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Paper 

Microfluidic technology is a powerful tool to process blood 

samples and isolate circulating tumor cells (CTCs) and leuke­

mia cells in a high-throughput, low cost, and portable 

manner. In fact, a variety of high-performance microfluidic 

platforms have been established for isolation and enrichment 

of CTCs from blood as liquid biopsy, including inertial sepa­

ration, 8 surface acoustic waves, 9 dielectrophoretic sorting10 

and deterministic chromatography.11 These techniques are 

particularly powerful when CTCs have apparent larger diame­

ter than white blood cells (WBCs). However, in the case of 

separating leukemia cells from blood, the low purity of recov­

ered leukemia cells remains a significant challenge because 

the size of leukemia cells may exhibit overlap with the size 

of leukocytes.12 One approach to improve the selectivity is 

deformability-based microfluidic discrimination of cancer 

cells,13·14 which results in higher-performance cancer cell cap­

ture from background cells despite their approximately identi­

cal size. In these approaches, however, the strong deforma­

tions may damage certain cancer cells due to the high shear 

stress, and the separation of cells through microstructured 

constrictions is limited by clogging, which reduces selectivity 

of cancer cells. Alternatively, cancer cells can be sorted based 

on epithelial cell surface markers expressed predominantly on 

cancer cells, such as epithelial cell adhesion molecule 

(EpCAM). However, the capture efficiency would be heavily de­

pendent on the EpCAM expression level of cancer types and 

patients.15•16 Also, recovery of biomarker-conjugated cells from

the antibody-coated surface induces leukemia cell damage 

and requires an additional non-trivial step for culture and 

enumeration.17 Jackson and Li et al. separated the peripheral

blood to search for circulating leukemic cells18 and lympho­

blasts19 within the antibody-immobilized microfluidic channel, 

respectively, but still needed a time-consuming labeling pro­

cess and have typically yielded low sample purities (<1%), 

causing challenges in downstream analysis. 

To overcome these difficulties of the discrimination and 

isolation of leukemia cells, the development of label-free 

technologies to identify and discriminate leukemia cells at a 

single-cell level has become critical for improving leukemia 

diagnosis.20•21 The intrinsic fluorescence of cells generated

from endogenous proteins and metabolites is an alternative 

way to discriminate the cancer cells from normal differenti­

ated cells. The widespread adoption of multiphoton fluores­

cence imaging and microscopy has followed progressive 

improvements in label-free and non-invasive detection of cel­

lular metabolism and functional analysis with minimal 

photo-damage and maximized resolution. For example, the 

reduced form of nicotinamide adenine dinucleotide (NADH) 

is one of the main fluorescent metabolic coenzymes involved 

in oxidative phosphorylation (OXPHOS) and glycolysis, 

reporting metabolic changes associated with cell carcinogene­

sis and differentiation. Based on the Warburg effect, tumor 

cells exhibit increased production of lactate because of an 

increased rate of glycolysis, in which22 a large population of 

free NADH is reproduced instead of a protein-bound form of 

NADH during electron transferring in OXPHOS. Thus, the 
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ratio of free/bound NADH is lower compared to that in tumor 

cells. Therefore, label-free, rapid, and noninvasive methods 

to measure cellular metabolic states and free/bound NADH 

levels of single leukemia cells are highly desirable in order to 

separate and detect single leukemia cells from normal blood 

cells for biomedical applications. Since different fluorophores 

(e.g., free versus protein-bound forms of NADH) have unique 

lifetimes independent of their concentration. Given that 

many cancer cells exhibit increased glycolysis, single cells 

such as leukemia cells can be discriminated from normal 

cells based on their fluorescence lifetime signatures with 

fluorescence lifetime imaging microscopy (FLIM). The phasor 

algorithm (phasor-FLIM) has been established for fluores­

cence lifetime data analysis allowing straightforward interpre­

tation of intrinsic fluorescence signals from live tissues di­

rectly regarding physiological relevant fluorophores. The 

advantage of this method is that the time arrival of each 

photon is collected in every pixel in the image. Although life­

time is independent of the amount of the fluorophore, the 

absolute concentration of the free and bound NADH cofactor 

can be determined by using the vector sum of the phasors to 

correct for the difference in quantum yield states of NADH. 

