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RESEARCH ARTICLE Open Access

Genetic architecture of cardiometabolic
risks in people living with HIV
Haoxiang Chang1†, Anshuman Sewda1,2†, Carla Marquez-Luna3, Sierra R. White1, Bridget M. Whitney4,
Jessica Williams-Nguyen4, Robin M. Nance1,5, Won Jun Lee1, Mari M. Kitahata5,6, Michael S. Saag7, Amanda Willig7,
Joseph J. Eron8, W. Christopher Mathews9, Peter W. Hunt10, Richard D. Moore11,12, Allison Webel13,
Kenneth H. Mayer14, Joseph A. Delaney4, Paul K. Crane5, Heidi M. Crane5,6, Ke Hao1† and Inga Peter1*†

Abstract

Background: Advances in antiretroviral therapies have greatly improved the survival of people living with human
immunodeficiency virus (HIV) infection (PLWH); yet, PLWH have a higher risk of cardiovascular disease than those
without HIV. While numerous genetic loci have been linked to cardiometabolic risk in the general population,
genetic predictors of the excessive risk in PLWH are largely unknown.

Methods: We screened for common and HIV-specific genetic variants associated with variation in lipid levels in
6284 PLWH (3095 European Americans [EA] and 3189 African Americans [AA]), from the Centers for AIDS Research
Network of Integrated Clinical Systems cohort. Genetic hits found exclusively in the PLWH cohort were tested for
association with other traits. We then assessed the predictive value of a series of polygenic risk scores (PRS) recapitulating
the genetic burden for lipid levels, type 2 diabetes (T2D), and myocardial infarction (MI) in EA and AA PLWH.

Results: We confirmed the impact of previously reported lipid-related susceptibility loci in PLWH. Furthermore, we
identified PLWH-specific variants in genes involved in immune cell regulation and previously linked to HIV control, body
composition, smoking, and alcohol consumption. Moreover, PLWH at the top of European-based PRS for T2D distribution
demonstrated a > 2-fold increased risk of T2D compared to the remaining 95% in EA PLWH but to a much lesser degree
in AA. Importantly, while PRS for MI was not predictive of MI risk in AA PLWH, multiethnic PRS significantly improved risk
stratification for T2D and MI.

Conclusions: Our findings suggest that genetic loci involved in the regulation of the immune system and predisposition
to risky behaviors contribute to dyslipidemia in the presence of HIV infection. Moreover, we demonstrate the utility of the
European-based and multiethnic PRS for stratification of PLWH at a high risk of cardiometabolic diseases who may benefit
from preventive therapies.

Keywords: HIV, Polygenic risk score, Lipoprotein, Triglyceride, Type 2 diabetes, Myocardial infarction, Genome-
wide association study

© The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this article are included in the article's Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the
data made available in this article, unless otherwise stated in a credit line to the data.

* Correspondence: inga.peter@mssm.edu
†Haoxiang Chang and Anshuman Sewda are first authors equally contributed
to this work.
†Ke Hao and Inga Peter are senior authors equally contributed to this work.
1Department of Genetics and Genomic Sciences, Icahn School of Medicine at
Mount Sinai, 1425 Madison Avenue, New York, NY 10029, United States of
America
Full list of author information is available at the end of the article

Chang et al. BMC Medicine          (2020) 18:288 
https://doi.org/10.1186/s12916-020-01762-z

http://crossmark.crossref.org/dialog/?doi=10.1186/s12916-020-01762-z&domain=pdf
http://orcid.org/0000-0002-5638-9137
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:inga.peter@mssm.edu


Background
The number of people living with human immunodefi-
ciency virus (HIV) infection (PLWH) worldwide has in-
creased by 34.6% (from 27.4 million to 36.9 million)
between 2000 and 2018, while acquired immune defi-
ciency syndrome (AIDS)-related deaths have declined
from 1.5 million to 940,000 annually [1]. These advances
can be primarily attributed to therapeutic advances in
antiretroviral therapy (ART) and improved access to
ART, allowing PLWH to live longer. However, accumu-
lating evidence suggests that PLWH are at a higher risk
of cardiovascular diseases (CVD) and have increased
CVD-related mortality rates than those without HIV [2–
6]. The possible causes of increased CVD risk among
PLWH include inflammation and immune activation in
response to HIV infection and viremia, adverse effects of
ART, and lifestyle risk factors (e.g., smoking, alcohol,
and illicit drug use). However, these factors do not fully
account for the increased risk of CVD in PLWH [7, 8].
Genetic variants have been identified as significant

predictors of traditional CVD risk factors including car-
diometabolic traits and diseases, such as dyslipidemia
and lipid levels (low-density lipoprotein cholesterol
(LDL), high-density lipoprotein cholesterol (HDL), and
triglycerides) [9, 10], obesity [11, 12], type 2 diabetes
mellitus (T2D) [13], and myocardial infarction (MI) [14]
in the general population. CVD and related disorders
have been demonstrated to have polygenic modes of in-
heritance, meaning that common genetic variants with
small effect sizes located in multiple genes contribute to
variability in disease or trait risk [15, 16]. Polygenic risk
scores (PRS) have been proposed to assess the cumulative
burden of multiple common susceptibility loci [17, 18]. A
recent study found that 8% of the population possesses a
genetic predisposition that confers a more than three-fold
increased risk for coronary artery disease (CAD), with the
highest PRS percentiles identifying 20 times more people
than found by familial hypercholesterolemia mutations at
a comparable or higher risk [19–21]. Moreover, in ran-
domized clinical trials, people with the highest burden of
genetic risk demonstrated the most substantial clinical
benefit from primary prevention (statin therapy) resulting
in a roughly three-fold decrease in the number needed to
treat to prevent one CAD event [22].
Despite the growing literature proposing the clinical

