all (n = 1000) enzymes in the GK-regulated isoprene pathway in red.  Select enzymes 
are highlighted to show their position in the pathway.  The enzymes dealing with ATP cycling are most changed by the presence 
of regulation. 

To demonstrate the utility of EMRA in identifying potential points of instability, a not yet 

characterized pathway producing isoprene from glucose was investigated with EMRA. The 

pathway is ATP-balanced and maintains redox balance using an NADPH drain.  EMRA identifies 

that the NADPH drain must be balanced, not too low or too high.  GK & IN must not be too high, 

while all other enzymes must only not be too low (Fig. 3-7b).  By introducing regulation of GK 

using modular rate laws 8, the fraction of productive steady states increased (Fig 3-3a).  The 

stability to perturbation is also slightly improved for feed rate (IN), GK and PFK (Fig. 3-7b). 

Interestingly, the NADPH drain is unstable to both decrease and increase.  This could be 

because if the rate is too low, then NADP+ is not sufficiently available for GAPDH, and lower 

glycolysis is unable to regenerate ATP needed for earlier in glycolysis and later in the pathway –

while if the rate is too high, NADPH will not be available for the biosynthetic steps of the isoprene 

pathway.  This analysis shows that a longer pathway has many complex, interacting factors that 
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can cause instability and that EMRA is able to identify some of these potential issues.  Similar to 

the previously simulated glycolysis system, glucokinase, (GK) and phosphofructokinase (PFK) 

and feed rate (IN) showed some instability.  Other enzymes show less sensitivity upon increase 

(Fig. 3-7b).  Instability caused by decreasing enzyme concentration is common and seen in most 

if not all pathways. 

A rational experimental plan for this pathway would thus focus on having sufficiently high 

levels of most enzymes (all except feed, glucokinase and drain), for example, by ensuring the total 

activity of each enzyme is significantly higher than the feed rate.  Ensuring these enzymes are at a 

high level would ensure both stability, according to EMRA results, and the possibility of maximum 

productivity.  For enzymes which become unstable at higher levels, more optimization is required.  

Levels of glucokinase, NADPH drain, and feed rate should be varied in order to avoid instability 

and to find the highest productivity condition.  This significantly narrows the focus from 21 

variables to just 3. 

3.6 Discussion & Conclusions  

The results show that EMRA has potential to be a valuable tool for investigating the 

propensity for stability of complex enzymatic pathways without a priori knowledge of specific 

enzyme parameter values.  In three cases presented, (MCC, molecular purge valve, chimeric 

glycolysis) the experimental investigators were able to heuristically identify productivity issues ad 

hoc, but EMRA is able to unify all these results with a theoretical framework based on instability.   

Importantly, although some of the phenomena were experimentally determined, it was not 

necessarily known that instability of the system—causing a step change in the nature of the steady 

state, rather than a smooth change predictable by sensitivity analysis—could be an underlying 

reason.   
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The success of the method with these systems presented here shows that it deserves 

consideration as a design tool in the invention of new pathways.  The method has proven versatile 

enough to successfully predict features in three different pathways investigated in different 

laboratories and powerful enough to do so without a priori knowledge of specific enzyme 

parameter values.  EMRA simulation of a longer and not-yet characterized pathway demonstrates 

the range of possibilities for potential applications of this technique.  While the characterized 

pathways were optimized based on intuition, it’s possible that a longer pathway with more 

enzymes, such as the glucose-to-isoprene pathway, would be much more difficult to optimize 

without rational balancing methods like those presented here.  The reduction of search space from 

22 to 3 variables represents an exponentially more approachable experimental path towards 

productivity, resulting in 27 (33) experiments rather than about 10 million (321) if three different 

enzyme amounts are tested. 

Another insight provided by EMRA and follow-up analysis is the determination of failure 

modes for the pathways investigated.  Using parameter and enzyme amount values in stable and 

unstable regions of the parameter continuation, time domain integration allows us to determine the 

failure modes for these pathways upon instability.  In the MCC pathway, it is depletion of pathway 

intermediates—especially X5P, R5P and F6P—which causes productivity decline and eventual 

stopping. Although time domain simulations weren’t carried out in all systems, the demonstration 

of failure mechanism in the MCC system may lend credence to the other EMRA examples. In the 

chimeric glycolysis pathway, depletion of ATP eventually caused that pathway to stop when 

glucose feed rate was too high.  Identifying these failure modes with EMRA is another potentially 

fruitful area of discovery. 
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Glycolysis is a fundamental pathway of life and functions successfully in many organisms.  

However, our simulations and previous experiments (Fig. 3-6, Ye et al, 14) have shown it can be 

unstable under high glucose feed conditions which apparently deplete ATP and accumulate 

hexose-monophosphates (Fig. 3-6d, e).  Some hexokinase enzymes are product-inhibited by G6P, 

53 however, the particular enzyme used in the experimental investigation (from Thermus 

thermophilus) was investigated and no G6P-inhibition was reported.54  Interestingly, glycolysis 

has also been shown to be unstable to low levels of inorganic phosphate in yeast, a condition which 

prevents GAPDH from proceeding 55.  Glycolysis is a nearly universal pathway, but this evidence 

shows it to be unstable in some cases.  This helps to explain the presence of elaborate regulations 

such as insulin and glucagon 56,57 in animals and the massively sophisticated regulation of 

phosphofructokinase 58,59 in many organisms.  Rather than stability, alternate explanations such as 

chemical necessity 60 and thermodynamic efficiency 61,62 are more likely reasons for the 

universality of glycolysis. 

In these analyses, EMRA was used to successfully evaluate the stability of complex cell-

free pathway assays.  In vitro biocatalysis systems are a powerful alternative and complement to 

in vivo systems 63. Importantly, however, this does not exclude the possibility of success with 

simulation of in vivo systems. Depending on growth mode (exponential growth, stationary phase, 

fermentation etc.) in vivo systems may have different reference fluxes, so more exploration is 

required to identify different possibilities.   

It is unsurprising that lower amounts of pathway enzymes or feed rate would hinder 

productivity.  The powerful insight provided by these results is that for the pathways identified, 

increasing levels of certain enzymes or feed rates were shown to cause instability and consequently 

reduce production.  A typical metabolic engineering approach may be to simply maximize the 
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reaction rate of all pathway enzymes.  However, we show here that for many enzymes, this will 

not always result in an optimal outcome.   

Additionally, we have shown that the intrinsic stability of pathways varies significantly 

depending on structure and kinetic forms.  This highlights the importance of stability analysis in 

understanding metabolic systems.  Additionally, it shows that many metabolic systems may be 

very difficult to balance without sufficient rational methods for analyzing which enzymes are most 

likely to contribute to pathway instability, and in which amounts.  This shows the importance of 

EMRA and stability analysis in general in understanding pathways theoretically and exploiting 

them practically. 

The lack of requirement for a priori knowledge of specific enzyme parameter values could 

make EMRA particularly approachable for experimental researchers working with new pathways 

or unknown enzymes.  This may be hampered somewhat by the need for sophisticated 

mathematical operations, though this obstacle could be overcome if an appropriate software suite 

is made available.  We believe EMRA can significantly contribute to pathway development efforts 

and is an important contribution to the toolbox of metabolic engineering.   

3.7 Additional Example: Glycerol-to-alcohol (GtA) pathway 

This section did not appear in the manuscript: “Stability Predicts Productivity of Enzymatic 

Systems”, but it serves as an additional example of EMRA predictions proving to be accurate. An 

application of the previously demonstrated non-oxidative glycolysis (NOG) pathway is the GtA 

pathway which converts glycerol to fuel alcohols with 100% theoretical carbon yield (Fig 3-8A).64  

GtA uses a unique fructose-6-phosphate aldolase (Fsa) to combine glyceraldehyde-3-phosphate 

(G3P) with the non-phosphorylated triose dihydroxyacetone (DHA) to form fructose-6-phosphate 
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(F6P).65  NOG alone, like MCC, was shown by EMRA analysis to be non-robust with respect to 

phosphoketolase.13  

 GtA is not redox balanced and requires the input of reducing equivalents to fully utilize 

the glycerol feedstock.  This was overcome by supplementing formate dehydrogenase (Fdh) and 

formate to the reaction mixture (Fig. 3-8A)  However, EMRA shows that in this system, Fdh is the 

enzyme associated with greatest non-robustness (Fig. 3-8B), whereas non-robustness associated 

with phosphoketolase (Fpk & Xpk) is minimal, in contrast to the NOG and MCC systems which 

also include phosphoketolase.  This is because at high levels of Fdh, NADH is produced very 

quickly, preventing the forward operation of glycerol dehydrogenase.  Subsequently, the carbon 

flow to the main portion of the cycle and the reduction to final alcohol product is cut off.  This 

non-robustness of Fdh production was confirmed by in vitro experiment (Fig. 3-8C).  In the 

experiment, ethanol production showed a local maximum with respect to Fdh amount 

[Experiments conducted by Tony Wu], confirming the EMRA prediction. 

 

Fig 3-8).  The synthetic glycerol-to-alcohol (GtA) pathway. A) Pathway schematic showing the requirement for additional reducing 
equivalents. B) EMRA robustness profiles predicted by EMRA (n = 1000) as enzyme amounts vary.  Fdh is the shown to have a 
local maximum for stability.  C) Data from unpublished in vitro experiments [Tony Wu] shows that Fdh has a local maximum for 
ethanol productivity.  D) Full GtA pathway. 
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4. In vivo EMRA applications 

4.1 Using Kinetically Accessible Yield (KAY) and EMRA for in vivo applications 

Although constructing models of in vitro systems is much simpler, construction of in vivo 

models using EMRA is nonetheless feasible and desirable. Because of the complexity of in vivo 

systems, it is often necessary to make choices about the scope of the model—i.e. how much of the 

overall metabolism to include.  These choices are often related to the overall purpose for the model, 

usually the production of some compound of interest.   