This calculation is quantitative, as described by Ma et al.,23 

when a known concentrated standard for the pure free form 

of NADH is used. Phasor-FLIM is a label-free and fit-free 

sensitive method to identify metabolic states of cells and can 

be used to classify stems cells, normal differentiated cells 

and cancer cells both in vitro and in live tissue. 24 

We report a metabolic-based, label-free leukemia cell iden­

tification method that combines (i) passive hydrodynamic 

control for separation and trapping of single living leukemia 

cells and normal WBCs parallel in a continuous flow with, 

(ii) rapid screening of single-leukemia cells from normal

WBCs via phasor-FLIM imaging of the single cell intrinsic

fluorescence signatures (Fig. la).25 Blood sample is process­

ing via a microfluidic trapping array with 1600 traps that are

filled within 3 min. In the phasor-FLIM, each endogenous

fluorescence lifetime signature can be distinguished by its

distinct location in the phasor plot. We hypothesize that the

quantification of free versus bound NADH of isolated single

cells presents an opportunity to functionally distinguish

metabolically active leukemia cells from normal WBCs in

blood. With the combination of a single-cell microfluidic

trapping device and the phasor-FLIM, this rapid screening

platform enables high-throughput screening of NADH in a

large number of cells at single-cell resolution, leading to

detection of metabolically active leukemia cells compared

to the normal WBCs. To quantify the differences between

lifetime distributions of each cell type we produced a

multiparametric analysis, as described by Ranjit et al.,26 to

compare between the two spectra comprised of the phasor

histogram and distribution calculated from leukemia and

normal WBCs for quantitative separation and statistical cal­

culation. To the best of our knowledge, the presented plat­

form is the first to enable high-density single-cell trapping

simultaneously with RBC filtering and to achieve rapid

This journal is © The Royal Society of Chemistry 2018 
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Fig. 1 A microfluidic platform for the label-free isolation and rapid identification of single leukemia cells from blood based on fluorescence life­
time imaging microscopy (FLIM). (a) Schematic illustration of the microfluidic platform comprising the hydrodynamic filters and the array of 
single-cell traps and observation intrinsic single cell signal via FLIM. (b) Schematic of the microfluidic single-cell trapping region, in which white 
blood cells and leukemia cells are trapped in the array individually, while red blood cells are passed through the trap and filtered out at the out­
let chamber. (c) Schematic figure represents that different height of gap area affects the capturing single WBCs and leukemia cells and filtering 
RBCs away. 

label-free screening of single leukemia cells through non­

invasive metabolic imaging. Compared to conventional bio­

chemical or biomolecular-based diagnostics, the phasor­

FLIM based screening opens up new opportunities of using 

metabolic imaging for in vitro diagnostics, which overcomes 

the limitation of complicated sample processing, high-cost, 

and cytotoxicity. 

Material and methods 

Fabrication of the microfluidic device 

A microfluidic device was fabricated in PDMS by the soft 

lithography method and consisted of a pre-filter region and a 

single-cell trapping region. SU-8 (MicroChem Corp., St. New­

ton, MA) structures were patterned on a silicon wafer via stan­

dard multi-step photolithography. Liquid PDMS mixed with a 

curing agent ( ratio of 10 : 1) was cast on the mold and cured 

for 3 h in a convection oven at 65 °C for complete cross­

linking. Then the PDMS microchannel was irreversibly bonded 

to a flat glass slide after treatment with oxygen plasma for 60 

s. Pillar structures in the inlet channels with a pitch of 25 µm

function as pre-filters to prevent the introduction of cancer cell

aggregates into the trapping region and separated RBCs are

directed to a waste outlet channel. We designed 16 parallel

trapping channels to increase the throughput of cell separa­

tion and isolation. The height and the width of the main chan­

nel were 18 µm and 40 µm, respectively, while the width and

length of the traps were both 10 µm.

Cell culture 

THP-1 (human acute monocytic leukemia cell line), Jurkat 

(human acute T cell leukemia cell line), and K562 (human 

chronic myelogenous leukemia cell line) cells were purchased 

This journal is © The Royal Society of Chemistry 2018 

from American Type Culture Collection (ATCC), and cultured 

in RPMI1640 medium (Gibco) supplemented with 10% fetal 

bovine serum (FBS; Gibco). In particular, for THP-1 cells, 0.05 

mM 2-mercaptoethanol (Sigma) was added as a metabolic 

supplement. Cells were passaged every 2-3 days following 

standard protocols and cultured in a humidified incubator at 

37 °C with 5% CO2 • 

Blood samples 

De-identified healthy male blood sample was obtained from 

the Institute for Clinical and Translational Science, Irvine. 

Vacutainer tubes (BD Bioscience) containing EDTA as an anti­

coagulant were used for collection. The blood sample was 

diluted to 2% hematocrit by adding 1x phosphate buffered 

saline (PBS) (Life Technologies). 