value of PRS in the general population [23], only a few
reports with limited sample sizes have demonstrated the
contribution of genetic variation to cardiometabolic risk
in PLWH [24–26]; even fewer have examined the utility
of PRS in PLWH [27]. Therefore, this study aimed to
identify genetic predictors of cardiometabolic traits in
PLWH and systematically assess the performance of PRS
derived using results from previously published well-
powered genome-wide association studies (GWAS) of

T2D [28], CAD [29, 30], lipids (LDL, HDL, and triglycer-
ide levels) [31], and body mass index (BMI) [32], and
genomic data from the largest ethnically diverse PLWH
cohort to date with genetic information. Given the emer-
ging interest in applying PRS to improve clinical deci-
sion making [33], this study may help shed light on the
genetic predictors of cardiometabolic risk in the pres-
ence of HIV infection and improve risk stratification to
identify individuals at a high risk of CVD.

Methods
Study participants
The Centers for AIDS Research Network of Integrated
Clinical Systems (CNICS) cohort includes a multiethnic
population of ~ 36,000 PLWH (age 18 years and older)
who have received routine clinical care at one of eight
sites in the USA [34]. CNICS has an ongoing genetics
project in which adult PLWH across racial/ethnic back-
grounds from all sites, who provided informed consent
and contributed specimens to the CNICS biospecimen
repository, are being genotyped. Study participants were
included if their genetic data were available at the time
of these analyses.

Measurement of cardiometabolic phenotypes
The CNICS data repository integrates comprehensive
clinical data from sites from outpatient and inpatient en-
counters, including information on demographic charac-
teristics, clinical and laboratory data, medications, and
historical clinical information. Lipid levels in CNICS in-
clude HDL, LDL, and triglyceride values measured as
part of routine care and, therefore, may or may not have
been obtained in the fasting state. LDL was either mea-
sured directly or calculated using the Friedewald equa-
tion [35]. BMI was calculated from heights and weights
as a continuous variable (kg/m2). PLWH were catego-
rized as ART-naïve or experienced. Among participants,
the initial CNICS visit dates ranged from 1995 to 2015.
Between the initial and the last CNICS visits, the average
follow-up period was 10.3 years (median, 9.9 years; range,
0–23 years). Most included PLWH had multiple re-
corded values for each lipid drawn as part of care, we
used mean values. We excluded individuals who were
taking lipid-lowering drugs (e.g., HMG Co-A reductase
inhibitors or statins) at baseline.
T2D diagnosis in CNICS is based on the following cri-

teria: (1) hemoglobin A1c ≥ 6.5; (2) use of a diabetes-
specific medication such as insulin; or (3) use of a
diabetes-related medication, which is frequently, but not
exclusively, used to treat diabetes (e.g., biguanides) in
the setting of also having a diabetes diagnosis [36]. We
have found high sensitivity (99%) and specificity (97%)
for this definition [36].
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CNICS uses an established state-of-the-art approach
to adjudicate [37, 38] and classify MIs based on the Uni-
versal Definition of MIs [39, 40]. Potential MIs in the
centralized CNICS data repository were identified using
a comprehensive set of MI diagnostic and procedure
codes and elevated cardiac biomarker values to optimize
the ascertainment sensitivity as previously described
[37, 38]. De-identified packets were prepared that
contained provider notes, electrocardiograms, labora-
tory reports, and results from imaging and proce-
dures, such as cardiac catheterization. Two physicians
with expertise in adjudicating cardiac events per-
formed a centralized review of the patient data,
followed by inputs from a third physician for resolv-
ing discrepancies. We included type 1 MIs, those due
to atheroembolic disease, and excluded type 2 MIs
due to a mismatch in the oxygen supply and demand,
usually observed in the setting of sepsis or cocaine or
other illicit drug-induced vasospasm [37].

Genotyping and imputation
DNA was isolated from peripheral blood mononuclear
cells or buffy coats of PLWH obtained from the CNICS
biorepository using the FlexiGene DNA kit (Qiagen,
#51206). DNA samples were then normalized and geno-
typed using Illumina’s high-density custom Multiethnic
Global Array (MEGA) series BeadChips. Genotyped vari-
ant calling was performed using GenomeStudio® Geno-
typing Module v2.0 software (Illumina®, San Diego,
California, USA) and zCall [41]. PLINK v.1.9 was used to
exclude single nucleotide polymorphisms (SNPs) with
call rates < 95%, minor allele frequency < 1%, and devi-
ation from Hardy-Weinberg equilibrium (p value <1E-5),
as well as samples with call rates < 90%, sex discrepan-
cies between genotype data and self-report, and pairwise
identity-by-descent (pi-hat > 0.9) [42].
We inferred ethnicity on genotype data using GRAF-

pop software [43], and, after excluding the human
leukocyte antigen encoding region, performed principal
components analysis (PCA) on the African American
(AA) and European American (EA) samples separately
using EIGENSOFT [44]. The estimated principal compo-
nents (PCs) were included in the regression models
while performing genome-wide association analysis in
each ancestry group. Genotype data from each ancestry
group was imputed separately using the cloud-based
Michigan Imputation Server [45] and Trans-Omics for
Precision Medicine, or TOPMed data, as the reference
panel (https://www.nhlbiwgs.org/). For further analysis,
we only kept variants that were imputed with high quality
(imputation quality score, r2 > 0.3) and passed the stand-
ard quality control procedures. The genotyped and im-
puted SNP counts are listed in Additional file 1: Table S1.