Additionally, it is necessary to determine a reference flux which is appropriate for the 

organism and condition to be modeled. For instance, the reference flux for a bacteria in growth 

phase would be different for that in stationary phase, etc. One method to provide information about 

the reference flux, used extensively in this chapter, is to use information about the extracellular 

metabolites produced under the condition of interest, and use that to constrain the flux.  This can 

be accomplished in combination with diverting metabolites to a reaction signifying the biomass 

accumulation, important in growth phase simulations. In such cases, it is necessary to define a 

realistic biomass objective function. 

This chapter demonstrates three instances in which EMRA is applied to in vivo systems, 

bringing together modelling, data from literature reports, metabolomics data from collaborators, 

all three of which examples were conducted in collaboration with other institutions.  These 

examples demonstrate the flexibility and power of the EMRA method, and provide actionable 

insights for experimental researchers. 

4.1.1 Conceptual idea of kinetically accessible yield  
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Fig. 4-1) Classifying the chemical transformation space. Chemical transformations are bounded by several factors. In the most 
permissive formulation, any chemical transformation is allowed—bounded only by an atom balance. This defines the “chemically 
feasible range”. In a given biochemical system, only certain transformations, governed by the stoichiometry of the system, are 
allowed. This defines the stoichiometric range. Another constraint, within the stoichiometric constraints, is the kinetically 
accessible region. This kinetically accessible region governs the stability of the system. Imposition of growth requirements will 
further limit the allowed set of chemical transformations, since some amount of flux must be directed to biomass. 

When considering the conversion yield of a raw material to a product, several factors come 

into play. First, the balance of atoms, which gives the largest feasible yield range (Fig. 4-1). The 

atomic balance does not involve energetics or kinetics, thus this yield involves the minimum 

constraint and represents the highest bound.  When enzymatic pathways are chosen for the 

conversion, the stoichiometry of the pathway imposes an additional constraint, within the atomic 

balance, and gives the maximum theoretical yield allowable by the pathway. At this level, 

energetics plays an implicit role through the choice of the pathway, but kinetic effects are not 

considered.  

4.1.2 Generation of Toy Model 

A simplified model of microbial metabolism with butanol synthesis66 was generated to 

illustrate the concept of KAY. This pathway for 1-butanol synthesis passes through the keto acid 

synthesis pathway,67 and differs from the common 1-butanol pathway that proceeds by coenzyme-
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A (CoA) dependent reverse beta-oxidation.67 The model consists of 11 reactions (Fig. 4-2A), and 

is heavily abridged, where pathways of multiple reactions, such as glycolysis, have been modeled 

as a single reaction. Michaelis-Menten style rate laws with saturation features were chosen 

according to reversibility and number of substrates, and products if reversible. Parameters are 

single valued positive numbers. The model outputs up to six exometabolites and has no biomass 

generation. The model was assigned arbitrary parameters so that five outputs, other than butanol, 

had roughly equal orders of magnitude for their output flux.  

4.1.3 Determination of kinetically accessible yield using flux integration  

Here we examine the kinetic stability of the system when a flux is directed to generate a 

product.  As a starting point for developing the concept, we consider a host system with complete 

kinetic parameters. 

dX
dt

F X, k Sv X, k 0 
(4-1)

Flux v is a function of metabolite concentrations X, kinetic parameters k, and is multiplied 

by a stoichiometric matrix S, to provide an equation, F, describing a system of differential 

equations. Suppose we wish to incorporate information for a new pathway for which kinetics are 

unknown.  

Although a new pathway may introduce new metabolites that may affect the kinetics of the 

host, for parsimony, we assume that the metabolites in the new pathway do not interact with the 

host system and only consider how the new pathway flux might affect the kinetics of the existing 

host metabolic system.  Under this assumption, we can represent the new model as: 

dX
dt

F X, k, φ Sv X, k S φ 
(4-2)
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where Snew is a vector representing the stoichiometry of the new pathway and φ is a scalar 

parameter which represents the amount of flux going through the pathway. Snew would include the 

metabolites drawn out of native metabolism into the heterologous pathway. Since, we are not 

considering the effect new metabolites may have on the host system, Snew does not include the 

stoichiometry of metabolites not present in the host system. By its definition, parameter φ is 0 at 

the reference state (host only).  

 

 
Fig. 4-2) Overexpression of the butanol pathway in the toy model. A) Diagram of toy model with butanol production reaction 
circled. B) The overexpression of the butanol pathway accomplished by integration with respect to reaction flux using Eqn (5). 
Acetyl-CoA and threonine concentrations are plotted—scaled to the maximum of each metabolite—with respect to pathway flux. 
C) Plot of butanol flux with respect to Vmax integration of the butanol pathway. The system does not bifurcate as in B), but the 
flux does reach a plateau as Vmax increases, corresponding to the same flux value observed in B). D) A plot of scaled threonine 
and acetyl-CoA concentrations with respect to Vmax for the butanol output reaction. For C) and D), all other parameter values 
remained fixed (no repression). Threonine depletes, while acetyl-CoA, doesn’t fully deplete. E) The overexpression of the butanol 
pathway accomplished by integration with respect to reaction Vmax. This integration included a repression effect where the threonine 
synthesis Vmax was decreased as the butanol reaction was overexpressed. F) A plot of scaled threonine and acetyl-CoA 
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concentrations, for repression the condition. G) A plot showing how different measures of yield compare. Chemically feasible is 
limited by carbon atom balance, while stoichiometry is limited by the pathways present in the toy model.  KAY value depicts the 
yield corresponding to maximum flux determined in B) & C), while biologically  likely lies between the theoretical (stoichiometric) 
yield and the biologically realistic value, placing a lower ceiling on calculations of yield in a specific genetic background. 

In the toy model (Fig 4-2A), one can investigate different methods of simulation, and their 

effects on predicted yield. For example one can use integration with flux as a parameter, as 

demonstrated in Eqn (5) using the continuation method shown in Eqn (3). In that case, the flux 

parameter (ϕ), was used to represent the 1-butanol production reaction, instead of the kinetic rate 

law [V11, Thr + AcCoA -> (butanol out)]. The concentrations of Thr and AcCoA are plotted vs. 

increasing 1-butanol flux (ϕ) in Fig 4-2B. Thr decreases to zero, while AcCoA decreases, but not 

to zero. As threonine reaches zero, the integration fails as the system bifurcates. Note the maximum 

flux achievable is 4.4 mmol hr-1. The yield (product flux/substrate consumption flux) 

corresponding to this flux is defined as the Kinetically Accessible Yield (KAY). In this integration, 

we did not consider the kinetic rate law of the butanol reaction (V11), but integrated with respect 

to the butanol flux as described in Eqn (5). 

4.1.4 Determine kinetically accessible yield using kinetic parameter integration 

One can also incorporate kinetics of the perturbed pathway into the model: 

dX
dt

F X, k, φ Sv X, k S V X, k  
(4-3) 

The kinetic form used to represent this reaction is shown in Table 1, Reaction V11. We can 

determine the steady state metabolite concentrations using the continuation as a function of Vmax 

(K14 in Reaction V11).  Interestingly, the system is fully robust against increases in Vmax  (K14 in 

Reaction V11) for the butanol reaction. The system does not encounter a bifurcation point, but the 

butanol flux reaches a plateau at the value corresponding to the KAY in the previous integration 

(Fig 4-2C). With the overexpression of the butanol reaction itself, Vmax may be increased to an 

arbitrarily high value (Fig 4-2C), and the system remains stable, although flux through the pathway 
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asymptotically approaches a maximum. During this integration, it was assumed that other 

parameters would not be changed (i.e., the other Vmax’s etc.), (Fig. 4-2C). The fact that the flux 

value approached asymptotically by the Vmax integration (Fig 4-2C) corresponds to KAY 

determined using flux integration (Fig 4-2B) lends support to the idea that there is an intrinsic 

kinetic limitation to the amount of flux that can be directed towards a pathway by overexpression 

of that pathway.  

In the Vmax integration, As Vmax increases, steady state flux plateaus, but threonine 

decreases, approaching zero (Fig 4-2D). While acetyl-CoA is consumed in the same reaction, 

acetyl-CoA concentration never approaches zero. From this, we can infer that threonine is the 

limiting metabolite for the production of 1-butanol, and even though there is sufficient carbon to 

produce more 1-butanol, the kinetics of the system prevent the acetyl-CoA flux from redistributing 

towards threonine. This is one reason the KAY is less than the maximum theoretical yield (Fig 4-

2B). It is possible that with other genetic manipulations, such as overexpression of other upstream 

enzymes or knocking out competing enzymes, a higher yield would result.  

4.1.5 Kinetic parameter integration when the new pathway negatively affects the host 

We can also include a system which may be more biologically realistic (Fig 4-2E). As one 

enzyme or pathway becomes highly overexpressed, the new pathway may negatively affect the 

host metabolism through various mechanisms. It is possible that the expression and activity of 

other enzymes could decrease due to competition for energy, amino acids, or amino acyl-tRNAs. 

To investigate these effects, in the toy system, the butanol pathway overexpression was tied to 

repression of threonine synthesis. Again, the steady-state metabolite concentrations were 

determined by continuation and the butanol flux was calculated as a function of Vmax for V11, k14.  

In this integration, the resulting butanol flux went through a maximum and decreased as Vmax 
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continued to increase (Fig 4-2E). Thus, the final butanol production yield was less than for the 

unrepressed condition (Fig 4-2C). Additionally, for the repressed condition, threonine was 

decreased to zero as before (Fig 4-2D), but the acetyl-CoA did not. 

