UC Riverside UC Riverside Electronic Theses and Dissertations

Title

Generalized Demazure Modules for the Twisted Current Algebra $^2\chi = A_{21-1}$

Permalink

https://escholarship.org/uc/item/0sz798db

Author

Wagner, Joseph Page

Publication Date

2024

Peer reviewed|Thesis/dissertation

UNIVERSITY OF CALIFORNIA RIVERSIDE

Generalized Demazure Modules for the Twisted Current Algebra ${}^2\tilde{A}_{2l-1}$

A Dissertation submitted in partial satisfaction of the requirements for the degree of

Doctor of Philosophy

 in

Mathematics

by

Joseph Page Wagner

September 2024

Dissertation Committee:

Dr. Vyjayanthi Chari, Chairperson Dr. Jacob Greenstein Dr. Wee Liang Gan

Copyright by Joseph Page Wagner 2024 The Dissertation of Joseph Page Wagner is approved:

Committee Chairperson

University of California, Riverside

Acknowledgments

I would like to thank everyone who has supported me throughout my years as a graduate student at UC Riverside.

I am extremely thankful to my advisor, Vyjayanthi Chari, without whose guidance I would not be here.

I would also like to thank my partner, Armay Roque, for their unwavering support and faith in my abilities, even at times when my own confidence faltered.

And finally, I would like to thank the friends I made within the program - in particular, Jacob Garcia, Christian Michael, Benjamin Russell, Noble Williamson, James Alcala, Jonathan Dugan, and Nick Newsome. To my friends and family for all their support.

ABSTRACT OF THE DISSERTATION

Generalized Demazure Modules for the Twisted Current Algebra ${}^2\tilde{A}_{2l-1}$

by

Joseph Page Wagner

Doctor of Philosophy, Graduate Program in Mathematics University of California, Riverside, September 2024 Dr. Vyjayanthi Chari, Chairperson

In this thesis, I study certain generalized Demazure modules for a twisted current algebra of type ${}^{2}\tilde{A}_{2\ell-1}$; that is, the fixed point subalgebra under an order 2 graph automorphism defined on an untwisted affine Lie algebra of type $\tilde{A}_{2\ell-1}$. In particular, I give a presentation of a family of generalized Demazure modules which can be realized as a submodule of the tensor product of two level one Demazure modules. I also show that, in certain cases, this type of generalized Demazure module is in fact isomorphic to a level two Demazure module.

Contents

1	Intr	oduction	1	
	1.1	Simple Lie Algebras	2	
	1.2	(Untwisted) Affine Lie Algebras	3	
	1.3	Twisted Affine Lie Algebras	4	
	1.4	Local Weyl Module and Demazure Module	7	
2	Mai	in Results	9	
	2.1	Interlacing Pairs	10	
	2.2	Presentation of $V(\lambda_1 + \nu, \lambda_2 + \nu)$	11	
	2.3	Main Theorem	16	
	2.4	First Reduction	17	
	2.5	β_{λ} and ν_0	17	
	2.6	Second Reduction	17	
	2.7	Inclusion of Level One Demazure Modules	18	
	2.8	Main Induction Argument	19	
3	Proof of Proposition 6 21			
	3.1	Minimal Element of $R(\lambda_1, \lambda_2)$	21	
	3.2	Kernel of $\psi_{\lambda_1+\nu,\lambda_2+\nu}$	22	
4	Proof of Proposition 8 26			
	4.1	β_{λ} and the Kernel of $\psi_{\lambda_1+\nu,\lambda_2+\nu}$	26	
	4.2	Map from $V(\lambda_1 + \nu - \beta_{\lambda}, \lambda_2 + \nu) \to K$	27	
		4.2.1 Relations $(2.2.1)$ and $(2.2.2)$	27	
		4.2.2 Relation $(2.2.3)$	28	
		4.2.3 Relation $(2.2.4)$	31	
		4.2.4 Relation $(2.2.5)$	45	
Bi	Bibliography 46			

Chapter 1

Introduction

In [3], a family of indecomposable finite-dimensional graded modules were introduced for current algebras associated to simple Lie algebras. These modules were indexed by an $|R^+|$ -tuple of partitions $\xi = (\xi^{\alpha})$ where α varies over a set R^+ of positive roots of a simple lie algebra \mathfrak{g} . It was shown that, in the case when (ξ^{α}) was a rectangular partition, these modules were in fact isomorphic to Demazure modules of various levels. This led to a simplification of the defining relations of said Demazure modules.

Later, in [10], a similar family of indecomposable finite-dimensional graded modules were introduced for twisted current algebras. Like in [3], it was shown that, when (ξ^{α}) was a rectangular partition, these modules were isomorphic to twisted Demazure modules of various levels, leading to a similar simplification of defining relations.

Then, in [2], it was shown that the graded limit of a family of irreducible prime representations of the quantum affine algebra associated to a simple Lie algebra \mathfrak{g} of type D_n is, in certain cases, isomorphic to a generalized Demazure module. That is, a submodule of the tensor product of level one Demazure modules. A presentation of this family of generalized Demazure modules is also proved in this paper.

For this thesis, I will be using the simplified presentation of level one Demazure modules for twisted current algebras from [10], along with the methods outlined in [2], to give a presentation of a family of generalized Demazure modules for a twisted current algebra of type ${}^{2}\tilde{A}_{2\ell-1}$.

1.1 Simple Lie Algebras

In this thesis, I will denote \mathbb{C} as the field of complex numbers, \mathbb{Z} as the set of integers, and \mathbb{Z}_+ as the set of non-negative integers. Given an indeterminate t, let $\mathbb{C}[t, t^{-1}]$ be the algebra of Laurent polynomials, and $\mathbb{C}[t] \subset \mathbb{C}[t, t^{-1}]$ as the set of polynomials with complex coefficients. For two complex vector spaces V and W, I denote their tensor product over \mathbb{C} by $V \otimes W$. Given a complex Lie algebra \mathfrak{g} , I denote $\mathbb{U}(\mathfrak{g})$ as the universal enveloping algebra of \mathfrak{g} . I also say that a vector space V is \mathbb{Z} -graded if V can be expressed as the direct sum $V = \bigoplus_{k \in \mathbb{Z}} V[k]$.

For a simple finite lie algebra \mathfrak{g} of rank n, with $x, y \in \mathfrak{g}$, the adjoint representation ad : $\mathfrak{g} \to \mathfrak{gl}(\mathfrak{g})$ is given by $\operatorname{ad}(x) = \operatorname{ad}_x$, with $\operatorname{ad}_x(y) = [x, y]$. Fix a Cartan subalgebra $\mathfrak{h} \subset \mathfrak{g}$ and denote $R \subset \mathfrak{h}^*$ as the corresponding set of roots of \mathfrak{g} with simple roots given by $\{\alpha_i : 1 \leq i \leq n\}$. Let $\kappa : \mathfrak{g} \times \mathfrak{g} \to \mathbb{C}$ denote the killing form, defined by $\kappa(x, y) = \operatorname{tr}(\operatorname{ad}_x \circ \operatorname{ad}_y)$. Restricting κ to \mathfrak{h} induces an isomorphism between \mathfrak{h} and \mathfrak{h}^* , as well as a symmetric, nondegenerate form (\cdot, \cdot) on \mathfrak{h}^* . For this thesis, I will assume that this form is normalized so that the square of a long root is 4. For $\alpha \in R$, let $d_\alpha = \frac{4}{(\alpha,\alpha)}$ and let $b_\alpha = \frac{(\alpha,\alpha)}{2}$. Note that $b_\alpha = 2$ when α is long, and $b_\alpha = 1$ when α is short. Along with a set of simple roots $\{\alpha_i : 1 \leq i \leq n\}$, I also fix a set of fundamental weights $\{\omega_i : 1 \leq i \leq n\} \subset \mathfrak{h}^*$ such that $(\omega_i, \alpha_j) = \delta_{i,j}$. Let Q denote the \mathbb{Z} -span of the simple roots, and denote the \mathbb{Z}_+ -span by Q^+ . Similarly, denote the \mathbb{Z} -span of the fundamental weights, called the weight lattice, as P, and denote the \mathbb{Z}_+ -span by P^+ . Then denote the positive roots by $R^+ = R \cap Q^+$. I denote the negative roots by R^- , defined in a similar way. I also denote R_l as the long roots of R, and R_s as the short roots.

Next, I define a partial order on P by $\lambda \leq \mu$ iff $\mu - \lambda \in Q^+$. Finally, let $\{x_{\alpha}^{\pm}, h_i : \alpha \in R^+, 1 \leq i \leq n\}$ be a Chevalley Basis of \mathfrak{g} , and let $\mathfrak{g} = \mathfrak{n}^- \oplus \mathfrak{h} \oplus \mathfrak{n}^+$ be the corresponding triangular decomposition. For convenience, I set $x_i^{\pm} = x_{\alpha_i}^{\pm}$.

For $\lambda \in P^+$, I denote the finite dimensional irreducible \mathfrak{g} -module as $V(\lambda)$. I denote the generator of $V(\lambda)$ as v_{λ} , subject to the following defining relations:

$$x_i^+ v_\lambda = 0, \quad h_i v_\lambda = \lambda(h_i) v_\lambda, \quad (x_i^-)^{\lambda(h_i)+1} v_\lambda = 0$$

for $i \in I$. These modules allow for a characterization of finite dimensional \mathfrak{g} -modules; in particular, any finite dimensional \mathfrak{g} -module V can be written as a direct sum of modules $V(\lambda), \lambda \in P^+$.

Throughout this thesis, I will make reference to simple, finite-dimensional Lie algebras of two types: a special Lie algebra $\overline{\mathfrak{g}}$ of type A_n , and a symplectic Lie algebra \mathfrak{g} of type C_n .

1.2 (Untwisted) Affine Lie Algebras

To realize an untwisted affine Lie algebra $\tilde{\mathfrak{g}}$ of type A_n , I start with a simple Lie algebra $\overline{\mathfrak{g}}$ of type A_n , with root system $R_{\overline{\mathfrak{g}}}$, and denote the Loop algebra as

$$\mathcal{L}(\overline{\mathfrak{g}}) = \overline{\mathfrak{g}} \otimes \mathbb{C}[t, t^{-1}].$$

This can be made into a Lie algebra by defining the bracket operation: for

 $x \otimes f(t), \ y \otimes g(t) \in \mathcal{L}(\overline{\mathfrak{g}})$, the bracket operation of $\mathcal{L}(\overline{\mathfrak{g}})$ is defined to be

$$[x \otimes f(t), y \otimes g(t)] = [x, y]_{\overline{\mathfrak{g}}} \otimes f(t)g(t)$$

where $[\cdot, \cdot]_{\overline{\mathfrak{g}}}$ is the bracket operation of $\overline{\mathfrak{g}}$. Then the untwisted affine Lie algebra $\tilde{\mathfrak{g}}$ is given by

$$\tilde{\mathfrak{g}} = \mathcal{L}(\overline{\mathfrak{g}}) \oplus \mathbb{C}c \oplus \mathbb{C}d$$

where c is the canonical central element and d acts as the derivation $t\frac{d}{dt}$, with a bracket operation given by

$$[x \otimes t^r, y \otimes t^s] = [x, y]_{\overline{\mathfrak{g}}} \otimes t^{r+s} + \operatorname{tr}(\operatorname{ad}_x \circ \operatorname{ad}_y) r \delta_{r+s,0} c, \quad [d, x \otimes t^r] = r(x \otimes t^r), \quad x, y \in \overline{\mathfrak{g}}, \ r, s \in \mathbb{Z}.$$

If $\overline{\mathfrak{h}} \subset \overline{\mathfrak{g}}$ is a Cartan subalgebra, then the elements of the dual of $\tilde{\mathfrak{h}} \subset \tilde{\mathfrak{g}}$,

 $\alpha_0, \alpha_1, \cdots, \alpha_n \in \tilde{\mathfrak{h}}^*$ can be defined by extending $\alpha_1, \cdots, \alpha_n \in \overline{\mathfrak{h}}^*$ to $\tilde{\mathfrak{h}}^*$ by stating $\alpha_i(c) = 0 = \alpha_i(d)$ for $1 \le i \le n$ and defining $\delta \in \tilde{\mathfrak{h}}^*$ by:

$$\delta(h) = 0 \text{ for } h \in \overline{\mathfrak{h}}, \ \delta(c) = 0, \ \delta(d) = 1.$$

Remark that $\alpha_0 \in \tilde{\mathfrak{h}}^*$ is defined as $\alpha_0 = -\theta + \delta$, where θ is the longest root in $R_{\bar{\mathfrak{g}}}$.