Genome-wide association analysis
Genome-wide association tests were conducted on each
SNP using either linear or logistic regression method on
imputed dosage data sets, using in-house code written in
R (version 3.5.3). The tests were performed separately in
European and African ancestry sub-cohorts, and then
pooled using random-effects meta-analysis, implemented
in the “meta” R package [46]. In addition to the first ten
PCs, analyses were adjusted for site, age, sex at birth,
and presence or absence of ART. A study reported that
genetic associations with lipid traits differed by sex [47];
therefore, we repeated these analyses in male and female
sub-cohorts separately. The results were visualized
through multi-phenotype and single-phenotype mirrored
Manhattan plots. HIV-specific genetic variants were de-
fined as loci that were significant at p < 0.01 in GWA-
SHIV and had p ≥ 0.05 in the well-powered GWASGEN,
and the 99% confidence intervals (CI) for the beta coeffi-
cients in GWASHIV and GWASGEN did not overlap.
Similar approach was used to detect ancestry-specific or
sex-specific lipid-related variants.

Gene set enrichment analysis
Enrichr was used to perform gene set enrichment ana-
lyses using the genes containing HIV-specific variants.
Enrichr database is an integrative web-based application,
currently containing 335,434 annotated gene sets from
166 gene set libraries [48, 49]. UK Biobank consists of a
large prospective cohort of more than 500,000 middle-
aged participants with detailed information on a wide
range of complex diseases, lifestyle risk factors, medical
history, and physical measurements [50]. The health out-
comes were adjudicated by experts for a range of disease
areas. The genetic data and statistical analyses were syn-
chronized across multiple phenotypes. We looked for
enrichment in the UK Biobank GWAS version 1
(https://www.ukbiobank.ac.uk/tag/gwas/) gene set library
which contains 857 terms covering 14,148 genes (122
genes per term). Adjusted p values calculated using the
false discovery rate (FDR) for correction for multiple hy-
potheses testing [51] were reported for each term. An
adjusted p < 0.05 was considered statistically significant.

Expression quantitative trait loci (eQTL) analysis
To assess the functional relevance of the newly observed
associations, we tested whether HIV-specific loci are
enriched among variants shown to regulate gene expres-
sion (eQTLs). We acquired eQTL data in primary
CD14+ human monocytes from 432 European volun-
teers at baseline and after exposure to the inflammatory
proxies interferon-γ (IFN-γ) or differing durations (2 h
or 24 h) of lipopolysaccharide (LPS), which was profiled
using the Illumina Human OmniExpress BeadChips
genotyping array [52]. SNPs that were significantly
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associated with each trait at p < E−6 in GWASGEN of
lipid profiles were excluded [31]. Furthermore, linkage
disequilibrium (LD)-based pruning was performed using
a threshold of r2 > 0.2. After variant-filtering, we used
chi-squared tests to compare the proportion of the
eQTL SNPs (eSNPs) that were associated with gene ex-
pression levels at 10% FDR, among the HIV-specific loci
to the remaining non-significant SNPs.

Polygenic risk score analysis
Traditional PRS
The PRS, representing estimated genetic determinants
for five traits (HDL, LDL, triglycerides, T2D, and type 1
MI) were computed following the thresholding-pruning
procedure [53]. We computed PRS for EA sub-cohort of
PLWH (PLWHEA) and AA sub-cohort of PLWH
(PLWHAA) separately using linear combinations of the
imputed genotype dosages [54], and regression coeffi-
cients from the respective summary association statistics
retrieved from previously published GWAS conducted
in the general population largely of European ancestry:
Global Lipids Genetics Consortium (GLGC) [31]; Gen-
etic Investigation of ANthropometric Traits (GIANT)
consortium [32]; DIAbetes Genetics Replication And
Meta-analysis (DIAGRAM) consortium [28]; Coronary
ARtery DIsease Genome wide Replication and Meta-
analysis plus the Coronary Artery Disease Genetics (CARD
IoGRAMplusC4D) consortium [29]; and UKBiobank Car-
dioMetabolic Consortium [30] (PRSGEN, Additional file 1:
Table S2). For each disease/trait, we calculated eight sets of
PRS using GWAS p value thresholds of 1E−1, 1E−2, 1E−3,
1E−4, 1E−5, 1E−6, 1E−7, and 1E−8 for including SNPs in
the PRS derivation. Prior to the calculation for each thresh-
old, the retrieved SNPs underwent LD-based pruning using
the 1000 Genomes European and African reference popula-
tions [55] as implemented in PLINK, and highly redundant
SNPs (r2 ≥ 0.5) were removed (see Additional file 1: Table
S3 for the number of SNPs used to calculate each PRS). For
each p value threshold, we tested associations between PRS
from previously reported GWAS (Additional file 1: Table
S2) and the trait of interest or disease case status and visu-
alized it using a heatmap.

