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INVERSE TORSIONAL EIGENVALUE PROBLEMS 

CATIIERINE WILLIS 

ABSTRACT 

We undertake a numerical and theoretical investigation of the inverse 

problem for the reconstruction of the density p and S-wave velocity {3 of the 

Earth from its torsional oscillations. We assume a spherically symmetric, 

non-rotating Earth which consists of a perfect elastic, isotropic material and 

transform the differential equation governing the torsional oscillations to a 

Sturm-Liouville problem. 

We present a numerical method for determining p and {3 in the upper 

mantle when p and {3 are smooth functions of radius. The method is closely 

related to the theory by Hald which proves that p and {3 are uniquely deter

mined in the upper mantle by their values in the lower mantle and the periods 

of the torsional oscillations for two angular orders. The method, based on the 

Rayleigh-Ritz method, solves iteratively for the coefficients of a generalized 

Fourier series for the potential. We reconstruct several earth models to 2% 

accuracy. However, the method is sensitive to error in the data. This is not 

true of the inversion for the density alone and suggests that the simultaneous 

inversion for the density and velocity from free oscillation data may be 

unstable. 

The smoothness assumption is a serious limitation of our numerical 

method, since most earth models have a discontinuity at the crust and many 

have gradients with discontinuities in the upper mantle. We study the associ

ated discontinuous Sturm-Liouville problem and prove that if the 



eigenfunctions have two discontinuities and if the potential is known in half the 

interval then the potential in the whole interval is uniquely determined from 

one spectrum. We apply this theorem to the discontinuous earth model to 

prove that given p in the lower mantle and {3 in the mantle and crust, then the 

torsional spectra of one angular order uniquely determine p in the upper man

tle. In addition, if {3 is known only in the lower mantle, then two torsional spec

tra uniquely determine bothp and {3 in the upper mantle. 
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INTRODUCTION 

In this work we investigate a mathematical model of the Earth. We want 

to describe the properties which govern the behavior of waves traveling 

through the Earth. To determine a model describing the material inside the 

Earth we must make some simplifying assumptions. In this paper we assume 

that the earth is a spherically symmetric body and consists of an isotropic, 

perfectly elastic material. Thus we can describe the Earth by the elastic 

parameters: the density, the rigidity and the bulk modulus, or equivalently, 

the density and the velocities of the P- and S- waves. 

The purpose of this work is twofold. In Part I we present a numerical 

method for determining the density p and the velocity f3 of the S- waves in the 

upper mantle from the periods of the torsional oscillations. Our method 

requires p and f3 in the lower mantle. The terms upper and lower mantle have 

precise definitions which are given in Section 1. 

Under certain assumptions the velocities ex. and f3 of the P- and S- waves 

can be determined from travel times of the waves. In 1939, Jeffreys and 

independently Gutenberg and Richter inverted travel times to obtain a velo

city model for the Earth. If the elastic material is adiabatic, homogeneous 

and devoid of phase change, then the density at a given radii depends only on 

the pressure from the material above. The distribution of the density can 

then be determined by a second order non-linear differential equation known 

as the Adams-Williamson equation. Bullen used this differential equation 

together with certain constraints such as the mass and the moment of inertia 

of the Earth to determine a density distribution for the mantle. The earth 

model which consists of Jeffreys velocities and Bullen's density distribution 
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has become known as Model A. Bullen first tried an earth model satisfying 

Adams- Williamson equation throughout the mantle. This resulted in a core 

which was too light. From travel time data, Bullen decided to not use the 

differential equation in the region now known as region C. In this region he 

described the density by quadratic polynomials. Many current and frequently 

quoted earth models have a density distribution which satisfies the Adams

Williamson equation below a depth of 1000 krn. 

In the past twenty years one has been able to observe the free oscillations 

of the Earth on long period seismographs. On the other hand, the periods of 

the free oscillations of a given earth model can be calculated. We can then 

compare the calculated periods with the observed values and then either dis

card the model or change it to fit the data better. Today most earth models 

are constructed by a variation of this technique. One drawback is that the final 

model depends upon the starting model. Also, the existence and position of 

discontinuities is usually built into the model. This leads to the question: What 

data is necessary to determine the elastic parameters of the Earth uniquely? 

This question was considered by Backus and Gilbert [6]. Under certain 

assumptions, such as linearity; they stated that a finite amount of data cannot 

determine the Earth uniquely. They asserted, however, that a fixed, finite 

data set could determine the average value of a given parameter at a certain 

radius uniquely. They defined the resolving length for the average and 

developed an algorithm to determine a linear combination of the data which 

minimized the resolving length in some sense. When error in the data is con

sidered, one gets a trade-off curve: statistical error in the average of the 

parameter versus resolution of the parameter. Trade-off curves have been 

used to study the resolution of model parameters. The calculations are 
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expensive in general. By assuming that the error in the data is normally dis

tributed, Bolt and Uhrhammer simplified the calculation of the trade-off 

curve .. They used this technique to look at the resolving power for the density 

in Model Cal5IO. [9]. 

We will only study the density p and velocity {3 in the mantle. What data is 

needed to determine these parameters uniquely? In Part II we address this 

question. It was conjectured by Backus and Gilbert that the torsional modes 

for two angular orders could determine the density. This is not true in gen

eral. Anderssen and Chandler [4] have shown that earth models can have 

redundant torsional spectra; no new information is obtained from spectra with 

different angular orders. Hald has found two distinct earth models that have 

the same periods for the torsional modes. However, if the density and veloci

ties are smooth functions of radius, then Hald [26] proved that the density in 

the upper mantle is uniquely determined by the torsional modes of one angu

lar order. provided that the density is given in the lower mantle and that the 

S-wave velocity is known throughout the mantle. The torsional modes of two 

angular orders will in addition determine the S-wave velocity uniquely in the 

upper mantle. Hald has recently extended these uniqueness results to models 

which have one discontinuity in the mantle. See [28]. In this case the position 

of the discontinuity may be determined as well. 

All published earth models have a crustal layer above the upper mantle. 

The density and velocities of the elastic waves are discontinuous at the boun

dary between the mantle and crust. This discontinuity is known as the 

Mohorovicic discontinuity. In addition. the elastic parameters of many earth 

models have discontinuous gradients in the upper mantle. For example Model 

1066B by Gilbert and Dziewonski [23], Bullen's Model A and Model Bl by Jordan 
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and Anderson [34]. Thus we were motivated to obtain uniqueness results for 

earth models with two discontinuities. 

In Part II we prove that if the density is known in the lower mantle and 

the velocity of the S-waves is given in the mantle and in the crust then the tor

sional spectrum of one angular order determines the density in the upper 

mantle Uniquely. This result is a natural extension of the work by Hald [26], 

[28], and we follow his proof. The details become more complicated when an 

second discontinuity is allowed, but the techniques are still valid. However, we 

had to make the assumption that the product of the density and S-wave velo

city can neither increase to more than twice its value nor' decrease to less 

than half its magnitude at either discontinuity. This is satisfied by all earth 

models I know. 

Our numerical method is closely related to the theory by Hald [26]. Thus 

we assume that there is no discontinuity in the upper mantle and that our 

models do not have a crustal layer. If we use data from a model which is not 

smooth. the algorithm will diverge or converge to an incorrect solution. Since 

all published earth models have a crust. this is a serious limitation of our 

method. We hope it can be remedied in the future. 

In practice, the existence of discontinuities cannot be determined from 

free oscillation data. Thus Gilbert and Dziewonski [23] have constructed two 

models 1066A and 1066B which fit the data used in the inversions equally well. 

Both models have a crust. but the latter has two discontinuities in the mantle 

at depths of 421 and 671 km., while the former is continuous from the Mohoro

vicic discontinuity to the core. 

The numerical method presented in this paper is based on three 

ingredients. Our differential equation comes from separating the variables in 
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the equation for the torsional modes of a spherical, symmetric, isotropic, elas

tic and non-rotating earth. By using the Liouville transformation we obtain an 

equation in Liouville normal·form. We determine the potential of this equation 

by solving an inverse Sturm-Liouville problem by the technique of Hald [27]. 

This algorithm is based on Rayleigh's principle and computes the coefficients 

of a generalized Fourier series of the potential. The potentials corresponding 

to two angular orders are calculated and are then used to define the inverse 

Liouville transformation and to determine a differential equation for the velo-' 

city p. We later modify the method to allow for the mixing of data from 

different angular orders and to create a more stable algorithm. 

We have tested our method on several earth models. The models were 

obtained by smoothing Model A. We are able to reconstruct the models to 

Viithin 1% accuracy. Our method is therefore not as accurate as the method 

by Hald[27] in which only the density is computed. Moreover, our final solu

tion is quite sensitive to error in the data. This suggests that the simultaneous 

inversion for both the density and S-velocity from the torsional modes may be 

unstable. I have not proved the convergence of the method. However, Hald 

[24J and Yen [51J proved the convergence of similar, simpler algorithms. In 

practice, our method converged in eight to ten iterations, and the final solu

tion is independent of our initial guess. 

In Section 1. Part I we present the differential equation for the torsional 

waves and describe the Liouville transformation. Section 2 contains an algo

rithm for calculating the eigenvalues of a Sturm-liouville equation. This for

ward method is presented to provide motivation for and understanding of the 

inverse method. The basis functions used in our approximation to the eigen

function are also given in Section 2. In Section 3 we explain the inverse 
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Sturm-Liouville method and describe the methods for obtaining p and {3 from 

the solutions of the previous method. The next two sections contain an expla

nation of the numerical implementation of the method and our numerical 

experiments and the results of these experiments. The effect of error in the 

data on the computed model is examined in the final section. We also present 

a modification of the inverse Sturm-Liouville method which increases the sta

bility of the algorithm and results of experiments using the new algorithm. 

In the first six sections of Part II we are concerned with the theory of 

Sturm-Liouville problems with two interior discontinuities. We show that if the 

potential is given over half the interval and if one boundary condition is known 

and the magnitude of the jumps in the eigenfunctions satisfy certain restric

tions then the eigenvalues determine the potential and the other boundary 

condition uniquely. This generalizes a theorem by Hochstadt and Lieberman 

[30] and extends a theorem by Hald [28]. 

Our technique follows that of Hochstadt and Lieberman and Hald and is 

based on an integral representation of the eigenfunctions. The eigenvalues of 

a Sturm-Liouville problem with discontinuities may not have an. asymptotic 

expansion. See [41] and [5]. However, by adapting the Cauchy integral tech

nique we were able to study the Wronskian and determine the asymptotic dis

tribution of the eigenvalues. The straightforward application of this technique 

required an assumption on the size of the discontinuity. The exact restriction 

is given in the statement of the Theorem I, but the restriction will be satisfied 

if the ratio of the right and left hand limits of the eigenfunction is greater than 

1/..J2 and less than "'2. The range of allowable jumps decreases as the 

number of discontinuities increase. Thus this portion of the proof would need 

to be changed for the theory of inverse Sturm-Liouville problems with an arbi-
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trary number of discontinuities. 

In the final section of Part II we apply the theory for inverse inverse 

Sturm-Liouville problems to the inverse problem for the mantle. 
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PART ONE 

1: The di1Ierential equation and Liouville normal. form 

Our differential equation comes from the eq1J.ation which governs the tor

sional oscillations of a spherical. symmetric, elastic and non-rotating earth. 

After separation of variables, the equation for the radial dependence of the 

oscillations is 

with the surface condition 

»'l(R) - W,I R = O. 

The symbol' denotes differentiation with respect to. r. At the core-mantle 

boundary, the requirements of continuity of displacement and stress lead to 

the conditions 

Wl+=Wl_ . 

These same equations can be used at any spherical interface. See Lapwood 

[39], page 100. M. the torsional waves do not pass through the core, the right 

hand side is zero for both equations. The function J.L is the rigidity and is 

related to the density p and the S-wave velocity (3 by J.L=(32p. The constant l 

arises from separation of variables and is known as the angular order of the 

oscillation. The eigenfrequency is denoted by ,,;2. 

We transform the differential equation (1.1) to Liouville normal form. This 

will allow us to exploit the asymptotic form of the eigenvalues and eigenfunc-

tions in our inverse method. In this section we describe the method of 
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transformation. It involves a change of variables which maps the interval 

[Re: ,R] to the interval [O,rr]. The transformed equation has a potential q which 

depends on the derivatives of the denSity and the velocity of the S-waves. 

Thus we assume that the density and velocity are smooth functions of radius. 

This restricts the method to earth models which have no discontinuities at the 

crust or in the mantle. 

If W, = ru. it follows from (1.1) that: 

(1.2) 

u'(Re:) = u'(R) = 0 

We now use the Liouville transformation. see J orgens [36], page 4.2. Let 

z = R-r parameterize depth. We define x = I\lfozp-l ds where K is equal to 

R-R 
rr-1fo C (J-ld,s. Hence a vertical S-wave travels from the surface to the core 

in a time of 2rrK seconds. The surface of the earth corresponds to x-=O and 

the core-mantle boundary to x =rr. Since p is positive. x is a monotone 

increasing function of z. Thus there exists an inverse function ~ such that 

~(x) = z. 

To rewrite equation (1.2) as a differential equation in x we set 

/ (x) = r 2vpp where r = R-~(x) and let y(x) = / (x)u(r). Substituting 

these expressions into equation (1. 2) we get the Liouville normal form: 

-y" + qy = r..y 

y'(O)-hy(O) = y·(rr)+Hy(rr)=O. 

The potential q is given by 

q = v + (l + 2)(l - l)w 

(1.3) 

(1.4) 

where l is the angular order or spectrum number, v =/ "I/and w = p21r2. 
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The constants h and -H in the boundary conditions are the values of f 'I f 

evaluated at 0 and rr and the eigenvalue A is given by c;2 J(2 where G)2 is the 

eigenvalue in equation (1.2). The transformation is valid if p' and P' are con

tinuous and piecewise differentiable on [O.rr]. 

The complete set of eigenvalues for equation (1.3) cannot determine the 

potential q uniquely. See Hald [27], Anderssen and Cleary [4]. However. if 

q(x) is lmown in the interval [rr/2.rr] and the constant H is given.then q for 

Os; x s; rr/2 and h are uniquely determined by the eigenvalues, see Hald [26]. 
: ~ 

Hochstadt and Lieberman [30]. We assume that the potential q is given in 

[rr/2.rr] and that the constant H is known. This is the case if the density and 

velocity model are given in part of the mantle. We determine the lower mantle 

to be precisely that portion where the density and velocity are needed. Let ro 

be determined such that hcTOp _ 1 dr = Ir:p-l dr. Then x(ro) =rr/2.. We let 

the lower mantle be the part of the mantle which lies below ro and call the 

remaining part the upper mantle and crust. In practice ro lies at a depth of 

approximately 1300 km. 

Suppose that we have found two distinct potentials q'l and q'a correspond

ing to angular orders II and le. We can then determine the functions v 

= fill f and w = p21r2 by 

v = 

and 

(le + 2)(l2 - l)q'l - (ll + 2)(ll - l)q'a 

(l2 + II + 1)(l2 -l1) 
(1.5) 

(1.6) 

We use these functions in the reconstruction of the density and velocity in the 

upper mantle. Thus the eigenvalues of two spectra determine our density and 
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S-velocity models. 

The eigenvalues of the differential equation (1.3) have the asymptotic 

form 

>'j = j2 + A + 0 (j-1) 

where the constant A is given by 

A=~h + H) + ;fofTqd,x 

See Borg [11], Hochstadt [29]. 

(1.7) 

(1.8) 

Given only a finite number of eigenvalues we need the asymptotic constant A 

as data for the inverse method. The eigenvalues of earth models with internal 

discontinuities may not have an asymptotic expansion. Our method cannot be 

applied to such models, see Anderssen and Cleary [5]. Since we assume that 

the density and the velocity of the S-waves are smooth functions, the eigen

values of our models will have the asymptotic form (1.7). 
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2: The direct method and the comparison problem 

In this section we present a numerical method for estimating the eigen

values of a Sturm-Liouville equation. Although the method is not efficient. our 

inverse method is based on it and we think that the presentation of the direct 

method will clarify and motivate the inverse method. 

The method is a version of the Rayleigh-Ritz method. First we form the 

Rayleigh quotient of the Sturm-Liouville equation and then we approximate the 

eigenfunctions by a linear combination of simpler functions. By substituting 

this approximation into the Rayleigh quotient we reduce the quotient to a qua

dratic form. The eigenvalues of the matrix for the quadratic form are close to 

the eigenvalues of the differential equation. Finally. we obtain a nonlinear 

equation which we solve by iteration for the eigenvalues of the matrix. 

We now give our choice of basis functions for the expansion of the eigen

function of equation (1.3). Consider the comparison problem 

-V/' = J.LjYj 

y;'(O) - hYj(O) = Y;'(rr) + HYj (rr) = 0 

The eigenfunction Uj corresponding to the eigenvalue J.Lj is given by 

Uj = cos(v;:ijz)+ _ ~ sin(~z) 
v J.Lj 

=1 + hz 

= cosh(~x)+ ~Sinh(~X) 
J.Lj 

J.L>O 

J.L=O 

J.L<O 

(2.1) 

(2.2) 

Let Pj = 1011 
u/dx. Then vP; is the norm of Uj and Yj = Uj IViij is the eigen

function with norm 1. As equation (2.1) is a Sturm-Liouville problem the eigen

functions are mutually orthogonal and complete in L2. see John [35]. page 220. 



