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ABSTRACT OF THE DISSERTATION 

 
 

Characterizing the Evolution of Epigenetic Clocks at Different Time Scales 
 

 
 
 

by 
 
 
 

Tina Wang 
 
 

Doctor of Philosophy in Biomedical Sciences 
 
 

University of California San Diego, 2019 
 
 

Professor Trey Ideker, Chair 
 
 

A fundamental concept of molecular biology is that cellular functions are shared among all 

living organisms. Identifying DNA sequences that are conserved across species are generally 

thought as a proxy towards uncovering important cellular functions. Such proxies have not been 

appropriate to understand the functional consequences of epigenetic modifications, which regulate 
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the expression of protein-coding genes. Unlike the DNA sequence, epigenetic modifications are 

dynamic and change depending on factors including cellular context and age. To further elucidate 

the importance of these epigenetic modifications towards functional effects and relationship with 

DNA sequence, I characterized epigenetic changes while taking into account the differing 

dynamics with respect to time.  

In the first chapter, I asked if different life histories that yield differences in genomic 

architecture are also reflected in the rate of epigenomic evolutionary changes by comparing the 

rate of epigenemic evolution in closely related species of Drosophila and Mus musculus. I found 

that, despite large differences in genomic architecture, the rate of epigenetic evolution was 

strikingly similar, such that they reflect the molecular clock that was observed in protein evolution.  

For the remainder of my thesis, I studied the changes of a particular epigenetic 

modification, DNA methylation, with respect to a single lifetime across species. Previous studies 

in humans have demonstrated that DNA methylation can be used to measure age in humans, 

reflecting an epigenetic clock. In the second chapter, I asked whether these changes can also 

measure age in mice. I found that epigenetic clocks can also measure age in mice, and that these 

clocks can also be slowed in long-lived mice. In my third chapter, I asked whether these changes 

with respect to age are conserved among mammals. For this purpose, I specifically characterized 

methylation changes with respect to age in conserved sequences between dogs and humans. I found 

that these changes were conserved and can be used to translate age across mammals.  

Overall, my work characterizes the evolution of epigenetic modifications across species, 

which seemingly act as clocks measuring both evolutionary time and chronological age.
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INTRODUCTION 

All living organisms contain cells, the fundamental unit of all biological studies. The 

genome, DNA, of the cell encodes the information that enables cellular function via transcription 

of RNA and translation into protein. Biological function is believed to be created by stochastic 

processes, through naturally occurring mutations that are selected through evolution. If a mutation 

is beneficial for an individual, then this mutation will propagate with each generation of progeny, 

and eventually becomes fixed within a population. In contrast, detrimental mutations would be 

expected to be removed from the population due to the forces of selection. Moreover, selection 

varies for distinct lineages. For instance, smaller species are subjected to higher levels or predation. 

As such, these species tend to have shorter lifespan, reprodroduce faster and have more progeny 

than larger species. These differences also can be seen in the genomes of species as detrimental 

variants are removed faster in short-lived species relative to long-lived species during evolution. 

For these reasons, if a sequence is observed in many distinct lineages, then it likely encodes an 

important function for cellular fitness. 

This conceptual framework helped our understanding of the protein-coding sequences in 

the genome, which are generally conserved from yeast to mammals. However, these sequences 

only represent 2% of the human genome. Moreover, these sequences are nearly identical between 

human and chimpanzees (99%), indicating that regulation of protein-coding genes is important for 

the differences observed (King and Wilson 1975). Distinguishing between nonfunctional and 

functional sequences remains challenging. If we simply evaluate sequences based on their presence 

across diverse mammals, we would find that that up to 10% of the human genome is under selective 

constraint, meaning only 8% can be regarded as ‘functional’ (Siepel et al. 2005). This approach 

may not be entirely appropriate for determining whether sequences are functional for regulation 
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of protein-coding genes. Proteins are produced from the sequence itself, but regulation of protein-

coding genes is accomplished by biochemical, or epigenetic, modifications of DNA. The 

epigenome is comprised of several distinct modifications including histones, transcription factors 

and DNA methylation that determine the expression of genes. Recent studies profiling chromatin 

states have found evidence that up to half of the human genome is covered in epigenetic 

modifications (ENCODE Project Consortium 2012). Yet, the relationship between the regulation 

of protein-coding genes and these modifications are still unknown. Epigenetic modifications are 

frequently found outside of highly-conserved sequences. Therefore, requiring sequence constraint 

may not be enough to determine the function of these modifications. 

The epigenome is dynamic, changing throughout life, and contrasts to the static genomic 

sequence that encodes these changes. The changes in the epigenome due to cellular environments 

allow the formation of different cell types from the same genomic sequence. During 

embryogenesis, the epigenome is completely reprogrammed enabling the formation of a 

multicellular organism from a single cell, the zygote (Gifford et al. 2013). Unlike the sequence 

that encodes a functional protein, the sequences that enable this epigenetic regulation are likely 

functional in a context-dependent manner (Kellis et al. 2014). For these reasons, how we define 

function must be with respects to the requirements of a dynamic system. 

We can still apply comparative evolutionary approaches to improve our understanding of 

the epigenome. Since the static genomic sequences likely determine the functions of the 

epigenome, we can compare across species and evaluate similarities with respect to these dynamic 

processes. In this work, I utilize a comparative evolutionary approach to improve our 

understanding of these epigenetic modifications by characterizing these changes across species at 

different scales of time, over evolutionary time and over a single lifespan. When we consider 
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evolutionary scales of time, we can identify functionally active regions in closely related species 

(Villar et al. 2015; Stefflova et al. 2013; He et al. 2011; Bradley et al. 2010; Paris et al. 2013) or 

delineating broad trends underlying regulatory networks when comparing distantly related species 

(Boyle et al. 2014; Won et al. 2013; Cheng et al. 2014; Schmidt et al. 2010). In my first chapter, I 

leverage naturally occurring differences of genomic evolution in mammals and fruit flies to 

determine whether these differences also correspond to differences in epigenome evolution. This 

strategy will further elucidate whether sequence constraints are also echoed in the epigenomic 

constraints. If the dynamics differ, this could suggest that there could be other constraints acting 

on the evolution of the epigenome. In chapters 2 and 3, I utilize comparisons across species at their 

respective lifespans to understand the extent that mammalian genomes similarly experience aging 

regardless of the large differences in lifespan. In chapter 2, I ask whether a specific epigenetic 

modification, DNA methylation, can measure age in mice, as it was previously described and 

validated in human populations (Hannum et al. 2013; Horvath 2013; Gross et al. 2016). After 

confirming this epigenetic correlate of age across mammals, I then ask whether these changes are 

conserved during aging in dogs. Overall, this body of work uses comparative epigenomic 

approaches, identifying similar changes that reflect molecular epigenetic clocks, and change across 

species in similar manners when examining over evolutionary time or over a span of a lifetime.
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CHAPTER 1: Evidence for a common evolutionary rate in metazoan transcriptional 

networks 

 
1.1 Abstract 

Genome sequences diverge more rapidly in mammals than in other animal lineages such 

as birds or insects. However, the effect of this rapid divergence on transcriptional network 

evolution remains unclear. Recent reports have indicated a faster divergence of transcription factor 

binding in mammals than in insects, but others found the reverse for mRNA expression levels. 

Here, we show that these conflicting interpretations resulted from differing methodologies 

between lineages.  We performed an integrated analysis of transcriptional network evolution by 

examining mRNA expression, transcription factor binding and cis-regulatory motifs across >25 

animal species including mammals, birds and insects. Strikingly, we found that transcriptional 

networks evolve at a common rate over time across the three animal lineages. Furthermore, 

differences in rates of genome divergence were greatly reduced when restricting comparisons to 

chromatin-accessible sequences. The evolution of transcription is thus decoupled from the global 

rate of genome sequence evolution, suggesting that a small fraction of the genome regulates 

transcription. 

 

1.2 Introduction 

A long-standing question in biology is what fraction of the genome regulates transcription 

(Consortium 2012, Graur et al. 2013, Niu and Jiang 2013, Kellis et al. 2014). Recent studies of 

chromatin structure have implicated half of the human genome in regulatory interactions 

(Consortium 2012). Comparative genomic studies, however, have shown that less than 10% of the 

human genome is evolutionarily conserved (Siepel et al. 2005), suggesting that many of the 
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experimentally-detected interactions are not functional (Graur et al. 2013). Recent studies have 

measured the association between sequence changes and changes in transcript levels, epigenetic 

modifications or binding of transcription factors regulating specific gene sets (gene-specific 

transcription factors, GSTF) (Cookson et al. 2009, McVicker et al. 2013, Kasowski et al. 2013, 

Kasowski et al. 2010, Heinz et al. 2013, Villar, Flicek, and Odom 2014, Wong et al. 2015, Brem 

et al. 2002, Shibata et al. 2012, Chan et al. 2009). These experiments demonstrated that genomic 

sequences can influence transcription even in the absence of evolutionary conservation. For 

instance, some repetitive elements previously thought to be “junk” DNA have been shown to 

effectively regulate gene expression (Rebollo, Romanish, and Mager 2012). The rapid evolution 

of repetitive and other rapidly-evolving sequences could cause pervasive rewiring of 

transcriptional networks through creation and destruction of regulatory motifs (Villar, Flicek, and 

Odom 2014). Such rapid transcriptional evolution would set mammals apart from other metazoans 

like birds or insects, whose genomes contain far fewer repetitive elements (Taft, Pheasant, and 

Mattick 2007) and tend to be more constrained (Siepel et al. 2005, Zhang et al. 2014). 

A few studies have attempted to assess whether transcriptional networks evolve more 

rapidly in mammals than in insects from the fruit fly genus Drosophila. These studies have reached 

conflicting conclusions. When examining the evolution of GSTF binding, chromatin immune-

precipitation (Wiens et al.) studies in mammalian livers have generally described faster divergence 

rates than similar studies in fly embryos (Villar, Flicek, and Odom 2014, Stefflova et al. 2013). 

However, divergence rates were estimated with different analytical methods in the different ChIP 

studies (Supplementary Table S1.1) (Bardet et al. 2012, Villar, Flicek, and Odom 2014). Another 

study found that gene expression levels may diverge at a slower rate in mammals than in flies, by 

comparing genome-wide correlations of mRNA abundances estimated by RNA sequencing (RNA-
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seq) for mammals but by a mixture of technologies for flies including microarrays (Coolon et al. 

2014). Although the inconsistencies between these conclusions may indicate that the evolution of 

transcriptional networks is fundamentally different in mammals and insects, they may also reflect 

a sensitivity of evolutionary rate estimations to technical methodology.  

Here, we jointly examined the evolution of gene expression levels and the underlying 

genome-wide changes in GSTF binding and cis-regulatory sequences using consistent 

methodologies both within and across various animal lineages.

 

1.3 Results 

We assembled a comparative genomics platform encompassing >40 publicly available 

datasets spanning >25 organisms representative of the Mammalia (mammals), Aves (birds) and 

Insecta (insects) phylogenetic classes (Supplementary Figure S1.1). We designed a statistical 

framework, applicable to virtually any type of genomic data, to objectively compare the rates of 

divergence of various data types across lineages. In brief, an exponential model describing 

evolutionary divergence under a common, lineage-naïve rate was evaluated against a lineage-

aware model, accounting for both statistical significance and effect size (Figure 1.1). We assessed 

the power of this statistical framework using simulations and found that it could detect differences 

in divergence rates with high sensitivity (Methods; Supplementary Figure S1.2). 

 As a baseline, we first performed a comparative analysis of the evolution of genome 

sequences. We randomly sampled genomic segments from designated reference genomes: Mus 

musculus domesticus (C57BL/6) for mammals, Gallus gallus for birds and Drosophila 

melanogaster for insects. The rates at which genomic segments that homology with the other 

species within each lineage accumulate nucleotide substitutions were then estimated and compared 
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using our statistical framework. Segments retaining homologs displayed high sequence 

conservation across all three lineages, although our framework detected a slightly but significantly 

faster divergence in insects than in mammals or birds (P < 0.05; Supplementary Figure S1.3). 

Next, we compared the rates at which randomly sampled genomic segments lost homology with 

the other species within each lineage. We observed a much larger difference in evolutionary rates 

across lineages using this measure (P < 0.05; Figure 1.2; Supplementary Figure S1.4). For 

instance, after 100 million years (Myrs) of evolution, only ~30% of mammalian segments retained 

homology whereas >60% of bird and insect segments did. These findings recapitulated previous 

observations according to which genome sequences are less constrained in mammals than in 

insects (Siepel et al. 2005) or birds (Zhang et al. 2014) 

We then studied the evolution of gene expression levels, using exclusively RNA-seq 

datasets. In mammals and birds these datasets were generated from adult livers; in insects, they 

were from whole bodies of adult female fruit flies (Methods; Supplementary Table S1.2). After 

determining expression levels for each gene in each species using a common data processing 

pipeline, we correlated the expression levels of genes in the reference species with the expression 

levels of their one-to-one orthologs in all other species within the same lineage (Methods). We 

found that correlations of gene expression levels decreased over time at similar rates that were 

statistically indistinguishable: a lineage-naïve model describing the evolution of gene expression 

levels under a common rate fitted the data as well as a lineage-aware model (Figure 1.3). This 

result was robust to changes in correlation metrics or inclusion/exclusion of poorly expressed 

genes (Supplementary Figure S1.5).  

Several lines of evidence suggest that gene expression levels can remain relatively stable 

even as the genomic locations bound by GSTFs change rapidly over time (Paris et al. 2013, Wong 
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et al. 2015, Chan et al. 2009). Therefore, we next examined the evolution of GSTF binding 

patterns. We considered all GSTFs that were profiled using ChIP followed by massively parallel 

sequencing (ChIP-seq) in at least three related species, where separate ChIPs were performed per 

species. GSTFs meeting these requirements were Twist and Giant in fruit fly embryos, and 

CEBPA, FOXA1 and HNF4A in mammalian livers (Methods; Supplementary Table S1.1; 

Supplementary File S1.1). We aimed to measure cross-species similarity in GSTF occupancy 

with a unified analytical method across all of these datasets. Despite the widespread use of ChIP-

seq, there is no consensus on the appropriate analytical method (Wilbanks and Facciotti 2010). 

ChIP-seq analysis pipelines typically discretize continuous occupancy profiles into a set of 

occupied segments (“peaks”), but this step requires choosing a signal processing algorithm (a peak 

caller) and associated parameters (Figure 1.4a). Further comparison of occupied segments across 

species requires additional analytical choices (Figure 1.4a), some of which can strongly influence 

downstream findings (Bardet et al. 2012). 

To explore the impact of these choices, we processed all ChIP-seq data using systematic 

combinations of parameters representative of, and expanding from, previous studies 

(Supplementary Table S1.1) (Landt et al. 2012). In total, we executed 108 analytical pipelines to 

compare divergence rates across 6 pairs of GSTFs (2 in insects each compared with 3 in mammals), 

the occupancy profiles of which were examined in 3 – 7 species per lineage (Methods). The values 

of the estimated rates varied greatly from one combination of parameters to the next 

(Figure 1.4b, c). However, in the majority of cases (56 – 78% over the 6 comparisons), GSTF 

binding patterns diverged at statistically indistinguishable rates in mammals and insects (Figure 

1.4d; Supplementary File S1.2). Although the computed divergence rates were sensitive to 
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technical methodology (Supplementary Figure S1.6), for a given method the results were 

generally similar across lineages for all of the five GSTFs investigated. 

To substantiate these findings, we devised a method to compare genome-wide occupancy 

profiles at single-nucleotide resolution without discretization. We correlated occupancy profiles 

between pairs of species across all nucleotides where genomes aligned, after accounting for the 

differences in sequencing depth, read length and fragment size across datasets (Methods). Again, 

we found indistinguishable divergence rates, regardless of which GSTF or lineage was examined 

(Figure 1.4e). After 100 Myrs of evolution, the correlation of GSTF occupancy profiles was 0.10 

in mammals and 0.13 in insects. As a control, we also applied this method to CTCF, a pleiotropic 

DNA-binding protein that acts as chromatin insulator and looping factor (Ohlsson, Lobanenkov, 

and Klenova 2010). In mammals, patterns of DNA occupancy have been shown to be more 

conserved for CTCF than for GSTFs using unified analytical methods (Schmidt et al. 2012). In 

contrast, CTCF DNA occupancy was shown to diverge rapidly in insects, perhaps due to the 

existence of other insulator proteins (Ni et al. 2012, Villar, Flicek, and Odom 2014). Our analysis 

successfully recapitulated this difference (Figure 1.4f), demonstrating that the common 

evolutionary rate observed among GSTFs (Figure 1.4e) was not an artifact of our method for 

profile correlation. 

The similarity of divergence rates observed across lineages for gene expression levels 

(Figure 1.3) and GSTF binding patterns (Figure 1.4) was unexpected given the rapid evolution of 

genomic sequences in mammals relative to insects (Siepel et al. 2005) or birds (Zhang et al. 2014) 

(Figure 1.2). We therefore further examined these trends at the level of cis-regulatory sequences. 

First, we considered the DNA sequence motifs thought to be specifically recognized by the 

mammalian and insect GSTFs included in the previous ChIP-seq analysis (Figure 1.4). We 
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identified locations with significant matches to these motifs throughout the genomes of the 

reference species and estimated how frequently these loci retained the same motifs relative to 

background expectations (Methods). We found similar, indistinguishable retention rates in 

mammals and insects (Figure 1.5a). Next, we studied the evolution of a broader set of motifs 

corresponding to GSTFs shared between M. musculus and D. melanogaster. We found that these 

motifs were retained at similar rates across lineages relative to background expectations in 8 out 

of 12 cases (one example shown in Figure 1.5b; all other cases in Supplementary Figure S1.7). 

Most active cis-regulatory sequences are located in genomic regions with accessible 

chromatin (Hesselberth et al. 2009). A recent study showed that chromatin-accessible sequences 

were significantly more conserved between human and mouse than expected by chance (Yue et al. 

2014). We expanded this analysis to a wide range of species by using chromatin-accessible 

sequences identified by DNAse I hypersensitivity in M. musculus livers, D. melanogaster embryos 

and G. gallus MSB-1 cells (Methods). We performed the segment sampling procedure described 

previously (Figure 1.2), after excluding genes and promoter regions since they typically are highly 

conserved (Methods). Whereas inaccessible segments lost homology much faster in mammals 

than in insects and birds (P < 0.05; Figure 1.5c), accessible segments retained homologs at more 

similar rates in the three lineages (Figure 1.5d; Supplementary Figure S1.8). We still detected 

statistically significant differences across lineages (P < 0.05), but the effect sizes were 

considerably smaller than for inaccessible segments. For instance, ~60% of segments retained 

homology after 100 Myrs in birds and insects, independently of accessibility, whereas ~50% of 

chromatin-accessible segments and only ~20% of inaccessible segments did so in mammals.
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1.4 Discussion 

To our knowledge, the analyses presented here represent the most comprehensive study 

conducted to date on the evolution of transcriptional networks across animal lineages. By applying 

unified analytical methods to data from different lineages, we were also able to glean novel insights 

into the evolution of transcriptions in animals. We observed that gene expression levels, GSTF 

binding patterns, regulatory motifs and chromatin-accessible sequences each diverged at rates that 

were similar across mammals, birds and insects. These unexpected results reconcile previously 

conflicting findings (Coolon et al. 2014, Villar, Flicek, and Odom 2014), highlighting the 

importance of unified study methodologies and providing evidence for a common evolutionary 

rate in metazoan transcriptional networks. 