Multiethnic PRS
To derive PRS that would perform well for both
PLWHEA and PLWHAA, we considered GWAS summary
statistics from two training sources: (1) the GWAS con-
ducted in the general population of European ancestry
(PRSEA) and (2) the GWAS conducted in PLWHAA

(PRSAA), using ten-fold cross-validation. Additionally,
we derived multiethnic PRS (Additional file 1: Table S3)
that combined the two training sources using a recently
published method [56]. Briefly, the multiethnic PRS is

defined as the linear combination of the two PRSs with
mixing weights α1 and α2. That is,

PRSEAþAA ¼ α1PRSEA þ α2PRSAA

We estimated mixing weights α1 and α2 using valid-
ation data by fitting a linear regression model and com-
puted adjusted R2 to account for the additional degree of
freedom. We employed a ten-fold cross-validation, using
90% of the cohort to estimate GWAS regression coeffi-
cients and the remaining 10% of the cohort to validate
predictions (using the adjusted-R2 metric with best-fit
mixture weights, α̂1 and α̂2) and reported an average ad-
justed R2 across the ten cross-validations. For each fold,
we computed regression coefficients using linear regres-
sion for quantitative traits while adjusting for 10 PCs,
sex, age, age2, presence or absence of ART, and site,
where the PCs were estimated using only PLWHAA. For
T2D and MI diagnoses that had low prevalence in our
cohort, we used stratified ten-fold cross-validation,
where each cross-validation had the same case-control
ratio. For lipid traits, for each p value threshold, we cal-
culated the R2 statistic derived from a fixed-effects meta-
analysis of marginal associations between PRSEA + AA and
the trait of interest.
Lastly, we estimated the prevalence of T2D and MI for

PLWH with the highest European-based and multiethnic
PRS. We applied multiple testing correction to account
for the number of thresholds and PRS tested using FDR
[51]. An adjusted p < 0.05 was considered statistically
significant. The number of SNPs used to calculate vari-
ous multiethnic PRS is reported in Additional file 1:
Table S3.

Results
The final cohort consisted of 6284 PLWH with 3095
PLWHEA and 3189 PLWHAA; both sub-cohorts were
predominantly male (89% and 69%, respectively), which
is consistent with the HIV epidemic in the USA
(Table 1). PLWHAA had a higher prevalence of T2D
(p < 0.0001, Table 1), but lower mean LDL (p < 0.0001)
and triglyceride (p < 0.0001) levels and higher mean
HDL levels (p < 0.0001) than PLWHEA (Table 2).
Figure 1 summarizes GWAS results for HDL, LDL,

and triglycerides in PLWHEA alongside previously re-
ported findings in populations of European ancestry
[31]. We confirmed strong associations exceeding
genome-wide statistical significance of variation in APOE
(apolipoprotein E), CETP (Cholesteryl Ester Transfer
Protein) with HDL levels; APOE and APOC1 (apolipo-
protein C1) with LDL levels, and APOA5 (apolipoprotein
A5), BUD13 (BUD13 Homolog), and TRIB1 (Tribbles
Pseudokinase 1) with triglyceride levels in PLWHEA
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(Fig. 1, top panel; Additional file 2: Table S4). Additional
associations at p < 1E−5 in both HIV and no-HIV co-
horts were detected in other previously reported lipid-
related genes, including LIPC (Lipase C) and AQP9
(Aquaporin 9) for HDL; NECTIN2 (Nectin Cell Adhe-
sion Molecule 2), CELSR2 (Cadherin EGF LAG Seven-
Pass G-Type Receptor 2), PSRC1 (Proline And Serine

Rich Coiled-Coil 1), APOC4-APOC2 (apolipoprotein C4,
C2), and TOMM40 (Translocase Of Outer Mitochon-
drial Membrane 40) for LDL; and LPL (Lipoprotein
Lipase), ZPR1 (Zinc Finger Protein 259), and SLC18A1
for triglycerides (Fig. 1, top panel; Additional file 2:
Table S4). Furthermore, we identified variants that were
significant in GWASHIV but not in GWASGEN, despite

Table 1 Baseline demographic and clinical characteristics of the study cohort

Variable PLWHEA
a

n = 3095 (%)
PLWHAA

b

n = 3189 (%)
Total
N = 6284 (%)

p valuec

Age 53.36 ± 9.70 53.18 ± 10.70 53.27 ± 10.22 0.49

Gender < 0.0001

Male 2763 (89.3) 2199 (69.0) 4962 (79.0)

Female 332 (10.7) 990 (31.0) 1322 (21.0)

Site < 0.0001

University of Alabama 744 (24.0) 882 (27.7) 1626 (25.9)

Johns Hopkins 135 (4.4) 845 (26.5) 980 (15.6)

University of Washington 623 (20.1) 261 (8.2) 884 (14.1)

University of California San Diego 640 (20.7) 187 (5.9) 827 (13.2)

Case Western Reserve University 314 (10.1) 494 (15.5) 808 (12.9)

University of North Carolina 161 (5.2) 368 (11.5) 529 (8.4)

Fenway 309 (10.0) 45 (1.4) 354 (5.6)

