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Changyong Guo1,2, Haibo Liu1,2, Bao-Hui Zhang1,2, Radu M. Cadaneanu1,2, Aqila M. Mayle1,2,3,

Isla P. Garraway1,2,3*

1 Department of Urology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America, 2 Jonsson

Comprehensive Cancer Center, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America, 3 Greater Los

Angeles Veterans Affairs Medical Center, Los Angeles, California, United States of America

Abstract

Background: Human prostate basal cells expressing alpha-6 integrin (CD49fHi) and/or CD44 form prostaspheres in vitro. This
functional trait is often correlated with stem/progenitor (S/P) activity, including the ability to self-renew and induce
differentiated tubules in vivo. Antigenic profiles that distinguish tubule-initiating prostate stem cells (SCs) from progenitor
cells (PCs) and mature luminal cells (LCs) with less regenerative potential are unknown.

Methodology/Principle Findings: Prostasphere assays and RT-PCR analysis was performed following FACS separation of
total benign prostate cells based upon combinations of Epcam, CD44, and/or CD49f expression. Epithelial cell fractions were
isolated, including Epcam+CD44+ and Epcam+CD44+CD49fHi basal cells that formed abundant spheres. When non-sphere-
forming Epcam+CD442 cells were fractionated based upon CD49f expression, a distinct subpopulation (Ep-
cam+CD442CD49fHi) was identified that possessed a basal profile similar to Epcam+CD44+CD49fHi sphere-forming cells
(p63+ARLoPSA2). Evaluation of tubule induction capability of fractionated cells was performed, in vivo, via a fully humanized
prostate tissue regeneration assay. Non-sphere-forming Epcam+CD442 cells induced significantly more prostate tubular
structures than Epcam+CD44+ sphere-forming cells. Further fractionation based upon CD49f co-expression identified
Epcam+CD442CD49fHi (non-sphere-forming) basal cells with significantly increased tubule induction activity compared to
Epcam+CD442CD49fLo (true) luminal cells.

Conclusions/Significance: Our data delineates antigenic profiles that functionally distinguish human prostate epithelial
subpopulations, including putative SCs that display superior tubule initiation capability and induce differentiated ductal/
acini structures, sphere-forming PCs with relatively decreased tubule initiation activity, and terminally differentiated LCs that
lack both sphere–forming and tubule-initiation activity. The results clearly demonstrate that sphere-forming ability is not
predictive of tubule-initiation activity. The subpopulations identified are of interest because they may play distinct roles as
cells of origin in the development of prostatic diseases, including cancer.
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Introduction

Human adult prostate S/Ps are characterized by surface marker

expression, as well as functional traits, including the ability to self-

renewal and differentiate into multiple lineages [1,2,3,4,5]. Markers

that have been utilized to isolate human prostate S/Ps include

Trop2, CD44, alpha2beta1-integrinHi, alpha6-integrinHi (CD49f),

and CD133 [1,2,4,6]. However, a consensus does not exist regarding

the antigenic profile of a functionally pure human prostate SC

population and how to distinguish multipotent tubule-initiating SCs

from progenitors with more limited potential. Making such a

distinction may have important implications in understanding the

etiology of prostatic disease, including benign prostatic hypertrophy

and cancer.

Sphere-forming cells isolated from dissociated primary tissues

are enriched in S/P cells in multiple organ systems [7,8,9,10]. In

the human prostate, sphere-forming capability enables the

selection of a subpopulation of epithelial cells with SC-like traits,

including self-renewal and the ability to differentiate into tubular

structures when implanted into immunocompromised mice [1,4].

Previous studies evaluating the antigenic profile of cells capable of

forming prostaspheres indicate that they reside within the basal

layer of normal prostatic ducts [1,4,11,12]. onsequently, the

combination of Trop2 and CD49fHi expression enables isolation of

the basal cell fraction (Trop2+CD49fHi), which exclusively forms
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spheres, regenerates benign tubules, and demonstrates malignant

transformation after genetic manipulations [1,4,6]. Sphere-form-

ing cells are rare in prostate subpopulations that display luminal

profiles (Trop2+CD49fLo or Trop2+CD442)[1,4].

Subdivision of the basal population and enrichment of a sphere-

forming and/or tubule-regenerating SC population has yet to be

accomplished. However, a functional delineation of the human

prostate cellular hierarchy, in addition to basal/luminal profile,

could provide more specific insight about the cells of origin for

prostate cancer and the pathways utilized by normal SCs that may

become corrupted in prostate disease. The aim of this work is to

employ in vitro sphere culture and in vivo tissue regeneration

assays to interrogate combinations of surface antigens that may

further subdivide human prostate epithelial cells and enable

functional separation of tubule-initiating SCs from progenitors

with more limited capabilities. In this report, we accomplish these

goals by incorporating a refined tissue regeneration assay, in which

human fetal prostate stroma (hFPS) is utilized to induce tubule

formation/differentiation in a fully humanized system. Our results

demonstrate that the combination of Epithelial Cell Adhesion

Molecule (Epcam), CD44, and CD49f can be used to isolate three

distinct populations: (i) a putative prostate SC population that does

not form spheres, but induces relatively robust tubule regenera-

tion, (ii) PCs possessing maximal sphere-forming ability, but

decreased tubule-initiation capability, and (iii) terminally differen-

tiated LCs that lack both sphere-forming and tissue regenerating

potential. The uncoupling of sphere-forming and tubule-initiating

functions indicates that human prostate cells with the most

potential for niche interaction and tubule development appear to

be quiescent in sphere-forming culture conditions.

