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ABSTRACT OF THE DISSERTATION

Generalized Demazure Modules for the Twisted Current Algebra 2%121_1
by
Joseph Page Wagner

Doctor of Philosophy, Graduate Program in Mathematics
University of California, Riverside, September 2024
Dr. Vyjayanthi Chari, Chairperson

In this thesis, I study certain generalized Demazure modules for a twisted current
algebra of type 2 A9p_q; that is, the fixed point subalgebra under an order 2 graph
automorphism defined on an untwisted affine Lie algebra of type Asy_y. In particular, I
give a presentation of a family of generalized Demazure modules which can be realized as a
submodule of the tensor product of two level one Demazure modules. I also show that, in
certain cases, this type of generalized Demazure module is in fact isomorphic to a level two

Demazure module.
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Chapter 1

Introduction

In [3], a family of indecomposable finite-dimensional graded modules were
introduced for current algebras associated to simple Lie algebras. These modules were
indexed by an |R*|-tuple of partitions £ = (£%) where « varies over a set R of positive
roots of a simple lie algebra g. It was shown that, in the case when (£%) was a rectangular
partition, these modules were in fact isomorphic to Demazure modules of various levels.
This led to a simplification of the defining relations of said Demazure modules.

Later, in [10], a similar family of indecomposable finite-dimensional graded
modules were introduced for twisted current algebras. Like in [3], it was shown that,
when (£%) was a rectangular partition, these modules were isomorphic to twisted Demazure
modules of various levels, leading to a similar simplification of defining relations.

Then, in [2], it was shown that the graded limit of a family of irreducible prime
representations of the quantum affine algebra associated to a simple Lie algebra g of type D,

is, in certain cases, isomorphic to a generalized Demazure module. That is, a submodule



of the tensor product of level one Demazure modules. A presentation of this family of
generalized Demazure modules is also proved in this paper.

For this thesis, I will be using the simplified presentation of level one Demazure
modules for twisted current algebras from [10], along with the methods outlined in [2],
to give a presentation of a family of generalized Demazure modules for a twisted current
algebra of type 2Asp_1.

1.1 Simple Lie Algebras

In this thesis, I will denote C as the field of complex numbers, Z as the set of
integers, and Z, as the set of non-negative integers. Given an indeterminate ¢, let C[t,#!]
be the algebra of Laurent polynomials, and C[t] C C[t,t!] as the set of polynomials with
complex coefficients. For two complex vector spaces V and W, I denote their tensor product
over C by V@ W. Given a complex Lie algebra g, I denote U(g) as the universal enveloping
algebra of g. I also say that a vector space V is Z-graded if V' can be expressed as the direct
sum V = P, VK]

For a simple finite lie algebra g of rank n, with x,y € g, the adjoint representation
ad : g — gl(g) is given by ad(x) = ad,, with ad,(y) = [z,y]. Fix a Cartan subalgebra
h C g and denote R C h* as the corresponding set of roots of g with simple roots given by
{a; : 1 <i<n}. Let k : gxg — C denote the killing form, defined by x(x,y) = tr(ad,oad,).
Restricting « to b induces an isomorphism between h and h*, as well as a symmetric, non-
degenerate form (-,-) on h*. For this thesis, I will assume that this form is normalized so

that the square of a long root is 4. For o € R, let dy = —~~ and let b, = @ Note that

(a,)

bo = 2 when « is long, and b, = 1 when « is short.



Along with a set of simple roots {a; : 1 < i < n}, I also fix a set of fundamental
weights {w; : 1 < i < n} C bh* such that (w;, ;) = 9;;. Let @ denote the Z-span of
the simple roots, and denote the Z,-span by Q*. Similarly, denote the Z-span of the
fundamental weights, called the weight lattice, as P, and denote the Z-span by P*. Then
denote the positive roots by R™ = RN Q™. I denote the negative roots by R~, defined in
a similar way. I also denote R; as the long roots of R, and R, as the short roots.

Next, I define a partial order on P by A < p iff 4 — A\ € QT. Finally, let

{zf h; : o € RT,1 < i < n} be a Chevalley Basis of g, and let g = n~ @ b @ nT be the

+

corresponding triangular decomposition. For convenience, I set :c;t =Ty,

For A € PT, I denote the finite dimensional irreducible g-module as V(). T denote

the generator of V() as vy, subject to the following defining relations:
$;'_’U)\ = 0, hi’U)\ = )\(hi)v)\, (%i_))‘(hi)—’—lv)\ =0

for ¢ € I. These modules allow for a characterization of finite dimensional g-modules; in
particular, any finite dimensional g-module V can be written as a direct sum of modules
V(N), A€ Pt.

Throughout this thesis, I will make reference to simple, finite-dimensional Lie
algebras of two types: a special Lie algebra g of type A,, and a symplectic Lie algebra g of
type C,.

1.2 (Untwisted) Affine Lie Algebras

To realize an untwisted affine Lie algebra § of type A, I start with a simple Lie

algebra g of type A,, with root system Rj, and denote the Loop algebra as

L@ =goC[t,t71].



This can be made into a Lie algebra by defining the bracket operation: for

x® f(t), y®g(t) € L(g), the bracket operation of £(g) is defined to be

[z ® f{t),y®g(t)] = [z,ylg® f(t)g(t)

where [-, -] is the bracket operation of g. Then the untwisted affine Lie algebra g is given
by

g=L(g) ®CcapCd

where ¢ is the canonical central element and d acts as the derivation t%, with a bracket

operation given by
[zt y@t*] = [z, ylg@t T +tr(ad, 0ady)rd4s0c, [dyz@t"] =r(z®t"), 2,y €, 1,5 € Z.

If h C g is a Cartan subalgebra, then the elements of the dual of § C g,
g, a1, 0y € 6* can be defined by extending aq, -+, a, € E* to b* by stating

a;(¢) = 0 = a;(d) for 1 < i <n and defining & € h* by:
§(h)=0for heh, &(c)=0, &(d)=1.

Remark that ag € h* is defined as ag = —0 + &, where 6 is the longest root in Rj.
1.3 Twisted Affine Lie Algebras
Assume that g has rank n = 2¢ — 1 for £ > 3. Given an indexing I on a set of

simple roots {«;}ier of g, let o be a permutation of I defined by
o(i) =20 —1.

I can then extend o to a graph automorphism of g by setting o(x,,) = Ta, ;) and then

extending this action linearly to the rest of g such that it respects the bracket operation.



I now denote the Twisted Lie Algebra, defined as the fixed point subalgebra under this
automorphism, as g7 := {x € glo(x) = x}. In this case, when g is a simple Lie algebra of
type Agp_q for £ > 3, g7 is isomorphic to a simple Lie algebra of type Cy.

I can now introduce the twisted graph automorphism T on g, defined by the
following:

Tz @th) = o(z) ® (—1)"" for z € 3,
T(c) =¢, T(d) =d.

The fixed point subalgebra of g under the automorphism T, denoted as g, is a
twisted affine Lie algebra of type 245,_;. From here on, unless otherwise specified, assume
that g is a simple Lie algebra of type Cy. I will use both g and g in the definition of a special
twisted current algebra €g of type 2Aa_;.

Letting 6 denote the unique non-divisible positive imaginary root in the root
system of g, I can then denote the root system of g as R and I have R = Rt U R™, where

~

R~ = —R*, Rt = RLUR , RS = N§ Rf = RT U (R, + N&) U (R + 2N¢), and

m?

~

Rye(4) = RT U (RF + No) U (R + 2N9).
Given a € R*, let ga C g be the corresponding root space; note that g, C g if
a € R. For a non-imaginary root «, I denote x,, as the generator of g,. I also denote b as

the Borel subalgebra corresponding to R, and &' as its nilpotent radical;

The subalgebras b and n® of g are defined analogously.
Consider the algebra

t=(hoCdontan .