13 

From (2.2) we see that the eigenvalues of equation (2.1) are the zeros of 

the function given by 

-'->(u) = (h + H)cos(..Jii1f) + (hH - J.L) Sin~1f) J.,t>0 (2.3) 

= h +H(l+h1f) J.,t=0 

= (h + H)cosh(vjj:iT1f) + (hH + iJ.Li) Sinh~1f) J.L<O. . J.L 

Note that C.) is the Wronskian of the differential equation (2.1). Since. the 

differential equation is symmetric the roots will be real and simple. At most 

two eigenvalues may be negative. 

An advantage of our choice of basis functions ~Yi ~ is that the asymptotic 

expansions of the eigenvalues ~J.Lj~ for equation (2.1) and of the eigenvalues 

~Aj ~ for equation (2.2) are close. We have 

where 

A= ~h +H) 
1f 

By comparing this result to equations (1. 7) and (1. 8) we see that if the average 

of our potential q is 0, then the two expansions have the same leading term. 

To form the Rayleigh quotient we multiply equation (1.3) by the eigen-

function y and integrate. By using integration by parts and the boundary con

ditions we arrive at the Rayleigh quotient 

The stationary points of the quotient are the eigenvalues of the matrix A, 

Courant and Hilbert [18], page 402. Let y be approximated by L;~CjYj. We 

replace y by this expreSSion in the Rayleigh quotient. Since the 
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eigenfunctions ~Yj 1 are orthogonal and normalized. the quotient reduces to 

~C,;Cj(XjOij + farr qYiYjdx) 

R[ c] = ...:.:\.~J --0=;------
EOiCj Oij 
1..j 

where i and j are summed from 0 to n. Thus. 

C T Ac X=R[c] = -T
o c 

with c the vector consisting of the coefficients in the expansion of y. and 

A = (aij) the (n+l)x(n+l) matrix with components 

(2.4) 

R[ c] is the quadratic form associated with the minimum-maximum problem 

for the eigenvalues of the matrix A. Courant and Hilbert [18]. page 31. It can 

be shown that the eigenvalues of the matrix A converge to the eigenvalues of 

the differential equation (1.3) as the dimension of the matrix increases. 

We now describe a method to calculate the eigenvalues of A. We first 

introduce some notation. Let A; be the nxn matrix obtained from A by delet

ing the (j +l)st row and (j +l)st column. Recall that the first row of A has ele-

ments denoted by aOj for 0 ~j ~n. Let a; be the vector consisting of the 

(j +l)st row of A with the diagonal element removed. 

To present the idea we consider the case j = O. We can write A as 

A = [~: ~:]. 
Let X be an eigenvalue of A. but not of Ao. and let v be the corresponding 

eigenvector of the form v T = (1. z T). Thus 

(A - X)v = O. 

is equivalent to the system 
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aoo - A + al z = 0 

ao + (Ao - A)z = 0 

By solving the second equation for z and substituting the solution into the first 

equation we arrive at the identity 

Now let Aj be an eigenvalue of matrix A, but not of the submatrix Aj . A similar 

argument produces the basic identity 

(2.5) 

'This identity suggests an iterative method, namely 

(2.6) 

We show that the method converges if the off diagonal terms are small in 

comparison to the gap between the eigenvalues. It is convenient to think of 

the matrix A as A = D + E where D = (J.Lj Oij) is a diagonal matrix and E has 

components eij = foff qYiYjdx. We can bound the 2-norm of E in terms of the 

L2 norm of q. If the L2 norm of q is small, then the eigenvalues of A will be 

close to the eigenvalues of the comparison problem (2.1) as well as to those of 

the original problem (1.3). 

LEMMA 1: Consider the eigenvalues J.Lo<' .. <J.Ln rend eigenfunctions 

Yo, .... Yn of the comparison problem (2.1). Let r = mi~.t l,uk -,ut I with k ~l 

and let q = maxiYL(Z)I for x in [O.IT] and l=O.1. ... ,n. Suppose the poten

tial q of the Sturm-Liouville problem satisfies I q ~<rl (4C). If A(O) is equal to 

be J.Lj' then the sequence A(n) defined by equation (2.6) converges to the eigen

value Aj of A. 
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Remark: If h = H = O. then "1 = 1. and C ~ v'2rr-1. The eigenvalues. and 

consequently "1 and C depend continuously on h and H. In our experiment 

I h I. I H! < 1. "1 > 1. and C < 1. 

Proof: Let ~(n) be the result of n iterations steps. We use the basic iden

tity (2.5) and the definition (2.6) to get 

~j _.~(n>=-aj T«A; - ~j )-1 - (.4; - ~(n-l»-l)aj 

By factoring. we rewrite the right hand side as 

Let en = I ~j - ~(n) I. We estimate and obtain the inequality 

where the norms are the appropriate 2-norms.To prove the convergence of 

the method we use an induction argument to show that Mn < * for all n. 

We .first need a bound for the norm of matrix E. Let k be fixed. ~k~n, 

and set cl = fr/'qYIeYtdx. Thus elet = cl for ~ l~ n. We can expand the func

tion qylc in terms of the basis functions ~yd. i.e. qylc = ~o "'CtYt. By using 

Parseval's identity. we get the inequality ~Onelcl2 ~ ~O"'Ct2 s; IlqYIe ~2 < 1/4. 

This estimate is Valid for all k. Therefore. the 2-norms of the row vectors of 

and thus the 2-norm of E are less than 1/4. It follows that aj has norm less 

that 1/4. Since A; is of the same form as A. we obtain the two bounds 

(2.8) 

where l/Ic (Aj) are the eigenvalues of A; with O~ksn and k #:j. By using these 

inequalities we can estimate the norms of (Aj - ~j)-l and (A; _ ~(n-l»-l. 

Let ~ be any number. Then the eigenvalues of Aj can be bounded away 

from ~ by 
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IVk -AI ~ lJ.Lk -J.Ljl-lJ.Lk -vkl-IAj ~J.Ljl -IAj -AI (2.9) 

>7 -114 - 714 - 1 Aj - AI = 71 2 - I Aj - A I· 

The matrix (~ - AI)-1 is symmetric with eigenvalues (Vk -A)-I. Hence, the 

matrix has norm = maxk(v~ - A)-1 = (min.:(Vk - },,»-1. By replacing A with Aj 

and J.Lj in the inequalities (2.9) and (2.8), we see that 1(.4; -Ai )-1 ~ < 2/7 and 

1(.4; - J.Lj)-111 < 4/,),. 

We chose A (0) to be J.Lj' hence the constant M 1 satisfies 

M 1 = laj 12 ~(Aj - Aj )-1 II(Aj - A(O»-1 1 

< (rl 16)(2/7)(4/7) = 1/2. 

Suppose that Mk < * for k < n. Since en -l = Mn - 1en -2, this implies that 

en -l ~ en -2 ~ ... ~ eo < 7/4. Therefore I Vk _A(n-I) I '> ,),12 - eo > 7/4. Hence, 

1(.4; - A(n-l»-11 < 4/')'. We use this and our previous bounds in the inequality 

(2.7) to obtain the desired result Mn <}2. 
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3: The inverse method 

In this section we present a numerical method for calculating the density 

profile and S-wave velocity in the upper mantle. We assume that the density 

and S-velocity are known in the lower mantle. The terms upper and lower 

mantle are defined in Section 1. We require as data a futite number of toroidal 

modes which correspond to two angular orders II and l2. and the leading term 

in the asymptotic expansions of the eigenvalues of these two spectra. 

We first perform the Liouville transformation to the given data as 

described in Section 1. This transforms the equations for the toroidal modes 

with angular orders II and l2 to two Sturm-Liouville problems of the form (1.3) 

where the potentials q 1 (x) and q 2(X) are known only in the interval [rr /2. rr]. 

We reconstruct the potentials ql(X) and q2(X) for a~x~rr/ 2 and from these 

functions determine the denSity and S-velocity in the upper mantle. 

We now restrict our attention to a numerical method for the inverse prob-

lem for equation (1.3). In particular we show how we find the potential q (x) in 

the interval [a.rr/2] and the constant h in the left boundary condition. The 
; 

data is the potential q for rr/ 2~x~rr, the constant H in the right boundary 

condition, the leading term in the asymptotic expansion of the eigenvalues 

and a finite set of eigenvalues of the differential equation. 

The basic idea is to approximate the unknown potential by a finite linear 

combination of Suitably chosen functions and then find the coefficients of the 

approximation. By equating the eigenvalues of the differential equation with 

the eigenvalues of the matrix A defined by equation (2.4) and then using the 

basic identity (2.5), we obtain a system of nonlinear equations which involve 

the coefficients of our apprOximation of the potential. We solve the nonlinear 
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equation by iteration. We make use of a result by Hald [27] to define the 

appropriate basis functions which together with the coefficients define our 

approximation of the potential. 

We do not work directly with equation (2.2) but consider instead the prob-

lem 

-y" + (q - q o)Y = AY 

y'(O) - hy(O) = y'(rr) + Hy(rr) = 0 

where q 0 = rr-1 foff qd:r: is the average of the potential. The modified potential 

bas a smaller L2 norm and its average is zero. The given eigenvalues must also 

be shifted by the amount qo. The value qo is not known, but is computed dur

ing the iteration. 

As in the direct method we use a linear combination of the eigenfunctions 

~Yj J of the comparison problem (2.1) to approximate the eigenfunction of the 

unknown equation. It is convenient to write the normalized eigenfunction Yj 

as U;I Viii where Uj is given by equation (2.2) and pj2 = foffU;2d::t; is the nor

malizing constant. The value of the constant h which appears in the left boun

dary condition of both the original equation and the comparison problem is 

not known, but is obtained by iteration. Hence the basis functions ~Yj ~ may 

change in each iteration. This complicates the method from a theoretical and 

computational point of view, but increases the rate of convergence. 

In the following derivati~n of the nonlinear equations, we assume that h, 

qo and the matrix A are fixed. Let "-0< ... <Am be the given eigenvalues of the 

differential equation and assume that Aj-qo are eigenvalues of the matrix A, 

see equation (2.4). Then our basic identity (2.5) gives 

Aj-qo = I1-j + pj-tfoff(q-qo)u/dx - ajT(Aj - (Aj_qo))-laj 
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Since the average of the potential q -qo is zero. we can split the integral into 

two parts and obtain 

r 1T/2 2 1 1T 2 Aj-qo= J.Lj + Pj -lJo (q -qo)(Uj -*)dx + 1T/2 (q -qo)(Uj -*)dx 

- CljT(A; - (Aj-qo))-laj . 

By reordering the terms in this equation we get the identity 

pj-lfo1T/2(q_qO)(uj 2 - *)dx = (3.1) 

'Aj-J1;-qo _pj-l!,/2'"(q-qo)(Uj 2 - *)dx + ajT(A; - (Aj-qo)-laj. 

We denote the left hand side of the equation by "Ii' 

If the constants h and H in the boundary conditions Vanish. the motiva

tion for the method becomes more apparent. In this case Yo = "';1/ rr and 

Yj = v2/ rr cos (jx) for j >0. Thus 

and we note that 4"1j are the Fourier coefficients of the cosine expansion of 

q(x/2)-qo for (}.5;;x~rr. If the "I/s are known we can expand q(x)-qo in the 

interval [0.rr/2] in terms of uj(2x) and get a truncated Fourier series as our 

approximation. 

In the general case the functions yj2_* are complete on the interval 

[0.rr/2]. but not orthogonal. Thus it is more difficult to determine the basis 

functions for the expansion. Hald [27] has found the set of functions which are 

biorthogonal to the squares of the eigenfunctions and we use these functions 

in our expansion for the potential. 

LEMMA 2: 12t Uj be the eigenfunctions of equation (2.1) wiih uj(O)=l and 

let Pj be the normalizing constants. Assume that 2: 1""1 "Ij I is bounded. If q is 
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integrable and 

then 

almost everywhere where 

For a proof see Hald [27]. 

We now describe one iteration of the inverse method. Assume that initial 

values of h and the coefficients i'o •... . i'm are given. For the first iteration we 

let qo = A - 2rr-l(h + H) where A is the leading term in the asymptotic expan-

sion of the eigenvalues. The eigenvalues and eigenfunctions of the compari~on 

problem are computed for the current value of h. We then determine the 

matrix A and evaluate the right hand-side of equation (3.1) for eachj. O~j~m. 

to update the value of the coefficient i'i' The new apprOximation to the poten

tial q is then integrated and this gives the new value of q_o. "Finally we let 

h = (rr/2)(A-qo) - H. 

To solve the inverse problem for the mantle we must reconstruct two 

potentials with different angular orders. We get the constant h in the first 

inversion. The second inverse problem is slightly different. When h is known 

the average of the potential is determined by the asymptotic constant and 

equation (1.8). In this case we do not require the lowest eigenvalue. but set 

(3.2) 

This guarantees that equation (1.8) is satisfied. The coefficients i'i for j~l are 



22 

solved in the manner described above. 

Let us assume that we have solved the inverse Sturm-Liouville problem, 

have obtained two potentials q 1 and q2 with angular orders l2>ll' We now com

plete the description ot the inverse method for the mantle. By using equa

tions (1.5) and (1.6) we determine v = I "I I and w = (:321 r from our approxi-

mations of ql and q2. The density and S-velocity are found by solving two 

differential equations which involve v and w. 

Consider the second order differential equation 

1"= vI· (3.3) 

The function I = r2...fPP is determined by our data in the interval [rr I 2, rr ]. 

Since both f and I I are assumed continuous we can use the values of I and 

f' at rr/2 as initial data for the differential equation (3.3) and get f for 

Q5;x~rrl 2. 

To determine the density in the upper mantle we must first determine 

the velocity structure. Let I"(x) = R-r(x). It follows from our definition of x 

and the inverse function theorem that 

!!:!L. = _ dr = K{:3 
d.x d.x . 

Since {3 = r...Jw and T = R-I" we have the linear differential equation 

!!:!f...:. = (R - rp)...Jw 
dx 

1"(0) = 0 

(3.4) 

which we solve for rp(x) for Q5;x~rrl 2. We then set {:3 = (R - rp)v'W and 

p = /21 (r4{3). This gives the density and velocity models as a function of x. 

The final step of the method is to describe the density and velocity as 

functions of radius. The function rp obtained from solving equation (3.4) 
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defines the inverse transformation. i.e. r(x) = R-rp(x). Recall from Section 1 

that the upper mantle is defined by r. where ro~r~R. Since r(O)=R and 

r(1r/2)=ro. we have the desired profiles given by p(r(x)) and p(r(x» in the 

upper mantle. 



24 

4: Numerical Implementation 

In our numerical experiments we test the method on published earth 

models. Typically these models give the density and the velocities of the 

compression and shear waves at certain radii throughout the earth. We use 

the values in the lower mantle and find the values in the upper mantle. Thus 

our data contains radius points Rc =T1 < ... <T no=TO. the corresponding den-

sity values Pl .... ,Pno and the S-velocities (lI' .... Pna and we find the density 

and velocity at the pOints Tno+l< ... <Tn=R in the upper mantle. This is not 

the only approach to obtain the density in the lower mantle. In many earth 

models the Adams-Williamson equation, which relates the change of density to 

the velocities of the compreSSion and shear waves. is satisfied below a depth of 

approximately 984 km. Hence if the velocity is given in the lower mantle one 

can solve the Adam-Williamson equation to obtain the density distribution 

there. See Bullen [13]. pages 154, 162. We have not taken this approach, as 

our method is not applicable to real data at this time. 

To implement the Liouville trap.sformation we set Xl = rr andxj = x 1-1(j). 

where I(j) is an approximation to 1\1J,.:1 p-ldT. Then Xi corresponds to the 

mesh point Tj but is in terms of the variable x. For the numerical integration 

we use Simpson's rule for a non-equidistant mesh. Note that 

1I-Xl > ... > xno=rr/2. With this ordering the values of the arrays correspond, 

i.e. Pj corresponds to both P(Tj) and P(Xj). We have now transformed the 

problem to the interval 0 ~ X ~ rr and will describe the numerical implementa

tion of the inverse Sturm-Liouville method. 

In the method we assume that the two potentials in equation (1.3) are 

known (rr/2.rr). To find the potentials in (rr/2.rr) we evaluate v=f"/ f and 
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w=fJ21T2 and then use equation (1.4). We find the function values at the 

points Xl, ... ,xno' Both 1 and w come directly from the data; we set 

Ii = T/VPifJi and Wj = fJJITl To approximate 1 ", we interpolate the func

hon at the meshpoints Xl, ... ,Xno by a cubic spline and calculate the second 

derivative of the spline at these pOints. Since we test the method on known 

models, data is given throughout the mantle. Thus 1 (x) is interpolated at 

points throughout (O,rr) and our spline is defined throughout this interval. We 

use the IMSL routine ICSSCU with the not-a-knot endpoint condition. This con

dition requires the continuity of the third derivatives at the second and next 

to last knot. If we instead use a natural spline 1" is zero at both 0 and rr and 

this can create large errors in the potentials. In addition we use the spline' to 

evaluate H = -I'll at x=rr and 1 and l' at x=rr/2. The constant H is 

needed for the inverse Sturm-Liouville method and 1 and 1 f are used in the 

inverse Liouville transformation. 