University of California San Francisco 169 (5.5) 107 (3.4) 276 (4.4)

Type 2 diabetesd 388 (12.5) 676 (21.2) 1064 (16.9) < 0.0001

Myocardial infarctione 53 (1.7) 64 (2.0) 117 (1.9) < 0.39

CD4 countsc 399 ± 283.5 331 ± 277.3 364 ± 282.4 < 0.0001

Presence of antiretroviral therapy 2841 (91.8) 2823 (88.5) 5664 (90.1) < 0.0001
aPLWHEA, European American sub-cohort of people living with HIV. bPLWHAA, African American sub-cohort of people living with HIV. cThe p values were calculated
using a t-test. dDuring study follow-up. eAt baseline

Table 2 Mean (standard deviation) and mean comparison p values for lipid values stratified by European American vs. African
American race in the study cohort

PLWHEA
a PLWHAA

b

Trait Subgroup n Mean (standard deviation) n Mean (standard deviation) p valuec

HDL Pooled 3095 41.35 (13.22) 3189 48.36 (15.44) < 0.0001

Female 332 47.51 (15.47) 990 52.98 (16.57) < 0.0001

Male 2763 40.61 (12.72) 2199 46.29 (14.44) < 0.0001

p valued . < 0.0001 . < 0.0001 .

LDL Pooled 2926 107.6 (31.20) 3138 100.1 (32.99) < 0.0001

Female 317 107.2 (29.46) 975 103.6 (33.93) 0.0689

Male 2609 107.6 (31.41) 2163 98.58 (32.45) < 0.0001

p valued . 0.839 . < 0.0001 .

Triglycerides Pooled 3083 206.7 (171.7) 3175 155.6 (103.3) < 0.0001

Female 331 185.2 (141.1) 986 142.3 (76.86) < 0.0001

Male 2752 209.3 (174.8) 2189 161.60 (112.8) < 0.0001

p valued . 0.0045 . < 0.0001 .
aPLWHEA, European American sub-cohort of people living with HIV. bPLWHAA, African American sub-cohort of people living with HIV. HDL, high-density
lipoproteins, LDL, low-density lipoproteins. cp values for differences in each continuous variable by race. dp values for differences in each continuous variable
by gender

Chang et al. BMC Medicine          (2020) 18:288 Page 5 of 14



having sufficient statistical power (Fig. 1, bottom panel;
Additional file 2: Table S5). Specifically, we identified 12
independent loci associated with HDL levels, including
intronic variants in TMTC2, CYP2B6, GRM7, BARX2,
IGF2BP1, CEMIP, TNFAIP8; 11 independent loci associ-
ated with LDL levels, including intronic variants in LBR,
PRKG1, RCOR1, TNIP1, PRKAG2, and seven independ-
ent loci associated with triglyceride levels, including

variants in SBK1, GPR156, and CPA6 (Additional file 3:
Table S5). In a subgroup analysis of PLWHAA, in
addition to replicating previously reported associations
of APOE, TOMM40, and NECTIN2 with LDL, HER-
PUD1/CETP with HDL, and APOA5 with triglycerides at
the genome-wide significance level, and of APOB, CELS
R2, and LDLR with LDL and LPL, LIPC, and DOCK7
with triglyceride levels at p < E−5 (Fig. 2, top panel,

Fig. 1 Multi-phenotype, mirrored Manhattan plot of genome-wide association analysis of lipid traits in Willer et al. [31] (top) and the CNICS
European American (bottom) cohorts. HDL, high-density lipoproteins, LDL, low-density lipoproteins. In the top panel, gene names are listed for
loci with association p < E−5 in both cohorts. In the bottom panel, gene names are listed for loci if p < 0.01 in the CNICS cohort and p > 0.05 in
the Willer et al. cohort and there is no overlap between 99% confidence intervals for the corresponding beta coefficients

Fig. 2 Multi-phenotype, mirrored Manhattan plot of genome-wide association analysis of lipid traits in Willer et al. [31] (top) and the CNICS
African American (bottom) cohorts. HDL, high-density lipoproteins, LDL, low-density lipoproteins. In the top panel, gene names are listed for loci
with association p < E−5 in both cohorts. In the bottom panel, gene names are listed for loci if p < 0.01 in the CNICS cohort and p > 0.05 in the
Willer et al. cohort and there is no overlap between 99% confidence intervals for the corresponding beta coefficients
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Additional file 4: Table S6), we found lipid-related loci
that were unique to PLWHAA (Fig. 2, bottom panel,
Additional file 5: Table S7). Specifically, we identified 18
independent HIV-specific loci associated with HDL, 11
with LDL, and seven with triglyceride levels in PLWHAA

at p < E−5, including intergenic variants in CPA6, previ-
ously associated with total cholesterol [57] and T2D [58]
in individuals of African ancestry, and PRKG1 linked to
body composition [59]. Lastly, we provide further evidence
suggesting sex-specific effects of lipid-related SNPs. While
none of these associations achieved genome-wide statis-
tical significance (Additional file 6: Table S8), as a group,
the corresponding genes were enriched in the visceral fat
deposits and the metabolic syndrome pathways using Bio-
Carta as implemented in Enrichr [49].

