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1. Introduction

This paper provides a systematic treatment and derivation of moments and cumulants
of any order for spherically as well as elliptically symmetric multivariate distributions.
Expressions for the multivariate t-distribution and the related skew-t distribution are
considered in detail. Our approach exploits the stochastic representation of such random
variables in terms of the so-called generating variate and its uniform-distribution (Uniform)
base in the appropriate dimension.

It is well known that the problem of representing the structure of higher-order cumu-
lants of multivariate distributions is rather messy. In this paper, we present an approach
based on a vectorization of cumulants which leads to a natural and intuitive way to obtain
multivariate moments and cumulants of any order; we make the point that this provides
the simplest way to deal with this issue.

We note that [1] provides formulae for cumulants in terms of matrices; however,
retaining a matrix structure for all higher-order cumulants leads to high-dimensional
matrices with special symmetric structures which are quite hard to follow notionally
and computationally. Ref. [2] provides quite an elegant approach using tensor methods;
however, tensor methods are not very well known and computationally not so simple.

The method discussed here is based on relatively simple calculus. Although the tensor
product of Euclidean vectors is not commutative, it has the advantage of permutation
equivalence and allows one to obtain general results for cumulants and moments of
any order, as it will be demonstrated in this paper, where general formulae, suitable for
algorithmic implementation through a computer software, will be provided. Methods
based on a matrix approach do not provide this type of result; see also [3], which goes as far
as the sixth-order moment matrices, whereas there is no such limitation in our derivations
and our results. For further discussion, one can see also [4,5].

The primary contributions of this paper may be summarized as: (a) providing formu-
lae, valid for any order, for vectorized cumulants and moments of multivariate spherical
and elliptically symmetric distributions; matrix structures can be readily obtained from
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these expressions; some examples are provided in Section 4; (b) introduce the so-called
marginal moment and cumulant parameters for multivariate spherical and elliptically
symmetric distributions—providing an extension of the results discussed in [6]; (c) provide
formulae for all-order moments and cumulants for multivariate t and skew-symmetric
t-distributions; results of this type, as far as we know, are not available in the literature.

As is well known, cumulants play a key role in several areas of multivariate statistics:
from the earliest applications in estimation and testing to fields such as signal detection,
clustering, invariant coordinate selection, projection pursuit, time series modelling, pricing
and portfolio analysis. See, for example, [7–29]. Higher-order cumulants going beyond the
third and fourth order are typically needed to obtain the asymptotic properties of various
statistics discussed in the aforementioned papers; for instance, ref. [30] provides general
expressions for covariances of cumulants of the third and fourth order, requiring several
higher-order cumulants. We believe that the expressions for higher-order cumulants for
the models presented here open the door for such explorations in these areas.

In this paper, we will also go beyond such spherically and elliptically symmetric
models, and obtain general expressions for the cumulants of skew-symmetric distributions
such as the skew-t (see [31]). In particular, ref. [32] provides some specific analytical
properties of skew-symmetric distributions. Further discussion on these distributions and
their applications can be found in [33–35].

To formally introduce the problem, consider a random vector X in d-dimensions,
with mean vector µ and covariance matrix Σ, λ is a d-vector of real constants; let φX(λ)
and ψX(λ) = log φX(λ) denote, respectively, the characteristic function and the cumulant-
generating function of X.

With the symbol ⊗ denoting the Kronecker product, consider the operator D⊗λ , which
we refer to as the T-derivative; see [36] for details. For any function φ(λ), the T-derivative
is defined as

D⊗λ φ(λ) = vec

((
∂φ(λ)

∂λ>

)>)
= φ(λ)⊗ ∂

∂λ
.

If φ is k-times differentiable, with its k-th T-derivative D⊗k
λ φ(λ) = D⊗λ

(
D⊗k−1

λ φ(λ)
)

, then
the k-th order cumulant of the vector X is obtained as

κ⊗X,k = Cumk(X) = (−i)kD⊗k
λ ψX(λ)

∣∣
λ=0. (1)

Note that Cumk(X) is a vector of dimension dk that contains all possible cumulants of order
k formed by X1, . . . , Xd. For example, in Equation (1), one has κX,2 = vec Σ.

Throughout this paper, N is used for the set of natural numbers, n!! for the double
(semi-) factorial (see the reference [37]-Common Notations and Definitions) and (d)m =
Γ(d + m)/Γ(d) for the Pochhammer symbol (see [37] 5.2.5), known also as the rising or
ascending factorial. We will also denote

Gm(p) =
Γ((p + m)/2)

Γ(p/2)
, (2)

so that G2m(p) = (p/2)m. Finally, for any matrix A, recall vec⊗m A = (vec A)⊗m.
The paper is organized as follows. Section 2 discusses moments and cumulants of

spherical and elliptically symmetric multivariate distributions; details on marginal mo-
ments and moment- and cumulant-parameters are provided. Section 3 considers the special
case of multivariate t-distribution and discusses its extension to the skew-t distribution.
Section 4 presents some applications and examples which are aimed mainly at providing
evidence of the correctness of the formulae provided rather than providing simulations
on estimation or testing. The proofs are collected in a separate section at the end, viz.
Section 5.
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2. Spherical and Elliptically Symmetric Distributions

For a comprehensive discussion of spherically and elliptically symmetric multivariate
distributions, one may refer to the book by [38]. Other book-level discussions can be
found, for instance, in [1,39,40]. General formulae for moments and kurtosis parameters
are discussed in [6,41], among others.

A random variate W is spherically distributed if its distribution is invariant under
rotations of Rd, which is equivalent to having the stochastic representation

W = RU, (3)

where R is a non-negative random variable and U is a uniform random d-vector on the
sphere Sd−1, which is independent of R (see Theorem 2.5, [38]). The random variable R
is called the generating variate, with the generating distribution F, and the random vector
U is the uniform base of the spherical distribution. The characteristic function of W can
then be written in the form φW(λ) = g(λᵀλ) in terms of a given a function g, called the
characteristic generator. An elliptically symmetric random variable X ∈ Ed(µ, Σ, g) is defined by
a location-scale extension of W so that it can be represented in the form

X = µ + Σ1/2W (4)

where µ ∈ Rd, Σ is a variance-covariance matrix and W is spherically distributed. The cu-
mulants of X are just the cumulants of W multiplied by a constant, except for the mean,
which is given by E X = Cum1(X) = µ. For m ≥ 1

Cum2m(X) =
(

Σ1/2
)⊗2m

Cum2m(W), and Cum2m+1(X) = 0. (5)

Let ψW(λ) = log φW(λ) = log g(λᵀλ) be the cumulant-generating function of W. Consider
the series expansions

φW(λ) = g(λᵀλ) =
∞

∑
j=1

µ>⊗j
ij

j!
λ⊗j and ψW(λ) =

∞

∑
j=1

ij

j!
κ⊗>W,j λ

⊗j, (6)

which lead to expressions for the moments and cumulants of W expressed through the
T-derivative of the characteristic and log-characteristic generator functions as

µ⊗j = (−i)jD⊗j
λ φW(λ)

∣∣∣
λ=0

and κ⊗W,j = (−i)jD⊗j
λ log g(λᵀλ)

∣∣∣
λ=0

. (7)

The relationship between the distribution F of R and g is given through the characteristic
function of the uniform distribution on the sphere (see [38], Theorem 2.2, p. 29).

