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ABSTRACT 

It is shown that for particles of spin one or larger, Lorentz 

invariance, masslessness, and conventional electromagnetic coupling 

are mutually incompatible. 
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A. Introduction 

Of the many particles that exist in nature only two, the 

neutrino and the photon, are massless. To these we must add the graviton, 

if it exists. All three are electrically neutral, and it is perhaps not 

an idle question to ask whether there is a deep reason for this. We 

shall show that for particles of spin one or larger, Lorentz invariance, 

masslessness, and "conventional," electromagnetic coupling, 1  are 

incompatible. Our argument does not apply to particles of spin zero and 

spin.  

B. Noninteracting Massless Particles 

We shall lean heavily on the generally accepted definition of 

a massless particle as one whose possible states belong to an 

irrêduôible representation of the inhomogeneous Lorentz group. In 

particular, for discrete spin s 4 0, we,teat the massless particle 

states as belonging to the irreducible representation of the class O, 

in the notation of Bargmann and Wigner, 2  whichis characterized by only 

two independent polarization states0 This characterization is to be 

contrasted with the (2s '+ 1) polarization states possible for a: 
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particle with mass. If we use a representation in terns of fields 

(we leave off the indices for the time being), then the 

free field equations of motion will be 

E.(x)= 0, 

For s 1, i.e. 2s + 1 > 2, these equations must be supplenented by 

subsidiary conditions expressing the constraint to two polarization 

states. Such constraints are generated by an additional invariance 

property caild "gauge invariance of the second kind." For example, 

for the photon field, the equation of motion is 

	

NO = 0. 	 (1) 

The subsidiary 'conditions are 

	

- A(x= Q 	 (2) 

together with thosegenerated by the requirement that all solutions 

of Eq. (1) obtained by the transfonnation 

A r  (x) 	A (x 	r 	A (x ). 

	
:(2') 

with 

0) 	
(2 

	

DA (x) 	
") 

describe the same physical state. There appears to bean asyimnetxy 

in the two requirements that are necessary. to eliminate the two 
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unwanted polarizations, but this asymmetry is only apparent, as can be 

seen by the unified treatment of this problem for the case of spin 1 1  

given in the appendix0 We asswue that such a unified treath'ent can. 

be  given for all spins s 	1, and therefore include the divergence 

condition (Eq0 2) and its generalization in our definition of 'tgauge 

invariance of thesecond kind." 3  For higher spins we can proceedin a 

manner analogous to that for spin 10 We shall use the following representations: 1  

1, Integral Spir s 

	

For integral spin a, the field is given by 	
. (

x) , 

a traceless symmetric tensor of rank s , obeying the equation 

(x) 	 () 

together with gauge invariance of. the second kind, which includes . the. 

equation 

	

t(x) T 
	

() 

and the statement of the pliysiOal  equivalence of all solutions of Eq. (3) 

generated by the transformation 

4,x  

where 

(x = + 	(x + 

and 	 (x's 	is a traceless symmetric tensor of rank a - 1 

obeying, the equations 



(x) 	0 ) 	 (7) 

and 

(8) 

2. Odd Half-Integral Spin (s + 

For odd half-integral spin (s + 2 ), the field is characterized 

by an additional spinor index A. The equation obeyed by 	 () .. 	A 
is taken to be 

' F r  

where the 1. 	are the usual Dirac matrices. 

Repeated application of the operator ' 
	

yields the 

Klein-Gordon equation 

0 	 (10) 

The analog of Eq (.L) is the equation 

UA 

A (x 	 (U) 

whichhas as its consequence the equations 

/(12) 

Equation (11) is supplemented, as before, by a statement of equivalence of 

a certain class of solutions. The main results of this section, which 



-- 
we shall use in proving our assertion, are that (a) the fields obey 

the Klein-Gordon equation with no mass term, and (b) the fields obey 

a divergence condition (Eqs. 4, 12). These are necessary, though not 

sufficient, conditions for the characterization of a massless particle. 