Instrument set-up for imaging 

Fluorescence lifetime images of the WBC/leukemia single-cell 

arrays were acquired utilizing a Zeiss LSM710 microscope 

coupled with a Ti:sapphire laser system (Mai Tai Spectra­

Physics, Newport, CA) and an ISS A320 FastFLIM unit (ISS, 

Champaign, IL). SimFCS software, developed at the Labora­

tory of Fluorescence Dynamics (LFD), University of California, 

Irvine, was used to control the system for FLIM data acquisi­

tion. The single-cell array was placed in the 37 °C, 5% CO2 

environment during imaging to ensure cell viability, and was 

excited via two-photon excitation at a wavelength of 740 nm 

with a laser power of ~5 mW. A 40 x 1.2 NA oil-immersion 

objective (Carl Zeiss, Oberkochen, Germany) was used, and a 

dichroic filter (690 nm) separated the fluorescence signal 

from the laser light. For FLIM image acquisition, fluores­

cence was detected by a photomultiplier (H7422P-40; 

Lab Chip, 2018, 18, 1349-1358 I 1351 



Paper 

Hamamatsu) using a bandpass filter of 420-500 nm, which 
covers the emission wavelength of free and protein-bound 
NADH. Images in the size of 256 x 256 pixels were acquired 
at the scan speed of 25.21 µs per pixel, and the scanning was 
continued until 100 counts in the brightest pixel of the 
images were collected. FLIM calibration of the system was 
performed by measuring the known lifetime of coumarin 6 
(Sigma-Aldrich, St. Louis, MO) dissolved in ethanol which 
has a single exponential decay of 2.5 ns. Typically, the acqui­
sition time of one selected region of interest in the single cell 
array, which can include as many as 100 single cells, was less 
than 1 min. 

Theory of phasor-FLIM approach 

The acquired FLIM data of the single-cell array was analyzed 
in a phasor approach using SimFCS software. Briefly, the 
fluorescence lifetime information from each pixel of the 
FLIM image was transformed into one point in the phasor 
plot through Fourier transformation, in which the sine com­
ponent of the fluorescence intensity decay curve of that pixel 
was transformed into its s axis coordinate, and the cosine 
component was transformed to its g axis coordinate in the 
phasor plot. The detailed theory and mathematical transfor­
mation process was explained in the ESit and previous 
studies. 25 On the phasor plot, we can use a cursor to high­
light a cluster of points that corresponded to the pixels in the 
FLIM image with a particular lifetime range. 

Results 
Design and operating principle of the platform 

The presented high-density single-cell array consists of a 
serpentine-shape microfluidic channel with size-selective 
traps arrayed along each row, by which single WBCs and leu­
kemia cells are captured passively with RBCs filtered out 
simultaneously due to their smaller size (Fig. lb). The high­
density single-cell array allows the isolation of large numbers 
of single cells in the detection area for FLIM imaging. At the 
pre-filter with 25 µm pitch and 18 µm height, the unwanted 
cell aggregates were successfully blocked, and single leuke­
mia cells, WBCs, and RBCs flowed smoothly into the single­
cell trapping region. The cell aggregates would cause the 
microchannel clogging at the single-cell trapping region and 
decrease the single-cell occupancy. Under the flow rate of 0.2 
mL h-1, only 4.74% of leukemia cell aggregates were flown 
through the pre-filter. The device operation is based on a 
single-cell trap capable of passively separating and trapping 
millions of blood cells simultaneously in less than a minute 
with a single-cell capturing efficiency of ~ 80%. 27 Each trap­
ping unit has a smaller height of the trap than the height of 
the main delivery channel, resulting in a gap area (hg). The 
gap area makes the perpendicular flow to deform and mi­
grate RBCs, while WBCs and leukemia cells can be pushed 
into traps, and the combination of perpendicular deforma­
tion and horizontal delivery flow enables the continuous 
blood cell filtration process. The height of hg is of critical in 

1352 I Lab Chip, 2018, 18, 1349-1358 

View Article Online 

Lab on a Chip 

determining the WBC/leukemia capturing efficiency, as larger 
hg leads to WBCs/leukemia cells squeezing during RBC filtra­
tion, and smaller hg would prohibit both RBC passing 
through and WBC/leukemia trapping (Fig. le). The presented 
high-throughput microfluidic trapping array contains 16 
identical arrays of highly packed 100 single-cell traps, 
designed with small dimensions to fit within a microscopic 
field of view and can be filled within 3 min, enabling the 
observation and identification of every single leukemia cell 
flowing through the channel (see Fig. Slt). 

Most of the normal WBCs and leukemia cells have a diam­
eter ranging from 8 µm to 20 µm, and there exist significant 
size overlap based on our measurement of normal human 
WBCs, and three different types of leukemia cells: THP-1, 
Jurkat, and K562 (Fig. 2a). But both normal WBCs and leuke­
mia cells are larger than RBCs, which have a disk shape with 
a diameter of ~6.2-8.2 µm and a thickness at the thickest 
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Fig. 2 Cell size characterization and single-cell trapping efficiency op­
timization. (al Histogram of the single-cell diameter of WBCs, THP-1, 
Jurkat, and K562 cells showing the overlap of cell diameter among the 
WBCs and leukemia cells. (bl The percentage of single-cell occupied 
traps according to different height of gap area (h

