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ABSTRACT OF THE DISSERTATION

Generalized Demazure Modules for the Twisted Current Algebra 2Ã2l−1

by

Joseph Page Wagner

Doctor of Philosophy, Graduate Program in Mathematics
University of California, Riverside, September 2024

Dr. Vyjayanthi Chari, Chairperson

In this thesis, I study certain generalized Demazure modules for a twisted current

algebra of type 2Ã2ℓ−1; that is, the fixed point subalgebra under an order 2 graph

automorphism defined on an untwisted affine Lie algebra of type Ã2ℓ−1. In particular, I

give a presentation of a family of generalized Demazure modules which can be realized as a

submodule of the tensor product of two level one Demazure modules. I also show that, in

certain cases, this type of generalized Demazure module is in fact isomorphic to a level two

Demazure module.
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Chapter 1

Introduction

In [3], a family of indecomposable finite-dimensional graded modules were

introduced for current algebras associated to simple Lie algebras. These modules were

indexed by an |R+|-tuple of partitions ξ = (ξα) where α varies over a set R+ of positive

roots of a simple lie algebra g. It was shown that, in the case when (ξα) was a rectangular

partition, these modules were in fact isomorphic to Demazure modules of various levels.

This led to a simplification of the defining relations of said Demazure modules.

Later, in [10], a similar family of indecomposable finite-dimensional graded

modules were introduced for twisted current algebras. Like in [3], it was shown that,

when (ξα) was a rectangular partition, these modules were isomorphic to twisted Demazure

modules of various levels, leading to a similar simplification of defining relations.

Then, in [2], it was shown that the graded limit of a family of irreducible prime

representations of the quantum affine algebra associated to a simple Lie algebra g of type Dn

is, in certain cases, isomorphic to a generalized Demazure module. That is, a submodule
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of the tensor product of level one Demazure modules. A presentation of this family of

generalized Demazure modules is also proved in this paper.

For this thesis, I will be using the simplified presentation of level one Demazure

modules for twisted current algebras from [10], along with the methods outlined in [2],

to give a presentation of a family of generalized Demazure modules for a twisted current

algebra of type 2Ã2ℓ−1.

1.1 Simple Lie Algebras

In this thesis, I will denote C as the field of complex numbers, Z as the set of

integers, and Z+ as the set of non-negative integers. Given an indeterminate t, let C[t, t−1]

be the algebra of Laurent polynomials, and C[t] ⊂ C[t, t−1] as the set of polynomials with

complex coefficients. For two complex vector spaces V andW , I denote their tensor product

over C by V ⊗W . Given a complex Lie algebra g, I denote U(g) as the universal enveloping

algebra of g. I also say that a vector space V is Z-graded if V can be expressed as the direct

sum V =
⊕

k∈Z V [k].

For a simple finite lie algebra g of rank n, with x, y ∈ g, the adjoint representation

ad : g → gl(g) is given by ad(x) = adx, with adx(y) = [x, y]. Fix a Cartan subalgebra

h ⊂ g and denote R ⊂ h∗ as the corresponding set of roots of g with simple roots given by

{αi : 1 ≤ i ≤ n}. Let κ : g×g → C denote the killing form, defined by κ(x, y) = tr(adx◦ady).

Restricting κ to h induces an isomorphism between h and h∗, as well as a symmetric, non-

degenerate form (·, ·) on h∗. For this thesis, I will assume that this form is normalized so

that the square of a long root is 4. For α ∈ R, let dα = 4
(α,α) and let bα = (α,α)

2 . Note that

bα = 2 when α is long, and bα = 1 when α is short.
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Along with a set of simple roots {αi : 1 ≤ i ≤ n}, I also fix a set of fundamental

weights {ωi : 1 ≤ i ≤ n} ⊂ h∗ such that (ωi, αj) = δi,j . Let Q denote the Z-span of

the simple roots, and denote the Z+-span by Q+. Similarly, denote the Z-span of the

fundamental weights, called the weight lattice, as P , and denote the Z+-span by P+. Then

denote the positive roots by R+ = R ∩Q+. I denote the negative roots by R−, defined in

a similar way. I also denote Rl as the long roots of R, and Rs as the short roots.

Next, I define a partial order on P by λ ≤ µ iff µ− λ ∈ Q+. Finally, let

{x±α , hi : α ∈ R+, 1 ≤ i ≤ n} be a Chevalley Basis of g, and let g = n− ⊕ h ⊕ n+ be the

corresponding triangular decomposition. For convenience, I set x±i = x±αi
.

For λ ∈ P+, I denote the finite dimensional irreducible g-module as V (λ). I denote

the generator of V (λ) as vλ, subject to the following defining relations:

x+i vλ = 0, hivλ = λ(hi)vλ, (x−i )
λ(hi)+1vλ = 0

for i ∈ I. These modules allow for a characterization of finite dimensional g-modules; in

particular, any finite dimensional g-module V can be written as a direct sum of modules

V (λ), λ ∈ P+.

Throughout this thesis, I will make reference to simple, finite-dimensional Lie

algebras of two types: a special Lie algebra g of type An, and a symplectic Lie algebra g of

type Cn.

1.2 (Untwisted) Affine Lie Algebras

To realize an untwisted affine Lie algebra g̃ of type Ãn, I start with a simple Lie

algebra g of type An, with root system Rḡ, and denote the Loop algebra as

L(g) = g⊗ C[t, t−1].
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This can be made into a Lie algebra by defining the bracket operation: for

x⊗ f(t), y ⊗ g(t) ∈ L(g), the bracket operation of L(g) is defined to be

[x⊗ f(t), y ⊗ g(t)] = [x, y]g ⊗ f(t)g(t)

where [·, ·]g is the bracket operation of g. Then the untwisted affine Lie algebra g̃ is given

by

g̃ = L(g)⊕ Cc⊕ Cd

where c is the canonical central element and d acts as the derivation t ddt , with a bracket

operation given by

[x⊗tr, y⊗ts] = [x, y]g⊗tr+s+tr(adx◦ady)rδr+s,0c, [d, x⊗tr] = r(x⊗tr), x, y ∈ g, r, s ∈ Z.

If h ⊂ g is a Cartan subalgebra, then the elements of the dual of h̃ ⊂ g̃,

α0, α1, · · · , αn ∈ h̃∗ can be defined by extending α1, · · · , αn ∈ h
∗
to h̃∗ by stating

αi(c) = 0 = αi(d) for 1 ≤ i ≤ n and defining δ ∈ h̃∗ by:

δ(h) = 0 for h ∈ h, δ(c) = 0, δ(d) = 1.

Remark that α0 ∈ h̃∗ is defined as α0 = −θ + δ, where θ is the longest root in Rḡ.

1.3 Twisted Affine Lie Algebras

Assume that g has rank n = 2ℓ − 1 for ℓ ≥ 3. Given an indexing I on a set of

simple roots {αi}i∈I of g, let σ be a permutation of I defined by

σ(i) = 2ℓ− i.

I can then extend σ to a graph automorphism of g by setting σ(xαi) = xασ(i)
and then

extending this action linearly to the rest of g such that it respects the bracket operation.
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I now denote the Twisted Lie Algebra, defined as the fixed point subalgebra under this

automorphism, as gσ := {x ∈ g|σ(x) = x}. In this case, when g is a simple Lie algebra of

type A2ℓ−1 for ℓ ≥ 3, gσ is isomorphic to a simple Lie algebra of type Cℓ.

I can now introduce the twisted graph automorphism τ on g̃, defined by the

following:

τ(x⊗ tk) = σ(x)⊗ (−1)ktk for x ∈ g,

τ(c) = c, τ(d) = d.

The fixed point subalgebra of g̃ under the automorphism τ, denoted as ĝ, is a

twisted affine Lie algebra of type 2Ã2ℓ−1. From here on, unless otherwise specified, assume

that g is a simple Lie algebra of type Cℓ. I will use both ĝ and g in the definition of a special

twisted current algebra Cg of type 2Ã2ℓ−1.

Letting δ denote the unique non-divisible positive imaginary root in the root

system of ĝ, I can then denote the root system of ĝ as R̂ and I have R̂ = R̂+ ∪ R̂−, where

R̂− = −R̂+, R̂+ = R̂+
re ∪ R̂+

im, R̂+
im = Nδ, R̂+

re = R+ ∪ (Rs + Nδ) ∪ (Rl + 2Nδ), and

R̂re(±) = R± ∪ (R±
s + Nδ) ∪ (R±

l + 2Nδ).

Given α ∈ R̂+, let ĝα ⊂ ĝ be the corresponding root space; note that ĝα ⊂ g if

α ∈ R. For a non-imaginary root α, I denote xα as the generator of ĝα. I also denote b̂ as

the Borel subalgebra corresponding to R̂+, and n̂+ as its nilpotent radical;

b̂ = ĥ⊕ n̂+, n̂± =
⊕
α∈R̂+

ĝ±α.

The subalgebras b and n± of g are defined analogously.

Consider the algebra

k = (h⊕ Cd)⊕ n̂+ ⊕ n−.
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The twisted current algebra Cg can then be defined as the following ideal of k:

Cg = h⊕ n̂+ ⊕ n−

with triangular decomposition

Cg = Cn+ ⊕ Ch⊕ Cn−,

where

Ch = Ch+ ⊕ h, Ch+ =
⊕
k>0

ĝkδ, Cn± =
⊕

α∈R̂re(±)

ĝ±α.

Note that, for any α ∈ R+, there is α ∈ R+
g such that α|h = α. Thus, fixing a

Chevalley basis {X±
α , Hi : i ∈ I, α ∈ R+

g } for g enables us to realize Cg as a subalgebra

of L(g) via the following [10]:

For r ∈ Z+ and α ∈ R+,

x±α+bαrδ =
(
X±

α + (−1)bαrX±
σ(α)

)
⊗ tbαr

hα,rδ =
(
Hα + (−1)rHσ(α)

)
⊗ tr

hi,rδ = Hi ⊗ tr +H2n−i ⊗ (−t)r.