1.3 Twisted Affine Lie Algebras

Assume that $\overline{\mathfrak{g}}$ has rank $n = 2\ell - 1$ for $\ell \geq 3$. Given an indexing I on a set of simple roots $\{\alpha_i\}_{i\in I}$ of $\overline{\mathfrak{g}}$, let σ be a permutation of I defined by

$$\sigma(i) = 2\ell - i.$$

I can then extend σ to a graph automorphism of $\overline{\mathfrak{g}}$ by setting $\sigma(x_{\alpha_i}) = x_{\alpha_{\sigma(i)}}$ and then extending this action linearly to the rest of $\overline{\mathfrak{g}}$ such that it respects the bracket operation. I now denote the Twisted Lie Algebra, defined as the fixed point subalgebra under this automorphism, as $\overline{\mathfrak{g}}^{\sigma} := \{x \in \overline{\mathfrak{g}} | \sigma(x) = x\}$. In this case, when $\overline{\mathfrak{g}}$ is a simple Lie algebra of type $A_{2\ell-1}$ for $\ell \geq 3$, $\overline{\mathfrak{g}}^{\sigma}$ is isomorphic to a simple Lie algebra of type C_{ℓ} .

I can now introduce the twisted graph automorphism τ on $\tilde{\mathfrak{g}},$ defined by the following:

$$\tau(x \otimes t^k) = \sigma(x) \otimes (-1)^k t^k \text{ for } x \in \overline{\mathfrak{g}}.$$
$$\tau(c) = c, \ \tau(d) = d.$$

The fixed point subalgebra of $\tilde{\mathfrak{g}}$ under the automorphism τ , denoted as $\hat{\mathfrak{g}}$, is a twisted affine Lie algebra of type ${}^{2}\tilde{A}_{2\ell-1}$. From here on, unless otherwise specified, assume that \mathfrak{g} is a simple Lie algebra of type C_{ℓ} . I will use both $\hat{\mathfrak{g}}$ and \mathfrak{g} in the definition of a special twisted current algebra \mathfrak{Cg} of type ${}^{2}\tilde{A}_{2\ell-1}$.

Letting δ denote the unique non-divisible positive imaginary root in the root system of $\hat{\mathfrak{g}}$, I can then denote the root system of $\hat{\mathfrak{g}}$ as \hat{R} and I have $\hat{R} = \hat{R}^+ \cup \hat{R}^-$, where $\hat{R}^- = -\hat{R}^+$, $\hat{R}^+ = \hat{R}^+_{re} \cup \hat{R}^+_{im}$, $\hat{R}^+_{im} = \mathbb{N}\delta$, $\hat{R}^+_{re} = R^+ \cup (R_s + \mathbb{N}\delta) \cup (R_l + 2\mathbb{N}\delta)$, and $\hat{R}_{re}(\pm) = R^{\pm} \cup (R^{\pm}_s + \mathbb{N}\delta) \cup (R^{\pm}_l + 2\mathbb{N}\delta)$.

Given $\alpha \in \hat{R}^+$, let $\hat{\mathfrak{g}}_{\alpha} \subset \hat{\mathfrak{g}}$ be the corresponding root space; note that $\hat{\mathfrak{g}}_{\alpha} \subset \mathfrak{g}$ if $\alpha \in R$. For a non-imaginary root α , I denote x_{α} as the generator of $\hat{\mathfrak{g}}_{\alpha}$. I also denote $\hat{\mathfrak{b}}$ as the Borel subalgebra corresponding to \hat{R}^+ , and $\hat{\mathfrak{n}}^+$ as its nilpotent radical;

$$\hat{\mathfrak{b}} = \hat{\mathfrak{h}} \oplus \hat{\mathfrak{n}}^+, \ \ \hat{\mathfrak{n}}^{\pm} = \bigoplus_{lpha \in \hat{R}^+} \hat{\mathfrak{g}}_{\pm lpha}.$$

The subalgebras $\mathfrak b$ and $\mathfrak n^\pm$ of $\mathfrak g$ are defined analogously.

Consider the algebra

$$\mathfrak{k} = (\mathfrak{h} \oplus \mathbb{C}d) \oplus \hat{\mathfrak{n}}^+ \oplus \mathfrak{n}^-.$$

The twisted current algebra \mathfrak{Cg} can then be defined as the following ideal of \mathfrak{k} :

$$\mathfrak{C}\mathfrak{g}=\mathfrak{h}\oplus\hat{\mathfrak{n}}^+\oplus\mathfrak{n}^-$$

with triangular decomposition

$$\mathfrak{Cg}=\mathfrak{Cn}^+\oplus\mathfrak{Ch}\oplus\mathfrak{Cn}^-,$$

where

$$\mathfrak{C}\mathfrak{h} = \mathfrak{C}\mathfrak{h}_{+} \oplus \mathfrak{h}, \quad \mathfrak{C}\mathfrak{h}_{+} = \bigoplus_{k>0} \hat{\mathfrak{g}}_{k\delta}, \quad \mathfrak{C}\mathfrak{n}^{\pm} = \bigoplus_{\alpha \in \hat{R}_{re}(\pm)} \hat{\mathfrak{g}}_{\pm\alpha}$$

Note that, for any $\alpha \in R^+$, there is $\overline{\alpha} \in R^+_{\overline{\mathfrak{g}}}$ such that $\overline{\alpha}|_{\mathfrak{h}} = \alpha$. Thus, fixing a Chevalley basis $\{X^{\pm}_{\alpha}, H_i : i \in I, \alpha \in R^+_{\overline{\mathfrak{g}}}\}$ for $\overline{\mathfrak{g}}$ enables us to realize \mathfrak{Cg} as a subalgebra of $\mathcal{L}(\overline{\mathfrak{g}})$ via the following [10]:

For $r \in \mathbb{Z}_+$ and $\alpha \in R^+$,

$$x_{\pm\alpha+b_{\alpha}r\delta} = \left(X_{\overline{\alpha}}^{\pm} + (-1)^{b_{\alpha}r}X_{\sigma(\overline{\alpha})}^{\pm}\right) \otimes t^{b_{\alpha}r}$$
$$h_{\alpha,r\delta} = \left(H_{\alpha} + (-1)^{r}H_{\sigma(\overline{\alpha})}\right) \otimes t^{r}$$
$$h_{i,r\delta} = H_{i} \otimes t^{r} + H_{2n-i} \otimes (-t)^{r}.$$

Remark that $\alpha_i^{\vee} = h_{i,0}$ for $i \in I$. Note that the element d defines a \mathbb{Z}_+ -graded structure on \mathfrak{Cg} : for $\alpha \in \hat{R}$, $\hat{\mathfrak{g}}_{\alpha}$ has grade k if

$$[d, x_{\alpha}] = k$$

or, equivalently, if $\alpha(d) = k$. Note that the eigenvalues of d are all integers, and if $\hat{\mathfrak{g}}_{\alpha} \subset \mathfrak{Cg}$, then the eigenvalues are non-negative. This also defines a grading on $\mathbb{U}(\mathfrak{Cg})$; In particular, for $\gamma_1, \dots, \gamma_k \in R$, the element $(x_{\gamma_1+r_1\delta})(x_{\gamma_2+r_2\delta})\cdots(x_{\gamma_k+r_k\delta})$ has grade $r_1 + r_2 + \cdots + r_k$. Since \mathfrak{Cg} is graded, I can also introduce the notion of a graded \mathfrak{Cg} module. V is considered to be a graded \mathfrak{Cg} module if it is \mathbb{Z} -graded and the action of \mathfrak{Cg} respects this grading; that is, for $\beta \in \mathbb{R}$,

$$(x_{\beta+s\delta})V[r] \subset V[r+s].$$

I now denote the grade shift operator as τ_s^* , which maps $V[r] \to V[r+s]$ for $r, s \in \mathbb{Z}$. That is, for a \mathfrak{Cg} -graded module V, I have that $\tau_s^* V$ is the graded \mathfrak{Cg} module V where the graded pieces are shifted uniformly by s, but the action of \mathfrak{Cg} remains unchanged.

1.4 Local Weyl Module and Demazure Module

For $\lambda \in P^+$, the local Weyl module, $W_{\text{loc}}(\lambda)$, is defined as the cyclic \mathfrak{Cg} -module generated by w_{λ} subject to the following relations:

$$\mathfrak{Cn}^+ w_{\lambda} = 0, \quad \mathfrak{Ch}_+ w_{\lambda} = 0, \quad h_{\alpha,0} w_{\lambda} = \lambda(\alpha^{\vee}) w_{\lambda}, \quad (x_{-\alpha})^{\lambda(\alpha^{\vee})+1} w_{\lambda} = 0, \quad (1.4.1)$$

for all $\alpha \in \mathbb{R}^+$ [10]. By declaring the grade of w_{λ} to be 0, $W_{\text{loc}}(\lambda)$ becomes a graded \mathfrak{Cg} -module. Remark that the 0th graded piece, $W_{\text{loc}}(\lambda)[0]$, is $V(\lambda)$.

Now, let $(l, \lambda) \in \mathbb{Z}_+ \times P^+$. For any $\alpha \in R^+$, I write $\lambda(\alpha^{\vee}) = (s_\alpha - 1)l + m_\alpha$, $0 < m_\alpha \leq l$. Then by Theorem 5 in [10], the level *l* Demazure module is defined as the quotient of $W_{\text{loc}}(\lambda)$ by the submodule generated by the elements:

$$\{(x_{-\alpha+b_{\alpha}s_{\alpha}\delta})w_{\lambda}: \alpha \in \mathbb{R}^{+}\} \bigcup \{(x_{-\alpha+b_{\alpha}(s_{\alpha}-1)\delta})^{m_{\alpha}+1}w_{\lambda}: \alpha \in \mathbb{R}^{+}, \ m_{\alpha} < l\}.$$
(1.4.2)

Consequently, for special twisted current algebras, I have that level one Demazure modules are isomorphic to local Weyl modules (initially proven in [5]).

I will also use an equivalent presentation of $D(l, \lambda)$ given in [5]. Let Φ_0 be the root system of C_{ℓ} and $\Phi_1 = (\Phi_0)_s$, i.e., the short roots of Φ_0 . The following was proved in [5] **Proposition 1.** As a module for \mathfrak{Cg} the Demazure module $D(l, \lambda)$ is isomorphic to the cyclic $\mathbb{U}(\mathfrak{Cg})$ -module generated by a vector $v \neq 0$ subject to the following relations: For $\beta \in \Phi_j^+$, $0 \leq j \leq 1$ I have:

$$(\mathfrak{Cn}_j^+ \otimes t^j \mathbb{C}[t^2])v = 0 \tag{1.4.3}$$

$$(x_{\beta}^{-} \otimes t^{2s+j})^{k_{\beta}+1}v = 0 \text{ where } s \ge 0, \ k_{\beta} = max\left\{0, \langle\lambda, \beta^{\vee}\rangle - \frac{2(2s+j)}{\langle\beta, \beta\rangle}l\right\}$$
(1.4.4)

$$(h \otimes t^{2s+j})v = \delta_{j,0}\delta_{s,0}\lambda(h)v \ \forall \ h \in \mathfrak{h}_j, \ s \ge 0.$$

$$(1.4.5)$$

Finally, I can introduce the generalized Demazure modules for \mathfrak{Cg} . First, consider the tensor product $\tau_s^* D(l, \lambda) \otimes \tau_{s'}^* D(l', \lambda')$, and then take the \mathfrak{Cg} module through $w_\lambda \otimes w_{\lambda'}$. In this thesis, I will give a presentation of the family of generalized Demazure modules of the form

$$D(\lambda,\mu) := \mathbb{U}(\mathfrak{Cg})(w_\lambda \otimes w_\mu) \subset D(1,\lambda) \otimes D(1,\mu),$$

with certain restrictions on the pair $(\lambda, \mu) \in P^+ \times P^+$.

The following result is proven as in [2] by replacing affine with twisted affine:

Lemma 2. There exists a (unique up to scalars) map $\eta_{\lambda,\mu} : D(\lambda,\mu) \to D(2,\lambda+\mu) \to 0$, of \mathfrak{Cg} -modules extending the assignment $w_{\lambda} \otimes w_{\mu} \to w_{2,\lambda+\mu}$.