9
) of 0, 1.9, 3.3 and 

5.5 µm, respectively. (cl Bright-field microscopic image of trapped sin­
gle WBCs with 2% hematocrit at 0.2 ml h-1 input flow rate. (dl RBCs
were removed and only WBCs/leukemia cells remained at the micro­
well array after turning off the sample flow and introducing PBS. (e) 
Plot showing the percentage of single-cell and multiple-cell occu­
pancy for varying hematocrits. (fl Plot showing the percentage of 
trapped intact single, deformed single, and multiple WBCs according 
to the input flow rate. Scale bars: 50 µm. 
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point of 2-2.5 µm. Therefore, while leukemia cells cannot be 
separated from WBCs purely by size, RBCs can be successfully 
filtered out within the microfluidic trapping arrays. We hypoth­
esize that RBCs are not constrained by the gap area constric­
tions because of their extreme deformability and large surface 
area compared to WBCs and leukemia cells.28 We first tested 
the percentage of single-cell occupied traps according to differ­
ent h

g 
of o, 1.9, 3.3 and 5.5 µm, respectively (Fig. 2b ). If h

g 
is o, 

we did not observe any cell trapping within the microwell ar­
rays. We found that the single-cell trapping efficiency was 
about 73.48% with h

g 
of 3.3 µm, while no cell was observed at 

the trap with h
g 

of 1.9 and 5.5 µm. Especially, when the h
g 

was 
much lower than the RBC diameter (h

g 
~ 1.9 µm), RBCs were 

stuck at the trap and could not migrate through the gap area, 
resulting in increased number of multiple-cell trapping. In con­
trary, when the h

g 
was much higher than the RBC diameter and 

similar to the WBC diameter (h
g 

~ 5.5 µm), all blood cells in­
cluding WBCs and RBCs were passed through the gap area in­
stead of being trapped in the single microwells. The results 
demonstrate that the appropriate h

g 
can filtrate only RBCs and 

isolate single WBCs as well as cells that have a larger diameter 
than WBCs such as leukemia cells. Based on these observa­
tions, we chose an optimal h

g 
~ 3.3 µm to operate a device for 

WBC isolation applications. Fig. 2c shows that the bright-field 
microscopic image of trapping WBCs and leukemia cells 
(K562) within the microwell arrays with h

g 
= 3.3 µm. After turn­

ing off the sample flow and introducing PBS, all RBCs were re­
moved toward the outlet and only WBCs and leukemia cells 
remained at the microwell arrays (Fig. 2d). Single-cell isolation 
of blood under various rheological conditions was explored, 
demonstrating highly efficient trapping of single leukemia 
cells and white blood cells in a high-density microwell array 
(Fig. 2e and f, ESI,t Fig. S2). We chose to introduce 2% hemato­
crit blood under 0.2 mL h-1 for implementing both the 
throughput and the single-cell isolation performance. 

Phasor-FLIM measurement of WBC and leukemia single-cell 
arrays 

Single cells of 4 different populations, WBC (Fig. 3a), THP-1 
(Fig. 3b), Jurkat (Fig. 3c), and K562 (Fig. 3d), were trapped in 
separate microfluidic arrays under the input flow rate of 0.2 
mL h-1, respectively, and are excited via two-photon excita­
tion at 7 40 nm. The transmission images of the single-cell ar­
rays, the magnified images of the selected regions of interest 
(ROI), and the NADH fluorescence intensity images of the 
ROI are shown in Fig. 3 from the panel (i) to (iii). We then 
applied phasor transformation to the acquired FLIM data 
and plotted the phasor-FLIM pixel plots of the single-cell ar­
rays as shown in Fig. 3 panel (iv). The fluorescence intensity 
decay at each pixel of the FLIM image was transformed into a 
single point in the phasor plot ( as defined in the Materials 
and methods section), in which the s and g coordinates for 
every pixel of the image, Fourier sine versus cosine compo­
nents of the fluorescence decay curve were plotted on the y 

and x-axis where the x coordinate spans from 0 to 1 and the 
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Fig. 3 High-density single-cell trapping and heterogeneous phasor­
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NADH fluorescence emission intensity images, and (iv) corresponding 
lifetime phasor plots of the single-cell arrays of (a) WBCs, (bl THP-1, (cl 
Jurkat, and (d) KS62 cells. Scale bars: SO µm. (el Scatter plot of the av­
erage g and s phasor values of trapped single cells based on their 
NADH fluorescence phasor-FLIM signature. A total number of 65 
WBCs (blue), 35 THP-1 cells (cyan), 35 Jurkat cells (orange), and 46 
KS62 cells (green) are measured and plotted. While the heterogeneity 
between individual cells among the sample population is observed, all 
the leukemia cells shifts toward the right compared to WBCs, indicat­
ing a higher free-to-bound NADH ratio and a more glycolytic state. 