• C. Interaction with the Electromagnetic Field 

Invariance of the charged field under coordinate-dependent 

gauge transformations of the first kind, i.e. invariance of the equations 

of motion, when the field is transformed according to 

. 	(x) 	- (x = a x p[eXxJ (13.)  

leads in well-known fashion to an equation of motion of the form 

( 	
- e A(x 	t:., (x 

One would also expect the subsidiary conditions to be modified, but 

fortunately it turns out that it is not necessary to specify this 

modification, because the incompatibility between the equations of motion 

with interaction, and the,free-field subsidiary- conditions is sufficient 

to establish the result that massless particles of spin s 	1 

cannot be charged. To see this in detail, let us consider the interaction 

of a rnassless particle with a very weak external electromagnetic field, 
S x f. 

A (x) which we take to obey the Lorentz condition 

&r A(x)=.o. . 

The equation of motion is 

(x)  



where 

x) = -aieA(x 	 (x.) 	
(16) 

If "nopthjnal" (i.e. arising from static moments) electromagnetic 

interactkons are included, 	(x) will contain additional terms, but 

these will still have the property of being linear in the field 	(x) 

We now write the equation in integral forth: 

C 	(x) 	(x) +fdx' 	 (k') 	(17) 

where DR(x - x) is the usual retarded Green's function for a znassless.field 

and 	(x) 	is a free field to. which 	(x' reduces 

asymptotically as x0—' 	o • Although this form assumes an asymptotic 

condition which clearly cannot be satisfied when the interaction has 

infinite range (as is indeed the case for the electromagnetic field), 

there is no difficulty if we consider .a weak external field which may, 

for example, be a screened Coulomb field0 From Eq. (17) we may express 

the outgoing field in terms of the ingoing one by letting x0  - + 00 : 

	

tM 

(x) = D(x-x') 	 (18) 

In 
It is now cler that if 	(x) represents a inassless incoming particle 

and obeys the necessary condition 	 . 	 . 

L 	
= 01 

then 	 . 	 . 	. 
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) 

(x) 	 fr 	
(19) 

= - Jdx 1) (x-x') 	... (x. 

Now one can see by inspection that 

L 	(x 4 
	

(20) 

The argument can be made more general: if (x)  had vanished, 

it would be possible to construct a generalized "charge't 

which should be conserved0 Since, however, 	(x,) Is linear in the 

field 	(x. no such conservation law can possibly hold.S.  Hence 

Eq 0  (20) is generally true, and therefore it follws that 

.k. 	 0. 	(21) 

Thus the outgoing field no longer satisfies gauge invariance of the 

second kind, as defined in the last section, and therefore the' final state 

no longer has only two polarization states, which contradicts the require-

ments of Lorentz invariance, 

It is instructive to compare this with the case of a massive 

particle. For simplicity we consider the vector meson, whose equation 

of motion is 

ax A 	

m 4 = 0 S  f 
. 	

(22) 



so 

and 

f= 	--- 

in the free field case, and 

fV%V - rn 	- 	
(23) 

when electromagnetic couplings are int'oduced. The integral equation 

takes the forn 

hi 
C (x) 	4 	) ~ 	- 	 .1 \ f x ' z (xxi)(X'). (24 ) 

rnj. 

One can thus see that the condition 

- 
th6 -_ o 	 (221) 

e 	 - 

that follows from Eq. (22) is much more complicated in the presence of 

an electromagnetic field. For the outgoing field, however, it follows 

from 

Lfl 

(x= 4 	__a_ )f8 ( 2 ) 
rn  

(0 - 

m)(x-x', m) = 	 (26) 

and 

that 

4:lr& 
(#)() 

= O) 	 (27) 
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if 

indepexidently of the properties of the current. For the inassless case, 

it is impoesible to write the integral equation in a foxn analogous to 

Eq. (24) without introducing additional singularities into the Green's 

function changing the Green's function (in momentum space) from 

v /k 	to (,_ kv/k1)/kthich would satisfy the divergence 

condition autolYLatically amounts to introducing an additional massless 

scalar field into the theory. This, however, violates the requirement 

that irreducible representations of the Lorentz group be used. 

