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ELSEVIER 

Classification of Boreal 
Using SAR Images 

Forest Cover Types 

Sasan S. Saatchi ° and Eric Rignot 

M a p p i n g  forest cover types in the boreal ecosystem is 
important for understanding the processes governing the 
interaction of the surface with the atmosphere. In this 
paper, we report the results' of the land-cover classifica- 
tion ( f  the SAR (synthetic aperture radar) data acquired 
during the Boreal Ecosystem Atmospheric Study's inten- 
sive field campaigns over the southern study area near 
Prince Albert, Canada. A Bayesian maximum a posteriori 
classifier was applied on the National Aeronautics and 
Space Administration~Jet Propulsion Laboratory airborne 
SAR images covering the region during the peak cf  the 
growing season in July 1994. The approach is supervised 
in the sense that a combination of field data and existing 
land-cover maps are used to develop training areas fi)r 
the desired classes. The images acquired were first radio- 
metrically and absolutely calibrated, the incidence angle 
effect in airborne images was corrected to an acceptable 
accuracy, and the images were used in a mosaic fi)rm 
and geoeoded and georeferenced with an existing land- 
cover map for validation purposes. The results show that 
SAR images can be classified into dominant forest types' 
such as jack pine, black spruce, trembling aspen, clear- 
ing, open water, and three categories of mixed strands 
with better than 90% accuracy. The unispecies stands' 
such as jack pine and black spruce are separated with 
98% accuracy, but the accuracy of mixed coniferous and 
deciduous stands suffers from co,@sing factors such as 
varying species composition, surface moisture, and un- 
derstory effects'. To satisfy the requirements of process 
models', the number of cover types was reduced from 
eight to five general classes ~f conifer wet, conifer dry, 
mixed deciduous, disturbed, and open water. Reduction 
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of classes improved the overall accuracy of the classifica- 
tion over the entire region from 77% to 92%. ©Elsevier 
Science Inc., 1997 

I N T R O D U C T I O N  

One of the major challenges of developing Earth system 
process models both on global and on regional scales is 
the accurate representation of the terrestrial vegetation. 
These process models work at a variety of spatial scales 
ranging from meters to kilometers. Depending on the 
application of the processes and their scales, the defini- 
tion of categories of vegetation types may change. For 
example, for global land-atmosphere models such as Bio- 
sphere-Atmosphere Transfer Scheme (BATS), 18 general 
land-cover types are defined that are often inferred from 
maps, atlases, and national databases (Dickenson, 1994). 
For finer-scale process models, the availability of high- 
resolution land-cover maps can improve the parameter- 
ization of landscape to functionally different strata. Cur- 
rently, there are several approaches under investigation 
to statistically aggregate the high-resolution maps derived 
from remote-sensing techniques to a desired process 
model grid scale (Hall et al., 1995). These techniques are 
primarily focused on exploiting optical remote-sensing 
data such as that of the advanced very high resolution 
radiometer (AVHRR) and Landsat (Sellers et al., 1994; 
Townshend et al., 1991). 

As a complement to optical remote-sensing tech- 
niques, land-cover maps derived from multipolarization, 
multifrequeney synthetic aperture radar (SAR) systems 
are an important tool for terrestrial ecologists and pro- 
cess modelers. Independenee of SAR data of solar irradi- 
anee and cloud cover is one significant reason for using 
this technique for land-cover classification, especially in 
northern latitude boreal forest and tropical raintbrest 
where the acquisition of optical data is hindered by fre- 
quent cloud cover and fire smoke. In addition, the sensi- 
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tivity of the radar signal to moisture content and struc- 
tural properties of vegetation may separate forest types, 
particularly when optical sensors are saturated over 
dense vegetation. Several studies, using a variety of clas- 
sification approaches, have used SAIl images for land- 
cover-type classification in forested regions (Saatchi et 
al., 1996; Rignot et al., 1994; Ranson and Sun, 1994; 
Dobson et al., 1994; Cimino et al., 1986). The applica- 
tion of these high-resolution maps in process models has 
not been thoroughly explored. For example, Bonan 
(1993) has used the SAR-derived land-cover map over 
the boreal forest of interior Alaska to improve the esti- 
mation of forest assimilation. 

Our classification of land cover is used to address the 
specific requirements of the BOREAS (Boreal Ecosys- 
tem Atmospheric Study) modeling activities. Separating 
functionally important land-cover types for modeling the 
exchange of trace gases between the land surface and the 
atmosphere is the ultimate goal of this study. The area 
has been under intensive study during the BOREAS 
project {br its important role in biogeochemical cycles 
between land and atmosphere at northern latitude (Sell- 
ers et al., 1995). The land-cover types in this region can 
be characterized by only a few dominant tree species. 
For example, the separabili~ of conifer and deciduous 
stands and the dry and wet conditions in this region are 
important for estimating the rates of photosynthesis, res- 
piration, carbon assimilation, and nitrogen concentration. 
There{bre, the process of classification with the use of 
SAR imagery is, first, to illustrate the capability of the 
instrmnent to identii}" these classes, and, second, to show 
the spatM pattern of these classes over a region used for 
ecosystem processing models. In this study, we discuss 
the application of SAt/ data for mapping of forest types 
in the BOREAS area. A supervised classification ap- 
proach using a maximum a posteriori Bayesian classifier 
is applied on the three-frequency polarimetric Jet Pro- 
pulsion Laboratory airborne synthetic aperture radar 
(JPL AIRSAR) data to identify eight classes. Classifica- 
tion accuracies are computed first for the areas used {br 
training the classifier, then over several homogeneous 
sites examined during the field observation, and finally 
by comparing the results with a digital vegetation map 
assembled t'rom infrared aerial photointerpretation per- 
formed in 1984. 