Results

Epcam and CD44 enable separation of prostate cell
lineages.

Epcam/Trop1 is a pan-epithelial antigen that is also expressed

on most carcinomas, including prostate cancer [13]. In benign

human prostate, immunohistochemical (IHC) staining demon-

strates confinement of Epcam expression to epithelial cells that

compose prostate ducts and acini (Figure 1A). CD44 is a single

pass transmembrane glycoprotein involved in cell-cell matrix

adhesion, cell signaling, inflammation, and cell migration ([14]). In

the benign human prostate, CD44 marks basal cells and rare

neuroendocrine cells [15]. Based on the expression pattern of

Epcam and CD44 observed in IHC analysis of benign prostate

tubules, it appears that Epcam+CD44+ cells compose the basal

layer, while Epcam+CD442 cells appear predominantly luminal

(Figure 1A). We hypothesized that fractionating total prostate cells

based upon the combination of Epcam and CD44 expression

profiles could be a first step in determining antigenic profiles that

delineate human prostate cellular hierarchy, by enabling basal and

luminal separation. An advantage of both Epcam and CD44 is

that conjugated magnetic beads are readily available that enable

rapid fractionation of prostate cells without the need for a cell

sorter. This may increase the accessibility and feasibility of

fractionating surgical specimens. FACS analysis of total prostate

epithelial cells using fluorescent antibodies to detect Epcam and

CD44 expression demonstrate clear separation of (Epcam+)

epithelial cells from (Epcam2) stromal/blood cells (Figure 1B).

Although FACS analysis demonstrates that separation based on

CD44 expression is not as distinct as Epcam, both CD44+ and

CD442 fractions were obtained via cell sorting or magnetic beads

separation (Figure 1B).

Expression of basal- and luminal-specific genes correlates
with Epcam/CD44 status.

Prostate basal and luminal cells can be distinguished based on

marker profile, in addition to architectural organization. The

tumor protein p63 is a hallmark indicator of basal cells, which also

express relatively low levels of AR and PSA [16,17]. On the other

hand, luminal cells lack p63, but express strong levels of AR, PSA,

and cytokeratin 8 (CK8) [18,19]. In order to confirm enrichment

of basal and luminal cells after fractionation based on Epcam/

CD44 expression, quantitative RT-PCR analysis was performed

on total RNA isolated from fractionated cells with primers

targeting basal-specific and luminal-specific genes (Figure 1C).

Compared to unfractionated cells and the Epcam+CD44+ fraction,

Epcam+CD442 cells demonstrated significantly increased expres-

sion of AR, PSA, and CK8 with low relatively low expression of

the basal marker, p63. On the other hand, Epcam+CD44+ cells

demonstrated virtually undetectable AR, PSA, and CK8 and

enhanced expression of p63. These results are compatible with the

known expression profiles of basal and luminal cells and indicate

that the combination of Epcam and CD44 can effectively enrich

for these lineages [19,20].

We have previously shown that prostate S/P cells are capable of

prostasphere formation in vitro [4]. Additionally, we have found that

basal cells are exclusively capable of forming spheres [1]. Therefore

sphere-forming capability of Epcam+CD44+ and Epcam+CD44–

cell fractions was evaluated in comparison to unfractionated (U)

cells. Consistent with previous studies, virtually all of the sphere-

forming cells were confined to the basal-enriched Epcam+CD44+

cell fraction (Figure 1D), and this fraction demonstrated a 3-fold

increase in sphere-forming cells compared to unfractionated total

prostate cells. This data suggests that Epcam/CD44 fractionation

enables a functional segregation of epithelial cell populations, in

addition to basal and luminal separation.

HFPS Supports Prostate Tissue Regeneration Induced by
Adult Human Prostate Cells In Vivo.

We have previously described regeneration of human prostate

tissue following implantation of adult prostate cells (or prostaspheres)

combined with rat urogenital sinus mesenchyme (rUGSM) and

MatrigelH into Non-Obese Diabetic Severely Combined Immuno-

deficient mice that are Interluekin-2 Receptor Null (SCID-

NODIL2grNULL) [4,6]. In an effort to employ a fully humanized

prostate tissue regeneration system, rUGSM was replaced with

human prostate stromal cells cultured from dissociated fetal prostate

tissue (Figure 2). Histological evaluation of fetal prostate specimens

demonstrates abundant stroma surrounding the prostatic urethra

with developing epithelial buds/tubules (Figure 2A). FBS-supple-

mented culture media supported the outgrowth of a nearly pure

(Epcam-negative) human fetal stromal cell population (hFPS) that

could be passaged continuously for more than 10 generations

(Figure 2B and data not shown). Cryopreservation of hFPS, followed

by thaw and re-culture enabled further expansion of these cells prior

to use in vivo. When hFPS was combined with freshly isolated adult

prostate epithelial cells (Figure 2C) or sphere-forming cells (data not

shown) and MatrigelH, followed by subcutaneous implantation into

SCID-NODIL2grNULL mice, epithelial cord-like structures formed as

early as 6 weeks (data not shown). Fully differentiated ductal/acinar

structures with PSA-expressing luminal cells were prominent by

6 months (Figure 2C). Epithelial cords and/or tubular structures

failed to form if MatrigelH and hFPS were recombined in the

absence of prostate epithelial cells (Figure S1). No differences in

tubule development were noted in grafts induced by rUGSM or

hFPS (Figure S1). All structures typically identified in benign

Prostate Sphere Formation versus Tubule Initiation
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prostate surgical specimens were present in hFPS regenerated grafts,