Remark that α∨
i = hi,0 for i ∈ I. Note that the element d defines a Z+-graded structure on

Cg: for α ∈ R̂, ĝα has grade k if

[d, xα] = k

or, equivalently, if α(d) = k. Note that the eigenvalues of d are all integers, and if ĝα ⊂ Cg,

then the eigenvalues are non-negative. This also defines a grading on U(Cg); In particular,

for γ1, · · · , γk ∈ R, the element (xγ1+r1δ)(xγ2+r2δ) · · · (xγk+rkδ) has grade r1 + r2 + · · · rk.
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Since Cg is graded, I can also introduce the notion of a graded Cg module. V is

considered to be a graded Cg module if it is Z-graded and the action of Cg respects this

grading; that is, for β ∈ R,

(xβ+sδ)V [r] ⊂ V [r + s].

I now denote the grade shift operator as τ∗s , which maps V [r] → V [r+ s] for r, s ∈ Z. That

is, for a Cg-graded module V , I have that τ∗s V is the graded Cg module V where the graded

pieces are shifted uniformly by s, but the action of Cg remains unchanged.

1.4 Local Weyl Module and Demazure Module

For λ ∈ P+, the local Weyl module, Wloc(λ), is defined as the cyclic Cg-module

generated by wλ subject to the following relations:

Cn+wλ = 0, Ch+wλ = 0, hα,0wλ = λ(α∨)wλ, (x−α)
λ(α∨)+1wλ = 0, (1.4.1)

for all α ∈ R+ [10]. By declaring the grade of wλ to be 0, Wloc(λ) becomes a graded

Cg-module. Remark that the 0th graded piece, Wloc(λ)[0], is V (λ).

Now, let (l, λ) ∈ Z+ × P+. For any α ∈ R+, I write λ(α∨) = (sα − 1)l + mα,

0 < mα ≤ l. Then by Theorem 5 in [10], the level l Demazure module is defined as the

quotient of Wloc(λ) by the submodule generated by the elements:

{(x−α+bαsαδ)wλ : α ∈ R+}
⋃

{(x−α+bα(sα−1)δ)
mα+1wλ : α ∈ R+, mα < l}. (1.4.2)

Consequently, for special twisted current algebras, I have that level one Demazure modules

are isomorphic to local Weyl modules (initially proven in [5]).

I will also use an equivalent presentation of D(l, λ) given in [5]. Let Φ0 be the root

system of Cℓ and Φ1 = (Φ0)s, i.e., the short roots of Φ0. The following was proved in [5]
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Proposition 1. As a module for Cg the Demazure module D(l, λ) is isomorphic to the

cyclic U(Cg)-module generated by a vector v ̸= 0 subject to the following relations:

For β ∈ Φ+
j , 0 ≤ j ≤ 1 I have:

(Cn+j ⊗ tjC[t2])v = 0 (1.4.3)

(x−β ⊗ t2s+j)kβ+1v = 0 where s ≥ 0, kβ = max

{
0, ⟨λ, β∨⟩ − 2(2s+ j)

⟨β, β⟩
l

}
(1.4.4)

(h⊗ t2s+j)v = δj,0δs,0λ(h)v ∀ h ∈ hj , s ≥ 0. (1.4.5)

Finally, I can introduce the generalized Demazure modules for Cg. First, consider

the tensor product τ∗sD(l, λ)⊗ τ∗s′D(l′, λ′), and then take the Cg module through wλ ⊗wλ′ .

In this thesis, I will give a presentation of the family of generalized Demazure modules of

the form

D(λ, µ) := U(Cg)(wλ ⊗ wµ) ⊂ D(1, λ)⊗D(1, µ),

with certain restrictions on the pair (λ, µ) ∈ P+ × P+.

The following result is proven as in [2] by replacing affine with twisted affine:

Lemma 2. There exists a (unique up to scalars) map ηλ,µ : D(λ, µ) → D(2, λ+ µ) → 0, of

Cg-modules extending the assignment wλ ⊗ wµ → w2,λ+µ.

8



Chapter 2

Main Results

Keeping the notation introduced in the previous chapter, with g a simple Lie

algebra of type Cℓ and Cg a twisted current algebra of type 2Ã2ℓ−1, I denote the following

roots of R+:

αi,j = αi + · · ·+ αj , 1 ≤ i ≤ j ≤ ℓ− 1

βi,j = αi + · · ·αj−1 + 2(αj + · · ·+ αℓ−1) + αℓ, 1 ≤ i < j ≤ ℓ

βj = 2(αj + · · ·+ αℓ−1) + αℓ, 1 ≤ j ≤ ℓ.

Note that

R+ = {αi,j : 1 ≤ i ≤ j ≤ ℓ− 1} ⊔ {βi,j : 1 ≤ i < j ≤ ℓ} ⊔ {βj : 1 ≤ j ≤ ℓ}.

Furthermore, for λ ∈ P+, I have

λ(α∨
i,j) = λ(α∨

i ) + · · ·+ λ(α∨
j )

λ(β∨i,j) = λ(α∨
i ) + · · ·+ λ(α∨

j−1) + 2(λ(α∨
j ) + · · ·+ λ(α∨

ℓ ))

λ(β∨j ) = λ(α∨
j ) + · · ·+ λ(α∨

ℓ ).

9



2.1 Interlacing Pairs

Let

P+(1) = {λ ∈ P+ : λ(α∨
i ) ≤ 1, 1 ≤ i ≤ ℓ}.

Note that any λ ∈ P+(1) can be written uniquely (up to order) as a sum λ = λ1+λ2 where

λk ∈ P+(1) for k = 1, 2 such that the following is satisfied for 1 ≤ i ≤ j ≤ ℓ:

λr(α
∨
i ) = 1 = λr(α

∨
j ) =⇒ λp(α

∨
s ) = 1 for some i < s < j, {r, p} = {1, 2}.

I call (λ1, λ2) ∈ P+×P+ an interlacing pair if λ1+λ2 ∈ P+(1), and the preceding condition

holds.

Examples. The pairs (ωi, 0) for 0 ≤ i ≤ ℓ and the elements of the set

{(ωi, ωj) : 0 ≤ i ̸= j ≤ ℓ} are interlacing. The pair (ω1 + ω4, ω5 + ω6) is not interlacing, but

the pair (ω1 + ω5, ω4 + ω6) is.

For an interlacing pair (λ1, λ2) with λ = λ1 + λ2, if λ = 0, set p = p′ = p′′ = 0. If λ = ωj ,

set p = j and p′ = p′′ = 0. If λ = ωi + ωj with i > j, set p = i, p′ = j, and p′′ = 0. If

λ(α∨
1,ℓ−1 + α∨

ℓ ) ≥ 3, let p > p′ > p′′ be maximal such that λ(α∨
p′′ + α∨

p′ + α∨
p ) = 3. I now

define ν ∈ P+ as (λ1, λ2)-compatible if ν(α∨
p−1) > 0 whenever p′ ̸= p− 1.

Throughout the rest of this chapter, I will assume that (λ1, λ2) is an interlacing pair, that

λ = λ1 + λ2, and that ν is (λ1, λ2)-compatible. Furthermore, the property of interlacing

pairs allows me to assume without loss of generality that whenever 1 ≤ p ≤ ℓ is maximal

such that λ(α∨
p ) > 0, then λ1(α

∨
p ) = λ(α∨

p ).

10



The following lemma was proved in [4], and will be useful for later.

Lemma 3. For all 1 ≤ i ≤ j ≤ ℓ− 1 and (λ1, λ2) interlacing, I have

|(λ1 − λ2)(α
∨
i,j)| ≤ 1,

and

|(λ1 − λ2)(α
∨)| ≤ dα for all other α ∈ R+.

2.2 Presentation of V (λ1 + ν, λ2 + ν)

For an interlacing pair (λ1, λ2) with λ = λ1+λ2 and a (λ1, λ2)-compatible ν ∈ P+,

I set

R(λ1, λ2) = {βi,j ∈ R+ : (λ1 − λ2)(β
∨
i,j) = ±2}

and define V (λ1 + ν, λ2 + ν) to be the Cg-module generated by wλ1+ν,λ1+ν satisfying the

following defining relations. For α ∈ R+ and αi with 1 ≤ i ≤ ℓ,

Cn+wλ1+ν,λ2+ν = 0, Ch+wλ1+ν,λ2+ν = 0, hα,0wλ1+ν,λ2+ν = (λ+2ν)(α∨)wλ1+ν,λ2+ν , (2.2.1)

(x−αi)
(λ+2ν)(α∨

i )+1wλ1+ν,λ2+ν = 0, (2.2.2)

(x−α+max{r1,α,r2,α}δ)wλ1+ν,λ2+ν = 0, (2.2.3)

(x−α+bα(sα−1)δ)
mα+1wλ1+ν,λ2+ν = 0, (2.2.4)

(x−β+sβδ)
2wλ1+ν,λ2+ν = 0 β ∈ R(λ1, λ2), (2.2.5)

where sα and mα are the unique positive integers such that (λ+2ν)(α∨) = 2(sα− 1)+mα,

0 < mα ≤ 2, and rj,α = bα((λj + ν)(α∨)) for j ∈ {1, 2}.

I can define a grading on V (λ1 + ν, λ2 + ν) by declaring the grade of wλ1+ν,λ2+ν

to be 0. Relations (2.2.1) and (2.2.2) show that V (λ1 + ν, λ2 + ν) is a quotient of the local

Weyl module Wloc(λ+ 2ν).
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Lemma 4. The assignments wλ1+ν,λ2+ν → w2,λ+2ν and wλ1+ν,λ2+ν → wλ1+ν⊗wλ2+ν define

surjective maps of Cg−modules.

ψλ1+ν,λ2+ν : V (λ1+ν, λ2+ν) → D(2, λ+2ν), ϕλ1+ν,λ2+ν : V (λ1+ν, λ2+ν) → D(λ1+ν, λ2+ν)

and ψλ1+ν,λ2+ν = ηλ1+ν,λ2+ν ◦ ϕλ1+ν,λ2+ν .