The twisted current algebra €g can then be defined as the following ideal of £:
Cg=b@enten”
with triangular decomposition
Cg=cntae¢hapen,

where

¢h=¢h, &b, ¢y =Pdr, W= P b:a

k>0 Oéef{'re (:l:)

Note that, for any @ € RT, there is @ € Rg such that @], = «. Thus, fixing a
Chevalley basis {XF, H; : i €1, a € Rg } for g enables us to realize €g as a subalgebra

of L(g) via the following [10]:
For r € Zy and a € R™,
Thotbors = <X;: + <_1)barX;t(a)> ® tbar

hars = (Ha + (—1) Hym) @ 1
hi,r§ =H;® t" + Hop i ® (775)1"‘
Remark that aiv = hjo for i € I. Note that the element d defines a Z_-graded structure on

Cg: for o € R, §o has grade k if

[d,zo] =k

or, equivalently, if a(d) = k. Note that the eigenvalues of d are all integers, and if g, C Cg,
then the eigenvalues are non-negative. This also defines a grading on U(€g); In particular,

for y1,- -+, € R, the element (2, 47,5)(Tyotro6) =+ * (T4, 4r,5) has grade r1 + 19 + - - 7.



Since €g is graded, I can also introduce the notion of a graded €g module. V is
considered to be a graded €g module if it is Z-graded and the action of €g respects this
grading; that is, for § € R,

(2p158)VIr] € VIr + 5]

I now denote the grade shift operator as 7, which maps V[r] — V[r + s| for r,s € Z. That
is, for a €g-graded module V, I have that 7V is the graded €g module V' where the graded
pieces are shifted uniformly by s, but the action of €g remains unchanged.

1.4 Local Weyl Module and Demazure Module

For A € P, the local Weyl module, Wi,e()), is defined as the cyclic €g-module

generated by wy subject to the following relations:

Cntwy =0, Chrwy =0, haowy = Aa")w,, (x,a)’\(o‘v)HwA =0, (1.4.1)

for all @« € R* [10]. By declaring the grade of wy to be 0, Wj,.(A\) becomes a graded
Cg-module. Remark that the Oth graded piece, Wi (A)[0], is V/(A).

Now, let (I,\) € Zy x Pt. For any a € Rt, T write A(@") = (5o — 1)l + mq,
0 < mq < l. Then by Theorem 5 in [10], the level I Demazure module is defined as the

quotient of Wi,.(A) by the submodule generated by the elements:

{(2—abusas)wr 1 @ € R (@ asbo(samys)™ Mwn t a € RY, my <1} (1.4.2)

Consequently, for special twisted current algebras, I have that level one Demazure modules
are isomorphic to local Weyl modules (initially proven in [5]).
I will also use an equivalent presentation of D(I,\) given in [5]. Let ®y be the root

system of Cy and &1 = (Py)s, i.e., the short roots of ®y. The following was proved in [5]



Proposition 1. As a module for €g the Demazure module D(l,\) is isomorphic to the
cyclic U(€g)-module generated by a vector v # 0 subject to the following relations:

For’BE(D;r, 0<j<11Ihave:

(€n) @ /C[t*])v =0 (1.4.3)
(xg ® t28+j)kﬁ+1v =0 where s >0, kg = max{(), (\BY) — 2(<2; ;>j)l} (1.4.4)
(h@ t*%)v = §;0050M(h)v ¥V h € h;, s> 0. (1.4.5)

Finally, I can introduce the generalized Demazure modules for €g. First, consider
the tensor product 77 D(I,\) ® 75D(I', X'), and then take the €g module through wy ® wy.
In this thesis, I will give a presentation of the family of generalized Demazure modules of
the form

DA, p) = U(&g)(wr @ wy) € D(1,A) @ D(1, ),

with certain restrictions on the pair (\, u) € P+ x PT.

The following result is proven as in [2] by replacing affine with twisted affine:

Lemma 2. There exists a (unique up to scalars) map nx, : D(A\, ) = D(2, A4+ p) = 0, of

Cg-modules extending the assignment wy @ wy, — w2 x4y O



Chapter 2

Main Results

Keeping the notation introduced in the previous chapter, with g a simple Lie

algebra of type Cy and €g a twisted current algebra of type 245,_1, I denote the following

roots of RT:
=0+ -+, 1<i<j<li-1
Bij=oa;i+ o1 +2(j+ - Fap)ta, 1<i<j<y
Bi=2(aj+ - +ap1)+a, 1<j<L
Note that

Rt ={a;;:1<i<j<l-1}U{B;:1<i<j<}u{p;:1<j<i}.

Furthermore, for A € P™, I have



2.1 Interlacing Pairs
Let

PT()={AePt:\o)) <1, 1<i<{}).

Note that any A € P (1) can be written uniquely (up to order) as a sum A = A\; + A2 where

Ak € PT(1) for k = 1,2 such that the following is satisfied for 1 <i < j < ¢:
M(af) =1=X(e)) = M) =1 for some i < s < j, {r,p} ={1,2}.

Lcall (A1, \2) € Pt x P an interlacing pair if \1 + X2 € P*(1), and the preceding condition

holds.

Examples. The pairs (w;,0) for 0 < ¢ < £ and the elements of the set
{(wi,wj) : 0 < i # j < ¢} are interlacing. The pair (wq + w4, ws + we) is not interlacing, but

the pair (w1 + ws,ws + wg) is.

For an interlacing pair (A1, A2) with A = A\ + Ao, if A=0,set p=p' =p" = 0. If A = w,
setp=jandp =p”’ =0. f XA =w; +w; with ¢ > j, set p =14, p’ = j, and p” = 0. If
My, + ) >3, let p > p' > p be maximal such that )\(a;/u + 041\7/, +ay) = 3. T now

define v € P* as (A1, A2)-compatible if v(a,y_;) > 0 whenever p’ # p — 1.

Throughout the rest of this chapter, I will assume that (A1, A2) is an interlacing pair, that
A = A1 + Ao, and that v is (A1, A2)-compatible. Furthermore, the property of interlacing
pairs allows me to assume without loss of generality that whenever 1 < p < £ is mazximal

such that A(ay)) > 0, then Ai(ay)) = Aoy ).

10



The following lemma was proved in [4], and will be useful for later.
Lemma 3. For all1 <i<j</{—1 and (A1, \2) interlacing, I have

(A1 = A2) () < 1,

and
|(A1 — A2)(@Y)| < dg for all other a € RY.
2.2 Presentation of V(A1 + v, A2 + 1)
For an interlacing pair (A1, A2) with A = A1 + X2 and a (A1, Ag)-compatible v € P,
I set

R()\l, )\2) = {Bi,j €R': ()\1 — )\2)( z\jj) = :|:2}
and define V(A1 + v, A2 + v) to be the €g-module generated by wy, 4,1+ satisfying the

following defining relations. For « € RT and a; with 1 <7 </,

€n+wA1+V,>\2+V =0, € wx tux+0 =0, ha,Ow/\1+V7>\2+V = (>‘+2V)(av)w>\1+u,>\2+w (2.2.1)

(@) AT ) Ly rgi =0, (2.2.2)

(T —agmax{ry.a,r2.a}6) Whs +o 2o+ = 0 (2.2.3)

(% —atba(sa—1)8)" WA v A 40 = 0, (2.2.4)
(T—p4s0) War4vpotv =0 B € R(A1, A2), (2.2.5)

where s, and m,, are the unique positive integers such that (A +2v)(a") = 2(sq — 1) +mq,
0 <mq <2, and 7j = bo((N; + v)(a)) for j € {1,2}.

I can define a grading on V(A1 + v, A2 4+ v) by declaring the grade of wx, v x40
to be 0. Relations (2.2.1) and (2.2.2) show that V(A1 + v, A2 + v) is a quotient of the local

Weyl module Wi, (A + 2v).