An essential step of the inverse method is the ability to calculate the 

eigenvalues of the comparison problem (2.1). The eigenvalues are the zeros of 

the Wronskian, see equation {2.3).To find the roots we must give upper and 

lower bounds for the eigenvalues such that each interval contains exactly one 

eigenvalue. There are five cases and the bounds depend on h and H, see Table 

1 which is due to Hald [27]. If the eigenvalue is small in absolute value, a 

straight forward evaluation of the Wronskian becomes numerically unstable. 

We avoid this difficulty by approximating the function by the first two terms of 

its Taylor series expansion if IJ.LI <10-4. We use the algorithm ZERP, due to 

Kahan, to find the zeros of the Wronskian. The algorithm is based on the 

secant method. We do not solve directly for the eigenvalue, but instead find 

k =""'lP1 and then determine the sign of J.L from Table 4.1. Once the eigenvalues 
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are known. the eigenfunction u,; can be evaluated at any point by equation 

(2.2). When l.uj I <10-4 we approximate the eigenfunction by the first two 

terms of its Taylor series. 

Case J.Lo J..Ll J.1.2 J..Ls 

1 h+H>.Ol (-.01.1) (1.4) (4.9) (32,42) 
h+H+rrhH~O 

2 h+H>.Ol 
(-lhH I ,.01) (1.4) (4,9) (32,42) 

h+H+rrhH<O 

3 Ih+HI~·Ol ( _A2,.04) [l,~ [~¥1 4' 4 ((3-*)2,(3+*)2) 

4 
h+H<-.Ol (_A2.-B2) ( -B2,1) (1,4) (22,32) 

h+H+rrhH<O 

5 
h+H<-.Ol (_A2,-B2) ( -B2,.01) (1.4) (22,32) 
h+H+rrhH~O 

Table 4.1. Bounds for the eigenvalues of equation (2.1): 

A= 1 + I h + HI + I hH I. B =max( I hi, I HI). 

In the calculations of the matrix A and the coefficients 1j many numeri

cal integrations must be performed. Our calculation of the integrals differs 

from Hald·s. We have two methods for approximating the integrals. If the 

integrand can be evaluated at any point. we take intervals of length rr/l0 and 

use Gaussian quadrature with five paints in each subinterval. This gives high 

accuracy. In particular, we use this method for all integrals over the interval 

(0.rr/2) and when the basis function Wj must be integrated from 0 to rr. When 

the integrand is given on a discrete set of points. we use Simpson's rule for a 

non-equidistant mesh. The method is exact for all polynomials of degree three 

or less. We use this method for the integrals over the interval (rr/2.1T) where 

our data is given on a mesh. In all integrals involving the potential Hald inter-
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polates the potential by a piecewise linear function and then integrates 

exactly. In many cases we integrate exactly. For example, we evaluate the 
11' 

normalizing constant PI = fa uldx and the basis function 

Wj(x) = uj(x)-eh: h1l'e-hl uj(t)dt exactly. The calculation becomes unstable 

if the eigenvalue J-Lj is small. When IJ-Lj I < 10-4 , we approximate the integrand 

by its truncated Taylor series of degree three and integrate these exactly. 

We find the term a[(A; - (Aj-qO»-la,- by solving the equation 

(A; - (Aj _qO»-lS =a.; by Gaussian elimination with partial pivoting. We then 

compute the inner product of aj and s in the obvious way. 

To prepare for the inverse Liouville transformation and to find the velo

city, we solve the differential equation (3.3) for rp by the classical Runge-Kutta 

method. Our step size is rr/100. Note that the function W can be evaluated at 

all pOints in (0, rr 12), see equation (1. 6) and Lemma 2. The calculation gives us 

the function rp at the points x=krr/l00 for (}:;k~50. From the relation 

P=(R -rp)../W, we find P on the this equidistant mesh. 

We are interested in the density and velocity at the particular radii 

TnO+I' ... ,Tn' We use the values of rp on the equidistant mesh and find the XJc 

such that TJc = R-rp(xJc) by linear interpolation. This gives the non-equidistant 

mesh of x coordinat'es which corresponds to the given radii. Finally, we com-

pute the velocity P at the desired pOints by linear interpolation. 

Next we write the equation (3.3) as a first order system. solve it by a 

second order Runge-Kutta,method and obtain 1 on the non-equidistant mesh. 

Here we divide the interval (Xk ,X.HI) into 10 intervals of equal length and solve 

the system in each subinterval. Finally. we get the density P at the deSired 

radii by setting P; = III (rlf3;). This completes the reconstruction process 

for the density and S-velocity in the upper mantle. 
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5: Numerical Experiments 

We reconstruct several earth models to test the accuracy and stability of 

our method. In this section we describe our experiments and discuss the 

results. There are many factors which affect the accuracy of our method. 

Perhaps the greatest of these is the smoothness of the model. If the density 

or the velocity have a quickly changing gradient then the potential. in the 

transformed equation will have a peak with small oscillations nearby. In this 

case the potential cannot be well approximated by a linear combination of a 

small number of our basis functions. This creates error in the computed solu

tion. We have observed that the accuracy increases if the number of given 

eigenvalues increases and decreases slightly as the spectrum number of the 

eigenvalues increases. The error is also increased if the two potentials are 

reconstructed from a different number of eigenvalues and the approximations 

for the potentials do not have the same number of terms. 

Our first example is a model with constant density and constant velocity. 

We let p = 4 gm/cm3, {j = 6 km/sec, the radius of the earth R = 6371 km and 

the radius of the core Re = 2898 km. Since p and {j are constant we can 

differentiate f =r2....!p'p to find the potential q and the boundary conditions h 

and H explicitly. We find the asymptotic constants for spectra 1 and 2 by 

integrating the corresponding potentials exactly. To perform the inversion we 

use the torSional modes a TI , ... ,7Tl and 1 T 2 , ... ,7T2' These values were pro

vided by Hald. In this and all inversions we take the matrix A to be 2mx2m 

where m eigenvalues are given for the first spectrum and m -1 are given for 

the second spectrum. In this case A is a 16x16 matrix. The results of inver

sions using 4, 6, and 8 eigenvalues from spectra 1 and 2 are given in Table 5.l. 

By using the velocity and the modes oT2,'" ,7T2, Hald was able to recon-



29 

struct P with a maximal error of .00003. Our'error is greater. To study the 

error we ran the inversion using the exact values of {3 in the final calculation 

p=J 2/r4{3. The maximal error of p was reduced to .0006 when 15 eigenvalues 

were given. This indicates that the calculation of the velocity contributes 

more to the inaccuracy of the method than the calculation of the density. 

Number of 
Eigenvalues p {3 

4- .078 .115 

6 .049 .073 

8 .038 .056 

Table 5.1. Maximum errol' in the reconstruction of 

a constant earth: p=4 . (3=6. 

1!'0r a more realistic example we use Model A as presented by Jeffreys 

[33]. page 200. Model A consists of the velocities of the P- and S- waves by 

Jeffreys (1939) and the associated density distribution by Bullen (194.0). Our 

data is at radius points rj which lie between the core-mantle boundary and the 

MohorOvicic discontinuity. This discontinuity. whose position we denote by rm. 

occurs at a radius of 6338 km. The radius of the core in Model A is .548 rm. 

but the first data point in the mantle is at the radius . 55r m' We extend our 

model in a continuous manner to the crustal region and to the core-mantle 

boundary as explained below. 

The Model A has a discontinuity in the gradients of the density and veloci-

ties at a depth of 413 km. To avoid a large peak in the potential we must 

smooth the model before attempting a reconstruction. see figure 5.1. The 

smoothing is done in two steps. First we approximate p and {3 at the given data 

pOints by cubic splines. We compute the 'least squares approximation by the 
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IMSL routine ICSFKU. The routine finds the spline which minimizes the normal

ized L2 norm 

After much experimentation, we chose the 8 knots used by Hald. They are 

given by r/rm = 1, .944, .94, .936, .88, .835, .587 and .55. The maximal errors 

in the approximations were .005 for {3 and .004 for p while the normalized L2 

errors were both less than .003. To obtain a good approximation to the data 

several knots are needed close to the discontinuity which occurs near a depth 

of 413 km. By extrapolating the splines we get the values of p and {3 between 

the Mohorovicic discontinuity and the surface and near the core-mantle boun-

dary. 

To further smooth the model. we multiply the splines by triangular func

tions with base 2N and centered at the data point rj. We then integrate over 

the base and use this averaged value as the function value at rj. This is done 

for each rj. When necessary, we evaluate the spline at radii r>R or r <Re . 

Table 5.2 and figure 5.2 show the change to Model A due to the smoothing. 

Smoothing N= 50 100 200 300 

Normalized p .003 .005 .012 .020 
L2 {3 .003 .006 .015 .027 

Maximum p .014 .032 .065 .094 
Norm {3 .017 .037 .074 .106 

Table 5.2. Change to Model A due to smoothing. 

We now determine the data for the inversion and attempt the inversion. 

We need the data in the lower mantle, however, the boundary of the lower 

mantle is not known. We find K= ;fR:f3-1 dr by integrating throughout the 
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rrj 
mantle. To find ro where r<ro defines the lower mantle. we calculate J R p-1dr 

c: 

and use linear interpolation to determine ro where rj-l<rO<rj' 

We solve the direct problem for t-he torsional modes of the model to com

plete the data. To exclude systematic errors we calculate the eigenfrequen

cies by a method which is not based on the Rayleigh quotient. Specifically. we 
d~ 

us'e the equation (1.1) for the torsional modes of the earth. We rewrite the 

equation as a 2 point boundary value problem for a system of first order 

ditIerential equations by letting YI = Y be the eigenfunction and 

Y2 = J.J-(YIlJl'lr). The boundary conditions are then Y2(Rc ) = Y2(R) = O. See 

Lapwood [39]. page 101. We add the equations Ys' = y~ and Y4' = 0 with the 

boundary conditions Ys(Re) = .Q and Y3(R) = (R -Re )/2: Thus Y4 is the eigen

value X = J(lr.)2 and Y3 fixes the norm of the eigenfunction and completes our 

set of boundary conditions. See KeUer [37]. Chapter 3. We use the NAG rou-

tine D02RAF to solve the boundary value problem. The routine implements a 

method by V. Pereyra [45]. It uses a finite dillerence method with deferred 

correction and Newton iteration. We choose a mesh and provide an initial 

guess on this mesh. The mesh is then refined by D02RAF to improve the solu

tion. In all our experiments the number of pOints remains below 350. The 

density and velocity are given by the spline interpolants and we calculate the 

rigidity J.J- = p2p from these splines. 

The routine failed to solve the problem as given and we found it necessary 

to use the continuation option on a sequence of three families of equations. 

The families depend on the parameter e which is increased from 0 to 1 in steps 

of.1. The first family has the equation y" = Xy for e=O and the equation for 

the torsional modes of a constant earth with angular order II for e=1. The 

exact solution for e=O is a linear combination of sinnxl and cosnxl and is 
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given as the initial guess. For e=O, the remaining families correspond to the 

final equation of the preceding family and the final solution of the preceding 

family is given as the initial guess. We continue from the constant earth to the 

given earth model for angular order II and finally to the torsional modes of the 

given model with angular order l2' This process is repeated for each wave 

number used in the inversion. Note that the initial guess determines the wave 

number of the eigenvalue. In all cases the routine estimated the absolute 

error in the computed eigenvalue to be less than 10-5 . 

We obtain four different models by smoothing Model A with N=50, 100, 200 

and 300 km. The corresponding eigenvalues are given in Table 5.3, together 

with the computed values of K, the asymptotic constants Al and A2 , the con

stants hand N, and the position of the lower mantle TO. Note that the model. 

with N=O is obtained by interpolating the data by a cubic spline rather than by 

approximating the data by a spline. The interpolating spline was extrapolated 

to the surface and to the core-mantle boundary. We were unable to invert for 

this model using 15 eigenvalues. For each model we use the eigenvalues 

corresponding to the modes oTI ," . '7Tl and I T2, ... ,7T2 in the inversion. 

Tqe results of the inversions are shown in Table 5.4. Because the accuracy 

increase with the smoothness of the model, the reconstruction of the model 

with 200 km smoothing is closest to Model A. 
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Smoothing 
N= 0 50 100 200 300 300 

Spectrum 1 
OAI .0001 .0001 .0001 .0001 .0001 
lAl 1.3419 1.3417 1.3412 1.3400 1.3367 

2Al 4.2472 4.2481 4.2491 4.2524 4.2559 
SAl 9.0855 9.0867 9.0930 9.1160 9.1483 
4>"1 16.2774 16.2732 16.2725 16.2710 16.2717 
::;Al 25.4139 25.4066 25.3919 25.3459 25.3018 
GAl 36.3591 36.3510 36.3386 36.3013 36.2726 
?Al 49.2109 49.2145 49.2276 49.2557 49.2675 
Al .3137 .2786 .2777 .2763 .2753 

-
Spectrum 2 

oA2 .1302 .1301 .1301 .1276 .1275 
lA2 1.5331 1.5329 1.5324 1.5307 1.5276 
2A2 4.4169 4.4179 4.4190 4.4226 4.4267 
SA2 9.2582 9.2594 9.2656 9.2883 9.3203 

4A2 16.4482 16.4439 16.4429 16.4407 16.4404 

::;>"2 25.5800 25.5726 25.5578 25.5115 25.4673 

eA2 36.5233 36.5150 36.5028 36.4660 36.4322 
?>"2 49.3744 49.3783 49.3917 49.4202 49.4322 
A2 .4774 .4423 .4413 .4398 .4388 

h .0631 -.0225 -.0232 -.0257 -.0300 
H .5998 .5894 .5901 .5931 .5982 
K 148.5 148.4 148.4 148.5 148.5 

TO 5095.0 5094.9 5094.8 5094.6 5094.1 

Table 5.3. Inversion data for the smoothed versions of Model A. 
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Smoothing N= 50 100 200 300 

Normalized p .067 .051 .017 .010 
L2 fJ .083 .062 .019 .010 

Maximum p .134 .102 .034 .041 
Norm fJ .144 .108 .036 .055 

Table 5.4. I Computed - Smoothed I in the reconstruction of 

the smoothed versions of Model A. 

All remaining tests are done on our version of Model A smoothed with 

N=200 km. To illustrate the etiect of increasing the number of eigenvalues we 

use eigenvalues associated with oTl •.•. • 7Tl. and 1 Ts . .... 7TS' We invert for 

the model USing 4. 6 and 8 eigenvalues from spectrum i along with 3. 5 and 7 

eigenvalues from spectrum 3. The results are shown in Table 5.5. The L2 error 

steadily decreases. although the maximal error is greater for 6 eigenvalues 

than for 4. 

Number of 
eigenvalues 4 6 8 

Normalized p .042 .027 .017 
L2 fJ .048 .035 .019 

Maximum p .083 .105 .035 
Norm It .093 .138 .037 

Table 5.5. Errors in the recoDBtruction: spectra 1 and 3. 

Next we compare the reconstructive powers of eigenvalues from spectra 

1. 2. 3 and 4. Table 5.6 shows that the error increases slightly as the angular 

order increases. Recall that only one of the spectra determines the constant 

h in the left boundary condition. We will refer to the spectrum which deter

mines h as the first spectrum in the inversion. Table 5.7 indicates that there 
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is an indication that a spectrum with large angular order cannot determine h 

as well as a spectrum with smaller angular order. 

fust Spectrum 1 1 1 4 2 3 
Second Spectrum 2 3 4 1 3 2 

Normalized p .017 .018 .018 .018 .018 .018 
L2 {3 .019 .019 .019 .019 .019 .019 

Maximum P .034 .035 .036 .041 .036 .034 
Norm f3 .036 .037 .037 .036 .037 .036 

Table 5.6. Errors in the reconstructions: 8 terms in the expansions for the potentials. 

We will now look more closely at the error in the reconstructed potentials. 

We denote the potential associated with spectrum l by ql and its reconstruc

tion by Cil.The potential can be written as 

qL = V + (l +2)(l-1)w 

where v and ware defined in Section 2. We note that the magnitude of wis 

less than that of the error in the reconstructed potentials, see figures 5.5 and 

5.7. Yet we determine w from these reconstructed potentials. Moreover, a 

10% error in the potentials is reduced to less than a 2% error in the recon-

structed earth model. 

Spectrum 1 2 3 4 

h -.02589 -.02584 -.02619 -.02644 

Relative error .06 .04 .18 .28 

Table 5.7. The values of h computed with data from different spectra. 

The coefficients in our expansion of the potentials are linear functionals. 