4.1.6 Chemical & Biological Reasoning 

To fully cover the chemical transformation space, one must consider other hypothetical 

reaction systems. For example, if only chemical constraints are considered, the synthesis of butanol 

is limited by the number of carbons, for example. The maximum butanol synthesis is given by the 

following reaction: 

 1.5 H2O + C6H12O6 → 1.5 C4H10O + 3 O2 

Resulting in a total yield of 1.5 butanol/glc. In our simplified cellular model (Fig 4-1), 

stoichiometry limits butanol synthesis to 1 butanol/glc, since one pyruvate and one acetyl-CoA are 

required for each butanol.  The kinetically accessible flux and biologically realistic flux (Figs 4-

2C, 4E) are determined from the integration carried out above, as the Vmax for butanol synthesis 

approaches infinity for the no repression and with repression conditions, respectively. A 

comparison of all these yield determinations is presented in Fig 4-2G. 

Biological realism in this system was modeled as repression of the reaction for threonine 

synthesis as overexpression of the propanol pathway increases. The exact implementation of 

‘biological realism’ is arbitrary, but the analysis is meant to show the limitations of the KAY 

method, and that it may not correspond to observed yields due to mismatches between model and 

biological reality.  Although in this case, the interaction causes the yield to be less than the KAY 

value, it cannot be ruled out that actual yield may be higher than predicted KAY, through 

interactions not included in a kinetic model. In other words, positive regulation of the host by the 

new pathway would cause the maximum yield to increase beyond the KAY value calculated above. 
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In general, these effects would involve inhibition of competing pathways relative to the pathway 

of interest. This could be caused by various signal transduction pathways, such as sigma factors 

influencing 68 expression level, redox state 69, or substrate-level regulation not included in the 

model. Any mathematical model is imperfect, but the KAY concept allows us to use kinetic models 

in a powerful way and push them to their limits of predictive power and usefulness. The KAY 

concept is used in the upcoming sections to predict the effects of genetic manupulations on 

exometabolite yields. 

4.2   EMRA for predictions in E. coli, Yarrowia lipolytica and Clostridium thermocellum 

 Y. lipolytica and C. therm are non-model organisms which have promise to address rising 

metabolic engineering challenges.  Y. lipolytica is an oleaginous yeast which produces lipids at 

high titer (~30 g/L).70  Canonical understanding of yeast biomass combined with more recent 

knowledge of the lipid composition can give insights about the reference steady state of this 

strain.71  C. therm is a cellulolytic thermophile, addressing the need to address more recalcitrant 

substrates for bioprocessing.72,73  Models of C. therm, Y. lipolytica as well as the model organism 

E. coli will investigate ways to improve production of desired compounds and demonstrate the 

viability of using EMRA and the KAY concept on in vivo systems. 

4.3 Constructing a model of n-butanol production in E. coli 

The n-butanol production model was based on a previously generated model of E. coli 

generating isobutanol during growth phase based on the data published in 74.  The original model 

used pathway information from the Ecocyc database 75.  The original model was constructed by 

lab mate Jimmy Rivera and was featured in other published work. 

Several changes were made to the model for the purpose of using the model to analyze n-

butanol production data provided by Osaka University.  First, the biomass term in the model was 
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eliminated, since the experiments data provided by Osaka University were conducted at high cell 

density and in stationary phase, so biomass accumulation is likely to be small.  Second, the n-

butanol synthesis pathway was added. This pathway encompasses six reactions, starting from two 

acetyl-CoA molecules and requiring four reducing equivalents per butanol 67.  Third, export 

reactions were added for eight metabolites: pyruvate, succinate, lactate, formate, acetate, butyrate, 

ethanol and butanol.  The final model contained 60 reactions and 47 metabolites. 

 

Fig. 4-3) Overview of the model used for generating insights about n-butanol production in E. coli. Overall, the model contained 
60 reactions and 47 metabolites. 8 exo-metabolites export reactions were included in the model to make use of data provided by 
the Osaka University lab. 

4.3.1 Using data from Osaka University to Generate a Reference Steady State 

Osaka University provided data for the extracellular concentrations of the eight metabolites 

mentioned. There were four different strains, the first of which JCL16, was used to build the 

reference steady state discussed here. The overall configuration of the model is shown in Fig 4-3. 

These metabolite concentrations were used to represent the fluxes of the export reactions in the 

model.  The export fluxes were constrained to the OU data and linear programming was used to 

find a solution minimizing the respiration reaction flux, since the culture was carried out 

anaerobically.  Data was also provided for glucose consumption.  However, when glucose 

consumption was constrained to the observed value, no solution was found.  The system was 
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overdetermined, such that no solution simultaneously satisfied all of the observations. Possible 

explanation for this may be error in experimental measurement, or the imperfections of the 

stoichiometric model. 

Instead, the system used linear programming to minimize the difference between the 

observed glucose consumption and the glucose intake flux value in the model, rather than setting 

glucose flux as a hard constraint.  The result showed that the model was able to replicate the 

observed product yields within less than 10% (Fig 4-4).  This discrepancy could be from random 

experimental error, unexpected sources of carbon in the culture, or missing reactions in the model 

which might allow for more carbon-efficient metabolism.  In any case, error within 10% was 

considered proceed with the model to make further predictions. 

 

Fig. 4-4) Linear programming was used to minimize the difference in measured yield (dark blue bars, exometabolite 
measurement/glucose consumption measurement) and the result obtained when fluxes were calculated subject to steady state and 
the model stoichiometry (yellow bars). The difference in the two was about 5%, within possible measurement or other experimental 
error, and the flux distribution thus calculated was used as the reference state for further calculations. 

4.3.2 Testing the model on different genotypes 

After setting the reference steady state of the model (Fig 4-4), work can continue on the 

application of the EMRA to the model.  In the EMRA framework, realistic rate laws are assigned 

to each reaction using the network stoichiometry and reversibility of each reaction.  After the rate 



50 

  

laws are determined, the reference steady state is used, a suitable number of parameter sets (n = 

500) were generated, comprising an ensemble.  The parameter sets were constrained to the 

reference steady state fluxes, and were determined to be dynamically stable, or discarded. Bacterial 

strain JCL16 was used as the reference steady state. 

Table 4-1) Genotypes for the four strains involved with the butanol production project. 

Strain Name Genotype (E. coli strains) 
JCL16 Wild Type( BW25113/F'[ traD36 proAB+ lacIqZ M15 (Tetr) ]) + 

Butanol Plasmid 
JCL16F JCL16 + fdh 
JCL166F JCL16F ΔldhA ΔadhE ΔfrdBC 
JCL299F JCL166F Δpta 

 

The JCL16 ensemble was then used to ‘predict’ the extracellular metabolite fluxes on the 

basis of genetic manipulations.  These prediction values were then compared to the experimental 

observations of the Osaka University group.   

The predictions were generated using parameter continuation methods that have been 

described previously13. In short, the system is constrained to steady state and perturbed by 

changing the amount of some enzyme.  This is accomplished mathematically by parameter-domain 

integration, rather than time-domain integration, which would have a higher computational burden.  

The amount of enzyme is changed by this method until the system becomes unstable, or until a 

pre-set fold-change is reached (in this instance, 10-fold).  In this way, overexpression and 

knockdown can be suitably represented. 

In the case of JCL16F, the overexpression target is Fdh (formate dehydrogenase).  For this 

genotype, the Fdh reaction flux was integrated from zero to bifurcation for all members of the 

ensemble (the method termed kinetically accessible flux).  For JCL166F & JCL299F the 

appropriate knockouts were made first, by integrating the relevant Vmax values to 10% of their 

original values, then applying the Fdh overexpression to bifurcation.   
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The compound of interest in this investigation is n-butanol.  Thus, an important feature of 

the model is its ability to reproduce the correct n-butanol yields from glucose, in comparison with 

the experimental observations.   

 

Fig. 4-5) Comparison of observed n-butanol yields for each genotype (dark blue bars) with the yield values obtained by ensemble 
modeling and robustness analysis (yellow bars). The predictions match well overall for the three simulated genotypes (JCL16F, 
JCL166F, JCL299F) despite the fact that the observed value changes dramatically, roughly four-fold, from the reference, JCL16 
genotype. 

The results show that the model performs well overall, particularly with the JCL166F and 

JCL299F conditions (Fig 4-5), which have the biggest differences from the original reference state.  

These values, the model predicts well, within 15% of actual value, even when, in the case of 

JCL299F, the observed value is four-fold higher than the original reference state.  This shows that 

the model is capable of correctly capturing large changes of behavior in model, a feat which may 

be difficult to achieve with linear or less sophisticated kinetic models. 

Even though we are most interested in n-butanol as a product in this model, we can still 

compare the predictions of the model for other compounds as well.  As a byproduct of the 

parameter continuation calculations, the simulations also generate expected values for reaction 
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fluxes of the eight export fluxes. These can readily compared to i) the original reference values 

(JCL16) and ii) the measured experimental values. 

 
Fig. 4-6) Comparison of observed exometabolite yields for each genotype (teal bars) with the reference (JCL16) values (dark blue) 
and the simulated yield values obtained by ensemble modeling and robustness analysis (yellow bars). The predictions match well 
overall for the three simulated genotypes (JCL16F, JCL166F, JCL299F) despite the fact that the observed values sometimes change 
dramatically from the reference, JCL16 genotype. Notable exceptions are the pyruvate and acetate predictions for JCL299F. 

We find that in general, the model performs well for most compounds in JCL16F and 

JCL166F (Fig 4-6).  However, the model fails drastically in predicting the amounts of pyruvate 

and acetate for the JCL299F strain (Fig 4-6, 299F, lower panel).  Overall, however, and in 

particular with regard to the performance with butanol, the model performs well, and demonstrates 
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the feasibility of using EMRA to integrate experimental data with kinetic metabolic models to 

make realistic predictions about the effect of genetic manipulations. 

4.3.3 Finding new genetic targets 

 

Fig. 4-7) A model of the JCL299F as a reference steady state was generated from the JCL299F observed yields. Each enzyme was 
then perturbed up and down and n-butanol yield for each perturbation was tabulated. The top 5 knockout and overexpression targets 
are shown here. 
 

After using the JCL16 reference strain as a means of demonstrating the model, we can 

identify which targets would be most effective in further increasing the butanol yield of the best-

performing 299F strain.  To do this, a reference state based on the JCL299F data was constructed.  