Proof. I’ll begin with ϕλ1+ν,λ2+ν . First, note that (x−α+kδ)wλj+ν = 0 for

k ≥ rj,α, j ∈ {1, 2}, α ∈ R+. Thus, relation (2.2.3) holds in D(λ1 + ν, λ2 + ν); that is,

(x−α+max{r1,α,r2,α}δ)(wλ1+ν ⊗ wλ2+ν) = 0.

As for relation (2.2.2), note that

(x−αi)
(λ+2ν)(α∨

i )+1(wλ1+ν ⊗ wλ2+ν)

=

(λ+2ν)(α∨
i )+1∑

k=0

(
(λ+ 2ν)(α∨

i ) + 1

k

)
(x−αi)

(λ+2ν)(α∨
i )+1−kwλ1+ν ⊗ (x−αi)

kwλ2+ν .

Since (x−αi)
(λj+ν)(α∨

i )+1wλj+ν = 0 for j = 1, 2, for values of k ≤ (λ2+ ν)(α∨
i ), the first part

of the tensor product is 0, and for k > (λ2 + ν)(α∨
i ), the second part of the tensor product

is 0. Hence, each term in this sum is 0; therefore,

(x−αi)
(λ+2ν)(α∨

i )+1(wλ1+ν ⊗ wλ2+ν) = 0.

Next, I will prove relation (2.2.4) holds. This will be done in several cases. First, recall that

sα and mα are the unique non-negative integers such that (λ+ 2ν)(α∨) = 2(sα − 1) +mα

with 0 < mα ≤ 2, and that

(x−α+bα(sα−1)δ)
mα+1(wλ1+ν ⊗ wλ2+ν)

=

mα+1∑
k=0

(x−α+bα(sα−1)δ)
kwλ1+ν ⊗ (x−α+bα(sα−1)δ)

mα+1−kwλ2+ν .
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In each case, I will show that every term in this sum is equal to 0.

For the first case, suppose α is short and that (λ + 2ν)(α∨) ≡ 0 mod2. Then

mα = 2 and bα = 1. For l = 1 and 2s+ j = bα(sα − 1), I have

⟨λ1 + ν, α∨⟩ − 2(2s+ j)

⟨α, α⟩
l = (λ1 + ν)(α∨)− (sα − 1)

= (λ1 + ν)(α∨)− (λ1 + λ2 + 2ν)(α∨)

2
+ 1 =

(λ1 − λ2)(α
∨)

2
+ 1.

Similarly,

⟨λ2 + ν, α∨⟩ − 2(2s+ j)

⟨α, α⟩
l =

(λ2 − λ1)(α
∨)

2
+ 1.

By Lemma 3, |(λ1 − λ2)(α
∨)| ≤ dα. By assumption, (λ1 + λ2 + 2ν)(α∨) ≡ 0 mod2, and

hence, (λ1−λ2)(α∨) ≡ 0 mod2. Thus, (λ1−λ2)(α∨) ∈ {0,±2}. Suppose (λ1−λ2)(α∨) = 2.

Then (λ2 − λ1)(α
∨) = −2 and by relation (1.4.4), I have

(x−α+bα(sα−1)δ)
3wλ1+ν = 0 and (x−α+bα(sα−1)δ)wλ2+ν = 0.

Hence,

(x−α+bα(sα−1)δ)
mα+1(wλ1+ν ⊗ wλ2+ν) = 0.

The argument is symmetric when (λ1 − λ2)(α
∨) = −2. Alternatively, if (λ1 − λ2)(α

∨) = 0,

then (λ2 − λ1)(α
∨) = 0, and by relation (1.4.4), I have (x−α+bα(sα−1)δ)

2wλi+ν = 0 for

i = 1, 2 and again the relation holds.
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Now suppose α is short and that (λ + 2ν)(α∨) ≡ 1 mod2. Then mα = 1 and

bα = 1. For l = 1 and 2s+ j = bα(sα − 1), I have

⟨λ1+ν, α∨⟩− 2(2s+ j)

⟨α, α⟩
l = (λ1+ν)(α

∨)− (sα−1) = (λ1+ν)(α
∨)− (λ1 + λ2 + 2ν)(α∨)− 1

2

=
(λ1 − λ2)(α

∨) + 1

2
.

Similarly,

⟨λ2 + ν, α∨⟩ − 2(2s+ j)

⟨α, α⟩
l =

(λ2 − λ1)(α
∨) + 1

2
.

Again, I use the fact that |(λ1 − λ2)(α
∨)| ≤ dα along with my assumption that

(λ1 + λ2 +2ν)(α∨) ≡ 1 mod2 to conclude that (λ1 − λ2)(α
∨) ∈ {±1}. If (λ1 − λ2)(α

∨) = 1,

then (λ2 − λ1)(α
∨) = −1 and by relation (1.4.4), I have

(x−α+(sα−1)δ)
2wλ1+ν = 0 = (x−α+(sα−1)δ)wλ2+ν

and hence, (x−α+bα(sα−1)δ)
mα+1(wλ1+ν ⊗ wλ2+ν) = 0. Again, the argument is symmetric

when (λ1 − λ2)(α
∨) = −1.

Now suppose α is a long root and that (λ+2ν)(α∨) ≡ 0 mod2. Then mα = 2 and

bα = 2. For l = 1 and 2s+ j = bα(sα − 1), I have

⟨λ1 + ν, α∨⟩ − 2(2s+ j)

⟨α, α⟩
l = (λ1 + ν)(α∨)− (sα − 1)

= (λ1 + ν)(α∨)− (λ1 + λ2 + 2ν)(α∨)

2
+ 1.

Similarly,

⟨λ2 + ν, α∨⟩ − 2(2s+ j)

⟨α, α⟩
l = (λ2 + ν)(α∨)− (λ1 + λ2 + 2ν)(α∨)

2
+ 1.
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Lemma 3, along with my assumption that (λ+ 2ν)(α∨) ≡ 0 mod2, implies that

(λ1 − λ2)(α
∨) = 0, and hence λ1(α

∨) = λ2(α
∨). Thus,

(λ1 + ν)(α∨)− (λ1 + λ2 + 2ν)(α∨)

2
+ 1 = 1 = (λ2 + ν)(α∨)− (λ1 + λ2 + 2ν)(α∨)

2
+ 1,

so by relation (1.4.4), (x−α+bα(sα−1)δ)
2wλi+ν = 0 for i = 1, 2. Therefore,

(x−α+bα(sα−1)δ)
mα+1(wλ1+ν ⊗ wλ2+ν) = 0.

Finally, suppose α is long and (λ+ 2ν)(α∨) ≡ 1 mod2. For l = 1 and

2s+ j = bα(sα − 1), I have

⟨λ1+ν, α∨⟩−2(2s+ j)

⟨α, α⟩
l = (λ1+ν)(α

∨)−(sα−1) = (λ1+ν)(α
∨)− (λ1 + λ2 + 2ν)(α∨) + 1

2
+1.

Similarly,

⟨λ2 + ν, α∨⟩ − 2(2s+ j)

⟨α, α⟩
l = (λ2 + ν)(α∨)− (λ1 + λ2 + 2ν)(α∨) + 1

2
+ 1.

In this case, I have |(λ1 − λ2)(α
∨)| ≤ 1 and mα = 1, and thus λ1(α

∨) = λ2(α
∨)± 1.

Suppose λ1(α
∨) = λ2(α

∨)− 1. Then

(λ1 + ν)(α∨)− (λ1 + λ2 + 2ν)(α∨) + 1

2
+ 1 = (λ1 + ν)(α∨)− (λ1 + ν)(α∨) = 0,

and

(λ2 + ν)(α∨)− (λ1 + λ2 + 2ν)(α∨) + 1

2
+ 1 = (λ2 + ν)(α∨)− (λ2 + ν)(α∨) + 1 = 1.

Thus, by relation (1.4.4),

(x−α+bα(sα−1)δ)wλ1+ν = 0 = (x−α+bα(sα−1)δ)
2wλ2+ν ,

so the relation holds. The case when λ1(α
∨) = λ2 + 1 is symmetric.
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Lastly, I’ll show that relation (2.2.5) holds in D(λ1 + ν, λ2 + ν) as well; that is,

(x−β+sβδ)
2(wλ1+ν ⊗ wλ2+ν) = 0 for β ∈ R(λ1, λ2).

First, assume β ∈ R(λ1, λ2). Then for l = 1 and 2s+ j = sβ, I have

⟨λ1 + ν, β∨⟩ − (2s+ j) = (λ1 + ν)(β∨)− (λ1 + λ2 + 2ν)(β∨)

2
=

(λ1 − λ2)(β
∨)

2
.

Similarly,

⟨λ2 + ν, β∨⟩ − (2s+ j) =
(λ2 − λ1)(β

∨)

2
.

Now since β ∈ R(λ1, λ2), I have (λ1 − λ2)(β
∨) = ±2. By my convention, λ1(α

∨
p ) = λ(α∨

p ),

so I can conclude that (λ1 − λ2)(β
∨) = 2, in which case (λ2 − λ1)(β

∨) = −2. Then by

relation (1.4.4), (x−β+sβδ)
2wλ1+ν = 0 and (x−β+sβδ)wλ2+ν = 0; hence,

(x−β+sβδ)
2(wλ1+ν ⊗ wλ2+ν) = 0 for β ∈ R(λ1, λ2).

Now that the existence of ϕλ1+ν,λ2+ν has been established, the map ψλ1+ν,λ2+ν is obvious.

2.3 Main Theorem

The following is the main result of this thesis.

Theorem 5. Let (λ1, λ2) ∈ P+ × P+ be an interlacing pair with λ = λ1 + λ2, and let

ν ∈ P+ be

(λ1, λ2)-compatible. The map

ϕλ1+ν,λ2+ν : V (λ1 + ν, λ2 + ν) → D(λ1 + ν, λ2 + ν)

is an isomorphism.
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2.4 First Reduction

This theorem will be proved in several steps. The first reduction is the following

proposition which provides a condition for the generalized Demazure module to be

isomorphic to a Demazure module.