Gene set enrichment analysis
Gene set enrichment analysis was performed using genes
containing HIV-specific susceptibility loci identified
through GWASHIV of HDL (599 genes), LDL (595 genes),
and triglycerides (678 genes). We identified several signifi-
cantly enriched terms in the UK Biobank GWAS (version
1) gene set library (Fig. 3). Several top enriched terms
were associated with blood cell counts, body composition,
fat measurements and distribution, hypertension, diabetes,
mood changes, and behavioral risk factors, such as alcohol
dependence and smoking. Several of these enriched terms
were statistically significant in all three gene set enrich-
ment analyses, i.e., using HIV-specific variants from
GWASHIV of HDL, LDL, and triglycerides (Fig. 3).

Expression quantitative trait loci
Given the association between HIV-specific lipid-related
loci and immune cell counts (Fig. 3), we compared the
proportion of eSNPs among the HIV-specific SNPs with
the proportion of eSNPs among all remaining SNPs in
various CD14+ monocyte eQTL data sets (at basal con-
dition, IFN-γ-induced, LPS-induced for 2-h, and LPS-
induced for 24-h). The eSNPs were significantly
enriched among the HIV-specific SNPs for HDL and
LDL (p < 0.01) for all conditions except for basal condi-
tion for LDL SNPs (Additional file 1: Table S9 and Fig.
S1). For triglycerides, the enrichment was significant
only in the non-induced cells.

PRS analysis
We first tested the association of various lipid levels and
risk of MI or T2D in CNICS patients with PRS for cor-
responding traits and diseases derived from GWASGEN
(Additional file 1: Table S2) at eight different GWAS p
value thresholds. We detected highly significant correla-
tions between PRS for lipid traits (HDL, LDL, and tri-
glycerides) and corresponding phenotypes (e.g., PRSHDL

and plasma HDL; Fig. 4). Furthermore, as expected,
measured HDL levels were inversely correlated with PRS
for LDL, triglycerides, and CAD. Measured LDL levels
were positively associated with PRS for CAD and PRS
for MI. T2D diagnosis was associated with higher PRS
for BMI and CAD. There was a trend toward higher PRS
for LDL associated with the risk of MI diagnosis.
For each lipid trait, we compared the variance ex-

plained (adjusted R2) by the PRSGEN [31] versus

Fig. 3 Gene set enrichment analysis of HIV-specific susceptibility loci. Statistical overrepresentation of HIV-specific variants (GWASHIV p < 0.01,
GWASGEN p > 0.05, and no overlap between 99% confidence intervals of the corresponding beta coefficients) from GWASHIV of HDL, LDL, and
triglycerides was tested among numerous phenotype terms in the UK Biobank GWAS (version 1) gene set library. The y-axis is the negative log10
of the adjusted p values for each enriched gene set term. The adjusted p values were calculated using the Benjamini-Hochberg method for
correction for multiple hypotheses testing
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multiethnic PRSHIV separately in PLWHEA and
PLWHAA (Fig. 5). PRSGEN explained up to 6% of the
genetic variance in PLWHEA (Fig. 5a, x-axis), but only
up to 4% in the PLWHAA sub-cohort (Fig. 5b, x-axis).
Among the lipid traits, the largest variance explained by
PRSGEN was for HDL in PLWHEA and for LDL in
PLWHAA, whereas the smallest was for triglycerides.
Moreover, in PLWHAA, using the multiethnic PRSHIV

increased the R2 for LDL across all p value thresholds
and for HDL, especially when variants with more strin-
gent p values were included. In PLWHEA, PRSHIV per-
formed as well as PRSGEN, with the highest R2 recorded
for HDL across most of p value thresholds (Fig. 5).
Lastly, to determine the predictive value of different

PRS in the presence of HIV infection, we estimated the

risk of T2D and MI among PLWH with the highest
PRSGEN (PRSGEN for T2D and PRSGEN for MI, respect-
ively) or the highest multiethnic PRSHIV (PRSHIV for
T2D and PRSHIV for MI, respectively). For T2D,
PLWHEA at the top 5% of PRSGEN_T2D had an up to
2.14-fold increased risk depending on the GWAS p value
threshold used for derivation compared to the remaining
95% (Fig. 6, Additional file 7: Table S10). Stratification
based on PRSGEN for T2D was unable to distinguish
PLWHAA at higher risk of T2D. However, PLWHAA at
the top 5% of the multiethnic PRSHIV_T2D had an up to
2.35-fold increased risk (Additional file 7: Table S10).
Importantly, although PRSGEN for MI was not predictive
of MI risk in PLWHAA, patients at the top 5–30% of the
multiethnic PRSHIV for MI had a consistently increased

Fig. 4 Heat map of polygenic risk scores in the CNICS HIV cohort (European American and African American sub-cohorts combined). The scores
were generated using various p value cutoffs and SNP-level effect estimates from previously published genome-wide association analyses for
each trait/disease phenotype and genotyped and imputed data from the CNICS HIV cohort. The associations marked with “▲” are significant at
10% false discovery rate

Fig. 5 Scatter plot comparing mean variance explained (R2) by polygenic risk scores (PRS) for lipid traits in African American and European
American people living with HIV. y-axis: multiethnic PRS derived in HIV cohort. x-axis: PRS derived in the general population of European ancestry
[31]. a European American PLWH. b African American PLWH. HDL, high-density lipoproteins; LDL, low-density lipoproteins; Trig, triglycerides
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risk of MI at various GWAS p value thresholds (Add-
itional file 7: Table S10). Neither PRSGEN nor PRSHIV

demonstrated any predictive ability for MI risk in
PLWHEA.