including epithelial cords, corporal amylacea, and secretion-filled

ducts/acini. Layers of epithelial cells expressing basal markers (K5,

P63), luminal markers (K8, AR, PSA), or a combination of both were

also identified (Figure 2C). HFPS was generated from 6 different

fetal specimens and all demonstrated similar growth in culture,

FACS profile, and ability to support tubular outgrowth when

combined with adult prostate epithelial cells (data not shown).

Tubule initiating capability is prevalent in the non-
sphere-forming Epcam+CD442 luminal-enriched cell
fraction.

Although sphere formation is a common feature of S/Ps, one

critical characteristic that prostate SCs must demonstrate is the

ability to induce new tubule formation inclusive of ducts/acini

composed of both basal and luminal cells. Prostate tissue

regeneration assays have been utilized to interrogate the tubule

initiation capability of putative S/P populations in mouse and

human [4,21,22]. In these assays, total or fractionated cells

obtained from fetal or adult prostate tissues are combined with

supportive stroma (i.e., UGSM) followed by sub-renal implanta-

tion as a collagen graft or subcutaneous implantation with

MatrigelH into immunocompromised mice. Cell fractions that

possess S/P activity induce multi-layered tubular outgrowths with

secretions surrounded by stroma. We have previously shown that

sphere-forming cells as well as basal cells isolated based on co-

expression of Trop2 and high levels of CD49f have an increased

Figure 1. Variation in expression of Epcam and CD44 enables separation of distinct populations of prostate cells from dissociated
surgical specimens. A. Immunohistochemical analysis of Epcam and CD44 expression in benign human prostate tissue specimens (206
magnification). B. FACS analysis of Epcam and CD44 expression in total prostate cells isolated from dissociated benign human prostate tissue. Total
prostate cells stained with Epcam-PE and CD44-FITC conjugated antibodies prior to FACS analysis. C. Epcam+CD44+ and Epcam+CD442 fractions
display basal (P63+) and luminal (CK8+, AR+, PSA+) profiles, respectively. Quantitative RT-PCR reactions were performed in triplicate with a minimum
of 3 individual patient specimens. Black columns represent Unfractionated (U) cells, red columns represent Epcam+CD44+ cells (+/+), and blue
columns represent Epcam+CD442 cells (+/2). D. Unfractionated prostate epithelial cells isolated from benign prostate tissue specimens or cells
fractionated based on Epcam/CD44 expression were evaluated for sphere-forming capability in vitro. 16104 cells were plated in semi-solid (MatrigelH)
cultures. Approximately 14 days after seeding, prostaspheres were quantitated in all wells and the percentage of sphere-forming cells was calculated
in each fraction. All experiments were performed in triplicate, using a minimum of three individual patient samples. Statistical analysis was performed
using standard one-way ANOVA analysis; P,0.05(*), P,0.01(**).
doi:10.1371/journal.pone.0034219.g001
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ability for tubule initiation compared to luminal (Trop2+CD49fLo)

cells [1,4,6].

In order to investigate the ability of cells fractionated based

upon Epcam/CD44 expression to form tubules in vivo, human

prostate tissue regeneration was performed. Approximately 16105

unfractionated cells, Epcam+CD44+ cells, or Epcam+CD442cells

were combined with 26105 hFPS and MatrigelH, followed by

subcutaneous implantation into SCID-NODIL2grNULL mice.

Approximately twelve weeks following implantation, grafts were

harvested and analyzed for tubule induction via histological

analysis of paraffin embedded sections (Figure 3A). A table

containing the rate of engraftment of unfractionated and

fractionated cells is shown in Figure S2. Tubular structures were

identified in grafts that developed from unfractionated cells and in

Epcam+CD44+ recombinant grafts. Surprisingly, the Ep-

cam+CD442 luminal enriched/non-sphere-forming fractions

yielded the largest number of tubular structures (Figure 3A and

3C). All grafts demonstrated a range of epithelial cord-like

structures and more fully developed tubules with secretion-filled

lumens (Figure 3A). Immunohistochemical staining confirmed the

presence of basal (p63+) and luminal (CK8+) cells in regenerated

tubules (Figure 3B). Although FACS and cytospin examination of

fractionated cells confirmed CD442 status (data not shown),

CD44+ cord-like structures and tubules containing a distinct

CD44+ basal layer were identified in mature grafts induced by

Epcam+CD442 cell fractions (Figure 3B). This data suggests that

Epcam+CD442 cells may be precursors for Epcam+CD44+ cells

found in regenerated tubular structures.