Then all of the enzymes in the model were subjected to perturbation, overexpression and 

knockdown of 10-fold.  The genetic changes that result in the highest butanol yields from glucose 

were ranked and the top 5 knockdowns and overexpressions are presented here (Fig 4-7). 

These genetic targets form the basis of a set of recommendations that are actionable by 

experimental researchers.  Such actionable insights are often touted as justifications for metabolic 

simulations, but rarely provided.  Here I have provided them, based on a validated kinetic model 

capable of reproducing highly non-linear phenotypes. 
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4.3.4 Changes to the Model That Increase Model Performance 

 

Fig. 4-8) Comparison of observed exometabolite yields for each genotype (teal bars) with the reference (JCL16) values (dark 
blue) and the simulated yield values obtained by ensemble modeling and robustness analysis (yellow bars). The predictions 
match well overall for the three simulated genotypes (JCL16F, JCL166F, JCL299F) despite the fact that the observed values 

sometimes change dramatically from the reference, JCL16 genotype. Notable exceptions are the pyruvate and acetate predictions 
for JCL299F. 

 

While overall, the model performs relatively well in predicting exometabolite yield in the 

various genotypes, there are a notable exceptions with the pyruvate and acetate predictions for the 

299F genotype. In consultation with the Osaka University Group, we hypothesized that CoA 

limitation was an important factor in determining the behavior of the cells and the 299F. In the 

original model, free CoA was not included as a metabolite in the model. Thus, effects of the 

depletion of CoA on the model were not manifest in this model. 

To correct this, and other defects in the model, changes were made. First, free CoA was 

added as a metabolite to the model. Thus, CoA would appear as a reactant or product in the relevant 

reactions in the model (Fig 4-8A). 
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Second, the pta knockout in 299F was used as a screen for models. Previously, to model 

knockouts, all parameter sets in the ensemble were perturbed by changing Vmax down to 1% of the 

original reference value, and the parameter set was included in the final prediction regardless of 

whether bifurcation occurred before the 1% threshold. In other words, models which bifurcated at 

20% of reference Vmax value would still be included, at the values calculated just before 

bifurcation. As a change, I included only models which could be successfully perturbed to 1% of 

pta Vmax in the JCL299F predictions (Fig 4-8B). Combined, these two changes to the model were 

found to greatly improve the predictions of pyruvate and acetate production for the JCL299F 

genotype (Fig 4-8C). 

Using successful knockout to 1% as a screen for other knockout perturbations was 

performed, but it was found not to make a significant difference in predictions for these genotypes 

[data not shown]. 

4.3.5 Lessons Learned from Modeling E. coli Production of n-Butanol 

 The performance of this modelling strategy with this production system shows that 

ensemble modelling can go beyond just the in vitro systems described previously. This application 

shows that ensemble modelling and robustness analysis (EMRA) provide methods to go from a 

low information description of a system to effective kinetic models in an automated way. 

 While the EMRA method is or can be automated, it is also clear from these results that 

attention to model construction is also required. It is not clear a priori whether inclusion of CoA 

as a free metabolite would result in a more accurate model or not. For instance, a cell under CoA 

limitation could respond by synthesizing more. However, we now have evidence that the cell does 

not, mostly, respond in such a fashion. This is an interesting point both from a modelling 
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perspective to improve model performance, and from a descriptive biological perspective to better 

understand the nature of E. coli metabolism. 

4.4 Ensemble Modelling Using Clostridium thermocellum 

Using non-edible plant material as a feedstock for bioprocessing is an important goal 76. 

Clostridium thermocellum has shown the ability to convert cellulose, a recalcitrant store of 

carbohydrates, into a useful product like isobutanol77.  A model of C. therm metabolism was 

created by a team at Penn State University including Satyakam Dash and Ali Khodayari under 

Professor Costas Maranas.  The model included a stoichiometric matrix of relevant reactions, as 

determined by discussion with the Lee Lynd group at Cornell.  In collaboration with Penn State, I 

developed the model for analysis with EMRA. 

4.4.1 Development of C. thermocellum Ensemble Model 

Stability analysis, termed ensemble modeling robustness analysis (EMRA)13 was carried 

out.  The stoichiometric matrix of the underlying model was used to create a kinetic model of the 

system.  Reversibilities were assigned according to reported reversibilities or thermodynamics.  

Stoichiometry and reversibilities were used to assign realistic reaction modular rate laws as 

described by Liebermeister and used previously 8,13. 

H+, H2 and H2S metabolites were removed.  It is likely that the maintenance of these 

metabolites’ steady states is accomplished by mechanisms not reflected in the model, so steady 

maintenance of steady state for these metabolites is an unnecessary kinetic constraint which may 

distort the model.   

Secreted metabolite (exometabolite) concentration data was obtained from a previously 

published study of C. therm 77.  In the previous exploration, ten exometabolites (isobutanol, 

ethanol, valine, citrate, malate, succinate, lactate, formate, acetate, fumarate) (Fig 4-9A) were 
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measured after a 75hr high density fermentation for both a wild type (WT) and isobutanol 

overproducing strain (CT24). CT24 overexpresses the isobutanol production pathway (Fig 4-9B). 

Reference fluxes were assigned in the wild type by constraining export reactions for the 

ten measured exometabolites to the measured value.  Other export reactions were removed.  

Theoretical glucose consumption was estimated by determining the molar amount of glucose 

required to produce each metabolite (0.5 mol glc for ethanol, succinate, lactate, acetate and 

fumarate—1 mol glc for isobutanol, valine, citrate, malate—0 for formate).  Through discussion 

with the Penn State group, biomass was left in the model, with 3% glucose flux directed to biomass.  

Low biomass accumulation is expected since it is a high density fermentation.  The biomass 

equation from the underlying model was used to determine the flux towards each biomass 

component and separate kinetic equations for each component were used. 

Reasonable estimates were made for other flux determinations.  The ratio of POR:FDH 

was set at 1:1.  PEPCKr to PPDK was set at 1:1. PGM:PGCD was set at 8:1.  PGCD catalyses the 

conversion of 3PG to 3P-hydroxypyruvate, which can be converted to serine and recycled in a 

futile cycle through hydroxypyruvate and glycerate back to 3PG.  The overall flux determination 

was carried out using linear programming to minimize the ATP lost from a futile glycogen cycling 

pathway. 

Ensemble modeling was carried out by selecting realistic kinetic parameter values 

constrained to the reference fluxes used and discarding models which were not dynamically stable.  

The models (n = 100) were then perturbed by increasing the Vmax of the isobutanol production 

pathway enzymes and export reaction by 100x using parameter continuation integration.  If a 

bifurcation was detected by finding a singular Jacobian during any step of the integration, it was 

halted.  About 10% of the models remained stable to 100x overexpression.  The flux values at 



58 

  

bifurcation or 100x overexpression (whichever came first) were used to generate an ensemble 

average of predicted fluxes.  To determine enzymes which have the best impact on further 

improving isobutanol yield from glucose in the CT24 strain, all enzymes were overexpressed 10x 

and knocked down 10x using parameter continuation to determine steady state isobutanol 

production. 

4.4.2 Results of C. thermocellum Modeling 

 

Fig. 4-9) A) Diagram showing input and output from experimental C. therm data.  Exometabolite data was used to constrain 
metabolic fluxes in the reference steady state.  The reference steady state is used to constrain kinetic parameters to realistic values.  
B) Detailed view of major pyruvate- and acetyl-CoA-derived exometabolites.  The isobutanol pathway from pyruvate was 
overexpressed in the CT24 isobutanol overproducing strain.  C) Comparison of measured exometabolite yields for WT, CT24 and 
CT24 simulations.  Simulation was accomplished by increasing Vmax for isobutanol pathway enzymes using parameter 
continuation until bifurcation or 100x increase.  Values are presented as molar yield per mol glucose.  Theoretical glucose was 
calculated by determining total amount of glucose required to generate all observed products for all 3 conditions.  D) To further 
improve the CT24 strain, the top overexpression and knockdown targets for isobutanol production were identified. 

 
For eight out of ten exometabolites (all except valine and isobutanol), the sign of the 

measured change of the molar yield from glucose was predicted correctly by the simulation (Fig 

4-9C). Interestingly, the acetyl-CoA derived products were predicted almost correctly.  Acetate 

had error of only 0.01 out of a total change of about 0.1 while ethanol was about 0.06 out of a 

measured change of 0.26.  However, larger errors were found in the pyruvate-derived 
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exometabolites.  Isobutanol showed error of +0.14 while lactate was -0.23.  Overall, it appears that 

the simulation correctly predicted the shift from acetyl-CoA-derived to pyruvate-derived 

exometabolites, but did not correctly determine the split between isobutanol/lactate.  This could 

indicate there were unanticipated effects on the activity of lactate dehydrogenase (e.g. the activity 

of LDH was upmodulated in CT24 by some unknown mechanism) which were not reflected in the 

parameter continuation integration used.  Another possibility is that the fermentation took place in 

distinct stages with flux distributions varying as time increased to 75 hours.  A steady state 

simulation would not necessarily capture all dynamics at play. 

The top 5 knockdown and overexpression targets were also identified to improve the 

isobutanol yield in the CT24 genotype (Fig 4-9D).  Only one overexpression and one knockdown 

target were predicted to raise isobutanol yield from 0.29 mol/mol glc equiv to above 0.4.  The 

knockdown target was lactate dehydrogenase while the overexpression target was acetolactate 

synthase.  These enzymes compete for pyruvate.  Thus, it makes sense that these enzymes 

controlling pyruvate-derived exometabolites would be important in isobutanol production in a 

CT24 strain.  Acetolactate synthase is already overexpressed in the CT24, but it could be that 

further overexpression of this enzyme may further improve isobutanol yield.  Other enzymes in 

the isobutanol pathway did not appear in the top 5 overexpression targets. 