Using the stochastic representation (3) of W, cumulants can be calculated either via
the generator function g, or the distribution of the generating variate R. We first start with
using the generator function g for deriving the cumulants of W. Since the characteristic
generator g is a function of one variable and represents the characteristic function at λᵀλ,
the series expansion of g and f = log g include (−1)j instead of (i)j and we have

g(u) =
∞

∑
j=1

(−1)j

j!
gjuj and f (u) =

∞

∑
j=1

f j
(−1)j

j!
uj, (8)

with the coefficients gj = (−1)jg(j)(0) and f j = (−1)j f (j)(0). To introduce a specific

notation, let us denote the generator moment by νk = (−1)kg(k)(0) and the corresponding
generator cumulant by ζk = (−1)k f (k)(0).
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Although neither the generator moments nor its cumulants correspond to the moments
and cumulants of a random variate, the generator cumulants can be expressed in terms of
the generator moments (and vice versa) via Faà di Bruno’s Formula, which says:

ζk =
k

∑
r=1

(−1)r−1(r− 1)! ∑
Σ`j=r,Σj`j=k

k!

∏k
j=1 `j!

k

∏
j=1

(
νj

j!

)`j

, (9)

where the second sum is taken over all sequences (types) ` = (`1, . . . , `k), `j ≥ 0 such that
∑`j∈` `j = r and ∑`j∈` j`j = k.

2.1. Marginal Moments and Cumulants

If one takes the derivatives of φWj

(
λj
)
= g

(
λ2

j

)
, at λj =

(
0, . . . , λj, . . . , 0

)
, it is readily

seen that these derivatives do not depend on j; also, the odd moments can be seen to be
zero (see, e.g., [6]) .

The following theorem (which is proven in Section 5) establishes the connection
between (i) the moments of Wj and the generator moments, as well as (ii) cumulants of Wj
and the generator cumulants.

Theorem 1. Let m ∈ N and, in (3), assume E(Rm) < ∞. Define µW,m and κW,m as the mth

order moment and cumulant of Wj, while νm and ζm denote the generator moment and generator
cumulant of the mth order. Then, the odd moments µW,2m+1 = E W2m+1

j of Wj are all zero and the
even ones are

µW,2m = 2m(2m− 1)!!νm =
(2m)!

m!
νm. (10)

Again, the odd cumulants κW,2m+1 of Wj are zero as well, and the even ones are given by

κW,2m = 2m(2m− 1)!!ζm =
(2m)!

m!
ζm. (11)

Further, the even cumulants can be expressed in terms of the generator moments as

κW,2m = 2m(2m− 1)!!
m

∑
r=1

(−1)r−1(r− 1)! ∑
Σ`j=r,Σj`j=m

m!

∏`
j=1 `j!

`

∏
j=1

(
νj

j!

)`j

(12)

where the second sum is taken over all sequences ` = (`1, . . . , ``), `j ≥ 0, satisfying ∑`
j=1 `j = r

and ∑`
j=1 j`j = m.

Example 1. Applying Theorem 1 in particular for m = 4, 6, 8 yields

κW,4 = µW,4 − 3µ2
W,2 = 12ν2 − 12ν2

1 = 12
(

ν2 − ν2
1

)
,

κW,6 = 235!!
(

ν3 − 3ν2ν1 + 2ν3
1

)
κW,8 = 247!!

(
ν4 − 4ν3ν1 − 3ν2

2 + 12ν2ν2
1 − 6ν4

1

)
,

2.1.1. Moment and Cumulant Parameters

The fourth-order cumulant of the standardized Wj for each entry Wj, usually called
kurtosis, has the form

κW,4

κ2
W,2

= 3
ν2 − ν2

1
ν2

1
= 3

ζ2

ν2
1
= Cum4

( Wj√
2ν1

)
. (13)
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In the above formula, we observe two quantities: one is the kurtosis (standardized generator
cumulant since ν1 = ζ1), i.e.,

κ̃2 =
ζ2

ν2
1

, (14)

and the other one is µ̃2 = (ν2 − ν2
1)/ν2

1 = ν2/ν2
1 − 1, which contains the standardized

generator moment ν2/ν2
1 . Both quantities µ̃2 and κ̃2 have the same value (see Equation (13)).

The kurtosis κ̃2 is sometimes called the kurtosis parameter (see, for instance, [39]). Observe
that the parameter µ̃2 depends on the generator moment of the standardized variate only,
so it can be called the moment parameter as in [6].

More generally, for m ≥ 1, define the moment parameters and the cumulant parameters,
respectively, as

µ̃m =
νm

νm
1
− 1 and κ̃m =

ζm

νm
1

(15)

The following normalized cumulants of Wj, where cumulant parameters κ̃m are expressed
in terms of moment parameters µ̃m, connect our different notations

Cum2

( Wj√
2ν1

)
= 1, (16)

Cum4

( Wj√
2ν1

)
= 3!!κ̃2 = 3!!µ̃2,

Cum6

( Wj√
2ν1

)
= 5!!κ̃3 = 5!!(µ̃3 − 3µ̃2),

Cum8

( Wj√
2ν1

)
= 7!!κ̃4 = 7!!

(
µ̃4 − 4µ̃3 − 3µ̃2

2 + 6µ̃2

)
.

As will be seen in Section 3, using moment and cumulant parameters reduces the number
of parameters for a spherically distributed random variate W significantly, while the
number of characteristics is halved for an elliptically symmetric distribution. The cumulant
parameters κ̃m can be expressed in terms of moment parameters µ̃m in higher orders as well.