Chapter 2

Main Results

Keeping the notation introduced in the previous chapter, with \mathfrak{g} a simple Lie algebra of type C_{ℓ} and \mathfrak{Cg} a twisted current algebra of type ${}^{2}\tilde{A}_{2\ell-1}$, I denote the following roots of R^{+} :

$$\alpha_{i,j} = \alpha_i + \dots + \alpha_j, \quad 1 \le i \le j \le \ell - 1$$
$$\beta_{i,j} = \alpha_i + \dots + \alpha_{j-1} + 2(\alpha_j + \dots + \alpha_{\ell-1}) + \alpha_\ell, \quad 1 \le i < j \le \ell$$
$$\beta_j = 2(\alpha_j + \dots + \alpha_{\ell-1}) + \alpha_\ell, \quad 1 \le j \le \ell.$$

Note that

$$R^{+} = \{ \alpha_{i,j} : 1 \le i \le j \le \ell - 1 \} \sqcup \{ \beta_{i,j} : 1 \le i < j \le \ell \} \sqcup \{ \beta_j : 1 \le j \le \ell \}.$$

Furthermore, for $\lambda \in P^+$, I have

$$\lambda(\alpha_{i,j}^{\vee}) = \lambda(\alpha_i^{\vee}) + \dots + \lambda(\alpha_j^{\vee})$$
$$\lambda(\beta_{i,j}^{\vee}) = \lambda(\alpha_i^{\vee}) + \dots + \lambda(\alpha_{j-1}^{\vee}) + 2(\lambda(\alpha_j^{\vee}) + \dots + \lambda(\alpha_{\ell}^{\vee}))$$
$$\lambda(\beta_j^{\vee}) = \lambda(\alpha_j^{\vee}) + \dots + \lambda(\alpha_{\ell}^{\vee}).$$

2.1 Interlacing Pairs

Let

$$P^{+}(1) = \{ \lambda \in P^{+} : \lambda(\alpha_{i}^{\vee}) \le 1, \ 1 \le i \le \ell \}.$$

Note that any $\lambda \in P^+(1)$ can be written uniquely (up to order) as a sum $\lambda = \lambda_1 + \lambda_2$ where $\lambda_k \in P^+(1)$ for k = 1, 2 such that the following is satisfied for $1 \le i \le j \le \ell$:

$$\lambda_r(\alpha_i^{\vee}) = 1 = \lambda_r(\alpha_j^{\vee}) \implies \lambda_p(\alpha_s^{\vee}) = 1 \text{ for some } i < s < j, \ \{r, p\} = \{1, 2\}.$$

I call $(\lambda_1, \lambda_2) \in P^+ \times P^+$ an *interlacing pair* if $\lambda_1 + \lambda_2 \in P^+(1)$, and the preceding condition holds.

Examples. The pairs $(\omega_i, 0)$ for $0 \le i \le \ell$ and the elements of the set

 $\{(\omega_i, \omega_j) : 0 \le i \ne j \le \ell\}$ are interlacing. The pair $(\omega_1 + \omega_4, \omega_5 + \omega_6)$ is not interlacing, but the pair $(\omega_1 + \omega_5, \omega_4 + \omega_6)$ is.

For an interlacing pair (λ_1, λ_2) with $\lambda = \lambda_1 + \lambda_2$, if $\lambda = 0$, set p = p' = p'' = 0. If $\lambda = \omega_j$, set p = j and p' = p'' = 0. If $\lambda = \omega_i + \omega_j$ with i > j, set p = i, p' = j, and p'' = 0. If $\lambda(\alpha_{1,\ell-1}^{\vee} + \alpha_{\ell}^{\vee}) \ge 3$, let p > p' > p'' be maximal such that $\lambda(\alpha_{p''}^{\vee} + \alpha_{p'}^{\vee} + \alpha_p^{\vee}) = 3$. I now define $\nu \in P^+$ as (λ_1, λ_2) -compatible if $\nu(\alpha_{p-1}^{\vee}) > 0$ whenever $p' \neq p - 1$.

Throughout the rest of this chapter, I will assume that (λ_1, λ_2) is an interlacing pair, that $\lambda = \lambda_1 + \lambda_2$, and that ν is (λ_1, λ_2) -compatible. Furthermore, the property of interlacing pairs allows me to assume without loss of generality that whenever $1 \le p \le \ell$ is maximal such that $\lambda(\alpha_p^{\vee}) > 0$, then $\lambda_1(\alpha_p^{\vee}) = \lambda(\alpha_p^{\vee})$.

The following lemma was proved in [4], and will be useful for later.

Lemma 3. For all $1 \le i \le j \le \ell - 1$ and (λ_1, λ_2) interlacing, I have

$$|(\lambda_1 - \lambda_2)(\alpha_{i,j}^{\vee})| \le 1,$$

and

$$|(\lambda_1 - \lambda_2)(\alpha^{\vee})| \leq d_{\alpha} \text{ for all other } \alpha \in \mathbb{R}^+$$

2.2 Presentation of $V(\lambda_1 + \nu, \lambda_2 + \nu)$

For an interlacing pair (λ_1, λ_2) with $\lambda = \lambda_1 + \lambda_2$ and a (λ_1, λ_2) -compatible $\nu \in P^+$,

I set

$$R(\lambda_1, \lambda_2) = \{\beta_{i,j} \in R^+ : (\lambda_1 - \lambda_2)(\beta_{i,j}^{\vee}) = \pm 2\}$$

and define $V(\lambda_1 + \nu, \lambda_2 + \nu)$ to be the \mathfrak{Cg} -module generated by $w_{\lambda_1 + \nu, \lambda_1 + \nu}$ satisfying the following defining relations. For $\alpha \in \mathbb{R}^+$ and α_i with $1 \leq i \leq \ell$,

$$\mathfrak{Cn}^+ w_{\lambda_1+\nu,\lambda_2+\nu} = 0, \ \mathfrak{Ch}_+ w_{\lambda_1+\nu,\lambda_2+\nu} = 0, \ h_{\alpha,0} w_{\lambda_1+\nu,\lambda_2+\nu} = (\lambda+2\nu)(\alpha^{\vee}) w_{\lambda_1+\nu,\lambda_2+\nu}, \ (2.2.1)$$

$$(x_{-\alpha_i})^{(\lambda+2\nu)(\alpha_i^{\vee})+1} w_{\lambda_1+\nu,\lambda_2+\nu} = 0, \qquad (2.2.2)$$

$$(x_{-\alpha+\max\{r_{1,\alpha}, r_{2,\alpha}\}\delta})w_{\lambda_1+\nu,\lambda_2+\nu} = 0,$$
(2.2.3)

$$(x_{-\alpha+b_{\alpha}(s_{\alpha}-1)\delta})^{m_{\alpha}+1}w_{\lambda_{1}+\nu,\lambda_{2}+\nu} = 0, \qquad (2.2.4)$$

$$(x_{-\beta+s_{\beta}\delta})^2 w_{\lambda_1+\nu,\lambda_2+\nu} = 0 \qquad \beta \in R(\lambda_1,\lambda_2), \tag{2.2.5}$$

where s_{α} and m_{α} are the unique positive integers such that $(\lambda + 2\nu)(\alpha^{\vee}) = 2(s_{\alpha} - 1) + m_{\alpha}$, $0 < m_{\alpha} \leq 2$, and $r_{j,\alpha} = b_{\alpha}((\lambda_j + \nu)(\alpha^{\vee}))$ for $j \in \{1, 2\}$.

I can define a grading on $V(\lambda_1 + \nu, \lambda_2 + \nu)$ by declaring the grade of $w_{\lambda_1+\nu,\lambda_2+\nu}$ to be 0. Relations (2.2.1) and (2.2.2) show that $V(\lambda_1 + \nu, \lambda_2 + \nu)$ is a quotient of the local Weyl module $W_{\text{loc}}(\lambda + 2\nu)$. **Lemma 4.** The assignments $w_{\lambda_1+\nu,\lambda_2+\nu} \rightarrow w_{2,\lambda+2\nu}$ and $w_{\lambda_1+\nu,\lambda_2+\nu} \rightarrow w_{\lambda_1+\nu} \otimes w_{\lambda_2+\nu}$ define surjective maps of \mathfrak{Cg} -modules.

$$\psi_{\lambda_1+\nu,\lambda_2+\nu}: V(\lambda_1+\nu,\lambda_2+\nu) \to D(2,\lambda+2\nu), \ \phi_{\lambda_1+\nu,\lambda_2+\nu}: V(\lambda_1+\nu,\lambda_2+\nu) \to D(\lambda_1+\nu,\lambda_2+\nu)$$

and
$$\psi_{\lambda_1+\nu,\lambda_2+\nu} = \eta_{\lambda_1+\nu,\lambda_2+\nu} \circ \phi_{\lambda_1+\nu,\lambda_2+\nu}.$$

Proof. I'll begin with $\phi_{\lambda_1+\nu,\lambda_2+\nu}$. First, note that $(x_{-\alpha+k\delta})w_{\lambda_j+\nu}=0$ for

 $k \ge r_{j,\alpha}, j \in \{1,2\}, \ \alpha \in \mathbb{R}^+$. Thus, relation (2.2.3) holds in $D(\lambda_1 + \nu, \lambda_2 + \nu)$; that is,

$$(x_{-\alpha+\max\{r_{1,\alpha},r_{2,\alpha}\}\delta})(w_{\lambda_1+\nu}\otimes w_{\lambda_2+\nu})=0.$$

As for relation (2.2.2), note that

$$(x_{-\alpha_i})^{(\lambda+2\nu)(\alpha_i^{\vee})+1}(w_{\lambda_1+\nu}\otimes w_{\lambda_2+\nu})$$
$$=\sum_{k=0}^{(\lambda+2\nu)(\alpha_i^{\vee})+1}\binom{(\lambda+2\nu)(\alpha_i^{\vee})+1}{k}(x_{-\alpha_i})^{(\lambda+2\nu)(\alpha_i^{\vee})+1-k}w_{\lambda_1+\nu}\otimes (x_{-\alpha_i})^k w_{\lambda_2+\nu}.$$

Since $(x_{-\alpha_i})^{(\lambda_j+\nu)(\alpha_i^{\vee})+1}w_{\lambda_j+\nu} = 0$ for j = 1, 2, for values of $k \leq (\lambda_2 + \nu)(\alpha_i^{\vee})$, the first part of the tensor product is 0, and for $k > (\lambda_2 + \nu)(\alpha_i^{\vee})$, the second part of the tensor product is 0. Hence, each term in this sum is 0; therefore,

$$(x_{-\alpha_i})^{(\lambda+2\nu)(\alpha_i^{\vee})+1}(w_{\lambda_1+\nu}\otimes w_{\lambda_2+\nu})=0.$$

Next, I will prove relation (2.2.4) holds. This will be done in several cases. First, recall that s_{α} and m_{α} are the unique non-negative integers such that $(\lambda + 2\nu)(\alpha^{\vee}) = 2(s_{\alpha} - 1) + m_{\alpha}$ with $0 < m_{\alpha} \le 2$, and that

$$(x_{-\alpha+b_{\alpha}(s_{\alpha}-1)\delta})^{m_{\alpha}+1}(w_{\lambda_{1}+\nu}\otimes w_{\lambda_{2}+\nu})$$
$$=\sum_{k=0}^{m_{\alpha}+1}(x_{-\alpha+b_{\alpha}(s_{\alpha}-1)\delta})^{k}w_{\lambda_{1}+\nu}\otimes(x_{-\alpha+b_{\alpha}(s_{\alpha}-1)\delta})^{m_{\alpha}+1-k}w_{\lambda_{2}+\nu}$$

In each case, I will show that every term in this sum is equal to 0.