BOREAS EXPERIMENT 

The Boreal Ecosystem Atmospheric Study is a coopera- 
tive field experiment integrating land surface climatology, 
tropospheric chemistry, and terrestrial ecology. In gen- 
eral, the experiment was designed to extend the findings 
of FIFE over grass prairie to boreal forests, one of the 
earth's largest and complex biomes, where coniferous 
species dominate. The biome has upland forests, exten- 
sive wetlands, some deciduous species, and many lakes, 

and it is a major storage of organic carbon, mostly in the 
soil (BOREAS Science Steering Committee, 1990). 
Among the primary objectives of the experiment, 1) im- 
proving understanding of the processes that govern the 
exchange of energy, water, heat, carbon, and trace gases 
between the boreal forest ecosystem and the atmosphere 
and 2) developing and validating remote-sensing tech- 
niques to transfer our knowledge of these processes from 
local to regional scales are of great importance. A rele- 
vant scientific issue is the sensitMty of the boreal forest 
biome to changes in physical climate and vice versa. 
Mapping vegetation-cover types, changes in land use, 
and the species composition in the region can contribute 
to long-term climatological research studies. 

SRe Deseription 
The focus of our paper is the BOREAS southern study 
area (SSA), which covers an area about 130 km in tile 
east-west direction and 90 km from north to south (Fig. 
1). The southern boundary is located approximately 40 
km north of the town of Prince Albert, Saskatchewan, 
Canada. The SSA topography, is gentle, with local eleva- 
tions ranging from 550 to 730 m. Soils range from gray 
wooded to degraded black and are classified as bruni- 
solic, gleysolic, chenozemic, luvisolic, and organic soil or- 
ders (Anderson and Ellis, 1976). Glacial deposits vary in 
thickness from 100 to 1000 m on the top of the Creta- 
ceous bedrock. The western part of the SSA is in the 
Prince Albert National Park (PANP), and the eastern re- 
gion falls within and around the Narrow Hills Provin- 
cial Forest. 

The SSA is near the southern limit of tile boreal fi)r- 
est and the transition to natural prairie grassland and ag- 
ricultural land is 15 km to the southeast. The image data 
discussed in this paper are east of PANP in the area of 
the Narrow Hills Provincial Park. The image area also 
coincides with the BOREAS modeling grid (50×50 kin) 
used mainly for verifying remote-sensing algorithms and 
ecosystem modeling results. The vegetation in this area 
is classified as mixed boreal forest. On well-drained and 
san@ soil, the predominant species is jack pine (Pinus 
banksiana). Poorly drained sites support black spruce 
(Picea mariana). Mixed stands of aspen (Populus tremu- 
loids), balsam poplar (Populus balsamifera), and white 
spruce (Picea glauca) are {bund on well-drained glacial 
deposits. In poorly drained areas throughout the study 
area, bogs support black spruce with tamarack (Larix lar- 
icina). The fen areas are composed mostly of sedge 
(Carex s'pp.) with discontinuous cover of tamarack or 
swamp birch (Bemla pumila). Localized logging fbr pa- 
per pulp and fence posts is common along Highways 1(16 
and 120 and along Harding Road (see Fig. 1). The north- 
eastern part of the study area encompasses a part of the 
Fishing Lakes burn that occurred in 1977 and 1978. 
Stands of small (<5 cm) jack pine regrowth now cover 
most of the burn areas. 
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Figure 1. Map of the BOREAS southern study area and the modeling subgrid. 

Major land-cover types are identified according to 
the needs of the BOREAS scientific applications. These 
land-cover types are chosen on the basis of their domi- 
nant species, canopy closure, soil organic properties, and 
their roles in determining the physics of the interaction 
of land surface and atmosphere. The land-cover catego- 
ries consist of dry eonifers (e.g., jaek pine), wet eonifers 
(e.g., black spruce), deciduous (trembling aspen), clear 
cut, open water (lakes and river), brushland, treed mus- 
keg, mixed eoniferous and deciduous trees, and regrowth 
(e.g., young jack pine). Between summer of 1993 and fall 
of 1994, forest stands of major land cover were sampled 
to measure tree species composition, stand geometry, 
biomass density, and several other forest canopy attri- 
butes. Data collections on the ground were performed 
for many applications and are available for all the flux 
tower and auxiliary sites. The flux tower sites are mainly 
single speeies stands. 

In addition, there exists a digital vegetation map of 
SSA that was assembled from 1 : 12,500 scale infrared ae- 

rial photography and field reconnaissance notes in 1984. 
This vegetation map has been verified on the gronnd, 
but no accuracies are provided. The map consists of 40 
different classes, regrouped to simplify the representa- 
tion of vegetation types for dominant classes (Fig. 2). 
The map does not show recent changes due to tree log- 
ging, regrowth, and transformation of treed muskeg to 
predominantly black spruce stands. 