Corollary 1. Under the assumptions of Theorem 1, the moments of standardized Wj are zero for
odd orders and

E
( Wj√

2ν1

)2m

=
µW,2m

(2ν1)
m = (2m− 1)!!(µ̃m + 1),

for even orders, where µ̃m is the moment parameter defined in (15). The cumulants of standardized
Wj are zero for odd orders and

Cum2m

( Wj√
2ν1

)
= (2m− 1)!!κ̃m,

for even orders, where κ̃m is the cumulant parameter (15), such that

κ̃m =
m

∑
r=1

(−1)r−1(r− 1)! ∑
Σ`j=r,Σj`j=m

m!

∏`
j=1 `j!

`

∏
j=1

(
µ̃j + 1

j!

)`j

. (17)

Formula (17) is valid for all m ≥ 1, since, as seen earlier, µ̃1 = 0 and κ̃1 = 1.
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2.1.2. Using the Representation RU

We now turn to the stochastic representation (3) and consider the scalar variable case
Wj = RUj. We first explore the even order moments µW,2m = µR,2m.µUj ,2m. Using the result
on the even-order moments E U2m

j as given in Lemma 1 in [29], we get

µW,2m =
µR,2m

2m(d/2)m
(2m− 1)!!. (18)

This result in combination with Equation (10) lets us express the generator moment νm in
terms of the moment of the generating variate R as

νm = µR,2m
m!

(2m)!
(2m)!

22mm!(d/2)m
=

µR,2m

22m(d/2)m
. (19)

Alternatively, in terms of moments of W, this becomes

νm =
µW,2m

2m(2m− 1)!!
. (20)

The dependence of moment parameter µ̃m on the moment of the generating variate R
follows directly from the definition of µ̃m and the above expression

µ̃m =
νm

νm
1
− 1 =

(d/2)mµR,2m

(d/2)mµm
R,2
− 1. (21)

If Uj is one component of the vector U, then the stochastic representation (3) of W implies
Wj = RUj. Therefore, the cumulants of Wj can be expressed either by the moments or
the cumulants of R. Thus, the cumulants of Wj are connected to the cumulants of R in
general. Since the cumulant Cumn(W) is an nth order cumulant of the product RU1 of two
independent variates, a direct method for its calculation can be made using the conditional
cumulants. Using this idea provides the following.

Example 2. Consider, e.g., the fourth-order cumulant κW,4 = κRU1,4 of say W1 (since all Wj
have identical distributions). Applying the formula for cumulants via moments, and using the
independence of R and Uj, one obtains

κW,4 = µR,4µU1,4 − 3
(
µR,2µU1,2

)2.

Now, using particular values for moments of Uj gives

κW,4 =
3

d(d + 2)

(
κR2,2 + κ2

R2,1

)
− 3

d2 κ2
R2,1 = − 6

d2(d + 2)
κ2

R2,1 +
3

d(d + 2)
κR2,2. (22)

Lemma 1. Let n ∈ N and, in (3), assume E(Rn) < ∞. The even-order cumulants of a component
Wj of a spherically distributed random variate W are given in terms of generating variate R as
follows

κW,2n = (2n)!
2n

∑
r=1

∑
Σ`j=r,Σj`j=n

j is even

Cumr

(
R{`1}, R2

{`2}, . . . , Rn
{`n}

) n−r+1

∏
j=1

1
`j!

(
κU1,j

j!

)`j

, (23)

where the summation is taken over all even-order cumulants of U1, since the odd orders are zero and
where Rj

{`j} corresponds to the block with cardinality `j, which includes power Rj only (it implies

listing Rj consecutively `j times).
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Here, the cumulants κU1,j of U1 are involved, which can be evaluated explicitly in
particular cases to obtain the formula for κW1,2n.

Example 3. Consider the fourth-order cumulant κW,4 = κRU1,4 of Wj, say. Applying the formula
to cumulant (23) gives

κRU1,4 = κR4,1κU1,4 + 3κR2,2κ2
U1,2. (24)

Next, obtain the cumulants of U1 from the moments

µU1,4 =
3

d(d + 2)
,

κ2
U1,2 = µU1,2 = 1/d,

κU1,4 = µU1,4 − 3µ2
U1,2 =

3
d(d + 2)

− 3
d2 = − 6

d2(d + 2)
.

Finally, plugging these into (24) and using (22), one obtains

κRU1,4 = − 6
d2(d + 2)

κR4,1 + 3
1
d2 κR2,2. (25)

2.2. Multivariate Moments and Cumulants

Rewriting the characteristic function using the series expansion of g(u) given in (8),
one obtains

φW(λ) = g(λᵀλ) =
∞

∑
j=1

(−1)jgj

j!
(λᵀλ).

The moments can be calculated using Equation (7) as follows

(−i)kD⊗k
λ φW(λ)

∣∣∣
λ=0

= (−i)k
∞

∑
j=1

(−1)jgj

j!
D⊗k

λ (λᵀλ)j
∣∣∣
λ=0

.

Observe that

µ⊗k = (−i)kD⊗k
λ φW(λ)

∣∣∣
λ=0

= (−i)k
∞

∑
j=1

(−1)jgj

j!
D⊗k

λ (λᵀλ)j

∣∣∣∣∣
λ=0

=

 0 if 2j 6= k,
1
j!

gjcj if 2j = k,

and the vector cj does not depend on g. Using gj = (−1)jg(j)(0) = νj, and cj = D⊗2j
λ (λᵀλ)j,

we have µ⊗W,2m = νm
m! D⊗2m

λ (λᵀλ)m. This derivation provides the connection between the
generator moments and the marginal moments in (10), by using which, one obtains

µ⊗W,2m =
µW1,2m

m!2m(2m− 1)!!
D⊗2m

λ (λᵀλ)m =
µW1,2m

(2m)!
D⊗2m

λ (λᵀλ)m.

The same argument applies to the cumulant generator function ψW(λ) = log φW(λ)
with series expansion (8). Now, we obtain κ⊗2m = ζm/m!D⊗2m

λ (λᵀλ)m, and since ζm is
connected to the mth cumulant of a component of W by (11), we get

κ⊗W,2m =
κW,2m

2mm!(2m− 1)!!
D⊗2m

λ (λᵀλ)m =
κW,2m

(2m)!
D⊗2m

λ (λᵀλ)m.

Recall thatK{r|`} denotes particular partitions with size r and type `. The above calculations
are summarized in the following theorem, which has been stated without proof and used
in [30]. One finds “commutator matrices”, which change the order of the tensor products
according to a given permutation, very useful. (For a brief description of the commutator
matrices and the symmetrizer, the reader is referred to Section 5.1).
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Theorem 2. Let m ∈ N and, in (3), assume E(Rm) < ∞. The moments and cumulants of odd
orders of spherically distributed W are zero. The moments of even orders are given by

µ⊗W,2m =
µW,2m

(2m− 1)!!
L−1

m2
vec⊗m Id = µW,2mSd12m vec⊗m Id,

while the cumulants of even orders are

κ⊗W,2m =
κW,2m

(2m− 1)!!
L−1

m2
vec⊗m Id = κW,2mSd12m vec⊗m Id.