Hence the coefficient '"Jj of the potential ql can be written as 
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where Vj and GJi are the corresponding coefficients of v and w in terms of our 

basis functions. Therefore we assume that the error in the reconstruction of 

the potential can be written as 

(5.1) 

where ev and ew are the errors in the reconstructions of v and w. The func-

lion v =1 "I 1 =q 1 has a large peak, while w is smooth and slowly varying. One 

would expect to better approximate w than v by a finite expansion. Figure 5.7 

shows that the errors in q, are virtually identical for l = 1. ... ,4. If ew were 

large, this would not be the case. We assume .equation (5.1) and determine ew 

and ev from the various reconstructed potentials. In these calculations we use 

potentials reconstructed with spectrum 1 as the first spectrum. This guaran

tees that h and hence the basis functions are the same for all of the recon-

structions. We let 

e" = 

(q'a -q'a) - (q'1-qt 1) 

ew = (l2+ l 1+ 1)(l2-l 1) 

(l2+2)(l2-1)(qtt-q'1) - (ll+ 2)(ll-1)(qta-q'a) 

(l2+l1 + 1)( l2-l 1) 

(5.2) 

(5.3) 

The results of the calculations with l1=1 in (5.2) are shown in figures 5.8 and 

5.9. We see that the errors are similar and we conclude that the various com-

binations of the spectra give the same coefficients. 

Since we subtract the potentials from one another in the calculation of 

w = (q'a-q't)1 (l2+l1+1)(l2-l1), the error in v will cancel and we get a good 

approximation to w. This cancellation in the error is essential to the success 

of the method. In Section 7, we will see that the method is unstable if ev is not 

independent of the spectrum. 
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To emphasize the importance of the cancellation of the error in v and 

show how the algorithm can break down. we invert for the Model A smoothed 

with N=200 km .. using 8 coefficients in the expansion of qlo but only 6 in the 

expansion of q2' Specifically. we use the eigenvalues associated with 

OTl • ...• 7Tl and 1 T 2 • ... . 5T2' The reconstructed potentials and their errors 

are shown in figures 5.10 and 5.11. The differential equation for {3 involves the 

square root of w. but since q2<q 1 for some x. the inversion could not be com

pleted to determine the earth model. We repeated this experiment but 

replaced the data from spectrum 2 with data from spectrum 4. The fourth 

potential is sufficiently large to keep the computed w positive. however the 

error was considerable. Thus our method works best if the number of 

coefficients in the expansions for the potentials are equal. This also suggests 

that information from spectra with angular orders that are far apart are 

better for the simultaneous inversion for p and {3. 
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Figure 5.2. Solid Line: Density Change: N = 200 Krn. 
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6: Error in the Data 

In this section we discuss the effect of the errors· in the eigenvalues on 

the reconstructed model. We show that the method applied to the inverse 

problem for the mantle is unstable for large perturbations. We then describe 

a modification which increases the stability. The scheme is motivated by the 

fact that the errors in the eigenvalues can be considered random. The new 

version of the method allows for the use of data from more than two spectra. 

We invert for the model obtained by smoothing Model A >\'ith N=200 km, 

replacing one of the eigenvalues by a slightly perturbed value. In each of the 

inversions, we use spectrum 1 as the first spectrum in the inversion. The 

eigenvalue cAl = 0 is replaced by .01 and all other eigenvalues are changed by 

±.1%. This corresponds to a perturbation of .05% in the associated torsional 

mode. The perturbations in spectrum 1 affect the value of h and hence the 

coefficients in the expansion for both potentials. Since the basis functions 

depend on h a direct comparison of the coefficients does not describe the 

change in the reconstruction. In Table 6.1 we show the differences between 

the models computed with one eigenvalue perturbed and the model computed 

With the original data. Only the results for changes in spectra 1 and 4 are 

given; changes in spectra 2 and 3 produced similar results. There is a marked 

increase in instability with the wavenumber of the perturbed eigenvalue. In 

the inversion for the density only, Hald noted stability and no apparent effect 

due to wavenumber. We believe that the instability is due to the relative sizes 

of the functions wand v and the errors in the potentials. 

The final model depends on the asymptotic constant, which cannot be 

measured. We have tried to perturb these constants. In the first experiment 

Al was increased by .1 %. In the second As was increased by .1 %. The normal-
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ized L2 error was .09 for {3 and .07 for p. This is close to the error resulting 

from an equivalent perturbation in a third eigenvalue. We observe that most 

of the change lies near the surface, see figures 6.2 and 6.3. This could indicate 

a relation between the asymptotic constants and the boundary condition at 

the surface. 

Overtone of the 
perturbed eigenvalue Xn Xl X:> X~ X. Xfi 

Maximum p .20 .03 .14 .40 .61 1.7 
Norm {3 .07 .06 .19 .48 .71 1.5 

Spectrum Maximum p 5.9 1.0 4.3 12 17 52 
1 Percent {3 1.6 1.5 4.4 11 16 35 

Normalized p .01 .00 .01 .05 .12 .42 
L2 {3 .01 .00 .02 .09 .30 .67 

Maximum ~I .13 .15 .52 .81 1.2 
Norm .16 .20 .58 .84 1.2 

Spectrum Maximum p 3.9 4.3 16 24 34 
4 Percent {3 3.7 4.5 13 20 27 

Normalized p .01 .02 .07 .18 .43 
L2 {3 .01 .03 .11 .31 .71 

Table 6.1. The changes to the computed model due to perturbations in the 

eigenvalues of spectra 1 and 4. 

To partially explain the increase in the instability ''lith wavenumber we 

examine the coefficients in the expansion of the reconstructed potentials. In 

Tables 6.2-6.5, we see that the dominant effect of a perturbation of oX in the 

jth. eigenvalue is a corresponding perturbation of oX in the jth. coefficient. 

Hence, the error in the potential wi.ll have the additional term OAWj where Wj 

is the the jUt basis function in our expansion. "Wnen the potentials are sub-

tracted to determine w, this term will not cancel. (see equation (5.1)). Ai; the 
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wavenumber of /... increases. the magnitude of O/... also increases and hence the 

error increases. It can then dominate w. This loss of resolution of w causes 

error in the computed fl. Since fl is needed to compute p. the error is 

repeated in the density. 

coeffi- Unperturbed Perturbation of 
cients values I/...2 2/...2 3/...2 4/...2 5/...2 

O/... 15 44 -93 -164 255 

')'0 -.0243 3 -2 -3 -3 4 
')'1 .1004 17 -1 1 -2 3 
')'2 -.0053 3 43 5 4 -3 
')'3 -.1472 -1 1 -95 -3 8 
')'4 .0117 1 1 ...;.3 168 7 

15 .0781 -0 1 -1 -3 255 
')'6 .0281 -0 0 -3 -2 -7 
')'7 -.0175 -0 -0 -1 3 4 

Table 6.2. The perturbations of the coefficients of q2 due to perturbations in 

the eigenvalues of Spectrum 2. All perturbations are multiplied by 104 . 
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coeffi- Unperturbed Perturbation of 
cients values lAs 2AS SA3 4As oAS 

OA 18 -47 -95 167 258 

"'fo -.0615 4 3 -4 -4 4 
")'1 .0923 22 5 -3 -6 6 

7'2 -.0033 -3 -46 10 7 -6 

7'3 -.1473 -2 -3 -98 -7 10 

"'f4 .0119 2 2 -6 170 3 

"'fo .0776 0 -2 a -0 258 
"'f6 .0284 1 a -3 -3 -3 

'11 -.0179 a 0 -0 -3 -6 

Table 6.3. The perturbations to the coefficients of qs due to perturbations in 

the eigenvalues of Spectrum 3. All perturbations are multiplied by 104 . 

coeffi- Unperturbed Perturbation of 
cients values l~ 2~ 3~ ~ o~ 

OA -22 50 -99 . -170 261 

"'fe -.1112 2 2 3 14 6 

7'1 .0814 -29 -13 -9 -12 -11 

"'f2 -.0007 0 54 -15 -11 -9 

7'3 -.1474 3 6 -101 12 13 

"'f4 .0122 -2 -3 -10 -173 -2 

"'f5 .0769 0 2 1 -5 261 

1'6 .0287 0 0 -4 4 2 

"'f1 -.0183 0 0 0 -4 -8 

Table 6.4. The perturbations to the coefficients of q 4 due to perturbations in 

the eigenvalues of Spectrum 4. All perturbations are multiplied by 104 . 



53 

We now describe the modification of the method. Let )'j be the jlk 

coefficient of the potential q,. Suppose we are given the coefficients ),Ji. for 

i = 1. .... m where m~2. From these and the relation 

)'1 = 1/j + (l +2)(l-1)(.)j (6.1) 

we attempt to determine the jlk coefIicients /lj and c.)j of the functions v and 

w. We look for averages 

where 

al + ... + Clm = 1 

and 

b 1 + ... + bm = O. 

This is an underdetermined system for m >2. 

Thus we choose the linear combination that will minimize the variance of 

the error in the coefficient. We assume that the errors in the eigenvalues are 

independent. random variables with mean 0 and variance aJ which is indepen

dent of angular order. We also assume that all error in the computed 

coefficients comes from error in the eigenva~ues. Let eJ be the error in the 

eigenvalue with wavenumber j and angular order l. Since our results indicate 

that the error in I'J will be close to eJ .. we assume that the computed 

coefficient'lj =)'J + ej. For any c; the expected value of Lrc;(,;i+e;i) is 

Lf"aaJi and the variance a2 is given by L~G.t2aJ = aJL~G.t2. Therefore. we 

choose the linear combination which minimizes V = LG.t2. For each coefficient 

we have a minimization problem with two constraints. We use the homogene-

ous constraint to eliminate one of the variables and reduce the problem to a 
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minimization problem with one constraint. We then use Lagrange multipliers 

to solve for the ~. 

Note that any number of spectra can be used with this method. If we use 

m terms in the expansion approximating the potential. we must have eigen

values from at least two spectra for the wavenumbers 2 through m and 1 fun

damental eigenvalue. However. the spectra need not be represented in all of 

these wavenumbers. 

In one iteration step we calculate the coefficients for each potential as , 

described in Section 4. We determine only those coefficients for which the 

corresponding eigenvalue is given. The first spectrum determines h. which is 

then fixed for the remainder of the iteration step. Except for the first poten

tial. the lowest coefficients are determined by equation (4.2). Once the 

coefficients for the represented potentials are calculated. we use our averag

ing method to determine the coefficients for wand v. These values are then 

used in relation (6.1) to determine the coefficients corresponding to missing 

eigenvalues and to redefine the calculated coefficients. 

The first two tests of our modification use unperturbed eigenvalues as 
, 

data. The data for Test 1 consists of the first eight eigenvalues of spectrum 1 

and the first through seventh eigenvalues for spectra 2.3 and 4. Test 2 omits 

Xi. Ag. Ad. A9. A~ and A1. The results are given in Table 6.6. Since the algo-

rithm averages the information from the various spectra. we expect the error 

to lie in the range of that of the original algorithm. Comparison with Table 5.6 

shows this is the case. 
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Test 1 2 

Normalized p .017 .018 
£2 {3 .019 .019 

Maximum p .035 .035 
Norm {3 .037 .037 

Table 6.6. Errors in the reconstruction for Tests 1 and 2. 

The next five experiments use data with added error. We determine the 

amount of the error by letting ~ = (1 +Z)A where Z is chosen randomly. We use 

the Fortran routine RAN(). This returns a random variable from a uniform 

distribution of [0,1]' Tables 6.7 through 6.9 give the amount of the perturba-

tions Z A. For test 3 we scale the random variable so that the error lies 

between -.1 and .1%. The modified algorithm converges. but the calculated 

model changes by as much as 50%. If the data from only two spectra is given. 

the computed w becomes negative and the inversion fails. With data from 

spectra 1.3 and 4. the final solution had slightly less error. This could be a 

result of the distribution of the error. Test 5 used data with error ranging 

from -.05 to .05 %. The results are somewhat better. but still large. For the 

last two tests. the error was kept between -.01 and .01%. Test 6 used a com

plete set of data from spectra 1.2.3 and 4 while Test 7 used data from spectra 

1 and 4 only. There is an improvement with more data although the results 

from both inversions are decent. The non-linearity of the inversion is illus-

trated by the growth of error seen in these examples. 
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Test 3 4 5 6 7 

Normalized p .874 .808 .513 .053 .064 
L2 P .993 .939 .614 .071 .081 

Maximum p 2.89 2.55 2.43 .122 .138 
Norm p 2.09 1.94 1.80 .141 .181 

Table 6.6. Errors in the reconstruction for the tests with error in the data. 

The errors in the computed model for tests 3 and 4 are displayed in 

graphs 6.4 through 6.7. The error in the function v is similar for the two tests, 

while the error in w, p and P is much greater for Test 3 than for Test 6. This 

again emphasizes that the sensitivity of the algorithm lies in the calculation ot 

W. 

Overtone An At ~ A~ A4 Afi As A7 

Spectrum 1 0 -4 -31 -65 -80 173 170 -334 

Spectrum 2 - 8 24 62 -88 -85 205 21 

Spectrum 3 - -16 -25 16 145 -164 328 -23 

Spectrum 4 - -6 21 -88 19 236 -292 -232 

Table 6.7: Perturbations x 104 in the eigenvalues for Test 3. 

Overtone An AI A9 A~ A A!i ~ A? 

Spectrum 1 0 2 13 -23 -23 96 23 -133 

Spectrum 2 - -5 11 -7 43 8B 159 -222 

Spectrum 3 - -7 4 20 -19 B2 133 -136 

Spectrum 4 - 6 -26 32 -53 -19 -167 -119 

Table 6.B: Perturbations x 104 in the eigenvalues for Test 4. 

• 
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Overtone An Al ~ A~ ~ f..,; As A? 

Spectrum 1 0 .3 -2.7 8.9 11.0 -13.7 -26.2 32.3 

Spectrum 2 - 1.4 .2 1.9 -4.3 16.8 12.4 30.9 

Spectrum 3 - 1.5 -.6 5.0 1.7 8.3 -23.9 2.4 

Spectrum 4 - -1.6 -4.9 -3.4' -7.7 13.9 -17.3 24.6 

Table 6.9: Perturbations x 104 in the eigenvalues for Tests 6 and 7 . 

• 

• 
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PART TWO 

1: Main Result 

In this section we present our main result for the inverse Sturm-Liouville 

theory. The proof of Theorem 1 is based on the asymptotic form of the eigen

values and eigenfunctions. We must extend the theory of a Sturm-Liouville 

problem with no discontinuities to include problems with two interior discon

tinuities. We find an integral equation and use this equation to develop the 

theory. Our techniques are standard. 

THEOREM 1. Consider the eigenvalue problem· 

-u "+q (x )u :;;AU {l.1} 

on the interval O<x <rr and with the boundary conditions 

u'(O)-hu (O):;;u '(rr)+Hu (rr):;;O (1.2) 

and withjump conditions 

u(dl+)=alu(d 1-). u'(d1 +)=al1u'(d 1-)+b 1u(d1-) (1.3) 

U(d2+ )=a2u(d2-). u'(d2+ )=ai1u '(d2-)+b 2u(d2-) {l.4} 

where q is an integrable junction. 0<d 1<dz<rr/2. a1. az>O. jal-ll+jb11>0 

and I a2-11 + I bzl >0. Let~. AI' .. , be the eigenvalues. Consider the eigen

value problem with a1. b l , d 1, az. b2 • dz, h. H. A and q replaced by a1. 1)1. (11. 

~.1)2' Cl2• It.A and q. If A;=\ for j~O. H=!1 and q=q almost everywhere in 

(rr/2.rr) then a 1=al. b 1='01. d 1=Cl l • az=az, b 2:;;'02• d2 =Cl2• h=h. and q=q almost 

everywhere. 
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Proof: Consider the solution u of equations (1.1). (1.3) and (1.4) that has 

the initial values u=l and u'=h at x=D. We will find an integral equation that 

U satisfies and will then study the integral equation to prove the theorem. 

Let U=Ul for ~<dl' Uz for dl<x<dz and U=Us for dz<x~rr. Note that U 

is not defined at d l and dz but UI , Uz and Us are. It is well known that ul 

satisfies a Volterra integral equation of the second kind. We find the integral 

equation by letting U=Ul in equation (1.1). multiplying by a function G(x,t) 

and then integrating with respect to t from 0 to x. After integrating by parts 

twice and using the initial conditions we arrive at 

hG{x .D)-a, (x .D) 

-'Ul'(X)G(x ,X)+UI(X)G, (x ,x)-fe
z 
G,tuldt + fez Gqu1dt = fe\Gu.1dt. 

By solving 

-Git = "AG 

G(x ,x) = D a, (x .x) = -1. 

we obtain the Volterra integral equation for u 1 : 

(1.5) 

where ~x~dl' Gu = G and U I(X )=hG(x .D)-G, (x .D) is given below. We use the 

same technique on the intervals (dt.x) and (dz.x) to get the results for Uz and 

Us' but replace the initial conditions for u with the jump conditions at d l and 

d 2 . We have 

rd1 r1: 
U2(X) = U2(X) + Jo GZ1(x,t)q(t)Ul(t)dt + Jd1GZ2(X.t)q(t)U2(t)dt (1.6) 

(d1<x<dz) 

(1.7) 



.. where 

and 

gt(x) = coskx + ~inkx 

g2(X) = at [coskd l + ~inkdl]COSk (x -d l) 

+ all [-sinkd 1 + Z coskd 1]sink (x -d1) 

+ ~l [coskd l + Z sinkdl]sink (x -d l) 

gs(x) = a2 [a1cosk (d2 -d1)coskd l - all sink (d2 -:d1)sinkdl 

+ ~l sink (d2 -dl)coskd 1 + ~all sink (d2 -d1)coskd 1. 

b 
+ alcosk (dz-d 1)sinkd l + leI sink (dz-dl)sinkdd ]cosk (x-d2) 

+ ~1 cosk (dz-d1)coskd 1 + Z ~a 11 cosk (dz-d 1)coskd 1 

. b 
- alsink(d2-d1)sinkd1 + kl cosk(dz-d 1)sinkdt! ]sink(x-dz) 

b 
+ k

2 [alcosk(dz-dl)Coskdl - all sink (dz-dl)sinkd l 

+ ~l sink (dz-d 1)coskd l + Z ~all sink (dz-dl)coskd 1 . 