AIRSAR DATA 

The JPL airborne synthetic aperture radar (AIRSAR) 
was flown aboard a National Aeronautics and Space Ad- 
ministration DC-8 during all the intensive field cam- 
paigns (IFC) in summer of 1993, in April 1994 during 
the thaw period of the boreal forest, and in summer and 
fall of 1994. The AIRSAR operates at three frequency 
bands, P-band (68-cm wavelength), L-band (24-era), and 
C-band (5.6-era), with fully polarimetric capability. The 
incidence angle of the radar varied between approxi- 
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Figure 2. Digital vegetation 
map of the modeling subgrid as- 
sembled from visual interpreta- 
tion of infrared aerial photogra- 
phy. The map includes eight 
different types of land cover 
that result from the regrouping 
of 40 original land-cover classes. 

mately 20 ° and 60 °. The radar data used for land-cover 
classification were acquired on 21 July 1994 and pro- 
cessed in synoptic mode (50-km swath). We chose this 
date to prevent possible errors in classification due to the 
partially frozen condition during the thaw period and to 
the leaf-off condition during the fall season. We used im- 
ages from several parallel flight lines in a mosaic mode 
to create larger area coverage over the modeling grid. 
The calibration, radiometric correction, and mosaic of 
the images were performed in several steps. 

Image Calibration 
In this stu@, we made use of synoptic SAR images that 
were acquired with parallel flight lines in a "race track" 
trajectoD. The synoptic images have larger coverage (ap- 
proximately 50 km) but only three polarizations. These 
images are often processed for the purpose of surveying 
the area and are not absolutely calibrated. We processed 
a total of' 15 synoptic images to cover all the bands and 
polarizations of the AIRSAR system. Calibration of im- 
ages was performed by using fully polafimetric calibrated 
frame images processed over a part of the synoptic im- 
ages. Absolute calibration constants were obtained by 
computing the ratios of baekscattefing coefficients from 
identical areas from both images and applying the cali- 
bration constants to all synoptic images. When compared 
with frame images, the synoptic images were absolutely 
calibrated with less than 0.1-dB error for all polarization 

Figure 3. P-band polarimetric color overlay of the AIRSAR 
mosaic image of the modeling subgrid within the BOREAS 
southern study area acquired on 21 July 1994. P-band HH, 
HV, and VV polarizations are in red, green, and blue, respec- 
tively. The mosaic image is coregistered with the digital vege- 
tation map and georefereneed to universal transverse Merca- 
tor coordinates with North being parallel to the side of the 
image. 
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channels. The frame images were calibrated both inter- 
nally and externally by using data collected over an array 
of corner reflectors deployed over the Rosemond dry lake 
calibration site in California before and after the AIR- 
SAR campaign. After the absolute calibration, the images 
were resampled to ground range to remove the distor- 
tions in the near-range and far-range pixels. 

Incidence Angle Correction 
One of the disadvantages of airborne SAR data, when 
used for land-cover classification, is the variation of the 
incidence angle along the range lines across the image 
(20-60°). Consequently, areas with similar land-cover 
types produce different baekscatter signatures if they are 
imaged at different incidence angles; and, depending on 
the scene characteristics, the variation of the backseatter 
signature along each range line may be different. These 
effects can cause inaccuracies in a consistent class sepa- 
ration over the entire image. Correction of the image for 
incidence angle effects, therefore, becomes a necessary 
but impossible task to accomplish exactly. To have an op- 
timal correction for incidence angle effects, several ap- 
proaches have been suggested. Yueh et al. (1988) nor- 
malized the SAR data by the total power. This technique 
eliminated most of the incidence angle effects but at the 
same time changed some of the information in SAR 
backscatter signatures. The resulting normalized images 
were not able to discriminate all classes. Another method 
was proposed by Sader (1987), in which homogeneous 
areas of the same types were chosen along the range 
line, and the total image was calibrated such that these 
areas had equal baekscattering signatures. This technique 
will not work in areas with complex land-cover types. 
Rignot and Drinkwater (1993) corrected the incidence 
angle effects in their classification of sea-ice types by first 
segmenting the image along the range line, performing 
range-dependent clustering of the image, regrouping the 
clusters, and employing a supervised classification to pro- 
duee self-consistent classes across the image scene. How- 
ever, their technique requires that similar class types be 
represented in each segment of the image. Over complex 
land-cover types, sometimes only a limited number of 
classes is present over each range segment, causing dif- 
ficulty in regrouping the clusters and removing the 
range-dependent effects. Ranson and Sun (1994) used 
AIRSAR images over forested land surfaces, selected a 
part of each image line within sapwood areas, calculated 
the mean and standard deviation of these pixels, and dis- 
carded all pixels falling outside of _+2 standard deviations. 
The remaining pixels were used to estimate the mean 
values at each image row, then a linear regression was 
used to estimate the calibration ratio for each line, and, 
subsequently, the entire image was calibrated by using 
these ratios. When employing this technique, it was 
found that the linear regression method did not always 
compensate for the inhomogeneous scene characteristic 
along the range line. 

The synoptic images used in this study were cor- 
rected for incidence angle variations with a technique 
slightly different from that of Ranson and Sun (1994). 
We plotted the incidence angle variations for each range 
line, and then a nonlinear regression in conjunction with 
a cubic spline smoothing algorithm was used to estimate 
the general behavior of the incidence angle variations 
along each range line. The regression curve was then 
normalized by the mean backscattering coef~cient of the 
range line and then used to correct for the incidence 
angle effects of that range line. The entire image was 
then corrected line by line. 

Image Mosaic 
After calibration and incidence angle correction, the im- 
ages from each frequency band and polarization were 
used in tandem to generate a mosaic image over ahnost 
the entire modeling subgrid. Figure 3 shows a color 
composite of the mosaic image at P-band (red, P-HH; 
green, P-HV; blue, P-W). Because the images were ac- 
quired from flight lines with the same heading, they also 
had an area of overlap with adjacent images. A linear 
feathering technique was then employed to remove the 
tonal inconsistencies that existed at the areas of overlap. 
In some areas where incidence angle effects were not 
optimally corrected, the feathering technique guaranteed 
further smoothing at the edges of images. If the overlap- 
ping regions were near the lakes where there was a dra- 
matic change in the radar baekscatter signature, inci- 
dence angle effects could not be totally removed, and 
the edge effects were still obvious in the mosaic image. 