Discussion
In the largest genetic study in an ethnically diverse co-
hort of PLWH to date, we confirmed the role of numer-
ous susceptibility loci previously associated with lipid
levels in the general population of European descent
[31]. In addition, we detected variants uniquely associ-
ated with lipid traits in GWASHIV and not in the large
well-powered GWASGEN of 188,577 individuals [31].
These HIV-specific loci were particularly enriched in
eQTLs in basal and induced monocytes and associated
with blood cell counts, body metabolism, mood disor-
ders, and predisposition to risky behaviors. Lastly, we
demonstrated a predictive value of PRS derived from
GWASGEN in stratifying PLWHEA to distinguish individ-
uals at a higher risk of developing T2D, while top per-
centiles of multiethnic PRS derived from GWASHIV and
not PRSGEN were associated with increased risk of T2D
or MI in PLWHAA.
Earlier targeted genotyping studies in general popula-

tion have reported the role of genome-wide significant
susceptibility loci in cardiometabolic traits in PLWH.
Specifically, GWAS-validated SNPs in the APOE, APOB,
LDLR, and other genes have been demonstrated to con-
tribute to dyslipidemia in the presence of HIV infection

[60]. Also, several SNPs and genetic regions common
across HIV-positive and HIV-negative women have been
detected in association with carotid artery intima-media
thickness, a subclinical marker of atherosclerosis [61]. In
a series of unbiased GWAS of lipid traits, we confirmed
genetic association with previously reported variants in sev-
eral apolipoprotein-coding genes (APOE, APOC1, APOC2,
APOC4, and APOA5), CETP, LPL, BUD13, AQP9, and
CELSR2, among many others (Fig. 1, Additional file 2:
Table S4).
Additionally, we detected numerous loci that were as-

sociated with lipid traits in the PLWHEA, but showed no
significant signal in the large lipid GWAS conducted in
a cohort of European ancestry [31] (Fig. 1, Additional
file 3: Table S5). A few small GWAS studies performed
in HIV-infected cohorts have identified loci associated
with carotid atherosclerosis [26], subcutaneous adipose
tissue volume [25], and fat loss [24]. In our study, many
of the lipid-related susceptibility loci identified in GWA-
SHIV were also linked by previous studies to HIV viral
load [62], susceptibility [63], control [64], smoking be-
havior [65–67], alcohol dependence [64, 65, 68–70], and
cannabis dependence [71–73], more common in PLWH
than in individuals without HIV, suggesting the contri-
bution of additional genetic variants associated with HIV
infection and adverse lifestyle behaviors to dyslipidemia
in this population. Importantly, HIV-specific lipid-
related variants were also significantly enriched among
the loci associated with blood cell counts, body

Fig. 6 Risk stratification for various polygenic risk score thresholds in European American and African American people living with HIV. OR, odds
ratio. PRS-EUR, polygenic risk score derived based on the regression coefficients estimated in a European ancestry population [31]. PRS-Multi,
multiethnic PRS. T2D, type 2 diabetes. MI, myocardial infarction. Asterisks denote ORs with false discovery rate-adjusted p < 0.05
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composition, lifestyle risk factors (alcohol dependence
and smoking), and mood disorders (Fig. 3). These find-
ings are consistent with previous reports showing a posi-
tive correlation between lymphocyte count and LDL
cholesterol levels [74]. Moreover, a shared link has been
established between CAD risk and reticulocyte indices,
where increased hemolysis associated with high reticulo-
cyte counts may lead to oxidative stress and inflamma-
tion [75]. Additionally, a longitudinal relationship of
depressive and anxiety symptoms with dyslipidemia and
abdominal obesity has been reported [76], which can be
partially explained by chronic low-grade inflammation
and smoking [77]. While HIV-associated chronic inflam-
mation has long been considered a risk factor of CVD in
PLWH [78], our findings suggest that genetic variants
may lead to further immune perturbations that contrib-
ute to cardiometabolic risk, especially in the presence of
HIV infection. Furthermore, when we screened eQTLs
in basal and induced CD14+ monocytes of healthy vol-
unteers of European ancestry [52] for the presence of
HIV-specific loci, we found significant enrichment for
lipid-associated variants, further supporting a functional
role of these loci in gene expression regulation of dyslip-
idemia in the presence of HIV infection. Validation in an
independent cohort will be needed to verify the effect of
HIV-specific loci on cardiometabolic diseases.
We conducted subgroup analyses to identify lipid-

related genetic loci that are unique to PLWHAA (Fig. 2)
or act in a sex-specific manner (Additional file 6: Table
S8). While none of the associations reached genome-
wide significance, we identified a number of genes that
have been previously associated with total cholesterol
[57] and T2D [58] in individuals of African ancestry, or
linked to body composition [59]. The sex-specific genes
as a group were enriched in the visceral fat deposit and
the metabolic pathways. Additional analyses will be re-
quired to dissect the ancestry and sex-specific effects of
these variants on metabolic traits in the presence of HIV
infection.
Given the polygenic nature of CAD and its numerous

risk factors, PRS-based assessment of the genetic burden
across multiple susceptibility loci has demonstrated
greater predictive value for disease risk and drug re-
sponse than individual variants [33]. A recent study in a
non-HIV cohort has shown that the CAD risk associated
with a high polygenic load for lipid-increasing variants
was proportional to their impact on lipid levels [79]. We
showed a significant correlation of PRS for lipid traits,
T2D, and MI generated based on the large European
GWASGEN (Additional file 1: Table S2) with respective
phenotypes in PLWH (Fig. 4). Similar to the general
population, in PLWH, we observed a positive association
of PRS for CAD and PRS for MI with LDL and a nega-
tive association with HDL. Our results suggest that lipid