y spans from 0 to 0.5. Based on the pure chemical phasor fin­
gerprints and the linear combination rule,23

'
24 signatures of 

the trapped single WBC and leukemia cells mainly fall be­
tween the signatures of the known intrinsic fluorescence bio­
markers, free and enzyme-bound forms of NADH being the 
predominant marker excited at this wavelength, which have a 
fluorescence lifetime shift from ~0.4 ns at the free stage to 
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3.2-3.4 ns at the bound stage. To further visualize the differ­
ence of the phasor-FLIM signatures between different cell 
populations and the cellular heterogeneity within the same 
population, we plotted the average s and g values of individ­
ual cells of WBC (blue square), Jurkat (orange circle), THP-1 
( cyan triangle) and K562 (green diamond) in the scatter dia­
gram of Fig. 3e. As shown, the distribution of cell phasors of 
the WBCs are significantly different from the group of leuke­
mia cells. A comparison of data pairs demonstrated statisti­
cally significant differences in cell phasors for each cell types 
(p = 3.60 x 10-53, Student's t-test, *p < 0.05). Leukemia cells
are shifted toward the lower right direction in the phasor plot 
compared to WBCs, demonstrating a shorter lifetime, and 
therefore indicating a higher ratio of free to bound NADH. 
This can be explained by the Warburg Effect, in which rapid­
proliferating tumor-like cells, i.e., leukemia cells, have stron­
ger glycolysis in glucose metabolism to support fast ATP con­
sumption and biosynthesis of macromolecules, therefore 
have a higher ratio of free/bound NADH; while differentiated 
cells such as WBCs have stronger OXPHOS and have a higher 
bound/free NADH ratio. The phasors of the three leukemia 
cell lines also show inner-population heterogeneity in the 
scattered plot. 

Differentiating different leukemia cell lines via 

multiparametric analysis of phasor-FLIM 

While the single-cells' average phasor values of 3 types of leu­
kemia cell lines (THP-1, Jurkat, and K562) were located 
closely in the scatter plot, they can still be quantitatively dif­
ferentiated by a multiparametric analysis, or distance analy­
sis26'29 that splits every cell's phasor points in four
equidistance segments based on the height/intensity of the 
3D phasor distribution and calculates the average coordi­
nates (g and s) in each segment (Fig. S3t). A spectrum of 
8 parameters specific to the phasor distribution of each cell 
is created based on the above, and quantitative separation 
can be applied to the spectra of two different groups, the con­
trol (C) and the test (T). The average spectrum of each group 
and the deviation of each member from the average are cal­
culated: if the spectrum of an unknown cell is equal to the 
average of C then the separation index (SI) is equal to -10; if 
it is equal to the average of T then SI = +10; and if the spec­
trum is at equal distance from C and T then SI = 0.26•29•30 

Cells with a negative or a positive SI value are counted for 
the control or the test group, respectively, an SI histogram 
can be plotted based on the number of counts at each SI 
value. The detailed mathematical explanation of the 
multiparamic separation is explained in the ESI.t We can also 
plot the true positive rate against the false positive rate for 
each separation to get its receiver operating characteristic 
(ROC) curve and calculate the area-under-the-curve (AUC) 
value,31 as a quantitative illustration of the separation's speci­
ficity and sensitivity. 

As is shown in Fig. 4a, three training sets that separate 
each 2 of the three leukemia cell lines are established using 
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Fig. 4 Separation of WBCs and different types of leukemia cells using 

multiparametric approach. (al The separation index (SI) histograms of 

K562 versus Jurkat (right), K562 versus THP-1 (middle), and THP-1 ver­

sus Jurkat (right) demonstrate the efficiency of the multiparametric 

analysis to distinguish different leukemia cell lines from each other. 

The SI histogram was plotted based on the number of cell counts 

against separation index. The SI has a value from -10 to +10. (bl Re­

ceiver operating characteristic (ROC) curves constructed by comparing 

the SI value of two different types of leukemia cells. Values shown are 

area under the ROC curve (AUC). (cl The SI histogram of WBCs (blue) 

and the combined leukemia cell population (red) of THP-1, Jurkat, and 

K562 cells. (dl ROC curves for comparison of WBCs and leukemia cell 

population. 

multiparameter analysis of the cell-line specific phasor 
distributions, with the SI histograms and ROC curves are 
plotted, which can be used as a library for further identifica­
tion of specifice leukemia types in patients' blood. The AUC 
values of each two comparisons are all higher than 0.950 
(AUCrm,+Jurkat = 0.957, AUCK562-THP-1 = 0.981, and AUCK562-
Jurkat = 0.987), suggesting a statistically powerful separation be­
tween each of the two leukemia cell lines with sufficient 
sensitivity and specificity (Fig. 4b). Importantly, this classifi­
cation is performed at a single-cell level rather than as a 
population metric and across three samples. This multi­
prapmeteric analysis can also be adopted to broadly separate 
WBCs from leukemia cells. In Fig. 4c, WBCs are considered 
as the C group, and all three types of leukemia cells are the T 
group. While the SI of T group is broadly distributed, indicat­
ing the heterogeneity of the leukemia cell population, there 
is no overlap with the SI distribution of WBCs, and the AUC 
= 1.000, which means that leukemia cell lines can be clearly 
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differentiated from WBCs based on the multiparameter 

scheme, confirming the scatter plot in Fig. 3e (Fig. 4d). 