D, Physical Interpretation 

The argument that there is an incompatibility between masslessness, 

Lorentz invariance, and electromagnetic couplings, or in other words, 

between gauge invariance of the first kind and gauge invariance of the 

second kind, may be visualized physically if we consider the massless 

particle as a limiting case of a massive one. The (2s + 1) polarization 

states go over into two in a continuous manner as the mass goes to zero, 

and the mechanism is one by which (2s - 1) of the polarization states 

"decpuple" from the remaining ones, with a, factor proportional to m, 

the mass of the particle0 An initial state that is transversely polarized 

remains so for admissible interactions. Our argument•shows that the 

electromagnetic interaction is not admissiblee the final state is not 

necessarily transversely polarized0 This way of looking at ourresult 

shows whr we can make the argument for spins s 	1: 'only then is 



lo= 

2s 1 > 2 and an incompatibility possible0 

Explicit calculations support this interpretation0 Consider for 

example the formulae for the differential cross section for the scattering 

of massless vector mesons by a Coulomb field (in the limit of vanishing 

screening): We have 

s0 

do- 	
()2 

 and 	 (29) 
dfl. 

S 

si n 	 30) 

both of which are well behaved0 However for 

=(!) 
d ~ L 	4 	S r 	e/-L. 

Lrnf1 
m 

(31)6 
( 	m 

which is infinite, so that there is a contradiction somewhere0 	The 

separation of this cross section into the fol1oing terms: 

Transverse=transverse spin transitions 

- 	 (1+cose)) 	 (32) 
\d fL 'TT 

Longitudinal=longitudinal spin transitions 

rM 

(42 	- (• 	

)2. 	
(33) 

4 	s 4; os  ) 



Transverse4ongitudinal spin transitions 

(-2 ) 
	

Lm 	
ui-m)t 

 sne}) 
TL 	4 	sin4% m 

shows that the singular; behavior occurs in just those transitions leading 

to a final state that violates Lorentz invariance for a massless vector 

meson. 

In conclusion, we might point out that this argument can be used 

to forbid the coupling of inassless prticies with other interactions 

the only condition for this is that the source of the field not be 

divergenceless. An other °app1ication" of our conclusions has to do with 

the YangMills fields because two of its components are charged, they 

cannot be massless, and becaise of the charge syimnetry among the three 

components, the same muit hold for the third component, and it is not 

7  possible to identify the neutral one with the electromagnetic field, 
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APPENDIX 	 . 

We sketch a treatment of subsidiary conditions for the case of 

spin 11 in which there is no artifióial separation between the divergence.. 

condition and the remaining gause Invariance conditions, 

Spin 1: In order to describe a relativistic particle of spin 1, 

we have a choiàe of using an antisyinmetric tensor of rank 2>(D0) * D °') 
11' 

or a fOur_vector(D'(2 2/)g;  we choose to describe the particle by the 

antisymmetric tensor 	 which obeys the equation 

DTr 
	

(A - i) 

The field has six independent components. We may reduce these' to two 

by requiring that the solutions of Eq (A 1) of the foin 

w 	 (.A - 2) 

where Wis an arbitrary fbursvector obeying the wave equation 

= 
are physically indistinguishable. 

The number of independent components is thus 6 - 	2. 

We can check that the remaining two components have indeed the correct 

transformation properties under the two-dimensional rotation group 

(the Uhittletv  group).8 
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: Under the homogeneous Lorentz group the tensor belongs to the 

representation D( 1,0) + D(0,1). There are, therefore, 2D 

representations of the 3-dimensional rotation group, and so the 

tensor splits up into the foIloing representations of the 

little group 	2d(+1). . 2d 	+ 2d( 0 ), 

• • 	: The four-vector, belonging to D
1 	

1 transforms, under the 

	

(1) 	(0) i 3-dimen6ional rotations group like D 	+ D 	.e.: like 

• 	'd() 4 	 4 2d(0) under the two-imens±onal rotation group. 

Thus the difference transforms like 	+ 	which is 

just what we want. 

It is possible to construct a divergenceless field, 

A 
.'  3.1 	°r° 	"I° 

which satisfies the usual gauge-invariance conditions, so that the 

equivalence of the two methods is obvious, in this case, at least. We have 

carried out a similar treatment for a spin .2 field,: but have not searched 

for a systematic way of unifying gauge invariance of the second kind, 
in general. 

i 
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