PRS could point to modifiable risk factors in the pres-
ence of HIV infection, providing additional guidance for
clinical application.
However, the variance explained by PRS derived from

general (predominantly European) populations in PLWHEA

was > 30% lower than that explained in PLWHAA (~ 6% vs.
< 4%). This finding is consistent with previous studies
showing that PRS calculated using effect estimates from
European GWAS were not generalizable to the African an-
cestry population [80]. Therefore, we calculated a multieth-
nic PRS, shown to significantly improve disease prediction
accuracy in a non-European cohort [56], by applying
weights in both EA and AA GWAS in CNICS using ten-
fold cross-validation. Multiethnic PRSHIV outperformed
PRSGEN in PLWHAA, especially for HDL, but not in
PLWHEA (Fig. 5).
Of note, stratification based on PRSGEN for T2D was

able to distinguish PLWH that were at a higher risk of
T2D, with EA at the top 5% having a more than two-
fold increased risk; the impact of PRSGEN for T2D on
T2D risk in AA was less obvious (Fig. 6; Additional file
7: Table S10). A 2.75-fold increased risk of T2D in indi-
viduals of European ancestry at the top 5% of PRS for
T2D has been previously reported [21]. However, the
multiethnic PRS for T2D significantly improved T2D
risk stratification in AA, but not in EA PLWH (Fig. 6).
In addition, while PRSGEN for MI was unable to sig-

nificantly stratify MI risk in either ethnic subgroup, mul-
tiethnic PRSHIV demonstrated over a 3-fold increased
risk in PLWHAA. Multiethnic PRSHIV for MI largely un-
changed the disease risk prediction in PLWHEA. In a
much larger European ancestry non-HIV cohort, a 1
standard deviation higher PRS is associated with a 33%
increased risk of incident MI in participants without
CAD [81]. Taken together, our findings suggest that,
while the large GWAS in ethnically and racially diverse
cohorts should substantially contribute to the accuracy
of PRS prediction in PLWH, in the absence of such
studies, multiethnic scores are feasible alternatives to
identify at-risk individuals. Given that medications and
intensive lifestyle interventions prevent or postpone the
progression to T2D and MI [82, 83], ascertainment of
PLWH with high PRS may provide an opportunity to
target these interventions with increased precision.
This study has some limitations. In the general

population-based cohorts used in our analyses, HIV
infection-related information may not have been col-
lected or considered during recruitment or analysis.
Therefore, it is possible to have an unknown number of
PLWH in these cohorts. However, the rate of HIV infec-
tion in the US population is relatively low (~ 1 in 300),
and inclusion of such individuals in our analyses would
bias the results toward the null. We controlled for ART
presence or absence and made no distinctions across
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ART regimens. A thorough investigation of the effects of
ART on lipids, which is a rapidly evolving field, is a big
task and beyond the scope of the present analysis. Future
investigations may be able to refine some of the work
done in our study. We performed analyses of PRS for
BMI but did not analyze the observed BMI. Many fac-
tors are associated with BMI among PLWH, including
body morphology disorders and lifestyle, and fully ana-
lyzing these characteristics was beyond the scope of this
study. Future work should elucidate relationships with
the observed BMI. Additionally, we used the same co-
hort for multiethnic PRS derivation and validation; how-
ever, we do not expect over-fitting to be a concern given
the small number of mixing weights optimized (up to 2)
relative to the target sample size (> 3000) and given our
use of adjusted R2 as the evaluation metric, similar to
previously reported analyses [56]. In order to minimize
the possibility of an inflated R2 prediction due to shared
population stratification or familial/distant relatedness
[84], we used ancestry-adjusted regression coefficients
for PRS computation and ten-fold cross-validation. Des-
pite being the largest genetic study reported in PLWH,
the number of MI cases was too small to provide suffi-
cient statistical power to assess the clinical impact of
PRS. Nevertheless, we were able to demonstrate that the
use of multiethnic PRS in PLWH outperformed PRS de-
rived in largely European populations, especially for
PLWHAA. Going forward, meta-analyses of PLWH co-
horts should allow for validation of our findings and
help assess the clinical impact of the genetic burden on
disease risk.

Conclusions
In summary, we demonstrated that in addition to gen-
etic loci in the lipid metabolism genes previously linked
to dyslipidemia and other CAD-related risks in the gen-
eral population, there are other genetic factors that can
impact lipid levels by further enhancing inflammation
and predisposing to mood disorders and risky behaviors,
thereby contributing to dyslipidemia in the presence of
HIV infection. Comprehensive polygenic risk profiling
identified PLWH to be at a several-fold increased risk of
T2D or MI, which may help increase the precision of as-
certaining those at high risk for targeted interventions.
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