Most functional genomics studies have focused on humans and model organisms such 

as D. melanogaster or M. musculus, which are distantly related to each other. However, data on 

closely related species, like those which we collected in this study, are needed to investigate the 

dynamics of molecular network evolution. Unfortunately, such data remain scarce, leading to 

important limitations of our work. We only investigated three lineages and six to twelve organisms 

per lineage with non-uniform coverage over evolutionary time. In addition, we only examined a 

small number of tissues for each lineage and a total of five GSTFs (none in birds). The 

generalizability of our observations thus remains to be further evaluated as more data becomes 

available. Despite these limitations, our finding that transcriptional networks evolve at a common 

rate per year across animal lineages was strikingly robust across data layers. 

The underlying mechanisms responsible for this concordance of evolutionary rates are 

unclear. Mammals, birds and insects exhibit wide differences in the features that are traditionally 

associated with evolutionary rates, such as generation times and breeding sizes. Populations with 
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small breeding sizes, such as mammals, are thought to be more prone to genetic drift (Ohta 1992). 

This theory accounts for the abundance of repetitive elements and the rapid evolution of genomic 

sequences in mammals relative to insects, which have much larger breeding sizes. If the same 

theoretical principles also governed the evolution of transcriptional networks, we would have 

expected that transcription would evolve more rapidly in mammals than in insects. Instead, our 

results show that the evolution of transcriptional networks, whether slow (e.g. transcript levels) or 

fast (e.g. GSTF binding), is decoupled from the lineage-specific features that govern genome 

sequence evolution. 

One potential model could be that repetitive and rapidly-evolving sequences, which make 

up the majority of the mammalian genome (Siepel et al. 2005, Taft, Pheasant, and Mattick 2007), 

play a negligible role in the global regulation of gene expression. Rather, chromatin-accessible 

regions may represent the only portion of the mammalian genome that effectively regulates 

transcription. We observed that chromatin-accessible regions diverge much more slowly than other 

non-coding sequences in mammals, consistent with previous findings (Yue et al. 2014). These 

differences in divergence rates, however, were not found in birds and insects. As a result, 

chromatin-accessible regions in mammals are conserved at levels similar to those in birds and 

insects, in contrast to the genome as a whole. According to this model, the similar rates of evolution 

of chromatin-accessible sequences would constrain the dynamics of transcriptional evolution to be 

similar across lineages. The regulatory potential of repetitive and other rapidly-evolving elements 

could be rendered functionally inconsequential by silencing, or could be concentrated on 

controlling the expression of genetic elements that we did not investigate, such as non-coding 

RNAs or species-specific genes (Sundaram et al. 2014). 
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An alternative model could be that the sequences that control transcriptional regulation in 

birds and insects evolve particularly rapidly within otherwise stable genomes. In these organisms, 

transcriptional networks would diverge under the action of natural selection, through specific 

single nucleotide substitutions resulting in rapid compensatory turnover (He, Holloway, et al. 

2011). In mammals, transcriptional networks would diverge in a largely neutral fashion driven for 

instance by transposable elements (Sundaram et al. 2014). In this case, similar rates of 

transcriptional divergence across lineages would arise through very different evolutionary 

processes. 

Importantly, none of the aforementioned models account for the differences in generation 

times between lineages. Evolutionary changes occurring based on chronological time and not 

generation time has also been observed for many protein-coding sequences. Observations such as 

these led to the molecular clock theory (Kumar 2005). The mechanisms through which 

environmental forces entrain these chronological evolutionary clocks remain to be elucidated 

(Kumar 2005).

 

1.5 Methods 

Genome and Annotation Sources. We downloaded genome sequences for organisms 

belonging to three metazoan lineages: mammals, birds and insects. The mammalian and insect 

genome sequences were downloaded from the UCSC Genome Bioinformatics website 

(Rosenbloom et al. 2015): mm9 for Mus musculus domesticus, rn5 for Rattus norvegicus and hg19 

for Homo sapiens; dm3 for Drosophila melanogaster, droSim1 for Drosophila simulans, droEre2 

for Drosophila erecta, droYak2 for Drosophila yakuba, droAna3 for Drosophila ananassae and 

dp4 for Drosophila pseudoobscura. Genomes for mice strains and species not available from the 
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UCSC Genome Bioinformatics site (M. musculus domesticus (AJ), M. musculus castaneus and M. 

spretus) were downloaded from (Stefflova et al. 2013). We downloaded bird genome sequences 

from Ensembl version 80 BioMart (Cunningham et al. 2015): galGal4 for Gallus gallus, 

Turkey_2.01 for Meleagris gallopavo, taeGut3.2.4 for Taeniopygia guttata and FicAlb_1.4 for 

Ficedula albicollis. Protein-coding gene names and symbols along with associated transcripts 

sequences were obtained from FlyBase (dos Santos et al. 2015) for insect species (dmel-r5.46, 

dsim-r1.4, dere-r1.3, dyak-r1.3, dana-r1.3 and dpse-r2.30), from Ensembl version 80 BioMart for 

bird species and from Ensembl version 59 BioMart for mammalian species (Cunningham et al. 

2015). For M. spretus and M. musculus castaneus, we used the same transcript annotations as for 

M. musculus. Within the genomes of our designated reference organisms (M. musculus domesticus, 

G. gallus and D. melanogaster), we defined promoters as 2kb upstream of transcription start site 

and delineated intergenic regions as regions that did not overlap annotated genes or promoters. 

Chromatin accessibility tracks used in Figure 1.5c-d and Supplementary Figure S1.8 were 

downloaded from the UCSC bioinformatics website (Rosenbloom et al. 2015) for M. musculus 

domesticus and D. melanogaster and obtained from (He et al. 2014) for G. gallus. We restricted 

our analyses to the sequences or annotations in, or homologous to, the well defined chromosome 

scaffolds of the reference organism. Specific reference chromosomes analyzed are as follows: G. 

gallus (1-28, Z, W), D. melanogaster (2L, 2R, 3L, 3R, 4, X) and M. musculus (1-19, X, Y). 

Homology and Evolutionary Relationships. We obtained orthology relationships between 

protein-coding genes using Ensembl COMPARA (Vilella et al. 2009), matching the Ensembl 

versions used for protein coding genes for each species described above. These relationships were 

used in Figure 1.3 and Supplementary Figure S1.5. Homology between genomic segments was 

assigned using the LiftOver tool (Rosenbloom et al. 2015), for all analyses presented in Figures 
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1.2, 1.4 and 1.5 and associated figure supplements, with the exception of the nucleotide-resolution 

analysis of GSTF occupancy profiles presented in Figure 1.4e-f. We used pre-computed chain 

files from UCSC matching the genome versions listed above when chains were readily available 

(Rosenbloom et al. 2015). When chain files were not available, we built chain files to map the 

UCSC M. musculus C57BL/6 mm9 to the genomes of M. musculus domesticus AJ, Mus musculus 

castaneus and Mus spretus, as well as to map the Ensembl 80 galGal4 to the genomes of M. 

gallopavo, F. albicollis and T. guttata (Supplementary Table S1.2). These chains were 

constructed by flowing the steps recommended by UCSC (Supplementary Table S1.3) 

(http://genomewiki.ucsc.edu/index.php/Whole_genome_alignment_howto). 

For the nucleotide-resolution analysis of GSTF occupancy profiles, we assigned homology 

relationships using the chain files, or, in the case of mice strains, using genome mapping tables 

from (Stefflova et al. 2013). We filtered the chain files to obtain one-to-one unambiguous 

mappings by retaining only highest scoring alignment for each position. These filtered mappings 

were then used to transfer data to from any organism onto the corresponding reference genome. 

Regions in the reference species genome lacking one-to-one unambiguous mappings were 

excluded from analysis. 

To define evolutionary distances separating species in Myrs, we chose published estimates 

generated as homogeneously as possible within each lineage using a combination of sequence 

alignments and fossil records. All distances between insect species were taken from (Tamura, 

Subramanian, and Kumar 2004); all distances between bird species were taken from (Lu et al. 

2015); distances between mammalian species were taken from (Stefflova et al. 2013) and 

TimeTree (Hedges 2009). 



18 
	

Data Sources. For RNA-seq analyses (Figure 1.3; Supplementary Figure S1.5), 

sequencing data for the reference species corresponding to two experiments performed 

independently by different research groups, and, when possible, representing different genotypes, 

were downloaded from public repositories. For M. musculus domesticus, we used data from 

(Goncalves et al. 2012, Sugathan and Waxman 2013), for G. gallus we used the data from 

(Brawand et al. 2011) and (Coble et al. 2014); for D. melanogaster we pulled from (Chen et al. 

2014, Consortium 2012). Other species included were M. musculus castaneus (Goncalves et al. 

2012) M. spretus (Wong et al. 2015), R. norvegicus (Gong et al. 2014), H. sapiens (Lin et al. 2014, 

Consortium 2012), G. gorilla (Brawand et al. 2011), D. simulans (Chen et al. 2014), D. yakuba 

(Chen et al. 2014), D. ananassae (Chen et al. 2014), D. pseudoobscura (Chen et al. 2014), M. 

gallopavo (Monson et al. 2014), A. platyrhynchos (Huang et al. 2013), and F. albicollis (Uebbing 

et al. 2013). Specific accession numbers are listed in Supplementary Table S1.2. 

For ChIP-seq analyses (Figure 1.4), we downloaded data for FOXA1 in M. musculus 

domesticus (C57BL/6) (Stefflova et al. 2013), M. musculus domesticus (AJ) (Stefflova et al. 2013), 

M. musculus castaneus (Stefflova et al. 2013), M. spretus (Stefflova et al. 2013) and R. norvegicus 

(Stefflova et al. 2013); HNF4A and CEBPA in M. musculus domesticus (C57BL/6) (Stefflova et 

al. 2013), M. musculus domesticus (AJ) (Stefflova et al. 2013), M. musculus castaneus  (Stefflova 

et al. 2013), M. spretus (Stefflova et al. 2013), R. norvegicus (Stefflova et al. 2013), H. sapiens 

(Schmidt et al. 2010) and C. familiaris (Schmidt et al. 2010); Twist in D. melanogaster (He, Bardet, 

et al. 2011), D. simulans (He, Bardet, et al. 2011), D. erecta (He, Bardet, et al. 2011), D. yakuba 

(He, Bardet, et al. 2011), D. ananassae (He, Bardet, et al. 2011) and D. pseudoobscura (He, 

Bardet, et al. 2011); Giant in D. melanogaster (Bradley et al. 2010, Paris et al. 2013), D. yakuba 

(Bradley et al. 2010) and D. pseudoobscura (Paris et al. 2013). We also gathered data for CTCF 
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in M. musculus domesticus (C57/B6) (Schmidt et al. 2012), R. norvegicus (Schmidt et al. 2012), 

H. sapiens (Schmidt et al. 2012), C. familiaris (Schmidt et al. 2012), D. melanogaster (Ni et al. 

2012), D. simulans (Ni et al. 2012), D. yakuba (Ni et al. 2012) and D. pseudoobscura (Ni et al. 

2012). Accession numbers corresponding to the specific experimental replicates and control 

samples are listed in Supplementary File S1.1.   

For motif analyses (Figure 5a-b; Supplementary Figure S1.7), we gathered known 

position-weight matrixes from the JASPAR database (Mathelier et al. 2014) and the Fly Factor 

survey (Zhu et al. 2011). We focused on the motifs corresponding to Twist and Giant in D. 

melanogaster, to CEBPA, HNF4A and FOXA1 in M. musculus domesticus, and on a set of 12 

other motifs corresponding to GSTFs conserved across mammals and insects. This set was 

constructed by downloading all Core A vertebrata motifs from JASPAR (Mathelier et al. 2014), 

identifying those corresponding to conserved GSTFs with one-to-one orthologs between M. 

musculus domesticus and D. melanogaster using COMPARA (Vilella et al. 2009), and filtering 

the list down to those 12 instances where a position-weight matrix was also described in Fly Factor 

(Zhu et al. 2011) and were not already analyzed. 

Comparing evolutionary rates. We developed a statistical framework to compare 

evolutionary rates of various ‘omics data layers between lineages, and implemented it in R (R 

Development Core Team 2011). This framework takes as inputs: measures of pairwise cross-

species similarity (e.g, correlation of gene expression or sequence conservation), pairwise cross-

species evolutionary distances and lineage labels..Conceptually, the framework estimates both a 

statistical significance and an effect size to determine whether rates of evolutionary divergence are 

indistinguishable or different between lineages (Figure 1.1).  
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In practice, we model evolutionary divergence by an exponential decay in log-linear space. 

First, the nls function is applied to the log-transformed cross-species similarity data as a function 

of evolutionary distances to derive the following linear models:   

- a lineage-naïve model that estimates a shared intercept and slope for all the data without 

specifying the lineage labels  

- a lineage-aware model that estimates a shared intercept for all the data and lineage-

specific slopes based on lineage labels 

- lineage-specific models that estimate intercept and slope individually for each lineage  

Second, an R function written in-house to handle nls model structures estimates the significance 

level of an ANOVA with a likelihood ratio test comparing the lineage-naïve and the lineage-aware 

model. Third, we define the effect size as the predicted absolute difference in similarity between 

lineage pairs after 100 Myrs of divergence as estimated from the lineage-specific models. We 

consider that the framework detected a difference between evolutionary divergence rates when the 

significance level is <0.05 and the effect size is >0.05. 

We chose to use an exponential decay function because it is the simplest evolutionary 

model that fit all our input measures of cross-species similarity reasonably well. We chose to model 

the exponential decay in log-linear space because we noted that a simple exponential decay in 

linear space failed to capture the conservation observed between distant species (mouse versus 

human at 91 Myrs and dog at 97.4 Myrs) when analyzing the evolutionary dynamics of GSTF 

binding (Figure 1.4) and motif retention (Figure 1.5) in mammals. We hypothesize that these data 

layers likely follow a more complex decay model, but we did not want to explore this with our 

current data set to avoid over-fitting.  
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The power of this statistical framework was assessed by simulating data for two lineages 

with measure of cross-species similarity decaying exponentially at different rates over time 

(Supplementary Figure S1.2). We fixed one lineage to decay at set rates: -0.007, -0.005 and -

0.003. We fixed the second lineage to be faster by a range of given differences. Over 1,000 

simulations, we sampled two values from a normal distribution centered on the expected values 

from the set exponential decay rates corresponding to the evolutionary distances shown in Figure 

1.4b, with standard deviations set at 0.5% or 5%. Our framework detected an absolute rate 

difference of 0.001 at 39.3% of simulations and an absolute rate difference of 0.003 in 88.9% of 

simulations when the standard deviation was high (5%). When the standard deviation was low 

(0.5%), our framework detected an absolute rate difference of 0.001 in 25.7% of simulations and 

an absolute rate difference of 0.003 in 100% of simulations. 

Gene expression evolutionary rates (related to Figure 1.4). Analysis of gene expression 

evolutionary rates was performed in four steps. First, we preprocessed the raw RNA sequencing 

data downloaded for public data sources. Second, we quantified the abundance of all annotated 

transcripts corresponding to protein-coding genes. Third, we estimated cross-species similarity by 

correlating transcript abundances at the genome-scale. Finally, we used these cross-species 

similarity estimates as input to our statistical framework to evaluate a common model against a 

lineage-aware model.  

RNA sequencing data was first preprocessed using FastQC 

(www.bioinformatics.babraham.ac.uk/projects/fastqc/) and Trimmomatic (Bolger, Lohse, and 

Usadel 2014). In order to quantify transcript abundances, we then used the program Sailfish (Patro, 

Mount, and Kingsford 2014) to 1) build transcriptome indices for each species using the 

transcriptome sequences described above, using the parameters “-p 8 -k 20”; 2) quantify transcript 
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abundance using the transcriptome indices with the parameters “-p 8 -l ‘T=PE:O=><:S=U’ “ for 

samples with paired-end reads and “-p 8 –l ‘T=SE:S=U’ ” for samples with single-end reads. The 

bias-corrected transcripts per million (TPM) abundances estimated by Sailfish were then summed 

over the transcripts corresponding to the same gene locus.  

To estimate cross-species similarities in gene expression levels, for each lineage, we used 

R (R Development Core Team 2011) to build a matrix containing the gene expression values for 

all the protein-coding genes of the reference organism and their one-to-one orthologs across other 

organisms within each lineage. We discarded instances where the abundance of a particular gene 

locus was less than or equal to 5 TPM. We then calculated the Spearman’s rank correlation for the 

expression of all genes between the reference and all other organisms within each lineage and 

plotted these correlations as against the evolutionary distance separating each organism pair 

(Figure 1.3). We also repeated the calculations using Kendall’s rank correlation coefficient and 

Pearson’s product-moment correlation on log2-transformed expression values (Supplementary 

Figure S1.5a, b). Finally, we calculated Spearman’s correlations among all genes including those 

with less than 5 TPM (Supplementary Figure S1.5c). All these scenarios were evaluated using 

our statistical framework. None indicated that a lineage-aware model described the data better than 

a common model. 

GSTF Occupancy – Segment-resolution (related to Figure 1.4a-d). The first step of all our 

occupancy analyses was to align the ChIP-seq reads to the corresponding genomes in order to 

obtain occupancy profiles (Figure 1.4a). For each accession (Supplementary Table S1.1), the 

sequencing reads were aligned to reference genomes using Bowtie2 version 2.2.4 (Langmead and 

Salzberg 2012) with the parameters “-very-sensitive -N 1.” Reads containing the 'XS:' field (multi-

mappers) were removed. Reads having the same start site were presumed to be PCR duplicates 
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and removed using the “rmdup” command of SAMtools version 1.1 (Li et al. 2009). The filtered 

reads were then converted to tagAlign format. The tagAlign files corresponding to CEBPA, 

HNF4A, FOXA1, Twist and Giant were then processed using 108 different segment-resolution 

methods and one nucleotide-resolution method; the tagAlign files corresponding to CTCF were 

only processed using the nucleotide-resolution method. The nucleotide-resolution method is 

described below and relates to Figure 1.4e-f. 