Proposition 6. If λ = ωi−1 + ωi for 0 ≤ i ≤ ℓ, then for all (λ1, λ2)-compatible ν ∈ P+, I

have

V (λ1 + ν, λ2 + ν) ∼= D(2, 2ν + λ) ∼= D(λ1 + ν, λ2 + ν).

2.5 βλ and ν0

Suppose that λ ̸= ωi−1 + ωi for 0 ≤ i ≤ ℓ, and set

βλ = βs,p, with s =


p− 1 p′ ̸= p− 1

p′′ p′ = p− 1.

Observe that λ1(β
∨
λ ) = 3− δs,p−1 and λ2(β

∨
λ ) = 1− δs,p−1.

Lemma 7. Suppose that λ ̸= ωi−1 + ωi for 0 ≤ i ≤ ℓ. Then λ1 − βλ ∈ P+ and there exists

ν0 ∈ P+ such that (λ1 − βλ − ν0, λ2 − ν0) is an interlacing pair.

Proof. With my assumptions, it is clear to see that

λ1 − βλ = λ1 − ωp + (1− δs,p−1)ωp−1 − (1− δs,p−1)ωs + ωs−1 ∈ P+.

Taking ν0 = λ2(α
∨
s−1)ωs−1 + (1− δs,p−1)λ2(α

∨
p−1)ωp−1, it is easy to verify that

(λ1−βλ−ν0, λ2−ν0) is interlacing, and that ν0+ν is (λ1−βλ−ν0, λ2−ν0)-compatible.

2.6 Second Reduction

The next reduction is the following proposition which establishes an upper bound

on the dimension of V (λ1 + ν, λ2 + ν).
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Proposition 8. Suppose that λ ̸= ωi−1 + ωi for 0 ≤ i ≤ ℓ. Then there exists a right exact

sequence of Cg-modules

τ∗r1,βλ−1V (λ1 + ν − βλ, λ2 + ν) → V (λ1 + ν, λ2 + ν) → D(2, λ+ 2ν) → 0

with wλ1+ν−βλ,λ2+ν → (x−βλ+(r1,βλ−1)δ)wλ1+ν,λ2+ν .

2.7 Inclusion of Level One Demazure Modules

Assuming Proposition 6 and Proposition 8, I complete the proof of Theorem 5 via

an induction with respect to the partial order on P+. The minimal elements with respect to

this order are 0 and ω1, and Proposition 6 shows that induction begins. It also establishes

the theorem when λ = ωi−1 + ωi for 0 ≤ i ≤ ℓ. Hence, it suffices to prove the inductive

step when λ ̸= ωi−1 + ωi. The following result is necessary to complete the proof of the

inductive step.

Lemma 9. There exists an inclusion of Cg modules

τ∗r1,βλ−1D(1, λ1 + ν − βλ) ↪→ D(1, λ1 + ν),

which sends wλ1+ν−βλ
→ (x−βλ+(r1,βλ−1)δ))wλ1+ν .

Proof. Since it was proven in [5] that level one Demazure modules of special

twisted current algebras are isomorphic to local Weyl modules, it suffices to show that

w := (x−βλ+(r1,βλ−1)δ))wλ1+ν satisfies the relations in (1.4.1).
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Now, suppose αi ∈ R+ is simple. Then

(xαi+kδ)w = (xαi+kδ)(x−βλ+(r1,βλ−1)δ)wλ1+ν

= (x−(βλ−αi)+(k+r1,βλ−1)δ)wλ1+ν .

If βλ − αi /∈ R+ or if k > 0, the above equations equals 0, so assume βλ − αi ∈ R+ and

k = 0. Then I must have either i = p or i = s, in which case

(λ1 + ν)((βλ − αi)
∨) ≤ (λ1 + ν)(β∨λ )− 1 = r1,βλ

− 1.

Hence,

(x−(βλ−αi)+(r1,βλ−1)δ)wλ1+ν = 0.

Now for α ∈ R+ and k ≥ 0, consider

(hα,kδ)w = (hα,kδ)(x−βλ+(r1,βλ−1)δ)wλ1+ν .

If k > 0, then I have

(xβλ+(r1,βλ−1+k)δ)wλ1+ν = 0

and if k = 0, the relation is trivial. Thus, the first three relations of (1.4.1) hold. Finally,

the last relation holds because the modules are all finite-dimensional.

2.8 Main Induction Argument

Lemma 4, Proposition 8, and the inductive hypothesis establish the following

inequalities:

dimD(λ1 + ν, λ2 + ν) ≤ dimV (λ1 + ν, λ2 + ν)

dimV (λ1 + ν, λ2 + ν) ≤ dimD(2, 2ν + λ) + dimD(λ1 + ν − βλ, λ2 + ν).
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The inductive step follows if I prove that

dimD(λ1 + ν, λ2 + ν) = dimD(2, 2ν + λ) + dimD(λ1 + ν − βλ, λ2 + ν).

Observe that Lemma 9 gives an inclusion

0 → D(1, λ1 + ν − βλ)⊗D(1, λ2 + ν) → D(1, λ1 + ν)⊗D(1, λ2 + ν),

which sends

wλ1+ν−βλ
⊗ wλ2+ν → ((x−βλ+(r1,βλ−1)δ)wλ1+ν)⊗ wλ2+ν .

Since r1,βλ
− 1 = (λ1 + ν)(β∨λ )− 1 ≥ (λ2 + ν)(β∨λ ), the relations in (1.4.2) show that

(x−βλ+(r1,βλ−1)δ)(wλ1+ν ⊗ wλ2+ν) = ((x−βλ+(r1,βλ−1)δ)wλ1+ν)⊗ wλ2+ν .

Hence, I have an inclusion

ι : D(λ1 + ν − βλ, λ2 + ν) ↪→ D(λ1 + ν, λ2 + ν)

and it suffices to prove that the corresponding quotient is isomorphic to D(2, 2ν + λ). By

Lemma 4 I have the following surjective maps:

V (λ1 + ν, λ2 + ν) ↠ D(λ1 + ν, λ2 + ν) ↠ D(2, 2ν + λ).

These maps are all unique up to scalars and Proposition 8 shows that the kernel of the

composite map is generated by the element (x−βλ+(r1,βλ−1)δ)wλ1+ν,λ2+ν . Hence, the kernel

of

D(λ1 + ν, λ2 + ν) ↠ D(2, 2ν + λ)

is generated by (x−βλ+(r1,βλ−1)δ)(wλ1+ν ⊗ wλ2+ν). But this means that the latter kernel is

precisely the image of ι and hence the corresponding quotient is isomorphic to D(2, 2ν+λ)

as needed.
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Chapter 3

Proof of Proposition 6

I shall assume throughout this chapter that (λ1, λ2) is interlacing, and that

λ = λ1 + λ2. I shall also assume that, when there exists p maximal such that λ(α∨
p ) = 1,

I have λ1(α
∨
p ) = 1.

3.1 Minimal Element of R(λ1, λ2)

Note that Lemma 3 shows that R(λ1, λ2) = ∅ if λ = ωi−1 + ωi for 0 ≤ i ≤ ℓ. The following

result establishes the converse.

Lemma 10. Suppose that λ ̸= ωi−1 + ωi for 0 ≤ i ≤ ℓ. Then βλ ∈ R(λ1, λ2) and more

generally,

βi,j ∈ R(λ1, λ2) ⇐⇒ βi,j = αi,s−1 + αj,p−1 + βλ,

and

(λ1 − λ2)(α
∨
i,s−1) = 0 = (λ1 − λ2)(α

∨
j,p−1).
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Proof. Recall that βλ = βs,p, with s =


p− 1 p′ ̸= p− 1

p′′ p′ = p− 1

where p′′ < p′ < p are

maximal such that λ(α∨
p′′ + α∨

p′ + α∨
p ) = 3.

By my convention, I have λ1(α
∨
p ) = 1, so by the interlacing property of (λ1, λ2),

I have λ2(α
∨
p′) = 1 = λ1(α

∨
p′′). It is easy to see that (λ1 − λ2)(α

∨
βλ
) = 2, and a calculation

shows that

βi,j ∈ R(λ1, λ2) =⇒ i ≤ s or s < j ≤ p,

which shows that βi,j = αi,s−1 + αj,p−1 + βλ. Since βi,p ∈ R+ if i < s, I have

(λ1 − λ2)(β
∨
i,p) = (λ1 − λ2)(α

∨
i,s−1) + 2.

Note that Lemma 3 forces (λ1 − λ2)(α
∨
i,s−1) ∈ {−1, 0}. Similarly, if j < p, I have

βs,j = βλ + αj,p−1 and (λ1 − λ2)(α
∨
j,p−1) ∈ {−1, 0}. If βi,j ∈ R(λ1, λ2), then

(λ1 − λ2)(β
∨
i,j) = ±2, hence (λ1 − λ2)(α

∨
i,s−1) = 0 = (λ1 − λ2)(α

∨
j,p−1), as needed.

3.2 Kernel of ψλ1+ν,λ2+ν

By observing the relations of D(2, λ + 2ν), it is easy to see that the kernel K of

the map ψλ1+ν,λ2+ν is generated by the elements

(x−α+bαsαδ)wλ1+ν,λ2+ν

where bαsα < max{r1,α, r2,α}.
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Lemma 11. For α ∈ R+, bαsα < max{r1,α, r2,α} ⇐⇒ α ∈ R(λ1, λ2).

Proof. Note that (λi + ν)(α∨) =
ri,α
bα

. Thus, I have

(λ+ 2ν)(α∨) = 2(sα − 1) +mα =
r1,α + r2,α

bα
,

sα =
r1,α + r2,α

2bα
+ 1− mα

2
,

and

(λ1 − λ2)(α
∨) =

r1,α − r2,α
bα

.