Other identified targets also have some intuitive rationale. α-Ketoglutarate dehydrogenase, 

was also an overexpression target, possibly because it provides NADPH for the isobutanol 

pathway. Pyruvate, phosphate dikinase is predicted to operate in the pyruvate direction in this 

model and was another oeverexpression target. Other knockouts included reactions which 

produced acetaldehyde and acetate (Acetaldehyde and aldehyde dehydrogenase) which could 

further shift the overall exometabolome from acetyl-CoA-derived to pyruvate-derived products. 
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Overall, the results indicate the feasibility and usefulness of kinetic models using ensemble 

modeling for C. therm in particular, and organism-wide metabolic simulations in general. At the 

same time, this endeavor shows the shortcomings of assuming that overexpressing a protein in a 

cellular system will increase the activity of that protein while leaving others unchanged. Potential 

follow-up work could include integration of this approach with proteomics to include system-wide 

changes. 

4.5 Ensemble modeling of acetate conversion in Y. lipolytica 

Previous work undertaken by the UCLA and Chalmers University Teams has resulted in a 

plausible model of Yarrowia lipolytica metabolism78 under conditions of glucose conversion to 

fatty acids. This model construction consisted of finding a suitable set of reactions for the purpose 

of representing metabolism and lipid synthesis.  This encompassed glycolysis, pentose phosphate 

pathway for the generation of NADPH, pyruvate transport to the mitochondria and tracylglycerol 

synthesis in the lipid body.  The model found contained a total of 120 reactions and 106 metabolites 

and was able to fit fluxes from both the wild type and the lipid overproducing strain. 

4.5.1 Acetic Acid Metabolism in Yarrowia 

Acetic acid metabolism by yeast is a common trait.  Yarrowia and other yeast strains 

including the model strain Saccharomyces cerivisiae have been observed to be capable of growth 

on acetic acid.  A quantitative mRNA study of S. cerevisiae was undertaken which pinpointed 

many of the genetic changes associated with a switch of carbon source from glucose to acetic acid 

79.  By this study, it was found that the major route for acetic acid metabolism is by the reaction 

acetyl-CoA synthetase, which converts acetic acid into acetyl-CoA powered by the conversion of 

ATP to AMP.  We used this as the route for acetic acid metabolism in Yarrowia for the model.  

Additionally, we achieved acetyl-CoA transport into the mitochondria via the acyl-
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carnitine/carnitine translocase system.  The glyoxylate cycle is presumed to be active in the 

mitochondria under acetate conditions, which allows for a net conversion of two acetyl-CoA 

molecules into a 4-carbon dicarboxylic acid (malate).  Malate is then decarboxylated in the 

mitochondria by malic enzyme which has been noted to be localized there80.  A pyruvate carrier 81 

then moves pyruvate to the cytosol where it can be used for gluconeogenesis etc. 

In contrast to glucose conditions, this represents a reversal of the usual pyruvate and acetyl-

CoA flow from mitochondria to cytosol.  In glucose conditions, pyruvate is transported into the 

mitochondria by the pyruvate carrier, where it undergoes decarboxylation by pyruvate 

dehydrogenase.  Acetyl-CoA is then effectively exported to the cytosol by the citrate-malate 

antiporter.  This system is not reversible since cytosolic ATP-citrate lyase and mitochondrial 

citrate synthase are irreversible.   

4.5.2 Using Previously Reported Acetic Acid Conversion Experiments to Find Reference 

Fluxes 

One of the most comprehensive studies of acetic acid consumption and conversion by 

Yarrowia to date was conducted by Fontanille et al 82.  The authors reported that in bioreactor 

experiments using Yarrowia in growth phase, the yield of biomass from acetic acid was 0.50 (g 

biomass / g acetic acid consumed) and the lipid yield was 0.15 (g lipid / g acetic acid consumed).   

To use the conditions reported by the author, the mass/mass yields of lipid and biomass 

were converted into molar fluxes for the model.  In the original Yarrowia model, a biomass term 

was included which was based on work done by Gombert et al 83.  On this basis, a biomass function 

was derived which used the correct ratio of each amount of each metabolite for yeast in rapid 

growth conditions.   The average molar mass of each unit of biomass was calculated, and from that 

and the biomass mass yield a biomass flux was determined.  The lipid composition of the acetic-
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acid grown Yarrowia was reported in 82 and the average molar mass of each fatty acid was 

calculated, allowing the molar flux of lipid production to be set.  After fixing biomass and lipid 

production, linear programming was used to bring acetate uptake as close as possible to the 

observed value, and achieved a result within 4% of the reported value.  Acetyl-CoA was removed 

from the biomass term, since that is represented by the lipid synthesis reactions.   

 

Fig. 4-10) Diagram showing the flux distribution determined for Y. lipolytica growth under acetate conditions. This distribution is 
approximated by using biomass objective function and acetate metabolism information from the model yeast species A. cerivisiae. 
Compartmentalization is maintained by including separate metabolites for each compartment.  

4.5.3 Determination of genetic targets 

This model of Yarrowia metabolism (Fig 4-10) under acetic acid feed conditions is a 

reasonable representation of the system and can be used for further simulations.  Key assumptions 

about compartmentalization and metabolite flow have been identified, which will allow this model 

to be adapted to many other conditions, including high density production schemes with low 

biomass accumulation.  Additionally, the network and fluxes identified here allow for analysis of 
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genetic changes to this organism under these conditions to identify which changes would increase 

lipid yield using the ensemble modelling framework.   

The model was perturbed by changing each enzyme amount 10-fold up or down for a 

suitable number of parameter sets (n=100).  The resulting fluxes were investigated to determine 

which enzymes could be perturbed to cause the greatest increase in lipid yield from acetate.  The 

results are presented here, for top 6 knockdown and overexpression targets. 

 

Fig. 4-11) Diagram showing the flux distribution determined for Y. lipolytica growth under acetate conditions. This distribution is 
approximated by using biomass objective function and acetate metabolism information from the model yeast species A. cerivisiae. 
Compartmentalization is maintained by including separate metabolites for each compartment. 
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These genetic targets provide useful insights (Fig 4-11) for experimentalists looking to 

improve the performance of Y. lipolytica with acetic acid. The conversion/valorization of acetic 

acid with Y. lipolytica is an area of lively and greatly expanding interest, and this work will allow 

for rational targeting of new research directions.                                                                                                       

4.6 Summary & Conclusion 

 The performance and success of EMRA with these in vivo systems paves the way for its 

use in yet more systems. This variety of applications show that the EMRA method is both highly 

flexible and surprisingly powerful. It is able to take a low information network skeleton and 

convert it into a queryable kinetic model. These models have demonstrated a high degree of fidelity 

to observed exometabolite yield, especially in the E. coli n-butanol model. The 3 genotype, 8 

exometabolite data set is a high-dimensional standard to match, yet the model performs well 

without any modifications. With small tweaks, the model matches every yield almost perfectly, 

illuminating biological significance in the process.  
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5. Network Structural Features Affect Stability of Calvin Bassham Benson Cycle in Plants  

The stability of the Calvin Bassham Benson (CBB) cycle remains an area of active 

computational research. Our understanding of biology and the prospect for bioengineered plants 

with higher productivity may both be impacted by a greater understanding of this area.  Here we 

use the ensemble modelling robustness analysis (EMRA) framework to show that the action of the 

phosphate/G3P antiporter is much more significant for maintenance of stability than a recently 

proposed G6P shunt.  Additionally, we interpret recent results suggesting that overexpression of 

RuBiSCO does not improve growth rate of plants but overexpression of sedohuptulose-

bisphosphate phosphatase (SBPase) does.  Our simulations reproduce this result, but only in 

models which do not include the G6P shunt.  Taken together, these results may suggest a situational 

role for the G6P shunt, possibly in dynamic situations under starvation or other stress conditions. 

5.1 Introduction 

The Calvin Bassham Benson cycle (CBB) is responsible for CO2 fixation by plants, 

including the C3 & C4 variants, of which the C4 is an adaptation which allows for plants in high 

temperature or low water environments 84–87.  Plants have advanced regulatory systems which 

allow them to successfully grow and thrive in an unpredictable and changing world 88–92.  For 

example, sugars generated from CO2 during daylight are stored as starch in photosynthetic and 

non-photosynthetic chloroplasts.  Nighttime consumption of starch is tuned to leave only a small 

amount remaining by morning—and this consumption rate is dynamically tuned to adjust for 

changing day length93–95. 

Among canonical metabolic pathways, the CBB pathway is highly branched and complex, 

much more so than simple linear pathways like glycolysis or simple loops like the TCA cycle.  

This is in some ways the result of the chemical difficulty of aerobic CO2 fixation 96,97 which seems 
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to require a carbon reshuffling step to regenerate a suitable starting substrate like ribulose-1,5-

bisphosphate 98.  The complexity of the pathway, in which there is not a linear pathway from 

substrate to product, results in instability if intermediates are depleted.  For example, if the sugar 

phosphates in a chloroplast become depleted, the pathway is not able to continue since some 

starting substrate (RuBP) is required to continue CO2 fixation 99. 

There are two main mechanisms of transport of sugars across the chloroplast membrane.  

First, there is the G3P/phosphate antiporter 100.  This transporter moves a G3P from the CBB 

pathway in the chloroplast to the cytosol, where it is used for various cellular functions.  In return 

a phosphate molecule is transported into the chloroplast, effectively keeping the total number of 

phosphates (including phosphate attached to sugars) in the chloroplast constant.  Second, there are 

glucose (putative) 101 and maltose transporters 102, of which the maltose transporter is known to be 

essential for starch breakdown. G3P is a CBB intermediate and is directly interconvertible with 

other sugar phosphates, so a depletion of G3P would be problematic for CBB.  However, glucose 

and maltose are more removed from the CBB pathway itself and are possibly only produced as 

starch breakdown products 95. 