For the first case, suppose α is short and that $(\lambda + 2\nu)(\alpha^{\vee}) \equiv 0 \mod_2$. Then $m_{\alpha} = 2$ and $b_{\alpha} = 1$. For l = 1 and $2s + j = b_{\alpha}(s_{\alpha} - 1)$, I have

$$\langle \lambda_1 + \nu, \alpha^{\vee} \rangle - \frac{2(2s+j)}{\langle \alpha, \alpha \rangle} l = (\lambda_1 + \nu)(\alpha^{\vee}) - (s_{\alpha} - 1)$$
$$= (\lambda_1 + \nu)(\alpha^{\vee}) - \frac{(\lambda_1 + \lambda_2 + 2\nu)(\alpha^{\vee})}{2} + 1 = \frac{(\lambda_1 - \lambda_2)(\alpha^{\vee})}{2} + 1.$$

Similarly,

$$\langle \lambda_2 + \nu, \alpha^{\vee} \rangle - \frac{2(2s+j)}{\langle \alpha, \alpha \rangle} l = \frac{(\lambda_2 - \lambda_1)(\alpha^{\vee})}{2} + 1.$$

By Lemma 3, $|(\lambda_1 - \lambda_2)(\alpha^{\vee})| \leq d_{\alpha}$. By assumption, $(\lambda_1 + \lambda_2 + 2\nu)(\alpha^{\vee}) \equiv 0 \mod_2$, and hence, $(\lambda_1 - \lambda_2)(\alpha^{\vee}) \equiv 0 \mod_2$. Thus, $(\lambda_1 - \lambda_2)(\alpha^{\vee}) \in \{0, \pm 2\}$. Suppose $(\lambda_1 - \lambda_2)(\alpha^{\vee}) = 2$. Then $(\lambda_2 - \lambda_1)(\alpha^{\vee}) = -2$ and by relation (1.4.4), I have

$$(x_{-\alpha+b_{\alpha}(s_{\alpha}-1)\delta})^{3}w_{\lambda_{1}+\nu} = 0 \text{ and } (x_{-\alpha+b_{\alpha}(s_{\alpha}-1)\delta})w_{\lambda_{2}+\nu} = 0.$$

Hence,

$$(x_{-\alpha+b_{\alpha}(s_{\alpha}-1)\delta})^{m_{\alpha}+1}(w_{\lambda_{1}+\nu}\otimes w_{\lambda_{2}+\nu})=0.$$

The argument is symmetric when $(\lambda_1 - \lambda_2)(\alpha^{\vee}) = -2$. Alternatively, if $(\lambda_1 - \lambda_2)(\alpha^{\vee}) = 0$, then $(\lambda_2 - \lambda_1)(\alpha^{\vee}) = 0$, and by relation (1.4.4), I have $(x_{-\alpha+b_{\alpha}(s_{\alpha}-1)}\delta)^2 w_{\lambda_i+\nu} = 0$ for i = 1, 2 and again the relation holds. Now suppose α is short and that $(\lambda + 2\nu)(\alpha^{\vee}) \equiv 1 \mod_2$. Then $m_{\alpha} = 1$ and $b_{\alpha} = 1$. For l = 1 and $2s + j = b_{\alpha}(s_{\alpha} - 1)$, I have

$$\begin{split} \langle \lambda_1 + \nu, \alpha^{\vee} \rangle - \frac{2(2s+j)}{\langle \alpha, \alpha \rangle} l &= (\lambda_1 + \nu)(\alpha^{\vee}) - (s_{\alpha} - 1) = (\lambda_1 + \nu)(\alpha^{\vee}) - \frac{(\lambda_1 + \lambda_2 + 2\nu)(\alpha^{\vee}) - 1}{2} \\ &= \frac{(\lambda_1 - \lambda_2)(\alpha^{\vee}) + 1}{2}. \end{split}$$

Similarly,

$$\langle \lambda_2 + \nu, \alpha^{\vee} \rangle - \frac{2(2s+j)}{\langle \alpha, \alpha \rangle} l = \frac{(\lambda_2 - \lambda_1)(\alpha^{\vee}) + 1}{2}.$$

Again, I use the fact that $|(\lambda_1 - \lambda_2)(\alpha^{\vee})| \leq d_{\alpha}$ along with my assumption that $(\lambda_1 + \lambda_2 + 2\nu)(\alpha^{\vee}) \equiv 1 \mod_2$ to conclude that $(\lambda_1 - \lambda_2)(\alpha^{\vee}) \in \{\pm 1\}$. If $(\lambda_1 - \lambda_2)(\alpha^{\vee}) = 1$, then $(\lambda_2 - \lambda_1)(\alpha^{\vee}) = -1$ and by relation (1.4.4), I have

$$(x_{-\alpha+(s_{\alpha}-1)\delta})^2 w_{\lambda_1+\nu} = 0 = (x_{-\alpha+(s_{\alpha}-1)\delta}) w_{\lambda_2+\nu}$$

and hence, $(x_{-\alpha+b_{\alpha}(s_{\alpha}-1)\delta})^{m_{\alpha}+1}(w_{\lambda_{1}+\nu}\otimes w_{\lambda_{2}+\nu}) = 0$. Again, the argument is symmetric when $(\lambda_{1} - \lambda_{2})(\alpha^{\vee}) = -1$.

Now suppose α is a long root and that $(\lambda + 2\nu)(\alpha^{\vee}) \equiv 0 \mod_2$. Then $m_{\alpha} = 2$ and $b_{\alpha} = 2$. For l = 1 and $2s + j = b_{\alpha}(s_{\alpha} - 1)$, I have

$$\langle \lambda_1 + \nu, \alpha^{\vee} \rangle - \frac{2(2s+j)}{\langle \alpha, \alpha \rangle} l = (\lambda_1 + \nu)(\alpha^{\vee}) - (s_{\alpha} - 1)$$
$$= (\lambda_1 + \nu)(\alpha^{\vee}) - \frac{(\lambda_1 + \lambda_2 + 2\nu)(\alpha^{\vee})}{2} + 1.$$

Similarly,

$$\langle \lambda_2 + \nu, \alpha^{\vee} \rangle - \frac{2(2s+j)}{\langle \alpha, \alpha \rangle} l = (\lambda_2 + \nu)(\alpha^{\vee}) - \frac{(\lambda_1 + \lambda_2 + 2\nu)(\alpha^{\vee})}{2} + 1$$

Lemma 3, along with my assumption that $(\lambda + 2\nu)(\alpha^{\vee}) \equiv 0 \mod_2$, implies that $(\lambda_1 - \lambda_2)(\alpha^{\vee}) = 0$, and hence $\lambda_1(\alpha^{\vee}) = \lambda_2(\alpha^{\vee})$. Thus,

$$(\lambda_1 + \nu)(\alpha^{\vee}) - \frac{(\lambda_1 + \lambda_2 + 2\nu)(\alpha^{\vee})}{2} + 1 = 1 = (\lambda_2 + \nu)(\alpha^{\vee}) - \frac{(\lambda_1 + \lambda_2 + 2\nu)(\alpha^{\vee})}{2} + 1,$$

so by relation (1.4.4), $(x_{-\alpha+b_{\alpha}(s_{\alpha}-1)\delta})^2 w_{\lambda_i+\nu} = 0$ for i = 1, 2. Therefore,

$$(x_{-\alpha+b_{\alpha}(s_{\alpha}-1)\delta})^{m_{\alpha}+1}(w_{\lambda_{1}+\nu}\otimes w_{\lambda_{2}+\nu})=0.$$

Finally, suppose α is long and $(\lambda + 2\nu)(\alpha^{\vee}) \equiv 1 \mod_2$. For l = 1 and

 $2s + j = b_{\alpha}(s_{\alpha} - 1)$, I have

$$\langle \lambda_1 + \nu, \alpha^{\vee} \rangle - \frac{2(2s+j)}{\langle \alpha, \alpha \rangle} l = (\lambda_1 + \nu)(\alpha^{\vee}) - (s_\alpha - 1) = (\lambda_1 + \nu)(\alpha^{\vee}) - \frac{(\lambda_1 + \lambda_2 + 2\nu)(\alpha^{\vee}) + 1}{2} + 1.$$

Similarly,

$$\langle \lambda_2 + \nu, \alpha^{\vee} \rangle - \frac{2(2s+j)}{\langle \alpha, \alpha \rangle} l = (\lambda_2 + \nu)(\alpha^{\vee}) - \frac{(\lambda_1 + \lambda_2 + 2\nu)(\alpha^{\vee}) + 1}{2} + 1.$$

In this case, I have $|(\lambda_1 - \lambda_2)(\alpha^{\vee})| \leq 1$ and $m_{\alpha} = 1$, and thus $\lambda_1(\alpha^{\vee}) = \lambda_2(\alpha^{\vee}) \pm 1$. Suppose $\lambda_1(\alpha^{\vee}) = \lambda_2(\alpha^{\vee}) - 1$. Then

$$(\lambda_1 + \nu)(\alpha^{\vee}) - \frac{(\lambda_1 + \lambda_2 + 2\nu)(\alpha^{\vee}) + 1}{2} + 1 = (\lambda_1 + \nu)(\alpha^{\vee}) - (\lambda_1 + \nu)(\alpha^{\vee}) = 0,$$

and

$$(\lambda_2 + \nu)(\alpha^{\vee}) - \frac{(\lambda_1 + \lambda_2 + 2\nu)(\alpha^{\vee}) + 1}{2} + 1 = (\lambda_2 + \nu)(\alpha^{\vee}) - (\lambda_2 + \nu)(\alpha^{\vee}) + 1 = 1.$$

Thus, by relation (1.4.4),

$$(x_{-\alpha+b_{\alpha}(s_{\alpha}-1)\delta})w_{\lambda_{1}+\nu} = 0 = (x_{-\alpha+b_{\alpha}(s_{\alpha}-1)\delta})^{2}w_{\lambda_{2}+\nu},$$

so the relation holds. The case when $\lambda_1(\alpha^{\vee}) = \lambda_2 + 1$ is symmetric.

Lastly, I'll show that relation (2.2.5) holds in $D(\lambda_1 + \nu, \lambda_2 + \nu)$ as well; that is,

$$(x_{-\beta+s_{\beta}\delta})^{2}(w_{\lambda_{1}+\nu}\otimes w_{\lambda_{2}+\nu})=0 \text{ for } \beta \in R(\lambda_{1},\lambda_{2}).$$

First, assume $\beta \in R(\lambda_1, \lambda_2)$. Then for l = 1 and $2s + j = s_{\beta}$, I have

$$\langle \lambda_1 + \nu, \beta^{\vee} \rangle - (2s+j) = (\lambda_1 + \nu)(\beta^{\vee}) - \frac{(\lambda_1 + \lambda_2 + 2\nu)(\beta^{\vee})}{2} = \frac{(\lambda_1 - \lambda_2)(\beta^{\vee})}{2}.$$

Similarly,

$$\langle \lambda_2 + \nu, \beta^{\vee} \rangle - (2s+j) = \frac{(\lambda_2 - \lambda_1)(\beta^{\vee})}{2}$$

Now since $\beta \in R(\lambda_1, \lambda_2)$, I have $(\lambda_1 - \lambda_2)(\beta^{\vee}) = \pm 2$. By my convention, $\lambda_1(\alpha_p^{\vee}) = \lambda(\alpha_p^{\vee})$, so I can conclude that $(\lambda_1 - \lambda_2)(\beta^{\vee}) = 2$, in which case $(\lambda_2 - \lambda_1)(\beta^{\vee}) = -2$. Then by relation (1.4.4), $(x_{-\beta+s_\beta\delta})^2 w_{\lambda_1+\nu} = 0$ and $(x_{-\beta+s_\beta\delta}) w_{\lambda_2+\nu} = 0$; hence,

$$(x_{-\beta+s_{\beta}\delta})^{2}(w_{\lambda_{1}+\nu}\otimes w_{\lambda_{2}+\nu})=0 \text{ for } \beta\in R(\lambda_{1},\lambda_{2}).$$

Now that the existence of $\phi_{\lambda_1+\nu,\lambda_2+\nu}$ has been established, the map $\psi_{\lambda_1+\nu,\lambda_2+\nu}$ is obvious.

2.3 Main Theorem

The following is the main result of this thesis.

Theorem 5. Let $(\lambda_1, \lambda_2) \in P^+ \times P^+$ be an interlacing pair with $\lambda = \lambda_1 + \lambda_2$, and let $\nu \in P^+$ be

 (λ_1, λ_2) -compatible. The map

$$\phi_{\lambda_1+\nu,\lambda_2+\nu}: V(\lambda_1+\nu,\lambda_2+\nu) \to D(\lambda_1+\nu,\lambda_2+\nu)$$

is an isomorphism.

2.4 First Reduction

This theorem will be proved in several steps. The first reduction is the following proposition which provides a condition for the generalized Demazure module to be isomorphic to a Demazure module.

Proposition 6. If $\lambda = \omega_{i-1} + \omega_i$ for $0 \le i \le \ell$, then for all (λ_1, λ_2) -compatible $\nu \in P^+$, I have

$$V(\lambda_1 + \nu, \lambda_2 + \nu) \cong D(2, 2\nu + \lambda) \cong D(\lambda_1 + \nu, \lambda_2 + \nu).$$

2.5 β_{λ} and ν_0

Suppose that $\lambda \neq \omega_{i-1} + \omega_i$ for $0 \leq i \leq \ell$, and set

$$\beta_{\lambda} = \beta_{s,p}, \text{ with } s = \begin{cases} p-1 & p' \neq p-1 \\ p'' & p' = p-1. \end{cases}$$

Observe that $\lambda_1(\beta_{\lambda}^{\vee}) = 3 - \delta_{s,p-1}$ and $\lambda_2(\beta_{\lambda}^{\vee}) = 1 - \delta_{s,p-1}$.

Lemma 7. Suppose that $\lambda \neq \omega_{i-1} + \omega_i$ for $0 \leq i \leq \ell$. Then $\lambda_1 - \beta_\lambda \in P^+$ and there exists $\nu_0 \in P^+$ such that $(\lambda_1 - \beta_\lambda - \nu_0, \lambda_2 - \nu_0)$ is an interlacing pair.