The aim of our segment-resolution analyses was to examine how robust the evolution of 

GSTF binding patterns was across 108 different analysis pipelines (Figure 1.4a-d). We 

implemented all these pipelines, which follow the same general framework and differ only in the 

choice of 5 parameters, described and underlined below.  

First, the occupancy profiles in the tagAlign files were discretized into candidate occupied 

segments using a peak caller algorithm that aims at identifying segments where the ChIP sample 

is enriched in reads relative to the control sample. We implemented two peak callers: MACS 

version 2 (M) (Zhang et al. 2008) and SPP (S) (Kharchenko, Tolstorukov, and Park 2008). 

The occupied segments were then selected from the candidate set using a quality filter: 

stringent (S), lenient (L) or asymmetric (A). When using MACS2 (Zhang et al. 2008) as a peak 

caller, lenient segments were called using a p-value cutoff of 10-5 (default) and merged across 

replicates when available using the merge function in BEDTools (Quinlan and Hall 2010). 

Stringent segments were called using a p-value cutoff of 10-22 and intersected across replicates 

when replicates were available. The intersection procedure, inspired from (Stefflova et al. 2013), 

used BEDTools (Quinlan and Hall 2010) to implement the following two steps: 1) merge the two 

replicates 2) select the merged segments corresponding to at least one segment in each original 

replicate. When using SPP (Kharchenko, Tolstorukov, and Park 2008) as a peak caller, lenient 
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segments were called using a q-value of 10-2 (default), and merged across replicates when available 

(Quinlan and Hall 2010). Stringent segments were called by selecting all candidate segments 

assigned to the lowest possible q-value in the sample, then intersected across replicates when 

available using the same intersection procedure. The asymmetric quality filter, inspired by (He, 

Bardet, et al. 2011, Bardet et al. 2012), indicates that segments were called stringently in the 

reference species and leniently in the other organism.    

The coordinates of the occupied segments called in the reference organism were projected 

onto the other organism’s genome using the LiftOver tool from the UCSC genome browser 

(Rosenbloom et al. 2015) and specifying a sequence similarity filter through the minMatch 

parameter. We used 3 different minMatch thresholds: stringent (S: 0.95 default), lenient (L: 0.5), 

and none (N: 0.001). 

After cross-species coordinate projection, a reference subset was chosen to define the set 

of reference-occupied segments that would be further analyzed. Three choices were implemented: 

all reference-occupied segments independently of whether they map to any other species (A); for 

each pair of species, only reference-occupied segments with a homolog in the second species (P); 

only reference-occupied segments that had homologs across all the other species considered within 

the lineage (S). 

 The projected coordinates of the reference subset were then overlapped with the 

coordinates of the occupied segments in the other species using the intersect function in BEDTools 

(Quinlan and Hall 2010). The overlap requirement was either lenient (L; default parameter of 1 

bp) or stringent (S; required a reciprocal overlap of half of the segments length: “ -f 0.5 -r”).  

We systematically executed all combinations of the aforementioned 2 peak callers, 3 

quality filters, 3 sequence similarity filters, 3 reference subsets, and 2 overlap requirements, 
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yielding a total of 108 pipelines. The output of each pipeline was the fraction of reference subset 

segments that overlapped segments occupied in the others species (i.e. segments retaining 

occupancy between the two species). This output was used as a cross-species similarity measure 

for GSTF binding patterns. We analyzed these similarity measures for 6 pairs of GSTFs (Twist 

and Giant were each compared to FOXA1, CEBPA and HNF4A) using our statistical framework. 

Two GSTFs were considered to diverge differently from each other over time when 1) the 

significance of the test was less than 0.05 and 2) the effect size was greater than 0.05. In summary 

we found that the choice of parameters greatly influenced what the evolutionary dynamics of a 

given GSTF looked like (Figure 1.4b-c) but that in general the rate of divergence of mammal and 

insects GSTFs were statistically indistinguishable (Figure 1.4d). The results of these tests for all 

GSTF pairs considered across 108 pipelines are reported in Supplementary File S1.2 and 

summarized as pie-charts in Figure 1.4. Observations about general trends of parameters and 

evolutionary divergence are further elaborated in Supplementary File S1.3.   

GSTF Occupancy – Nucleotide-resolution (related to Figure 1.4e-f). In order to compare 

occupancy profiles directly without discretizing them into occupied segments and unoccupied 

segments, we correlated sets of imputed fragment density vectors across species. The inputs to this 

method were the tagAlign files described above. To generate these vectors we first estimated the 

mean fragment size using a method adapted from (Kharchenko, Tolstorukov, and Park 2008), 

whereby the mean fragment size is computed as the number of base pairs of offset between the 

positive and negative strands that maximizes the Pearson correlation coefficient of their mapped 

read density. We used a modified approach that considered only the density of 5' read start sites 

on each strand, rather than the density of the entire read. The first peak of the cross-correlation 

values was identified by approximating the first derivative by the finite difference method, 
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smoothing the derivative values with a Gaussian kernel of bandwidth 10, and identifying the first 

downward zero-crossing of the curve. This position was used as the estimated mean fragment size 

L. We created imputed fragments by extending each read start site by L base pairs in the 3' 

direction. We then calculated a fragment density vector for each chromosome as the number of 

such imputed fragments that overlap each genomic position. When multiple replicates were 

available, replicates were merged by adding the fragment density vectors. 

In order to minimize bias introduced by the presence of unmappable regions, we 

implemented a masking scheme that adaptively normalizes each dataset depending on the read 

length and estimated fragment size of each sequencing run. First, all possible error-free reads of a 

given length were generated synthetically and aligned back to the genome using Bowtie2 2.2.4 

with the following parameters: “-r -N 0 -D 0 -R 0 --dpad 0 --score-min `C,0,-1`”. Any multi-

mapping reads with the ‘XS:’ flag were removed and the 5’ and 3’-most positions of the remaining 

read alignments recorded. The imputed fragment densities computed from the ChIP data were then 

normalized by dividing the density at each position by the fraction of positions within L base pairs 

upstream that were covered by the start site (5’ for positive-strand density and 3’ for negative-

strand density) of a uniquely-mapped genomic read. Positions with 0 uniquely-mappable read start 

sites within L base pairs upstream regions were excluded from further analysis.  

In order to compare between species, we transferred data from query organisms to the 

reference genome using the one-to-one filtered chain files described previously, and calculated the 

Pearson’s correlation between the concatenated chromosome vectors of reference and reference-

mapped query data. The evolution of the correlation was modeled and compared using the 

statistical framework described above. 
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Genome sequence evolutionary rates (related to Figure 1.2 and Figure 1.5c-d). We defined 

the cross-species similarity of genomic sequences as the percentage of randomly sampled 

segments retaining homology. Within the genomes of the reference species, we delineated the 

boundaries of the regions from which to sample: whole genome (Figure 1.2; Supplementary 

Figure S1.4), intergenic regions in accessible chromatin and intergenic regions in inaccessible 

chromatin (Figure 1.5; Supplementary Figure S1.8). We used the BEDTools shuffle (Quinlan 

and Hall 2010) to randomize the locations of 5,000 segments of 75 bp length within the delineated 

boundaries using the option “-noOverlapping.” The resulting 5,000 shuffled segments were then 

mapped across species using the LiftOver tool with minMatch parameter 0.001 (Rosenbloom et 

al. 2015). We then calculated the percentage of segments that were successfully mapped (i.e., 

retained homology), excluding segments that mapped to a region longer than 1000bp. The entire 

simulation was repeated 20 times, starting each time with different sets of 5,000 segments. The 

percentages of segments retaining homology were recorded for each of the 20 simulations, and 

averaged for each pair of species. These averages were plotted and used as inputs for our statistical 

framework. Varying the minMatch parameter of the LiftOver tool to 0.5 and segment length to 

150 bp allowed us to verify that the observed trends were robust to sequence similarity thresholds 

and length sampled (Supplementary Figure S1.4; Supplementary Figure S1.8). 

Nucleotide substitution rate within retained genomic segments (related to Supplementary 

Figure S1.3). The nucleotide sequences of the genomic segments from Figure 1.2 that retained 

enough homology to undergo a pairwise alignment were extracted using the getfasta function of 

BEDtools (Quinlan and Hall 2010). These sequences were then pairwise aligned using EMBOSS 

suite’s implementation of Smith-Waterman local alignment (Rice, Longden, and Bleasby 2000). 

Default values for gap open penalty (10), gap extend penalty (0.5) and scoring matrix 
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(EDNAFULL) were used to dynamically choose the best local alignment between reference and 

query sequences. For each cross-species comparison, we calculated the average percent identity of 

the ungapped alignments of all the segments across 20 randomizations. This procedure yielded 

values similar to those described previously for the mouse-human (Mouse Genome Sequencing et 

al. 2002) and Drosophila melanogaster – Drosophila pseudoobscura comparisons (Richards et al. 

2005). The average percent identity of ungapped alignments were used as inputs for our statistical 

framework, revealing that a model that incorporates lineage labels significantly improved fit to the 

data relative to a common model (P < 0.05; Supplementary Figure S1.3).  

Motif evolutionary rates (related to Figure 1.5a-b). Using the FIMO tool (Grant, Bailey, 

and Noble 2011) in the MEME suite (Bailey et al. 2009), the genomes of D. melanogaster and M. 

musculus domesticus were scanned for matches to experimentally-determined position-weight 

matrixes  corresponding to the GSTFs of interest. Motif matches were called significant according 

to the default threshold of FIMO, P<10-4. The genomic coordinates of significant motif matches 

were mapped to the other species within the same lineage using LiftOver (minMatch 0.001). The 

corresponding coordinates (Mapped) were then extended by 50 bp, and the resulting segments 

were scanned for motif occurrence (Mappedwithmotif). In order to estimate background 

expectation, we randomly shuffled the locations of the Mapped segments and scanned these 

shuffled segments for motifs (ShuffledMappedwithmotif). The percentage of motifs retained 

relative to background was calculated as: 

𝐹 =
𝑀𝑎𝑝𝑝𝑒𝑑𝑤𝑖𝑡ℎ𝑚𝑜𝑡𝑖𝑓 − 𝑆ℎ𝑢𝑓𝑓𝑙𝑒𝑑𝑀𝑎𝑝𝑝𝑒𝑑𝑤𝑖𝑡ℎ𝑚𝑜𝑡𝑖𝑓

𝑀𝑎𝑝𝑝𝑒𝑑 ∗ 100 

The percentages F were then used as measures of cross-species similarity to estimate whether a 

lineage-aware model would describe the evolution of DNA binding motifs better than a common 

model (Supplementary Figure S1.7).
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1.6 Figures 

 
 
Figure 1.1: Statistical framework to evaluate differences in evolutionary rates of change.  
Throughout this study we frequently evaluated whether the rate of evolutionary divergence of a 
given layer of transcriptional regulation differs between lineages. Our approach is equivalent to 
asking: if the lineage labels were hidden, would one be able to tell that the data points correspond 
to several lineages or would they seem equally likely to belong to a common distribution? (a, b) 
Depict an example of statistically indistinguishable evolutionary rates. Without lineage labels (a), 
the similarity data are modeled by an exponential decay as well as with lineage labels (b). Adding 
lineage labels does not significantly improve the fit. (c, d) Depict an example of statistically 
different evolutionary rates. Adding lineage labels (d) significantly improves the fit of an 
exponential decay model over unlabeled data (c).
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Figure 1.2: Genomic sequences evolve more rapidly in mammals than in birds and insects.  
The evolutionary retention of 5,000 randomly sampled 75 bp segments was averaged over 20 trials. 
Organisms compared to reference species are as follows: M. musculus domesticus (AJ), M. 
musculus castaneus, M. spretus, rat, guinea pig, rabbit, human, chimpanzee and dog for 
Mammalia; turkey, zebrafinch and flycatcher for Aves; D. simulans, D. erecta, D. yakuba, D. 
ananassae, D. pseudoobscura, D. virilis, D. willistoni and D. Grimshawi for Insecta. Colored 
dashed lines: lineage-specific exponential fits, here and in all following displays. The trends were 
robust to variations in segment length and sequence similarity filters (Supplementary Figure 
S1.4).
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Figure 1.3: Gene expression levels diverge at a common rate in mammals, birds and insects.  
Gene expression levels were derived independently from two RNA-seq experiments for each 
reference species and then correlated against each other and against gene expression levels derived 
from individual experiments in other species within the same lineage. Black dashed line: lineage-
naïve exponential fit of all the data, without differentiating the lineages, here and in all following 
displays. Organisms compared to reference species are as follows: M. musculus castaneus, M. 
spretus, rat, human and gorilla for Mammalia; turkey, duck and flycatcher for Aves; D. simulans, 
D. yakuba, D. ananassae and D. pseudoobscura for Insecta.
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Figure 1.4: GSTF occupancy diverges at a common rate in mammals and insects.  
a, Estimating shared GSTF occupancy across species requires multiple parameter choices. This 
diagram summarizes the main steps involved in comparing GSTF-occupied segments across 
species, showing a representative sample of choices at each step (steps represented by purple 
shapes, specific choices by the first letter bolded). The detailed methods and specific choices 
illustrated here and implemented in panels b – d are described in Methods. b, c, An example of 
different analytical choices leading to different results despite starting from the same underlying 
data. Organisms compared to reference species are as follows: M. musculus domesticus (AJ), M. 
musculus castaneus, M. spretus, rat, human and dog for Mammalia; D. simulans, D. erecta, D. 
yakuba, D. ananassae and D. pseudoobscura for Insecta. d, Most combinations of choices yield 
indistinguishable evolutionary rates of GSTF binding patterns across lineages. The comparison of 
Twist and CEBPA is enlarged to show the color labels corresponding to the statistical 
interpretation regarding relative evolutionary rates. e, A genome-wide comparison of GSTF 
occupancy profiles at single-nucleotide resolution shows indistinguishable evolutionary rates for 
CEBPA, HNF4A and FOXA1 in mammals and for Twist and Giant in insects. PCC: Pearson 
correlation coefficient. f, CTCF occupancy is highly conserved in mammals. Transparent points 
and lines are identical as panel e. Hexagons correspond to cross-species correlations of CTCF 
occupancy at single-nucleotide resolution.  
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Figure 1.5: Regulatory sequences diverge at similar rates across lineages. 
a, The motifs for CEBPA, HNF4A and FOXA1 in mammals and for Twist and Giant in insects 
are retained at a common rate. Organisms compared to reference species are the same as Figure 
1.4. b, The motifs for GSTFs shared in mammals and insects are retained at common rates. One 
example is shown here for the motifs corresponding to PHO (FBgn0002521) in D. melanogaster 
and YY1 (ENSMUSG00000021264) in M. musculus, which are orthologous GSTFs. Eleven other 
cases of motif evolution for shared GSTFs conserved in mammals and insects are shown in 
Supplementary Figure S1.7. Organisms compared to reference species are as in Figure 1.4. c, d, 
Chromatin-accessible sequences are retained at similar rates in mammals, birds and insects. 
Analyses were performed as in Figure 1.2, limiting sampling to the inaccessible (c) and accessible 
(d) portions of the intergenic regions. Organisms compared to reference species are the same as 
Figure 1.2. The trends were robust to variations in segment length and sequence similarity filters 
(Supplementary Figure S1.8).
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 1.7 Supplementary figures 

Supplementary Figure S1.1: Comparative genomics platform for studying transcriptional 
network evolution across three metazoan lineages.  
The phylogenetic trees indicate the evolutionary relationships between the organisms included in 
this study. The trees are not drawn to scale. The numbers at each branch split represent the 
evolutionary distance in Myrs separating the organisms at the end of the lower branch from the 
reference species, whose names are bolded. 
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Supplementary Figure S1.2: Power of the statistical framework to evaluate differences in 
evolutionary rates.  
a-c, Depict the sensitivity of our statistical framework to detect differences in 1000 simulations. 
The initial rates of one clade was fixed to either -0.007 a, -0.005 b, or -0.003 c, and data were 
simulated by modeling an exponential decay where samples were drawn from a Gaussian 
distribution with standard deviation fixed to 0.5% or 5%. The second clade’s rate was modeled 
according to the absolute difference in rates with steps shown in the x axis and sampled similarly 
as for the first clade. Simulated data were used as input to our statistical framework and the 
frequency of detecting a significant difference is shown.
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Supplementary Figure S1.3: Genomic segments retaining homologs are highly conserved at 
the nucleotide level.  
The genomic segments found to retain homologs in Figure 1.2 were aligned to their homologous 
regions. The average nucleotide identity of the corresponding ungapped alignment is shown here. 
Evolutionary rates are slightly but significantly different among lineages (P < 0.05). 
  



39 
	

 
Supplementary Figure S1.4: Retention of genomic segments is robust to changes in sampled 
region size and sequence identity threshold.  
The evolutionary retention of 5000 randomly sampled 75 bp segments was averaged over 20 trials. 
Organisms compared to reference species are as follows: M. musculus domesticus (AJ), M. 
musculus castaneus, M. spretus, rat, guinea pig, rabbit, human, chimpanzee and dog for 
Mammalia; turkey, zebrafinch and flycatcher for Aves; D. simulans, D. erecta, D. yakuba, D. 
ananassae, D. pseudoobscura, D. virilis, D. willistoni and D. grimshawi for Insecta. Colored 
dashed lines: lineage-specific exponential fits, here and in all following displays. The trends were 
robust to variations in segment length and sequence similarity filters. 
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Supplementary Figure S1.5: The common evolutionary rate of gene expression levels 
presented in Figure 1.3 is robust to changes in correlation metrics or expression threshold.  
a-b, The gene expression levels used in Figure 1.3 were correlated with alternative correlation 
metrics, Kendalls τ (a) and Pearson’s r (b). The resulting evolutionary rates remained statistically 
indistinguishable. (c) The gene expression level of all genes were analyzed rather than excluding 
the values below 5 TPM as was done in Figure 1.3. The resulting evolutionary rates remained 
statistically indistinguishable. 
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Supplementary Figure S1.6: Measured GSTF binding divergence rates are influenced by 
parameter choices.  
(a) The pie chart on the left shows the frequency at which either the mammalian or insect GSTF 
was found to evolve faster for 648 comparisons using different combinations of analytical choices. 
The majority of comparisons showed indistinguishable rates. The stacked histograms indicate how 
often a parameter was used when a difference in divergence rate was detected. For instance, 
106/150 cases where Mammalia factors decayed significantly faster used MACS2 as a peak caller 
, whereas 49/59 cases of Insecta GSTF decaying faster used SPP. Interestingly, asymmetric quality 
filters showed an enrichment for Mammalia GSTFs decaying faster (84/150) as well as for Insecta 
GSTFs decaying faster (33/59). (b) Boxplots showing general influence of parameter choices on 
individual decay rates of Insecta (top) and Mammalia (bottom). Only instances when a significant 
fit was detected are considered. For example, for mammalian GSTFs, stringent quality filters 
yielded slightly faster decay rates than asymmetric or lenient quality filters. Summary of all 
parameter choices and the results are shown in Supplementary File S1.2. These parameters are 
further elaborated in Figure 1.4 and Supplementary File S1.4. 
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Supplementary Figure S1.7: Conservation of cis-regulatory motifs for GSTFs conserved 
across insects and mammals.  
(a) Seven shared GSTFs whose motifs are retained at indistinguishable rates in mammals and 
insects. The evolution of these motifs behave similarly to that of the example shown in Figure 1.5. 
(b) Four conserved GSTFs whose motifs are retained at different rates in mammals and insects. 
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Supplementary Figure S1.8: Retention of intergenic genomic segments in accessible- and 
inaccessible-chromatin is robust to changes in sampled region size and sequence identity 
threshold.  
(a, b) Repeating the procedure used in Figure 1.5c and Figure 1.5d sampling segments of different 
length (150 bp) and (c, d) increasing the LiftOver minMatch (0.5).  
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1.8 Supplementary tables & files 

 
Supplementary Table S1.1: Published ChIP-seq studies comparing binding locations of 
GSTFs in closely related metazoans used different technical methodologies to estimate 
divergence rates. 
This table lists variations of five parameters used to identify occupied segments and compare their 
locations across species by the original studies that generated the ChIP-seq data we have 
reprocessed in our study. We only summarize this set of five parameters (peak caller, quality filter, 
sequence similarity filter, reference subset, overlap requirement) because those are the focus of 
our re-analyses (Figure 1.4). For more details on the specific method, please see the original study.  
 