+ alcosk(dz-dl)sinkd 1 + ~l sink (d2-d l)sinkdd ]sink(x-d2 ) 
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(1.8) 

(1.9) 

( 1.10) 
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() ) sink(x-t) 
Gll x,t· = Ck2(x,t = Gss(x,t);: k (1.11) 

~1(X,t) = ~ (alsink(d1-t)cosk(x-d1) (1.12) 

(1.13) 

b 
+ kl cosk (dz-d l)sink (d I-t) ]sink (x -d2) 

b 
+ k

2 [alcosk (d2-d1)sink (d1-t) + all sink (dz-dl)cosk (dl-t) 

b 
+ + sink (dz-dl)sink (dl-t)]sink (x-dz) ) 

G:3z(x,t) = ~ (a2sink(dz-t)cosk(x-dz) + ail cosk (d:a-t)sink(x-d2) (1.14) 

b 
+ k

Z sink (d 2-t)sink (x-d2) ) 

Thus we can write 

. : 
u(x) =g(x) + fa G(x,t)q(t)u(t)dt ( 1.15) 

for ~~1r, X~dl,d2' Here g(x) satisfies equations (1.1), (1.3) and (1.4) with 

q =0. The kernel G is discontinuous at x=d l and etz, satisfies the jump condi

tions in x and is integrable in t. Any solution of (1.15) will also satisfy equa-

tions (1.1), (1.3) and (1.4). 
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Our proof depends on estimations of the solution u on each interval. We 

will use the following lemma to bound Ulo U2 and U3. 

LEMMA 1. Consider the integral equation 

u(x)-Ia.:&K(x.t)q (t)u (t )dt = f (x) 

where I and K are continuous and q is integrable. This equation has a 

unique solution u which is continuous and satisfies 

lu (x) I~M(x )eL(:&)p(:&) 

where M(x)= max II (t) I. L(x )=max IK(x.t) 1 and p(x)= 1::&1 q (t) Idt. 
(J~~Z (J~~ II 

Remark: The proof of Lemma 1 uses the method of successive approxima

tions. Let Uo = f and Un+l = f + J::&Kqttndt. Then I;;Un is shown to con-
a . 

verge uniformly to a solution u of the integral equation. Therefore if f and K 

are analytic functions of A. Un and hence u will be analytic in A. For details of 

the proof see Hald [28]. This lemma can be used to prove the existence and 

uniqueness of the solution to the integral equation (1.15). 

In the next lemma we find upper bounds for Ulo U2 and us. 

LEMMA 2: Let u 1• u2 and Us be the solutions of equations {l.5}. {1.6} and 

{l.7}. Let v'X=a+i'T'. c=max(lbll. Ib 2 1. Ihl. foTrlq(t)ldt) and Al = 0. 1 + all 

and A2 = 0.2 + ail. Then u l. u2 and Us are entire junctions of A of order }2 

and 

IUI(X) .. )I ~ (l+c1T)e cH !T!z 

IU2(x.A)1 ~ A1(1+c1T')Se c:&+I1'I:& 

I 'Us (x .f..) I ~ A IA2(1 +C 1T)15e CZ+ 11'1% 

(~X~dl) 

(dl~x~d2) 

(d2~x~1T) . 

{1.l6} 

{1.17} 

{l.la} 
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Proof: The bounds (1.16) and (1.17) have been established by Hald [28]. 

Let k =V'A=u+i -r and i.P-1-r1. To prove equation (1.18) we follow the technique 

of Hald and write equation (1.7) as 

II 
e-lIZ'us = e--us(x) + fa le-II(:::-t)G:31(x,t)q(t)e-vt u t (t)dt 

d 
+ fa 2e -v(: -t) G:32(X, t)q (t)e -vt U2( t)dt 

1 

+ h,:& e-v(:IH)G:3s(X ,t)q (t)e -vtus(t )dt . 
2 

This is an integral equation for e -v:us(x) which we rewrite in the notation of 

Lemma 1 as 

e-lIZ'us(x) = / (x) + h,:t: K(x,t)q(t)e-vtu3(t)dt 
2 

whe re K '" = '" e -v(:t: -t ) G:3s and 

d 
/(x) = e-IIZ'U3(x) + fa le-v(z-t)G:3l(X,t)q(t)e-vtu l(t)dt 

a 
+ h 2e -v(z-t)G32(X,t)q(t)e-vtu2(t)dt 

1 

and K = G33 . We will bound / and K and apply Lemma 1 to obtain (1.17). We 

make repeated use of the inequalities 

I cow I, I sinkx I, 1 Si: 1 Se v:r: 

which hold if x~O and v~ I Imk I. 
-II{ aa-a) -d -v(z -cP We begin our estimation of / by writing e -lIZ' as e 1 e 1e ~. 

From equation (1.10) follows 

e-VZ Ig3(X) 1 = a2 [al + all + c (d2-d l ) 

+ c ~all (d 2-d l ) + a1d l + c (d2-d l)dd ] 

+ a2-1 [al + all + c (x -d 2 ) + c (x -d2)~al-l + al + Cdl~ ] 

+ C (X-d2) [al + all 

+ c (d 2-d l ) + c fa1d 1 + all (d2-d l ) + c (d2-d1)d1 J] 



We factor, recall that 1\~2 and estimate upwards to get 

Next we consider the first integral appearing in f. We have 

Thus ITom(1.13) follows 

e-v(:z:-t) 1G:3I(X,t)1 ~ a2 [al(dl-t) + all (d2-d1) + c (d2-d l)(d l -t)] 

+ ail [al(d2-d l) + all (x-d2) + c(d1-t)(x--d2)] 
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+ c(x-d2) [al(d1-t) + all (d2-d l ) + c(d2-d l )(d1-t)] 

Similarly we let e-v(:z:-t)G:32(X ,t) = e -v(d2-t)e -v(t-:z:) ~~d use equation (1.14) to 

obtain 

We can use our bounds for Ul and u2 to conclude 

Finally e -v(:z:-t) I G:33(X ,t) I ~ x-d2 for d2<t <x. Thus equation (1.18) follows 

from Lemma 1 where we let v= I i I to obtain the best bound. Both f and G33 . 

are analytic in r.... Hence from our remark after Lemma 1 and our bound we 

get that u3 is analytic in r... of order *' This concludes the proof of Lemma 2. 
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We investigate the asymptotic behavior of the solution u (x ,A) . Here we 

will be concerned with the ftrst order terms of !11. 9z and 93. We denote these 

by 'Pl. 'Pz and 'P3. By using the product formulas for basic trigonometric func-

lions we get 

Al 
9'2(X) = T[coskx + ulcosk(x-2d 1)] 

AIA2 
9'3(X) = -4-[coskx + ulcosk(x-2d 1) 

(1.19) 

(1.20) 

(1.21) 

'P = rp 1 for (}.!;;;x <d 1, 'Pz for d 1 <x <d2 and 'Ps for dz<x <11'. Note that 'Pi is defined 

on the closed interval although 'P is not. We have 'P is a solution of equations 

(1.1). (1.3) and (1.4) if h=b l =b 2=0 and q=O. 

LEMMA 3: Let UI. uz. and. Us be the solutions of the integral equations 

(1.5)-{1.7). Let k =v'X=a+i-r and c =max(lbll.lbzl.lhl.fo~ Iqldt). If 

Ik 1~3c. then 

IU1(X) loS 2e 17'1: 

lu1(x)-'PI(X) I <: ~e 17'1: - lkl 

(0 ~ X ~dl) 

IU2(X) I ~ 3A l e ITI: 

IU2(x)-'P2(X) I ~ I~CI Ale 17'1: 

luz'(x)-'Pz'(X) I ~5cAle ITI: 

(d l ~ ~ d z) 

(1.22) 

(1.23) 

(1.24) 

(1.25) 

(1.26) 



IU3(X) I S; llA 1A 2e ITlz 

IU3(X)-~3(X)1 s; f~1 A1A2e lTIz 

IU3'{X)-ljDs'(X) I ~ 24cA 1A2e ITlz 

(d2 ~X ~1r) 

where the ~i. are defined by equations {1.19}-(1.21}. 
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( 1.27) 

{l.28} 

{l.29} 

Remark: If c = 0, ~i = 'Ui, and we set ,; , = O. This lemma is an extension 

of a lemma by Hald. The estimates involving Ul and U2 come directly from his 

results. Thus it is only necessary to prove the last three bounds. The proof is 

based on the Volterra integral equation for the eigenfunctions. This approach 

was previously used by Borg [11] and Hald [28]. 

Proof: Let 11= 17"1 where k=u+i7". Recall that ~s is definedto consist of the 

first order terms of 9s and is a solution of (1.1), (1.3) and (1.4) with c= O. Thus 

from Lemma 2 we have 

We use Lemma 1 to estimate Ius-~sl as we did in the ,f>roof of Lemma 2. 

The inhomogeneous term of the integral equation for e-~(us-~s) is given by 

Ii 
e-~ (9S-~3) + 10 1 e-v(z-t)G:n(x,t)q(t)e-vtul(t)dt 

Ii 
+ 1: 2 e -v(z-.t) Gs2{X ,t)q (t)e -vt U2( t )dt 

1 

By definition 
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ail 
+ ~[b Icoskd1cosk (d 2-d l ) + h ~all coskd1cosk (d 2-d 1) 

- a lsinkdlsink (d 2-d 1) + ~l sinkdlcosk (d2 -d1H]sink{x-d2) 

b 
+ k

2 [alcoskd1cosk (d2-d l ) - all sinkdlsink (d2-d l ) 

+ ~l coskdtsink(d2-dl) + Z ~all coskdlsink (d 2-d 1) 

t -vii -lIe It -It) -II( z -ct ) We write e -II as e Ie 2 1 e 2 and conclude 

1 
Ig3-9'31 ~1iT<a2 [c +c fAl+1/,3~ ] (1.30) 

+ ail [C+C~AI+l/3J]+c [Al+1/3+1/3~Al+l/3J]) 

c where we have used Al.A~2 and "j'kf< 1/ 3. To arrive at an upper bound for 

I U3-9'3 I which is proportional to Til- we must redo some of the estimates in 

the proof of Lemma 2. We expand e-llt as before, let lk I >3c and use equation 

(1.13) to get 

e -lI(z-t) I ~1(X.t) I ~ ~2[Al+ ~ + ; [A 1+; 3) 

2AIA2 
~ Ikl 

From equation (1,22) we have 



We use equation (1.14) and our previous methods to conclude 

Then 

Finally we have 

Ih:Gs3(x.t)q(t)rp3(t)d.t Is I~ 1-h:1q(t)e-vt rp3(t)ldt 

CAIA2 

s Ikl 
. . -' 
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Thus in the notation of Lemma 1 the inhomogeneous term in our integral equa-

tion satisfies 

CAIA2 I J (x) I ~ I k I (3 + 4 + 6 + 1 ) 

14cA1A2 

~ Ikl 

A~ th k l' -11(";-" sink (x-t) h L() 1 WILe 1 ~ e erne IS e k we ave x S"j'k'"i' e app y mma 

and use that e 1/3 < 2 to conclude 

Combining the bounds for rp3 and I U3-rp31 and gives 

Now consider 
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lus'(x) -~3'(x)1 ~ Ig3'(x)-~3'(x)1 

+ lfod.dj~~~,t) q(t)uJ(t)dt I 

+ I. rd.a O~2(X ,t) (t) (t)dt I 
Jd. 1 ox q U2 

Taking the derivative of g3-~3 has only the effect of multiplying by k, multiply-

ing terms by ±1 and changing sines and cosines, thus we inspect the definition 

ot g3-~S and use (1.30) to conclude that 

Similarly the bounds for the partial derivatives of the kernels ~l and Gs2 

differ by a factor of I k I from the bounds for the kernels. Thus we have the 

first three terms of I u3' - ~3' I bounded by 

cA1A2(3 + 4 + 6)e ITI~ 

~ 13cA1A2e .ITI~ 

Finally e-lI(z-t) I a~~~,t) 1= I cosk(x-t)e-v(z-t) I ~ 1. Hence from our bound 

for Ius I we have that 

This completes the proof of Lemma 3. 

We now investigate the distribution of the eigenvalues for the problem 

defined by equations (1.1)-(1.4). Our technique follows that of Titchrnarsh [49]. 

I have been unable to obtain results without restricting the size of al and a2. 

The restriction on a 1 and a2 is needed only in the proof of the next lemma. In 

a straightforward application of this technique the bounds on the sizes of the 
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jumps decrease proportionally to the number of discontinuities. Thus I do not 

see how to apply this method to eigenproblems with an arbitrary number of 

discontinuities. 

Let U(X,A) be the solution of equation (1.1) which satisfies (1.3) and (1.4) 

and has the values u = 1 and u' = h at x=O. Then A is an eigenvalue if 

u' + Hu = 0 at x = rr. Let k = ...n:.. and let Rn be the rectangle in the k plane 

with vertices ±v + i'O and ±v + iv, where v = n + ~, see Titchmarsh [49]. 

page 13. Let rn be the contour in the A plane that corresponds to the points of 

Rn which lie in the upper half plane. 

LEMMA 4: Let u be the solution of {l.1}, {l.3} and {l.4} with u = 1 and. 

u' = h at x = 0 and let CJ(A) = - u'(rr) - Hu(rr). Then CJ is ern entire function of 

A of order * ernd its roots AO < Al < ...... are real and simple. Let 

...n:.. = k = a+iT. Let a = laII + la21 + lala21 and let· 

c = max( I b I I, 1 b 21. 1 h\,I HI, !off Iq ! dt ). If a < 1 and. 

> ( 1 + 0. 840c:\ 
n max 1 '1 7 -a -a 

then 

(1.31) 

for all points A in the contour r n . 

Proof: 
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The jump conditions (1.3) and (1.4) at d 1 and d 2 ensure that 

farr (-u" + qu)v dx = farr (-1)" + qv)u dx 

for all u and v which satisfy the boundary conditions and the jump conditions. 

Thus the usual arguments for a symmetric operator will show that the eigen

values A must be real. see Titchmarsh [49]. page 8. Moreover. Titchmarsh's 

proof can be used to show that the eigenvalues are simple. [49] page 4. 

Consider the leading term eJe of eJ. We obtain eJo by letting 

b 1 = b2 = h = H = 0 and q == O. Thus 

(1.32) 

Then eJo vanishes for A=O. We show that the remaining zeros of eJo are positive. 

Assume A <0 is a root and k = i ,. As sin(iTY) = sinh(ry) and the sinh func-

tion is strictly increasing we have 

I CllSinh;(11'-2d 1) + Cl2Sinh,(11'-2d2) + ClICX2Sinhl,(11'-2d2+2dl) 

~ Clsinh( 11l') < sinh( ,11') 

11' for, positive. Note that we have used d 1• d2<~ As 

where IOi I < 1. there is a root of we in each interval n - ~ ~ k ~ n+ ~. 

To investigate the distribution of the eigenvalues we estimate eJe on rn. We 

will show that I ('.)0 I > I ('.)-('.)0 I on rn' We can then apply Rouche's theorem to 
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show that the two functions have the same number of zeros in the interior of 

r n' Since the assumptions of Lemma 4 implies that c / I k I < 11 3 it immedi

ately follows from Lemma 3 that 

~35cAIA2 8 1TIlT 

Let k = ±v + iT where v = n + *' Then 

Now let k = a+iv=a+i(n+}2) . One can show that 

Ik I A IA2 
c.>o ~ 4- [sinb.l.l7l' - acoshv1l'] 

~Ik IA IA2 8117T (1 _ a)(l _ 1 + a 8-2117T) 

8 1-0. 

IklA A ~ 1 2 e ll7T (l-a)(1-e-lT) 
8 

as n > i + a. But 1-e-11'>1I3 + 8/13 and so by combining the above two esti
-a 

mates we get 

AIA21kl II I (.)0 I ~ 8 e T IT (1 - a) (1 - 8 -IT) 

AIA21k I 8 ITln (1 _ a)(l...+ ~\ 
~ 8 3 13 7 

on the three sides of Rn. 

Now 
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Thus we apply Rouche's Theorem to conclude that both CJo and CJ have at least 

n + 1 roots in the interior of r n. 

Finally we combine our estimates for 1 CJ - CJo I and 1 CJo 1 to obtain equation 

(1.31). We have 

1"'1 ~ ICJol - ICJ -CJol 

> AIA21k 1 IT In (1 _ ) 
- 13 e ex 

for n large. This completes the proof of Lemma 4. 
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2: Integral representation of the eigenfunctions 

In this section we show that a solution of equations (1.1). (1.3) and (1.4) 

can be written as the sum of a trigonometric function and an integral. The 

importance of this representation is that it restricts the dependence of the 

eigenfunctions on the eigenvalue to the leading function and a cosine factor in 

the integrand. The trigonometric function can be found explicitly and can be 

used to approximate the asymptotic behavior of the solution. The kernel of 

the 'integral depends on the parameters CIt. llt -1. bi . h and the potential q. 