First, suppose α ∈ R+ is a long root. Then by Lemma 3, I have

∣∣∣∣r1,α − r2,α
bα

∣∣∣∣ = ∣∣∣∣r1,α − r2,α
2

∣∣∣∣ ≤ 1.

Since r1,α − r2,α is necessarily even, r1,α − r2,α ∈ {0,±2}. If r1,α − r2,α = 0, then

sα =
r1,α
2

+ 1− mα

2
.

Since sα ∈ Z+ and r1,α is even, I must have mα = 2, so this simplifies to

sα =
r1,α
2
.

Thus, bαsα = max{r1,α, r2,α}.

Next, consider the case when r1,α − r2,α = 2. Then I have

sα =
2r2,α + 2

4
+ 1− mα

2
=
r2,α + 1

2
+ 1− mα

2
.

Since r2,α is even, I must have mα = 1, and hence

sα =
r2,α
2

+ 1.
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Therefore

bαsα = r2,α + 2 = r1,α = max{r1,α, r2,α}.

The argument is symmetric when r1,α − r2,α = −2.

Now suppose α is short. Lemma 3 shows that

|r1,α − r2,α| ≤ 2.

Since ri,α is not necessarily even when α is short, without loss of generality, I have three

cases to consider.

Case 1: r1,α = r2,α. Then

sα = r1,α + 1− mα

2
.

Again I must have mα = 2, and thus bαsα = r1,α = max{r1,α, r2,α}.

Case 2: r1,α = r2,α + 1. Then

sα = r2,α +
3−mα

2
.

In this case, I must have mα = 1, and hence

bαsα = r2,α + 1 = r1,α = max{r1,α, r2,α}.

Case 3: r1,α = r2,α + 2. Note, this is only possible for α = βi,j for some 1 ≤ i < j ≤ ℓ since

by Lemma 3, |(λ1 − λ2)(α
∨
i,j)| ≤ 1. In this case I have

sα = r2,α + 2− mα

2
.

Then mα = 2, and I have

bαsα = r2,α + 1 < r1,α = max{r1,α, r2,α}.
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This occurs precisely when α ∈ R(λ1, λ2). Moreover, in this case, bαsα = r1,α − 1.

Assume that λ = ωi−1 + ωi for 0 ≤ i ≤ ℓ. Then by Lemma 3, R(λ1, λ2) = ∅, and

hence by Lemma 11, I have

V (λ1 + ν, λ2 + ν) ∼= D(2, 2ν + λ).

Since the maps in Lemma 4 are unique up to scalars, it follows that the map

V (λ1 + ν, λ2 + ν) ↠ D(λ1 + ν, λ2 + ν) ↠ D(2, 2ν + λ)

is an isomorphism, and hence all maps are isomorphisms. Thus, Proposition 6 is proved.
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Chapter 4

Proof of Proposition 8

I shall again assume throughout this chapter that (λ1, λ2) is interlacing, and that

λ = λ1 + λ2. I shall also assume that, when there exists p maximal such that λ(α∨
p ) = 1,

I have λ1(α
∨
p ) = 1.

4.1 βλ and the Kernel of ψλ1+ν,λ2+ν

I begin by considering the map ψλ1+ν,λ2+ν : V (λ1 + ν, λ2 + ν) → D(2, λ+ 2ν). As

Lemma 11 shows that the kernel K of ψλ1+ν,λ2+ν is generated by

(x−β+bβsβδ)wλ1+ν,λ2+ν for β ∈ R(λ1, λ2),

I can now proceed with the proof of Proposition 8 by first proving that, in fact,

K = U(Cg)(x−βλ+(r1,βλ−1)δ)wλ1+ν,λ2+ν .

To this end, let βi,j ∈ R(λ1, λ2), and assume that i ≤ s − 1 or j ≤ p − 1 (else,

βi,j = βλ and there’s nothing to prove). By Lemma 10, I can write βi,j = βλ+αi,s−1+αj,p−1.
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Because of the defining relations

(x−αi,s−1+(λ1+ν)(α∨
i,s−1)δ

)wλ1+ν,λ2+ν = 0 = (x−αj,p−1+(λ1+ν)(α∨
j,p−1)δ

)wλ1+ν,λ2+ν ,

I have the following equivalences:

(x−αi,s−1+(λ1+ν)(α∨
i,s−1)δ

)(x−αj,p−1+(λ1+ν)(α∨
j,p−1)δ

)(x−βλ+(r1,βλ−1)δ)wλ1+ν,λ2+ν

= (x−(βλ+αi,s−1+αj,p−1)+((λ1+ν)(β∨
λ+α∨

i,s−1+α∨
j,p−1)−1)δ)wλ1+ν,λ2+ν

= (x−βi,j+((λ1+ν)(β∨
i,j)−1)δ)wλ1+ν,λ2+ν .

4.2 Map from V (λ1 + ν − βλ, λ2 + ν) → K

The next step in the proof of Proposition 8 is to establish the existence of the map

V (λ1 + ν − βλ, λ2 + ν) → K → 0

by showing that the element (x−βλ+(r1,βλ−1)δ)wλ1+ν,λ2+ν satisfies all of the defining relations

of the element wλ1+ν−βλ,λ2+ν ∈ V (λ1 + ν − βλ, λ2 + ν). This will be done over several

different cases. I will begin by showing that (x−βλ+(r1,βλ−1)δ)wλ1+ν,λ2+ν satisfies the local

Weyl module relations; that is, relations (2.2.1) and (2.2.2).

4.2.1 Relations (2.2.1) and (2.2.2)

The first of the local Weyl module relations I will show is that

(xαi+rδ)(x−βλ+(r1,βλ−1)δ)wλ1+ν,λ2+ν = 0 for r ≥ 0.

Since (xαi+rδ)wλ1+ν,λ2+ν = 0, the relation is immediate if βλ − αi /∈ R+. Thus, I’ll assume

that βλ − αi ∈ R+ and show that

(x−(βλ−αi)+(r1,βλ−1+r)δ)wλ1+ν,λ2+ν = 0.
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Since βλ = βs,p and βλ − αi ∈ R+, I must have either i = p or i = s. If i = s = p′′

or i = p, I have that (λ1 − λ2)(β
∨
λ ) = 2, and λ1(α

∨
i ) = 1. Thus,

max{r1,βλ−αi
, r2,βλ−αi

} = r1,βλ−αi
≤ r1,βλ

− 1.

Now, when i = s = p− 1, since ν is (λ1, λ2) compatible, I must have ν(α∨
p−1) ≥ 1.

In this case, I have βλ − αp−1 = βp, and hence,

r1,βp = 2(λ1 + ν)(βp) = 2 + 2ν(β∨p ) ≤ 2 + 2ν(β∨p ) + ν(α∨
p−1)− 1

= r1,βλ
− 1 = max{r1,βλ−αi

, r2,βλ−αi
}.

Therefore,

(x−(βλ−αi)+(r1,βλ−1)δ)wλ1+ν,λ2+ν = 0,

and hence,

(x−(βλ−αi)+(r1,βλ−1+r)δ)wλ1+ν,λ2+ν = 0

for r ≥ 0. Finally, it is clear to see that

(hi,rδ)(x−βλ+(r1,βλ−1)δ)wλ1+ν,λ2+ν = δr,0(λ+ 2ν − βλ)(α
∨
i )(x−βλ+(r1,βλ−1)δ)wλ1+ν,λ2+ν ,

and relation (2.2.2) holds because V (λ1 + ν, λ2 + ν) is finite dimensional.

4.2.2 Relation (2.2.3)

Next, let α ∈ R+ and set r′1,α = bα(λ1+ν−βλ)(α∨). I’ll show that relation (2.2.3)

holds; that is,

(x−α+(max{r′1,α,r2,α})δ)(x−βλ+(r1,βλ−1)δ)wλ1+ν,λ2+ν = 0.

This will be done in several cases. First, suppose that βλ(α
∨) = 0. Then r1,α = r′1,α, so

the relation is immediate if βλ + α /∈ R+. Thus, I assume that βλ + α ∈ R+. This is
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only possible for βλ = βp′′,p, and in this case, I must have α = αp′′,p−1. However, note that

λk(α
∨
p′′,p−1) = 1 for k ∈ {1, 2}, and thus

max{r′1,αp′′,p−1
, r2,αp′′,p−1

}+ r1,βλ
− 1 = 3 + 2ν(β∨p′′) ≡ 1 mod 2.

Because βλ + αp′′,p−1 = βp and βp is a long root, I conclude that

[(x−αp′′,p−1+(max{r′1,αp′′,p−1
,r2,αp′′,p−1

})δ), (x−βλ+((λ1+ν)(β∨
λ )−1)δ)] = 0,

and thus, the relation holds.

Now suppose βλ(α
∨) = −1. By lemma 3, |(λ1 − λ2)(α

∨)| ≤ 1. Hence,

r′1,α = max{r′1,α, r2,α} ≥ max{r1,α, r2,α}, and r1,α+βλ
= max{r1,α+βλ

, r2,α+βλ
}.

Thus, the relation is again immediate unless βλ + α ∈ R+, so I assume βλ + α ∈ R+. Note

that when βλ = βp′′,p, I must have either α = αi,p′′−1 for 1 ≤ i ≤ p′′ − 1 or α = αi,p−1 for

1 ≤ i ̸= p′′ ≤ p− 1, and when βλ = βp−1,p, I must have α = αi,p−2 for 1 ≤ i ≤ p− 2. In all

of these cases,

r′1,α = (λ1 + ν − βλ)(α
∨) = (λ1 + ν)(α∨) + 1

and hence,

r′1,α + r1,βλ
− 1 = (λ1 + ν)(α∨) + (λ1 + ν)(β∨λ )

= (λ1 + ν)(α∨ + β∨λ ) = bα(λ1 + ν)((α+ βλ)
∨) = r1,α+βλ

.

Thus, the relation holds.