Lineage GSTF Peak caller Quality filter 
Sequence 
similarity 

filter 
Reference 

subset 
Overlap 

requirement Study 

Insects GIANT MACS Relative None Pairwise-
synteny Stringent Bradley et al. PLoS 

Biology, 2010  

Insects TWIST MACS Asymmetric Stringent All Stringent He et al. Nature 
Genetics, 2011 

Insects GIANT MACS and 
Grizzly Peak Lenient None Multiple 

choices Lenient Paris et al. PLoS 
Biology, 2013 

Mammals CEBPA, 
HNF4A SWEMBL Stringent None Super-synteny Lenient Schmidt et al. Science, 

2010 

Mammals 
CEBPA, 
HNF4A, 
FOXA1 

SWEMBL Stringent None All Lenient Stefflova et al. Cell, 
2013 
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Supplementary Table S1.2 Accession numbers used in RNA-seq analyses.  
Species Accession* 
M. musculus domesticus (C57BL/6) ERR185942  
M. musculus domesticus (CD1) SRR908295  
G. gallus (red junglefowl) SRR306720 
G. gallus (broiler) SRR998879  
D. melanogaster  SRR166808  
D. melanogaster  SRR030231 
M. castaneus ERR120692 
M. spretus  ERR476403 
R. norvegicus  SRR1178064  
H. sapiens  ENCFF283RUU, ENCFF187OKV 
G. gorilla  SRR306809  
D. simulans SRR166812  
D. yakuba  SRR166821  
D. ananassae  SRR166825  
D. pseudoobscura  SRR166829 
M. gallopavo  SRR1334841  
A. platyrhynchos  SRR064720  
F. albicollis  ERR168726,ERR168727,ERR168728,ERR168729,ERR168730  

*’,’ across multiple accession numbers indicates that these accession numbers were concatenated to form 
a single sample, otherwise only one accession number was used as a sample  
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Supplementary Table S1.3: Parameters used to build chain files among vertebrate genomes 
The table depicts the order in which tools were used to generate chain files (Methods) along with 
their specific parameters (starting with lastZ). We further note that we generated pairwise 
alignments for mice using chromosomes that were named the same. For Aves, we generated all 
pairwise alignments of designated G. gallus reference chromosomes with all scaffolds in the other 
Aves species 

Tool Mice parameters Birds parameters Description 

lastZ 
--notransition --nogapped --
format=lav --hspthresh=6000 --
step=100 --progress 

--transition=1 --format=lav --
hspthresh=3000 --
gappedthresh=3000 --
inner=2000 --masking=50 

Generates pairwise alignments between chromosomes 

lavToPsl N/A N/A Converts lav format to psl format 

axtChain -linearGap=loose -psl -linearGap=medium -
minScore=3000 -psl Chains alignments together 

chainMergeSort | 
chainSplit -lump=50 -lump=50 Combines sorted files into larger sorted files, and splits 

the chains by target/query sequence 

chainNet default default Makes alignment nets out of chains 

netChainSubset default default Creates a chain file with subset of chains that appear 
in the net 

Custom python 
script to filter 
chains 

chainscoremin=5000000000 not done Filters chains to keep the best chain, one per 
chromosome -- only done with mouse alignments 

 
Supplementary File S1.1: Accession numbers used in ChIP-seq analyses 
Data shows the results of each analytical pipeline, and whether the fit was considered significant 
or insignificant. 
 
Supplementary File S1.2: 648 segment-based ChIP analyses 
Data shows the results of each analytical pipeline, and whether the fit was considered significant 
or insignificant. 
 
Supplementary File S1.3: Influence of parameters choices when assessing GSTF binding 
divergence at segment resolution in mammals and insects. 
This file contains text that further elaborates the results observed when assessing various analytical 
frameworks to analyze transcription factor evolution. 
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CHAPTER 2: Epigenetic aging signatures in mice are slowed by dwarfism, calorie 

restriction and rapamycin treatment 

 

2.1 Abstract 

Background. Global but predictable changes impact the DNA methylome as we age, acting 

as a type of molecular clock. This clock can be prematurely advanced by conditions that decrease 

lifespan, raising the question of whether it can also be slowed, for example by conditions that 

increase lifespan. Mice are particularly appealing organisms for studies of mammalian lifespan; 

however, epigenetic clocks have thus far been formulated only in humans.  

Results. We first examine whether mice and humans experience similar patterns of change 

in the methylome with age. We find moderate conservation of CpG sites whose methylation is 

altered with age, with both species showing an increase in methylome disorder during aging. Based 

on this analysis, we formulate an epigenetic-aging model in mice using the liver methylomes of 

107 mice from 0.2 to 26.0 months old. To examine whether epigenetic aging signatures are slowed 

by longevity-promoting interventions, we analyze 28 additional methylomes from mice subjected 

to lifespan-extending conditions, including Prop1df/df dwarfism, calorie restriction or dietary 

rapamycin. We find that mice treated with these lifespan-extending interventions are significantly 

younger in epigenetic age than their untreated, wild type age-matched controls. Thus, age-related 

methylation changes are mitigated by dwarfism, calorie restriction and rapamycin treatment.  

Conclusions. This study shows that lifespan-extending conditions can slow molecular 

changes associated with an epigenetic clock.  
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2.2 Introduction 

In humans, numerous CpG sites have DNA methylation states that correlate with age. 

These associations have been used to formulate models, called epigenetic clocks, that make 

quantitative predictions of age based on selected sets of CpG sites (Hannum et al. 2013; S. Horvath 

2013; Weidner et al. 2014). These models are derived from the methylation profile of many 

individuals measured using oligonucleotide arrays, such as the Illumina 450K platform, which 

determines the levels of  methylation value at >450,000 CpG sites genome-wide. Although the age 

predictions of these molecular models are generally very accurate across the human population, 

for particular individuals the prediction can be markedly different from the actual chronological 

age. For example, an advanced molecular age relative to chronological age has been associated 

with a number of diseases, such as obesity, viral infection and Down syndrome (S. Horvath et al. 

2014; Gross et al. 2016; Steve Horvath et al. 2015). Furthermore, a recent retrospective analysis 

of longitudinal cohort studies has shown that a molecular age advancement of 5 years 

corresponded to a 21% increased risk of mortality overall (Marioni et al. 2015). Thus, predictions 

of “epigenetic age” may be an indication of an individual’s biological state of aging. 

Beyond these examples of advanced epigenetic aging, a complementary but unanswered 

question is whether epigenetic clocks can also be slowed. Epigenetic aging studies in humans have 

not been well-suited to address questions of slowed aging, given the lack of well-documented 

interventions that enhance health or lifespan and the difficulty of controlling for confounding 

factors. On the other hand, rodents are particularly appealing experimental organisms in studies of 

mammalian aging, since they are genetically tractable and can be subjected to potential lifespan-

extending interventions. The earliest described such intervention, calorie restriction, was shown to 

extend rodent lifespan by as much as two-fold (McCay et al. 1935). These findings have since 
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been replicated in numerous mouse strains (Means, Higgins, and Fernandez 1993). Another well-

studied lifespan-extending condition is a single-point mutation in the Prop1 gene that results in 

dwarfism and lifespan extension up to 1.5-fold (Brown-Borg et al. 1996). These effects are likely 

due to reduced somatotropic signaling (Bartke and Brown-Borg 2004). A more recently described 

treatment, dietary rapamycin, has been reported to increase lifespan of genetically heterogeneous 

mice by 1.2-fold  (Miller et al. 2014). 

Despite these known lifespan-extending interventions, an epigenetic clock has not yet been 

formulated for mice. Nonetheless, mouse methylation signatures can now be analyzed genome-

wide using either Reduced Representation Bisulfite Sequencing (RRBS) or Whole Genome 

Bisulfite Sequencing (WGBS) (Laird 2010). Using such data, previous studies have suggested that 

mice might experience patterns of epigenetic aging similar to those documented in humans 

(Avrahami et al. 2015; Sun et al. 2014; Spiers et al. 2016). For instance, CpG methylation sites 

distinguish young versus old mouse hematopoietic stem cells (Beerman et al. 2013), and CpG 

methylations altered in murine acute myeloid leukemia are also found to change with age 

(Maegawa et al. 2014). These findings suggest that an epigenetic measure of age is plausible for 

mice. 

Here, we ask if conditions that extend mouse lifespan – Prop1df/df dwarfism, calorie 

restriction and dietary rapamycin – also affect a mouse epigenetic clock. It is possible that these 

lifespan-extending conditions operate independently of the changes that underlie an epigenetic 

clock, which would then proceed at a normal rate despite these interventions. To distinguish 

between these possibilities, we first assess whether there are similarities between mice and human 

epigenetic aging. We then formulate epigenetic readouts of age that are used to score the effect of 

lifespan-extending interventions.
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2.3 Results 

Age-related methylation changes share common behavior in mouse and human. First, we 

assessed the similarities of age-related methylome changes between mice and humans. For this 

purpose, we obtained publicly available mouse methylation data from Reizel et al. (Reizel et al. 

2015) consisting of RRBS from livers of 102 male or female C57BL/6 mice ranging in age from 

0.2 to 7.1 months. These data were filtered to identify sites that were reliably measured with 

sufficient sequencing depth in most mice (Methods), yielding 36,094 CpG sites total.  

To compare these sites to human, we found that 27,612 CpG sites were conserved in 

humans. Next, we obtained publicly available methylation data from 164 human livers that were 

generated using 450K Illumina methylation arrays (Ahrens et al. 2013; S. Horvath et al. 2014). 

We identified 2,634 CpG sites that were assayed in both the human Illumina arrays and were 

orthologous from the set of filtered sites from mouse RRBS (Figure 2.1a). From this orthologous-

profiled space, we identified 88 age-associated sites in mice (for which the methylation status had 

a significant association with age) and 176 age-associated sites in humans (Figure 2.1a, likelihood 

ratio test at 1% FDR, see Methods). Among these, we saw slight but significant overlap between 

sites that were age-associated in mice versus sites that were age-associated in humans (Figure 

2.1a) (p < 0.01 by hypergeometric test). Notably, the age-associated sites in both species showed 

similar under/over enrichments in various genomic annotations, including regions marked by 

histones (H3K27me3, bivalent and H3K9ac). However, different genomic regions were associated 

with statistical significance in mice and humans, with only H3K27ac regions significantly under-

enriched in both species (Supplementary Figure S2.1). Thus, it seems that age-associated CpG 

sites in mice and humans are moderately conserved with respect to various genomic regions 

affected. 
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Previous methylation studies of whole blood in humans have observed increasing entropy 

with age (Hannum et al. 2013; Gross et al. 2016). Increasing entropy indicates that, during aging, 

the state of each CpG becomes less uniform across the cell population [1]. We asked if this trend 

of increasing disorder of age-associated CpG sites in the methylome also existed in mice and 

human livers, regardless if a particular site was sampled in both species. We saw that, in both mice 

and human, the age-associated regions of the methylome tended towards higher disorder (Figures 

2.1b,c). This suggests that a trend towards disorder over time is a conserved property of aging in 

mammals. 

Development of an epigenetic clock in mice. Motivated by the shared patterns affecting 

the aging epigenome in mice and humans, we next formulated an epigenetic clock for mice. 

Towards this goal, we created a consolidated mouse liver methylome dataset combining two 

previous studies (Reizel et al. 2015; Gravina et al. 2016) with data newly generated in this study 

(Supplementary File S2.1). This consolidated dataset consisted of 107 liver methylomes of mice 

aged 0.2 to 26.0 months old (Supplementary Figure S2.2a), covering a total of 7,628 CpG sites 

that were detected in nearly all samples (Methods). Normalization with ComBat (Leek et al. 2012; 

Johnson, Li, and Rabinovic 2007) was used to estimate and remove effects resulting from the 

different sequencing technologies (RRBS and WGBS) and mouse strains (Ames, C57BL/6 and 

UM-HET3) used in this integrated dataset (Methods). To train a predictive model of mouse age, 

which can be used as an epigenetic clock, we then applied ElasticNet (Zou and Hastie 2005), a 

statistical regression framework used previously to formulate epigenetic clocks in humans 

(Hannum et al. 2013; S. Horvath 2013). This training process selected a subset of 148 CpG sites 

for an epigenetic clock in mice livers (Supplementary File S2.2).  

We pursued two different strategies to assess predictive performance. First, we performed 
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four-fold cross validation, in which the 107 mice used for training were arbitrarily divided into 

four sets of comparable sizes. Each of these sets was withheld, in turn, from model training and 

instead used to test the performance of the trained model. In this cross-validation scenario, we 

found that the ages of the test sets were accurately predicted with a correlation ranging from 83% 

to 92% (average r = 0.91; Figure 2.2a). Second, we tested the performance of the model when 

predicting age from the liver methylomes of 50 mice that had not been used for model training or 

cross validation (spanning three mouse strains and two ages, 2 and 22 months, Supplementary 

File S2.1: Datasets used summary). Predicted epigenetic ages were well correlated with 

chronological ages (Figure 2.2b) and did not show any strain-specific effects: 2-month-old Ames 

wild type, UM-HET3 and C57BL/6 mice had roughly the same epigenetic age; the same was true 

for 22-month-old Ames wild type and untreated UM-HET3 mice (Supplementary Figure S2.2b, 

Supplementary File S2.3: Wild type mice predictions & stats).  

Lifespan extension slows epigenetic aging. We next examined in greater detail the behavior 

of the 148 CpG sites used as features by principal component analysis (Supplementary Figure 

S2.3A). The first principal component of these features (PC1) correlated strongly with age, and 

PC1 values of mice subjected to lifespan-extending treatments were always less than PC1 values 

of age-matched controls (Figures 2.3a,b, Supplementary Figure S2.3a, Supplementary Table 

S2.1).  

We next applied the epigenetic-aging model to WGBS data generated for mice subjected 

to various lifespan-extending conditions (Methods, Supplementary File S2.1: Datasets used 

summary & Supplementary File S2.3: Long-lived mice predictions). This analysis included 

methylomes from Prop1df/df dwarf mice aged 2 or 22 months (Brown-Borg et al. 1996), with four 

in each group, four calorie-restricted mice aged to 22 months, and four rapamycin-treated mice 
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aged to 22 months (Miller et al. 2014). We found that the predicted epigenetic ages of these long-

lived mice were significantly less than those of age-matched control mice (Figure 2.3c). 

Reinforcing this observation, such differences were also detected by an ANOVA statistical 

analysis between the lifespan-extending conditions versus control mice aged to 22 months (p < 10-

4, Methods, Supplementary File 2.3: Treatment vs wild type stats). In particular, an average 

reduction of 10.1 months was seen when comparing the epigenetic ages of 22-month-old dwarf 

mice to 22-month-old wild types (p < 0.01 by t-test, Figure 2.3d). Similar reductions in epigenetic 

ages were observed in calorie-restricted mice versus their age-matched controls, corresponding to 

a 9.4-month decrease on average (p < 10-4, Figure 2.3d). Rapamycin-treated mice had a smaller, 

but significant effect on epigenetic ages, which corresponded to a 6.0-month decrease on average 

compared to their age-matched controls (p < 0.05, Figure 2.3d). Finally, 2-month-old dwarf mice 

also had reduced epigenetic ages compared to 2-month-old wild type mice, by 1.5 months on 

average (p < 10-3, Figure 2.3d). These results are consistent with the smaller magnitudes of age-

associated PC1 of long-lived mice, relative to their age-matched controls. 

 We next assessed the change in methylation over age of the 148 CpG sites used to formulate 

this epigenetic clock. Among these CpG sites, we found that 76 gained methylation over age and 

72 lost methylation over age. These sites clustered the mice mostly according to age and treatment 

rather than by genetic background (Figure 2.3e, Supplementary Figure S2.3b). Among CpG 

sites whose methylation decreased with age, we saw that long-lived mice generally had higher 

methylation values than the age-matched controls, which may contribute towards the observed 

decrease in epigenetic ages (Figure 2.3e). Thus, whether examined individually (Figure 2.3e) or 

summarized along a single dimension (Figure 2.3a,b), changes in methylation due to aging are 

generally less extreme in mice exposed to pro-longevity conditions, leading to younger epigenetic 
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ages relative to their age-matched controls (Figure 2.3c,d).

 

2.4 Discussion 

Previous studies in human have shown that epigenetic clocks can be accelerated by 

conditions associated with decreased lifespan (Gross et al. 2016; S. Horvath et al. 2014; Steve 

Horvath et al. 2015). However, it was unclear if these epigenetic clocks can be slowed by 

conditions that increase lifespan. Here, we have found that lifespan-extending interventions can 

indeed slow an epigenetic clock in mice livers. Previous studies of these longevity-promoting 

interventions have shown that these interventions not only extend lifespan (Brown-Borg et al. 

1996; Means, Higgins, and Fernandez 1993; Harrison et al. 2009), but also improve tissue and 

physical functioning over age (Bartke and Westbrook 2012; Arum et al. 2013; Masternak et al. 

2009; Wilkinson et al. 2012). Interestingly, rapamycin had a smaller effect than the other 

treatments considered here, possibly due to metabolic differences, such as increased insulin 

resistance under rapamycin treatment (Lamming et al. 2012). Nonetheless, our findings suggest 

that epigenetic clocks, measured from DNA methylation, can be slowed by lifespan-extending 

conditions.  