The direct regulation of plastidic enzymes involved in photosynthesis is accomplished by 

redox-mediated proteins called thioredoxins 103.  In light conditions, the NADPH/NADP+ ratio is 

higher because the photosystems which generate NADPH from light are active.  As a result, the 

disulfide bonds in thioredoxins and other regulated proteins are broken, mediating enzyme activity.  

In Arabidopsis thaliana several enzymes are known to be redox regulated in this manner 104.   

Some enzymes of the CBB cycle are activated in a reducing (light) environment by the 

breaking of their disulfide bonds.  In the dark, these enzymes are attenuated in the oxidizing 

environment.  Of the 12 enzymes of the canonical CBB cycle, 4 are known to be redox regulated 



67 

  

in the ferredoxin/thioredoxin system 104.  First, GAPDH converts 1,3-bisphosphoglycerate to 

glyceraldehyde-3-phosphate using reducing power from NADPH.  GAPDH is reversible, although 

in dark conditions scarce NADPH is required for other critical cellular functions. 

In addition to GAPDH, enzymes which catalyze the cleavage of high-energy phosphate 

bonds are also thioredoxin-regulated, presumably to reduce thermodynamic losses in dark 

conditions.  Phosphoribulokinase (Prk) catalyzes the cleavage of ATP to ADP coupled with the 

conversion of ribulose-5-phosphate to ribulose-1,5-bisphosphate.  Prk and GAPDH are inactivated 

in the non-enzymatic oligomerization with chloroplast protein CP12 in oxidizing conditions, 

which is reversed by NADPH 105.   Sedoheptulose-1,7-bisphosphatase catalyzes the irreversible 

loss of phosphate from the sedoheptulos-1,7-bisphosphate to result in sedoheptulose-7-phosphate.  

Fructose-1,6-bisphosphatase catalyzes an analogous reaction and loss of phosphate to result in 

F6P.  These enzymes are all regulated to lose function in dark conditions when NADPH is low 

and CO2 fixation cannot continue 104.   

The Calvin cycle has many enzymes in common with the pentose phosphate pathway, 

except that it functions in the reverse direction, leading to the distinction between the traditional 

or oxidative pentose phosphate pathway (oPPP) and the CBB-synonymous reductive pentose 

phosphate pathway (rPPP) 106.  Distribution of oPPP and rPPP enzymes within plant cellular 

compartments (plastid vs. cytosol) is an area of research 107, but in Arabidopsis, it is recognized 

that the first three steps of the oPPP (glucose-6-phosphate dehydrogenase, gluconolactonase and 

6-phosphogluconate dehydrogenase) are localized to both the plastids and the cytosol 108.  In 

addition to the CBB enzymes above, the plastidic enzymes of the oPPP, particularly G6PDH, are 

subject to redox-based regulation 109.   
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G6PDH is most active in oxidizing conditions which prevail in night darkness. The oPPP 

provides NADPH for critical cell functions when light is unavailable. Activity is highly attenuated 

by the presence of light.  This is rationalized to be for the prevention of thermodynamic losses due 

to a futile cycle 110.  However, interestingly, the attenuation of G6PDH in reducing conditions is 

far from complete and varies widely by species.  In the investigation of three different plastidic 

G6PDHs, activity is attenuated to anywhere from 10-30% of maximum in reducing conditions 

109,111,112.  It has recently been suggested that flux through G6PDH and the next two oPPP enzymes 

(generating Ru5P) may stabilize the CBB pathway 113.  This opens the door for investigation into 

possible competitive benefits of a futile cycle which in terms of thermodynamics, is a clear loss.    

Some previous efforts have attempted to address stability in the CBB pathway, but these 

have had shortcomings such as not considering phosphate 114 which our work suggests has a critical 

role in stability, or considering only a single set of parameter values 115, which doesn’t reflect the 

range of stochastic and environmental variability encountered in biological reality.  Other works 

focused on the well-documented oscillations of the CBB pathway 116, without considering general 

propensity towards stability (nonsingular Jacobian), or instability (singular Jacobian).  In this 

work, we consider the present evidence that multiple structural features of CBB in plants and 

Arabidopsis thaliana in particular stabilize the pathway, independent of their effect on oscillatory 

behavior.  In particular, we investigate the role of the G3P/phosphate translocator, the oxidative 

pentose phosphate pathway, as well as covalent modification of triose phosphate isomerase 117.  

We use ensemble modeling robustness analysis, a method which investigates the stability of 

metabolic pathways using network information such as reference flux, network stoichiometry, 

reaction reversibility and substrate-level regulations 13.  We also consider the potential applications 

toward biotechnological work attempting to increase the productivity and growth rates of plants. 
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5.2 Building a model of chloroplastic metabolism 

First, a consensus model of chloroplast metabolism flow in light conditions was developed 

(Fig. 5-1).  Steps of the CBB cycle, starch synthesis and starch degradation were included.  

Additionally, G3P transport from chloroplast to cytosol is also included.  NADPH generation by 

the light reactions and ATP generation through respiration were included as single reactions in the 

model. 

Fluxes were set by linear programming to determine a reference steady state.  Carbon was 

assumed to be split 50:50 between G3P and starch synthesis.  Starch degradation was assumed to 

be at 2/3 the rate of starch synthesis.  Starch degradation is represented as non-negligible in the 

model, since starch degradation rate was found to be almost unchanged by light in spinach leaves 

118. G3P export and import were modeled as parallel reactions in dynamic equilibrium, additionally 

at a 2:3 ratio for parsimony.  Beyond these specifications, the system has no degrees of freedom 

so flux rate was completely determined. 

Reactions were modeled kinetically using realistic rate laws which take into account 

number of substrates and products, and the reversibility of the reaction using modular reaction 

rates according to the method of Liebermeister 8.  Substrate-level regulations were added to the 

model as described in the Methods section. Parameter values were sampled constrained to 

reference fluxes and stability at the reference steady state was insured. A suitable number of 

parameter value sets (n = 300) were generated and tested. Enzyme levels were perturbed by using 

the parameter continuation method, where the system is perturbed, constrained to a fixed point, 

until the Jacobian becomes singular, or a metabolite concentration becomes negative. The fraction 

of parameter sets, or ‘models’ which become unstable at each level of integration, is plotted. 

Further details about the model are available in the methods section. 
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Fig. 5-1 The overall model of chloroplast flux used in this paper.  Reactions in the carbon shuffling steps and G6P shunt are 
modelled individually but are shown in a simplified format.  Light reactions and respiration were modeled as single reactions for 
simplicity.  NADPH/NADP+ & ATP/ADP cofactors included in all simulations, free phosphate held constant in some simulations 
as noted.  CO2 was held constant in all simulations. 

5.3 G3P/phosphate translocator almost completely stabilizes CBB 

The G3P/phosphate translocator and phosphate in general is known to have an important 

role in the action of the CBB pathway (Fig. 5-2A) 119.  However, to date, this role has not been 

thoroughly tested by simulation efforts.  Here we test the idea of the phosphate antiporter as a CBB 

pathway stabilizer by doing EMRA simulations of the CBB enzymes with and without holding 

phosphate constant.  Allowing plastidic phosphate to vary freely as a metabolite in the simulation 

is a proxy for the effects of the antiporter, since if phosphate was transported independently from 

the cytosol, there would be effectively no steady state requirement for phosphate—any deviation 

would simply be made up by transport to or from the cytosol.  The inclusion of phosphate fixes 

the steady state requirement to the one-to-one antiport of G3P and inorganic phosphate. 
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Without Pi, the model was found to have noticeable instability in essentially all of the CBB 

enzymes, and, seven of the 12 CBB enzymes were noted to have instability upon increase.  

Inclusion of phosphate as a metabolite was shown to almost completely eliminate instability with 

one notable exception.  With phosphate, triose phosphate isomerase was noticeably unstable to 

decrease.  Without phosphate, that enzyme was unstable to increase—the inclusion of phosphate 

reversed the tendency towards instability (Fig. 5-2B, red lines).   

 
Fig. 5-2 Comparison of stability with and without holding phosphate constant. A) Schematic showing the flow of phosphate through 
the phosphate/G3P antiporter in relation to the CBB pathway.  B) EMRA stability profile for the enzymes of the CBB pathway 
upon perturbation of 10x and 0.1x.  Both Tkt reactions were perturbed simultaneously (n = 300).  Including the effects of the 
G3P/phosphate antiporter (red line) significantly stabilizes the pathway. 

5.4 Glutathionylation of triose phosphate isomerase improves stability (with phosphate) 

The one enzyme of the CBB pathway which was unstable after the inclusion of phosphate 

was triose-phosphate isomerase.  There seems to be further experimental confirmation of the 

importance of sufficient triose phosphate isomerase (TPI) activity. A plastidic TPI mutant with 

reduced activity was installed in Arabidopsis and the resulting plants were found to grow at a 

highly stunted rate 120.  Interestingly, if grown in the dark with nutrients provided (heterotrophic 

growth), there was no growth deficiency, indicating that the plastidic TPI is important for 

autotrophic (light) metabolism, but not critical for heterotrophic (dark) metabolism. 
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There are multiple possible methods for accommodating this loss of stability.  First, triose-

phosphate isomerase is a highly active, reversible enzyme with no stability penalty indicated (Fig. 

2B) for high activity, so it’s possible TPI is operating mostly or exclusively in the high activity 

domain, where stability is not an issue.  Another possibility is that TPI instability is partly rescued 

by the effect of glutathionylation.  A recent analysis showed the first evidence of glutathionylation 

of plant enzymes.  The authors found that a cytosolic TPI from Arabidopsis thaliana was 

inactivated in the presence of oxidized glutathione (GSSG) but reactivated in the presence of 

reduced glutathione 117.  Since GSH is regenerated by the reducing power of NADPH, this 

regulatory network can be represented as NADPH activation of TPI combined with NADP+ 

inactivation (Fig. 5-3A). 