There are two cases for its definition: 2dl~d2 and 2d 1>d2. The kernel will be 

defined by a different formula in each of the regions shown in Figures 2.1 and 

2.2. 

LEMMA 5: Let u be the solution of equation {l.1}. {l.3} and {l.4} that 

satisfies the initial conditions u = 1 and u' = h at x = O. Let A = k 2 and rp = rpl 

for 0 ~ x ~ d 1. rp2 for d 1 < x < d2 and rps for d2 < x ~ rr. Then there exists a 

bounded/unction K(x,t) such that 

u(x.k2 ) = rp(x.k2 ) + fc:e K(x,t)cosktdt 

/orO~x~rr; xtfd 1.d2• SetK(x,t)=O/ort<Oort>x. 

Remark: This lemma is a generalization of the Povzner-Levitan represen

tation of the eigenfunctions of a Sturm-Liouville problem. The complexity of 

the kernel increases as the number of discontinuities in the eigenproblern 

increases. In his study of eigenproblems with one discontinuity, Hald expli

citly found the Fourier transform of the terms of u -rp containing the factor 

1/ k. We follow his technique but do not carry out the calculations to obtain. 

this explicit formula for the problem with two discontinuities. The exact form 



is not necessary for our purposes. We need only that the kernel is bounded. 

The kernel K will be continuous in the regions shown in Fig. 2.1 or Fig. 2.2. 

Proof: From Lemmas 2 and 3 we see that the function u - rp satisfies the 

conditions of the Paley-Wiener theorem. See Rudin [47] page 407. Ai:?, u and rp 

are even in k and real for real values of k, we have 

where 

2 ... 
K(x,t) = _J (u -rp)(x,k'2)cosktdk rr Jo 

and K(t) is square integrable on (O,x). We now show that the kernel is 

bounded in x and t. 

Hald has snown the result for 0 ~ < d z [28]. Therefore we consider only 

the regions where d 2 < x ~ rr. Thus rp=rp3 and U =U3' Our proof involves two 

steps. We write 

where E1 consists of all terms with the coefficient 1/ k and E2 is O( k12 ). Then 

2 ... 
K = :rr 10 (E1 + E 2)cosktdt. We show by two separate arguments that 

2 ... 2 ... 
K1 = - r E1cosktdt and K2 = - r Ezcosktdt are bounded. It then follows rr Jo rr Jo 

that K is bounded. 

First we consider E l' From the definitions of rp3 and U3 we see that 
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• 

The trigonometric identities allow us to write E 1 as 

C 
sink(x-2d2+2dl) rdt sink (x-Zs) () 

+ 4 Ie + C5J 0 Ie q.,s ds 
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rda sink (x -2d2+Zs -2d1) ( ) rZ sink (x -2s) ( )ds 
+ C12j d

1 
k q s ds + C 13) aa k q s 

rZ sink (x -2s +2d l ) ( ) rZ sink (x -Zs +2d2) () 
+ C14jaa k q s ds + C15jaa k q s ds 

rZ sink (x -2d2+2d 1-2s) () 
+ C16) as k . q s ds . 

The coefficients q are products and sums of trigonometric functions, the 

J:
ss 

parameters Cli, bi , d;., h and integrals of the form q (s)ds where 
81 

o ~l <s2 ~x. Thus the coefficients are finite. 

sink (x-b) 
The first four terms of El are of the form C k where b~O. We 

z-b 
can write this as C fa cosktdt. Recall that d2<x~rr. By inspection we see 

that b~2x. Thus -x ~ x-b ~ x. If x-b > 0 we let 

:J:-b :J: 

C fa cosktdt = C faX[o.z-blcosktdt 

where X is the characteristic function. If x -b <0 we reflect about the t-axis to 

write 

z-b b-z z 
C fa cosktdt = -c fa cosktdt = fa -X[o.b-z]cosktdt . 

By following this procedure we can explicitly find the contributions to K from 

the first four terms of E 1. It is clear that these contributions depend on the 

coefficients q and are bounded. 

Next we consider the last twelve terms of E 1. To present the idea we 

examine the sixth term. We write 

We now change the order of integration to get 

• 



.. 
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If X-Zdl~O we write 

Otherwise we split the integral and reflect about the t -axis to obtain 

. -:l:-t+2d, -z+t+2d, 
r:l: r z :I: r z 

Ia = Jo coskt-X[O.2dczlJo q(s)dsdt + fa cosktJo q(s)dsdt 

In general the last twelve terms of El have the form 

I = r Sa sink (x -Zs ~b ) (s)ds 
J SI k q 

or 

I = fs:a sink (x ;zs -b) q (s)ds . 

We can see by inspection that -x ~ x ±Zs -b ~ x. Thus the region of integra-

tion for each of the integrals is contained in the rectangle-x ~ t ~ x and 

o ~ s ~ x. We can therefore use the same procedure used for Is to obtain the 

explicit contribution to the kern,el K from these terms. These contributions 

will depend on the coefficients q and integrals of the potential q over subin

tervals of (O,rr). As q is integrable, the kernel Kl is bounded. 

Finally we consider E2. Let k >0. Note that in the equations (1.7), (1.11), 

(1.13) and (1.14) each factor k-n. is multiplied by Sink{31 ... sinkPn where Pi 

depends on x, d 1 and d 2 . Therefore each term of Us and ~s has finite limit as 

k tends to O. The value of the limit depends on the parameters Clt. bi and h. 

Thus E z is bounded as k tends to 0 and E z is continuous in x for d2~x~rr and 

we have IE21~Ml for some constant Ml if dz~x~rr and O~k~1. We see by 

inspection that E2 consists of products and sums of trigonometric functions, 

the parameters of the differential equation and integrals of q, all divided by 

C 
k 2 . Hence JE21 ~ k 2 for some constant C. We have 
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for some constant M. Therefore K2 is bounded in x and t. This completes the 

proof of Lemma 5. 
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Figure 2.1. Case 1: 2d1~ d2 
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Figure 2.2. Case 2: 2d1>d2 
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3: Uniqueness result for the positions and sizes of the discontinuities 

In this section we examine the Wronskians of two different eigenvalue 

problems which have the same eigenvalues. By studying the asymptotic 

behavior of the difference of the Wronskians we show that the Wronskians are 

equal and that aI, a2, d I and d 2 are uniquely determined. 

LEMMA 6: The constants aI, d I , a2, and d 2 aTe uniquely determined by the 

eigenvalues if 1 ~ - 11 + I bi I > 0 and 

Proof: From Lemma 5 we have that the Wronskian (.)(X) is an entire func

tion of order 1/ 2. Thus it follows from Hadamard's theorem, [48] pages 249 

and 250, that (.)(X) = (.)(0)1I'(1-~ ~ if all eigenvalues are different from zero. 

Here n(l-x~ ~ is the canonical product of the genus zero formed by the eigen

values. Let (.) and 'G) be the Wronskians for two different eigenvalue problems 

which have the same eigenvalues. Then (.)(X) = C~(X) for some C ~ 0 and 

(.)0 - C cJ';, = C~ - cJ';,) - «(.) - (.)0). From equation (1.32) follows 

(3.1) 

Let c = max(c ,c) where c and c are defined as in Lemmas 2 and 3. We multiply 

equation (3.1) by T-2sink 11' and integrate with respect to k from 3a to T. Since 



"'0 = -~3'(rr) it follows from Lemma 3 that 

I c ~ - r3@ - ('" - "'0) I ~ 48cAlA2 

for k >3c. Thus the integration yields 

AIA2 - C~Az [ L+ O( ~ ] + O( ~ = 0(.1..) 
4 4 T T T 
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where we have used d 1• d 2<rr/2. We let T tend to infinity and conclude that 

AIA2 = CA0~. 

We now show that al = a;. and a2 = a~. There are two cases requiring 

different proofs. In the first case d 1 =cl; and d2=d~. The second case is charac

terized by d1~~ or d2~~' The proof is straightforward in the first case. We 

will show that the latter assumption leads to a contradiction of the hypotheses 

of the lemma. 

First let d l = ~ and d2 = d~ and 2d 1 ~ d z. Since AIA2 = CA~A~ it follows 

from equation (3.1) that 

We multiply both sides of this equation by 1 2sink (rr-2d 1) and integrate from 

3c to T to get 

-1 

We let T tend to infinity and obtain 0.1 = ~. As a = a - a_I is strictly increas
a+a 

) 

ing for positive a and a 1• ci'i ~ 0, we find that a 1 = a~. Similarly we multiply the 
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equation by T-2 sink (rr-2d2) and integrate to conclude a2 = ~. 
f 

Now let 2d 1 = d 2 . Again we multiply both sides of equation (3.2) by 

T-2sink (rr - 2d 1) and follow the same procedure to obtain 

0.1 - ~ + 0.10.2 - a~~ = O. On the other hand. by multiplying with 

T-2sink (rr - 2d2) we get 0.2 - ~ = O. We combine the two equations to obtain 

(al-ciJ(1+0.2) = O. As 10.21 < 1 we have 0.1 = a~anda2 = a";. 

Now let d 1 ,t. d~ or d 2 ,t. d"':z, This part of the proof is more complicated than 

the first. We show that if either of the above assumptions are made then the 

problem degenerates into an eigenvalue problem Vvith one or no discontinui

ties. Note that it is possible to have d 1 = d"; or d:':a = d~. but since d 1 < d 2 both 

equations cannot be true. We assume d1rtd";. There are 30 subcases which 

must be considered. We use only the above technique of multiplying by a sine 

function times 1 2, integrating with respect to k and letting T tend to inDnity. 

It is convenient to recall that equation (3.1) can be written as 

(3.3) 

We consider the follOwing cases. 
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CASE 2 d 1 = ~ d2~ ~ 2di = d 2 2d 1 ~ ~ d 2 ~ ~-~ ~ = d 2-d 1 