Rapid single leukemia cell screening from Ieukemia-cell­

spiked blood samples via phasor-FLIM imaging of the high­

density trapping array 

After identification of the difference in the phasor-FLIM fin­

gerprints of single WBCs and leukemia cell lines (THP-1, 

Jurkat, and K562), we conducted the rapid label-free single 

leukemia cell screening in leukemia-cell-spiked human blood 

samples. THP-1, Jurkat, and K562 cells were spiked into 

human blood at a 1 to 5 ratio to WBCs, separately, in order 

to mimic the blood sample of patients with different types of 

leukemia, and the diluted whole blood samples (2% hemato­

crit) were introduced into the high-density single-cell arrays 

under the flow rate of 0.3 mL h-1 (Fig. s(i)). Then we 

collected the NADH fluorescence emission of trapped single 

cells (Fig. s(ii)) and fluorescence lifetime data at 740 nm, 

two-photon excitation and plotted the lifetime maps 

(Fig. s(iii)) by 1) linking the higher bound/free-NADH-ratio 

group (red cursor) and the higher free/bound-NADH-ratio 

group (green cursor) in the phasor distribution plot of all the 

trapped single cells (Fig. Sd), and 2) color-coding: the color 

scale from white/cyan to red/pink represents a linear increase 

of free to protein-bound NADH ratio (Fig. Se).32 Different 

types of the spiked single leukemia cells were clearly distin­

guished from normal WBCs as highlighted in the white­

dashed circles in the lifetime maps (Fig. s(iii)), as the spiked 
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leukemia cells have more components in the white and blue 

color, while normal WBCs consist of more red and pink color 

components. The significant shift toward a higher free/bound 

NADH ratio and shorter lifetime region of leukemia cells 

compared to WBCs is because the leukemia cells are in a 

rapid proliferating stage and utilize more glycolysis to facili­

tate rapid generation of ATP and biosynthesis of macromole­

cules, while WBCs use OXPHOS as the major metabolic 

mechanism to digest glucose more completely but generate 

ATP slower. Another non-negligible result revealed in the life­

time map is the cell-to-cell heterogeneity among the same 

population, which represents the unique metabolic pattern of 

specific cells, and can be further analyzed to separate sub­

populations of interest cell type. For example, subgroups of 

WBCs, e.g. neutrophils, eosinophils, basophils, lymphocytes, 

and monocytes, might be able to be differentiated based on 

their fluorescence patterns via single-cell phasor-FLIM. 

Apart from color-coding based screening from the lifetime 

maps, a more quantitative screening of single-leukemia cells 

can be achieved by loading the phasor-FLIM information to 

the multiparametric separation training sets that were 

established in Fig. 4a. As is shown in the SI histogram in 

Fig. sf, in which the phasor-FLIM signatures of the single 

cells (dotted white circle) were compared with WBCs (C 

group) and the combined population of three leukemia cell 

lines (T group), and all the circled cells were calculated to 

have positive SI index values, confirming their identity as leu­

kemia cells. Also, different types of spiked leukemia cells 

have different SI values within the T group, and the type of a 

(f) 
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Fig. 5 Screening leukemia cells from normal WBCs in the leukemia cell-spiked blood samples via phasor-FLIM imaging of the single-cell trapping 
array. Panel (i) shows the bright-field images and panel (ii) presents the NADH fluorescence emission intensity images of the THP-1 (a). Jurkat (bl. 
and K562 (c) cells-spiked blood samples, respectively. Scale bars: 50 µm. The phasor distribution of all the trapped single cells is plotted in (d), 
where the higher bound/free-NADH-ratio group (red cursor) and the higher free/bound-NADH-ratio group (green cursor) are linked and color­
coded in (e): the color scale from white/yellow to red/pink represents a linear increase of free to protein-bound NADH ratio. Based on the above, 
the NADH lifetime maps of the leukemia cell-spiked blood samples are plotted in panel (iii). Leukemia cells demonstrate a significant shift toward a 
higher free/bound NADH ratio and shorter lifetime indicating a higher glycolytic state. (fl The SI histogram of WBCs (blue), leukemia cells (red), 
spiked THP-1 (cyan), spiked Jurkat (orange), and spiked K562 (green) cells. 
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potential known leukemia cell can be further identified by 
loading its information to the training sets of leukemia cell 
comparison {Fig. 4b). As the FLIM data collection of each 
laser scanning area containing 100 single-cell traps takes less 
than 1 min, the leukemia cell screening of the total 1600 
traps could be achieved within 16 min. 