In terms of moment parameters, the standardized cumulants

Cum2m

(
Σ−1/2W

)
= κ̃mL−1

m2
vec⊗m Id, (26)

where Σ−1/2 = 1/
√

2ν1Id. Formula (17) shows that κ̃m is a polynomial in µ̃k, k = 2:m. We denote
this polynomial by am(µ̃2 . . . , µ̃m) = κ̃m, hence

Cum2m

(
Σ−1/2W

)
= am(µ̃2 . . . , µ̃m)L−1

m2
vec⊗m Id.

In particular, when a1 = 1

am(µ̃2, . . . , µ̃m) =


µ̃2, m = 2,
µ̃3 − 3µ̃2, m = 3,
µ̃4 − 4µ̃3 − 3µ̃2

2 + 6µ̃2, m = 4,

Remark 1. Both higher-order moments µ⊗W,2m and cumulants κ⊗W,2m use a commutator matrix
L−1

m2
or a symmetrizer Sd12m ; details are given in Section 5.1. Determining L−1

m2
may be cumbersome

although much lighter, from a computational point of view, than the actual calculation of the
symmetrizer, which, for large dimensions d and order 2m, is very time-, memory- and space-
consuming. Alternatively, one can get an efficient calculation evaluating the D⊗2m

λ (λᵀλ)m by
using the T-derivative step by step. For example,

D⊗4
λ (λᵀλ)2 = 23

(
Id4 + K−1

(3214) + K−1
(1324)

)
vec⊗2 Id = 23L−1

22
vec⊗2 Id,

where 3 commutator matrices are included instead of the 24, which are necessary for obtaining Sd14 .
Further examples can be found in [30].

Remark 2. Deriving D⊗6
λ (λᵀλ)3 means finding 15 partitions K{3|`}, with size 3 and type ` =

(0, 3, 0, 0, 0, 0), i.e., splitting up the set 1:6 into three blocks, and each block contains two elements.
The partitions are in canonical form and the corresponding commutator L−1

32
is listed in Section 4.1.

The result is
D⊗6

λ (λᵀλ)3 = 48L−1
32

vec⊗3 Id.

Then, E W⊗2m can be calculated directly from the expected values of the entries.
The nonzero entries of E W⊗2m are those where all terms in the product of entries of W
have even degrees (cf. (18)).

Remark 3. We compare the expected values of the entries of W⊗2m to the expected values of those
in Z⊗2m, where Z is a standard normally distributed variate. The nonzero entries of the expected
value E Z⊗2m are products with even powers such that

E
d

∏
i=1

Z2ki
i =

d

∏
i=1

(2ki − 1)!!,



Symmetry 2021, 13, 1383 9 of 20

where Σk1:d = m. At the same time, we have E Z⊗2m = (2m− 1)!!Sd12m vec⊗m Id. Comparing
this to E W⊗2m = E W2m

1 Sd12m vec⊗m Id, we conclude that the higher-order moments of an elliptic
random vector W differ from the moments of a normal one Z only in the constant E W2m

1 . The major
difference turns up in comparing the cumulants, since cumulants of order higher than 2 for Z are
zero while the cumulants of W are

Cum2m(W) = Cum2m(W1)Sd12m vec⊗m Id.

Example 4. If the generating variate R is Gamma distributed with parameters ϑ > 0, α > 0, then

E Rr =
ϑrΓ(α + r)

Γ(α)
,

and the kurtosis parameter κ̃2 becomes

κ̃2 =

(
d

d + 2
E R4

(E R2)
2 − 1

)
=

d
d + 2

Γ(α + 4)Γ(α)

Γ(α + 2)2 − 1

=
d

d + 2
(α + 3)(α + 2)

Γ(α)
Γ(α + 2)

− 1 =
d

d + 2
(α + 3)(α + 2)

α(α + 1)
− 1.

3. Multivariate t and Skew-t Distributions

There have been several attempts to introduce asymmetry into multivariate distri-
butions by “skewing” a given spherically or elliptically symmetric distribution such as
the normal or a t-distribution. The multivariate skew-normal distribution was introduced
by [42]; see also [43]. Ref. [44] derived the first four moments and discussed quadratic
forms based on these; for further properties, see [45].

For the case of the multivariate skew-symmetric-t, we use the definition given in [31],
which is different from that provided by [46]. Its moments were derived in [47]. For further
discussion on these distributions and their applications, see [32–35].

3.1. Multivariate t-Distribution

The d-variate vector W is t-distributed, written as W ∈ Mtd(p, 0, Id), if W =
√

p Z/S
where Z ∈ Nd(0, Id) is standard normal, and S2 is χ2 distributed with p degrees of freedom.
See Example 2.5, Section 3.3.6, p. 85 [38], and p. 32. Such a random variable W ∈
Mtd(p, 0, Id) is spherically distributed since it has the representation

W =
√

p
‖Z‖

S
Z/‖Z‖ = RU, (27)

where R =
√

p‖Z‖/S is the generating variate. We note that R2/d ∈ F(d, p) has an F-
distribution with d and p degrees of freedom (cf. also [48]). Let µ ∈ Rd, and A is a d× d
matrix; then, the linear transform X = µ + AᵀW will be considered as X ∈ Mtd(p, µ, Ω),
where Ω = AᵀA; hence, X is an elliptically symmetric random variable. The characteristic
function of X is quite involved, and therefore we utilize the stochastic representation of W
viz. (27), for deriving higher-order cumulants including skewness and kurtosis for X. For
the even-order moments of the generating variate R, i.e., the even-order moments of the
F-distribution with d and p degrees of freedom, with p > 2m, we have

E R2m

dm =
( p

d

)m Γ(d/2 + m)Γ(p/2−m)

Γ(d/2)Γ(p/2)
=
( p

d

)m
G2m(d)G−2m(d),

so that

µR,2m =
pm(d/2)m

(p/2−m + 1)m
=

pm(d/2)m
(1− p/2)m

=
pm(d/2)m
(p/2−m)m

.
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We also have the even-order moments of the components of uniform distribution (on
sphere Sd−1)

µU1,2m =
(2m− 1)!!
2m(d/2)m

.

These two quantities will provide us the moments of the components of W as

µW,2m = µR,2mµU1,2m =
pm(d/2)m
(p/2−m)m

(2m− 1)!!
2m(d/2)m

=
pm(2m− 1)!!