Notably, we found that dwarf mice had a decreased epigenetic age at our earliest time-

point, when just 2-months-old. (Figure 2.3c,d). This finding suggests that age-related changes in 

the methylome occur during both development and aging (Zampieri et al. 2015; Johansson, Enroth, 

and Gyllensten 2013; Takasugi 2011; Medvedev 1990). Prominent changes in the DNA 

methylome begin during development in mice and continue throughout adulthood (Takasugi 

2011). In humans, epigenetic clocks are accurate in both adolescents and adults (S. Horvath 2013). 
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Thus, the decrease in epigenetic age of young dwarf mice is consistent with the apparent 

developmental delay observed in dwarf mice (Bartke and Brown-Borg 2004). 

When comparing age-related methylation changes between mice and humans, we found 

moderate conservation for age-associated CpG sites and genomic regions. Most strikingly, we 

found that the age-associated methylome exhibits increased disorder in both species (Figure 

2.1b,c). These results suggest that, regardless of the specific regions impacted, the increased 

disorder of the age-associated methylome is a common feature of mammalian aging. This 

increased disorder of the age-associated methylome may explain how the methylome is strongly 

associated with chronological aging (Hannum et al. 2013; S. Horvath 2013; Weidner et al. 2014; 

Lopez-Otin et al. 2013).  

Finally, since this mouse clock was developed using liver methylomes, in future studies it 

will be very interesting to examine whether these clocks are similar across various tissues. 

Intriguingly, previous studies in humans have found that obesity is specifically associated with 

epigenetic age advancement in the liver but not in other tissues such as blood (S. Horvath et al. 

2014). Furthermore, rapamycin treatment has been shown to accelerate cataract formation in eyes 

and increase testicular degeneration, but delays age-related phenotypes in other tissues (Wilkinson 

et al. 2012). A key question will be whether these same tissue-specific effects are reflected in 

epigenetic aging rates, where some tissues may reflect slowed aging while others reflect 

accelerated aging.

 

2.5 Conclusions 

In summary, we have formulated an epigenetic-aging model in mice and used it to find 

evidence that lifespan-extending conditions slow an epigenetic clock in mice livers. To further 
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understand whether lifespan-extending conditions promote more youthful epigenetic signatures 

globally, it will be of interest to study different tissues, as well as profile mice exposed to other 

lifespan-extending conditions, such as methionine restriction or other mutations in somatotropic 

signaling pathways (Bartke and Westbrook 2012). Ultimately, such studies will help elucidate the 

relationship between the slowed epigenetic clock and healthy aging.

 

2.6 Methods 

Long-lived mice. To study the effects of dwarfism, we studied 2 or 22-month-old male 

Ames Prop1df/df dwarf and wild-type mice livers (Brown-Borg et al. 1996), with four mice in each 

group. Mice were maintained under controlled conditions at the University of North Dakota with 

access to food ad libitium. To study the effects of calorie restriction and rapamycin treatment, we 

used female UM-HET3 mice livers aged to 22 months, where mice were either subjected to calorie 

restriction (60% of food consumption relative to age-matched controls, gradually reduced over 2 

weeks) or 42 mg/kg dietary rapamycin treatment from 4 – 22 months, or left untreated, with four 

mice in each group. We also obtained livers from female untreated UM-HET3 mice livers aged to 

2 months (Miller et al. 2014). UM-HET3 mice were maintained at the University of Michigan. 

Weights of these mice are described in Supplementary Table S2.2.  

WGBS library preparation. DNA was isolated from mice livers using the DNeasy blood 

and tissue kit (Qiagen). Whole-genome bisulfite sequencing was carried out by the Beijing 

Genomics Institute (Shenzhen) following standard protocols (Urich et al. 2015). Briefly, DNA was 

fragmented using sonication to an average fragment size of 100-300bp, end-repaired, and ligated 

to methylated-sequencing adapters to generate sequencing libraries. Bisulfite conversion was 

performed on these sequencing libraries using the ZYMO EZ DNA Methylation-Gold kit and 
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sequenced using 90bp paired-end sequencing on an Illumina HiSeq-4000. Ames mice were 

sequenced to an expected 15x coverage; UM-HET3 mice were sequenced to an expected 5x 

coverage. 

Data processing. For the WGBS study in long-lived mice, sequencing reads were trimmed 

using Trim Galore (“Babraham Bioinformatics - Trim Galore!” 2016), aligned to a bisulfite-

converted mouse genome (mm9) obtained from UCSC (Hinrichs et al. 2006) using bowtie 

(Langmead et al. 2009), and methylation states were called using bismark v0.10.0 (Krueger and 

Andrews 2011). The resulting sites were then converted to mm10 coordinates using liftOver 

(Hinrichs et al. 2006) with default parameters. 

In addition to the above data, public bisulfite sequencing data were downloaded from GEO 

(Barrett et al. 2013) or the Sequence Read Archive (SRA) using the following accession numbers: 

GSE60012 (Reizel et al. 2015), GSE52266 (Cannon et al. 2014), GSE67507 (Orozco et al. 2015) 

and SRA344045 (Gravina et al. 2016). Sequencing reads were trimmed using Trim Galore 

(“Babraham Bioinformatics - Trim Galore!” 2016) with default parameters, aligned to bisulfite-

converted Ensembl mmGRC38 version 84 (Yates et al. 2016) using bowtie2 (Langmead and 

Salzberg 2012) with parameters -N 1, and the methylation states were determined using Bismark 

v0.14.3 (Krueger and Andrews 2011). When multiple sequencing runs were associated with a 

single sample, the methylation states for each CpG were collapsed by summing the reads. 

Human 450K liver data were downloaded from GEO using accession numbers GSE61258 

and GSE48325 corresponding to Horvath et al. (S. Horvath et al. 2014) and Ahrens et al. (Ahrens 

et al. 2013) datasets. The data were processed in R using Minfi (Aryee et al. 2014). Missing data 

were imputed using impute package in R (Hastie et al. 2011). The data were then beta-mixture 

quantile normalized (Teschendorff et al. 2013) using a gold reference distribution following the 
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procedure provided by Horvath (S. Horvath 2013). The gold reference distribution was set to the 

mean probe values from GSE61258.  

Evolutionary trends. For the comparison of mice to humans, we wanted to maximize the 

number of mouse CpG markers that we could compare reliably across species. For this reason, we 

limited our analysis to RRBS datasets obtained from GEO. Specifically, we filtered Reizel et al. 

(Reizel et al. 2015) with Cannon et al. (Cannon et al. 2014) and Orozco et al. (Orozco et al. 2015) 

to identify reproducible CpG sites. Sites were filtered according to the following criteria: ≥ 5 reads, 

< 20% missing data across mice from all three studies, and distinct mapping onto chromosomes 

1-19. We then removed individual mouse samples missing > 40% of these sites. These filtering 

steps resulted in 97 samples profiled across 36,094 sites in Reizel et al. (Reizel et al. 2015). 

Missing data were imputed using the mean methylation value for that site.  

To define a commonly profiled set of orthologous CpG sites, we mapped the 36,094 sites 

profiled in mm10 to hg19 coordinates using liftOver (Hinrichs et al. 2006), with -minMatch = 0.1. 

The resulting coordinates were intersected with the Illumina 450K probes, as defined by their 

locations from the Illumina manifest (bedtools intersectbed (Quinlan and Hall 2010)). Any mouse 

sites that mapped to the same human site were combined by taking the average value of these sites.  

Annotation tracks were downloaded from Encode for human hepatocytes from UCSC 

(Rosenbloom et al. 2013). The following data tracks were downloaded: DNASE-seq, H3K36me3, 

H3K4me1, H3K27ac, H3K9ac, H3K4me3 and H3K27me3. Enhancer regions were defined as the 

intersected regions between H3K27ac and H3K4me1. Bivalent regions were defined as the 

intersected regions between H3K4me3 and H3K27me3. Repeat elements were downloaded from 

UCSC for hg19 (Rosenbloom et al. 2015). CpG sites were mapped to each feature by intersecting 

the site coordinates with each annotation using bedtools intersectbed. Annotations for TSS, 
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5’UTR, body, exons, shelf, island and shore were defined by the Illumina 450K manifest. 

Promoters were defined as CpG sites with TSS annotations. Similarly for mice, annotation tracks 

were downloaded from UCSC for the same marks from adult male mice liver. Gene features for 

mice were also downloaded from UCSC for mm10 (Rosenbloom et al. 2015) and assigned to sites 

using bedtools intersectbed. Promoters in mice were defined as 2kb upstream of protein-coding 

transcripts. We only considered annotations that fell within the orthologous profiled set of CpGs. 

These annotations are used as genomic regions in the following section. 

Odds ratios were calculated by counting orthologous CpGs sites that fell into the following 

categories: age-genomic region, not age-genomic region, age-not genomic region and not age-not 

genomic region. This process was repeated for each genomic region separately in both human and 

mouse. When there were overlapping genomic region annotations for sites, sites were counted only 

for the genomic region considered so that sites are not counted twice. Over-represented genomic 

regions are those with an OR > 1 and under-represented genomic regions are those with an OR < 

1. P-values were calculated using Fisher’s exact test.  

To identify age-associated sites, we built a multivariate linear model regressing each 

methylation site against treatment, gender and age in mice, or against BMI, gender and age in 

humans. Then, we conducted a drop-one F-test to determine if age had a significant association 

with that site. For comparisons in the orthologous profiled space between mice and humans, we 

conducted the drop-one F-test using Reizel et al. (Reizel et al. 2015) for mice or all human samples, 

and we selected sites that had an age-association at a Benjamini-Hochberg 1% FDR. To calculate 

the significance of the overlap, we used a hypergeometric test. 

 To identify all age-associated sites, regardless of conservation, we conducted the same 

drop-one F-test, first using the 97 mice of Reizel et al. (Reizel et al. 2015) for all 36,094 CpG sites, 
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then selecting CpG sites that passed a Benjamini-Hochberg 1% FDR. We repeated this analysis 

using the 2.1-month mice from Cannon et al. (Cannon et al. 2014) and 3.7-month mice from 

Orozco et al. (Orozco et al. 2015), using the CpG sites identified in Reizel et al. (Reizel et al. 

2015), and selected sites that continued to have an age-association at a Benjamini-Hochberg 1% 

FDR. Using this criteria, we found 393 age-associated sites in mice. These sites were used to 

calculate entropy for Reizel et al. (Reizel et al. 2015) (Figure 2.1b). We identified age-associated 

CpG sites in humans similarly, using all 485,512 CpG sites on the 450K Illumina chip, first in 

GSE61258 (S. Horvath et al. 2014) (79 samples), identifying CpG sites with an age-association at 

a Benjamini-Hochberg 1% FDR threshold. We repeated this analysis for the identified CpG sites 

in GSE48325 (Ahrens et al. 2013) (85 samples), selecting CpG sites that passed a Benjamini-

Hochberg 1% FDR threshold. Using these criteria, we found 322 age-associated CpG sites. These 

sites were used to calculate entropy (Figure 2.1c) for GSE61258 (S. Horvath et al. 2014).  

Entropy was calculated according to the formula described by (Hannum et al. 2013), 

calculated with the following formula: 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 = 	
1

𝑁 ∗ 𝑙𝑜𝑔(12)
@ [𝑀𝐹B ∗ log(𝑀𝐹B) + (1 −𝑀𝐹B) ∗ log	(1 −𝑀𝐹B)]

H

B
	

where 𝑀𝐹B is the methylation fraction of the 𝑖th methylation CpG site and 𝑁 is the number of age-

associated CpG sites (393 sites for mice and 322 sites for human, described above). Since the value 

of entropy approaches 0 when 𝑀𝐹B	approaches 0, the methylation sites with a value of 0 were set 

to 0. 

Epigenetic clock data processing and data normalization. For construction of an epigenetic-

aging model, which we use as a mouse epigenetic clock, we used GSE60012 (Reizel et al. 2015), 

SRA344045 (Gravina et al. 2016) and our own control mice to identify sites that were profiled 

across all studies, for a total of 124 mice liver/hepatocyte samples. These studies represent mice 
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profiled across multiple time-points. Since RRBS is targeted towards CpG rich regions of the 

genome, we included sites that were covered by ≥ 2 reads in 97% of mice, mapped to chromosomes 

1-19 and had a standard deviation > 0 and ≤ 20%. Mice missing over 30% of these sites were 

removed from further analysis. Missing data were imputed by the mean value of each site. These 

filtering steps resulted in 119 samples profiled across 7,628 CpG sites. For studies profiling a 

single time point (Cannon et al. 2014) and the long-lived mice, in order to maximize the overlap 

with the 7,628 CpG sites selected above, we considered any site with ≥ 1 reads (bedtools 

intersectbed). Missing data were imputed identically as described above.  

All data were then normalized using ComBat (nonparametric mode) from the SVA package 

in R (Leek et al. 2012; Johnson, Li, and Rabinovic 2007). Ages (in days) were transformed to log2 

scale, prior to normalization. The specific sequencing studies ((Reizel et al. 2015; Gravina et al. 

2016; Cannon et al. 2014), Ames and UM-HET3) were used to represent batch, and the model 

provided to ComBat included the covariates age, gender and treatment. After performing ComBat, 

we used principal component analysis to verify that this normalization reduced the effects due to 

differences in sequencing technology or mouse strains (Supplementary Figure S2.2c,d). Bismark 

alignment reports, as well as average read depth per unique CpG called and per CpG used to 

construct the epigenetic-aging model, are shown in Supplementary File S2.1: Public data and 

Data here detailed.  

Epigenetic-aging model construction. The normalized methylation values of (Reizel et al. 

2015; Gravina et al. 2016; Cannon et al. 2014) and data from wild type, untreated UM-HET3 and 

Ames aged to 2 and 22 months (one from each group) (Supplementary File S2.1: Datasets used 

summary), were used as training data for ElasticNet regression (Zou and Hastie 2005) using the 

python scikit-learn package (Pedregosa et al. 2011). The normalized methylation values were used 
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as features, and the log2 transformed ages (in days) was used as the predicted variable. Model 

fitting parameters were selected using four-fold cross validation. The final model was trained on 

these training data with the most optimal regularization parameters when averaging the four-fold 

cross validation results. The model sites selected by ElasticNet, along with the associated weights 

and intercept, are shown in Supplementary File S2.2. 

We assessed whether epigenetic ages were informative by comparing the epigenetic ages 

for untreated, wild type mice from our study or mice from Cannon et al. (Cannon et al. 2014). We 

used either a t-test or an ANOVA to compare whether epigenetic ages were significantly different 

between 2 versus 22-month-old mice, and whether epigenetic ages of mice with similar 

chronological ages were affected by differences in genetic backgrounds (Supplementary File 

S2.3: Wild type stats). To assess the effect of normalization in addition to selection of 

regularization parameters or hidden biases correlated to aging signals, the covariates of each study 

were shuffled, ComBat normalization was repeated, and models were learned using the same 

strategy described above. This process was repeated 120 times and predictions between models 

generated from permuted data or actual data were compared using the residual (epigenetic age - 

chronological age) for wild type mice. The model learned from actual data minimized the residual 

for the wild type mice (Supplementary Figure S2.2e-i). 

Assessing epigenetic age in long-lived mice. The epigenetic-aging model was applied to 

the methylation profiles of long-lived mice and the age-matched controls not used for training 

(Supplementary File S2.1: Datasets used summary). Reductions in age were calculated by 

subtracting the epigenetic ages of the untreated, wild type mice from those of the long-lived mice 

of the same genetic background. To assess the significance, we used an ANOVA for all 22-month-

old mice or only 22-month-old UM-HET3 mice. We also compared the epigenetic ages between 
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treatments with their age-matched control from the same genetic background using a t-test 

(Supplementary File S2.3: Treatment vs wild type stats). 

Principal component analysis (PCA). PCA was conducted using the scikit-learn package 

from the 148 CpG sites used in the epigenetic clock. The first two PCs separated age and treatment 

(Supplementary Figure S2.3A). We assessed significance of variables that contributed to the 

variance along principal component 1 for each genetic background using a multivariate linear 

regression according to the following model:  

                                       𝑃𝑟𝑖𝑛𝑐𝑖𝑝𝑎𝑙	𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡	1	 ∼ 	𝐴𝑔𝑒	 + 	𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 

where 𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 was modeled as a categorical variable and results are shown in Supplementary 

Table 2.1. 

Hierarchical clustering. Hierarchical clustering was performed using python SciPy with 

linkage method ‘average’ and Euclidean distance (Jones et al. 2015). Methylation values were 

transformed using standard_scale=True and visualized using seaborn (Waskom et al. 2014). 

Hierarchical clustering was performed either using the top 20 most variable CpG sites (determined 

from the long-lived mice and wild type mice) or all sites used by the epigenetic-aging model.  

 
Availability of data and material. Accession numbers for publicly available mice bisulfite 

datasets: GSE52266, GSE60012 GSE67507 and SRA344045; Accession numbers for human 

methylome datasets: GSE61258 and GSE48325; Accession numbers for long-lived and control 

mice bisulfite datasets: GSE89275; Scripts for analysis can be found at 

https://github.com/twangsd/Epigenetic_Aging_Mouse_livers 
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2.7 Figures 

 
Figure 2.1: Comparison of methylation aging in mice and human livers.  
a) Mapping from mouse CpG sites profiled by RRBS to orthologous CpG sites profiled by Illumina 
450K human methylation array. Detailed procedures can be found in Methods. The Venn diagram 
describes the age-associated sites in the orthologous profiled space. b-c) Entropy across all age-
associated sites in mouse (b) and in humans (c) are plotted over age. Pearson’s correlation (r) is 
displayed (mouse p < 10-11 , human p < 10-11). 
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Figure 2.2: Validation of an epigenetic-aging model in mice livers.  
a) Four-fold cross validation of the age predictions (y-axis, “Epigenetic age”) versus chronological 
age (x-axis) in log2 scale. Each dot represents a prediction made from a fold of cross validation. 
Overall, each fold has a high Pearson’s correlation (r) between epigenetic and chronological age, 
and the average amongst all folds is depicted.  b) Epigenetic ages versus chronological ages for 50 
wild type mice. Different symbols/colors are used to indicate mouse genetic background. The 
dashed line represents the diagonal in both plots.   
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Figure 2.3: Effects of lifespan extension on a mouse epigenetic clock.  
a-b) The 148 CpG sites used the mouse epigenetic-aging model (used for a mouse epigenetic 
clock) were subjected to principal component analysis. Principal component 1 is plotted for wild 
type mice according to age and lifespan extension status, for wild type Ames or dwarf mice (a) or 
wild type UM-HET3, rapamycin treated, or calorie restricted (b). c) The mouse epigenetic-aging 
model applied to long-lived mice, where colors and shapes represent the different lifespan-
enhancing conditions. The gray markers are the wild type mice (identical to Figure 2B), and the 
black line represents the linear fit of the epigenetic age versus chronological age of the wild type 
mice. The green line represents the linear fit of the epigenetic age versus chronological age for 
long-lived mice. The gray dashed line represents the diagonal d) The residual (epigenetic age - 
chronological age) is plotted for all mice according to their strain and treatment, and colors 
represent 2 or 22-months. P-values calculated by comparing ages of long-lived mice to age-
matched controls of same genetic background using a t-test. ** indicates p < 0.01 and * indicates 
p < 0.05. e) Hierarchical clustering of the top 20 most variable sites used by this epigenetic clock 
using average linkage with Euclidean distance. Treatment is depicted under the dendrogram, CpG 
sites are to the right of the heatmap (chromosome:start, 0-based) and rows are blocked according 
to clusters of sites that increase or decrease methylation with age. m: months; R: Rapamycin 
treatment; C, CR: Calorie restriction, D: Ames Dwarf, W: wild type Ames or untreated, wild type 
UM-HET3. 
  