11



Lemma 4. The assignments Wx, 4y ro+v — W2 A+20 ANA Wx| 41 rotr — W41 DWry4p define

surjective maps of €g—modules.
V4o dotr o VAV, Aa+v) = D(2,\12V), dxi1vrotv @ V(Ai+V, Ao+v) = D(A+v, Aa+v)

and Yx, yu otv = Mitvatv © Ayt ot
Proof. I'll begin with ¢y, 1, x4, First, note that (v_q4xs)wx,+, = 0 for
k>rjaj€{l,2}, a € RT. Thus, relation (2.2.3) holds in D(A\; + v, A2 + v); that is,
(fE—a-s-max{rl,a,rg,a}&)(w>q+u ® Wxy4r) = 0.
As for relation (2.2.2), note that

(x—ai)(/\+2y)(aiV)+1 (w)\1+l/ & w)\2+11)

(2 (@)) 11
¢ A+ 2v Oé;/ +1 v)(aY —
= Z <( )k( ) >(:U—ai)()\+2 e+l kwAlJrV ® (x—ai)kw)QJrV'
k=0

Since (2_q,) @D+, L, =0 for j = 1,2, for values of k < (A2 +v)()), the first part
of the tensor product is 0, and for k > (A2 + v)(e)), the second part of the tensor product

is 0. Hence, each term in this sum is 0; therefore,

(x—ai)()\+2y)(a;/)+1(w/\1+ll ® w/\2+l/) =0.

Next, I will prove relation (2.2.4) holds. This will be done in several cases. First, recall that
Sq and m, are the unique non-negative integers such that (A + 2v)(a") = 2(sq — 1) + mq

with 0 < m, < 2, and that

(x—a+ba(sa—1)5)ma+1(w)\1+l/ ® w)\2+l/)
Mma+1
= Z (T atba(sa—1)8) WA 10 © (T atba(sa—1)8) " T WAz 10
k=0

12



In each case, I will show that every term in this sum is equal to 0.
For the first case, suppose « is short and that (A + 2v)(a¥) = 0 mods. Then

me =2 and by, = 1. For [ =1 and 2s + j = by (sq — 1), I have

2(2s+ 7)
(o, @)

M+, av> — =+ V)(av) — (8¢ — 1)

A1+ Ao+ 21/>(04v) 11— ()\1 — )\2)(04\/)

= (4 (oY) - P2 :

+ 1.

Similarly,

2(2s +j), _ QA2 = Ai)(a”)

1.
(o, @) 2 *

Mo +v,aY) —

By Lemma 3, |(A — X2)(a")| < d,. By assumption, (A1 + A2 + 2v)(a") = 0 mods, and
hence, (A1 — A2)(a”) = 0 modsy. Thus, (A1 — A2)(a") € {0,£2}. Suppose (A1 —A2)(a") = 2.

Then (A2 — A\1)(a") = —2 and by relation (1.4.4), I have

(T _atba(sa—1)8) War4v = 0 and (2_a 4y, (s4—1)8)Wrg4v = 0.

Hence,

)ma+1(

(:U—a+ba(sa—1)5 WX +v 02 w)\ngV) =0.

The argument is symmetric when (A\; — X\a)(a") = —2. Alternatively, if (A\; — X2)(a¥) =0,
then (A2 — A1)(aY) = 0, and by relation (1.4.4), I have (a:_a+ba(8a_1)6)2w,\i+,, = 0 for

1 = 1,2 and again the relation holds.

13



Now suppose « is short and that (A + 2v)(a¥) = 1 mody. Then m, = 1 and

bo =1. For l =1 and 25+ j = ba(so — 1), I have

(2s+7)

(M+v,a’)— 2 o) (M1 + A2 +20)(aV) — 1

2

l=M+v)(aY)=(sa—1) = (A +v)(@")—

()\1 — /\2)(0[\/) + 1
9 .

Similarly,

2(2 ] Ao — A v 1
()\2+U,av>— (8+'])l:(2 1)(@)—!— )
(o, @) 2
Again, I use the fact that [(A\1 — A2)(a")| < dq along with my assumption that
(A1 + A2+ 2v)(@¥) = 1 mods to conclude that (A1 — A2)(aY) € {£1}. If (A — A2)(a¥) =1,

then (A2 — A1)(a") = —1 and by relation (1.4.4), I have

(xfa+(safl)6)2w)\1+l/ =0= (xfaJr(safl)cS)w)\eru

and hence, (z_q4p, (s0—1)8)™ T H(Wx,4v ® Wry4r) = 0. Again, the argument is symmetric
when (A1 — A2)(a¥) = —1.
Now suppose « is a long root and that (A + 2v)(a") = 0 mody. Then m, = 2 and

bo =2. For l =1 and 25+ j = ba(sa — 1), I have

2(2s +j)

1= Mt eY) (50— )

A +v,aY) —

()\1 + Ao + 21/)(04\/)

= (u +)(aY) - ;

+ 1.

Similarly,

2(2s +7)
(a, )

(A + A2+ 21/)(av)
2

A +v,aY) — =+ v)(aY) - +1.

14



Lemma 3, along with my assumption that (A 4+ 2v)(a¥) = 0 mods, implies that
(A1 — A2)(aY) =0, and hence Ai(a¥) = A2(a"). Thus,

(A1 + A2+ 2v)(aY)
2

(A1 + A2+ 2v)(aY)

(+v)(a¥) - ;

+1=1= N2 +v)(a¥) -

+1,

so by relation (1.4.4), (m_a+ba(sa_1)5)2w)\i+,, =0 for i = 1,2. Therefore,

)ma—l—l(

(x—a—&—ba(sa—l)z? WX +v ® w)\g-i-y) = 0.

Finally, suppose « is long and (A + 2v)(a") = 1 mods. For [ = 1 and

25+ j =ba(sq — 1), I have

Oty = 2 (@)= (sam1) = () - DRI RN Ly
Similarly,
Ay +v,aY) — Ml = A +v)(a¥) - (M + X2 +2v)(aY)+1 i1

(@, @) 2
In this case, I have [(A; — X2)(a")| < 1 and mq = 1, and thus A\j(a") = Xo(aV) £ 1.
Suppose Ai(a") = Ag(a¥) — 1. Then

AL+ A+ 2v)(aY) + 1
2

(4 ) (aY) F1= (4 0)@Y) - (4 p)(aY) =0,

and

(A1 + X2 +2v) () + 1

(A2 +v)(aY) — 5

+1=Me+v)(a") = Na+v)(a’)+1=1.

Thus, by relation (1.4.4),

(xfaera(safl)é)w)\l—H/ =0= (llfCH»ba(Safl)(;)Qw)\g-‘rl/a

so the relation holds. The case when A\j(a") = A2 + 1 is symmetric.

15



Lastly, I'll show that relation (2.2.5) holds in D(A + v, A2 + ) as well; that is,

(T g4555)° (W 40 @ Wy 1) = 0 for B € R(A1, A2).

First, assume 8 € R(A1, A2). Then for I =1 and 25 + j = sg, I have

(a2 8) — (25 ) = ( +w)(p) - QFE2IED =2,

Similarly,

Mo +1,8Y) — (25 +j) = (A?_glmv)

Now since 8 € R(A1,A2), T have (A — X2)(8Y) = £2. By my convention, A1(ay) = Xay),
so I can conclude that (A; — A2)(8Y) = 2, in which case (A2 — \1)(8Y) = —2. Then by

relation (1.4.4), (w_5+5ﬁ5)2w>\1+y =0 and (v_p1s,8)Wrytr = 0; hence,

(7 g4555)° (WA 40 @ Way 1) = 0 for B € R(A1, A2).

Now that the existence of ¢y, 1, 1,4, has been established, the map ¥, 1, x,+. is obvious.

O
2.3 Main Theorem

The following is the main result of this thesis.

Theorem 5. Let (A1, \2) € Pt x Pt be an interlacing pair with X = A\ + Ao, and let

v e Pt be

(A1, A2)-compatible. The map
Dry+vdotv VI +v, 20+ v) = DAL+ v, +v)

18 an isomorphism.
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2.4 First Reduction
This theorem will be proved in several steps. The first reduction is the following
proposition which provides a condition for the generalized Demazure module to be

isomorphic to a Demazure module.

Proposition 6. If A = w;_1 +w; for 0 < i < ¥, then for all (A1, \2)-compatible v € PT, T
have

VM +v, +v)=ZD(2,2v4+ X)) = DM\ + v, 2 +v).

2.5 [, and

Suppose that A\ # w;_1 + w; for 0 <4 </, and set

_ p—1 p#p-1
B = Bsp, With s =

/!

P p=p-1
Observe that A\ (8Y) =3 — dsp—1 and Ag(8Y) =1 — 0 p—1.