Now consider the case when βλ(α
∨) = 1. Then βλ+α /∈ R+, and either βλ−α ∈ R+

or α − βλ ∈ R+. Note, if r2,α ≥ r1,α, then r2,α = max{r′1,α, r2,α} = max{r1,α, r2,α} and

the relation is immediate. Suppose first that βλ − α ∈ R+; I will begin with the case that
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r1,α = r2,α + 2. Then I must have α = βp. Thus, bα = 2 and since λ(α∨) = 1, I have that

mα = 1; hence, (λ+2ν)(α∨) = 2(sα−1)+mα implies that 2ν(α∨) = bα(sα−1). Therefore,

r′1,α = bα(λ1 + ν − βλ)(α
∨) = 2(ν(α∨)) = bα(sα − 1). Now, by relation (2.2.4), it is clear

that

(x−(βλ−α)+(r1,βλ−α+1)δ)(x−α+bα(sα−1)δ)
2wλ1+ν,λ2+ν = 0.

Thus, I conclude that

0 = (x−(βλ−α)+(r1,βλ−α+1)δ)(x−α+r′1,αδ
)2wλ1+ν,λ2+ν

= 2(x−α+r′1,αδ
)(x−βλ+(r1,βλ−1)δ)wλ1+ν,λ2+ν ,

showing that the relation holds. Similarly, if r1,α = r2,α + 1, then I either have α = βi,p

for s < i ≤ p′, α = αp,j for p ≤ j ≤ ℓ, or α = αs,k for s ≤ k < p′. In all three cases,

I have that bα = 1 and mα = 1. When α = αp,j or α = αs,k, I have that λ(α∨) = 1;

hence, (λ+ 2ν)(α∨) = 2(sα − 1) +mα implies that 2ν(α∨) = 2(sα − 1), so ν(α∨) = sα − 1.

Additionally, in this case, r′1,α = (λ1 + ν − βλ)(α
∨) = ν(α∨). Thus,

r′1,α = sα − 1 = bα(sα − 1), so by the same argument, the relation holds in these two cases.

Lastly, when α = βi,p, I have λ2(β
∨
i,p) = 1 and λ1(β

∨
i,p) = 2; hence,

1 + ν(β∨i,p) = sβi,p
− 1. In this case, r′1,α = 1+ ν(β∨i,p) = bα(sβi,p

− 1) as well, so the relation

holds in all three cases.

Now suppose α− βλ ∈ R+. If r1,α = r2,α + 2, then either α = βi,j > βλ or α = βs,

and if r1,α = r2,α + 1, then either α = βi,p for 1 ≤ i ≤ s − 1 or α = βi,s for 1 ≤ i ≤ s − 1.

In any case, since λ1(β
∨
λ ) = λ2(β

∨
λ ) + 2, I have that (λ1 + ν)(β∨λ ) − 1 = sβλ

, and hence,

r1,α−βλ
+ sβλ

= r1,α − 1.
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Thus, by relation (2.2.5),

0 = (x−(α−βλ)+(r1,α−βλ
)δ)(x−βλ+sβλδ

)2wλ1+ν,λ2+ν

= 2(x−α+r1,α−1)(x−βλ+(r1,βλ−1)δ)wλ1+ν,λ2+ν

= 2(x−α+r′1,α
)(x−βλ+(r1,βλ−1)δ)wλ1+ν,λ2+ν ,

and therefore, the relation holds.

Now when βλ(α
∨) = 2, α must be βλ, and I have

(x−βλ+r′1,βλ
δ)(x−βλ+(r1,βλ−1)δ)wλ1+ν,λ2+ν

= (x−βλ+(r1,βλ−2)δ)(x−βλ+(r1,βλ−1)δ)wλ1+ν,λ2+ν .

Note that (x−βλ+(r1,βλ−2)δ)(x−βλ+(r1,βλ−1)δ)wλ1+ν,λ2+ν = 0 in Wloc(λ+ 2ν), and hence, the

relation also holds in V (λ1 + ν, λ2 + ν).

4.2.3 Relation (2.2.4)

Next, I must show that relation in (2.2.4) holds, i.e., for α ∈ R+

(x−α+(bα(s′α−1))δ)
m′

α+1(x−βλ+(r1,βλ−1)δ)wλ1+ν,λ2+ν = 0

where s′α and m′
α are the unique nonnegative integers satisfying

(λ+ 2ν − βλ)(α
∨) = 2(s′α − 1) +m′

α.

This will also be done in several cases. First, if βλ(α
∨) = 0, then α+ βλ /∈ R+, m′

α = mα,

and s′α = sα, so the relation holds.

Now suppose βλ(α
∨) = −1. Again, if βλ + α /∈ R+ the relation is immediate, so

assume that βλ + α ∈ R+. As before, if βλ = βp′′,p, I must have either α = αi,p′′−1 for
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1 ≤ i ≤ p′′ − 1, or α = αi,p−1 for 1 ≤ i ̸= p′′ ≤ p − 1, and if βλ = βp−1,p, then α = αi,p−2

for 1 ≤ i ≤ p − 2. In any case, I have two subcases to consider. First, if m′
α = 1, then

mα = 2 and sα = s′α − 1. Since mα = 2, (λ + 2ν)(α∨) is even, so by Lemma 3, I have

λ1(α
∨) = λ2(α

∨), and so r1,α = r2,α = sα. Thus,

(x−α+(bα(s′α−1))δ)
m′

α+1(x−βλ+(r1,βλ−1)δ)wλ1+ν,λ2+ν

= (x−α+sαδ)
2(x−βλ+(r1,βλ−1)δ)wλ1+ν,λ2+ν

= (x−α+sαδ)(x−βλ+(r1,βλ,ν−1)δ)(x−α+sαδ)wλ1+ν,λ2+ν

+(x−(βλ+α)+(r1,βλ,ν+sα−1)δ)(x−α+sαδ)wλ1+ν,λ2+ν = 0

by relation (2.2.3).

Now, if m′
α = 2, then mα = 1 and sα = s′α, and thus,

(x−α+(s′α−1)δ)
3(x−βλ+(r1,βλ−1)δ)wλ1+ν,λ2+ν

= (x−(βλ+α)+(r1,βλ+sα−2)δ)(x−α+(sα−1)δ)
2wλ1+ν,λ2+ν

+(x−α+(sα−1)δ)(x−βλ+(r1,βλ−1)δ)(x−α+(sα−1)δ)
2wλ1+ν,λ2+ν

with both terms equal to 0 by relation (2.2.4).

Next, suppose βλ(α
∨) = 1. Then either βλ − α ∈ R+ or α − βλ ∈ R+. First,

consider the case when βλ−α ∈ R+. In this case, either α = βi,p for s < i ≤ p′, α = αp,j for

p ≤ j ≤ ℓ, α = αs,k for s ≤ k < p′, or α = βp. If α = βi,p, then (λ+2ν)(β∨i,p) = 3+2ν(β∨i,p),

so I have mβi,p
= 1; hence, m′

βi,p
= 2 and sβi,p

= s′βi,p
+ 1. Similarly, if α = αs,k or if

α = αp,j , then (λ + 2ν)(α∨) = 1 + 2ν(α∨), in which case mα = 1, and hence m′
α = 2 and

sα = s′α + 1.
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For the subalgebras sl2[t] ⊂ Cg corresponding to the short roots α = βi,p, α = αs,k,

and α = αp,j , I have the following.

Lemma 12. There exists a homomorphism of sl2[t] modules D(2, λ+2ν) → V (λ1+ν, λ2+ν)

mapping generator to generator.

Proof. By Theorem 2 in [3], I need to show

(x−α+sαδ)wλ1+ν,λ2+ν = 0 (4.2.1)

(xα+(sα−1)δ)
mα+1wλ1+ν,λ1+ν = 0 (4.2.2)

for α = βi,p, α = αp,j , and α = αs,k.

Note, (4.2.2) is immediate by relation (2.2.4). To show (4.2.1) holds, observe:

sβi,p
=

1

2
((λ+ 2ν)(β∨i,p) + 1)

=
1

2
(r1,βi,p

+ r2,βi,p
+ 1)

= r1,βi,p
= max{r1,βi,p

, r2,βi,p
},

and similarly, when α = αs,k or α = αp,j ,

sα = 1 + ν(α∨) = r1,α = max{r1,α, r2,α}.

Hence, (4.2.1) holds by relation (2.2.3).
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Using this Lemma, along with the presentation of Demazure modules given in 3.5

of [3] (originally defined in [6] and [11]), I have that

(x−α+(sα−2)δ)
4wλ1+ν,λ2+ν = 0

for α = βi,p, α = αp,j , and α = αs,k. Also note that, in all three cases,

r1,βλ
− sα + 1 ≥ r1,(βλ−α) = max{r1,(βλ−α), r2,(βλ−α)}.

Hence, I have

0 = (x−(βλ−α)+(r1,βλ−sα+1)δ)(x−α+(sα−2)δ)
4wλ1+ν,λ2+ν

= (x−α+(sα−2)δ)
3(x−βλ+(r1,βλ−1)δ)wλ1+ν,λ2+ν

+(x−α+(sα−2)δ)
4(x−(βλ−α)+(r1,βλ−sα+1)δ)wλ1+ν,λ2+ν

= (x−α+(sα−2)δ)
3(x−βλ+(r1,βλ−1)δ)wλ1+ν,λ2+ν .

Now suppose α = βp. Then λ+ 2ν(β∨p ) = 1 + 2ν(β∨p ), so I have mβp = 1,

sβp = ν(β∨p ) + 1, and bβp = 2. Hence, in this case I must show that

(x−βp+2(sβp−2)δ)
3(x−βλ+r1,βλ−1)δ)wλ1+ν,λ2+ν = 0.