CLASSIFICATION METHODOLOGY 

When designing a classifier, it is important to define the 
mathematical basis of the classifier and, at the same 
time, to distinguish between the supervised and unsuper- 
vised learning procedures within the classifier. Here, we 
make use of a maximum-a-posteriori (MAP) Bayesian 
classifier developed for multifrequency polarimetric SAR 
data (Rignot and Chellappa, 1993). The MAP classifier 
models the SAR amplitudes as circular Gaussian distri- 
bution, which ineans that textural variations in radar 
baekscatter from tile surface are not considered to be 
significant enough to be incorporated into the classifica- 
tion scheme. In this method, the a priori distribution of 
image classes is modeled by using a Markov random 
field. From the models of the a priori distribution of 
classes, a model for the a posteriori distribution of the 
image classes is derived from the SAR image by using 
the Bayes' theorem. The optimal image classification of" 
the SAR data is defined as that which maximizes the a 
posteriori distribution of classes and is called the maxi- 
mum a posteriori estimate of the image classes. 

The MAP method is inherently different from and 
superior to the maximum likelihood estimation (MLE) 
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procedure. The classifiers based on the maximum likeli- 
hood methods view the parameters (classes) as quantities 
whose values are fixed but unknown, and the best classi- 
fication is defined to be the one that maximizes the prob- 
ability of obtaining the samples actually observed (Duda 
and Hart, 1973). The MAP classifier views the parame- 
ters or classes as random variables with some a priori dis- 
tribution. Iterative observation of the feature space con- 
verts this into an a posteriori density, thereby revising 
the decision about the true nature of classes. Because 
class distributions are analytical functions, the class char- 
aeteristics obtained from training areas stay the same as 
in MLE. Air advantage of this technique, besides its 
mathematical rigor, is that it is general enough and, ~vith 
minor modification of the feature space, can be applied 
to both optical and SAt/ images, therefore creating the 
opportunity for both comparative and synergistic studies. 

A number of other classifiers that have been used 
successfully but with limited capability fbr generalization 
also are available in the literature. Among them, Ranson 
and Stln (1994) used a combination of principle compo- 
nent analysis and MLE to come up with about 80% 
accuracy over Northern Experimental Forest near How- 
land, Maine. Pierce et al. (1994) introduced a knowl- 
edge-based classifier over a test site in northern Michi- 
gan. This tectmique depends on the absolute baekseatter 
values derived over training areas and the texture infor- 
mation that may be degraded ()wing to multilook averag- 
ing in polarimetric SAIl data in removing the speckle 
noise. 

The learning procedure for the classifier is super- 
vised in the sense that the state of the nature (class label) 
is known in advance, and training areas are chosen on 
the basis of a priori knowledge of the scene or the visual 
interpretation of the image. To implement the MAP clas- 
sifier over the SAIl mosaic image, we first define the a 
priori distribution of the SAIl data for image classes by 
computing the average eovarianee matrix over the single 
training area. We eoneentrated on eight categories of 
training cover: 1) jack pine (jp), 2) black spruce (BS), 3) 
trembling aspen/mixed (TA/MX), 4) mixed jack pine and 
aspen (JP/TA), 5) mixed black spruce and jack pine (BS/ 
jP), 6) mixed strands (MX), 7) clear cut, disturbed, and 
nonlbrest (CC), and 8) open water (OW). For each cate- 
gory, we selected large homogeneous stands from the 
knowledge acquired during the field observation and the 
existing land-cover map. The average covarianee matrices 
are then computed over training areas for all three fre- 
quencies. Here, we used three training areas for jack 
pine stand, depending on the density and age, and two 
black spruce areas from a tower site and mature treed 
muskeg stand. The use of a limited number of training 
areas ensures realistic classification accuracy and the ex- 
trapolation of" the results to the entire image. Table 1 
lists the calibrated radar backscattering coefficients, co- 
polarized phase difference in degrees, and the coefficient 
of correlation in the linear domain between the complex 

amplitudes at HH and VV polarizations. The radar char- 
aeteristics are obtained from the frame image, s processed 
over 10x10 km areas within each synoptic image. The 
forest stands chosen for the training areas were imaged 
at nearly the same incidence angle (typically, about 45 ° 
incidence angle)., thus the radar parameters for the im- 
age classes are assumed to be independent of the inci- 
dence angle. However, the SAIl image was classified 
over all of its angle variations and, although the images 
were corrected for incidence angle variation ahmg the 
range line, we can still expect some misclassiflcation, par- 
ticularly near the areas of overlap. Among the training 
areas, we encountered some difficulty.' in identif~ng 
aspen stands because of their small sizes within the 
BOREAS modeling grid and their vicini~ to mixed 
stands. As a result, aspen class is labeled TA/MX to illus- 
trate the aspen-dominated mixed stands. 