CASE 3 d 1 = ~ d 2 ~ d~ 2d 1 ~ d 2 2d 1 = d~ d 2 = ~-~ d~ ~ d 2-d1 

CASE 4 d 1 = ~ d 2 ~ d~ 2d 1 ~ d 2 2d 1 = ~ d 2 ~ ~-~ d~ = d 2-d 1 
\ 

CASE 5 d 1 = ~ d 2 ~ ~ 2d 1 ~ d z 2d 1 ~~. d 2 ~ ~-cr; ~ ~ d 2-d 1 

CASE 6 d 1 = d~ d 2 ~ d~ 2d 1 ~ d 2 2d 1 = ~ d 2 = d";-~ d; ~ d 2-d 1 

CASE 7 d 1 = d~ d 2 ~ d; 2d 1 ~ d 2 2d 1 ~ d~ d 2 ~ d";-d~ d~ = d 2-d 1 

CASE 8 d 1 ~ ~ d 2 = d; 2d l = d 2 2dl~ ~ d 2 ~ ~-~ ~ ~ d 2-d 1 

CASE 9 d 1 ~ d~ d 2 = d~ 2d 1 ~ d 2 2d 1 = d~ d 2 ~ ~-d~ "" d 2 ~ d 2-d 1 

CASE 10 d l ~ ~ d 2 = d; 2d l ~ d 2 2d 1 = d; d 2 ~ d~-~ d; ~ d 2-d 1 

CASE 11 d 2 = ~ d 2 = d;-~ ~ ~ d 2-d 1 d 1 = d 2-d 1 ~ ~ d 2-d 1 

~= d;-~ d 1 ~ d~-d~ 

CASE 12 d 2 = d~ d 2 ~ d~-~ d~ ~ d 2-d 1 d 1 = d 2-d 1 cr; ~ d 2-d l 

cl; ~ d;-~ d l ~ ~-~ 

CASE 13 d 2 = d~ d 2 ~ d~-d~ d~ ~ d 2-d 1 d 1 ~ d 2-d 1 d~ ~ d 2-d l 

~~~-~ d 1 = d;-d~ 

CASE 14 d 2 = ~ d 2 ~ d;-~ d; ~ d 2-d 1 d 1 ~ d 2 -d 1 ~ ~ d 2-d 1 

d~ ~ d";-d~ d 1 ~ d~d~ 

CASE 15 d 2 = ~ d 2 = d;-d~ d; ~ d 2-d 1 d 1 = d 2-d 1 d~ ~ d 2-d 1 

cr; = d;-~ d 1 ~ d;-~ 

CASE 16 d 2 = ~ 
..... .... 

d 2 = d 2-d 1 d; ~ d 2-d 1 d 1 ~ d 2 -d 1 d'; ~ d 2-d 1 

ci, ........ 
1 = d 2-d l d 1 ~ d~-d~ 

In the next 13 cases d l ~d~ and d2~d~. 

CASE 17 d 2 ~ d~ d 2 = d";-d~ d~ ~ d 2-d 1 d 1 = d 2-d 1 d'; ~ d 2-d 1 

d~ ~ d~-d~ d 1 ~ drd~ 

CASE 18 d 2 ~ ~ d 2 = d;-cl; d; ~ d 2-d 1 d 1 ~ d 2-d 1 ~ = d 2-d 1 



~ ~ cI;-~ d 1 ~ ~-~ 

CASE 19 d 2 ~ ~ d 2 = d~-cf; ~ ~ d 2-d1 d 1 ~ d 2 -d1 d~ #- d 2-d1 

d~ ~ ~-cf; dl~· d~d~ 

CASE 20 d 2 #- cf; d 2 ~ d;-cf; cI; = d 2-d1 d 1 ~ d 2-d 1 ~ ~ d 2-d1 

d~ = d~-cf; d 1 ~ ~-d~ 

CASE 21 d 2 ~ d~ d 2 ~ d~-d~ d~ = d 2-d 1 d 1 ~ d 2-d 1 d~ ~ d 2-d 1 

~ #- cI;-~ d 1 = cI;-cf; 

CASE 22 d 2 ~ d~ d2 ~ d~-d~ d~ = d 2-d 1 d 1 ~ d 2-d 1 d~ #- d 2-d 1 

~ #- ~-d~ d 1 ~ ci:rd~ 

CASE 23 d 2 ~ cf; d 2 ~ d;-cI; cI; ~ d 2-d1 d 1 ~ d 2 -d 1 ~ #- d 2 -d 1 

d~ #- d~-d~ d 1 ~ d~d~ 

CASE 24 d 2 ~ d~ d 2 ~ d~-d~ d~ ~ d 2-d 1 d 1 = d 2-d 1 d~ #- d 2-d 1 

~ = d;-cI; d 1 ~ d;-rh 

CASE 25 d 2 ~ d~ d 2 ~ d~-d~ d~ #- d 2-d 1 d 1 = d 2-d 1 d~ #- d 2-d1 

cf; #- d~-cf; d 1 = ~-d~ 

CASE 26 d 2 #- rh d 2 ~ cI;-cI; ~ #- d 2-d 1 d 1 = d 2 -d1 cI; ~ d 2 -d1 

cf; ~ d~d~ d 1 ~ d~d~ 

CASE 27 d 2 ~ ~ d 2 ~ d~-cf; d~ ~ d 2-d 1 d 1 ~ d 2-d 1 d~ = d 2-d 1 

cf; #- d;-~ d 1 = d;-~ 

CASE 28 d 2 ~ d~ d 2 #- d~-~ d~ ~ d 2-d 1 d 1 ~ d 2-d 1 d~ = d 2-d1 

d~ = ~-d~ d 1 ~ d~-d~ 

CASE 29 d 2 ~ ~ d 2 ~ d;-~ d; ~ d 2-d 1 d 1 ~ d 2-d 1 ~ #- d 2-d1 

cl; = ~-d~ d 1 #- d~-d~ 

CASE 30 d 2 ~ d~ d 2 ~ d~-d~ d~ ~ d 2-d 1 d 1 ~ d 2-d 1 d~ = d 2-d 1 

~ = cI;-rh d 1 ~ cI;-~ 

93 

For each case we use our technique of multiplying equation (3,) by r-2 times a 
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sine function, integrating and letting T tend to infinity. The appropriate func-

tions and conclusions are given below. 

CASE MULTIPLY (3.3) BY CONCLUDE 

1 T-2s ink (rr-2d 1) al -~+al a2 = 0 
T-2s ink (rr-2d2) a2-~a~= 0 
T-2sink (rr-2cf'z) -~= 0 

2 T-2s ink (rr-2d 1) al-~-ala2 = 0 
T-2sink (rr-2d2) a2 = 0 
T-2sink (rr-2d"'z) -a~+ala2 = 0 

3 T-2sink (rr-2d 1) al-~-a~a~ = 0 
T-2sink (rr-2d2) a2-~~= 0 
T-2sink (rr-2cf'z) -a~= 0 

4 T-2sink (rr-2d 1) al-~-a~a~ = 0 
T-2sink (rr-2d2) a2 = 0 
r-2sink ( rr-2cf'z) -~+ala2 = 0 

5 T-2sink (rr-2d1) al-~ = 0 
T-2sink (rr-2d2) a2 = 0 
r-2sink (rr-2cf'0 -~= 0 

6 T-2sink (rr-2d 1) al-~ = 0 
T-2sink (rr-2d2) a2-~a~ = 0 
T-2sink (rr-2cf'0 ~= 0 

7 r-2sink (rr-2d 1) al-a~ = 0 
T-2sink (rr-2d2) a2 = 0 

.. T-2 sink (rr-2d"'z) -a~+ala2 = 0 

B T-2sink (rr-2d2) a2-~ = 0 
r-2sink (rr-2d 1) al(1+a2) = 0 
r-2sink (rr-Zcfr) -a~ = 0 

9 r-2sink (rr-2d2) a2-~ = 0 
T-2sink (rr-2d 1) al= 0 
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r-2sink (rr-2dJ -~(1+~ = 0 

10 r-2sink (rr-2d2) a2-~ = 0 
r-2sink (rr-2d 1) 0.1 = 0 
r-2sink (rr-2d~) -~= 0 .. 

11 r-2sink (rr-2d2) -~+a2-~~= 0 
r-2sink (rr-2d 1) 0.1(1-0.2) = 0 
r-2sink (rr-2d~ -a~= 0 

12 r-2sink (rr-2d2) -a~+a2-~~ = 0 
r-2sink (rr-2d 1) 0.1(1-0.2) = 0 
r-2sink (rr-2d~ -~=O 

13 r-2sink (rr-2d2) -~+a2 = 0 
r-2sink (rr-2d1) a1-~~= 0 
r-2sink (rr-2d~ ~=O 

14 r-2sink (rr-2d2) -~+a2 = 0 
r-2sink (rr-2d 1) 0.1 = 0 
r-2sink (rr-2d~ . a~= 0 

15 r-2sink (rr-2d2) -~+a2-a~a~ = 0 
r-2sink (rr-2d 1) al(1-aZ) = 0 
r-2sink (rr-2d~ '" 0.2 = 0 

16 r-2sink (rr-2d z) -~+az-~~= 0 
r-2sink (rr-2d 1) 0.1 = 0 
r-2sink (rr-2d""z) ~=O 

17 r-2sink (rr-2d2) az-~~ = 0 
r-2sink (rr:"'2d 1) 0.1(1 +az) = 0 
r-zsink (rr-2d~) a~= 0 
r-2sink (rr-2d""J ~= 0 

18 r-2sink (rr-2d z) a2-~a~ = 0 
r-2sink (rr-2d 1) 0.1 = 0 
r-2sink (rr-2d~) ~=O 
r-2sink (rr-2~) ~-a1a2 = 0 

19 r-2sink (rr-2d2) a2-~a~ = 0 
r-2sink (rr-2d 1) 0.1 = 0 
r-2sink (rr-2dz) ~=O 
r-2sink (rr-2d~ "" 0.1 = 0 



In the Cases 23-30 we have used the first two results to obtain the second two. 

When al = a2 we have the possibility of an eigenvalue problem with one discon

tinuity. Thus in Cases 1 - 7 we get ~ = al and 0.2 =~ = O. Similarly in Cases 8 -

I"'W """.sw "'-I 10 we have a2 = a2 and al =al = O. As a2 = 0.1 in Cases 11 - 16 we get a2 = al 

and al = ~ = O. In Cases 17 - 30 we have al = a2 = ~ = ~ = O. We see that in 

all of the above cases 0.1 = a~ and 0.2 = a~. Thus 0.1 = a";. 0.2 = a~, and we con-

elude that Wo = ~ and C = 1. 

To continue we must study the Wronskian in more detaiL We have 

c.>(k2) = -(u3'(rr) + HU3(rr)) . 

By using the integral equation for Us and the product identities for the tri-' 

gonometric functions we get 

(3.4) 
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A1A2 (" rd. 1 · 
+ -B-(Jo cosk(rr-2t)q(t)dt - £Xl Jo cosk(11"-2d 1+2t)q(t)dt 

where E is O(~. Note that the arguments of the cosine function in the eight 

integrands lie in the interval [ -k rr. k 11"] and that the arguments of the poten

tial q lie in the interval [0, 11"]. Thus each integral can be written as sums of 

r'2 integrals of the form hi cosktq (s (t)) dt where -m,;;t 1 <t#11". see proof of 
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Lemma 5. We can therefore combine the integrals to obtain a single term of 

the form E = foTrVl(t)cosktdi where V1(t) depends on the C1.t and the potential 

q. 

The term E consists of all terms of CJ which are O( k~ ~ for n~1. Thus 

E = -H ( us(rr) - 9's(rr) ) 

hb 
+ +[ -a2sinkdlsink (d2-d1)sink (rr-d2) 

b 
+ k2 

[ coskd1sink (d2-d1) + h ~all coskd 1sink (d2-d1) 

b . 
+ a1sinkd 1 cosk (d2-d 1) + k

1 
sinkd lsink (d2-d 1) Ocosk (rr-d 2 ) 

+ ! fo~l [ -a2b Isink (d2-d 1)sink (d 1-t )sink (rr-d2 ) 

Let k =a+ii. We can use the inequalities 



.. 

I sinkx I , I cosu I, I sinkx I ~ e /'T/z 
Ikxl 
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and Lemmas 2 and 3 to conclude I E(k 2) I ~ Ik I-ICe /'T/1T. As E is real for real k 

and even in k, it follows from the Paley-Wiener theorem that 

where V2 is a square integrable function. Thus we can write the Wronskian as 

CJ(k 2) = CJo+ Cocoskrr + C1cosk (rr-2d 1) (3.5) 

+ C2cosk (rr-2d2 ) + Cscosk (rr-2d2+2d l) + fo1T V(t )cosktdt 

Since CJo = ~ and C = 1. we have 

CJ - ~ = (Co-ea)coskrr+ C1cosk(rr-2d l)- ~cosk(rr-2d";) 

+ C2cosk (rr-2d 2) - C2cosk p(rr-2d"';} 

(3.6) 

+ C3cosk(rr-2d2+2d 1) - eseosk (rr-2d;+2d";) + fo1T( V-11)cosktdt 

To present the idea of the remainder of the proof we consider Case 23. 

Thus dl~~. dl~d;. dl~d2-dl and dl~d~-d"; and we have 0.1 = 0.2 = ~ = a; = O. 

We multiply the above equation by r-lcosk (rr-2d l), we integrate with respect 

to k from 3c to r and arrive at 

where we have used Fubini's theorem to interchange the order of integration. 

-b 1A2 
We let r tend to infinity and get Cl = O. However 0.1 = O. Thus C1 = 4 and 

we conclude that b 1 = 0, which contradicts the hypothesis of the lemma. 

Now consider Cases 1 - 7. We see that 0.1 = ~ for each of these cases and 

0.2 = a; = O. If d~ ~ d 2-d 1 we multiply equation (3.6) by r-1sink (rr-2di) , 

integrate and take the limit. We then get C"t2 = O. But a; = 0 and thus b~ = O. 

If cl; = d2-d 1, then d2 ~ d;-~ and we multiply by r-1cosk (rr-2d2) and proceed 
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in a similar manner to conclude that b2 = O. In Cases 8 - 10, exl = ~ = O. As 

dz F ~ and d 1 F d~, we cannot have both 2d 1 = d2 and 2d 1 = ~. Thus we can 

follow the previous technique to conclude either 2:' = 0 and b~ = 0 or 2:'1 = 0 and 

b 1 = O. The CaseS 11 - 26 have ~> ~ = d 2, and a; = O. Thus a:; F d 2-d 1 and we 

multiply by r-1cosk (rr-d;) to conclude b~ = 0; Finally in cases 27 - 30, we have 

exl = 0.2 = ~ = a; = O. Also d~ F d 2 and d~ F d 1. Thus multiplication by 

r-1cosk (rr-2ciJ leads to 6'; = o. 

We argue by contradiction that the eigenvalues of a problem with two 

discontinuities cannot have the same eigenvalues as a problem with one or no 

discontinuities, provided that all discontinuities occur in the interval (0, ; ~. 

Suppose a7' = 1 and b~ = 0 and thus the second problem has at most one 

discontinuity. It follows as before that AIA2 = CA~A~. We multiply equation 

(3.3) by r-2sink (rr-2dz) and use our previous method to conclude that 

CX2 - ~ = 0 if d 2 = d~ 

CX2 = 0 

In the first case we multiply by r-2sink (rr-2d 1) to conclude exl=O. We then 

follow the arguments for Cases 11 - 17 to conclude that b r=O. Similarly, if 

0.2=0 then we can show b 2=0 as before. Thus both cases lead to a contradic

tion. 
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4: An integral equation for the difierence of the potentials 

In this section we assume that two different eigenvalue problems have the 

same eigenvaues and derive an integral equation for the difference of the two 

potentials. In Section 6 we use this integral equation to prove that the poten

tials are equal. 

LEMMA 7: Let u = u (x .X) be the solution of equation (1.1) that satisfies 

the initial condition u = 1, u' = h at x = 0 and the jump conditions (1.3) and 

(1.4). Let 11: be defined similarly with a 1• a2. b 1. b2. d 1• d2. h. H and q replaced 

by al. a2. b 1. 152. al • a2. ft. !1 and q. Let a = I all + 10.21 + 10.10.21 < 1 and 

..... ..... 1 I..... I (...... ..... ~ ..... 
0.= 10.1 + lael + alCXzI <1. Setu._=u d._) andu._=u(a._). /fXJ·=A·for \ , \ \ ''3 

j ~ 0, H = !1 and q = q almost everywhere in (rr/2.1T), then Cl.t ,= ai, d.t = ~ for 

i=1.2 and 

(4.1) 

(4.2) 

...... 1 frci t '" 1 foci 2 ...... h - h = -- (q - q)(t)dt - -. (q - q)(t)dt 
2 0 2a f ci l 

(4.3) 
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(4.4) 

= 0 . 

Remark: If the two potentials are equal in the first half of the interval, then it 

follows from (4.1), (4.2), and (4.3) that b 1 = 15 1, b 2 == 152 , and h = 71.. If a2 = 1 and 

b 2 = b2 = 0, then equation (4.4) reduces to the integral equation considered by 

Hald and equations (4.2) and (4.3) reduce to the formula for the parameters 

of an eigenproblem with one discontinuity. If, in addition, al = 1 and 

b I = b~ = 0, then equation (4.4) reduces to the integral equation for the 

difference of two potentials of a regular Sturm-Liouville problem considered 

by Hochstadt and Lieberman [30] and Hald [26]. 

Proof: Since the two Sturm-Liouville problems have the same eigenvalues, 

it follows from Lemma 6 that Cli == ai and d;. = di for n = 1, 2. Moreover, since 

the eigenvalues are equal, we have that 

(uu: - uu ')' + (q - q)uu = 0 

where u and u are eigenfunctions with the same eigenvalue. By integrating the 

above equation from 0 to n, using integration by parts, the boundary condi-

tions and the jump conditions we obtain 

(4.5) 
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i-' + 10 (q -q)(t )uu(t )dt = 0 

Let k = ....n:.. = a + iT. We define the function iP(A) to be the left-hand side of 

equation (4.5). Then iP(A) = 0 for any eigenvalue A of the two problems. We will 

show that iP(A)==O. Since u and u are entire functions of A, <P is an entire func-

tion of A. Let 1/1 = !... where Co) is the Wronskian of the two eigenproblems. From 
Co) 

Lemma 4 we have I Co) I > constantvJXT e 1'Tln on the contour rn for all n 

sufficiently large. Let c be defined as in Lemma 3 and let c=max(c ,c). From 

Lemma 3 follows 

liP I ~ 2c(1 + a14e21'Tlal + a29Are21'Tla2 + 112ArA~e 21TI ;) 

~ 250cArAie 1'Tln 

since At ~ 2. Both <P and Co) are entire functions of A 'and <P(A) =0 for every zero 

of Co). Moreover, the zeros of Co) are simple. Thus 1/1 = !... is an entire function 
Co) , 

and 

on the curve r n for n sufficiently large and C constant. By the maximum 

modulus principle 1/1 is bounded. Since 1/1 becomes arbitrarily small we have 

1/1 == 0 and it follows that <P == O. 

We write iP as 

tL. 

+ 10 2 
(q - q)(t )~r(t)dt + E 

1T' 
where ~ ;: ~l for 0 ~ t ~ d 1; ~2 for d 1 < t < d 2 and ~3 for d 2 < t < ~ The term 

E is given by 



E = al(b 1 - OI)[(U1- - SOl(d1»)U 1 + SOI(dl)(UI- - SOl(d l»] 

+ a2(b 2 - 02)[(U2- - S02(d2»U2- + 9'2(d2)(U2- - S02(d2»] 

n.. 
+ 102 

(q - q')(t)[(U(t) - SO(t»U(t) + 9'(t)(U(t) - SO(t»)]dt 

Let A> 0 and k ~ 3c. It follows from Lemma 3 that 

and thus E is O( ~ fork real. 

By using the definition of 9' and trigonometric identities we get 

q,(A) = A + Bcos2kd l + Ccos2kd2 + Dcos2k (d2 - d l ) (4.6) 

+ Fcos2k(d2 - 2d l ) + J + E = 0 

where 

104 
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( 2 -2 ) (b "'b ) (2 -2 ) (2 -2 ) tL. al -al a2 2- Z al -al a2 -a2 rZ( "')() 
D = 4 + 8 J de q - q t dt 

The term I is of the form 

+ Cacos2k (t - d 1 - d z) + Cgcos2k (t - 2d2 + d1)]dt 

The coefficients q depend on the parameters al and a2' Note that C1, Cz, and 

C3 may be detJned differently on the intervals (O,d 1), (d 1,d2) and (dz, ; ~. The 

calculation of the Ci is straightforward but will not be presented here. Except 

for the factor k, the arguments of the cosine functions in the integrand of J lie 

in the interval (-rr,rr). Therefore we may follow our previous procedure from 

the proof of Lemma 5 to obtain 

r~ . 
J = J 0 V(t )cos2ktdt 

where V depends on the coefficients q and the values of the potentials q and 

q in the interval (O,rr). We will now show that A = B = C = D = F = O. Recall 

that 0 < d 1 <dz. We multiply equation (4.6) by T-1cos2kd 2 and integrate the 

resulting equation from 3c to T with respect to K. Then our estimate of E and 

Fubini's theorem give 
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(A + B + D + F) O( ~~ + C( ~ + O( ~1) 

r 1J:- 1 J T log T + Jo V(t) y J 31! cos2ktcos2kd2dkdt + O( T 1 = 0 

T 
The integrand T- I fs~ cos2kd2cos2ktdk is bounded by 1 and tends to zero as T 

tends to infinity if t ?f d2 . We let T tend to infinity and apply Lebesque's 

theorem of dominated convergence to get 

1L T 
r 2 V(t) r-11. cos2kdcos2ktdkdt ~ 0 . 

Jo 31! 

Thus C = 0 and we obtain equation (4.1). Now alC = 2D and arC= F. Hence 

C = D = F = 0 and equation (4.6) can be simplified to 

A + Bcos2kd1 + I + E = 0 

We multiply by T-1cos2kd 1 and follow the same procedure as before to con

clude B = O. This and equation (4.1) lead to (4.2). 

1J:-
We now show A = O. Recall that 1=10 . V(t)cos2ktdt.By the Riemann-

Lebesgue lemma we have I tends to zero as k tends to infinity. Since 

E = O( b, we can let k become arbitrarily large and conclude A = O. We com-

bine this result with equations (4.1) and (4.2) to arrive at (4.3). We then use 

the definition of <P to obtain the integral equation (4.4). 

This' completes the proof of Lemma 7. 
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5: The product of eigenfunctions 

We derive a formula for the product of the eigenfunctions of two different 

eigenproblems. This formula will allow us to obtain an integral equation for 

the difference of the two potentials which is independent of A. 

LEMMA B: Let u. u. u_ and u_ be defined as in Lemma 7 and assume that 

d1=d;. d2=d:z and al=a~. a2=a~. Let k=..JX. Then there exists a baundedfunc

tionK(x.t) such that 

'" 1 1 1 rZ-
uU-Z=Zcos2kx+

Z 
Jo K(x.t)cos2ktdt (5.1) 

for ~X<dl' 

( -1)2 al-a l 1.rz-+ 4 cos2k(x-2d 1)] + Z"Jo K(x.t)cos2ktdt 

'" 1 uu- -~:-
2a~a~ 

{5.3} 

A~A~ (ap - (12)A~ 
= 32 cos2kx + 16 cos2k (x - d 1) 
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(a 2 -a -2) (a 2 a -2) 
+ 1 1 2 - 2 Zk ( d +d ) 16 cos x- 2 1 