Lemma 7. Suppose that A # w;_1 +w; for 0 <i < /(. Then \y — B\ € P and there exists

vy € PT such that (A, — Bx — v, \2 — 1) is an interlacing pair.
Proof. With my assumptions, it is clear to see that
M=Br=A—wp+ (1= s p-1)wp-1— (1 = s p-1)ws +ws—1 € PT.
Taking vy = Aa(ay_ 1)ws—1 4 (1 = dsp-1)X2(ay)_)wp—1, it is easy to verify that
(A — B —10, A2 — 1) is interlacing, and that vy +v is (A — B — 1o, A2 — 1y )-compatible. [
2.6 Second Reduction

The next reduction is the following proposition which establishes an upper bound

on the dimension of V(A1 + v, A2 + ).
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Proposition 8. Suppose that A # w;—1 + w; for 0 < i < L. Then there exists a right exact

sequence of €g-modules
7-:1,%71‘/()\1 +v—030unwX+v) >V +v,\a+v) = D2, +2v) =0

with Wx, 4v—gy Aotv = (T (1 5, —1)6) WA +v 240

2.7 Inclusion of Level One Demazure Modules

Assuming Proposition 6 and Proposition 8, I complete the proof of Theorem 5 via
an induction with respect to the partial order on P*. The minimal elements with respect to
this order are 0 and wi, and Proposition 6 shows that induction begins. It also establishes
the theorem when A = w;_1 4+ w; for 0 < i < £. Hence, it suffices to prove the inductive
step when \ # w;_1 + w;. The following result is necessary to complete the proof of the

inductive step.

Lemma 9. There exists an inclusion of €g modules

T D(lv)‘1+yiﬁ>\)c—)D(17)‘1+y)v

quﬁ)\_l
which sends wy, +,—pg, — (x,BAJr(rl,ﬁA,l)g))w)\ﬁ,,.

Proof. Since it was proven in [5] that level one Demazure modules of special
twisted current algebras are isomorphic to local Weyl modules, it suffices to show that

w = ($*5A+(Tl,ﬁ)\*l)6))w)‘1+” satisfies the relations in (1.4.1).
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Now, suppose a; € R is simple. Then
(Taitks)W = (Tai+k5) (Tgy 4 (1 5, —1)6) WA 40

= (xf(ﬁ,\fai)+(k‘+1“1’5/\ 71)6>w)\1+1/'

If B\ —a; ¢ RT orif k > 0, the above equations equals 0, so assume (3, — o; € RT and

k = 0. Then I must have either ¢ = p or ¢ = s, in which case

(A +2)((Bx = i)”) < (M +2)(BY) = L=r1 5, — L.

Hence,
(x_(ﬁA_Oéi)-‘r(TLﬂ)\ —1)5)w)\1+1/ =0.

Now for o € R* and k > 0, consider

(haks)w = (haks) (T, +(ry 5, ~1)6) WAL 40+

If £ > 0, then I have
(T34 (15, —1+k)8) WA 41 = 0
and if £ = 0, the relation is trivial. Thus, the first three relations of (1.4.1) hold. Finally,
the last relation holds because the modules are all finite-dimensional. O
2.8 Main Induction Argument
Lemma 4, Proposition 8, and the inductive hypothesis establish the following
inequalities:

dim DA\ + v, o +v) <dim V(A + v, A2 +v)

dim V(M + v, 2 +v) <dimD(2,2v + A) + dim D(A\ + v — Bx, A2 + ).
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The inductive step follows if I prove that
dim D(A1 + v, Ao +v) =dim D(2,2v + ) + dim D(A; + v — By, A2 + v).

Observe that Lemma 9 gives an inclusion

0—=D1,\M+v—06)@D1,A2+v) = D1, A +v)®D(1, A2 +v),
which sends

WA By @ Wrgtr = (T, 4(ry 5, ~1)6) W1 41) © Wag 4o

Since 71,5, —1 = (M +v)(B8Y) —1 > (A2 +v)(3Y), the relations in (1.4.2) show that

(xfﬁﬁ(rmkfl)a)(wkwu ® Wrytv) = ((xfﬁ,\Jr(Tl,B/\fl)&)w)quV) @ Wxg -

Hence, I have an inclusion
t: DA +v =03\ +v)— DA +v,\+v)

and it suffices to prove that the corresponding quotient is isomorphic to D(2,2v + A). By

Lemma 4 I have the following surjective maps:
VM +v, A2 +v) > DA\ + v, 2 +v) = D(2,2v+ N).

These maps are all unique up to scalars and Proposition 8 shows that the kernel of the
composite map is generated by the element (x_ﬁA‘f’(Tl,BA_1)5)10)‘1""”7)‘2"'”' Hence, the kernel
of

DM\ +v, X2 +v) = D(2,2v+ \)
is generated by ($7/8A+(TI’B/\71)5)(U))\1+V ® Wy, +v). But this means that the latter kernel is
precisely the image of ¢ and hence the corresponding quotient is isomorphic to D(2,2v + \)
as needed.
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Chapter 3

Proof of Proposition 6

I shall assume throughout this chapter that (A1, \2) is interlacing, and that
A= A1 + Ao I shall also assume that, when there exists p maximal such that )\(a;,/) =1,
I have A\(ay) = 1.
3.1 Minimal Element of R(\1, \2)
Note that Lemma 3 shows that R(A1, A2) =0 if A = w;_1 + w; for 0 < i < £. The following

result establishes the converse.

Lemma 10. Suppose that X # w;—1 + w; for 0 < i < £. Then B\ € R(\1,A2) and more
generally,

Bij € R(A1,A2) <= Bij = qis—1+ ajp 1+ B,

and

(A= A2)(ads1) = 0= (A1 = A2)(af, ).
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‘ p—1 p#p-1
Proof. Recall that 8y = (s, with s = where p” < p/ < p are

//

" p=p-1

maximal such that )\(az,, + ozzl +ay) = 3.
By my convention, I have Ai(a,) = 1, so by the interlacing property of (A1, A2),
I have Aao(a,) = 1 = Ai(ay)). It is easy to see that (A1 — A2)(aj ) = 2, and a calculation

shows that

Bij € R(AL,A2) = i<sors<j<p,

which shows that 8; ; = a;s—1 + a;p—1 + Bx. Since ;) € RT if i < s, 1 have
(A — Az)(ﬁxp) = (A1 — )\2)(042/78,1) + 2.

Note that Lemma 3 forces (A1 — A2)(as_;) € {—1,0}. Similarly, if j < p, T have

Bs,j = B + jp—1 and (A — )\2)(0[}/@71) € {—1,0}. If B, ; € R(A1, \2), then

(M1 = A2)(BY;) = £2, hence (A1 — A2)(afs_1) =0 = (A1 — A2)(f,,_1), as needed. O
3.2 Kernel of ¥y, 1) x40
By observing the relations of D(2, A + 2v), it is easy to see that the kernel K of

the map ¥y, 4, 2,4+ is generated by the elements

(m‘*a+ba5a6)w)\1+V7A2+V

where by Sq < max{riqa,r2.q}-
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Lemma 11. For a € R, bysq < max{ria,m2a} <= «a € R(A1,N\2).

Proof. Note that (\; + v)(aV) = 22>, Thus, I have

bo
™MaTT
(A +20)(@) = 2(sa — 1)+ mq = T2,
o
Tlat+ 724 My
— ) ) 1
¢ 2ba, * 2’
and
",a — T2«

(A1 = A)(aY) = T

First, suppose o € R™ is a long root. Then by Lemma 3, I have

Tla — T2«

ba

Tla — T2«

2

<1.

Since r1,q — 72,4 i necessarily even, 11 o —ra o € {0, £2}. If 71 o — r2.o = 0, then

"« My
So = —— - —.

2 2

Since s € Zy and 71 4 is even, I must have m, = 2, so this simplifies to

<
=
Q

Saq =

Thus, bySq = max{ri q,r2.q}-

Next, consider the case when r1 o — 12, = 2. Then I have

:M+1_@:M+l_@'

S 1 D 2 2

Since 72 o is even, I must have m, = 1, and hence
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Therefore

baSa =T2,0 +2 =710 =max{r| o, 72,0}

The argument is symmetric when rq o — 120 = —2.