RESULTS A N D  DISCUSSION 

The map of forest types constructed fronl SAR data is 
shown in Figure 4. This result is obtained by using po- 
larimetric data at P-band and the HH and [IV polariza- 
tions at L- and C-bands. Tile choice of the frequency 
and polarization channels for achieving the optimum 
classification results was made by changing the dimen- 
sionality of the classification, or, equivalently, reducing 
the number of elements in the covariance matrix of each 
pixel that are used for classification. Consequently, the 
optimum classification accuracy was obtained by exclud- 
ing only L- and C-band VV polarizations. In this process, 
it was also found that the contrilmtion of P-band data 
was crucial in separating the classes. The reason for this 
combination is partly due to the calibration and radio- 
metric inaccuracies at higher frequencies. In particular, 
the C-band W-polarized synoptic mosaic data suffered 
from banding in the image, and inaccuracies resulted 
from incidence angle correction. In fact, when a radar 
channel does not separate two image classes, it adds as 
a noise source to the classification and increases the clas- 
sification probability" of error. The combination of polar- 
izations and frequencies used to attain maximum separa- 
bility differs from a similar technique applied on AIRSAR 
frame images over Alaskan boreal forest where the high- 
est accuracy" was obtained by only L-band and C-band 
HV polarizations (ilignot et al., 1994). We believe the 
reason for this difference resides in the poor radiometric 
accuracy of the synoptic images 0t high frequencies in 
our case and in the P-band interference problem in the 
data used over the Alaska region. 

Classification accuracy tor each class is determined 
by measuring the number of pixels correctly classified 
into the class divided by the total number of pixels in 
that class and is illustrated in the form of a confusion 
matrix. In assessing the total classification accuracy, we 
included open water and clear cut, though they are often 
separated with no difficulty within SAIl images. The con- 
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Table 1. Radar Characteristics of the Training Sites of Forest-Type Classes 
at P-, L-, and C-Band Frequencies on 21 July 1995 

Frequency a ,,° a<,m, a~)v ~ p Pixels Class 

P-baud -1.13 -12.40 -3.74 69 0.48 2814 JP 
-7.02 -14.65 -6.21 28 0.37 1097 BS 
-4.80 - 13.99 8.24 78 0.25 4920 TA/MX 
-6.66 -17.14 -5.75 51 0.24 1883 JP/TA 
- 1.28 - 12.33 0.44 64 0.46 1850 MX 
-6.25 - 14.28 -6.58 :36 0.20 2006 BS/JP 

-10.24 -22.69 -14.78 - 8  0.36 1097 CC 
-15.26 -27.71 -14.35 19 0.35 286 OW 

L-band -1.80 -12.35 -6.49 120 0.41 2814 JP 
-5.73 - 13.62 -6.75 23 0.36 1097 BS 
-6.69 -12.16 -7.41 32 0.14 4920 TA/MX 
-5.87 -15.47 -7.39 49 0.30 1883 JP/TA 
-2.50 - 10.83 -4.01 94 0.26 1850 MX 

5.07 -13.23 -7.8;3 63 0.16 2006 BS/JP 
-9.20 -20.32 - 12.60 - 19 0.44 1097 CC 

-20.21 -29.77 16,54 2 0.48 286 OW 

C-band -6.47 - t3.03 -8.56 4 0.32 2814 JP 
-5.24 -13.05 -7.36 15 0.47 1097 BS 
-7.13 -12.84 -6.38 5 0.47 4920 TA/MX 
-5.98 - 13.59 -9.16 11 0.35 1883 JP/TA 
-4.48 -12.06 7.08 15 0.32 1850 MX 
-5.74 -12.88 -7.24 12 0.48 2006 BS/JP 
-8.69 - 18.38 - 11.51 17.5 0.58 1097 CC 

-22.70 -29.75 -21.19 10 0.34 286 OW 

a~,j is the backscattering coefficient at pq polarization averaged over the number of pixels 
within each training site, and ~o and p are the phase difference in degrees and the coefficient 
of correlation of HH and W polarizations, respectively. The classes are: JP (jack pine), BS (black 
spruce), TA/MX (aspen dominant mixed), JP/TA (jack pine dominant mixed with aspen), MX 
(mixed), BS/JP (black spruce dominant with jack pine), CC (clear cut), OW (open water). 

t r ibut ion of  each f requency in the total classification was 
assessed qualitatively when the classifier results were ex- 
amined  dur ing the dimensional i ty  test. The  results indi- 
cate that  the  HV polarizations contr ibute  the  most for 
forest- type mapping at all frequencies.  As shown in Ta- 
ble  1, the  HV channels at L-band  and P-band°show the 
highest  variabili ty over the range of  forest types because  
they are mainly re la ted  to the volume scattering within 
forest canopy and in turn sensitive to the  forest biomass 
density. Fur the rmore ,  over fores ted areas, the  HV back- 
scat ter  is less sensitive to the incidence angle variation, 
and therefore  the  channels are less contaminated  by the 
correct ion errors that  may have remained  over the image 
mosaic. The  eopolar ized backscat ter  is less variable over 
different  stands; but, because  the calibration of  copolar-  
ized channels is usually be t t e r  than that of  cross-polar- 
ized channels,  their  role in separat ing classes is signifi- 
cant. Fo r  example,  over low vegetation,  clear cut, and 
open water,  the HV-polar ized backscat ter  is very low, 
and the copolar ized backscat ter  signatures are the pri-  
mary  source for separat ing these classes. 

Table  2 shows the confusion matrix compu ted  from 
the results of  M L E  and MAP classifiers over the training 
areas with 90% and 96% accuracies, respectively. Fo r  the 
mixed aspen and jack pine (JP/TA) class, pixels over the 
training area were classified with only 72% accuracy. The 

reason for this is the similar average copolarized back- 
scat ter  values at all three bands. In  general,  for mixed 
stands, the choice of  the training areas is poor  compared  
with the monospecies  homogeneous  stands and, as a re- 
suit, the mean backscat ter  returns for these sites are not 
very distinctive. Therefore,  we expected poor  accuracies 
over TA/MX sites because,  over this region, most of  the 
aspen stands are mixed with conifer  trees. Jack pine and 
black spruce stands were  classified with 100% and 99% 
accuracy, respectively. P-band and L-band  H H  polariza- 
tions are the main channels for separat ing these two 
classes. In jack pine stands, the trees are taller with less 
foliage and the ground surface is dry and smooth, which 
collectively contr ibutes to high double-bounce  return at 
H H  polarization (Moghaddam and Saatehi, 1995). Tile 
black spruce stands, on the o ther  hand, have shorter  
trees, more foliage, and a thick and wet moss layer and 
thus lower returns at H H  polarization because of  the ab- 
sorption of  the e lec t romagnet ic  energy by the underlying 
moss layer. 