(a 2 -a -2)(a 2 -a -2)2 
+ 1 1 16 2 2 cosZk (x -Zd2+d 1) 

(a -a -1 )2(a a -1 )2 
+ 1 1 3Z 2-2 cosZk (x -Zd2 +Zd t ) 

for d 2 < x ~ 1f. 

Remark: The representation for 0 ~x <d 1 is well known, see Levitan [ ... ]. 

The representation on the second interval was derived by Hald in his study of 

the eigenvalue problems with one discontinuity. We will prove only equation 

(5.3). We use the integral representation of u from Lemma 5. 

Proof: We write the left-hand side of equation (5,3) as 

From Lemma 5 we see that this is equivalent to 

where 

and both K and Jt are bounded. 

Consider the first, third and fifth terms of E. We use the product rule for, 

cosine functions to write 

AlA2 
~3(x)coskt = -8-[cosk(x+t) + cosk(x-t) + al~cosk(x-Zdl+t) 
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for 0 ~t ~x. 

for 0 ~t ~d2' 

for 0 ~t ~dl . 

Since x >d2 , the arguments of each cosine function appearing above lies in the 

interval (-x ,x), except for the factor 2k. We can therefore use the argument 

in the proof of Lemma 5 and conclude that the sum of the first, third and fifth 

terms in E can be written as 

fol&K1 (x ,t )cos2ktdt 

where Kl will depend on the sum 'of K(x ,s) and 'k(x ,s) for 0 ~ s ~ x. As K and 

1{ are bounded, K} is bounded. 

Next consider the second term of E. Let K2(s,t) = K(x,s)1{(x,t). Then the 

term can be written as 

1 :& :& 

'2 fd.
2
h

2
Kz(S,t)(cosk(t+s) + cosk(t-s))dsdi 
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We have -2x ~ t +s ~ 2x and -2x ~t -s ~2x. We can therefore use the argu

ments of Lemma 5 to change the order of integration, change variables and 

reflect about the t-axis to write this term of E as fozK2(X ,t )cos2ktdt. By a 

similar argument we show that the fourth and sixth terms of E can be written 

in the same form. Thus E = fozK(x ,t )cos2ktdt where K is a bounded kernel. 

We complete the proof of Lemma B by using the deftnitions of C() and the 

trigonometric identities to write C()j(x), C()~(d2)' and C()r(d 1) as a linear combina

tion of cosine functions. The calculations are straightforward, but tedious and 

will be omitted here. 

.. 
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6: Completion of Proof 

We will show that the difference of the potentials satisfies a homogeneous 

Volterra integral equation on the interval [0, ¥1. We can then conclude that 

the two potentials are equal almost everywhere. The method for obtaining the 

explicit integral equation depends on the position of the discontinuities. There 

are 16 cases,each having several subcases, see Figure II.6.1. We present the· 

technique of the proof and show that it works for all d l < d 2 < ;. 

.... !1.... '" Let Q = g - g. We assume H = ,Aj = A; for j ~ 0 and g = q almost 

everywhere in [; ,11"]. Then from Lemma 6 we have at=a~, a2=aa dl=~' and 

d 2 = ~. From Lemmas 7 and B follows 

rdI rt 
Jo Q(t)[cos2kt + Jo J?(t,s)cos2ksds]dt 

rde 
+ Jd Q(t)[C1cos2kt + C2cos2k(t - d t ) 

I 

l_ 
+ C3cos2k (t - 2d t) + fa K(t ,s)cos2ksds ]dt 

n.. 
+ h 2 

Q(t)[C4cos2kt + C5cos2k(t - d t ) 
2 

t_ 
+ C12cos2k (t +2d t - 2d2) + fo K(t ,s )cos2ksds ]dt 

=0 

The coefficients q depend on at, all, a2, and a2-1 and are given in Lemma B. 

In the remainder of the proof, zero will mean zero almost everywhere. 
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We will now change variables to obtain an equation of the form 

fa 1- [F(t) + h f- K(s ,t)Q(s)ds ]cos2ktdt = 0 

which holds for all k. Since cos2kt is complete in [0, ; 1, we will then have 

F(t) + fa' K(s,t)Q(s)ds = 0 

in [0, ; l The form of F will allow us to conclude that Q = O. 

We first consider the terms with K. Since K is bounded and Q is integr-

able, Fubini's theorem allows us to change the order of integration to write 

rd. 1 rt rd.a rt 
.lr Q(t)Jo K(t,s)cos2ks ds dt +.ld. Q(t).lr K(t,s)cos2ks ds dt o 1 0 . 

t '_ . 
+ ha Q(t)fo K(t,s)cos2ks ds dt 

rN- r1"-
=.10 cos2kt[.lt K(s,t)Q(s)ds]dt. 

Next we consider the terms 

l
$a 

$1 
Q(t )cos2ks (t )dt 

and show that each can be written as a sum of integrals of the form 

rta 
.It 1 Q({3(t)cos2ktdt 

where 0 ~t 1 <t 2 ~ ;. Spe cifically we have 

rd.1 rd.1 
.10 Q(t)cos2ktdt =.10 Q(t)cos2ktdt 

11' 
for 0 < d. 1 < d 2 < ~ 

rda r d2 
.ld. Q(t)cos2ktdt =.ld. Q(t)cos2ktdt 

1 1 

(6.1) 

(6.2) 
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(6.3) 

(6.4) 

Itl = hlt1 - Ita Q( -t +2d1)cos2ktdt 

for 2d 1 > d 2 

tL. tL. fr/ Q(t)cos2ktdt =;:2 Q(t)cos2ktdt 
2 a 

(6.5) 

l- tL.- It 

faa Q(t)cos2k(t - d1)dt = JIt:_It
1

1
Q(t+d1)coS2ktdt . (6.6) 

C' 

1T' 
for O<d 1 <d2< z: 

(6.7) . 



f-fa. Q(t)cos2k(t - 2d 1)dt 
2 

. 11" 
for 0<d2< ~2d 1. 

11" 
for 0<2d#Z 

f
~2 = 1T Q( -t + 2d2 )cos2ktdt 

2li2 - 2" 

f- f-- a2 + Ii 1 

fa Q(t)cos2k (t+d 1 - d2) = ~ cos2ktdt 
a ~1 

lL. 

11" 
for O<d 1 <d2< 2' 

fa
2

Q(t)cos2k(t -d 1 -d2 )dt 
2 
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(6.8) 

(6.9) 

(6.10) 

(6.11) 
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(6.12) 

IL 

Jrt.: Q(t)cos2k (t+2d 1 - 2d2 )dt (6.13) 

}t2d1 - 2d2 = hd. d Q(t - 2d 1 + 2d2)cos2ktdt 
1- 2 

for O<dz<2d 1 

t· 

for O<2d 1::;d2 
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Let d 1, d 2 be given. Then we can choose the appropriate form of each 

integral. There are 16 cases which are shown in Figure 6.1. We can combine 

integrals to obtain a homogeneous equation of the form 

rtl r f:-- 'rt2 r f:--
Jto=o[F1(t)+Jt K(s,t)Q(s)ds]cos2ktdt + Jt

1 
[F2(t)+Jt K(s,t)Q(s)ds]cos2ktdt 

t = II.. II.. rm. 2 r2-+ ......... + Jt [Fm(t) + Ji K(s,t)Q(s)ds]cos2ktdt = 0 . 
m -1 t . 

Note that the limits of integration must be ordered to combine the integrals. 

This creates subcases in each of the 16 cases mentioned above and the ti 

depend upon the subcase. The functions 

Fi (t) = C;.O Q(t)+ L: C;.j Q (Pij (t)) 
j 

(6.14) 

where j is summed from 1 to ~. The C;.j depend on ai, al- i , a2 and a2-I and 

are piecewise constant with a finite number of discontinuities.' In particular we 

refer to Lemma 8 and see that CiO is 1 for O~t <d i. A r / 8 for d I <t <d2 and 

ArA~ /32 for d2<t~1r/ 2. We will need C;.o>O. 

Let F = Fi. for tE:[ti_1.td. Since the tcos2kx~ are complete on (O,¥-1 we 

conclude 

F(t) + fotJ((s.t)Q(S)ds = 0 (6.15) 

We now show that Fm(t) = C4 Q(t). Consider the upper limits of the 

integrals given in equations (6.1)-(6.13). excluding (6,5). They are contained in 

the set 
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Recall that the cases are chosen so that the upper limits are non-negative. For 

o < d 1 <dZ <; we have each element in the above set strictly less than 1'1/2. 

Thus the only contribution to the integral equation (6.14) in the interval 

[trn-I, ; j comes from equation (6.5). and Frn = C4 Q(t). We have 

f- . 
C4 Q(t) + it K(s,t) Q(s)ds = 0 . 

almost everywhere in [trn-I, ~ l This is a homogen~ous Volterra integral equa-

.) 1'1 tion and we can conclude Q(t = 0 for t rn - 1 5; t 5; 2" 

To complete the theorem we show that there exists an e > 0 such that 

given Q = 0 in [T, ;j, we can conclude Q = 0 in [6, ;j where 6 = max(O,T-e). 

Since Ne > ~ for some N, we will then have Q = 0 in [0,; l 

Consider the integrals in equations (6.3), (6.4) and (6.6)-(6.13). The gen

ta 
eral form is It Q(~(t )cos 2ktdt where ~(t) = t + "I or ~(t) = -t + t z + ,. By 

1 

inspection, we see that "I > O. Let e be less than the smallest "I for the various 

integrals. Assume Q = 0 in [T, %1. Equation (6.15) holds for Q5;t5;pi/ 2. In par-

ticular we have 

rf"-F(t)+J, K(s,t)Q(s)ds =0 



in [T-e, ~ j 

where F is given by (6.14). But Pij(t) ~ T for T-e~t~T. Thus 

F(t) = Cia Q(t) 

in this interval. 

This completes the proof of the theorem. 
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7: Application to the inverse problem for the mantle 

In this section we apply Theorem 1 to the inverse problem for the mantle. 

We assume that the density and S-wave velocity of the Earth are discontinuous 

at the boundary between the core and the mantle. We show that if the velocity 

of the S-waves is known in the mantle and in the crust and if the density is 

given in the lower mantle then the periods of the torsional oscillations of one 

angular order determine the density in the upper mantle uniquely. If the S

wave velocity is known only in the lower mantle then two torsional spectra 

determine the density and the S-wave velocity uniquely in the upper mantle. 

These results are stated more precisely in next two theorems. 

THEOREM 2: Let Re < RI < R2 < R be given. Assume p and (3 are positive 

and twice continuously differentiable for Re ~ r ~Rll RI ~ r ~ R2 and 

R2 ~ r ~ R and that 1/ 2 ~ p+(3+ ~ 2 at r = R 1 and R 2. Consider the eigen
p-(3-

value problem 

-(r4p(32u )" + (l +2)(l-1)r2p(32u = GJ2r4pu 

u(Re) = ti.(R) = 0 

. with the continuity requirements 

(7.1) 

(7.2) 

at r = RI and R2. Here u = dud; and u+(Ri.) = lim u(r). Let (3(r) be given in 
r r-+Rt 

the three intervals. Choose TO such that 

and let ro < RI < R2 < R. Assume that p is given for Re ~ r :::; roo Then one 

• 
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spectrum~CJ~~ uniquely determines p for TO S r sR. 

Remark: Equation (7.1) is derived from applying separation of variables to 

the equation for the torsional oscillations of a spherically symmetric non

rotating Earth where the Earth consists of an isotropic, perfect elastic 

material. See [2] and Part I, Section 1. The conditions (7.2) come from the 

requirement of continuity of displacement and stress at a spherical interface. 

In practice, R Rl 6371 km, Re Rl 3473 km and ro lies at a depth of about 1300 

krn. The discontinuity at R2 is known as the Mohorovicic discontinuity and 

occurs at a depth of approximately 33 km. The position of the discontinuity at 

RI is not as well established. We follow Model A and let RI Rl 5958 krn. We refer 

to the region above the core and below ro as the lower mantle. The upper man

tle lies between ro and RI and the crust lies between the Mohorovicic discon

timiity and the surface. Our lower mantle is contained in the region in which 

Bullen assumed that the density satisfied the Adams-Williamson equation. The 

restriction at the discontinuities corresponds to our conditions for ell and el2 

in Theorem 1. The factor 2 will insure. the hypotheses of Theorem 1 but can be 

relaxed. The proof of Theorem 2 is based on Theorem 1. It follows the proof for 

the continuous case, see Hald [26]. 

The subtlety of Theorems 2 and 3 lies in the fact that the transformed 

equation given by (7.1) and (7.2) may have fewer discontinuities than the earth 

model. This is the case if p{J and d(tp) are continuous where p and {J are 

discontinuous. I know of no earth models having this property, but we investi

gate this case for the sake of completeness. 
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Proof: Let p. {3 and P. 73 be two earth models such that p = p for 

Rc ~ r ~ ro. {3 = 73 in the mantle and in the crust and (,)~ = ~ for a fixed angu-

lar order l. We will show that equations (7.1) and (7.2) for each earth model 

can be transformed to a Sturm-Liouville problem with at most two discontinui-

ties and that the two transformed equations must have the same number of 

discontinuities. We will then show that the potentials, the boundary conditions 

and the jump conditions of the two transformed equations are equal. Note 

that if {3 and 73 are discontinuous at R 1 and R z. then the positions of the discon

tinuities are known and we will not use the full strength of Theorem 1. 

1 rR 1 rZ 1 
Let K = 1r JRa (3-1(r)dr and x = j(z) = K Jo (3(R-O d{. Note that x is 

continuous in the interval (O.rr) but not differentiable at R-R1 and R-R2. Let 

1 (x) = rZVjip and y (x) = J (x)u (r). This is the same transformation as we 

used in Section 1. Part 1. We make the substitution in equation (7.1) and obtain 

-:;" + qy = "Ay (7.2) 

y' - hy = y' + By = 0 

L ~({~ L 
Here q = v + (l +2)(l-1)w where v = 1 and w = rZ ,"A = [(2(,)2, h = 1 at 

x = 0 and B = r at x = IT. Note that x (R-ro) = ~ and that the interval 

(ro.R) is mapped to (0, ;~. Let d 1 = x(R-R2) and d2 = x(R-Rl)' Since 

rr ro < R 1 < R2 < R we see that 0 < d 1 < dz < ~ The continuity requirements 

(7.2) become 

at x = d 1 and 

y+ y
! + = J- (7.3) 

1+ d 2 · Thus in the notation of Theorem 1. Cli = - and 
1-

.. 
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bi = ~ ~ :.... ~ :' evaluated at x = d.t. We have now transformed the differential 

equation for the torsional modes of the Earth with two interior discontinuities 

to the eigenvalue problem considered in Theorem 1. 

It has been proved by Hald that the eigenvalues of an eigenproblem with 

one discontinuity cannot be the same as those for a continuous problem and 

we have shown that the eigenvalues of an eigenproblem with two discontinui-

ties cannot equal those for an eigenproblem with one or no discontinuities, see 

Lemma 6. Thus the transformed equations for the two earth models must 

have the same number of discontinuities. 

We now show that all the hypotheses, except those concerning the discon

tinuities, of Theorem 1 are satisfied. Since both p and {J are known for 

Re S T S TO, we can determine the potentials q for ~ S x S 1T and the con

stant H. Since p = p and {J = ~ in this interval we have q = gfor 1T/2 S 1T and 

H = 'It. The conditions on the jumps in p and {J give 1/ v'2 < ~ S v'2 which 

implies that a S ~ < 1. Since K = l? the two Sturm-Liouville problems have the 

same eigenvalues: Xj = '\. If the transformed equations has one or no discon

tinuities we apply the theory by Hald to conclude that q = g, see [26], [28]. If 

the transformed equation has two discontinuities. we apply Theorem 1 to 

obtain the same result. 

Since q = g and {J = ~ we have v = V. Thus both f and J satisfy satisfy 

the differential equation 

f" =vf . (7.4) 

11' with the same initial conditions at x = ~ We can therefore solve equation 

(7.4) to conclude f = J for d 2 S x S ;. In particular f + = t: and f +' = I';: at 
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Since a2 = a~ and b2 = b~ we get f _ = f- and f _' = f":....'· Note that a2 = a~ = 1 

and b 2 = b~ = 0 in the degenerate case. We now solve (7.4) for f and 1 with 

the initial conditions determined from f +, f +', a2 and b2 and to conclude 

f = 1 for d 1 ~ x ~ d 2 · Similarly, we get f = 1 for 0 ~ x ~ d 1. Finally since 

1/1 = ':if; we conclude 

This completes the proof of Theorem 2. 

We now show that if the density and velocity are given in the lower mantle 

and there are at most two discontinuities in the upper mantle, then the posi-

~ion of the discontinuities and the density and S-wave velocity are uniquely 

determined in the upper mantle and crust by two torsional spectra. 

THEOREM 3. Let Rr;. < Rl < R2 < R a:nd assume that p and (3 are positive 

Consider the eigenvalue problem {7.1} with the continuity conditions {7.2}. 

Let K=lim(n/ c.>n) where ~c.>~(l)~ is the spectrum for afixed value of l. Assume 

that P and{3 are given for Re~r~ro, where ro is determined by 

rro rr 
JR

c
{3-1(r) dr = Z-K. 

Let ro < R 1 < R 2 . Then p and {3 are uniquely determined by two torsional 

Proof: We show that the inverse transformation is uniquely determined. 

This will determine {3 for Re < r < R. Then we can use the proof of Theorem 2 

to conclude that the density is uniquely determined in the mantle. The proof 

" 

• 
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follows the continuous case, see Hald [26] and the details are omitted. 

From the inverse Sturm-Liouville theory we get qll = qll and qla = qla' We 

solve 

Then w = W. The inverse transformation is given by r = R -ell (x ) where 

ell(x)' = KP = (R-ell)vw (7.5) 

with the initial conditions ell(O)=R. Since w = ~p2lr2, w will be piecewise 

continuous. Thus we can solve equation (7.5) for ell and p. This implies that p 

and p are uniquely determined. 
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