2m(p/2−m)m
. (28)

Recall that all entries of W have the same distribution so that one can use the notation W
for the generic entry. The cumulants of even order of W can be calculated with the help of
the cumulant parameters κ̃m. Consider the moment parameters µ̃m first, which is

µ̃m =
1

α(d, m)

µR,2m
µm

R,2
− 1 =

(d/2)m

(d/2)m

pm(d/2)m
(p/2−m)m

(
p/2− 1

pd/2

)m
− 1 =

(p/2− 1)m

(p/2−m)m
− 1, (29)

(see Equation (21) for the moments of R). Then, the cumulant parameter κ̃m is calculated
using the general expression (17). Theorem 2 then leads us to the following.

Lemma 2. Let p > 2m and W be t-multivariate, W ∈ Mtd(p, 0, Id), with dimension d and
degrees of freedom p, then E W = 0, and both the moments and the cumulants with odd higher
order are zero. The moments with even order are given by

µ⊗W,2m =
pm

2m(p/2−m)m
L−1

m2
vec⊗m Id.

The covariance matrix of W has the diagonal form Var W = Σ = p
p−2 Id and the even-order

standardized cumulants are

Cum2m

(
Σ−1/2W

)
= κ̃mL−1

m2
vec⊗m Id,

where the cumulant parameters κ̃m are given by the expression (17) and moment parameters in (29).
In particular, this gives

Cum2

( Wj√
2ν1

)
= 1,

Cum4

( Wj√
2ν1

)
= 3!!

2
p− 4

, (30)

Cum6

( Wj√
2ν1

)
= 5!!

16
(p− 4)(p− 6)

.

3.2. Multivariate Skew-t Distribution

Let V be a d-dimensional multivariate skew-normal distribution, denoted by V ∈
SNd(0, Ω, α), and S2 be an independently distributed χ2 random variable with p degrees of
freedom. We define a skew-t distributed random vector X by X = µ +

√
pV/S and denote

it by Std(µ, Ω, α, p). We use the notation Rp =
√

p
S where S2 is a χ2 distributed variable

with shape parameter p, so that
X = µ + RpV. (31)

The skew-normal distribution is characterized by the skewness vector δ, which is given as

δ =
Ωα√

1 + αᵀΩα
. (32)
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Consider first the mean E X = µ + E Rp E V, where E V = κ⊗V,1, and recall that the higher-
order cumulants of a skew-normal are as given in [29], as

κ⊗V,1 =

√
2
π

δ, κ⊗V,2 = vec Ω− 2
π

δ⊗2,

and in general for j > 2, we have κ⊗V,j = κ|Z|,jδ
⊗j. The moments of Rp (using the moments

of a χ2 distribution) are given in the following

Let p > k, and µRp ,k = E
(√

S2/p
)−k

then

µRp ,k =
( p

2

)k/2 Γ((p− k)/2)
Γ(p/2)

=
( p

2

)k/2
G−k(p). (33)

From the above results, the first two cumulant vectors of X are given by

µ⊗X = µ + G−1(p)
√

p
π

δ, (34)

κ⊗X,2 = κ⊗RpV,2 = E R2
pV⊗2 −

(
E Rp

)2
(E V)⊗2 = µRp ,2µ⊗V,2 − µ2

Rp ,1µ⊗2
V,1

=
p
2

G−2(p) vec Ω− p
π

G2
−1(p)δ⊗2

=
p

p− 2
vec Ω− p

π
G2
−1(p)δ⊗2. (35)

The variance matrix of X is then p
p−2 Ω− p

π G2
−1(p)δδᵀ.

Cumulants of the Skew-t Distribution

The third- and fourth-order cumulants are given in the next two lemmas.

Lemma 3. Let p > 2, then

κ⊗X,3 = c1δ⊗3 + c2L−1
12,11

(vec Ω⊗ δ),

where

c1(p) = p
√

p
π

G−1(p)
(

2
π

G2
−1(p)− 1

p− 3

)
,

c2(p) =

√
p
π

pG−1(p)
(p− 2)(p− 3)

.

Lemma 4. Let p > 3, then the fourth-order cumulant of X ∈ Std(µ, Ω, α, p) is given by

κ⊗X,4 = c1δ⊗4 + c2L−1
22

(
(vec Ω)⊗2

)
− c3L−1

12,21

(
vec Ω⊗ δ⊗2

)
,

where

c1 =
2p2

π
G2
−1(p)

(
2

p− 3
− 3

π
G2
−1(p)

)
,

c2 =
2p2

(p− 4)(p− 2)2 ,

c3 =
2
π

p2

(p− 3)(p− 2)
G2
−1(p).
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We conclude this section by providing a formula for the cumulant κ⊗X,n of general
order n. In the the next theorem (and in later sections), when a symmetrizer Sd1m is applied,

a symmetrical equivalence form denoted by
s
= is used.

Theorem 3.

κ⊗X,1 = µ⊗X = µ + G−1(p)
√

p
π

δ,

κ⊗X,2 =
p

p− 2
vec Ω− p

π
(G−1(p))2δ⊗2,

if n > 2 and p > n− 1, then n-symmetrized version by symmetrizer Sd1n of κ⊗X,n is the following

κ⊗X,n
s
= n!

n

∑
r=1

∑
Σ`j=r,
Σj`j=n

Cr
(

Rp, `1:n
)( n

∏
j=1,j 6=2

1
`j!

(
κ|Z|,j

j!

)`j
)

1
`2!

(
1
2!

)`2

δ⊗(n−2`2) ⊗ κ⊗`2
V,2 , (36)

where

Cr
(

Rp, `1:n
)
= Cum

((
Rp
)
{`1}

,
(

R2
p

)
{`2}

, . . . ,
(

Rn
p

)
{`n}

)
where

(
Rj

p

)
{`j}

corresponds to the block with cardinality `j, which includes the power Rj
p only (it

implies listing Rj
p consecutively `j times).

One can also express κ⊗X,n ignoring symmetrization

κ⊗X,n =
n

∑
r=1

∑
Σ`j=r,
Σj`j=n

Cr
(

Rp, `1:n
)
(n− 2`2)! ∏

j=1:(n−r+1)\2

1
`j!

(
κ|Z|,j

j!

)`j

L−1
[n−2`2]1,`2

(
δ⊗(n−2`2) ⊗ κ⊗`2

V,2

)
,

which might be useful from a computational point of view (see Section 5.1 for L−1
[n−2`2]1,`2

).