To examine the ability of  the classifier in separating 
coniferous and deciduous stands, we appl ied the classi- 
fier, without  any changes in its current  configuration, on 
an AIRSAR frame image acquired over the aspen tower 
site in Prince Albert  National  Park on the same date. 
The image covers the area south of  Halket t  Lake and 
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Figure 4. Map of forest types 
obtained from P-band polari- 
metric and L- and C-band HH 
and HV polarizations. The 
map includes eight classes sim- 
ilar to those in Figure 2. The 
classes are JP (jack pine), BS 
(black spruce), JP/TA (domi- 
nant jack pine mixed with 
trembling aspen), BS/JP (dom- 
inant black spruce mixed with 
jack pine), TA/MX (dominant 
trembling aspen mixed with 
other conifers), MX (mixed co- 
nifer), CC (clear cut, bogs, and 
disturbed), OW (open water). 

no r th  of  dir t  road Rt. 240 and  is c e n t e r e d  at the  aspen  

tower  site at a lmost  45 ° inc idence  angle. The  area is cov- 
e red  mainly  with aspen trees and  with small  scat tered 

patches  of  ba lsam poplars  (Populus balsamifera) that  are 

similar  in s t ructure  to aspen.  The  result  of  the  classifica- 

t ion is shown in F igure  5. F r o m  a ~isual in te rp re ta t ion  
of  the  map,  it appears  that  the classifier separates the  

aspen s tands with no  d i f f i cu l t .  Over  the  tower  site, the  

Table 2. Confusion Matrices of Forest types Derived from MLE and 
MAP Classifiers 

Species JP BS TA/MX TA/JP MX BS/JP CC OW 

MLE 
JP 98 0 1 0 1 0 0 0 
BS 0 95 0 4 0 1 0 0 
TA/MX 0 0 98 0 1 0 0 0 
JP/TA 1 26 2 .58 0 13 0 0 
MX 6 0 0 0 94 0 0 0 
BS/JP 0 13 3 1 0 8"2 0 0 
CC 0 0 0 0 0 0 100 0 
OW 0 0 0 0 0 0 2 98 

MAP 
jP lOO o o o o o o o 
BS 0 99 0 0 0 1 0 0 
TA/MX 0 0 100 0 0 0 0 0 
JP/TA 0 20 0 72 0 7 0 0 
MX 0 0 0 0 100 0 0 0 
BS/JP 0 0 0 0 0 100 0 0 
CC 0 0 0 0 0 0 100 0 
OW 0 0 0 0 0 0 2 98 

Abbreviations: MAP=maximum a posteriori classifier; MLE=maximum likelihood classifier. 
The diagonal elements of confnsion matrices define the percentage of those pixels classified 

into the correct class. 
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II 
Figure 5. Map of forest types obtained over the aspen tower site 
in Prince Albert National Park. The map was obtained from a frame 
image covering an image of approximately 10xl0 kin. The cover 
types are similar to those in Figure 4, with aspen being separated 
from other land-cover types. 

Figure 6. (a) Reduced SAR map over the modeling subgrid derived from the original SAR map 
shown in Figure 4. The map includes five classes of conifer-wet, conifer-dry, mixed deciduous 
and conifer, clear cut, and open water. (b) Reduced digital vegetation map derived from the orig- 
inal vegetation map by regrouping the land-cover classes. 
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Table 3. Tree Species Composition of 19 Forest Stands in the Modeling Subgrid Area 

Site 

Stand Composition 1 Stand Composition 2 Stand Composition 
(Ground Truth) (Cover Map) (SAR MAP) 

(%) (%) (~(,) 

C2L7S BS: 40, Lala: 60 BS: 99, JP/BS: 1 BS: 64, MX: 36 
G914S BS: 99, Salix: 1 BS: 100 BS: 100 
G214S BS: 92, TA: 2, Salix: 2, Bepa: 3 BS: 100 BS: 96, JP: 4 
C6K8S BS: 94, Lala: 6 BS: 100 BS: 100 
F1NOM TA: 71, WS: 25, Abba: 3 TA/JP: 92, BS: 8 T,VMX: 96, Jp: 4 
GSL6P JP: 91, TA: 9 JP/TA: 100 JP: 76, JP/TA: 8, BS/JP: 16 
F516e JP: loo jp: 100 jp: 92, T:VMX: 8 
G9LOP JP: 100 JP: 100 JP: IOO 
F7JOP JP: 17, ws: 4, BS: 74, TA: 4 BS: 100 BS: 96, JP: 4 
F7J1P JP: 59, BS: 17, TA: "23 JP/TA: 72, TA: 16, BS: 1"2 Jp: 60, TA/MX: 24, MX: 16 
G4KSP Jp: 100 JP: 100 JP: 100 
C1K9P Jp: 100 le: 100 Jp: 9(5, BS/JP: 4 
G7K8P JP: lOO JP: lOO JP: lOO 
G413M TA: 49, WS: 43, Bepa: 6, Abba: 3 TA/WS: 96, WS/TA: 4 TA/MX: 20, BS/JP: 68, JP: 12 
TE-OBS BS: 100 BS: 100 BS: 100 
TE-OJP JP: 100 Jp: 100 Jp: 100 
TF-YJP Je: 100 Je: 84, JP/TA: 16 Je: 64, JP/TA: 36 
ADM-3 TA/JP: 92, JPFFA: 8 TA/MX: 92, JP/TA: S 
BDlt-4 JP/TA: 76, BS: 94 T~VMX: 20, JP/TA: 68, MX: 12 