77 
	

  



78 
	

2.8 Supplementary figures 

 
Supplmental Figure S2.1: Patterns of genomic regions affected by age-associated CpG sites 
Odds ratios showing enrichment (OR > 1) or depletion (OR < 1) of age-associated CpG sites in 
the orthologous profiled space for different genomic feature annotations (regions) in mice (left) or 
humans (right). * indicates p < 0.005. 
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Supplementary Figure S2.2: Details of data processing, model sites and model quality 
control.  
a) Total counts of the number of mice according to their chronological ages in months used to train 
an ElasticNet regression (107 total). Colors correspond to sequencing studies, as shown in (d, e). 
b) The genomic features associated with the 148 CpG sites used in the model. There was an under-
representation of these CpG sites in promoters and over-representation in enhancer regions. * 
indicates p < 0.01 by Fisher’s exact test. c) Residual errors (epigenetic age - chronological age) of 
wild type, untreated mice of our own study and mice of Cannon et al. There was no detected 
difference in epigenetic ages across various mouse strains. Colors correspond to chronological age 
in months. d) Principal component analysis (PCA) of the 7,628 CpG sites in 173 mouse samples 
considered across all studies before ComBat normalization. Colors indicate the specific 
sequencing studies. e) PCA of the 7,628 CpG sites in 173 mouse samples considered across all 
studies after ComBat normalization, colors correspond to sequencing studies and are identical to 
those in (a, d). f-j) Show the results of randomizing the assignment of covariates within each study 
before normalizing with ComBat. After permutation and normalization, models are trained to 
predict age. For each permutation, models learned are then tested on the untreated, wild type mice 
from our study and the mice of Cannon et al. Residual errors are calculated for each permutation 
and averaged according to age and mouse genetic background. The gray bars show the distribution 
of average residual errors for the randomizations, where the green line indicates the residual error 
from the model learned on actual data. f) The absolute average residual error of 2-month Ames 
wild type mice g) of 2-month untreated, wild type UM-HET3 mice, h) of 2.1-month C57BL/6 
mice, i) of 22-month Ames wild type mice, j) of 22-month untreated, wild type UM-HET3 mice. 
m: months 
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Supplementary Figure S2.3: Unsupervised analysis of CpG sites used in epigenetic age 
predictor 
a) PCA of all 148 CpG sites used in ElasticNet markers is shown for the first two principal 
components. The colors and shapes refer to the age, treatment and mouse strain indicated in the 
legend. b) Hierarchical clustering is performed identically as performed in Figure 2.3E, except 
for all 148 CpG markers. Treatments are labeled beneath the dendogram and the ages are indicated 
at the bottom of the heatmap. m: months, R: rapamycin treated, C: calorie restricted, W: untreated, 
wild type Ames or UM-HET3  
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2.9 Supplementary tables and files 

Supplementary File S2.1: Description of datasets used. 
This file shows the table of all datasets considered for this study and various sequencing stats. It 
is organized into three tabs and called out accordingly in the chapter. 
 
Supplementary File S2.2: Sites used for mouse age model. 
This file shows the table of the CpGs and their weights used in the model to measure age in mice. 
 
Supplementary File S2.3: Treatment vs wild type stats. 
This file shows a series of tables of the age predictions obtained for mice treated with longevity-
promoting interventions and their control/wild-type counter parts. 
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Supplementary Table S2.1: The effects of age and treatments on the variance of PC1 
UM-HET3 Mice coef std err t P>|t| [95.0% Conf. Int.] 
Intercept -0.524 0.075 -6.952 1.53E-05 -0.688 -0.360 
Treatment (Calorie 
restriction) -0.4656 0.097 -4.825 4.16E-04 -0.676 -0.255 
Treatment (Rapamycin) -0.2269 0.097 -2.351 3.66E-02 -0.437 -0.017 

Age (months) 0.0674 0.005 13.959 
8.81875E-

09 0.057 0.078 
Adjusted R2: 0.94      
Pvalue (F statistic): 5E-08      
      
      
Ames Mice coef std err t P>|t| [95.0% Conf. Int.] 
Intercept -1.0432 0.035 -29.726 9.61E-08 -1.129 -0.957 
Treatment (Dwarfism) -1.0432 0.035 -29.726 9.61E-08 -1.129 -0.957 
Age (months) 0.0764 0.004 17.004 2.65E-06 0.065 0.087 
Adjusted R2: 0.98      
Pvalue (F statistic): 3 E-06      

This table shows the results of the effect of longevity treatment on principal component 1 
assessed using regression models. 
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Supplementary Table S2.2: Weights of long-lived and wild type control mice used in this 
study 

Ames 
mice    

Genotype Age 

Min - max 
weight 

(grams) Average 
dwarf 2 6.1-7.9 7.2 

wildtype 2 20.7-25.8 23 
dwarf 22 15.3-28.2 23.3 

wildtype 22 22.1-39.3 33.6 
 

UM-HET3 mice   

Treatment Age 

Min - max 
weight 

(grams) Average 
untreated 2 21.9-24.1 23.2 
untreated 22 29.8-47.1 35.6 

calorie restricted 22 19.7-23 21.2 
rapamycin 

treated 22 29.8-47.1 35.6 
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CHAPTER 3: A conserved epigenetic progression aligns human and dog age 

 

3.1 Abstract 

Mammals progress through common physiological stages as they age, from early 

development to puberty, senescence, and death (Kirkwood 2005). Yet the degree to which these 

physiological changes reflect a common molecular program is unclear (Cohen 2018), making it 

difficult to study or potentially modify the mechanisms of aging (Kirkwood 2005; Cohen 2018). 

Here we chart the conserved impacts of aging on the mammalian genome, focusing on 

evolutionary comparisons of humans with dogs, a compelling emerging model for aging (Gilmore 

and Greer 2015; Kaeberlein, Creevy, and Promislow 2016). Using a strategy we call syntenic 

bisulfite sequencing, we profile the methylomes of 104 Labrador retrievers of diverse ages, 

achieving >150X coverage within mammalian syntenic blocks. Correlation with human 

methylomes reveals that the two species experience a common progression of epigenetic changes 

during the course of life. The progression appears highly non-linear, with a very rapid 

transformation in puppies relative to children which slows markedly in adulthood. Based on these 

results, we estimate a logarithmic function for epigenetic translation of dog to human years. This 

function correctly translates the times at which major physiological milestones of aging are 

observed in the two species, and it extends to methylation patterns in mice, suggesting that 

conserved epigenetic signals may underlie common aging physiology in many mammals. We find 

these results are driven by CpG methylation marks near genes functioning during development, 

and that these sites are sufficient to translate biological age across species. Our results identify a 

universal epigenetic clock that underlies mammalian aging, opening the door to comparative 

studies of aging and aging interventions in diverse organisms. 
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3.2 Introduction 

Despite large differences in lifespan, mammals nonetheless undergo a similar progression 

of changes in physiology as they age, from sexual maturation until death (Kirkwood 2005). Such 

conserved aging physiology is perplexing, since age-related traits acquired after sexual maturity 

are not necessarily constrained by evolution (Kirkwood 2005). As a consequence, aging 

mechanisms in short-lived mammals might differ from those in long-lived mammals (Cohen 2018) 

which, if generally true, would substantially complicate efforts to understand the molecular basis 

of aging. 

DNA methylation, an epigenetic modification frequently found at cytosine-guanine 

dinucleotides (CpGs), may provide insight into how different species age (Field et al. 2018). 

Changes in DNA methylation have been strongly associated with the process of human aging(Field 

et al. 2018; Lopez-Otin et al. 2013), such that the methylation states of a few well-chosen CpGs 

can be used to recover an individual’s chronological age if unknown (Vidaki et al. 2017), or to 

estimate a relative rate of aging (Gross et al. 2016; Lu et al. 2019). Such “epigenetic clocks” 

(Hannum et al. 2013; Horvath 2013; T. Wang et al. 2017; Petkovich et al. 2017; Thompson et al. 

2017; Stubbs et al. 2017) have also been demonstrated in various other mammals using CpG 

markers selected independently for each species in separate studies. Thus it is clear that aging 

remodels the methylome, and that it does so in multiple species. However, to what extent this 

epigenetic remodeling is conserved, or largely species specific, remains an open question (Stubbs 

et al. 2017; T. Wang et al. 2017). 

Domestic dogs provide a unique opportunity to investigate this question (Kaeberlein, 

Creevy, and Promislow 2016; Gilmore and Greer 2015). Dogs have been selectively bred by 

humans for occupation and aesthetics (Ostrander et al. 2017), resulting in breeds within which 
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members share characteristic traits. Each breed was carefully established using small numbers of 

founders, thus intrabreed genetic variation is lower than that observed between even closely related 

breeds (Dreger et al. 2016). For these reasons, small numbers of dogs from the same or related 

breeds can be used to decipher the genetic basis of complex traits (Davis and Ostrander 2014) such 

as aging. Although humans and dogs diverged early during mammalian evolution (Vonholdt et al. 

2010), dogs exhibit similar age-related pathologies as humans in a much shorter 

lifespan(Kaeberlein, Creevy, and Promislow 2016; Gilmore and Greer 2015). Moreover, dogs 

share nearly all aspects of their environment with humans, including similar levels of health care 

(Kaeberlein, Creevy, and Promislow 2016; Gilmore and Greer 2015). Together, these facts have 

established dogs as an important system for comparative studies of aging and exploration of 

lifespan-enhancing interventions, leading to prominent consortia such as the Dog Aging Project 

(Kaeberlein, Creevy, and Promislow 2016).

 

 3.3 Results 

To enable comparisons of epigenetic aging in dogs and other mammals, we developed a 

strategy to measure DNA methylation within regions of synteny across mammalian genomes 

(Figure 3.1a). By this strategy, henceforth called Synteny Bisulfite Sequencing (SyBS), 

oligonucleotide probes were designed to capture approximately one million CpGs in mammalian 

syntenic regions (Methods). We then applied SyBS to characterize the methylomes of 104 dogs, 

primarily consisting of Labrador retrievers representing the entire lifespan, from 0.1 to 16 years at 

the time of blood draw (Supplementary Figure S3.1a, Supplementary Table 3.1). Libraries 

were sequenced to an average depth of 163X, with nine dogs removed due to lack of coverage. 

The methylation values of captured CpGs were similar to those obtained using whole-genome 
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bisulfite sequencing (Pearson’s correlation r > 0.85, Supplementary Figure S3.1b) and across 

independent captures from the same DNA samples (r > 0.95, Supplementary Figure S3.1c-h). 

As expected by design, SyBS achieved approximately 13-times higher coverage of syntenic 

regions compared to non-targeted bisulfite methods (Figure 3.1b). Captured CpG sites were 

located throughout the genome and were enriched for exons and CpG islands (Figure 3.1c). Such 

regions were also among those targeted by the Illumina methylome arrays frequently used in 

human methylation studies (Dedeurwaerder et al. 2011). Accordingly, we obtained previously 

published methylation profiles from the blood of 320 human individuals aged 1 to 103 years at the 

time of sample isolation (Alisch et al. 2012; Hannum et al. 2013). Based on these data, we 

identified 54,469 well-profiled CpGs that were orthologous in dogs and humans, thereby enabling 

systematic evolutionary studies of epigenetic aging (Methods). 

Comparing these methylome-wide profiles across species (Pearson’s correlation, 

Methods), we observed the highest similarities when pairing dogs and humans of the same relative 

ages, such as young versus young or old versus old individuals, and the lowest similarities when 

pairing young dogs with old humans and vice versa (Figure 3.2a). This relationship between 

methylome similarity and age was abolished upon permutation (FDR < 0.01; Supplementary 

Figure S3.2a), suggesting the presence of a conserved progression of epigenetic changes during 

dog and human aging. Notably, this signal was sufficiently strong to arise in a genome-wide 

unsupervised analysis without any specific subselection of markers.  

An immediate question was whether the epigenetic progression was merely binary, 

representing a young and an old biological state, or could be seen to translate age across species 

with greater time resolution. To address this question, we assigned the age of each dog to the 

average age of its nearest k humans by methylome-wide similarity (Methods). This analysis 
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revealed a monotonic time-resolved relationship between dog and human age which was however 

highly nonlinear (Figure 3.2b for k = 5, Supplementary Figure S3.2f-g for other k). Similar 

results were obtained in a reciprocal analysis assigning each human to its nearest dogs (Figure 

3.2c), prompting us to combine the two reciprocal analyses to fit the single function human_age = 

16 ln(dog_age) + 31 (Figure 3.2d).  

Although this logarithmic function was a significant departure from the conventional 

wisdom that one year of a dog’s life equates to seven human years, we noted better agreement with 

the approximate times at which dogs and humans experience common aging physiology (infant, 

juvenile, adolescent, mature, senior) (Lebeau 1953; Bogin and Smith 1996; Bartges et al. 2012) 

(Figure 3.2d). The agreement between epigenetics and aging physiology was particularly close 

for infant, juvenile and senior stages: For instance, the epigenome translated 7 weeks (0.15 years) 

in dogs to 9 months (0.78 years) in humans, corresponding to the infant stage when deciduous 

teeth erupt in both puppies and babies(Bogin and Smith 1996; Bartges et al. 2012). In seniors, the 

current expected lifespan of Labrador retrievers, 12 years, correctly translated to the current 

worldwide lifetime expectancy of humans, 70 years (Cia 2013; Fleming, Creevy, and Promislow 

2011). For adolescent and mature stages, the correspondence was more approximate, with the 

epigenome showing faster aging for dogs, relative to humans, than expected by physiological 

tables (Inoue et al. 2015; Arias, Heron, and Xu 2017) (Figure 3.2d). Thus, the epigenome 

progresses through a series of conserved biological states that inform the major physiological 

changes of aging, which for dogs and humans occur in the same sequence but at markedly different 

times relative to total lifespan. 

Further support for a conserved epigenetic program was obtained through comparisons 

with the methylomes of 133 mice, aged 3 months to 3 years (Petkovich et al. 2017). As with the 



 

 97 

dog-human comparisons, we found that dog and mouse methylomes were most similar for 

individuals in similar age quantiles (Supplementary Figure S3.3, Methods). The ability to detect 

a conserved epigenetic progression in a third mammal suggested this progression may be 

fundamental to aging in many mammalian species.  

To determine whether the conserved changes were concentrated within particular genes or 

gene functions, we examined CpG methylation states near 7,942 genes for which orthologs were 

clearly present in all three species: dogs, humans, and mice (Methods). This analysis identified 

394 genes for which methylation values showed conserved aging behavior, i.e. increases or 

decreases with age that were coherent across species (empirical p < 0.05, Supplementary Figure 

S3.4). To understand these gene functions we mapped them onto the Parsimonious Composite 

Network (PCNet), a large repository of approximately 2⨉106 molecular interactions representing 

physical and functional relationships among genes and gene products in which each interaction 

has support from multiple sources (Huang et al. 2018). Genes clustered into five highly 

interconnected network modules (Figure 3.3). Four were enriched for distinct developmental 

functions in anatomical development (2 modules, 117 and 69 genes), synapse assembly (18) and 

neuroepithelial cell differentiation (5), with the majority of the genes in these developmental 

pathways increasing in methylation with age (FDR < 0.05). In contrast, the remaining pathway 

module consisted of 144 genes that were enriched in leukocyte differentiation and broad metabolic 

functions (RNA metabolism, response to organic substrates) and had primarily decreasing 

methylation values with age. Notably, genes that increase methylation with age were also among 

those that exhibited conserved age-related expression changes in humans and mice (Skene, Roy, 

and Grant 2017) (Observed/expected = 2.5, p < 0.01 by hypergeometric test). Strikingly, the 

developmental genes in these five modules were among the most highly conserved in DNA 
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sequence in the mammalian genome, even accounting for the already high sequence conservation 

of developmental genes in general (Figure S3.5).  

As further assessment of the importance of developmental pathways in the conserved 

epigenetic progression, we recalculated methylome similarity across species using only 

methylation changes at developmental genes. The revised analysis yielded cross-species 

translations of age that were very similar to those observed earlier when using all CpGs 

(Supplementary Figure S3.6a). In contrast, such translations were substantially degraded when 

removing CpGs near developmental genes from the analysis (Supplementary Figure S3.6b-f). 

Thus, methylation changes near developmental genes appeared to be both necessary and sufficient 

for the conserved epigenetic progression observed during mammalian life. 

If the methylation status of developmental modules indeed tracks the physiological 

progression of the organism and not just chronological time, an important prediction is that it will 

respond to interventions that slow or delay this physiology, such as anti-aging treatments. In mice, 

calorie restriction and dwarfism have been associated with increased lifespan relative to control 

animals (Petkovich et al. 2017). We therefore examined whether such effects could be seen within 

the conserved development gene modules (as identified in Figure 3.5). For this purpose we 

constructed an epigenetic clock, a regularized linear regression model that measures age from CpG 

methylation values (Hannum et al. 2013; Horvath 2013; T. Wang et al. 2017; Petkovich et al. 2017; 

Thompson et al. 2017; Stubbs et al. 2017), focusing exclusively on 439 developmental module 

CpGs (Figure 3.4a, Methods). By training in dogs or alternatively in mice, this “conserved 

development” clock could be used to translate a methylation profile either to dog or mouse years 

(Figures 3.4b-c), including cross-translation of a dog methylome to its equivalent mouse age or 

vice versa (Figure 3.4d). In fact, epigenetic ages measured by this clock were more consistent 
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with actual ages of those animals than clock measurements formulated from the rest of the 

methylome (Figure 3.4d). When applying the conserved development clock to mice treated with 

lifespan-extending interventions, the measured epigenetic ages were significantly less than those 

of control mice, by 30% on average (p < 10-6, Figure 3.4e). These results were also clearly observed 

when using the conserved development clock trained in dogs to predict mouse age (Figure 3.4f). 

Together, these results demonstrate that the methylation states of developmental gene modules 

track the physiological effects of aging and aging interventions in multiple mammalian species. 