Now suppose « is short. Lemma 3 shows that
|T1,a - r2,a| <2

Since r; o is not necessarily even when « is short, without loss of generality, I have three

cases to consider.

Case 1: 71,4 = r2,o. Then

Mme
S =T1a+1——.

2

Again I must have m, = 2, and thus bySq = 71,0 = max{ri o, 2.4}

Case 2: 71, =12, +1. Then

3 — Mg
2

Sq =T2,0 +

In this case, I must have m, = 1, and hence

basa = 72,0 + 1= ,a = max{rl,a, TQ,a}-

Case 3: 71, = 12,0 + 2. Note, this is only possible for a = 3; ; for some 1 <4 < j < £ since
by Lemma 3, [(A1 — A2)(a;)] < 1. In this case I have

m
sa:r2,a+2—7a.

Then m, = 2, and I have

baSa =T2,0 +1 <710 =max{r; o, m2,0}-
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This occurs precisely when a € R(A1, A2). Moreover, in this case, bySq = 71,0 — 1. O
Assume that A = w;_1 +w; for 0 < i < £. Then by Lemma 3, R(A1, \2) = (), and

hence by Lemma 11, I have

VA +v, A2 +v) = D(2,2v+ N).

Since the maps in Lemma 4 are unique up to scalars, it follows that the map

Vi +v, A2 +v) » DA\ +v, 2 +v) = D(2,2v+ N)

is an isomorphism, and hence all maps are isomorphisms. Thus, Proposition 6 is proved.

25



Chapter 4

Proof of Proposition 8

I shall again assume throughout this chapter that (A1, A2) is interlacing, and that
A= A1 + Ao I shall also assume that, when there exists p maximal such that )\(a;,/) =1,
I have A\(ay) = 1.

4.1 S, and the Kernel of 9y, 1, x4

I begin by considering the map ¥, 11 x4 : V(A + 1, X2 +v) = D(2, A+ 2v). As

Lemma 11 shows that the kernel K of ¥y, 1, x,+, is generated by
(«T—B—&-bﬁsgé)w)\l—i-u,)\g—&-u fOI' /B S R()\la >\2)7
I can now proceed with the proof of Proposition 8 by first proving that, in fact,

K = U(th) (aj—,B)\-l-(Tl”@/\ —1)6)w>\1+u,)\2+l/-

To this end, let 8;; € R(A1,A2), and assume that i < s —1or j < p—1 (else,

Bi,; = B and there’s nothing to prove). By Lemma 10, I can write 5; j = S+ s—1+jp—1.
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Because of the defining relations

($—ai,s—1+(>\1+u)(axs_1)6)w>\1+1/7>\2+l/ =0= (I_O‘j,p—l“!‘()\l"!‘V)(Oé}/,p_l)6)w>‘1+1j7)‘2+y7

I have the following equivalences:

(T i1+ a0y (@Y )8 (Toa i+ Oty (), )8) Tyt (ry sy —1)8) WA v A+

= (1:_(ﬁ)\"l_ai,sfl+Oéj,p71)+((A1+V)(ﬁ;\/+067\;/’571+04}/’p71)—1)5)w>\1+V7A2+V

= (T, +(a+)(8Y,)~1)8) Wi v do 4o

4.2 Map from V(A +v— By, o +v) = K

The next step in the proof of Proposition 8 is to establish the existence of the map
V()\l-f—lj—ﬁ)\,)\g—}-u)—)K—)O

by showing that the element (z_ Brt(r1, le_1)5)w A1+, o+ Satisfies all of the defining relations
of the element wx, 41—, Ao+ € V(A + v — B, A2 + v). This will be done over several
different cases. I will begin by showing that (:E_ﬁmL(TmA_1)5)w>\1+y,>\2+y satisfies the local
Weyl module relations; that is, relations (2.2.1) and (2.2.2).

4.2.1 Relations (2.2.1) and (2.2.2)

The first of the local Weyl module relations I will show is that

(xoéi+r5)(x—[3>\+(r1’5A—1)5)w)\1+l/,)\2+1/ =0 for r > 0.

Since (T, +r8)Wr; +vxs+v = 0, the relation is immediate if 8y — a; ¢ RT. Thus, I'll assume

that By — a; € RT and show that

(:L'—(/B)\—Oéi)“r('/'l,ﬁA_1+7')6)w>\1+1/7)\2+7/ = 0.
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Since 8y = fBsp and B\ — a; € RT, I must have either i =pori =s. If i = s = p”
or ¢ = p, I have that (A — X2)(8Y) = 2, and A\ (o) = 1. Thus,
max{rlyﬁ,\—amrlﬁx—ai} =T —a; 716, — L

Now, when i = s = p — 1, since v is (A1, A2) compatible, I must have I/(Oé;)/_l) > 1.

In this case, I have 8y — a,—1 = 3, and hence,
1,8, = 2(A1 + ) (Bp) = 2 + 2V(BX) <2+ 21/(51\0/) + V(a;,/,l) -1

=718, —1= maX{TLﬁA—ai? TQ,/BA—Oéi}'
Therefore,

(T (8 —i)+(r1,p, —1)8) WA +v 2ot = 0,
and hence,

(Z_(By—a)+(r1 5, ~147)8) WA v rg 41 = 0

for » > 0. Finally, it is clear to see that

(Rirs) (- gy (1 5, ~1)8)WAs 4w rotr = Or0 (A + 20 = Ba)(@ ) (@ g, 1y 5, —1)8) Wi +w Az s

and relation (2.2.2) holds because V(A1 + v, A2 + 1) is finite dimensional.
4.2.2 Relation (2.2.3)
Next, let @ € R* and set ] , = ba(A1 +v—Bx)(a”). T'll show that relation (2.2.3)

holds; that is,
(x—a—s—(max{r’l’a,rg,a})é)(xfﬁ);#(rl’g/\71)6>w)\1+1/,)\2+1/ =0.

This will be done in several cases. First, suppose that 8)(«Y) = 0. Then 1, = 7”/1704: SO

the relation is immediate if 8\ + « ¢ RT. Thus, I assume that 8y + a« € R*. This is
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only possible for 8y = B, p, and in this case, I must have o = o ,_1. However, note that

Ak(ayn, 1) =1 for k € {1,2}, and thus

}+ripg —1=3+ QV(@)/H) = 1 mod 5.

/
rna‘x{r].,Ocp//’p_1 ) erO‘p”,pq

Because ) + oy p,—1 = B and B, is a long root, I conclude that

o) (@og () 8Y)-1)s)] = 0,

[(l‘ /
(0% + max
p! p—1 ( a. {rl,ap//’p_lvrzaa p—1

P

and thus, the relation holds.

Now suppose )(a¥) = —1. By lemma 3, |(A; — A2)(a")| < 1. Hence,

r'La = max{r'lﬂ,m@} > max{ri,a,72,a}, and 11 448, = MaX{T1 048, 72,048}

Thus, the relation is again immediate unless 8y +a € R, so I assume 3\ + a € RT. Note
that when 8y = B, p, I must have either o = a1 for 1 <i < p” —1or a = a;p_1 for
1<i#p’"<p-1, and when 5\ = 8y_1,, I must have & = a9 for 1 <i <p—2. In all
of these cases,

Ma =M +v=8)@") = (i +v)(a")+1

and hence,

Mot 78 — 1= A1 +v)(@”) + (A1 +v)(BY)
= A+ )@’ +8Y) =ba(M +v)((a+B1)") = 71,0485+

Thus, the relation holds.
Now consider the case when 3y (") = 1. Then 8y+a ¢ RT, and either 8y —« € R
or a — fy € R*. Note, if ro o > 71,4, then 1y = max{r| ,,724} = max{ri s, 72} and

the relation is immediate. Suppose first that 8y — a € R*; I will begin with the case that
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T1,a = 2, + 2. Then I must have a = f,. Thus, b, = 2 and since A\(a") = 1, I have that
mea = 1; hence, (A+2v)(a") = 2(sq — 1) +my, implies that 2v(a") = by(so —1). Therefore,
Mo = oM +v = B) (") = 2(v(a’)) = ba(sa — 1). Now, by relation (2.2.4), it is clear
that

(x_(ﬁk_a)‘f'(rl,ﬁ)\fa-‘rl)(ﬂ (x—oz—&-ba (sa—1)5)2w)\1+u7>\2+1/ =0.