The ground-truth data were taken from the field notes of TE-6 investigators (Sellers et al., 1995). WS is white spruce (Picea glauea), Lala is Larix 
laricina, Abba is Balsam Fir (Abies balsamea), Bepa is paper birch (Belula papyrifera). Numbers in ground-truth column indicate the percentage of 
each tree species based on the number of stems within the test plots. In vegetation cover and SAR maps, the ,mmbers indicate the percentage of 
image pixels of each stand classified in type of forest. 

classification accuracy reached 100%. This is one of  the 
striking results of  the SAR classification because, in gen- 
eral, the separation of  coniferous and deciduous stands 
in boreal forests is considered one of  the most challeng- 
ing problems in any land-cover classification. This result 
also indicates that, over homogeneous stands, the struc- 
tural information of  the forest embedded  in the SAR 
backseatter data becomes one of  the key discriminants in 
the forest-type classification. 

To analyze the accuracy of  the SAR-derived cover 
map further, we compared the map with the field data 
and the existing land-cover map derived from infrared 
aerial photography. Table ;3 shows the tree species com- 
position of 19 test sites within the modeling grid obtained 
from actual measurements for each site, the vegetation 
map, and the SAB map. The ground measurements were 
conducted during the intensive field campaigns in sum- 
mer  of  1994 and coincide with the time frame in which 
the SAR data were acquired. The species composition was 
measured on small plots within each stand and was not 
designed to address the species composition at the SAR 
pixel scale. The vegetation map is almost 10 years old and 
may be inaecurate because it is based on a visual interpre- 
tation of  the aerial photography and does not include the 
changes that have occurred since then. However, we in- 
eluded the map as an extra source for evaluating the accu- 
racy of  the SAR map. Moreover, the classifier was used 
to label each pixel by the dominant forest type and was 
never intended to estimate the species composition. Nev- 
ertheless, by performing this comparison, we are able to 

examine the general performance of  the classifier and the 
capability of" SAR to identify species composition. 

The SAR map was georeferenced and coregistered 
with the vegetation map with less than one pixel (30 m) 
accuracy. The center locations of  the sites were identi- 
fied on the images by using the GPS (ground positioning 
system) data. Stand compositions of  19 sites were com- 
puted over 5 × 5  pixels from SAR and vegetation maps. 
The results in Table 3 indicate that classifications of  aux- 
iliary sites and tower sites are in good agreement with 
tile field data and the vegetation map. Over 13 forest 
stands, errors in percentage of  each species represented 
in the classification are less than 8%. The remaining six 
sites are mixed and contain species that are not included 
in the SAR classification. Over these sites, the errors in 
estimating species composition can increase to 20% with 
the exception of  auxiliary site G413M, where the error 
exceeded 50%. These errors stem from several f:actors: 
1) the spatial variability of  species composition within the 
mixed stands is not compatible with the pixel sizes of  the 
SAR map, 2) the location of  the sites on the SAR map 
can be wrong owing to errors in the GPS measurements 
that may be larger than 100 m, and 3) the numt)er and 
size of  plots used in the field measurements may not be 
adequate for the mixed stands. Furthermore,  because a 
combination of  tree geometlT, biomass, and surface con- 
ditions contributes to changes in SAR backscatter, the 
presence of  several tree species within one SAR pixel 
will add to the confusion of  the classifier in separating 
stands. These results suggest that the SAR map can be 
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Table 4. Area Percentage of Land-Cover Types over 87.5 
km 2 of Modeling Subgrid Derived from Original SAIl 
and Vegetation-Cover Maps 

SAlt Map Cover Map Difference 
Cover Type (%) (%) (%) 

JP 18.26 17.73 +0.53 
B S 30.27 37.79 - 7.52 
TA/MX 8.17 7.86 +0.31 
JP/TA 5.73 10.01 -4.28 
MX 16.36 8.39 + 7.97 
BS/JP 15.57 1'2.91 -2.66 
CC 3.6 ° 3.39 -0.23 
OW 1.23 1.59 -0.36 

used to determine the species composition on the scale 
of the SAR image data. Given that SAR classification is 
performed by assuming that the training areas are purely 
single species stands, we expect that the SAR data would 
have better accuracy in mapping stand composition if the 
training areas were chosen differently. 

Next, we examine the accuracy of the SAR map over 
the entire modeling grid by computing the percentage of 
area covered by each forest type in the region. An area 
of approximately 25X35 km is taken from the middle of 
the SAR map, and the number of pixels of each forest 
type is counted and divided by the total number of pix- 
els. In Table 4, the percentage of area covered by each 
type in the SAR map and in the vegetation-cover map 
are compared. The difference between the two maps 
represented by the percentage of change implies a com- 
bination of errors in both maps and changes in the land 
cover between the times of the two data takes. If the 
vegetation-cover map is considered accurate at the time 
of the SAR data take, then the difference can mean that 
23% of the total area was classified inaccurately. Field 
observations during BOREAS campaigns showed that 
certain parts of the land cover have been altered. For 
example, some logged and burned areas have been for- 
ested, and some forest areas have been recently cut. Be- 
cause there is no accurate information about land-cover 
types on a regional scale, the assessment of the accuracy 
of the SAR map can be difficult. Given the uncertainties 
in the vegetation-cover map, we expect that, on a re- 
gional scale, more than 77% of the total area can be clas- 
sified accurately with SAt/ imagery. 