A functional role for a non-sphere-forming/luminal-enriched

fraction appeared to contradict prior published results, in which

fractionation of luminal cells based on Trop2/CD49f expression

displayed no functional capabilities in vitro and in vivo[6]. To

Figure 2. Isolation of human fetal prostate stroma (hFPS) for use in prostate tissue regeneration assays. A. Gross specimen containing
17-week fetal bladder (FB), prostate (FP), and urethra (U) en block with adjacent panel showing transverse hematoxylin and eosin (H&E) stained
histological section. Developing prostate glands budding from the prostatic urethra are surrounded by abundant stroma. B. HFPS cells are cultured in
DMEM supplemented with FBS. FACS analysis of cultured hFPS cells using antibodies that target Epcam demonstrates lack of (Epcam+) epithelial cell
outgrowth. C. Regenerated graft induced by hFPS after recombination with freshly isolated adult human prostate cells and MatrigelH, followed by
subcutaneous injection. H&E staining of paraffin-embedded graft demonstrates tubules with a distinct basal layer, containing cells that express tumor
protein 63 (P63+) but lack luminal cell marker expression, including Androgen Receptor (AR), cytokeratin 8 (CK8), and Prostate Specific Antigen (PSA).
A luminal layer is identified in the majority of outgrowths and contains cells that are P632, AR+, CK8+, and PSA+. The bottom panel displays the
different types of outgrowths identified in recombinant grafts, including epithelial cords (EC), corpora amylacea (CA), and epithelial cords/buds (EC).
doi:10.1371/journal.pone.0034219.g002

Prostate Sphere Formation versus Tubule Initiation
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investigate this discrepancy, FACS analysis comparing Epcam and

Trop2 expression was performed to evaluate co-expression of

these surface markers. Indeed, there appeared to be almost

complete overlap in expression of Trop2 and Epcam, with

virtually all Trop2+ cells co-expressing Epcam (Figure S3A). On

the contrary, high expression CD49f did not appear to be confined

to the CD44+ population, since a fraction of CD442 cells were

CD49fHi (Figure S3B). This result suggests that Epcam+CD442

prostate cells may be further subdivided based upon CD49f

expression and may explain differential functional capabilities of

basal/luminal cell fractions isolated based on Epcam/CD44

profile compared to Trop2/CD49f.

CD49f enables functional delineation of putative SCs,
PCs, and LCs.

As described above, previous studies indicated that

Trop2+CD49fHi basal cells display both sphere forming and

tubule regenerating capabilities, compared to the Trop2+CD49fLo

luminal cells, which lack these functional capabilities [4,6]. Given

the surprising result that luminal-enriched Epcam+CD442 cells

display predominant tubule-initiation activity, we investigated

whether or not CD49fHi cells present within this subpopulation

may be responsible for tubule initiation in vivo. FACS analysis was

performed on total prostate cells after incubation with antibodies

targeting Epcam, CD44, and CD49f. Both CD49fHi and CD49fLo

subpopulations were identified in Epcam+CD44+ and Ep-

Figure 3. Tubule formation induced by unfractionated and fractionated (Epcam+CD44+ and Epcam+CD44–) prostate cells in human
prostate tissue regeneration assays. A. H&E stained sections of paraffin-embedded 12-week grafts harvested from SCID-NODIL2crNULL mice.
Unfractionated (U) total prostate cells or Epcam+CD44+ and Epcam+CD442 cell fractions combined with human fetal prostate stromal cells and
MatrigelH were implanted subcutaneously into male SCID-NODIL2crNULL mice. Testosterone was supplemented via pellets inserted subcutaneously. B.
Example of secretion-filled ducts that display basal (p63 positive) and luminal (CK8 positive) cells induced by Epcam+CD442 prostate cell fractions.
Tubules and epithelial developed from cords containing CD44+ cells also developed from the CD44– cell fraction. C. Comparison of the number of
tubular structures identified in unfractionated, Epcam+CD44+, and Epcam+CD442 grafts. After paraffin embedding, sections were made throughout
the grafts. The two representative sections containing the highest number of tubules were identified and all tubules present in the low power (4X
magnification) field were quantitated. The average numbers of tubules from total grafts obtained from unfractionated or fractionated cells are
complied for the graph. Statistical analysis was performed using standard one-way ANOVA analysis; P, 0.001 (***).
doi:10.1371/journal.pone.0034219.g003
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cam+CD442 fractions (Figure 4A and S4). Cell sorting enabled

isolation of prostate cells based upon Epcam/CD44/CD49 status.

Prostasphere culture of Epcam+CD44+CD49fHi cells demonstrat-

ed enrichment of sphere-forming capability (10-fold over unfrac-

tionated cells and 3-fold over Epcam+CD44+ cells) with 40–50% of

cells within this fraction capable of forming spheres (Figure 4B).

On the other hand, less than 1% of Epcam+CD44+CD49fLo or

Epcam+CD442CD49fHi cells were able to form spheres (Figure 4B

and data not shown, respectively).