 

3.4 Discussion 

In summary, we have found that methylation patterns follow a conserved epigenetic 

progression during mammalian aging. Using this progression, we have identified a conserved 

clock that translates both chronological age and biological age from one species to another, despite 

large differences in lifespan. These results demonstrate that the physiological signs of aging are 

embedded into the mammalian epigenome. Notably, the conserved epigenetic progression 

predominantly affected highly sequence-constrained developmental genes, similar to a previous 

study using highly-constrained ribosomal DNA (M. Wang and Lemos 2019). These findings 

suggest that this progression may be determined, in part, by the sequence of these genes, or perhaps 

other conserved mechanisms affecting highly constrained genes. Identifying factors that slow this 

progression in tractable, short-lived model species provides an exciting route to understand the 

mechanisms of human aging and their potential interventions.

 
3.5 Methods 

Annotations. Reference genomes were downloaded from Ensembl for dog (CanFam3.1), 

mouse (mm10) and human (hg19). Ensembl Biomart version 91 was used for gene, 3’UTR and 
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5’UTR annotations (Yates et al. 2016). CpG islands, repeat annotations, and chain files were 

downloaded from the UCSC Genome Browser (Rosenbloom et al. 2015). CpG shores were 

designated as regions 2 kilobases (kb) outside each CpG island, and CpG shelves were designated 

as regions 2kb outside of CpG shores. Promoters were designated as regions 2kb upstream and 

100 basepairs (bp) downstream of the transcription start sites (TSS) based on gene annotations 

from Ensembl (Yates et al. 2016). Whole genes were divided into exonic and intronic sequences. 

Intergenic regions were then defined as the remaining regions of the genome after subtracting all 

other annotated regions. Definitions of one-to-one orthologs were downloaded from Ensembl 

Compara (Vilella et al. 2009) for dogs, humans and mice. 

Public Datasets. The following datasets were obtained from Gene Expression Omnibus 

(GEO) or Sequence Read Archives (SRA) (source articles in parenthesis) [number of individuals 

included in study in brackets]: 

● GSE80672 (Petkovich et al. 2017): Methylomes from postnatal mice. Blood, Reduced 

Representation Bisulfite Sequencing (RRBS) method. [133] 

● GSE36054 (Alisch et al. 2012): Methylomes from human children. Blood, Infinium 450K 

array. [35] 

● GSE40279 (Hannum et al. 2013): Methylomes from human adults. Blood, Infinium 450K 

array. [285] 

● SRP065319 (Thompson et al. 2017): Methylomes from dogs and wolves. Blood, RRBS 

method. [92] 

Canine samples. Information on each dog sample used, including age, breed, and source, 

is given in Supplementary Table 3.1, with the age distribution also provided in Supplementary 

Figure S3.1a. For samples sourced from NHGRI, domestic dogs were collected with owners’ 



 

 101 

signed consents in accordance with standard protocols approved by the NHGRI IACUC 

committee. Samples were collected at canine centric events such as dog shows, obedience training 

sessions and competitive games. Alternatively, owners were supplied with a mail-in kit which 

included instructions, tubes for blood draws and a general information sheet with the AKC number 

(when available), pedigree and date of birth. Blood draws were performed by licensed 

veterinarians or veterinary technicians.  

For samples sourced from UC Davis, blood samples were collected from privately owned 

dogs through the William R. Pritchard Veterinary Medical Teaching Hospital. Owners specified 

the breed of each dog. Standard collection protocols were reviewed and approved by the UC Davis 

IACUC. 

For samples from NHGRI, DNA was extracted using a well-established cell lysis protocol 

described by (Bell, Karam, and Rutter 1981), followed by phenol/chloroform extraction with phase 

separation performed in 15 mL phase-lock tubes (5-Prime, Inc. Gaithersburg, MD, USA). For 

other samples, DNA was extracted using the Puregene kit (Qiagen).  

SyBS Target selection. Our strategy for syntenic bisulfite sequencing was to identify highly 

syntenic regions among mammalian genomes and then specifically select those covered by the 

Illumina Human 450K methylome array, thereby enabling informative comparisons to pre-existing 

human methylome data generated using the Illumina system. First, highly syntenic regions were 

determined using PhyloP scores(Siepel, Pollard, and Haussler 2006) among placental mammals 

(46-vertebrate alignment obtained from UCSC genome browser)(Rosenbloom et al. 2015). We 

excluded regions that aligned to sex chromosomes in dogs. Hybridization probes were generated 

to target these regions using the Roche SeqCap-Epi platform. This process resulted in an 18.8mb 
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(megabase) sequencing library in dogs, containing approximately 90,000 CpGs that were also 

profiled by the Illumina 450K array in humans.  

SyBS Library preparation and sequencing. We followed the protocol specified by the 

Roche SeqCap-Epi platform. Briefly, approximately 500ng of lambda phage DNA (bisulfite-

conversion control) was added to 1ug of dog DNA, then sheared to an average of 175bp (Covaris). 

Sheared DNA was end-repaired, A-tailed and ligated to barcoded adapters. Adapter-ligated 

libraries were subjected to bisulfite treatment (Zymo EZ DNA methylation lightning kit) following 

manufacturer instructions. Bisulfite-treated libraries were cleaned and amplified using 25 cycles 

of PCR with a uracil-tolerant enzyme (Kapa). Libraries were pooled equimolarly into 4-plex or 6-

plex hybridization capture reactions to a total of 1ug per reaction. Captured product was PCR 

amplified (10 cycles). Hybridizations were pooled before sequencing and split among 10 lanes on 

an Illumina HiSeq 4000 in  2x150bp cycles.  

SyBS data analysis. Reads obtained from sequencing were demultiplexed and their quality 

was verified using FastQC (Andrews and Others 2010). Reads were trimmed using TrimGalore 

(“Babraham Bioinformatics - Trim Galore!” 2016) (4bp) then aligned to a bisulfite-converted dog 

genome (CanFam3.1) using Bismark (v0.14.3) (Krueger and Andrews 2011), which produces 

alignments with Bowtie2 (v2.1.0) (Langmead et al. 2009), with parameters "-score_min L,0,-0.2”. 

Methylation values for CpG sites were determined using MethylDackel (v0.2.1)(“MethylDackel,” 

n.d.). Custom Python scripts using BEDtools (v2.25.0) (Quinlan and Hall 2010) were used to 

determine on-target reads. Optical PCR duplicates were determined using Picard tools (v1.141) 

(“Picard Tools - By Broad Institute” 2017) and removed using Samtools (v0.1.18) (Li et al. 2009). 

Coverage of syntenic regions was determined using the number of unique on-target reads that were 

orthologous to humans, divided by the expected sequencing space. Only CpG sites that were on-
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target, covered by at least five reads and present across 90% of samples were selected for further 

analysis. Samples missing more than 30% of CpGs were removed from further analyses resulting 

in the removal of nine dogs. Missing data for selected CpGs were imputed by performing k-nearest 

neighbors (k = 10) using fancyimpute (“Fancyimpute,” n.d.) in Python.  

To assess the concordance of methylation values obtained using SyBS with conventional 

approaches, we also sequenced 10 dogs using whole-genome bisulfite sequencing (libraries prior 

to enrichment with SyBS probes). Reads were processed and aligned with the canine genome as 

described above. We saw an average Pearson’s correlation of r = 0.85 among these 10 samples 

(range 0.75 - 0.97) (Supplementary Figure S3.1b). We also performed independent replicate 

hybridizations for 6 samples. We saw an average r = 0.97 (range: 0.96 - 0.98) for these technical 

replicates (Supplementary Figure S3.1c-h). We also verified that lambda phage DNA exhibited 

complete conversion (>99.5%). 

Public RRBS data processing. For previous data generated using Reduced Representation 

Bisulfite Sequencing (RRBS), methods for alignment and CpG selection were identical to those 

described above. Since RRBS fragments are generated using restriction enzymes with specific 

recognition sites, optical PCR duplicates could not be removed and on-target CpGs were not 

determined. For evolutionary comparative analysis, we included 133 control mice aged between 3 

months to 2.5 years (Petkovich et al. 2017). To compare the coverage of syntenic regions between 

SyBS and non-targeted bisulfite technology, we used a RRBS study in dogs and wolves 

(Thompson et al. 2017) (Figure 3.1b).  

Human methylation array data processing. Illumina Infinium 450K methylome array data 

were quantile normalized using Minfi (Aryee et al. 2014) and missing values were imputed using 

the Impute package in R (Hastie et al. 2011). These values were adjusted for cell counts as 
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described by (Gross et al. 2016). To enable comparisons across different methylation array studies, 

we implemented beta-mixture quantile dilation (BMIQ) (Teschendorff et al. 2013; Horvath 2013), 

and used the median of the Hannum et al. dataset as the gold standard (Hannum et al. 2013). To 

mitigate residual batch effects, we selected human samples that clustered closely in the first two 

principal components using scikit-learn v0.19.2 (Pedregosa et al. 2011) and verified that such 

filtering had little effect on the distribution of ages. We also removed samples for which more than 

10% of probes were not adequately detected. This procedure resulted in methylome profiles for 

320 humans that could be compared to the SyBS generated dog methylomes. 

Determining orthologous CpGs. Human Illumina 450K methylation array CpGs were 

extended by 50bp with respect to the strand using BEDtools and mapped to the target genome 

(mouse or dog) using liftOver with “-minMatch=0.5”. We verified that the coordinate alignment 

obtained using 50bp was identical to that obtained using the exact coordinate (1bp) at “-

minMatch=0.95”. This procedure allowed us to determine an exact orthologous region for each 

human CpG and each dog CpG. When multiple dog CpGs were assigned to one human CpG probe 

region, we took the average methylation value of the aligned CpGs in dogs. This procedure resulted 

in 54,469 dog-human orthologous CpGs for further analysis. To mitigate batch effects from 

sequencing versus array platforms, we normalized the sequencing methylation values using BMIQ 

and performed quantile normalization using the preprocessCore package in R 

(normalize.quantiles.use.target function) (Bolstad 2013). 

For dog-to-mouse comparisons, CpGs that were separated by 1bp were merged into one 

region using BEDtools. Each region was then extended by 50bp. The resulting region files were 

aligned to the target genome using liftOver “-minMatch=0.5”. Only regions that were concordant 

between the two alignments (i.e., dog to mouse or mouse to dog) were selected for further analysis. 
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CpGs that were assigned to the same aligned regions were averaged to generate 9,404 bins 

(consisting of 87,915 CpGs from dogs).  

Computing dog-human pairwise methylome similarity. Methylation values of orthologous 

CpGs were normalized by subtracting the mean and dividing by the standard deviation over 

individuals (i.e. z-transformed, separately for each species). The resulting z-values represent the 

tendency to decrease or increase relative to the mean of each CpG within a species. Using these 

values we calculated the pairwise Pearson’s correlation between the methylomes for each dog-

human pair. Correlation was computed across all orthologous CpG values using the SciPy Python 

package(Jones et al. 2015), forming a 95 x 320 (dog x human) methylome similarity matrix (MS). 

We also created a coarsened version of this matrix, in which the pairwise similarities were 

averaged over two-year age windows in both species, forming an 8 x 51 (dog x human) methylome 

similarity matrix (MSA, Supplementary Figure S3.2a).  

Given this matrix, we evaluated the significance of association between age and methylome 

similarity using permutations. Specifically, we generated the following two-by-two contingency 

table: 

 Ages more different 
𝐴𝐷(𝑖, 𝑗) > 𝐴𝐷 

Ages more similar 
𝐴𝐷(𝑖, 𝑗) ≤ 𝐴𝐷 

Methylomes more 
different 
𝑀𝑆𝐴(𝑖, 𝑗) ≤ 𝑀𝑆𝐴 

𝐶𝑜𝑢𝑛𝑡U 𝐶𝑜𝑢𝑛𝑡V 

Methylomes more 
similar 
𝑀𝑆𝐴(𝑖, 𝑗) > 𝑀𝑆𝐴 

𝐶𝑜𝑢𝑛𝑡W 𝐶𝑜𝑢𝑛𝑡X 
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where 𝑀𝑆𝐴 is the methylome similarity matrix, 𝐴𝐷(𝑖, 𝑗) is Y	𝐴𝑔𝑒	𝑏𝑖𝑛[\] −

𝐴𝑔𝑒	𝑏𝑖𝑛^_`ab	Yand𝐶𝑜𝑢𝑛𝑡is the number of occurrences (cells within the MSA similarity matrix) 

for which the table row and column conditions are met. Using these counts, we calculated the p-

value using the one tailed Fisher’s exact test and compared this p-value to that obtained when 

permuting the membership of dogs and humans in two-year age bins across 1000 permutations 

(Supplementary Figure S3.2a).  

k-nearest neighbors analysis. To achieve a robust assignment of reciprocal nearest 

neighbors, we used a strategy inspired by Context Likelihood of Relatedness (Madar et al. 2010). 

Specifically, we z-normalized the MS methylome similarity matrix to form 𝑀𝑆𝑍, as follows:  

𝑀𝑆𝑍d\e(𝑖, 𝑗) = 	𝑚𝑎𝑥(	0,
𝑀𝑆B,g 	− 	𝑀𝑆B∗

𝜎B∗
	) 

𝑀𝑆𝑍i\j_`b(𝑖, 𝑗) = 	𝑚𝑎𝑥(	0,
𝑀𝑆B,g 	− 	𝑀𝑆∗g

𝜎∗g
	) 

𝑀𝑆𝑍(𝑖, 𝑗) 	= 𝑚𝑒𝑎𝑛[𝑀𝑆𝑍d\e(𝑖, 𝑗)	,𝑀𝑆𝑍i\j_`b(𝑖, 𝑗)] 
 

k-nearest neighbors were assigned to each dog or to each human with respect to 𝑀𝑆𝑍 values. This 

process was implemented in Python using scikit-learn. We evaluated the significance by permuting 

either dog age or human age (1000 shuffles each, for 2000 total across dogs and humans) prior to 

k-nearest neighbors analysis and comparing the Spearman’s correlation observed to that obtained 

for each permutation (Supplementary Figure S3.2h-i). 

Fitting the epigenetic age transfer function. The nearest neighbor analysis was fit using 

non-linear regression with the SciPy package in Python. The model fit was specified using the 

following formula: 

𝐷𝑜𝑔	𝐴𝑔𝑒	 = 𝐴 ∗ 𝑙𝑛(𝐻𝑢𝑚𝑎𝑛	𝑎𝑔𝑒) 	+ 	𝐵 
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Here, “Dog age” was represented by the chronological ages of dogs, and “Human age” was the 

average age of the nearest human neighbors with respect to methylome similarity. The converse 

was performed as well, i.e. dog age was represented as the average age of the nearest dog neighbors 

and human age was the chronological age in humans. For the final age transfer function, the 

coefficients (A,B) were estimated by bootstrapping an equal number of both dogs and humans. The 

standard error was estimated using 1000 bootstraps.  

Mouse validation of the conserved epigenetic progression. Methylome similarity was 

calculated identically, with dogs binned into two-year windows and mice binned into 0.5-year 

windows. A k-nearest neighbors analysis (as described for dogs and humans above) was repeated 

using the orthologous CpGs for pairwise comparisons involving mice. The mice represented in the 

mouse methylome data had a highly canalized age distribution which was different from that of 

the dogs or humans in our study. Multiple mice had been sampled at the exact same age, thereby 

discretizing mouse age into a small number of values. Mouse age was thus represented using five 

discrete bins.  

Identification of gene orthologs with conserved methylation trajectories. We considered 

14,652 one-to-one orthologs in dogs, humans and mice that were within 2.5kb of orthologous 

CpGs. Among these, we identified 7,934 orthologous genes for which methylation values were 

available. Methylation values were then logit-transformed; multiple CpGs assigned to one gene 

were represented by the average methylation value. We assigned to each ortholog a conservation 

score using the following procedure. First, the age of each dog and mouse individual was translated 

to the equivalent human age using the epigenetic age translation functions built using the k-nearest 

neighbors analysis. We then ranked all individuals according to their age in human years and 

divided this ranking into 15 quantile bins. Logit-transformed methylation values were averaged 
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within each bin and species. For each gene and species we calculated the Spearman’s correlation 

between the gene’s methylation values and age. Genes were then ranked by 𝑠𝑖𝑔𝑛(𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛) 	∗

	−𝑙𝑜𝑔Un(𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛o	paj_q)within each of the three species. We computed the Euclidean norm 

of the three ranks and sought genes with very low norms (for which methylation was consistently 

among the most increasing with age across species) or with very high norms (for which 

methylation was consistently among the most decreasing with age across species). Significance 

was determined using a two-sided empirical p-value < 0.05, yielding 394 genes. 

Network analysis. We downloaded a composite human functional interaction network from 

(Huang et al. 2018), and sub-selected the network to only include significant CABs resulting in 

355 nodes and 2003 edges. We visualized the network using Cytoscape 3.7 and performed 

community detection using clusterMaker2 (Shannon et al. 2003). To annotate modules, we 

performed functional enrichment using a hypergeometric test for each term within the Biological 

Process branch of the human Gene Ontology (GO) (Ashburner et al. 2000) and adjusted for false-

discovery rate using Benjamini-Hochberg (FDR < 0.001). These results were clustered according 

to gene-set similarity using Enrichment Map (Merico, Isserlin, and Bader 2011), and modules were 

clustered according to the Jaccard overlap, revealing high-level functional categories (Figure 3.3). 

Developmental genes analysis. For analysis of sequence constraint, We then ranked genes 

according to their aging conservation score and subdivided these genes into 25 evenly spaced bins, 

separating genes that were identified as significantly conserved, for a total of 27 bins. We the 

obtained PhyloP(Siepel, Pollard, and Haussler 2006) scores (described above) and extracted the 

PhyloP score according to the orthologous CpGs assigned to each orthologous gene. Finally, we 

averaged the phyloP scores according to their developmental gene status and their aging 

conservation score bin, estimating the 95% confidence interval by bootstrapping (Supplementary 
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Figure 3.5). We assessed the significance of the interaction between conservation score bin and 

developmental gene status using ANOVA.  

For analysis assessing the effect of developmental genes on the epigenetic progression, we 

restricted to orthologous CpGs profiled across dogs, humans and mice (6,906 CpGs) that were 

within 2.5kb of the gene bodies of all orthologous genes (‘all CpGs’). From this set, we identified 

CpGs near development genes (‘devCpGs’); we also controlled for the number of CpGs with 100 

randomly-sampled subsets of CpGs that were equal in size from those not near developmental 

genes (‘not devCpGs’). We calculated the methylome similarity (as described above) based on 

these CpG subsets for all three pairwise comparisons of species (dog and human, human and 

mouse, mouse and human). For each pairwise comparison (Species 1, Species 2), we identified the 

5-nearest neighbors in Species 2 for each individual of Species 1, then binned the actual age of 

Species 1 into five discrete bins and calculated the average neighbor age for each bin with the 95% 

confidence interval estimated by bootstrapping.  