Process Modeling Requirements 
Land-cover maps can be used as one of the parametric 
inputs to ecosystem process models. The requirements 
for accuracy and spatial scale of the map depend on the 
ecosystem model and the application. For example, gen- 
eral circulation models (GCM) have incorporated 1 ° by 
1 ° global land-cover classification maps (Sellers et al., 
1994). Recently an AVHRR/NDVI (normalized differ- 
ence vegetation index) based global land-cover map also 
has become available as an input to GCMs (DeFiles and 
Townshend, 1994). For modeling the net canopy assimi- 

Table 5. Area Percentage of Land-Cover Types over 875 
km e of Modeling Subgrid Derived from Ileduced SAIl 
and Vegetation-Cover Maps 

SAlt Map Cover Map Difference 
Cover Type (%) (%) (%) 

Conifer-wet 62.22 59.34 +2.88 
Conifer-du' 18.27 17.73 +0.54 
Deciduous/conifer 13.91 17.22 - 3.31 
Disturbed/bog 3.62 3.39 +0,23 
Open water 1.23 1.59 -0.36 

lation in boreal or tropical forest, ecosystem models may 
require much finer resolution data over local or regional 
scales (Bonan, 1993). The BOREAS process models re- 
quire five major land-cover types for the region. These 
are conifer wet, conifer dry, deciduous, mixed conifer 
and deciduous, and fen and disturbed. As an attempt to 
produce maps that can be readily used as input parame- 
ters to these models, we combined classes and modified 
the SAR and vegetation-cover maps to represent these 
five classes. Because pure deciduous and fen sites are 
rare over the modeling snbgrid mapped by SAR, we 
chose conifer wet, conifer dry, mixed deciduous and co- 
nifer, clearing/disturbed, and open water as typical cover 
types for the region. The new classes were tbrmed by 
grouping BS, BS/JP, and MX (mixed wet) into the coni- 
fer-wet class; JP into the conifer-dry class, and TA/MX 
and JP/TA into the mixed conifer-deciduous class. The 
clear cut and disturbed and the open water classes were 
not changed. The results are shown in Figure 6. By pre- 
serving the original pixel size (30 m), the new maps can 
be used in filture for the accurate estimation of land-use 
change due to environmental and anthropogenic forces. 
The modified SAR and vegetation-cover maps show simi- 
lar patterns of land-cover types in the region. A compari- 
son of the two images over a 25×35 km subarea is given 
in Table 5. Results indicate that the accuracy of the SAR 
image can improve when fewer classes are used. The dif- 
l>rence between the two maps has reduced to only 7.3% 
of the total area. With a reduction in the number of 
classes to functionally significant land-cover types, SAR 
data can provide maps with greater than 92% accuracy 
over the modeling grid. 

SUMMARY AND CONCLUSIONS 

This work summarizes the approach and the results of 
mapping ~brest types in the southern study area of the 
BOREAS project in the boreal forest of Canada by using 
SAR imagery. The images were collected by the JPL 
AIRSAR system and combined in a mosaic to cover the 
ecosystem process modeling subgrid. Eight classes were 
separated in the SAR image, and the classification accu- 
racy was pertbrmed at several levels. Over 19 forest 
stands surveyed during the BOREAS field campaigns, 
the SAR map exhibited an accuracy of about 90%. The 
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analysis showed that the map was also able to correctly 
predict tree species composition on the SAR pixel scale. 
At a larger scale, an area of 25X35 km from the SAR 
map was compared with a digital vegetation map based 
on infrared aerial photography, and more than 77% of 
the total area was classified aecurately. Finally, the num- 
ber of classes were reduced to produce a map compati- 
ble with the requirements of the BOREAS land surface 
process models. The reduced map had five classes and, 
when compared with the vegetation map, showed similar 
land-cover patterns with greater than 92% accuracy over 
the total area. It is important to note that the classifica- 
tion accuracies per~brmed in this study were highly de- 
pendent on the aceuracy of the image calibration and im- 
pediments caused by errors due to incidence angle effects, 
aircraft motion compensation, and the image mosaic pro- 
cedure. Furthermore, the results were obtained by using 
data from a single date. Multitemporal data can provide 
information about the seasonal and environmental states 
of the boreal forest and enhance the characteristics of the 
feature space for the classifier. Therefore, we believe that 
the accuracy obtained in this study is conservative and can 
be improved by incorporating multitemporal data and 
spaeeborne systems with better image fidelity. 

Some of the important results of the SAR classifica- 
tion were the separation of black spruce and jack pine 
stands and of coniferous and deciduous trees with close 
to 100% accuracy. These forest types are considered the 
dominant coniferous and deciduous stands covering large 
patches throughout the entire region of the boreal forest. 
The results also have a significant effect on modeling the 
canopy assimilation and biogeochemical processes for the 
region. Deciduous trees, because of their phenological, 
understory, and seasonal characteristics, represent differ- 
ent fimetional ~brms in ecosystem process models. Among 
conifers, jack pine and black sprnce trees are also treated 
differently in process models. Unlike the dry and sandy 
soils of jack pine stands, the soils of black spruce patches 
are often covered by a thick moss layer and are poorly 
drained; black spruce patches also have different charac- 
teristics due to the release of trace gases from the soil 
surface and canopy. 
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