In order to evaluate tubule initiation activity of Epcam+CD442

non-sphere-forming cells subdivided by CD49f, in vivo tissue

regeneration with hFPS was employed (Figure 4C). Recombinant

grafts were retrieved from Epcam+CD442CD49fHi cell fractions

containing significantly more tubules than those induced by

Epcam+CD442CD49fLo cells (Figure 4C). FACS analysis of

dissociated grafts induced by Epcam+CD442CD49fHi cells

demonstrated a similar composition of cells (based on Epcam/

CD44/CD49f expression) as the original prostate surgical

specimen (Figure 4E), indicating that this minority population

could induce an intact prostate tissue profile.

As previously described, bright CD49f expression is associated

with a basal cell profile, therefore, Epcam+CD442CD49fHi and

Epcam+CD442CD49fLo cell fractions were evaluated by RT-PCR

analysis to determine if the original Epcam+CD442 fraction

contained a mix of luminal and basal cells [4,6,11]. RNA expression

of p63 in association with a lack of AR and PSA indicated that

Epcam+CD442CD49fHi cells possessed a basal profile, while

Epcam+CD442CD49fLo cells exhibited a luminal profile, demon-

strated by significant AR and PSA expression (Figure S5). This

contrasting expression profile of Epcam+CD442CD49fHi cells

compared to RT-PCR analysis of Epcam+CD442 cells (in which

fractionation with CD49f was not performed), indicates that the

Figure 4. Identification and functional evaluation of CD49fHi/Lo cells present in Epcam+CD44+ and Epcam+CD442 fractions. A. FACS
analysis of Epcam+CD44+ and Epcam+CD442for CD49fHi expression, with functionally distinct populations annotated. B. Sorting of Epcam+CD44+

based on CD49f expression followed by sphere analysis in vitro (***P,0.001). Unfractionated (U), Epcam+CD44+ (+/+), Epcam+CD4+iCD49fHi (+/+/H),
Epcam+CD44+CD49fLo (+/+/L). C. Sorting of Epcam+CD442 based on CD49f expression followed by quantification of tubule initiation in vivo. After
paraffin embedding, sections were made throughout the grafts. The two representative sections containing the highest number of tubules (46
magnification) were identified and quantitated. The average number of tubules from all the grafts retrieved is represented in the bar graph
(**P,0.01). Epcam+CD442CD49fHi (+/2/H), Epcam+CD442CD49fLo (+/2/L). D. FACS analysis of total cells obtained from three grafts induced by the
Epcam+CD442CD49fHi cell fraction. Grafts were mechanically and enzymatically digested to retrieve single cells that were pooled for FACS analysis.
Although only highly enriched Epcam+CD442CD49fHi cell fractions were combined with hFPS and Matrigel prior to injection, all of the cell types
identified in the original prostate surgical specimens were found in regenerated tissue grafts.
doi:10.1371/journal.pone.0034219.g004
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luminal expression profile observed with Epcam+CD442 cell

fractions was likely due to a masking effect by true luminal cells

(Epcam+CD442CD49fLo) that co-segregated with the non-sphere-

forming basal subpopulation (Epcam+CD442CD49fHi). Taken

together, these results suggest that the human prostate basal cell

population can be divided into populations with enriched sphere-

forming activity (Epcam+CD44+CD49fHi) or tubule-initiating

activity (Epcam+CD442CD49fHi).

Discussion

Identifying functionally distinct populations of prostate epithe-

lial cells could provide new insights about the cells of origin for

human prostate cancer, by determining which cells within the

hierarchy are susceptible to malignant transformation. Addition-

ally, the mechanisms employed by normal prostate SCs that

enable interaction with the niche and initiation of tubule

development could lead to therapeutic approaches that interfere

with similar pathways exploited by cancer cells or contributing to

the development of benign prostatic hypertrophy (BPH). revious

studies investigating human prostate S/P cells isolated from benign

tissues have indicated that both general epithelial and basal

antigens (Trop2, CD44, alpha2beta1-integrinHi, alpha6-integrinHi

(CD49f)) are expressed [1,2,4]. In these studies, the ability to form

self-renewing prostaspheres coincides with the potential to induce

fully differentiated prostate tubules in vivo. In the current study,

subpopulations of prostate basal cells with robust sphere-forming

capability are distinguished from those with optimal tubule

initiating capability based on specific antigenic profiles. Prostate

epithelial cells with an increased potential to induce tubules

inclusive of basal and luminal cell layers (putative SCs) are

incapable of forming prostaspheres in vitro. On the other hand,

highly proliferative sphere-forming cells (putative PCs) appear to

have more limited potential for tubule initiation. This study is the

first to functionally separate prostate epithelial cells based upon

sphere-forming versus tubule initiating capabilities.

Combinations of antigens that subdivide the basal population

and functionally distinguish prostate SCs from PCs have not been

reported, with the exception of CD133, a rare surface marker

found on less than 1% of basal cells [2]. A recent report regarding

a2b1
HiCD133+ cells indicated that these cells were incapable of

forming spheres, but readily formed proliferative monolayer

cultures [23]. Additional studies have demonstrated acinar-like

outgrowths induced by a2b1
HiCD133+ cells, in vivo [2]. This

combined data suggests that CD133+ cells are non-sphere-

forming, but possess SC traits of self-renewal and differentiation

capability, similar to the Epcam+CD442CD49fHi population

reported here. In previous studies, we have also reported that

CD133 expression did not enrich for sphere-forming cells [4].