To accomplish this, I’ll prove another, similar lemma; that is, for the subalgebra sl2[t
2] ⊂ Cg

corresponding to the long root α = βp,

Lemma 13. There exists a homomorphism of sl2[t
2] modules

D(2, λ+ 2ν) → V (λ1 + ν, λ2 + ν) mapping generator to generator.
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Proof. To prove this lemma, I must show that the following equations hold in

V (λ1 + ν, λ2 + ν):

(x−βp+2sβpδ
)wλ1+ν,λ2+ν = 0 (4.2.3)

(xβp+2(sβp−1)δ)
mα+1wλ1+ν,λ1+ν = 0. (4.2.4)

Note, I have λ1(β
∨
p ) = 1 and λ2(β

∨
p ) = 0, so 2sβp = 2 + 2ν(β∨p ). Hence,

max{r1,βp , r2,βp} = r1,βp = 2((λ1 + ν)(β∨p )) = 2 + 2ν(β∨p ) = 2sβp .

Thus, (4.2.3) holds by relation (2.2.3), and (4.2.4) holds by relation (2.2.4).

Using this Lemma, I can conclude that

(x−βp+2(sβp−2)δ)
4wλ1+ν,λ2+ν = 0.

Since 4 + ν(α∨
s,p−1) > max{r1,αs,p−1 , r2,αs,p−1}, I can therefore conclude the following:

0 = (x−αs,p−1+(4+ν(α∨
s,p−1)δ

)(x−βp+2(sβp−2)δ)
4wλ1+ν,λ2+ν

= (x−βp+2(sβp−2)δ)
3(x−βλ+(r1,βλ−1)δ)wλ1+ν,λ2+ν

+(x−βp+2(sβp−2)δ)
4(x−αs,p−1+(4+ν(α∨

s,p−1)δ
)wλ1+ν,λ2+ν

= (x−βp+2(sβp−2)δ)
3(x−βλ+(r1,βλ−1)δ)wλ1+ν,λ2+ν

and hence, (x−α+(bα(s′α−1))δ)
m′

α+1(x−βλ+(r1,βλ−1)δ)wλ1+ν,λ2+ν = 0 whenever βλ − α ∈ R+.

Now suppose α − βλ ∈ R+. Then either α = βi,p for 1 ≤ i ≤ s − 1, α = βi,s for

1 ≤ i ≤ s − 1, or α = βs. Suppose first that either α = βi,p or α = βi,s for 1 ≤ i ≤ s − 1,

and that mα = 2. Then bα = 1, m′
α = 1, and sα = s′α, so I must show that:

(x−α+(s′α−1)δ)
2(x−βλ+(r1,βλ−1)δ)wλ1+ν,λ2+ν = 0.
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Let α′
1 = βλ. If α = βi,p, let α

′
2 = αi,s−1, α

′
1 + α′

2 = βi,p, and sα = sβi,p
, and if α = βi,s, let

α′
2 = αi,p−1, α

′
1 + α′

2 = βi,s, and sα = sβi,s
. Now, consider the lie algebra sl3[t] with roots

α′
1, α

′
2, and α′

1 + α′
2, and define M to be the sl3[t] module generated by a vector m with

the following relations:

(xα′
i+C[t]δ)m = 0

(hα′
i,kδ

)m = δk,0((2r − 2)ω1 + (2s− 2r + 2)ω2)(α
′
i
∨
)m

(x−α′
1+r1,βλδ

)m = 0

(x−α′
2+(sα−r1,βλ+1)δ)m = 0

(x−(α′
1+α′

2)+(sα+1)δ)m = 0.

It is known that this module is isomorphic to the generalized demazure module; namely it

can be realized as the submodule

U(sl3[t])(w1⊗w2) ⊂ (W sl3
loc (r1,βλ

ω1+(sα−r1,βλ
+1)ω2)⊗W sl3

loc ((r1,βλ
−2)ω1+(sα−r1,βλ

+1)ω2))

where w1 is the highest weight vector ofW
sl3
loc (r1,βλ

ω1+(sα−r1,βλ
+1)ω2) and w2 the highest

weight vector of W sl3
loc ((r1,βλ

− 2)ω1 + (sα − r1,βλ
+ 1)ω2).

Define a map M → V (λ1+ ν, λ2+ ν) by sending generator to generator. Then the

sl3[t] map is well defined; First, it is clear that

(xα′
i+C[t]δ)(wλ1+ν,λ2+ν) = 0 and

(hα′
i,kδ

)(wλ1+ν,λ2+ν) = ((2r1,βλ
− 2)ω1 + (2sα − 2r1,βλ

+ 2)ω2)(α
′
i
∨
)δk,0(wλ1+ν,λ2+ν).
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Then, by relation (2.2.3), I also have the following:

(x−α′
1+r1,βλδ

)(wλ1+ν,λ2+ν) = 0,

(x−α′
2+(sα−r1,βλ+1)δ)(wλ1+ν,λ2+ν) = 0,

(x−(α′
1+α′

2)+(sα+1)δ)(wλ1+ν,λ2+ν) = 0.

Now observe:

(x−(α′
1+α′

2)+(sα−1)δ)
2(x−α′

1+(r1,βλ−1)δ)(w1 ⊗ w2)

= (x−(α′
1+α′

2)+(sα−1)δ)
2(x−α′

1+(r1,βλ−1)δ)w1 ⊗ w2

+(x−(α′
1+α′

2)+(sα−1)δ)
2w1 ⊗ (x−α′

1+(r1,βλ−1)δ)w2

+2(x−(α′
1+α′

2)+(sα−1)δ)(x−α′
1+(r1,βλ−1)δ)w1 ⊗ (x−(α′

1+α′
2)+(sα−1)δ)w2

+2(x−(α′
1+α′

2)+(sα−1)δ)w1 ⊗ (x−(α′
1+α′

2)+(sα−1)δ)(x−α′
1+(r1,βλ−1)δ)w2

+(x−α′
1+(r1,βλ−1)δ)w1 ⊗ (x−(α′

1+α′
2)+(sα−1)δ)

2w2

+w1 ⊗ (x−(α′
1+α′

2)+(sα−1)δ)
2(x−α′

1+(r1,βλ−1)δ)w2.

Note, since (x−(α′
1+α′

2)+(sα−1)δ)w2 = 0 = (x−α′
1+(r1,βλ−1)δ)w2, this can be immediately

reduced to:

(x−(α′
1+α′

2)+(sα−1)δ)
2(x−α′

1+(r1,βλ−1)δ)(w1⊗w2) = (x−(α′
1+α′

2)+(sα−1)δ)
2(x−α′

1+(r1,βλ−1)δ)w1⊗w2.

Now consider the sl2 for the simple root α′
1+α

′
2 and the sl2[t] moduleWloc(sα) with highest

weight vector w. I claim there exists a map Wloc(sα) → U(sl2[t])(x−α′
1+(r1,βλ−1)δ)w1 defined

by w → (x−α′
1+(r1,βλ−1)δ)w1.
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Observe:

(xα′
1+α′

2+kδ)(x−α′
1+(r1,βλ−1)δ)w1

= (xα′
2+(k+r1,βλ−1)δ)w1 + (x−α′

1+(r1,βλ−1)δ)(xα′
1+α′

2+kδ)w1 = 0,

(h(α′
1+α′

2),kδ
)(x−α′

1+(r1,βλ−1)δ)w1

= δk,0sα(x−α′
1+(r1,βλ+k−1)δ)w1,

and

(x−(α′
1+α′

2)+sαδ)(x−α′
1+(r1,βλ−1)δ)w1 = 0.

Thus, the map is well defined. Finally, since (x−(α′
1+α′

2)+(sα−1)δ)
2w = 0, I can conclude that

(x−(α′
1+α′

2)+(sα−1)δ)
2(x−α′

1+(r1,βλ−1)δ)w1 = 0,

hence

(x−(α′
1+α′

2)+(sα−1)δ)
2(x−α′

1+(r1,βλ−1)δ)m = 0,

and therefore,

(x−α+(s′α−1)δ)
2(x−βλ+(r1,βλ−1)δ)wλ1+ν,λ2+ν = 0

for both α = βi,p and α = βi,s with mα = 2.

Now suppose that either α = βi,p or α = βi,s for 1 ≤ i ≤ s and that mα = 1. Then

bα = 1, m′
α = 2, and sα − 1 = s′α, so I must show that:

(x−α+(sα−2)δ)
3(x−βλ+(r1,βλ−1)δ)wλ1+ν,λ2+ν = 0.

Let α′
1 = βλ. If α = βi,p, let α

′
2 = αi,s−1, α

′
1 + α′

2 = βi,p, and sα = sβi,p
, and if α = βi,s, let

α′
2 = αi,p−1, α

′
1 + α′

2 = βi,s, and sα = sβi,s.
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Now, consider the Lie algebra sl3[t] with roots α′
1, α

′
2, and α

′
1+α′

2, and define M

to be the sl3[t] module generated by a vector m with the following relations:

(xα′
i+C[t]δ)m = 0,

(hα′
i,kδ

)m = δk,0((2r1,βλ
− 2)ω1 + (2sα − 2r1,βλ

+ 1)ω2)(α
′
i
∨
)m,

(x−α′
1+r1,βλδ

)m = 0,

(x−α′
2+(sα−r1,βλ+1)δ)m = 0,

(x−(α′
1+α′

2)+sαδ)m = 0.

It is known that this module is isomorphic to the generalized demazure module; namely it

can be realized as the submodule

U(sl3[t])(w1⊗w2) ⊂ (W sl3
loc (r1,βλ

ω1+(sα−r1,βλ
)ω2)⊗W sl3

loc ((r1,βλ
−2)ω1+(sα−r1,βλ

+1)ω2))

where w1 is the highest weight vector of W sl3
loc (r1,βλ

ω1 + (sα − r1,βλ
)ω2) and w2 the highest

weight vector of W sl3
loc ((r1,βλ

− 2)ω1 + (sα − r1,βλ
+ 1)ω2).