Discussion 

Here we have shown that our microfluidic single-cell phasor­
FLIM platform is capable of trapping both WBCs and leuke­
mia cells while filtering out RBCs and differentiating the 
similar sized normal leukocytes and leukemia cells by map­
ping their metabolic fingerprints without any labeling re­
quired. The quantitative separation of WBCs and leukemia 
cells, as well as between different leukemia cell lines, was 
achieved via the established multi-parametric scheme compar­
ing the 8 parameter-spectra of the phasor-FLIM signatures. 

One unique innovation in the proposed microfluidic de­
vice is that the high-density and high-efficiency cell traps can 
be utilized as a microfluidic separator of leukocytes and 
leukemia cells from the diluted blood sample. By filtering 
out RBCs with smaller sizes and higher deformability, larger 
leukocytes and leukemia cells are selectively trapped sequen­
tially and individually. The scalable design of high-density 
single-cell traps speeds up the process of metabolically char­
acterizing a hundred of single cells to screen leukemia in a 
minute. 

Microfluidic single-cell phasor FLIM is particularly rele­
vant to the separation of tumor cells from blood where tumor 
cells may not be easily discriminated from leukocytes based 
on size alone. Most microfluidic platforms that separate 
tumor cells from leukocytes based on size differences lose 
the majority of smaller sized tumor cells, therefore here we 
chose to not introduce a size bias in leukemia cell trapping, 
but to rely on the distinct metabolic difference between nor­
mal differentiated cells, i.e., WBCs, and rapidly proliferating 
tumor cells such as leukemia cells. As is shown in Fig. 3 and 
5, there exists a significant difference in the phasor-FLIM sig­
natures between leukemia cells and WBCs, as leukemia cells 
have shorter fluorescence lifetime and a higher ratio of free 
to bound NADH, because of their dependence on glycolysis. 
Also, quantitative separation is achieved {Fig. 4) based on the 
multiparameter scheme comparing the 8 parameter-spectra 
of the phasor-FLIM distributions. Both of the above demon­
strate that phasor-FLIM based screening is a label-free and 
robust leukemia cell identification approach, and our plat­
form is the first demonstration to discriminate single leuke­
mia cells from WBCs using phasor-FLIM based on the differ­
ence of free/bound NADH ratio. This platform could 
potentially be useful for discrimination of single activated 
and non-activated T cells because recent work claims that the 
Warburg effect is a key process that assist T cell survival and 
proliferation after activation, as well as produce the effector 
cytokines.33 The stimulation of CDS+ T cells boosts rapid pro­
duction of ROS which has its unique fluorescence lifetime 
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signature in the bottom-left portion of the phasor plot. 34
,
35 In 

addition, the activated T cells express a functional phagocyte­
type NADPH oxidase, which would shift the FLIM signature 
towards longer lifetime range.36 Both of the two aspects lead 
to a more complex change in FLIM signatures during T cell 
activation, and should be different from that of tumor cells, 
which simply shifts towards the shorter lifetime caused by 
glycolysis. There have been substantial research reporting 
that leukemic cells are highly glycolytic even though cells re­
side within the bloodstream which has higher oxygen tension 
than cells in most normal tissues.37

•
38 To expedite leukemia 

detection and improve personalized therapies, it is crucial to 
quickly screen the abnormal leukocytes that might allow de­
termination of effective treatment to be made in real time at 
the bedside. The presented microfluidic isolation platform 
based on metabolic imaging has advantages over a conven­
tional flow cytometry. Fluorescence-activated cell sorting 
{FACS) is a representative approach in flow cytometry to cate­
gorize heterogeneous samples in a high-throughput manner 
and is used routinely in clinical diagnosis. But it requires a 
time and effort consuming process to fluorescently tag cells 
with expensive antibodies that could potentially lead to irre­
versible cell damage and change in intrinsic cell properties. 
In addition, it requires high expense, and need for skilled op­
erating staff. Moreover, the photostability of the fluorophores 
with time becomes a critical concern along with the broad 
emission spectra and narrow excitation range of the fluores­
cent tags. Also, clinical deployment of single leukemia cell 
monitoring, on the other hand, would require sampling 
within minutes. Recent FACS machines allows single cell re­
trieval to negate the issue of requiring subsequent characteri­
zation of the sorted populations, but still have a slower 
throughput than bulk recovery. One of the main challenges 
in the presented platform is that it can only work with di­
luted blood. The device can take care of a higher hematocrit 
level sample and be massively parallelized to move towards 
higher throughput. We determined that the proposed device 
could be arrayed with 12 radially arranged channels with suc­
cessive single-cell traps up to ~6400 traps per unit to avoid 
the WBC loss integrated into the 3-inch PDMS device that 
can deal with large volumes of blood samples {Fig. S4t). 
Based on our calculations, when 2% hematocrit blood is 
tested at 0.2 mL h-1, ~72000 single leukemia cells and WBCs 
can be isolated in 6 min. The high-density single-cell trap­
ping array can be integrated as a multi-step-integration fea­
ture with various kinds of microfluidic cell separators. For ex­
ample, the microfluidic erythrocyte removal modules such as 
inertial microfluidics, 8 acoustics, 39 and microfilter arrays11 