However, given the surprising new finding of increased tubule

formation induced by the non sphere-forming, Ep-

cam+CD442CD49fHi cell fraction, analyzing concomitant expres-

sion of CD133 (and other putative SC markers) within this subset,

including further fractionation and functional analysis, should be

considered.

In previous studies of prostate S/P cells, Trop2, which has an

almost identical pattern of expression as Epcam (Trop1) within

prostate epithelial cells, was utilized to separate prostate epithelial

from stromal and blood cells [1]. One advantage of using Epcam,

as an alternative to Trop2, is stable and/or highly expressed

Epcam is detected in most adenocarcinomas, as well as metastases,

malignant effusions, and cancer stem cells [24]. Confirming the

presence of Epcam within the human prostate S/P population

may lead to investigations of therapeutic agents targeting Epcam

and evaluation of specific effects on prostate SC and PC activity

[24,25].

In the current study, CD44 expression appears to determine

whether Epcam+ prostate epithelial cells will form robust spheres

(CD44+) or remain quiescent in vitro, but induce robust tubule

formation in vivo (CD442). In the neural system, it is a well-

recognized limitation that quiescent neural SCs cannot be isolated

using the neurosphere assay [26]. Additionally, it is emphasized

that sphere-formation and self-renewal is a trait possessed by both

SCs and PCs. In the current study, the antigenic profile of cells

with the highest prostate sphere-forming capability is Ep-

cam+CD442CD49fHi. However, sphere-forming cells marked by

Epcam+CD44+ expression can form tubules in vivo, but at a

statistically significant lower rate than non-sphere-forming Ep-

cam+CD442 cells. Since previous in vivo studies clearly demon-

strate that CD49fHi is required for prostate tubule formation, we

hypothesized that the Epcam+CD442CD49fHi antigenic profile

designates non-sphere-forming cells capable of tubule regeneration

in vivo. Indeed, this antigenic profile was confirmed in our study to

represent a subpopulation of prostate basal cells with relatively

robust tubule-initiating capability (compared to Ep-

cam+CD442CD49fHi luminal cells) [6]. In contrast to our sphere

results, sub-fractionation of Epcam+CD442 cells with increased

tubule initiation capability did not appear to further enrich for this

activity. One factor that may have contributed to this observation

is the fact that FACS sorting with three markers requires longer

sort time, which could impact the long-term viability of these cells

that is required for in vivo grafting. Despite enrichment with the

more refined cell fraction, our results clearly demonstrate an

advantage in tubule formation capability compared to luminal

Epcam+CD442CD49fLo cells. Consequently, three distinct popu-

lations of prostate epithelial cells are revealed, including

subdivided basal (Epcam+CD44+CD49fHi and Ep-

cam+CD442CD49fHi) and luminal (Epcam+CD442CD49fLo)

fractions.

Bona fide SCs should be capable of residing in the quiescent

state and become activated to differentiate and form new tubules

as needed. With asymmetric cell division, progenitor daughter cells

develop with less potential to induce new tubules. In the current

study, although some sphere-forming cells retain the potential to

induce new tubules, the proportion is far less than the in vitro

quiescent Epcam+CD442population. This result implies that

prostaspheres contain both SCs and rapidly proliferating progen-

itors (possible transit-amplifying cells), resulting in an overall

decreased potential to induce tubules compared to non-sphere-

forming SCs. Hence, Epcam+CD44HiCD49fHi cells may be

further along the developmental pathway and suggests a hierarchy

of prostate epithelial cells.

Although the sphere-forming assays indicate that our putative

SCs are quiescent, further studies are needed to evaluate this trait.

It has been suggested that sphere-formation is an indicator of self-

renewal, yet we have found that the non-sphere-forming

(Epcam+CD442CD49fHi) cells are capable of inducing differen-

tiated tubules and regenerated grafts that include the full spectrum

of prostate cells found in original surgical specimens, including

putative SCs. This data indicates that in addition to differentiation

and niche interaction capabilities, the putative SCs are self-

renewing (despite the inability to form spheres).

Taken together, our results suggest that Epcam+C-

D44LoCD49fHi cells are non-sphere-forming SCs that may be

activated to form tubules when exposed to inductive stroma cells in

vivo. Lack of CD44 expression distinguishes non-sphere-forming

SCs from the more proliferative state of the CD44+ population,

which may contain an increased proportion of PCs with limited
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induction potential, relative to tubule-initiating SCs. Support for

CD44 as a proliferative marker exists. The majority of primary

prostate epithelial cells (transient amplifying cells) that grow as a

monolayer, in vitro, express CD44 [27,28,29]. Examination of

human prostate cancer cell lines and xenografts indicate that the

CD44+ population is more proliferative, clonogenic, tumorigenic,

and metastatic than CD442 cells[30,31,32].