Thus, I conclude that
0= (x—(ﬂ,\—a)—k(rl’gk,a—kl)(s)(xfa+r’1ya§)2w)\1+l/,/\2+1/

= 2($_a+r/1’a§)(x_/3)\+(7‘1,5>\_1)5)11])\1_;'_,/7)\2_’_”,

showing that the relation holds. Similarly, if r1 o = 72 + 1, then I either have o = 3;,,
for s <i<p,a=apjforp<j<{ora=ayfors<k<p. Inall three cases,
I have that b, = 1 and my = 1. When a = ap; or @ = agy, I have that A(a¥) = 1;
hence, (A + 2v)(a") = 2(sq — 1) + m, implies that 2v(a”) = 2(s, — 1), so v(a¥) = sq — 1.
Additionally, in this case, 7} , = (A1 +v — Bx) (") = v(a”). Thus,

r’L o = Sa — 1 =ba(sq — 1), so by the same argument, the relation holds in these two cases.

Lastly, when a = f; 5, T have \2(8),) = 1 and A1(8},) = 2; hence,

L+v(B),) = sp,, — 1. Inthis case, 77 , = 1+ v(8),) = ba(sp,, — 1) as well, so the relation
holds in all three cases.

Now suppose o — 8y € R*. If ry o = roo + 2, then either a = f;; > 8 or a = S,
and if 71 o = 724 + 1, then either a = 3;, for 1 <i<s—lora=pf,for1 <i<s—1.
In any case, since A\(8Y) = Aa2(BY) + 2, I have that (A +v)(8Y) — 1 = sg,, and hence,

T1,0— 8 + 88, =Tl,a — 1.
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Thus, by relation (2.2.5),

0= (x—(Oé—BA)+(7”1,a_5>\)5) (x*5>\+8,8/\ 5)2w/\1+1/7)\2+1/

= 2(Z—atria—1)(Togy+(r1 5, —1)8) WA +v 040

= 2(93—04-"-7“/170[)(Jj—BA—‘r(TLBA—1)§)w)\1+l/,)\2+l/a
and therefore, the relation holds.

Now when 3)(a") = 2, a must be ), and I have

(@ pytry ;3T pyt(r 5, ~ 1)) WA+, 204w

= (T gy (1,5, ~2)6) (T By (1, —1)8) WA v Aot
Note that (a:_BAJr(TLBA_2)5)(x_ﬁAJr(rLBA_1)5)w,\1+l,’,\2+y = 0 in Wiee(A + 2v), and hence, the
relation also holds in V(A1 4+ v, A2 + ).
4.2.3 Relation (2.2.4)

Next, I must show that relation in (2.2.4) holds, i.e., for a € R

)mg‘+1(

(% a4 (b (s5,-1)) LByt (r1, 5y —1)8) WAr 42w = 0

where s/, and m/, are the unique nonnegative integers satisfying
A+2v — By (") =2(s,, — 1) +ml,.

This will also be done in several cases. First, if 8)(a¥) = 0, then a + 8\ ¢ RT, m), = m,,

and s/, = s, so the relation holds.
Now suppose By(a) = —1. Again, if 3\ + « ¢ RT the relation is immediate, so
assume that 8y + « € RT. As before, if 8y = B, I must have either o = «; 7 for
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1<i<p'—l,ora=qp1forl <izp’ <p—1,andif B = fBp_1p, then a = a;p 2
for 1 <i < p—2. In any case, I have two subcases to consider. First, if m/, = 1, then
me = 2 and s, = s, — 1. Since my = 2, (A + 2v)(a") is even, so by Lemma 3, I have

AM(aY) = Aa(aY), and 80 71,4 = ro,0 = Sq. Thus,

)ngrl(

(xfa+(ba(s&fl))6 xfﬁk+(r1,,3k71)6)w)\1+z/,)\2+1/

2
= (T—atsas) (33—5)\4—(7"1,;;)\—1)6)w>\1+'/,)\2+1’
= (:L'—oc-&—sa(S)(‘I‘—ﬁx-&-(ﬁ,m,u—l)(s)(‘%‘_a+5a5)w>‘1+y7’\2+y
@Byt 1,5, 50~ 1)6) (T-atsad) WAt paty = 0

by relation (2.2.3).

Now, if m!, = 2, then m,, =1 and s, = s/, and thus,
3
(@ —at(s5,—1)6) " (T gy + (15, —1)8) WAL v A0 +v

= (x—(ﬁx+a)+(r1,m+sa—2)5)(f—a+(sa—1)6)2w/\1+u,/\2+u
H(Z ot (sa-1)8) (Tt (r1 p, ~1)6) (T ot (s0—1)8) Whi v A0+
with both terms equal to 0 by relation (2.2.4).

Next, suppose By(a") = 1. Then either By —a € RT or a — 8, € R". First,
consider the case when 3y —a € RT. In this case, either « = 3, for s < i <p/, o« = a,j for
p<j<l a=agfors<k<p, ora=p, If =70, then (A+2v)( ;,/p) =342y Xp),
so I have mg, , = 1; hence, mlﬁi,p = 2 and sg,, = s%i,p + 1. Similarly, if o = oy or if
a = apj, then (A +2v)(a") = 1+ 2v(a), in which case m, = 1, and hence m/, = 2 and
Sq = sh, + L.
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For the subalgebras sly[t] C €g corresponding to the short roots o = S, @ = s,

and o = a5, I have the following.

Lemma 12. There exists a homomorphism of sla[t] modules D(2, \+-2v) — V (A1+v, Aa+v)

mapping generator to generator.

Proof. By Theorem 2 in [3], I need to show

(T—atsa8)Wri+v 2040 =0 (4.2.1)
+1w)\1+l/,>\1+l/ =0 (4.2.2)

(xa+(sa —l)é)ma

for a = B p, @ = ap 5, and o = ag .

Note, (4.2.2) is immediate by relation (2.2.4). To show (4.2.1) holds, observe:
1 Y%
35 = 5 (A +20)(8,) +1)

1
= §(T1’ﬂi,p + T2’ﬂi,p + 1)

=718, = ma‘x{rlﬂi,p? T276i,p}7

and similarly, when o = oy or a = ay j,
_ Vy _
so =14+v(a’) =r1 o =max{rq,r2aq}-

Hence, (4.2.1) holds by relation (2.2.3). O
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Using this Lemma, along with the presentation of Demazure modules given in 3.5

of [3] (originally defined in [6] and [11]), I have that

4
(x—a+(sa—2)5) W 4, Ao4v = 0

for a = 3;, @ = 5, and o = s 1. Also note that, in all three cases,

LGy~ Sa 1 27 (5, 0) = Max{T (5, -0): T2, (83 -0) }-
Hence, I have
0= (Z_(8y )+ (r1,5, 50 +1)8) (T -0t (sa-2)8) WA+, 20 4w
= (T at(sa-2)0)" (T 8y 4 (r1 5, ~1)8) WAt 020
T at(s0-28) (T (Br—a)t(r1 5, —sat1)8) WA1+1, 2040
= (m—a-‘r(sa—2)5)3($—5A+(T17g)\—1)5)w)\1+11,)\2+1/-
Now suppose @ = 3,. Then A 4 2v(8)) = 1+ 2v(B)), so I have mg, = 1,
sp, = I/(,BI\,/) + 1, and bg, = 2. Hence, in this case I must show that
(T g, 42(55,-25) (T pytr 5, 1)) WA +0, 2040 = 0.