Conserved Clock analysis. We built epigenetic clocks to measure dog years with Elastic 

net (scikit-learn in Python) where 85 dogs and 439 CpGs, which were assigned to CABs and 

profiled across three species, were used for training. For comparison, we randomly sampled 439 

CpGs that were profiled across three species for a total of 100 randomly selected CpGs. We 

selected hyperparameters using 5-fold cross validation in the dog dataset. We assessed 

performance of the final model by using the Spearman correlation between actual age and the 

methylation age of 11 dogs, which were not used for training, and in the same mice that were 

previously described. We refer to the ages predicted from this model as “epigenetic ages”. 

For analysis involving long-lived mice, we obtained DNA methylation data profiled from 

whole blood from (Petkovich et al. 2017) with the following counts described in Supplementary 
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Table 3.2 and processed identically as described above. We assessed significance of longevity-

promoting interventions with a log-likelihood ratio test for all long-lived mice and their age 

matched controls. To determine strain or condition-specific effects, we calculated a control strain-

specific average epigenetic age according to 10 evenly-spaced age bins. The epigenetic age of all 

mice assigned to the same bin were divided by this average, thereby reflecting the epigenetic 

relative aging ratio. Significance was assessed using a one-sided t-test.
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3.6 Figures 

 

Figure 3.1: Profiling of the aging canine methylome by syntenic bisulfite sequencing (SyBS).  
 (a) Strategy used to profile and compare CpG methylation within mammalian syntenic blocks. 
(b) Average coverage of syntenic segments versus total reads in millions, contrasting SyBS with 
Reduced Representation Bisulfite Sequencing (RRBS). (c) Pie charts showing representation of 
targeted genomic regions.  
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Figure 3.2: A non-linear transformation from dog to human age.  
(a) Dog-human methylome similarities (Pearson’s correlation) with dogs and humans averaged 
according to two-year windows. The average methylome correlation is shown for each cross-
species pairing. Note that these correlations are over the entire methylome in an unsupervised 
analysis, revealing a low but significant methylome-wide similarity with age. (b) The age of each 
dog methylome (x-axis) is plotted against the average age of the five nearest human methylomes 
(y-axis). (c) Reciprocal plot in which the age of each human methylome (y-axis) is plotted against 
the average age of the five nearest dog methylomes (x-axis). (d) Logarithmic function for 
molecular translation from dog years (x-axis) to human years (y-axis). Outlined boxes indicate the 
approximate age ranges of documented life stages corresponding to common aging physiology. 
Juvenile refers to the period after infancy and before puberty, 2-6 mos. in dogs, 1-12 yrs. in 
humans; Adolescent refers to the period from puberty to completion of growth, 6 mos. to 2 yrs. in 
dogs, approximately 12-25 yrs. in humans; Mature refers to the period from 2-7 yrs. in dogs and 
25-50 yrs. in humans; Senior refers to the subsequent period until life expectancy, 12 yrs. in dogs, 
70 yrs. in humans. Dog stages are based on veterinary guides and mortality data for dogs (Bartges 
et al. 2012; Inoue et al. 2015; Fleming, Creevy, and Promislow 2011). Human stages are based on 
literature summarizing human life cycle and lifetime expectancy (Bogin and Smith 1996; Cia 
2013; Arias, Heron, and Xu 2017) .   
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Figure 3.3: Conserved methylation changes clusters with one another in a functional 
interaction network.  
The 394 genes exhibiting conserved age-related methylation behavior were mapped onto a human 
composite network in which edges represent functional interactions supported by multiple sources, 
resulting in 290 genes and 2003 edges. The network was clustered using community detection and 
enrichment in biological pathways (Gene Ontology, see Methods), resulting in 5 major modules 
that are labeled according to the enrichment. The colors represent the conserved direction of 
change with age, with red representing genes that increase methylation with age, and blue are those 
that decrease methylation with age. The heatmap underneath each module show the conserved 
methylation patterns of a randomly sampled subset of the module. Rows represent orthologs, 
columns represent the average value of all species ranked according to their age in human years 
divided into 15 age bins (quantiles) for all three species. Values are normalized according to the 
mean and standard deviation of methylation for each ortholog. The fractional species composition 
of each bin is visualized in the legend.  
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Figure 3.4: Conserved clocks measures biological aging effects.  
 (a-c) Schematic illustrating the epigenetic clock construction method. The method takes as input, 
the methylation values from either mice or dogs,  using the methylation values from CpGs under 
genes exhibiting conserved methylation changes with age (Conserved development) or by 
randomly sampling the same number of CpG sites (Control clock). This is then trained using a 
regularized regression framework (Elastic Net) using the methylation values to predict the 
chronological age of the training species. The fully trained model is referred to as an “ epigenetic 
clock” that measures the age of the training species, in either  (b) dog years or (c) mouse years. 
(d) The Spearman’s correlation between the epigenetic age and actual age when training clocks in 
mice or in dogs for the test species indicated on the y-axis. Different colors represent the different 
subsets of CpGs, either conserved clocks or random clocks according to the colors in (a). The 
average correlation of 100 randomly sampled subsets for random clocks is shown and the 95% 
confidence interval estimated for bootstrapping. (e) The conserved clock trained in mice and 
applied to long-lived mouse data, where the mice are binned according to 10 quantile bins, where 
the actual age and epigenetic age are averaged according to these bins and their longevity-
promoting treatments. The best fit line, corresponding to the equations, of control mice or mice 
treated with longevity-interventions are shown, with colors reflected in the legend. The bands and 
bars depict the 95% confidence interval. (f) The actual age of mice and their epigenetic ages 
measured in dog years when using the conserved clock (top) or the random sampled subsets of 
CpGs (bottom). The same representation is depicted as (e). * denotes p < 0.05. 
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3.7 Supplementary Figures and Tables 

 
Supplementary Figure 3.1: Concordance of SyBS with non-targeted sequencing.  
(a) The distribution of ages of 104 dogs used in this study is depicted as a histogram: the x-axis 
shows the age in years, the y-axis describes the number for each bin. (b) 10 samples were 
sequenced without enrichment for syntenic regions (SyBS), representing methylation values 
obtained from whole-genome bisulfite sequencing (WGBS). The methylation values for each 
sample before (x-axis) versus after (y-axis) hybridization are shown as a scatterplot where color 
represents the density of observations at each point (darker colors represent higher densities). Sites 
were considered if they were covered by >5 reads for both SyBS and WGBS. (c-h) Concordance 
of SyBS values for six canine DNA samples (S1-S6), for which two independent captures were 
performed. The x-axis represents values obtained for the first capture, and the y-axis represents 
values obtained for the second capture. The Pearson’s correlation of the two captures is shown. 
Colors represent density of observations as per panel b. 

  



 

 116 

 
Supplementary Figure S3.2: Evaluating methylome similarities observed for dogs and 
humans.  
(a) Black line: the observed p-value of association between methylome similarity for each pair of 
species and age. P-value computed by Fisher’s exact test. This p-value is compared to those 
obtained from 1000 randomizations in which dog and human two-year bins were permuted (gray 
bars). (b-g) Varying the number of nearest neighbors k in dog-to-human age alignments. The actual 
ages of dogs (in years, x-axis, a,c,e) or humans (x-axis, b,d,f) versus the average age of k human 
or dog neighbors (in years, y-axis), respectively, when varying k: (a,b) k = 3, (c,d) k = 4 and (e,f) 
k = 6.  
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Supplementary Figure S3.3: Mouse methylation is concordant with conserved progressions 
observed in dogs and humans.  
(a) Methylome similarity for each dog-mouse pair (Pearson’s correlation) averaged according to 
2-year bins for dogs (x-axis) and 0.5-year bins for mouse (y-axis). (b) Data in panel a are 
summarized by sorting mice into 5 age quantiles (x-axis) and, for each quantile, providing the 
distribution of the average age of the 5 nearest dogs according to methylome similarity. These 
values are shown in a box plot, where the largest box represents the 25th percentile to 75th 
percentile. The boxes outside of these values are quantiles scaled to the proportion of observations 
within each box. The horizontal line represents the median.  
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Supplementary Figure S3.4: Examples of genes exhibiting conserved methylation changes 
with age.  
18 out of 394 orthologs exhibiting conserved direction of change with age are shown. All 
individuals are ranked according to their age in dog-years, then sorted and assigned into 15 age 
bins (quantiles). The x-axis shows these age bins. The y-axis shows the methylation change 
relative to average (0) where all values have been normalized by the mean and standard deviation 
within each species. The colors indicate the species.   



 

 119 

 
 
Supplementary Figure S3.5: Relationship between sequence constraint and conserved 
methylation changes with age for developmental genes.  
The  x-axis depicts the aging conservation score for 7,942 genes, which are divided into 25 quantile 
bins. Those that are significant are specified by -S. meth, for significantly decreasing methylation 
with age and +S. meth are those that are significantly increasing methylation with age, consisting 
of 198 and 196 genes, respectively. The y-axis depicts the average PhyloP score for all genes 
within a bin, stratified according to whether the gene is a developmental gene. The bars indicate 
the 95% confidence interval estimated by bootstrapping. The bars depict the number of genes 
within each bin, colored according to their developmental status.   
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Supplementary Figure S3.6: Dependence of conserved epigenetic progression with CpGs 
within developmental modules.  
The plots show epigenetic life trajectories based on methylome similarities calculated using all 
CpGs near genes (All CpGs), CpGs near development genes (devCpGs), or randomly sampled sets 
of CpGs not near development genes, of equal size to devCpGs (not devCpGs size-matched). The 
panels correspond to the following species comparisons: humans versus dogs (a), dogs versus 
humans (b), mice versus dogs (c), dogs versus mice (d), mice versus humans (e), and humans 
versus mice (f). In each comparison, the x-axis represents quintile age bins for one species, and 
the y-axis represents the average neighbor age for all individuals in each bin, where neighbor age 
is determined by the average age of the 5-nearest neighbors. Vertical bars represent the 95% 
confidence intervals of the averages obtained from 1000 bootstrapped samplings. 
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Supplementary File S3.1: Dogs used in study. 
The file lists the 104 dogs used in this study: the sample ID, age in years and center where the 
sample was obtained are shown. Abbreviations: Labrador retriever (Lab), Mixed breed (Mix), UC 
Davis (Davis), National Human Genome Research Institute (NHGRI), Consented Volunteer 
(CV).   
 
Supplementary File S3.2: Mouse dataset description. 
This file describes the chronological age and longevity intervention for all mice that were 
compared in Figure 3.4.
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CHAPTER 4: Discussion 

 

4.1 Summary 

This work has contributed to our understanding of the dynamics of epigenetic evolution. 

Since this work is mostly descriptive, it is still unclear exactly how these changes precisely affect 

cellular function and organism fitness. Nevertheless, this work has contributed towards delineating 

broad trends that are observed across many species. 

In the first chapter, we harnessed naturally occurring differences in genomic architecture 

between Mammalia and Drosophila to understand the relationship ask whether the evolution of 

epigenetic features also followed the dynamics of sequence evolution (Villar, Flicek, and Odom 

2014). Even though members of Mus have more rapid sequence evolution relative to members of 

Drosophila, we found that both clades had indistinguishable transcriptional evolution at different 

layers of gene regulatory networks (Carvunis et al. 2015). Notably, sequence-level features, 

including transcription factor binding and motifs, tended to diverge faster than the expression of 

genes. Nevertheless, this happened at indistinguishable rates in both clades. Our findings indicate 

that transcriptional evolution does not necessarily follow sequence evolution. 

In the remaining chapters, I continued to study the evolution of epigenetic modifications, 

but at during the course of a lifetime. Previous studies had indicated that methylation could be 

used to measure age accurately in humans (Hannum et al. 2013; S. Horvath 2013). However, it 

was unclear whether this was a phenomena was only specific to humans or if these were applicable 

across all mammals. Therefore, in chapter 2, I asked whether this phenomena extended from 

humans to mice. For this purpose, I collapsed methylation data from three distinct studies (Reizel 

et al. 2015; Cannon et al. 2014; Gravina et al. 2016), where methylation was profiled in liver. 
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Using Elastic Net (Zou and Hastie 2005), a regularized regression framework, I built an accurate 

epigenetic clock where the predicted ages of mice were highly correlated with the actual age of 

the mice (Pearson’s correlation = 0.91 in cross-validation). To verify that this measure recaptured 

aging-related effects, I applied this clock to mice treated with longevity-promoting interventions, 

specifically: rapamycin treatment, Ames dwarf mice and calorie restriction (Cole et al. 2017). In 

all mice, I saw that epigenetic ages measured by this clock were younger than those obtained for 

age matched controls. This work was the first demonstration that ages measured from these clocks 

could be slowed, indicating that some aspect of aging was captured through DNA methylation 

(Wang et al. 2017). Moreover, that epigenetic clocks were a conserved feature of the aging 

methylome across mammals. 

After observing that conserved methylation changes changes that were conserved between 

mice and dogs, I then decided to build these clocks in dogs, and determine whether there were 

particular changes that were more conserved with respect to age.  To be completely honest, I 

wanted to build molecular measures of age because I had just adopted my dog, and felt her age 

estimate was a bit suspicious. To my surprise, this actually launched the final two parts of my 

thesis. Nevertheless, this project has truly been a unique experience, consisting of the best and 

worst moments of my dissertation. The specific discovery I made was that genome-wide 

methylome similarities between individuals of dogs and humans could translate dog years to 

human years and vice versa. Motivated by these results, I then searched for the regions of the 

methylome that were responsible for these age-translations. I found that these conserved events 

predominantly affected development genes. Moreover, epigenetic clocks could be formulated 

when using only the CpGs under these conserved genes. At first, a simple explanation would that 

these genes were selected based on your criteria, effectively a circular pipeline. However, I 
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validated this observation in long-lived mice and their controls, which were not used for 

identifying conserved methylation behavior. They also show the expected biological aging 

differences. Moreover, after further selecting using regularized regression, these CpGs were highly 

enriched for developmental genes. These findings indicate that precise changes in developmental 

genes are responsible for translating aging-related effects across species.

  

4.2 Limitations 

There are important limitations to consider for this body of work. First and foremost, all of 

my work thus far has been descriptive. It is still unclear what the exact relationship between 

epigenetic changes are with cellular functions. This is still an important aspect that remains to be 

validated. In this section, I break down limitations by the studies with respect to the scale of time 

examined. 

In chapter 1, the first and foremost limitation is that our conclusions are based off of a small 

sampling of individuals from each species in each clade. For instance, two individuals were 

sampled at each time point, meaning there was only 10 data points that could be fit by regression 

methods. It remains to be determined if larger population of individuals would change these 

findings. Moreover, since epigenetics varies with respect to cellular context, none of our stages 

were carefully matched. It remains to be determined if we would see different effects had we had 

access to data that was carefully matched with respect to life stages. 

In chapter 2 and 3, beyond long-lived mice, we did not have any other metrics that would 

report other elements of ‘healthspan’, or the period of life when individuals are relatively healthy. 

Increasing the length of healthspan is the ultimate goal of understanding the mechanisms of aging. 

Finding reproducible molecular correlate of aging is incredibly exciting, but it is still in its infancy. 
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It still remains to be determined whether specific changes actually influence the rate of aging, and 

contribute towards the mechanisms of aging. Currently, methods to introduce methylation changes 

at defined loci are still in its infancy. However, there are studies that have been able to tether a de-

methylating domain to CRISPR to introduce defined changes (Liu et al. 2016). These experiments 

will help define the functional effects of methylation changes and its contribution to aging. 

Another important limitation to consider is that all of my findings, particularly in Chapter 

3, were made using whole blood DNA isolates. It is well known that DNA methylation signatures 

have a strong dependency on changing cell types. It could be possible that conserved shifts in 

particular blood cell types are providing the signal to observe these changes across mammals. 

Nevertheless, it does make for an interesting model to understand how these conserved shifts are 

occurring. 

 

4.3 Outlook 

This section of my dissertation is fully dedicated to my personal opinions regarding the 

DNA methylation changes with age, and how this could revolutionize the ways we study aging. 

Biology tends to define the period of development, prior to sexual maturity, and aging as 

two distinct periods of life, development and aging (Kirkwood 2005). Development is thought of 

as ‘programmed’, meaning that gene products are selected upon by natural selection to give rise 

to a sexually mature individual. In contrast, aging describes the progressive decline of 

physiological function and increased risk of mortality affecting nearly every species. Our 

understanding of aging has remained fundamentally limited, in part due to difficulties of defining 

aging, and the difficulties in understanding whether we should expect aging mechanisms to be 

conserved across species of extremely different lifespans. 



 

 132 

These difficulties are fully driven by our inability to define aging in a way that is feasible 

to measure and study in practice. I believe that DNA methylation may provide the first molecular 

measure that can be used to report on the rate of aging, as we experience it. Having a measurement 

that correlates with elements of aging, such as lifetime-expectancy, can be immensely useful 

towards studying mechanisms that increase or decrease the rate of these changes. If this was true, 

this would reduce the burden of studying aging and truly understand the components that reduce 

our physiological fitness with respect to time. After all, having the ability to have a reproducible 

biomarker is necessary in order to further study any biological process. 

If this is true, that DNA methylation somehow can track all the complex processes that 

break down over the span of life, it is natural to wonder why this is possible. I do not think that 

changes in DNA methylation with age are necessarily determined by a hypothetical aging-program 

that initiates during middle age. However, there may be some unintentional consequences of 

genetic programs that occur earlier in life, which result in aging. This theory of aging is formally 

defined as the antagonistic pleiotropy of aging, specifically that genes that were beneficial earlier 

in life become detrimental later in life (Steve Horvath and Raj 2018; Blagosklonny 2012). 

Consistent DNA methylation changes with age may eventually be evidence of this theory of aging. 

Perhaps, they represent a method by which ‘genomes’ have any sense of progression through the 

lifespan. These epigenetic changes may be defined by species-specific features that orchestrate the 

length of gestation, the length of time it takes to reach sexual maturation and the maximal 

longevity. Intriguingly, each of these traits are strongly and inversely associated with maximal 

lifespan, such that shorter-lived mammals typically have short gestation periods and reach sexual 

maturation at much faster rates. Moreover, the conserved and highly punctated increasing 

methylation with age, predominantly affecting development genes, are incredibly consistent, and 
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much more consistent than those that decrease methylation with age, or the methylation around 

non-developmental genes. Perhaps, the amount of methylation at this loci somehow tells the 

genome how ‘old’ it is. It would be exciting to understand this phenomena and its relationship with 

aging. Wouldn’t it be fascinating if the reasons for why we age are directly related to our necessity 

to reach sexual maturation across all mammals? Moreover, what if one could determine what 

genetic elements control the rate in which this methylation gains with life? This might be all crazed 

musings, but I truly believe that this is an area that deserves further investigation to understand the 

ultimate basis for every other age-related disease.
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