Future studies that may yield more insight into prostate SC/PC

characteristics and function include gene expression array analysis

comparing Epcam+CD442CD49fHi and Epcam+CD44+CD49fHi

cells. Such efforts could reveal novel antigens and genetic

pathways that are unique to each subpopulation. Additionally,

genetic manipulation of benign prostate cell fractions based on

Epcam/CD44/CD49f expression, followed by in vivo regenera-

tion may suggest mechanisms of tumorigenesis or benign

proliferation (BPH) at different developmental stages.

Methods

Tissue Digestion and Cell Dissociation.
Human prostate tissue was obtained via a research protocol that

was approved by the Office for the Protection of Research

Subjects at UCLA and the Greater Los Angeles VA Medical

Center. Informed written consent was obtained on all participants

where identifying information was included. In cases where no

identifying information was included and tissue was acquired in an

anonymous fashion at UCLA, an approved Institutional Review

Board protocol with written consent was not required by Office for

the Protection of Research Subjects. Adjacent tissue specimens

were snap frozen in liquid nitrogen or fixed in formalin and

paraffin-embedded for histological analysis. Frozen sections were

immediately examined by a genitourinary pathologist and cancer

foci encircled. Fresh tissue specimens were matched with the

frozen section slides to enable macrodissection of benign tissue

away from tumor nodules. Typically, 2–10 grams of fresh tissue

was allocated for research studies. Tissue specimens were then

mechanically and enzymatically digested as previously described

[16]. Dissociated tissue containing single cells and organoids was

sequentially filtered through 100-mm and 40-mm cell strainer, and

then passed repeatedly through a 23-gauge needle, in order to

generate a single cell suspension. Cells were counted with a

hemocytometer and resuspended in RPMI supplemented with

10% FBS prior to cell sorting or plating in prostasphere cultures.

Approximately 1–2 million viable cells per gram of fresh tissue

were routinely obtained.

Magnetic activated cell sorting(MACS).
Miltenyi auto MACSH was used to separate Epcam+CD44+ and

Epcam+CD442 prostate epithelial cells. For Epcam+ cell separa-

tion, single cell suspensions obtained from freshly dissociated

prostate tissue were stained with anti-human Epcam-PE antibody

(Miltenyi Biotech), followed by incubation with anti-PE Multisort

Microbeads (Miltenyi Biotech). Stained cells were separated

through autoMACS (Miltenyi Biotech) with Mode POSSEL

(Positive Selection). Positive fraction was collected as Epcam+ cells

and microbeads were removed using Multisort Release Reagents

(Miltenyi Biotech). Cells were then stained with CD44 microbeads

before separation through auto MACSH separator with POSSEL,

with collection of positive (Epcam+CD44+) and negative (Ep-

cam+CD442) fractions. The negative fraction was separated

further with Mode DEPLETES (Depletion in sensitive mode.

The Epcam+CD44+ and Epcam+CD442 cells were stained with

anti-human CD44-PE-Cy-7 (eBioscience) and analyzed by FACS

to evaluate the purity of sorted cells.

Fluorescence-activated cell sorting (FACS).
Prostate cells were suspended in PBS, 2 mM EDTA,0.5%BSA

and stained with antibody for 15 minutes at 4uC. Fluorescence-

activated cell sorting and analysis were performed on a BD Special

Order FACS Aria II system and Diva v6.1.1 (BD Biosciences).

Live single cells were gated based on scatter properties and

analyzed for their surface marker expression. Cells were sorted

and collected at 4uC using 100um nozzle and 23psi. Antibodies

used for FACS include Epcam-PE (Miltenyi Biotech), CD44-FITC

(ebioscience), and CD49f-APC (BioLegend).

In vitro prostasphere assay.
Prostate cells were counted and re-suspended in 50:50 Matrigel:

PrEGM with a concentration of 56103 cells/80microliters. This

Matrigel/cellular suspension was plated at the edge of the well on

12-well plates and allowed to solidify by incubation at 37uC for

30 minutes. One milliliter of defined sphere media was then added

to each well and plates were replaced in 37uC incubator, as

previously described [4]. Quantitation of prostaspheres was

performed approximately 10–14 days after plating.

Tissue acquisition, isolation and culture of fetal prostate
cells.

Human fetal prostate tissue was acquired from 16–17 week

specimens in accordance with federal and state guidelines.

Adjacent prostate tissue was snap frozen in liquid Nitrogen or

fixed in formalin and paraffin-embedded to evaluate anatomy and

glandular architecture. The remainder of the tissue was mechan-

ically and enzymatically digested as described (13). Dissociated

prostate cell suspensions were sequentially filtered through 100-

micron and 40-micron filters, and then passed through a 23-gauge

needle. Cells were counted with a hemocytometer and resus-

pended in RPMI supplemented with 10% fetal bovine serum

(FBS), penicillin/streptomycin (Mediatech Inc.), and Methyltrie-

nolone R1881 (Sigma) for culture in vitro. After 3 passages, cells

were analyzed via FACS to confirm purity of stromal cells (See

below). HFBS is cryopreserved and thawed as needed for use in

recombination assays.