To accomplish this, I'll prove another, similar lemma; that is, for the subalgebra sl [t2] C &g

corresponding to the long root a = 3,

Lemma 13. There exists a homomorphism of sla[t?] modules

D(2,\+2v) = V(A + v, A2 + v) mapping generator to generator.
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Proof. To prove this lemma, I must show that the following equations hold in
V()\l + v, A + V):

(T—8y+254,8)Wr1+v Mot = 0 (4.2.3)
(€8, 12355, 1)8) ™ T WA 2 40 = 0. (4.2.4)

Note, I have \i(8)) = 1 and A2(B3y) = 0, so 255, = 2 + 2v(f3,). Hence,

max{ry g, r2,6,} =15, = 2((M +v)(8)) = 2+ 20(B)) = 25,
Thus, (4.2.3) holds by relation (2.2.3), and (4.2.4) holds by relation (2.2.4). O
Using this Lemma, I can conclude that
(x—ﬁp+2(55p—2)6)4wz\l+u,)\2+u = 0.

Since 4 +v(ay, 1) > max{ria,, ;,72,a., 1}, I can therefore conclude the following:
4
0= (Toa, 1+ (@tv(a?, o) T—g,42(s5,~2)8) Whr+v Aoty

3
= (T_g,42(s5,-2)6) (T By +(r1 5, —1)8) WA1 410040
4
(2 -g,12(55,-2)8) (T o1+ (@4u(a?,_ )8 WAr+v 2 v
3
= (Z_g,42(s5,-2)6) (T8 +(r1 5, —1)8) WA1 410040

and hence, (x,aﬂba(s&,l))(;)m/a“(a:,gAJr(TLBA,1)5)w,\1+,,7,\2+1, = 0 whenever 8, —a € R™.
Now suppose o — 3\ € R*. Then either a« = 3;, for 1 <i < s—1, a = §3; for
1 <i<s—1,or a=p. Suppose first that either « = 3;,, or a = ;s for 1 <7 < s -1,

and that my, = 2. Then b, = 1, m/, =1, and s, = s, so I must show that:

(ot (st,-1)8) 2 (T 1 (r1 5, —1)8)WA1 402z = O-
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Let oy = Bx. If a = Bip, let oy = @i s 1, o) +ah = B p, and so = sg, ,, and if a = B, let
oy = Qip1, &) + by = B, and s4 = sg, . Now, consider the lie algebra sl3[t] with roots
of, of, and o) + o}, and define M to be the sl3[t] module generated by a vector m with

the following relations:
(Taz4cpys)m =0
(hat ks)m = 00((2r — 2)wr + (25 — 2r + 2)wa) (e )m
(x—a’ﬁrl,%&)m =0
(x—o/z-l—(sa—rl,g/\-&-l)é)m =0
(T () +ap)+(sat1)8)m = 0.

It is known that this module is isomorphic to the generalized demazure module; namely it

can be realized as the submodule
U(sl3[t]) (wi@ws) C (W3 (ry g, w1+H(5a—71,5, +1)w2) @WE3 (11 5, —2)w1+(50—71,5, +1)w2))

where w; is the highest weight vector of Wweks (7“175Aw1 +(sa—r18,+ 1)we) and wo the highest

loc

weight vector of I/Vlilg’((rl,m —2)wi + (s — 11,8, + 1)wo).
Define a map M — V(A1 + v, A2 +v) by sending generator to generator. Then the

sl3[t] map is well defined; First, it is clear that
(Tat1cys) (WA +v,2040) = 0 and

(haékas)(w)\lﬂ’:)\frv) = ((27”17,6& —2)wi + (284 — 2ry 8, + 2)w2)(a{iv)(sk,o(w)\1+1/,)\2+1/)'

36



Then, by relation (2.2.3), I also have the following:
($—a’1+r1,ﬁ)\5)(w>\1+v,>\2+v) =0,

(w—aé‘f'(sa—'f’lﬁ)\"rl)(;)(w)\1+V»)\2+V) =0,
(T (o +ab)+ (sa+1)8) (Wr1 41,20 +0) = 0.

Now observe:

(xf(a’1+o/2)+(safl)5)2(xfa’ﬁ(rl,g/\71)6)(w1 ® wa)
= (T () tay) (s 1)0) (Taf (15, —1)5) W01 © W2
+(m—(a’l+a’2)+(sa—1)5)2wl ® (95—a’1+(r17ﬂk—1)5)w2
T2(T_ (0 +ay)+(5a—1)8) (T—a+(r1 5, ~1)6)W1 @ (T (0 +0)+(50—1)8) W2
2T (o +0l)+(5a—1)8) W1 @ (T (0 405+ (sa—1)6) (T—af +(ry 5, —1)8) W2
a1 (5, 1)) W1 @ (T (0 40 (50-1)5) W2
W1 ® (T (o) tap) +(sa—1)8)” (T 4 (ry 5, —1)5)W2-
Note, since (Z_ (a1 1ap)+(sa-1)5)W2 = 0 = (x,a/ﬁ(rmk,l)(;)w% this can be immediately
reduced to:
(x—(a’1+o/2)+(sa—1)5)2(1?—a’1+(r1m—1)5)(w1®w2) = (ﬁ—(a’1+a’2)+(sa—1)5)2(fﬂ—a’1+(r1,ﬂk—1)5)w1®w2-

Now consider the sly for the simple root o} 4+ o, and the slz[¢t] module Wi, (s, ) with highest

weight vector w. I claim there exists a map Wipe(sqo) — U(sly [t])(x,aH(rmA,l)(;)wl defined

by w — (xfa'1+(r1,5/\71)6)w1'
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Observe:

(Tag+ay+k6)(T_al+(r1 5, —1)6) W1

= (Tagt (bt g, —1)8) W1+ (T_af1(ry 5, —1)8) (Tag +agy+rs) w1 = 0,

(o +0) k6) (T - +(ry 5, —1)8) W1
= 0k,050(T—af+(r, 5, +h-1)8) W1,
and
(95—(a’1+a’2)+saé)(x—a’1+(r1,3x—1)6)w1 =0.

Thus, the map is well defined. Finally, since (a:_(a/1+&/2)+(sa_1)5)2w = 0, I can conclude that

(T () +ap) +(sa—1)8) " (T 4 (ry 5, ~1)8)W1 = 0

hence
(% (0 +a) +(sa-1)0) (T-at +ry 5, ~1)s) = 0,
and therefore,
(@ at(st,-1)8)* (T3 +(r1 5, ~1)8)Whs 4000 = 0
for both o = 3;, and o = 3; s with m, = 2.
Now suppose that either o = 3; , or a = §; s for 1 <7 < s and that m, = 1. Then

bo =1, m), =2, and s, — 1 = s/, so I must show that:

(x—a+(sa—2)6)3($—5>\+(r1’5)\ —1)6)w)\1+1/,)\2+1/ = 0.

Let 0/1 = By If @ = By, let 0/2 = Qi s-1, o/l + 0/2 = Bip, and so = 885 5 and if a = B, let
/ / /
ay = Qip-1, O] + & = Pis, and 5o = s, 5.
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Now, consider the Lie algebra sl3[t] with roots o, o, and o] + o4, and define M

to be the sl3[t] module generated by a vector m with the following relations:

(Zas1cpgs)m =0,
(hasks)m = 0k 0((2r1,8, — 2)wi + (280 — 271, + Lws) (e} )m,
(@"fo/ﬁrlﬁka)m =0,
(zfa’2+(sa—r1)ﬁk+1)6)m =0,

(x—(a’1+a’2)+sa5)m =0.

It is known that this module is isomorphic to the generalized demazure module; namely it

can be realized as the submodule

U(sls[t]) (w1 ®wa) € (Wi (ry, g, w1+ (S0 — 71,8, )w2) @ Wil ((r1,8, — 2)w1 + (sa — 71,5, +1)w2))

loc

where w; is the highest weight vector of I/Vlf)lg (r1,8,w1 + (Sa — 71,8, )Jw2) and wy the highest
weight vector of Wflﬁg((ﬁﬁA —2)wi + (8a — 11,8, + 1)w2).
Define a map M — V(A1 +v, A\a +v) by sending generator to generator. Then the

sl3[t] map is well defined; First, it is clear that

(Tat1cs) (WA +v,2040) =0

and

(Pt 1o5) (W 1020 +) = Ok0((2r1,8, — 2)wn + (250 — 216, + 2)w2) () (W, 4re0)-
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Then by relation (2.2.3), I also have the following:
($—a’1+r1,ﬁ)\5)(w>\1+v,>\2+v) =0,

(x—aé—l-(sa—rl,gx—&-l)é)(wk1+1/,>\2+1/) =0,
(wf(a'1+o/2)+sa6)(w)\1+l/,>\2+1/) =0.