Interestingly, the stability of the TPI with NADPH/NADP+ regulation improves noticeably 

(Fig. 5-3B).  Although there is no direct evidence if glutathionylation of plastidic TPI (pdTPI) in 

Arabidopsis, the protein sequences show 62% sequence identity and have similar numbers of 

methionine residues (2 & 3), (UniProt entries Q9SKP6 & P48491 121, aligned by BLASTP 2.3.0+ 

122,123) .  Regulation of plastidic TPI may be an interesting area of future research. 

 
Fig. 5-3 Possible regulatory mechanism for plastidic TPI. A) Possible schematic for TPI activation by glutathionylation.  This is 

represented in the model by NADPH activation and NADP+ repression. B) Stability profile for the TPI enzyme in the ‘with 
phosphate’ model showing the effect of NAPDH regulation on TPI. 
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5.5 Glucose-6 phosphate shunt affects stability of no phosphate condition 

A perhaps paradoxical aspect of the plastidic glucose 6 phosphate dehydrogenase enzyme 

is that it retains some activity after deactivation, which seems to be thermodynamically 

unfavorable, since carbon decarboxylated by the oxidative pentose phosphate pathway has to be 

re-fixed by RuBiSCO, including the use of 3 ATP per carbon fixed.  It has recently been proposed 

that this is a feature of chloroplastic metabolism which may stabilize the CBB pathway itself 113. 

This was discussed in great detail but so far has seen no mathematical justification. Looking at the 

CBB with stabilization by the phosphate translocator, there is little stability improvement to be 

made.  In stress conditions, however, such as phosphate limitation, plant metabolism is known to 

change radically 124–126, including changing expression of plastidic transporters 127.  This could 

potentially alter the stabilizing, protective effects of the phosphate/G3P antiporter, which can be 

modelled (as before) by the removal of phosphate as a metabolite.  In such cases, other structural 

features would be required to provide stability.   

The so-called glucose-6 phosphate shunt (Fig. 5-4A) has been proposed to provide stability 

to the CBB.  To test the effects of the proposed glucose-6 phosphate shunt, simulation of the no-

phosphate condition with various levels (0% of RubisCO, 10%, 30%) of flux through the first three 

enzymes of the oxidative pentose phosphate pathway (G6PDH, GLNase & GLNDH) was 

undertaken via EMRA.  For nearly all enzymes, the 10% & 30% conditions showed stability 

improvements over the 0% condition for increases in enzyme activity from the reference steady 

state (Fig. 4B, red & green lines).  However, interestingly, several enzymes showed slightly higher 

instability in the 10% and 30% conditions upon decrease in enzyme amount, though higher 

stability upon increase.  One possible explanation is that transketolase, and the aldolases are highly 

active, reversible enzymes, and thus more likely to operate in the high activity regime than the low 
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activity.  Another possible explanation is that the operation of the G6P shunt is situational, and 

that it is meant to operate in dynamic scenarios to replenish cycle intermediates, rather than to 

operate continuously to maintain steady state. 

 
Fig. 5-4 Comparison of stability of various fluxes through the proposed G6P shunt. A) Schematic showing the flow of metabolites 
through the G6P shunt relative to the CBB pathway.  B) EMRA stability profile for the enzymes of the CBB pathway upon 
perturbation of 10x and 0.1x.  Both Tkt reactions were perturbed simultaneously (n = 300).  Including the effects of the G6P shunt 
(red line & green lines) improves stability of the pathway upon increase of many enzymes, hurts stability upon decrease of many 
enzymes (Tkt, aldolases, phosphatases particularly). 

5.6 Assessing methods for improving plant productivity, SBPase and RuBiSCO 

overexpression 

Use of stability analysis to provide biological insight into the mechanisms of stability in 

the CBB is one powerful demonstration of its capabilities. However, it doesn’t provide insight into 

engineering and biotechnological efforts which are aimed at increasing the productivity of plants, 

particularly relating to growth rate and the CO2-fixing rate of the CBB pathway.  Thus, in addition 

to assessing the effect of genetic changes on stability, we can additionally look at the predicted 

impact on net carbon fixation rate.   

Many efforts to increase growth rate and carbon fixation rate of plants have understandably 

focused on RuBiSCO.  Some projects have focused on methods to modify the amino acid sequence 

of RuBiSCO 128,129.  Others have attempted to overexpress RuBiSCO or, more recently, replace 
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native RuBiSCO with a heterologous enzyme which has higher specific activity 130.  These efforts 

have increased the content and activity of RuBiSCO, but they have not convincingly increased 

plant productivity 131.  However, looking at the CBB pathway as a network problem rather than a 

problem with a single enzyme opens up many different possibilities.  Interestingly, one group 

reported that overexpression of SBPase increased carbon fixation rate by 6-12% 132.   

To investigate consistency of these results with simulation, the average model-predicted 

net CO2-fixation rate for different genetic changes and flux configurations can be compared.  

Interestingly, results show that for the 0% G6PDH condition with phosphate, overexpression of 

SBPase slightly increased CO2-fixation rate, while RuBiSCO overexpression was, 

counterintuitively, found to decrease RuBiSCO flux. Other targets in the CBB pathway which 

were also investigated, with Prk showng the largest projected increase on carbon fixation rate (Fig. 

5-5A).  For other conditions (no phosphate, with G6PDH flux) (Fig. 5-5B & C), no improvement 

was observed for either, except a small improvement for SBPase in the no phosphate model.  This 

suggests that perhaps network effects are more determinative of the response of the CBB pathway 

than performance of individual enzymes.  Additionally, it seems to suggest that in laboratory 

conditions, the models not including G6P shunt flux are more reflective of biological reality, and 

thus that the role of the G6P shunt may be situational.  
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Fig. 5-5 Figure showing predicted effect of 10x increase of various CBB enzymes for three different flux models.  SEM shown (n 
= 300). A) Allowing plastidic phosphate to vary freely. B) Holding phosphate constant. C) With G6P shunt at 30% of RuBiSCO 

flux.   

5.7 Discussion 

This analysis reveals the importance of structural features for the stability of the CBB 

pathway in plants.  Stability is an important characteristic of metabolic pathways, since they are 

subject to stochastic variability in protein expression as well as different environmental conditions 

which can perturb the system.  While oscillations in the CBB are a point of previous research 116, 

we here present an analysis of the stability of the underlying fixed points involved.  So far, stability, 

and in particular the ensemble modeling robustness analysis framework has been applied to 

explore the performance relatively simple in vitro pathways, but this paper shows how it can also 

uncover and illuminate biologically significant features and phenomena. 
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Additionally, this manuscript sheds additional light on some specific details of these 

mechanisms. For instance, these results indicate that the G3P/phosphate antiporter is more 

significant for the stability of the CBB than the G6P shunt under normal steady state.  However, if 

the one-to-one link between phosphate- and G3P-transport is broken (as in the no phosphate 

simulations), the action of the glucose-6-phosphate shunt does change the stability profile of CBB 

enzymes noticeably.  However, the true purpose of the G6P shunt may be to restore steady state in 

dynamic situations.  This sheds light on the apparent paradox of thermodynamic losses in this 

‘futile’ cycle.  The thermodynamic involved in one turnover of the oPPP would be involve loss of 

one ATP in the Prk step and two ATP at the Pgk step. 

Among heterotrophic organisms using the CBB cycle, there is a remarkable amount of 

diversity in the arrangement and function of metabolism 133–137. Thus, it is likely that depending 

on environmental constraints and chance occurrences in evolutionary history, the stabilizing 

mechanisms used by different species are a combination of those presented here and those yet to 

be discovered.  Thus, this manuscript is not a comprehensive or conclusive look at the mechanisms 

of stability in the CBB pathway but is an initial, provisional investigation into some possible 

explanations for the success of the CBB pathway despite its apparently unstable underlying 

structure. The model presented here is advances on some previously described models 114–116 in 

important ways. This work provides answers and more questions to pave the way for yet more 

complete and sophisticated simulation of CBB. 

So far, attempts to increase the productivity of plants have mostly focused on individual 

enzymes, rather than investigating the CBB pathway as a network.  Here, we give plausible 

explanation to results that show SBPase overexpression increases plant growth rate while 

RuBiSCO overexpression has so far not shown any increase in plan performance.  While the 
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methods employed here are not conclusive, they provide new insights which lay out potential 

targets of future exploration in the biotechnological engineering of plants. 

5.8 Methods  

The model of chloroplast metabolism, including the CBB, the G3P/phosphate translocator 

and the was constructed by inspecting the latest literature about plastid metabolism95. The full 

stoichiometric matrix, reversibilities and reference flux are shown in Supplementary Table 1. 

Adjustments were made as necessary (removal of phosphate, adjustment of fluxes to include G6P 

shunt etc.). Based on stoichiometry and reversibility, realistic Michaelis-Menten style rate laws 

were assigned.  Regulation of PGM, G6PDH were included and TPI was regulated in some 

simulations.  Parameters were obtained by randomly sampling normalized affinity parameters 

from a uniform distribution (0.1,10) as described previously. Vmax was then solved for, 

constraining the rate law to the reference steady state. Simulations of steady state perturbations 

were carried out using the parameter continuation method described previously 13.  Calculations 

were done in MATLAB and full code is at: https://github.com/theis188/CBB-theisen. 
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6 Future work 

6.1 User-friendly web based EMRA simulation tool 

 The development of a user-friendly EMRA simulation tool is an important next step for 

the expanding its impact as a simulation tool.  Although EMRA simulation requires some fairly 

sophisticated mathematical operations (matrix multiplication, linear programming, numerical 

integration, differentiation, calculating eigenvalues, etc.), the required input is minimal, and may 

be further minimized by the generation of curated reaction sets.  In many cases, picking the relevant 

enzymes from a pre-constructed list would be enough.  Further, the javascript library NumericJS, 

(created by Sebastian Loisel) allows all these operations to be carried out by a web browser.  Work 

will proceed using SEASNet-provided hosting, with other options being pursued if more 

sophisticated hosting needs arise. 