Proof. With my assumptions, it is clear to see that

$$\lambda_1 - \beta_\lambda = \lambda_1 - \omega_p + (1 - \delta_{s, p-1})\omega_{p-1} - (1 - \delta_{s, p-1})\omega_s + \omega_{s-1} \in P^+.$$

Taking $\nu_0 = \lambda_2(\alpha_{s-1}^{\vee})\omega_{s-1} + (1 - \delta_{s,p-1})\lambda_2(\alpha_{p-1}^{\vee})\omega_{p-1}$, it is easy to verify that

 $(\lambda_1 - \beta_\lambda - \nu_0, \lambda_2 - \nu_0)$ is interlacing, and that $\nu_0 + \nu$ is $(\lambda_1 - \beta_\lambda - \nu_0, \lambda_2 - \nu_0)$ -compatible. \Box

2.6 Second Reduction

The next reduction is the following proposition which establishes an upper bound on the dimension of $V(\lambda_1 + \nu, \lambda_2 + \nu)$. **Proposition 8.** Suppose that $\lambda \neq \omega_{i-1} + \omega_i$ for $0 \leq i \leq \ell$. Then there exists a right exact sequence of \mathfrak{Cg} -modules

$$\tau^*_{r_{1,\beta_{\lambda}}-1}V(\lambda_1+\nu-\beta_{\lambda},\lambda_2+\nu)\to V(\lambda_1+\nu,\lambda_2+\nu)\to D(2,\lambda+2\nu)\to 0$$

with $w_{\lambda_1+\nu-\beta_{\lambda},\lambda_2+\nu} \to (x_{-\beta_{\lambda}+(r_{1,\beta_{\lambda}}-1)\delta})w_{\lambda_1+\nu,\lambda_2+\nu}.$

2.7 Inclusion of Level One Demazure Modules

Assuming Proposition 6 and Proposition 8, I complete the proof of Theorem 5 via an induction with respect to the partial order on P^+ . The minimal elements with respect to this order are 0 and ω_1 , and Proposition 6 shows that induction begins. It also establishes the theorem when $\lambda = \omega_{i-1} + \omega_i$ for $0 \le i \le \ell$. Hence, it suffices to prove the inductive step when $\lambda \ne \omega_{i-1} + \omega_i$. The following result is necessary to complete the proof of the inductive step.

Lemma 9. There exists an inclusion of \mathfrak{Cg} modules

$$\tau^*_{r_{1,\beta_{\lambda}}-1}D(1,\lambda_1+\nu-\beta_{\lambda}) \hookrightarrow D(1,\lambda_1+\nu),$$

which sends $w_{\lambda_1+\nu-\beta_\lambda} \to (x_{-\beta_\lambda+(r_{1,\beta_\lambda}-1)\delta)})w_{\lambda_1+\nu}.$

Proof. Since it was proven in [5] that level one Demazure modules of special twisted current algebras are isomorphic to local Weyl modules, it suffices to show that $w := (x_{-\beta_{\lambda}+(r_{1,\beta_{\lambda}}-1)\delta})w_{\lambda_{1}+\nu}$ satisfies the relations in (1.4.1).

Now, suppose $\alpha_i \in \mathbb{R}^+$ is simple. Then

$$(x_{\alpha_i+k\delta})w = (x_{\alpha_i+k\delta})(x_{-\beta_{\lambda}+(r_{1,\beta_{\lambda}}-1)\delta})w_{\lambda_1+\nu}$$
$$= (x_{-(\beta_{\lambda}-\alpha_i)+(k+r_{1,\beta_{\lambda}}-1)\delta})w_{\lambda_1+\nu}.$$

If $\beta_{\lambda} - \alpha_i \notin R^+$ or if k > 0, the above equations equals 0, so assume $\beta_{\lambda} - \alpha_i \in R^+$ and k = 0. Then I must have either i = p or i = s, in which case

$$(\lambda_1 + \nu)((\beta_\lambda - \alpha_i)^{\vee}) \le (\lambda_1 + \nu)(\beta_\lambda^{\vee}) - 1 = r_{1,\beta_\lambda} - 1.$$

Hence,

$$(x_{-(\beta_{\lambda}-\alpha_i)+(r_{1,\beta_{\lambda}}-1)\delta})w_{\lambda_1+\nu}=0.$$

Now for $\alpha \in \mathbb{R}^+$ and $k \ge 0$, consider

$$(h_{\alpha,k\delta})w = (h_{\alpha,k\delta})(x_{-\beta_{\lambda}+(r_{1,\beta_{\lambda}}-1)\delta})w_{\lambda_{1}+\nu}.$$

If k > 0, then I have

$$(x_{\beta_{\lambda}+(r_{1,\beta_{\lambda}}-1+k)\delta})w_{\lambda_{1}+\nu}=0$$

and if k = 0, the relation is trivial. Thus, the first three relations of (1.4.1) hold. Finally, the last relation holds because the modules are all finite-dimensional.

2.8 Main Induction Argument

Lemma 4, Proposition 8, and the inductive hypothesis establish the following inequalities:

$$\dim D(\lambda_1 + \nu, \lambda_2 + \nu) \le \dim V(\lambda_1 + \nu, \lambda_2 + \nu)$$

 $\dim V(\lambda_1 + \nu, \lambda_2 + \nu) \le \dim D(2, 2\nu + \lambda) + \dim D(\lambda_1 + \nu - \beta_\lambda, \lambda_2 + \nu).$

The inductive step follows if I prove that

$$\dim D(\lambda_1 + \nu, \lambda_2 + \nu) = \dim D(2, 2\nu + \lambda) + \dim D(\lambda_1 + \nu - \beta_\lambda, \lambda_2 + \nu).$$

Observe that Lemma 9 gives an inclusion

$$0 \to D(1, \lambda_1 + \nu - \beta_{\lambda}) \otimes D(1, \lambda_2 + \nu) \to D(1, \lambda_1 + \nu) \otimes D(1, \lambda_2 + \nu),$$

which sends

$$w_{\lambda_1+\nu-\beta_\lambda}\otimes w_{\lambda_2+\nu}\to ((x_{-\beta_\lambda+(r_{1,\beta_\lambda}-1)\delta})w_{\lambda_1+\nu})\otimes w_{\lambda_2+\nu}.$$

Since $r_{1,\beta_{\lambda}} - 1 = (\lambda_1 + \nu)(\beta_{\lambda}^{\vee}) - 1 \ge (\lambda_2 + \nu)(\beta_{\lambda}^{\vee})$, the relations in (1.4.2) show that

$$(x_{-\beta_{\lambda}+(r_{1,\beta_{\lambda}}-1)\delta})(w_{\lambda_{1}+\nu}\otimes w_{\lambda_{2}+\nu})=((x_{-\beta_{\lambda}+(r_{1,\beta_{\lambda}}-1)\delta})w_{\lambda_{1}+\nu})\otimes w_{\lambda_{2}+\nu}.$$

Hence, I have an inclusion

$$\iota: D(\lambda_1 + \nu - \beta_\lambda, \lambda_2 + \nu) \hookrightarrow D(\lambda_1 + \nu, \lambda_2 + \nu)$$

and it suffices to prove that the corresponding quotient is isomorphic to $D(2, 2\nu + \lambda)$. By Lemma 4 I have the following surjective maps:

$$V(\lambda_1 + \nu, \lambda_2 + \nu) \twoheadrightarrow D(\lambda_1 + \nu, \lambda_2 + \nu) \twoheadrightarrow D(2, 2\nu + \lambda)$$

These maps are all unique up to scalars and Proposition 8 shows that the kernel of the composite map is generated by the element $(x_{-\beta_{\lambda}+(r_{1,\beta_{\lambda}}-1)\delta})w_{\lambda_{1}+\nu,\lambda_{2}+\nu}$. Hence, the kernel of

$$D(\lambda_1 + \nu, \lambda_2 + \nu) \twoheadrightarrow D(2, 2\nu + \lambda)$$

is generated by $(x_{-\beta_{\lambda}+(r_{1,\beta_{\lambda}}-1)\delta})(w_{\lambda_{1}+\nu} \otimes w_{\lambda_{2}+\nu})$. But this means that the latter kernel is precisely the image of ι and hence the corresponding quotient is isomorphic to $D(2, 2\nu + \lambda)$ as needed.

Chapter 3

Proof of Proposition 6

I shall assume throughout this chapter that (λ_1, λ_2) is interlacing, and that $\lambda = \lambda_1 + \lambda_2$. I shall also assume that, when there exists p maximal such that $\lambda(\alpha_p^{\vee}) = 1$, I have $\lambda_1(\alpha_p^{\vee}) = 1$.

3.1 Minimal Element of $R(\lambda_1, \lambda_2)$

Note that Lemma 3 shows that $R(\lambda_1, \lambda_2) = \emptyset$ if $\lambda = \omega_{i-1} + \omega_i$ for $0 \le i \le \ell$. The following result establishes the converse.

Lemma 10. Suppose that $\lambda \neq \omega_{i-1} + \omega_i$ for $0 \leq i \leq \ell$. Then $\beta_{\lambda} \in R(\lambda_1, \lambda_2)$ and more generally,

$$\beta_{i,j} \in R(\lambda_1, \lambda_2) \iff \beta_{i,j} = \alpha_{i,s-1} + \alpha_{j,p-1} + \beta_{\lambda},$$

and

$$(\lambda_1 - \lambda_2)(\alpha_{i,s-1}^{\vee}) = 0 = (\lambda_1 - \lambda_2)(\alpha_{j,p-1}^{\vee}).$$

Proof. Recall that $\beta_{\lambda} = \beta_{s,p}$, with $s = \begin{cases} p-1 & p' \neq p-1 \\ p'' & p' = p-1 \end{cases}$ where p'' < p' < p are maximal such that $\lambda(\alpha_{p''}^{\vee} + \alpha_{p'}^{\vee} + \alpha_p^{\vee}) = 3.$

By my convention, I have $\lambda_1(\alpha_p^{\vee}) = 1$, so by the interlacing property of (λ_1, λ_2) , I have $\lambda_2(\alpha_{p'}^{\vee}) = 1 = \lambda_1(\alpha_{p''}^{\vee})$. It is easy to see that $(\lambda_1 - \lambda_2)(\alpha_{\beta_\lambda}^{\vee}) = 2$, and a calculation shows that

$$\beta_{i,j} \in R(\lambda_1, \lambda_2) \implies i \le s \text{ or } s < j \le p,$$

which shows that $\beta_{i,j} = \alpha_{i,s-1} + \alpha_{j,p-1} + \beta_{\lambda}$. Since $\beta_{i,p} \in \mathbb{R}^+$ if i < s, I have

$$(\lambda_1 - \lambda_2)(\beta_{i,p}^{\vee}) = (\lambda_1 - \lambda_2)(\alpha_{i,s-1}^{\vee}) + 2\lambda_1$$

Note that Lemma 3 forces $(\lambda_1 - \lambda_2)(\alpha_{i,s-1}^{\vee}) \in \{-1,0\}$. Similarly, if j < p, I have $\beta_{s,j} = \beta_{\lambda} + \alpha_{j,p-1}$ and $(\lambda_1 - \lambda_2)(\alpha_{j,p-1}^{\vee}) \in \{-1,0\}$. If $\beta_{i,j} \in R(\lambda_1, \lambda_2)$, then $(\lambda_1 - \lambda_2)(\beta_{i,j}^{\vee}) = \pm 2$, hence $(\lambda_1 - \lambda_2)(\alpha_{i,s-1}^{\vee}) = 0 = (\lambda_1 - \lambda_2)(\alpha_{j,p-1}^{\vee})$, as needed.