Define a map M → V (λ1+ ν, λ2+ ν) by sending generator to generator. Then the

sl3[t] map is well defined; First, it is clear that

(xα′
i+C[t]δ)(wλ1+ν,λ2+ν) = 0

and

(hα′
i,kδ

)(wλ1+ν,λ2+ν) = δk,0((2r1,βλ
− 2)ω1 + (2sα − 2r1,βλ

+ 2)ω2)(α
′
i
∨
)(wλ1+ν,λ2+ν).
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Then by relation (2.2.3), I also have the following:

(x−α′
1+r1,βλδ

)(wλ1+ν,λ2+ν) = 0,

(x−α′
2+(sα−r1,βλ+1)δ)(wλ1+ν,λ2+ν) = 0,

(x−(α′
1+α′

2)+sαδ)(wλ1+ν,λ2+ν) = 0.

Now observe:

(x−(α′
1+α′

2)+(sα−2)δ)
3(x−α′

1+(r1,βλ−1)δ)(w1 ⊗ w2)

= (x−(α′
1+α′

2)+(sα−2)δ)
3(x−α′

1+(r1,βλ−1)δ)w1 ⊗ w2

+3(x−(α′
1+α′

2)+(sα−2)δ)
2(x−α′

1+(r1,βλ−1)δ)w1 ⊗ (x−(α′
1+α′

2)+(sα−2)δ)w2

+3(x−(α′
1+α′

2)+(sα−2)δ)(x−α′
1+(r1,βλ−1)δ)w1 ⊗ (x−(α′

1+α′
2)+(sα−2)δ)

2w2

+(x−α′
1+(r1,βλ−1)δ)w1 ⊗ (x−(α′

1+α′
2)+(sα−2)δ)

3w2

+(x−(α′
1+α′

2)+(sα−2)δ)
3w1 ⊗ (x−α′

1+(r1,βλ−1)δ)w2

+3(x−(α′
1+α′

2)+(sα−2)δ)
2w1 ⊗ (x−(α′

1+α′
2)+(sα−2)δ)(x−α′

1+(r1,βλ−1)δ)w2

+3(x−(α′
1+α′

2)+(sα−2)δ)w1 ⊗ (x−(α′
1+α′

2)+(sα−2)δ)
2(x−α′

1+(r1,βλ−1)δ)w2

+w1 ⊗ (x−(α′
1+α′

2)+(s−2)δ)
3(x−α′

1+(r1,βλ−1)δ)w2.

Note, since (x−(α′
1+α′

2)+(s−2)δ)
3w1 = (x−(α′

1+α′
2)+(s−2)δ)

2w2 = (x−α′
1+(r1,βλ−1)δ)w2 = 0, this

can immediately be reduced to:

(x−(α′
1+α′

2)+(s−2)δ)
3(x−α′

1+(r1,βλ−1)δ)(w1 ⊗ w2)

= 3(x−(α′
1+α′

2)+(s−2)δ)
2(x−α′

1+(r1,βλ−1)δ)w1 ⊗ (x−(α′
1+α′

2)+(s−2)δ)w2.

40



Now consider the sl2 with simple root α′
1+α

′
2 and the sl2[t] moduleWloc(sα−1) with highest

weight vector w. I claim there exists a map Wloc(sα − 1) → U(sl2[t])(x−α′
1+(r1,βλ−1)δ)w1

defined by w → (x−α′
1+(r1,βλ−1)δ)w1.

Observe:

(xα′
1+α′

2+kδ)(x−α′
1+(r1,βλ−1)δ)w1

= (xα′
2+(k+r1,βλ−1)δ)w1 + (x−α′

1+(r1,βλ−1)δ)(xα′
1+α′

2+kδ)w1 = 0,

(h(α′
1+α′

2),kδ
)(x−α′

1+(r1,βλ−1)δ)w1

= δk,0(sα − 1)(x−α′
1+(r1,βλ+k−1)δ)w1,

and

(x−(α′
1+α′

2)+(sα−1)δ)(x−α′
1+(r1,βλ−1)δ)w1 = 0.

Thus, the map is well defined. Finally, since (x−(α′
1+α′

2)+(sα−2)δ)
2w = 0, I can conclude that

(x−(α′
1+α′

2)+(sα−2)δ)
2(x−α′

1+(r1,βλ−1)δ)w1 = 0,

hence

(x−(α′
1+α′

2)+(s−2)δ)
2(x−α′

1+(r1,βλ−1)δ)m = 0,

and therefore,

(x−α+(sα−2)δ)
3(x−βλ+(r1,βλ−1)δ)wλ1+ν,λ2+ν = 0

whenever α = βi,p and α = βi,s.

Finally, suppose α = βs. Then mβs = 1, so m′
βs

= 2 and sβs = s′βs
+ 1. Thus, I

want to show that

(x−βs+2(sβs−2)δ)
3(x−βλ+(r1,βλ−1)δ)wλ1+ν,λ2+ν = 0.
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I have that:

(hβs,kδ)(x−βλ+(r1,βλ−1)δ)wλ1+ν,λ2+ν = 2(sβs − 1)δk,0(x−βλ+(r1,βλ−1)δ)wλ1+ν,λ2+ν

and

(xβs+kδ)(x−βλ+(r1,βλ−1)δ)wλ1+ν,λ2+ν = 0 for k ≥ 0

Hence, there exists a map

W sl2
loc (2(sβs − 1)) → U(sl2[t2])(x−βλ+(r1,βλ−1)δ)wλ1+ν,λ2+ν

sending the generator w2(sβs−1) of W
sl2
loc (2(sβs − 1)) to (x−βλ+(r1,βλ−1)δ)wλ1+ν,λ2+ν .

Then, since (x−βs+2(sβs−2)δ)
3w2(sβs−1) = 0, I conclude that

(x−βs+2(sβs−2)δ)
3(x−βλ+(r1,βλ−1)δ)wλ1+ν,λ2+ν = 0.

Therefore, I have

(x−α+bα(s′α−1)δ)
m′

α+1(x−βλ+(r1,βλ−1)δ)wλ1+ν,λ2+ν = 0

whenever βλ(α
∨) = 1.

The last case I must consider is when βλ(α
∨) = 2. This occurs only when α = βλ.

Since mβλ
= 2, I have m′

βλ
= mβλ

and sβλ
= s′βλ

+ 1 = r1,βλ
− 1. Thus, I must show that

(x−βλ+(r1,βλ−3)δ)
3(x−βλ+(r1,βλ−1)δ)wλ1+ν,λ2+ν = 0.
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Consider the lie algebra sl2[t] with simple root βλ and define M to be the sl2[t] module

generated by m subject to the following relations:

(xβλ+C[t]δ)m = 0

(hβλ,kδ)m = δk,0((λ+ 2ν)(βλ
∨))m

(x−βλ+(r1,βλ )δ
)m = 0.

It is known that this module is isomorphic to the generalized Demazure module; namely it

can be realized as the submodule

U(sl2[t])(w1 ⊗ w2) ⊂ (W sl2
loc (r1,βλ

)⊗W sl2
loc (r1,βλ

− 2))

where w1 is the highest weight vector of W sl2
loc (r1,βλ

) and w2 the highest weight vector of

W sl2
loc (r1,βλ

− 2). Define a map M → V (λ1 + ν, λ2 + ν) by sending generator to generator.

Then the sl2[t] map is well defined; First, it is clear that

(xβλ+C[t]δ)wλ1+ν,λ2+ν = 0

(hβλ,kδ)m = δk,0((λ+ 2ν)(βλ
∨))wλ1+ν,λ2+ν .

Then, by relation (2.2.3), I also have

(x−βλ+(r1,βλ )δ
)wλ1+ν,λ2+ν = 0.
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Now, since (x−βλ+(r1,βλ−1)δ)w2 = 0 and (x−βλ+(r1,βλ−3)δ)
2w2 = 0, I have that

(x−βλ+(r1,βλ−3)δ)
3(x−βλ+(r1,βλ−1)δ)(w1 ⊗ w2)

= (x−βλ+(r1,βλ−3)δ)
3(x−βλ+(r1,βλ−1)δ)w1 ⊗ w2

+3(x−βλ+(r1,βλ−3)δ)
2(x−βλ+(r1,βλ−1)δ)w1 ⊗ (x−βλ+(r1,βλ−3)δ)w2.

I claim there exists a map W sl2
loc (r1,βλ

− 2) → U(sl2[t])(x−βλ+(r1,βλ−1)δ)w1 defined by

w → (x−βλ+(r1,βλ−1)δ)w1.

Observe:

(xβλ+C[t]δ)(x−βλ+(r1,βλ−1)δ)w1 = 0,

(hβλ,kδ)(x−βλ+(r1,βλ−1)δ)w1

= δk,0(r1,βλ
− 2)(x−βλ+(r1,βλ−1)δ)w1,

and

(x−βλ+(r1,βλ−2)δ)(x−βλ+(r1,βλ−1)δ)w1 = 0.

Hence, the map is well defined, and therefore I can conclude that

(x−βλ+(r1,βλ−3)δ)
2(x−βλ+(r1,βλ−1)δ)w1 = 0,

and thus,

(x−βλ+(r1,βλ−3)δ)
3(x−βλ+(r1,βλ−1)δ)wλ1+ν,λ2+ν = 0.
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4.2.4 Relation (2.2.5)

Finally, I must show that relation (2.2.5) holds; that is, that

(x−β+s′βδ
)2(x−βλ+(r1,βλ−1)δ)wλ1+ν,λ2+ν = 0

for β ∈ R(λ′1, λ
′
2), where λ

′
1 = λ1 − βλ − ν0, λ

′
2 = λ2 − ν0, and ν0 is as defined in Lemma 7.

Using Lemma 3 along with the fact that λ1(β
∨) ≥ λ2(β

∨), it becomes clear that

β ∈ R(λ′1, λ
′
2) if and only if β ∈ R(λ1, λ2) and βλ(β

∨) = 0. Thus, βλ+β /∈ R+, and s′β = sβ.

Hence, I have that

(x−β+s′βδ
)2(x−βλ+(r1,βλ−1)δ)wλ1+ν,λ2+ν = 0,

and therefore, the relation holds. This concludes the proof of Proposition 8.
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