can be easily combined as an upstream pre-sort sample prep­
aration. This capability is notably crucial when phenotyping 
of the patient-derived circulating leukemia cells from whole 
blood is required. 

The phasor-FLIM signature heterogeneity within the WBC 
or leukemia cell population is another non-negligible finding 
which requires further interpretation. As we know, peripheral 
WBCs consist of several subpopulations such as lymphocytes, 
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monocytes, neutrophils, eosinophils, and basophils. Pheno­

typic and functional analysis of single peripheral WBCs pres­

ent valuable clinical information based on their numbers, 

compositions, and functional responses, for example, (i) the 

production of interferon gamma (IFN--y) by T-cells which cor­

relates with the immune response against tuberculosis infec­

tion, (ii) the increased neutrophil count caused by bacterial 

infections often cause an increased neutrophil count, while 

the increased number of lymphocytes due to the viral infec­

tions and auto-immune disorders, and (iii) the peripheral 

blood Iymphoblast percentage is an important index for diag­

nosis and prognosis of acute Iymphoblastic leukemia (ALL). 

Thus the differential counting of WBCs from smaller quanti­

ties of blood is crucial for point-of-care diagnosis. Label-free 

isolation and non-invasive differential discrimination of 

single leukocytes via phasor-FLIM40 will facilitate in vitro 

analysis of immune responses of single WBCs as an alterna­

tive of conventional WBC counting and phenotyping. 

The existence of a highly tumorigenic subpopulation of leu­

kemia cells, especially leukemic stem cells (LSCs) in heteroge­

neous tumor mass plays a role in tumor development, metas­

tasis and construction of the entire spectrum of bulk tumor 

cells. The current platform based single-cell FLIM identifica­

tion would be applicable to screen single LSCs according to 

differential drug responses in the entire tumor population 

and would enable exploration of tumor heterogeneity and dif­

ferential response to drugs. After the phenotyping, the single 

cells of interest can be cultured within the microfluidic de­

vice, further analyzed in situ and retrieved upon adapting 

various techniques such as optical DEP,41 pipetting,42 and 

laser-based manipulation. 43 Cellular information from iso­

lated single living leukemia cells can be extracted and/or 

inserted via selective intracellular probing using a dielec­

trophoretic nanotweezer (DENT)44 after the phasor-FLIM 

analysis. This can enable functional characterization of the 

protein encoded by the introduced DNA to help elucidate 

how leukemia cells function. 

Conclusions 

In summary, we have developed a novel leukemia cell screen­

ing platform that combines microfluidic single-cell trapping 

and label-free leukemia cell identification via phasor-FLIM 

imaging. The microfluidic array has 1600 highly-packed sin­

gle-cell traps which can be filled within 3 min, with the gap 

height (hg) of 3.3 µm at each trapping unit to simultaneously 

filter out RBCs and capture WBCs and leukemia cells from 

2% hematocrit blood. By imaging the single-cell array at 740 

nm two-photon excitation and getting its fluorescence emis­

sion, the trapped single leukemia cells, e.g. THP-1, Jurkat and 

K562 cells, were successfully distinguished from WBCs in the 

phasor-FLIM pixel map based on their significant shift to­

wards shorter fluorescence lifetime. The higher ratio of free/ 

bound NADH from leukemia cells compared to WBCs was be­

cause of their high glycolysis for rapid proliferation. Quanti­

tative separation between WBCs and leukemia cells (AUC = 
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1.00) as well as between different leukemia cell lines (AUC > 

0.95) was achieved with good sensitivity and specificity via 

the established multiparametric scheme comparing the 

8 parameter-spectra of the phasor-FLIM signatures. Intra­

population heterogeneity were also observed through the 

cell-cell variation of phasor-FLIM signatures. Our platform is 

the first to enable high-density single-cell trapping simulta­

neously with RBC filtering and to achieve rapid label-free 

individual-leukemia-cell screening through non-invasive met­

abolic imaging. Phasor-FLIM based screening on a high­

density trapping array is label-free, cell-safe, quantitative, and 

it has the potential to screen blood in clinical volumes 

through parallelization and is expected to be widely used re­

garding early leukemia/tumor detection, tumor heterogeneity 

identification, and personalized therapy. 
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