3.2 Kernel of $\psi_{\lambda_1+\nu,\lambda_2+\nu}$

By observing the relations of $D(2, \lambda + 2\nu)$, it is easy to see that the kernel K of the map $\psi_{\lambda_1+\nu,\lambda_2+\nu}$ is generated by the elements

$$(x_{-\alpha+b_{\alpha}s_{\alpha}\delta})w_{\lambda_1+\nu,\lambda_2+\nu}$$

where $b_{\alpha}s_{\alpha} < \max\{r_{1,\alpha}, r_{2,\alpha}\}.$

Lemma 11. For $\alpha \in R^+$, $b_\alpha s_\alpha < \max\{r_{1,\alpha}, r_{2,\alpha}\} \iff \alpha \in R(\lambda_1, \lambda_2).$

Proof. Note that $(\lambda_i + \nu)(\alpha^{\vee}) = \frac{r_{i,\alpha}}{b_{\alpha}}$. Thus, I have

$$\begin{aligned} (\lambda + 2\nu)(\alpha^{\vee}) &= 2(s_{\alpha} - 1) + m_{\alpha} = \frac{r_{1,\alpha} + r_{2,\alpha}}{b_{\alpha}}, \\ s_{\alpha} &= \frac{r_{1,\alpha} + r_{2,\alpha}}{2b_{\alpha}} + 1 - \frac{m_{\alpha}}{2}, \end{aligned}$$

and

$$(\lambda_1 - \lambda_2)(\alpha^{\vee}) = \frac{r_{1,\alpha} - r_{2,\alpha}}{b_{\alpha}}.$$

First, suppose $\alpha \in \mathbb{R}^+$ is a long root. Then by Lemma 3, I have

$$\left|\frac{r_{1,\alpha} - r_{2,\alpha}}{b_{\alpha}}\right| = \left|\frac{r_{1,\alpha} - r_{2,\alpha}}{2}\right| \le 1.$$

Since $r_{1,\alpha} - r_{2,\alpha}$ is necessarily even, $r_{1,\alpha} - r_{2,\alpha} \in \{0, \pm 2\}$. If $r_{1,\alpha} - r_{2,\alpha} = 0$, then

$$s_{\alpha} = \frac{r_{1,\alpha}}{2} + 1 - \frac{m_{\alpha}}{2}.$$

Since $s_{\alpha} \in \mathbb{Z}_+$ and $r_{1,\alpha}$ is even, I must have $m_{\alpha} = 2$, so this simplifies to

$$s_{\alpha} = \frac{r_{1,\alpha}}{2}$$

Thus, $b_{\alpha}s_{\alpha} = \max\{r_{1,\alpha}, r_{2,\alpha}\}.$

Next, consider the case when $r_{1,\alpha} - r_{2,\alpha} = 2$. Then I have

$$s_{\alpha} = \frac{2r_{2,\alpha} + 2}{4} + 1 - \frac{m_{\alpha}}{2} = \frac{r_{2,\alpha} + 1}{2} + 1 - \frac{m_{\alpha}}{2}.$$

Since $r_{2,\alpha}$ is even, I must have $m_{\alpha} = 1$, and hence

$$s_{\alpha} = \frac{r_{2,\alpha}}{2} + 1$$

Therefore

$$b_{\alpha}s_{\alpha} = r_{2,\alpha} + 2 = r_{1,\alpha} = \max\{r_{1,\alpha}, r_{2,\alpha}\}.$$

The argument is symmetric when $r_{1,\alpha} - r_{2,\alpha} = -2$.

Now suppose α is short. Lemma 3 shows that

$$|r_{1,\alpha} - r_{2,\alpha}| \le 2.$$

Since $r_{i,\alpha}$ is not necessarily even when α is short, without loss of generality, I have three cases to consider.

Case 1: $r_{1,\alpha} = r_{2,\alpha}$. Then

$$s_{\alpha} = r_{1,\alpha} + 1 - \frac{m_{\alpha}}{2}$$

Again I must have $m_{\alpha} = 2$, and thus $b_{\alpha}s_{\alpha} = r_{1,\alpha} = \max\{r_{1,\alpha}, r_{2,\alpha}\}$.

Case 2: $r_{1,\alpha} = r_{2,\alpha} + 1$. Then

$$s_{\alpha} = r_{2,\alpha} + \frac{3 - m_{\alpha}}{2}.$$

In this case, I must have $m_{\alpha} = 1$, and hence

$$b_{\alpha}s_{\alpha} = r_{2,\alpha} + 1 = r_{1,\alpha} = \max\{r_{1,\alpha}, r_{2,\alpha}\}.$$

Case 3: $r_{1,\alpha} = r_{2,\alpha} + 2$. Note, this is only possible for $\alpha = \beta_{i,j}$ for some $1 \le i < j \le \ell$ since by Lemma 3, $|(\lambda_1 - \lambda_2)(\alpha_{i,j}^{\vee})| \le 1$. In this case I have

$$s_{\alpha} = r_{2,\alpha} + 2 - \frac{m_{\alpha}}{2}.$$

Then $m_{\alpha} = 2$, and I have

$$b_{\alpha}s_{\alpha} = r_{2,\alpha} + 1 < r_{1,\alpha} = \max\{r_{1,\alpha}, r_{2,\alpha}\}.$$

This occurs precisely when $\alpha \in R(\lambda_1, \lambda_2)$. Moreover, in this case, $b_{\alpha}s_{\alpha} = r_{1,\alpha} - 1$.

Assume that $\lambda = \omega_{i-1} + \omega_i$ for $0 \le i \le \ell$. Then by Lemma 3, $R(\lambda_1, \lambda_2) = \emptyset$, and hence by Lemma 11, I have

$$V(\lambda_1 + \nu, \lambda_2 + \nu) \cong D(2, 2\nu + \lambda).$$

Since the maps in Lemma 4 are unique up to scalars, it follows that the map

$$V(\lambda_1 + \nu, \lambda_2 + \nu) \twoheadrightarrow D(\lambda_1 + \nu, \lambda_2 + \nu) \twoheadrightarrow D(2, 2\nu + \lambda)$$

is an isomorphism, and hence all maps are isomorphisms. Thus, Proposition 6 is proved.

Chapter 4

Proof of Proposition 8

I shall again assume throughout this chapter that (λ_1, λ_2) is interlacing, and that $\lambda = \lambda_1 + \lambda_2$. I shall also assume that, when there exists p maximal such that $\lambda(\alpha_p^{\vee}) = 1$, I have $\lambda_1(\alpha_p^{\vee}) = 1$.

4.1 β_{λ} and the Kernel of $\psi_{\lambda_1+\nu,\lambda_2+\nu}$

I begin by considering the map $\psi_{\lambda_1+\nu,\lambda_2+\nu}: V(\lambda_1+\nu,\lambda_2+\nu) \to D(2,\lambda+2\nu)$. As Lemma 11 shows that the kernel K of $\psi_{\lambda_1+\nu,\lambda_2+\nu}$ is generated by

$$(x_{-\beta+b_{\beta}s_{\beta}\delta})w_{\lambda_1+\nu,\lambda_2+\nu}$$
 for $\beta \in R(\lambda_1,\lambda_2)$,

I can now proceed with the proof of Proposition 8 by first proving that, in fact,

$$K = \mathbb{U}(\mathfrak{Cg})(x_{-\beta_{\lambda}+(r_{1,\beta_{\lambda}}-1)\delta})w_{\lambda_{1}+\nu,\lambda_{2}+\nu}.$$

To this end, let $\beta_{i,j} \in R(\lambda_1, \lambda_2)$, and assume that $i \leq s - 1$ or $j \leq p - 1$ (else, $\beta_{i,j} = \beta_{\lambda}$ and there's nothing to prove). By Lemma 10, I can write $\beta_{i,j} = \beta_{\lambda} + \alpha_{i,s-1} + \alpha_{j,p-1}$. Because of the defining relations

$$(x_{-\alpha_{i,s-1}+(\lambda_1+\nu)(\alpha_{i,s-1}^{\vee})\delta})w_{\lambda_1+\nu,\lambda_2+\nu} = 0 = (x_{-\alpha_{j,p-1}+(\lambda_1+\nu)(\alpha_{j,p-1}^{\vee})\delta})w_{\lambda_1+\nu,\lambda_2+\nu},$$

I have the following equivalences:

$$(x_{-\alpha_{i,s-1}+(\lambda_1+\nu)(\alpha_{i,s-1}^{\vee})\delta})(x_{-\alpha_{j,p-1}+(\lambda_1+\nu)(\alpha_{j,p-1}^{\vee})\delta})(x_{-\beta_{\lambda}+(r_{1,\beta_{\lambda}}-1)\delta})w_{\lambda_1+\nu,\lambda_2+\nu}$$
$$=(x_{-(\beta_{\lambda}+\alpha_{i,s-1}+\alpha_{j,p-1})+((\lambda_1+\nu)(\beta_{\lambda}^{\vee}+\alpha_{i,s-1}^{\vee}+\alpha_{j,p-1}^{\vee})-1)\delta})w_{\lambda_1+\nu,\lambda_2+\nu}$$
$$=(x_{-\beta_{i,j}+((\lambda_1+\nu)(\beta_{i,j}^{\vee})-1)\delta})w_{\lambda_1+\nu,\lambda_2+\nu}.$$

4.2 Map from $V(\lambda_1 + \nu - \beta_\lambda, \lambda_2 + \nu) \rightarrow K$

The next step in the proof of Proposition 8 is to establish the existence of the map

$$V(\lambda_1 + \nu - \beta_\lambda, \lambda_2 + \nu) \to K \to 0$$

by showing that the element $(x_{-\beta_{\lambda}+(r_{1,\beta_{\lambda}}-1)\delta})w_{\lambda_{1}+\nu,\lambda_{2}+\nu}$ satisfies all of the defining relations of the element $w_{\lambda_{1}+\nu-\beta_{\lambda},\lambda_{2}+\nu} \in V(\lambda_{1}+\nu-\beta_{\lambda},\lambda_{2}+\nu)$. This will be done over several different cases. I will begin by showing that $(x_{-\beta_{\lambda}+(r_{1,\beta_{\lambda}}-1)\delta})w_{\lambda_{1}+\nu,\lambda_{2}+\nu}$ satisfies the local Weyl module relations; that is, relations (2.2.1) and (2.2.2).

4.2.1 Relations (2.2.1) and (2.2.2)

The first of the local Weyl module relations I will show is that

$$(x_{\alpha_i+r\delta})(x_{-\beta_{\lambda}+(r_{1,\beta_{\lambda}}-1)\delta})w_{\lambda_1+\nu,\lambda_2+\nu} = 0 \text{ for } r \ge 0.$$

Since $(x_{\alpha_i+r\delta})w_{\lambda_1+\nu,\lambda_2+\nu} = 0$, the relation is immediate if $\beta_{\lambda} - \alpha_i \notin R^+$. Thus, I'll assume that $\beta_{\lambda} - \alpha_i \in R^+$ and show that

$$(x_{-(\beta_{\lambda}-\alpha_i)+(r_{1,\beta_{\lambda}}-1+r)\delta})w_{\lambda_1+\nu,\lambda_2+\nu}=0.$$

Since $\beta_{\lambda} = \beta_{s,p}$ and $\beta_{\lambda} - \alpha_i \in \mathbb{R}^+$, I must have either i = p or i = s. If i = s = p''or i = p, I have that $(\lambda_1 - \lambda_2)(\beta_{\lambda}^{\vee}) = 2$, and $\lambda_1(\alpha_i^{\vee}) = 1$. Thus,

 $\max\{r_{1,\beta_{\lambda}-\alpha_{i}}, r_{2,\beta_{\lambda}-\alpha_{i}}\} = r_{1,\beta_{\lambda}-\alpha_{i}} \le r_{1,\beta_{\lambda}} - 1.$

Now, when i = s = p - 1, since ν is (λ_1, λ_2) compatible, I must have $\nu(\alpha_{p-1}^{\vee}) \ge 1$.

In this case, I have $\beta_{\lambda} - \alpha_{p-1} = \beta_p$, and hence,

$$r_{1,\beta_p} = 2(\lambda_1 + \nu)(\beta_p) = 2 + 2\nu(\beta_p^{\vee}) \le 2 + 2\nu(\beta_p^{\vee}) + \nu(\alpha_{p-1}^{\vee}) - 1$$
$$= r_{1,\beta_{\lambda}} - 1 = \max\{r_{1,\beta_{\lambda}} - \alpha_i, r_{2,\beta_{\lambda}} - \alpha_i\}.$$

Therefore,

$$(x_{-(\beta_{\lambda}-\alpha_i)+(r_{1,\beta_{\lambda}}-1)\delta})w_{\lambda_1+\nu,\lambda_2+\nu}=0,$$

and hence,

$$(x_{-(\beta_{\lambda}-\alpha_i)+(r_{1,\beta_{\lambda}}-1+r)\delta})w_{\lambda_1+\nu,\lambda_2+\nu}=0$$

for $r \ge 0$. Finally, it is clear to see that

$$(h_{i,r\delta})(x_{-\beta_{\lambda}+(r_{1,\beta_{\lambda}}-1)\delta})w_{\lambda_{1}+\nu,\lambda_{2}+\nu} = \delta_{r,0}(\lambda+2\nu-\beta_{\lambda})(\alpha_{i}^{\vee})(x_{-\beta_{\lambda}+(r_{1,\beta_{\lambda}}-1)\delta})w_{\lambda_{1}+\nu,\lambda_{2}+\nu},$$

and relation (2.2.2) holds because $V(\lambda_1 + \nu, \lambda_2 + \nu)$ is finite dimensional.