6.2 Evolution of E. coli using mutD5 to consume methanol/induce methylotrophy 

Formaldehyde tolerance, methanol consumption and methylotrophy have the potential to 

be significantly enhanced by the use of laboratory enhanced evolution techniques.  One strategy 

that has great promise is the use of mutator strains such as mutD5-containing strains.  MutD5 is a 

mutated copy of dnaQ which is a subunit of DNA Polymerase with proofreading function and 

dominant mutagenesis activity138–140.  MutD5 strains have been shown to have their highest 

mutation rates in early stages when other mechanisms for mutation correction are saturated 141,142. 

If the correct selection pressure is provided, a mutD5 strain of E. coli may undergo 

evolution at an accelerated rate and adapt to a nutrient-poor methanol-containing environment.  If 

limited other sources of carbon are provided, (e.g. dilute LB or glucose), then the cells would 

benefit if they are able to utilize the carbon and reducing power locked up in methanol.  Thus, 
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mutations that facilitate this ability would be enriched in the culture and would eventually 

dominate. 

6.2.1 Approaches for enhanced laboratory evolution 

It may be the case that growth-promoting mutations do not arise in the first round attempts.  

Thus, it will be necessary to increase the probability of finding beneficial mutations.  To facilitate 

faster mutational iteration, I have proposed a system of mutation accumulation and enrichment 

termed GOGOGO (Goal-Oriented, Genetic Optimization for Growth on One-carbon 

compounds).  This system is a multi-reactor system in which selection pressure for methylotrophy 

and methanol consumption are applied at different levels.  At low selection pressure (i.e. relatively 

LB-rich and lower methanol), growth will be very fast and mutations will accumulate rapidly.  

However, they will not necessarily be enriched very quickly since the selection pressure would be 

relatively low.  To accelerate the process of selection, cells from the low selection pressure reactors 

can be inoculated into higher selection pressure (dilute LB, higher methanol) reactors.  Thus, the 

beneficial mutations which had accumulated in the fast-growth reactor would be enriched.  This 

would likely not be accomplished as quickly using only high selection pressure reactors since 

growth of strains is slow and mutation accumulation, especially using mutD5 will be low.  This is 

because at low growth rate, the other proofreading mechanisms of E. coli will be active, reducing 

the overall mutation rate. 
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Fig. 6-1) GOGOGO for the generation of a methylotrophic E. coli strain. 

6.2.2 Inspiration from natural methylotrophs 

 Natural methylotrophs utilize methanol by a variety of mechanisms.  For example, the 

serine and RuMP pathways are used by different classes of methylotrophs.  The RuMP pathway 

itself has multiple variations that appear in different organisms.  For example, obligate 

methylotrophs use a version of the pathway that is similar to MCC, with the difference being the 

presence of Fba and the absence of Fpk.  Facultative methylotrophs use a version of the RuMP 

pathway which is ATP-dependent 5. 

 Implementing methylotrophy in E. coli can take inspiration from natural pathways.  RuMP 

is a natural candidate because of its overlap with both the MCC pathway and the pentose phosphate 

pathway in E. coli.  Implementation of RuMP in E. coli requires enzyme expression to allow for 

flux throuhg the RuMP pathway.  In natural methylotroph Bacillus methanolicus MGA3, enzyme 

expression is heavily influenced by the presence of methanol.  In the presence of methanol, 

enzymes of the RuMP pathway of MGA3 are heavily overexpressed, with transcripts becoming 6-

40x more abundant in the presence of methanol.16 

  Additionally, the enzyme substrate specificity and allosteric regulation between E. coli and 

Bacillus methanolicus enzymes may be different.  For example, GlpX is an enzyme which 

catalyzes the removal of phosphate from sugar bispohosphates.  MGA3 has two versions of the 
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enzyme, one of which has activity on seven-carbon sedoheptulose-1,7-bisphosphate (SBP) and is 

overexpressed in response to the presence of methanol.  The second one which has activity only 

on fructose-1,6-bisphosphate (FBP).143  This indicates that substrate specificity may play an 

important role in the RuMP pathway of MGA3.  Another enzyme of possible concern is 

phosphofructokinase.  Phosphofructokinase in E. coli is regulated allosterically by AMP, which 

may be detrimental to the performance of the RuMP pathway.144 

6.2.3 Strategies for Implementation of methylotrophy and MCC in E. coli 

 Implementation of methanol assimilation and carbon shuffling will in theory allow for E. 

coli growth on methanol.  However, it is unlikely that an efficient methylotrophic E. coli strain 

can be designed a priori.  Combinatorial expression of enzymes has been used as an effective tool 

in many biosynthetic endeavors145–148, however, it requires labor-intensive library generation and 

screening, and when selection is available as an option it is preferred.  Therefore, it will be useful 

to construct an MCC production strain in multiple steps, optimizing each one separately, and the 

entire pathway as a whole.  For example, implementation of assimilation and carbon shuffling in 

E. coli can be optimized first using selection for methanol growth.  After that, combinatorial 

expression of key enzymes in the full n-butanol production pathway may provide a means of 

maximizing production.   

Taking inspiration from previous combinatorial construction and screening efforts, MCC 

production can be optimized.  For example, the production of isoprenoids such as lycopene has 

been boosted by combinatorial expression of enzymes.149  Additionally, using different promoter 

strengths increased the production of taxol, an important anti-cancer precursor, several-thousand 

fold.146   
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6.3 Use wild type E. coli fluxes to generate in silico ensembles and subject them to installation 

of methylotrophy & identify targets for knockout and overexpression to support 

methylotrophy 

             Wild type models of E. coli will be a useful starting point for the generation of targets for 

methylotrophy.  In stoichiometric models, it is typical to provide a reaction for the production of 

biomass, which may be maximized to approximate wild type steady state fluxes.150  From this 

steady state, an ensemble of kinetic parameters may be generated without prior knowledge of 

kinetic properties.10 

 

Fig. 6-2) The process by which ensemble models will be used to generate knockout (or overexpression) targets to generate 
methylotrophic E. coli. 

After the generation of this ensemble, addition of methylotrophy reactions can be provided 

to identify how their addition affects intracellular flow of metabolites, especially the production of 

biomass.  Finally, knockouts of many genes can be simulated to identify what knockouts may 

enhance the methylotrophic performance of the ‘methylotrophic’ E. coli strain.  Further insights 

might be gained by examination of metabolism of methylotrophs, which mostly cannot grow on 

multi-carbon compounds.151  Until recently, computational methods for the identification of 

knockout and overexpression targets have used mostly stoichiometric, rather than kinetic, models 
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of cellular metabolism.19,152  Recently, kinetic parameters are starting to be used in these models.153  

Additionally, ensemble modeling has also been used to engineer strains for production by 

analyzing productivity rather than robustness.10,154   

6.4 Understanding and inventing metabolic cycles 

            Finding new metabolic cycles to improve over existing pathways is an area of increasing 

research interest.  In addition to MCC, many other efforts to design better synthetic routes are 

under development.  A recent novel cycle, non-oxidative glyxolysis (NOG) allows for conversion 

of one glucose to three acetic acids155, compared to the typical two through normal metabolism156.  

Also, another synthetic pathway for carbon dioxide fixation, reverse glyoxylate shunt (rGS) has 

been proposed and its pieces have been functionally demonstrated in E. coli157.  Identifying 

previously unknown cycles in existing organisms has also recently been an area of importance, 

with new carbon fixation and metabolic cycles being identified in the last decade or two98,158–161.  

Understanding what features unify all metabolic cycles may lead towards yet more discoveries. 

6.5 Robustness as a ranking characteristic for metabolic cycles 

 Another goal is to develop an algorithm for identifying and ranking novel cycles.  A 

previous approach had the same goal and used KEGG, a database of many known enzymes, to 

search for alternative carbon fixation pathways162,163.  Pathways were ranked in terms of 

productivity per enzyme mass and thermodynamic feasibility.  Additionally, another criteria 

‘Topological Compatibility’ was used which investigated the pathways in a flux balance analysis 

(FBA) framework, where a model of cellular metabolism was compared before and after institution 

of the novel pathway.  Differences in flux distribution were quantified and smaller differences 

confered a higher rank.   
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However, the analysis is limited in multiple ways.  First, only CO2 fixation pathways were 

considered, while other metabolic cycles that may be of interest were not investigated.  Secondly, 

FBA analysis is not based on a kinetic understanding of metabolism, but only stoichiometric.  

Installation of the enzymes of a pathway, even if they are functionally expressed, does not 

guarantee that flux will go in the directions hoped.  For metabolic cycles, the problem is more 

pronounced, since in many cases, depletion of cycle intermediates will halt cycle function21.  Thus, 

ranking of cycles will be refined by consideration of kinetic limitations.  Addition of this 

consideration may be accomplished by the use of ensemble model robustness analysis (EMRA)13.  

EMRA uses knowledge of functional forms of enzyme flux equations to determine bifurcational 

stability of a metabolic system to perturbation of parameters. 

Appendix.  Enzyme and compound names 

Enzyme names: Mdh = methanol dehydrogenase; Hps = 3-hexuolse-6-phospate synthase; Phi = 

phosphohexulose isomerase; Fpk = phosphoketolase (F6P activity); Xpk = phosphoketolase (X5P 

activity); Tal = transaldolase; Tkt = transketolase; Rpe = D-ribulose-5-phosphate 3-epimerase; Rpi 

= ribose-5-phosphate isomerase; PduP = acylating aldehyde dehydrogenase; Adh = alcohol 

dehydrogenase; Glk = glucokinase ; Zwf = glucose-6-phosphate dehydrogenase; Pgi = glucose-6-

phosphate isomerase. Compound names: CH2O = formaldehyde; H6P = 3-hexulose-6-phosphate; 

F6P = fructose-6-phosphate; E4P = erythrose-4-phosphate; S7P = sedoheptulose-7-phosphate; 

X5P = xylulose-5-phosphate; R5P = ribose-5-phosphate; Ru5P = ribulose-5-phosphate; AcP = 

acetyl phosphate; EtOH = ethanol. 
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