4. Applications and Examples

The vector cumulant formulae provided in the previous section find immediate
application in results discussed in the literature. For the subsequent discussion, let
Y = Σ−1/2(X− µ).

4.1. Cumulant-Based Measures of Skewness and Kurtosis

Ref. [29] have shown that knowledge of the third and fourth cumulant vectors allows
one to retrieve all cumulant-based measures of skewness and kurtosis discussed in the
literature. For example, for [7] index of skewness β1,d, one has that β1,d(Y) = ||κ⊗Y,3||2; if
one considers [11] skewness vector s(Y), it holds that

s(Y) =
(
(vec Id)

> ⊗ Id

)
κ⊗Y,3. (37)

As far as kurtosis indexes are concerned, for [7] index, one has

β2,d(Y) = (vec Id2)
>κ⊗Y,4 + d(d + 2), (38)

whereas, for the [11] kurtosis matrix, it holds that

Vec B(Y) =
(

Id2 ⊗ (vec Id)
>
)

κ⊗Y,4. (39)

For further examples concerning the indexes discussed in [8,9,14,15] and relations among
these, see [29].
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4.2. Covariance Matrices

Using cumulant vectors up to the eighth order, one can retrieve covariance matrices
and asymptotic results for statistics based on third and fourth cumulants. For example,
in the case of elliptically symmetric distributions, one can show that

Cum2(H3(Y)) = κ⊗Y,6 + K−1
H4,2

(
κ⊗Y,4 ⊗ vec Id

)
+ K−1

3! vec⊗3 Id. (40)

where H3(Y) is the third d-variate Hermite polynomial [49] and KH4,2, K3! are commutator
matrices; see Theorem 1 in [30] for details and further results on general symmetric and
asymmetric distributions.

These results can be exploited to obtain new weighted measures of skewness and
kurtosis and, in conjunction with Theorem 2 in [30], retrieve asymptotic distributions
of several statistics based on the third and the fourth cumulant vectors. Note that in
contrast to the results typically available in the literature, which provide results in terms of
expectations of function of sample statistics, the explicit form of model covariance matrices
based on the cumulant vectors that we have allows straightforward computation of the
asymptotic parameters.

4.3. Illustrative Numerical Examples

Example 5 (Uniform-Gamma). Consider again Example 4, where R is a gamma random variable
with ϑ = 0.3 and α = 1. In order to generate a random d-vector from a spherical uniform
distribution on the unit ball, we first generate a d-variate standard normal random vector Z and
define U = Z/||Z|| and then use (3) to generate W.

Figure 1, for d = 3, reports 100 random values, respectively, for U (transparent red) and
W (solid blue); note that the values of W are much more concentrated towards the center, with
approximately 10% of the points going out of the unit sphere.

Figure 1. One hundred random values, respectively, for U (transparent red) and W (solid blue).

Numerical true and estimated values of the moments µW,2m and νm are computed by using
Formulae (18) and (20). The tables below report population values and sample estimates for different
sample sizes. As one can see, these values are in good agreement for all sample sizes but for very
high-order moments, which require very large sample sizes to obtain reasonable approximations.
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Consider now the case of multivariate moments and cumulants of W whose formulae are
provided in Theorem 2. Set d = 3. Since the result lies in univariate moments and cumulants,
the application of the theorem reduces to computing the term L−1

m2
vec⊗m Id (see Section 5.1 for L−1

m2
).

The second univariate cumulant of W, viz. the variance, is given in Table 1 and vec I3 provides
the correct form for ˇ⊗W,2.

Table 1. Moments µW,2m (see (18)). True and sample estimates.

2m 2 4 6 8 10

True 0.0600 0.0388 0.0750 0.2939 1.9480

Sample n = 103 0.0597 0.0331 0.0412 0.0718 0.1438

Sample n = 104 0.0597 0.0371 0.0606 0.1612 0.5439

Sample n = 105 0.0602 0.0394 0.0734 0.2401 1.0682

Sample n = 106 0.0601 0.0391 0.0740 0.2614 1.3682

Computations show that κW,4 = 0.02808 and the kurtosis κW,4/κ2
W,2 = 7.8, which actually

corresponds to 3κ0 given in Table 2. Note that for d = 3, the fourth cumulant vector is of dimension
d4 = 81; in general, its elements are not all distinct, and the distinct elements can be recovered
by linear transformations (see [30] for further discussion). The cumulant vector of the distinct
elements, using the formula for L−1

22
given in Remark 1, reads

distinct−L−1
22

vec⊗2 I3 =

(
1, 0, 0,

1
3

, 0,
1
3

, 0, 0, 0, 0, 1, 0,
1
3

, 0, 1
)ᵀ

.

Direct estimation of the fourth cumulant vector from the simulated data confirms the theoretical
results. The knowledge of κ⊗W,4 and Formulae (38) and (39) obtains β2,d = 54 (note also that
β2,d = d(d + 2)(κ0 + 1) and Vec B(Y) = (13, 0, 0, 0, 13, 0, 0, 0, 13)ᵀ).

Table 2. Moments νm (see (20)) and kurtosis parameter κ0. True and sample estimates.

m 1 2 3 4 κ0

True 0.0300 0.00324 0.00062 0.00017 2.60

Sample n = 103 0.0334 0.00477 0.00132 0.00040 3.28

Sample n = 104 0.0313 0.00331 0.00052 0.00009 2.38

Sample n = 105 0.0303 0.00333 0.00067 0.00019 2.62

Example 6. Set d = 3 and let X be a trivariate St3(0, Ω, α, p) random vector, with p = 15, α =
(10, 5, 0)ᵀ and Ω be the identity matrix. Random numbers generated from the distribution of X and
for comparison from a trivariate U are in Figure 2. From (32), we obtain that δ = (0.89, 0.45, 0)ᵀ

approximately.
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Figure 2. Five hundred random values, respectively, for U (transparent red) and X (blue).

We run a Monte Carlo simulation where 1000 samples of size n = 1000 are generated from the
St3 distribution defined above. For each of the 1000 samples, measures of location, variance, skewness
and kurtosis are computed applying Formulae (34) and (35) and the results of Lemmas 3 and 4.
Empirical averages of the statistics are calculated, denoting the empirical expected value as Ê.

As far as mean and variance of X, we compare the true and empirical expected values (values
are rounded to the second decimal point).

E X = (0.75, 0.37, 0)ᵀ, Ê X = (0.75, 0.37,' 0)ᵀ,

Var X =

 0.59 −0.28 0.
−0.28 1.01 0.

0. 0. 1.15

, Ê(Var X) =

 0.59 −0.28 ' 0.
−0.28 1.02 ' 0.
' 0. ' 0. 1.15

.