4.2.2 Relation (2.2.3)

Next, let $\alpha \in R^+$ and set $r'_{1,\alpha} = b_{\alpha}(\lambda_1 + \nu - \beta_{\lambda})(\alpha^{\vee})$. I'll show that relation (2.2.3) holds; that is,

$$(x_{-\alpha+(\max\{r'_{1,\alpha},r_{2,\alpha}\})\delta})(x_{-\beta_{\lambda}+(r_{1,\beta_{\lambda}}-1)\delta})w_{\lambda_{1}+\nu,\lambda_{2}+\nu}=0.$$

This will be done in several cases. First, suppose that $\beta_{\lambda}(\alpha^{\vee}) = 0$. Then $r_{1,\alpha} = r'_{1,\alpha}$, so the relation is immediate if $\beta_{\lambda} + \alpha \notin R^+$. Thus, I assume that $\beta_{\lambda} + \alpha \in R^+$. This is only possible for $\beta_{\lambda} = \beta_{p'',p}$, and in this case, I must have $\alpha = \alpha_{p'',p-1}$. However, note that $\lambda_k(\alpha_{p'',p-1}^{\vee}) = 1$ for $k \in \{1,2\}$, and thus

$$\max\{r'_{1,\alpha_{p'',p-1}}, r_{2,\alpha_{p'',p-1}}\} + r_{1,\beta_{\lambda}} - 1 = 3 + 2\nu(\beta_{p''}^{\vee}) \equiv 1 \mod_2.$$

Because $\beta_{\lambda} + \alpha_{p'',p-1} = \beta_p$ and β_p is a long root, I conclude that

$$[(x_{-\alpha_{p'',p-1}}+(\max\{r'_{1,\alpha_{p'',p-1}},r_{2,\alpha_{p'',p-1}}\})\delta),(x_{-\beta_{\lambda}}+((\lambda_{1}+\nu)(\beta_{\lambda}^{\vee})-1)\delta)]=0,$$

and thus, the relation holds.

Now suppose $\beta_{\lambda}(\alpha^{\vee}) = -1$. By lemma 3, $|(\lambda_1 - \lambda_2)(\alpha^{\vee})| \leq 1$. Hence,

$$r_{1,\alpha}' = \max\{r_{1,\alpha}', r_{2,\alpha}\} \ge \max\{r_{1,\alpha}, r_{2,\alpha}\}, \text{ and } r_{1,\alpha+\beta_{\lambda}} = \max\{r_{1,\alpha+\beta_{\lambda}}, r_{2,\alpha+\beta_{\lambda}}\}.$$

Thus, the relation is again immediate unless $\beta_{\lambda} + \alpha \in \mathbb{R}^+$, so I assume $\beta_{\lambda} + \alpha \in \mathbb{R}^+$. Note that when $\beta_{\lambda} = \beta_{p'',p}$, I must have either $\alpha = \alpha_{i,p''-1}$ for $1 \leq i \leq p'' - 1$ or $\alpha = \alpha_{i,p-1}$ for $1 \leq i \neq p'' \leq p - 1$, and when $\beta_{\lambda} = \beta_{p-1,p}$, I must have $\alpha = \alpha_{i,p-2}$ for $1 \leq i \leq p - 2$. In all of these cases,

$$r'_{1,\alpha} = (\lambda_1 + \nu - \beta_\lambda)(\alpha^{\vee}) = (\lambda_1 + \nu)(\alpha^{\vee}) + 1$$

and hence,

$$r'_{1,\alpha} + r_{1,\beta_{\lambda}} - 1 = (\lambda_1 + \nu)(\alpha^{\vee}) + (\lambda_1 + \nu)(\beta_{\lambda}^{\vee})$$
$$= (\lambda_1 + \nu)(\alpha^{\vee} + \beta_{\lambda}^{\vee}) = b_{\alpha}(\lambda_1 + \nu)((\alpha + \beta_{\lambda})^{\vee}) = r_{1,\alpha + \beta_{\lambda}}$$

Thus, the relation holds.

Now consider the case when $\beta_{\lambda}(\alpha^{\vee}) = 1$. Then $\beta_{\lambda} + \alpha \notin R^+$, and either $\beta_{\lambda} - \alpha \in R^+$ or $\alpha - \beta_{\lambda} \in R^+$. Note, if $r_{2,\alpha} \ge r_{1,\alpha}$, then $r_{2,\alpha} = \max\{r'_{1,\alpha}, r_{2,\alpha}\} = \max\{r_{1,\alpha}, r_{2,\alpha}\}$ and the relation is immediate. Suppose first that $\beta_{\lambda} - \alpha \in R^+$; I will begin with the case that $r_{1,\alpha} = r_{2,\alpha} + 2$. Then I must have $\alpha = \beta_p$. Thus, $b_{\alpha} = 2$ and since $\lambda(\alpha^{\vee}) = 1$, I have that $m_{\alpha} = 1$; hence, $(\lambda + 2\nu)(\alpha^{\vee}) = 2(s_{\alpha} - 1) + m_{\alpha}$ implies that $2\nu(\alpha^{\vee}) = b_{\alpha}(s_{\alpha} - 1)$. Therefore, $r'_{1,\alpha} = b_{\alpha}(\lambda_1 + \nu - \beta_{\lambda})(\alpha^{\vee}) = 2(\nu(\alpha^{\vee})) = b_{\alpha}(s_{\alpha} - 1)$. Now, by relation (2.2.4), it is clear that

$$(x_{-(\beta_{\lambda}-\alpha)+(r_{1,\beta_{\lambda}-\alpha}+1)\delta})(x_{-\alpha+b_{\alpha}(s_{\alpha}-1)\delta})^2w_{\lambda_1+\nu,\lambda_2+\nu}=0.$$

Thus, I conclude that

$$0 = (x_{-(\beta_{\lambda}-\alpha)+(r_{1,\beta_{\lambda}-\alpha}+1)\delta})(x_{-\alpha+r'_{1,\alpha}\delta})^2 w_{\lambda_1+\nu,\lambda_2+\nu}$$
$$= 2(x_{-\alpha+r'_{1,\alpha}\delta})(x_{-\beta_{\lambda}+(r_{1,\beta_{\lambda}}-1)\delta})w_{\lambda_1+\nu,\lambda_2+\nu},$$

showing that the relation holds. Similarly, if $r_{1,\alpha} = r_{2,\alpha} + 1$, then I either have $\alpha = \beta_{i,p}$ for $s < i \le p'$, $\alpha = \alpha_{p,j}$ for $p \le j \le \ell$, or $\alpha = \alpha_{s,k}$ for $s \le k < p'$. In all three cases, I have that $b_{\alpha} = 1$ and $m_{\alpha} = 1$. When $\alpha = \alpha_{p,j}$ or $\alpha = \alpha_{s,k}$, I have that $\lambda(\alpha^{\vee}) = 1$; hence, $(\lambda + 2\nu)(\alpha^{\vee}) = 2(s_{\alpha} - 1) + m_{\alpha}$ implies that $2\nu(\alpha^{\vee}) = 2(s_{\alpha} - 1)$, so $\nu(\alpha^{\vee}) = s_{\alpha} - 1$. Additionally, in this case, $r'_{1,\alpha} = (\lambda_1 + \nu - \beta_{\lambda})(\alpha^{\vee}) = \nu(\alpha^{\vee})$. Thus,

 $r'_{1,\alpha} = s_{\alpha} - 1 = b_{\alpha}(s_{\alpha} - 1)$, so by the same argument, the relation holds in these two cases.

Lastly, when $\alpha = \beta_{i,p}$, I have $\lambda_2(\beta_{i,p}^{\vee}) = 1$ and $\lambda_1(\beta_{i,p}^{\vee}) = 2$; hence,

 $1 + \nu(\beta_{i,p}^{\vee}) = s_{\beta_{i,p}} - 1$. In this case, $r'_{1,\alpha} = 1 + \nu(\beta_{i,p}^{\vee}) = b_{\alpha}(s_{\beta_{i,p}} - 1)$ as well, so the relation holds in all three cases.

Now suppose $\alpha - \beta_{\lambda} \in \mathbb{R}^+$. If $r_{1,\alpha} = r_{2,\alpha} + 2$, then either $\alpha = \beta_{i,j} > \beta_{\lambda}$ or $\alpha = \beta_s$, and if $r_{1,\alpha} = r_{2,\alpha} + 1$, then either $\alpha = \beta_{i,p}$ for $1 \le i \le s - 1$ or $\alpha = \beta_{i,s}$ for $1 \le i \le s - 1$. In any case, since $\lambda_1(\beta_{\lambda}^{\vee}) = \lambda_2(\beta_{\lambda}^{\vee}) + 2$, I have that $(\lambda_1 + \nu)(\beta_{\lambda}^{\vee}) - 1 = s_{\beta_{\lambda}}$, and hence, $r_{1,\alpha-\beta_{\lambda}} + s_{\beta_{\lambda}} = r_{1,\alpha} - 1$. Thus, by relation (2.2.5),

$$0 = (x_{-(\alpha-\beta_{\lambda})+(r_{1,\alpha-\beta_{\lambda}})\delta})(x_{-\beta_{\lambda}+s_{\beta_{\lambda}}\delta})^{2}w_{\lambda_{1}+\nu,\lambda_{2}+\nu}$$
$$= 2(x_{-\alpha+r_{1,\alpha}-1})(x_{-\beta_{\lambda}+(r_{1,\beta_{\lambda}}-1)\delta})w_{\lambda_{1}+\nu,\lambda_{2}+\nu}$$
$$= 2(x_{-\alpha+r_{1,\alpha}'})(x_{-\beta_{\lambda}+(r_{1,\beta_{\lambda}}-1)\delta})w_{\lambda_{1}+\nu,\lambda_{2}+\nu},$$

and therefore, the relation holds.

Now when $\beta_{\lambda}(\alpha^{\vee}) = 2$, α must be β_{λ} , and I have

$$(x_{-\beta_{\lambda}+r'_{1,\beta_{\lambda}}\delta})(x_{-\beta_{\lambda}+(r_{1,\beta_{\lambda}}-1)\delta})w_{\lambda_{1}+\nu,\lambda_{2}+\nu}$$
$$=(x_{-\beta_{\lambda}+(r_{1,\beta_{\lambda}}-2)\delta})(x_{-\beta_{\lambda}+(r_{1,\beta_{\lambda}}-1)\delta})w_{\lambda_{1}+\nu,\lambda_{2}+\nu}.$$

Note that $(x_{-\beta_{\lambda}+(r_{1,\beta_{\lambda}}-2)\delta})(x_{-\beta_{\lambda}+(r_{1,\beta_{\lambda}}-1)\delta})w_{\lambda_{1}+\nu,\lambda_{2}+\nu} = 0$ in $W_{\text{loc}}(\lambda+2\nu)$, and hence, the relation also holds in $V(\lambda_{1}+\nu,\lambda_{2}+\nu)$.

4.2.3 Relation (2.2.4)

Next, I must show that relation in (2.2.4) holds, i.e., for $\alpha \in R^+$

$$(x_{-\alpha+(b_{\alpha}(s_{\alpha}'-1))\delta})^{m_{\alpha}'+1}(x_{-\beta_{\lambda}+(r_{1,\beta_{\lambda}}-1)\delta})w_{\lambda_{1}+\nu,\lambda_{2}+\nu}=0$$

where s'_{α} and m'_{α} are the unique nonnegative integers satisfying

$$(\lambda + 2\nu - \beta_{\lambda})(\alpha^{\vee}) = 2(s'_{\alpha} - 1) + m'_{\alpha}.$$

This will also be done in several cases. First, if $\beta_{\lambda}(\alpha^{\vee}) = 0$, then $\alpha + \beta_{\lambda} \notin \mathbb{R}^+$, $m'_{\alpha} = m_{\alpha}$, and $s'_{\alpha} = s_{\alpha}$, so the relation holds.