In vivo tissue regeneration.
In vivo tissue experiments were performed in male SCID-

NODIL2grNULL mice in accordance with protocol number 2007-

189-11A, approved by the Animal Research Committee within

the Office for the Protection of Research Subjects at UCLA. Mice

(6–8 weeks old) were subjected to subcutaneous injections of

prostate epithelial cells. Approximately 16105 epithelial cells were

combined with 26105 primary human fetal prostate stroma cells

(hFPS). The epithelial and stromal cells were then suspended in

50 microliters 50:50 MatrigelH: PrEGM. Subcutaneous implan-

tation of time-release testosterone pellets (Innovative Research of

America) was simultaneously performed at the time of graft

implantation. Subcutaneous nodules at the site of injection were

removed after approximately 12 weeks of the implantation and

frozen/paraffin-embedded sections were generated for immuno-

histochemical analysis. Fresh hFPS cells were cultured in RPMI

supplemented with 10% FBS and R1881 (Sigma) and passaged

three times prior to use in tissue regeneration assays.

Immunohistochemistry of tissue sections.
Prostate tissue was paraffin embedded as previously described

[33]. Four-micron thick sections of frozen or paraffin embedded

tissue were deparaffinized with xylene and rehydrated through a

descending series of ethanol washes as described [4]. Antigen
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retrieval and standard immunoperoxidase procedures were used in

combination with primary antibodies, including CK5, CK8

(Convane), p63, androgen receptor (AR), Prostate Specific Antigen

(PSA) (Santa Cruz), and CD44 (Abcam).

Real time RT-PCR Analysis.
RNA was extracted using Qiagen RNAeasy Micro Kit,

following the manufacturer’s instructions. The concentration and

purity of total RNA was assessed spectrophotometrically at 260

and 280 nm. CDNA was generated from total RNA (up to 5 mg)

using SuperScript III First-Strand Synthesis Kit (Invitrogen). For

quantitative Real-time PCR, a Bio-Rad CFX Multicolor Real-

time PCR detection system was employed, using the SYBRH-

Green Supermix (Bio-Rad Laboratories). Real-time PCR primer

pairs for CK8, PSA, AR and p63 were purchased from

SABiosciences Corporation. The PCR reaction conditions includ-

ed an initial step at 95uC for 3 min, followed by 40 cycles at 95uC
for 15 s (Melt) and 60uC for 45 s (Anneal/Extend). Detection of

PCR products was accomplished by measuring the emitting

fluorescence at the end of each reaction step (reaction cycles).

Threshold cycle corresponds with the cycle number required to

detect a fluorescence signal above the threshold. Calculations were

performed by Bio-Rad IQ5 software provided by the manufac-

turer. Gene expression analysis was performed using the

comparative method.

Supporting Information

Figure S1 Comparison of prostate tissue grafts induced
by rUGSM and hFPS. Total adult prostate cells (56105) isolated

from fresh benign surgical specimens were combined with either

rUGSM or hFPS (16106 cells). Grafts were retrieved approxi-

mately 12 weeks following subcutaneous injection into SCID-

NODIL2crNULL mice. H&E staining of paraffin-embedded sections

demonstrated similar composition of tubular structures within

grafts, including ductal/acini structures, corpora amylacea, and

epithelial cords. Similar to previous studies with rUGSM, grafts

that formed from hFPS without additive adult prostate epithelial

cells (PCs) did not contain any tubular structures. All grafts with

tubules (T) were found to have prominent vasculature (BV)

throughout (Right panel).

(TIF)

Figure S2 Table depicting number of patient samples
utilized for implants and grafts retrieved. A total of 29

implants yielded 20 grafts with tubules for comparative analysis

(69% engraftment rate).

(TIF)

Figure S3 Epcam (Trop1) and Trop2 demonstrate
overlapping expression in human prostate cells, while
CD49f and CD44 demonstrate disparate expression. A.

Total prostate cells were co-stained with antibodies recognizing

Epcam and Trop2 and subjected to FACS analysis. The majority

of Epcam+ cells co-expressed Trop2. B. Total prostate cells were

co-stained with antibodies recognizing CD44 and CD49f. A

population of CD49fHi cells were identified that appear to be

CD442, suggesting that a proportion of Epcam+CD442cells may

co-express CD49f.

(TIF)

Figure S4 FACS analysis of individual patient surgical
specimens for Epcam/CD44/CD49f. Four patient speci-

mens (A–D) are shown for comparative analysis of populations

retrieved. After mechanical and enzymatic digestion, single cell

suspensions are stained with antibodies targeting Epcam, CD44,

and CD49f. High and low CD44-expressing populations of

Epcam+ cells are gated and analyzed for CD49f expression. High

and low CD49f-expressing cells are then isolated for functional

analysis.

(TIF)

Figure S5 Quantitative RT-PCR demonstrates Ep-
cam+CD442CD49fHi cell fractions have a basal profile
(p63+ARLoPSA2), while Epcam+CD442CD49fLo cells dis-
play a luminal profile (p63LoARHiPSA+). Primers targeting

p63, AR, and PSA were used in fractionated cells to compare

expression relative to unfractionated cells (U). Ep-

cam+CD442CD49fHi (+/2/H), Epcam+CD442CD49fLo (+/2/

L). Statistical analysis was performed using standard one-way

ANOVA analysis. P,0.05(*), P,0.01(**).

(TIF)
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