Now observe:

(T (0} o)+ (s0—2)8) (T 4 (ry 5, —1)8) (W1 ® w2)
= (T () tab) +(sa-2)0) (Taf (15, —1)5) W1 © W2
H3(2 (0] o)+ (s0-2)8) (T -0y 4(r1 5, ~1)8)WI @ (T (0] 4ay) 4 (sa—2)0) W2
+3(2 (0] ) (50 -2)8) (T -0 4 (re, ~1)8)W1 D (T (0] 1) + (50 —2)8) W2
H(T o (5, ~1)8) W1 D (T (0] 1) +(s0—2)8) W2
(0] 1)+ (s0-2)8) W1 @ (T_a) 4 (ry 5, —1)5)W2
+3(2 (0 o)+ (50-2)8) W1 @ (T () 1)+ (sa—2)8) (T 4(ry 5, —1)5)W2
+3(T (a4 )+ (s0-2)8)W1 ® (T (0] a) 1 (s0-2)0) (T 4 (ry 5, —1)8) W02
+w; ® (xf(a'1+a’2)+(572)5)3(xfo/lJr(rl,gA71)6)w2-
Note, since (Z_(a} +a)+(s-2)6) W1 = (T () +a)+(s-2)6) W2 = (T_a)4(r, 5, ~1)5)w2 = 0, this
can immediately be reduced to:

(T (o )+ (5-2)6)° (T—af 1 (ry 5, ~1)8) (W1 @ w2)

= S(xf(a’1+a/2)+(sf2)6)2(xfo/l+(r175/\71)5)71)1 ® (xf(a/1+a’2)+(572)5)w2-
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Now consider the sly with simple root o) 4/, and the slo[t] module Wio.(sq —1) with highest
weight vector w. I claim there exists a map Wipe(sq — 1) — U(sly [t])(w,a/ﬁ(mm,l)(;)wl
defined by w — (:E,Q/IJF(TLBA,l)(;)wl.

Observe:

(ZTay+ay+58) (T—al 4(ry 5, —1)5) W1

= (xa’Q—&-(k—i-rl’[;A—l)(S)wl + (l‘—o/l—i—(rl’ﬁA—1)5)(xa’l+o/2+k6)w1 =0,

(Mo +as) k8) (T—af +(ry 5, ~1)8) W1
= 0k, 0(Sa = D(@_al4(ry 5, +k—1)5) W1,
and
(T—(af+0b)+(sa—1)8) (T—af 4 (ry 5, ~1)s) 01 = 0.

Thus, the map is well defined. Finally, since (a:_(afl+a/2)+(sa_2)5)2w = 0, I can conclude that

(xf(ag+ag)+(sa72)a)2($7a3+(r1,,3f1)5)w1 =0,
hence
(€ () +a) +(s-2)8) (T a1 (ry g, ~1)8)M = 0,
and therefore,
(T at(sa-28) (T34 (r1 5, ~1)8)Wh1 40020 = 0
whenever o = 3, and o = 3 5.

Finally, suppose a = f8;. Then mg, = 1, so mjs = 2 and s, = s + 1. Thus, I

want to show that

(€ g1 2(s5,-2)8)° (T By t(r1 5, ~ 1)) WAt A0 +w = 0.
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I have that:

(hBeks) (T, +(r1 5, —1)8)WAT+vpa v = 2088, = 1)0k,0(Z_ g, 1 (ry 5, ~1)6) WA 1+ 2a v
and
(8,4k8) (T3 +(r1 , —1)6) WAr4v 24w = 0 for k>0

Hence, there exists a map

Wi (2(sg, — 1)) — U(5[2[t2])(‘r—ﬂ)\+(r1,@>\—1)5)w>\1+1/7>\2+l/

sending the generator wy(,, 1y of Wlfjrg (2(sg, — 1)) to (x_BAJr(n’BA_1)5)w,\1+y,)\2+,,.

Then, since (x_55+2(853_2)5)3w2( y = 0, I conclude that

sgs—1
3 _
(T_Bat2(s5,-2)8)" (T 8y +(r1 5, —1)8) Wri+v Ao v = 0.
B by

Therefore, I have

it

(x—a—i-ba(sg—l)é ':U—B)\-‘r(’!’l’g)\—1)5)w>\1+l/,)\2+u =0

whenever 8 (aV) = 1.
The last case I must consider is when 3y («") = 2. This occurs only when o = j,.

Since mg, =2, I have mjy = mg, and sg, = s +1=r715, — 1. Thus, I must show that

3
(x—ﬂA-I—(TLﬁ)\—B)cS) (x—ﬁxl—(m,a)\—1)5)w/\1+V7>\2+V = 0.
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Consider the lie algebra slp[t] with simple root S\ and define M to be the sly[t] module

generated by m subject to the following relations:

(zg,+cgs)m =0

(hgyks)m = 0o (A +20)(BrY))m

(x—ﬁx*‘(ﬁ,ﬁA)fS)m =0.
It is known that this module is isomorphic to the generalized Demazure module; namely it

can be realized as the submodule

Uslaft]) (w1 @ w) C (Win2(r1,5,) ® Wi2(r1,6, — 2))

loc loc

where wy is the highest weight vector of W22 (r1,8,) and wa the highest weight vector of

loc

Wik (r1,8, —2). Define a map M — V(A1 + v, A2 + v) by sending generator to generator.

loc

Then the sl3[¢t] map is well defined; First, it is clear that

(28, +C[g6) WA +v 2010 = 0

(hgy ks)m = Ok o (A4 20) (BrY))wx, 4,240

Then, by relation (2.2.3), I also have

(xfﬁx%»(Tlﬁ/\)5)w)\1+1/,)\2+l/ =0.

43



Now, since (x_BAJF(TLﬂA_l)g)wg =0 and ($_5>\+(rl’ﬁk_3)5)2’w2 =0, I have that
(T gy t(r1.5,~3)5) (T (05, —1)8) (W1 @ w2)
= (x*/j/\JF(Tl,ﬁA *3)5)3(35*,3/\+(7”1,5>\*1)5)w1 ® w2

2
+3(2_gy+(r1 5, ~3)8) (T gyt (r1 5, —1)8) WL B (T_gy1(ry 5, —3)5) W2-

loc

I claim there exists a map W22 (r1,8, —2) = U(sly [t])(m_ﬁkﬂ,ﬂl’ﬂk_l)(g)wl defined by

w— (x—ﬁx-&-(ﬁ,/a) —1)5)w1'

Observe:
(Zay+Cit1o) (Tt (5, ~1)s) W1 = 0,
(hﬁAJw)(xfﬁ’)\+(r1’5>\71)5)w1
= 0k0(r1,8, = 2/ (@, 4(ry 5, —1)8) WL,
and

(x*ﬁ)\+(?“175/\72)6)('%'7,8)\4»(7”1”3)\71)5)“]1 = 0

Hence, the map is well defined, and therefore I can conclude that

(T gyt r1 5, ~3)8) (T Byt (15, —1)8) w1 = 0,

and thus,

(T gyt (9, ~3)9) (T By (0.5, ~1)8) WAs +wpa = 0.
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4.2.4 Relation (2.2.5)

Finally, I must show that relation (2.2.5) holds; that is, that

2
(T 545,6) (T, 4 (ry 5, ~1)8) W1t Aot = 0

for B € R(\|, A,), where \] = A1 — By — 1o, Ay, = A2 — 1, and 1y is as defined in Lemma 7.
Using Lemma 3 along with the fact that A\;(3Y) > A2(B8Y), it becomes clear that
B € R(N|, Ay) if and only if B8 € R(A1, A2) and By(BY) = 0. Thus, S+ ¢ RT, and s} = sp.

Hence, I have that
2
(m—ﬁ-&-s;}&) ('I—ﬁ)\—ﬁ-(rl”g)\—1)5)w)\1+l/,>\2+u = 07

and therefore, the relation holds. This concludes the proof of Proposition 8.
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