As far as the skewness vector is concerned, let κ3 = κ⊗Y,3. Note that κ3 has dimension d3 and has
d(d + 1)(d + 2)/6 distinct values; for d = 3, these are 10. True and empirical expected values of
the distinct values are (subscript D denotes distinct values)

κ3,D = (0.94, 0.38, 0, 0.26, 0, 0.09, 0.22, 0, 0.05, 0)ᵀ,

Ê(κ3,D) = (0.92, 0.38,' 0, 0.26,' 0, 0.09, 0.22,' 0, 0.05,' 0)ᵀ.

Using κ3, from the results in Section 4.1, one gets β1d = 1.6 and s(Y) = (1.29, 0.64, 0)ᵀ.
Considering now the kurtosis, define κ4 = κ⊗Y,4. There are d(d + 1)(d + 2)(d + 3)/24 distinct
values in κ4, which has dimension d4; for d = 3, the distinct values are 15. True and empirical
expected values of the distinct values are

κ4,D = (1.61, 0.50, 0, 0.44, 0, 0.20, 0.15, 0, 0.01, 0, 0.63, 0, 0.19, 0, 0.55)ᵀ,

Ê(κ4,D) = (1.49, 0.48,' 0, 0.42,' 0, 0.18, 0.13,' 0,' 0,' 0, 0.60,' 0, 0.18,' 0, 0.52)ᵀ.

Again, using κ4, from the results in Section 4.1, one gets β2,3 = 19.45 and Vec B(Y) =
(2.25, 0.66, 0, 0.66, 1.26, 0, 0, 0, 0.93)ᵀ.
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5. Proofs

Proof of Theorem 1. Differentiate g
(

λ2
j

)
to obtain the moments of Wj in terms of

generator moments,

∂

∂λj
g
(

λ2
j

)
= g(1)

(
λ2

j

)(
2λj
)
,

∂2

∂λ2
j

g
(

λ2
j

)
= g(2)

(
λ2

j

)(
2λj
)2

+ 2g(1)
(

λ2
j

)
. (41)

Proceed by noting that the coefficients of g(n)
(

λ2
j

)
= ∂n/∂λn

j g
(

λ2
j

)
are scalar valued series,

say, bj
n, when we take the derivatives of a compound function g

(
λ2

j

)
. Therefore, we have

g(n)
(

λ2
j

)
= bn

n g(n)
(

λ2
j

)(
2λj
)n

+ bn−1
n g(n−1)

(
λ2

j

)(
2λj
)(n−2)

+ bn−m
n g(n−m)

(
λj
)(

2λj
)(n−2m), (42)

where m =
[ n

2
]
, and the coefficients bk

n fulfill the following recursion

bn
n = 1 and bn−k

n = 2bn−k
n−1(n− 2k + 1) + bn−k−1

n−1 , k = 1, . . . , m =
[n

2

]
.

If n is odd then the power of the last term in (42) is n − 2[n/2] = 1, then g(n)(0) = 0;
otherwise, g(n)(0) = bn/2

n g(m)(0); hence,

E Wn
j =

{
0 if n odd,

(−1)mbm
2mg(m)(0) if n = 2m even.

As has been noticed by [6], bk
n does not depend on g. Hence, we may choose, say, g(t) =

exp
(
−t2) (being a valid characteristic function) and derive coefficients bm

2m, resulting in
bm

2m = 2m(2m− 1)!!. Hence, for n = 2m, E W2m
j = (−1)m2m(2m− 1)!!g(m)(0). Now, (10)

follows by changing (−1)mg(m)(0) to the generator moment

E W2m
j =

(2m)!
m!

νm. (43)

Observe that the right-hand side does not depend on the index j, so that all marginals are
distributed equally. Plugging the cumulant generator function f into (42), it is readily seen
that the odd generator cumulants ζm are also zero. The even-order cumulant for each Wj is

Cum2m
(
Wj
)
= 2m(2m− 1)!!ζm =

(2m)!
m!

ζm.

Formula (17) utilizes Faà di Bruno’s Formula (9) connecting the generator cumulants ζm in
terms of generator moments νm.

Proof of Corollary 1. The general Formula (17) is based on the formula for the “cumulants”
ζm in terms of “moments” νj. Thus

κ̃m =
ζm

νm
1

=
m

∑
r=1

(−1)r−1(r− 1)! ∑
Σ`j=r,Σj`j=m

m!

∏`
j=1 `j!

`

∏
j=1

(
νj

j!νj
1

)`j

,

and we change the ratio νj/ν
j
1 = µ̃2 + 1, so that the assertion (17) follows.

Proof of Theorem 2. The key point in the proof is understanding the form of the derivative
D⊗2m

λ (λᵀλ)m. First, we notice that

D⊗2m
λ (λᵀλ)m = D⊗2m

λ ∏
m

j=1 f j(λ),
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where f j(λ) = λᵀλ; that is, we can use the general Leibnitz rule, and symmetrize by Sd12m ,

D⊗2m
λ ∏j f j(λ) = ∑

Σk1:m=2m

(
2m
k1:m

)
∏⊗

j D
⊗kj
λ f j(λ), (44)

s
= (2m)! vec⊗m Id,

since the only nonzero term is when k j = 2, j = 1 : m, then D⊗2
λ f j(λ) = 2 vec Id. Therefore,

we have (
2m
21m

)
2m =

(2m)!
(2!)m 2m = (2m)!,

terms in the sum (44), each equals vec⊗m Id, hence the assertion follows.

Proof of Lemma 3. Direct calculation shows

κ⊗X,3
s
= Cum1

(
κ⊗X,3|Rp

)
+ 3Cum2

(
κ⊗X,1|Rp

, κ⊗X,2|Rp

)
+ Cum3

(
κ⊗X,1|Rp

)
= Cum1

(
R3

pκ⊗V,3

)
+ 3Cum2

(
Rpκ⊗V,1, R2

pκ⊗V,2

)
+ Cum3

(
Rpκ⊗V,1

)
= κR3

p ,1κ⊗V,3 + 3κRp ,R2
p

(
κ⊗V,1 ⊗ κ⊗V,2

)
+ κRp ,3κ⊗3

V,1

= κR3
p ,1κ|Z|,3δ⊗3 + 3κRp ,R2

p
κ|Z|,1

(
δ⊗
(

vec Ω− κ?|Z|,2δ⊗2
))

+ κRp ,3κ3
|Z|,1δ⊗3

=
(

κR3
p ,1κ|Z|,3 + 3κRp ,R2

p
κ|Z|,1κ?|Z|,2 + κRp ,3κ3

|Z|,1

)
δ⊗3 + 3κRp ,R2

p
κ|Z|,1 δ⊗ vec Ω

where κ?|Z|,2 = −2/π, the coefficients of κ⊗X,3 in the expression are given in (36). We obtain
(κR3

p ,1 = µRp ,3)

κ⊗X,3
s
=
(

µRp ,3κ|Z|,3 + κRp ,3κ3
|Z|,1

)
δ⊗3 + 3κRp ,R2

p
κ|Z|,1

(
vec Ω− 2

π
δ⊗2

)
.

The quantities in the coefficient of δ⊗3 are given in (33), leading to the result of the
lemma.

Proof of Lemma 4. Writing G−1 = G−1(p), one can derive the formula

κX,4
s
= κR4

p ,1κ⊗V,4 + 4κRp ,R3
p

(
κ⊗V,1 ⊗ κ⊗V,3

)
+ 3κR2

p ,R2
p
κ⊗2

V,2 + 6κRp ,Rp ,R2
p
κ⊗2

V,1 ⊗ κ⊗V,2 + κRp ,4δ⊗4

from (36) for κX,4 directly. We pay particular attention to the value of κ⊗V,2

κX,4
s
=
(

κR4
p ,1κ|Z|,4 + 4κRp ,R3

p
κ|Z|,1κ|Z|,3 + κRp ,4κ4

|Z|,1

)
δ⊗4

+3κR2
p ,2

(
vec Ω− 2

π
δ⊗2

)⊗2
+ 6κRp ,Rp ,R2

p
κ2
|Z|,1

(
vec Ω− 2

π
δ⊗2

)
⊗ δ⊗2

we have κR4
p ,1 = µRp ,4; moreover,

κX,4
s
=

(
κR4

p ,1κ|Z|,4 + 4κRp ,R3
p
κ|Z|,1κ|Z|,3 + κRp ,4κ4

|Z|,1 + 3
(

2
π

)2
κR2

p ,2 − 6
(

2
π

)2
κRp ,Rp ,R2

p

)

×δ⊗4 + 3κR2
p ,2(vec Ω)⊗2 + 6

2
π

(
κRp ,Rp ,R2

p
− κR2

p ,2

)
vec Ω⊗ δ⊗2

and

κR2
p ,2 =

2p2

(p− 4)(p− 2)2 ,
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κRp ,Rp ,R2
p
− κR2

p ,2 = −
( p

2

)2
G2
−1

4
(p− 2)(p− 3)

.

The coefficient of δ⊗4 follows

µRp ,4κ|Z|,4 + 4κRp ,R3
p
κ|Z|,1κ|Z|,3 + 3

(
2
π

)2
κR2

p ,2 − 6
(

2
π

)2
κRp ,Rp ,R2

p
+ κRp ,4κ4

|Z|,1

=

(
−6
(

2
π

)2
+ 4

2
π

)
µRp ,4 +

(
8
(

2
π

)2
− 4

2
π

)
κRp ,R3

p
+ 3
(

2
π

)2
κR2

p ,2

−6
(

2
π

)2
κRp ,Rp ,R2

p
+ κRp ,4

(
2
π

)2

=

(
2
π

)2(
−6µRp ,4 + 8κRp ,R3

p
+ 3κR2

p ,2 − 6κRp ,Rp ,R2
p
+ κRp ,4

)
+ 4

2
π

(
µRp ,4 − κRp ,R3

p

)
where −6µRp ,4 + 8κRp ,R3

p
+ 3κR2

p ,2 − 6κRp ,Rp ,R2
p
+ κRp ,4 = −3p2G4

−1/2, and µRp ,4 − κRp ,R3
p
=

p2G2
−1/2(p− 3).

Proof of Theorem 3. We use (23) and obtain

κ⊗X,n = Sd1n

n

∑
r=1

∑
Σ`j=r,
Σj`j=n

n!

∏n
j=1 `j!(j!)`j

Cumr

((
κ⊗X,1|Rp

)
1:`1

, . . . ,
(

κ⊗X,n|Rp

)
1:`n

)

where κ⊗X,j|Rp
= Cumj

(
X|Rp

)
1:`j

denotes `j copies of κ⊗X,j|Rp
, as usual, including the case

`j = 0, when Cumj
(
X|Rp

)
is missing from Cumr. Therefore, Cumr contains exactly r

variables. The conditional cumulant

κ⊗X,j|Rp
= κ⊗RpV,j|Rp

= Rj
pκ⊗V,j,

since Rp and X are independent. We apply Lemma 4 of [29], obtaining the κ⊗V,j, and get

κ⊗X,n = n!
n

∑
r=1

∑
Σ`j=r,
Σj`j=n

Cr
(

Rp, `1:n
)

∏n
j=1 `j!(j!)`j

∏⊗
j=1:n κ

⊗`j
V,j

= n!Sd1n

n

∑
r=1

∑
Σ`j=r,
Σj`j=n

Cr
(

Rp, `1:n
) n

∏
j=1,j 6=2

1
`j!

(
κ|Z|,j

j!

)`j 1
`2!

(
1
2!

)`2

κ⊗`2
V,2 ⊗ δ⊗(n−2`2),

where we have separated j = 2, since the second-order cumulant κ⊗V,2 is different in
the product.

5.1. Commutator and Symmetrizer Matrices

Commutator matrices Kp change the order of the tensor products of vectors according
to permutation p; see [29] for more details. Commutator matrix L corresponds to type
` = `1:n, such that nonzero `js of ` define the sum of commutator matrices as follows

L−1
lr:1

= ∑
K{r|`}∈Pn

K−1
p(K{r|`}).

where index lr:1 is defined by the following way: if `j 6= 0 then set `j by lj, where l denotes
the actual value of `j; for instance, if `j = 3, then lj = 3j. The summation is taken over all
partition K{r|`} of the set 1:n, having type ` and size r.
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Ref. [49] uses the symmetrizer matrix Sd1q for symmetrization of a T-product of q
vectors with the same dimension d; that is, the result of Sd14(a1 ⊗ a2 ⊗ a3 ⊗ a4) is a vector
of dimension d4, and symmetric in aj. It can be computed as

Sd1q =
1
q! ∑

p∈Pq

Kp, (45)

where Pq denotes the set of all permutations of the numbers 1:q; the sum includes q! terms.
The symmetrizer Sd1q provides an orthogonal projection to the subspace of Rdq

, which is
invariant under the transformation Sd1q . A vector will be called symmetrical if it belongs
to that subspace.
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