Now suppose $\beta_{\lambda}(\alpha^{\vee}) = -1$. Again, if $\beta_{\lambda} + \alpha \notin R^+$ the relation is immediate, so assume that $\beta_{\lambda} + \alpha \in R^+$. As before, if $\beta_{\lambda} = \beta_{p'',p}$, I must have either $\alpha = \alpha_{i,p''-1}$ for $1 \leq i \leq p'' - 1$, or $\alpha = \alpha_{i,p-1}$ for $1 \leq i \neq p'' \leq p - 1$, and if $\beta_{\lambda} = \beta_{p-1,p}$, then $\alpha = \alpha_{i,p-2}$ for $1 \leq i \leq p - 2$. In any case, I have two subcases to consider. First, if $m'_{\alpha} = 1$, then $m_{\alpha} = 2$ and $s_{\alpha} = s'_{\alpha} - 1$. Since $m_{\alpha} = 2$, $(\lambda + 2\nu)(\alpha^{\vee})$ is even, so by Lemma 3, I have $\lambda_1(\alpha^{\vee}) = \lambda_2(\alpha^{\vee})$, and so $r_{1,\alpha} = r_{2,\alpha} = s_{\alpha}$. Thus,

$$(x_{-\alpha+(b_{\alpha}(s_{\alpha}'-1))\delta})^{m_{\alpha}'+1}(x_{-\beta_{\lambda}+(r_{1,\beta_{\lambda}}-1)\delta})w_{\lambda_{1}+\nu,\lambda_{2}+\nu}$$
$$=(x_{-\alpha+s_{\alpha}\delta})^{2}(x_{-\beta_{\lambda}+(r_{1,\beta_{\lambda}}-1)\delta})w_{\lambda_{1}+\nu,\lambda_{2}+\nu}$$
$$=(x_{-\alpha+s_{\alpha}\delta})(x_{-\beta_{\lambda}+(r_{1,\beta_{\lambda},\nu}-1)\delta})(x_{-\alpha+s_{\alpha}\delta})w_{\lambda_{1}+\nu,\lambda_{2}+\nu}$$
$$+(x_{-(\beta_{\lambda}+\alpha)+(r_{1,\beta_{\lambda},\nu}+s_{\alpha}-1)\delta})(x_{-\alpha+s_{\alpha}\delta})w_{\lambda_{1}+\nu,\lambda_{2}+\nu}=0$$

by relation (2.2.3).

Now, if $m'_{\alpha} = 2$, then $m_{\alpha} = 1$ and $s_{\alpha} = s'_{\alpha}$, and thus,

$$(x_{-\alpha+(s_{\alpha}'-1)\delta})^{3}(x_{-\beta_{\lambda}+(r_{1,\beta_{\lambda}}-1)\delta})w_{\lambda_{1}+\nu,\lambda_{2}+\nu}$$
$$=(x_{-(\beta_{\lambda}+\alpha)+(r_{1,\beta_{\lambda}}+s_{\alpha}-2)\delta})(x_{-\alpha+(s_{\alpha}-1)\delta})^{2}w_{\lambda_{1}+\nu,\lambda_{2}+\nu}$$
$$+(x_{-\alpha+(s_{\alpha}-1)\delta})(x_{-\beta_{\lambda}+(r_{1,\beta_{\lambda}}-1)\delta})(x_{-\alpha+(s_{\alpha}-1)\delta})^{2}w_{\lambda_{1}+\nu,\lambda_{2}+\nu}$$

with both terms equal to 0 by relation (2.2.4).

Next, suppose $\beta_{\lambda}(\alpha^{\vee}) = 1$. Then either $\beta_{\lambda} - \alpha \in R^{+}$ or $\alpha - \beta_{\lambda} \in R^{+}$. First, consider the case when $\beta_{\lambda} - \alpha \in R^{+}$. In this case, either $\alpha = \beta_{i,p}$ for $s < i \le p', \alpha = \alpha_{p,j}$ for $p \le j \le \ell, \alpha = \alpha_{s,k}$ for $s \le k < p'$, or $\alpha = \beta_{p}$. If $\alpha = \beta_{i,p}$, then $(\lambda + 2\nu)(\beta_{i,p}^{\vee}) = 3 + 2\nu(\beta_{i,p}^{\vee})$, so I have $m_{\beta_{i,p}} = 1$; hence, $m'_{\beta_{i,p}} = 2$ and $s_{\beta_{i,p}} = s'_{\beta_{i,p}} + 1$. Similarly, if $\alpha = \alpha_{s,k}$ or if $\alpha = \alpha_{p,j}$, then $(\lambda + 2\nu)(\alpha^{\vee}) = 1 + 2\nu(\alpha^{\vee})$, in which case $m_{\alpha} = 1$, and hence $m'_{\alpha} = 2$ and $s_{\alpha} = s'_{\alpha} + 1$. For the subalgebras $\mathfrak{sl}_2[t] \subset \mathfrak{Cg}$ corresponding to the short roots $\alpha = \beta_{i,p}$, $\alpha = \alpha_{s,k}$, and $\alpha = \alpha_{p,j}$, I have the following.

Lemma 12. There exists a homomorphism of $\mathfrak{sl}_2[t]$ modules $D(2, \lambda+2\nu) \to V(\lambda_1+\nu, \lambda_2+\nu)$ mapping generator to generator.

Proof. By Theorem 2 in [3], I need to show

$$(x_{-\alpha+s_{\alpha}\delta})w_{\lambda_1+\nu,\lambda_2+\nu} = 0 \tag{4.2.1}$$

$$(x_{\alpha+(s_{\alpha}-1)\delta})^{m_{\alpha}+1}w_{\lambda_{1}+\nu,\lambda_{1}+\nu} = 0$$
(4.2.2)

for $\alpha = \beta_{i,p}$, $\alpha = \alpha_{p,j}$, and $\alpha = \alpha_{s,k}$.

Note, (4.2.2) is immediate by relation (2.2.4). To show (4.2.1) holds, observe:

$$s_{\beta_{i,p}} = \frac{1}{2} ((\lambda + 2\nu)(\beta_{i,p}^{\vee}) + 1)$$
$$= \frac{1}{2} (r_{1,\beta_{i,p}} + r_{2,\beta_{i,p}} + 1)$$
$$= r_{1,\beta_{i,p}} = \max\{r_{1,\beta_{i,p}}, r_{2,\beta_{i,p}}\},$$

and similarly, when $\alpha = \alpha_{s,k}$ or $\alpha = \alpha_{p,j}$,

$$s_{\alpha} = 1 + \nu(\alpha^{\vee}) = r_{1,\alpha} = \max\{r_{1,\alpha}, r_{2,\alpha}\}.$$

Hence, (4.2.1) holds by relation (2.2.3).

33

Using this Lemma, along with the presentation of Demazure modules given in 3.5 of [3] (originally defined in [6] and [11]), I have that

$$(x_{-\alpha+(s_{\alpha}-2)\delta})^4 w_{\lambda_1+\nu,\lambda_2+\nu} = 0$$

for $\alpha = \beta_{i,p}$, $\alpha = \alpha_{p,j}$, and $\alpha = \alpha_{s,k}$. Also note that, in all three cases,

$$r_{1,\beta_{\lambda}} - s_{\alpha} + 1 \ge r_{1,(\beta_{\lambda} - \alpha)} = \max\{r_{1,(\beta_{\lambda} - \alpha)}, r_{2,(\beta_{\lambda} - \alpha)}\}.$$

Hence, I have

$$0 = (x_{-(\beta_{\lambda}-\alpha)+(r_{1,\beta_{\lambda}}-s_{\alpha}+1)\delta})(x_{-\alpha+(s_{\alpha}-2)\delta})^{4}w_{\lambda_{1}+\nu,\lambda_{2}+\nu}$$
$$= (x_{-\alpha+(s_{\alpha}-2)\delta})^{3}(x_{-\beta_{\lambda}+(r_{1,\beta_{\lambda}}-1)\delta})w_{\lambda_{1}+\nu,\lambda_{2}+\nu}$$
$$+ (x_{-\alpha+(s_{\alpha}-2)\delta})^{4}(x_{-(\beta_{\lambda}-\alpha)+(r_{1,\beta_{\lambda}}-s_{\alpha}+1)\delta})w_{\lambda_{1}+\nu,\lambda_{2}+\nu}$$
$$= (x_{-\alpha+(s_{\alpha}-2)\delta})^{3}(x_{-\beta_{\lambda}+(r_{1,\beta_{\lambda}}-1)\delta})w_{\lambda_{1}+\nu,\lambda_{2}+\nu}.$$

Now suppose $\alpha = \beta_p$. Then $\lambda + 2\nu(\beta_p^{\vee}) = 1 + 2\nu(\beta_p^{\vee})$, so I have $m_{\beta_p} = 1$, $s_{\beta_p} = \nu(\beta_p^{\vee}) + 1$, and $b_{\beta_p} = 2$. Hence, in this case I must show that

$$(x_{-\beta_p+2(s_{\beta_p}-2)\delta})^3(x_{-\beta_{\lambda}+r_{1,\beta_{\lambda}}-1)\delta})w_{\lambda_1+\nu,\lambda_2+\nu}=0.$$

To accomplish this, I'll prove another, similar lemma; that is, for the subalgebra $\mathfrak{sl}_2[t^2] \subset \mathfrak{Cg}$ corresponding to the long root $\alpha = \beta_p$,

Lemma 13. There exists a homomorphism of $\mathfrak{sl}_2[t^2]$ modules

 $D(2, \lambda + 2\nu) \rightarrow V(\lambda_1 + \nu, \lambda_2 + \nu)$ mapping generator to generator.

Proof. To prove this lemma, I must show that the following equations hold in $V(\lambda_1 + \nu, \lambda_2 + \nu)$:

$$(x_{-\beta_p+2s_{\beta_p}\delta})w_{\lambda_1+\nu,\lambda_2+\nu} = 0 \tag{4.2.3}$$

$$(x_{\beta_p+2(s_{\beta_p}-1)\delta})^{m_{\alpha}+1}w_{\lambda_1+\nu,\lambda_1+\nu} = 0.$$
(4.2.4)

Note, I have $\lambda_1(\beta_p^{\vee}) = 1$ and $\lambda_2(\beta_p^{\vee}) = 0$, so $2s_{\beta_p} = 2 + 2\nu(\beta_p^{\vee})$. Hence,

$$\max\{r_{1,\beta_p}, r_{2,\beta_p}\} = r_{1,\beta_p} = 2((\lambda_1 + \nu)(\beta_p^{\vee})) = 2 + 2\nu(\beta_p^{\vee}) = 2s_{\beta_p}.$$

Thus, (4.2.3) holds by relation (2.2.3), and (4.2.4) holds by relation (2.2.4).

Using this Lemma, I can conclude that

$$(x_{-\beta_p+2(s_{\beta_p}-2)\delta})^4 w_{\lambda_1+\nu,\lambda_2+\nu} = 0.$$

Since $4 + \nu(\alpha_{s,p-1}^{\vee}) > \max\{r_{1,\alpha_{s,p-1}}, r_{2,\alpha_{s,p-1}}\}$, I can therefore conclude the following:

$$0 = (x_{-\alpha_{s,p-1}+(4+\nu(\alpha_{s,p-1}^{\vee})\delta})(x_{-\beta_{p}+2(s_{\beta_{p}}-2)\delta})^{4}w_{\lambda_{1}+\nu,\lambda_{2}+\nu}$$
$$= (x_{-\beta_{p}+2(s_{\beta_{p}}-2)\delta})^{3}(x_{-\beta_{\lambda}+(r_{1,\beta_{\lambda}}-1)\delta})w_{\lambda_{1}+\nu,\lambda_{2}+\nu}$$
$$+ (x_{-\beta_{p}+2(s_{\beta_{p}}-2)\delta})^{4}(x_{-\alpha_{s,p-1}+(4+\nu(\alpha_{s,p-1}^{\vee})\delta})w_{\lambda_{1}+\nu,\lambda_{2}+\nu}$$
$$= (x_{-\beta_{p}+2(s_{\beta_{p}}-2)\delta})^{3}(x_{-\beta_{\lambda}+(r_{1,\beta_{\lambda}}-1)\delta})w_{\lambda_{1}+\nu,\lambda_{2}+\nu}$$

and hence, $(x_{-\alpha+(b_{\alpha}(s'_{\alpha}-1))\delta})^{m'_{\alpha}+1}(x_{-\beta_{\lambda}+(r_{1,\beta_{\lambda}}-1)\delta})w_{\lambda_{1}+\nu,\lambda_{2}+\nu}=0$ whenever $\beta_{\lambda}-\alpha\in R^{+}$.

Now suppose $\alpha - \beta_{\lambda} \in \mathbb{R}^+$. Then either $\alpha = \beta_{i,p}$ for $1 \leq i \leq s - 1$, $\alpha = \beta_{i,s}$ for $1 \leq i \leq s - 1$, or $\alpha = \beta_s$. Suppose first that either $\alpha = \beta_{i,p}$ or $\alpha = \beta_{i,s}$ for $1 \leq i \leq s - 1$, and that $m_{\alpha} = 2$. Then $b_{\alpha} = 1$, $m'_{\alpha} = 1$, and $s_{\alpha} = s'_{\alpha}$, so I must show that:

$$(x_{-\alpha+(s'_{\alpha}-1)\delta})^2(x_{-\beta_{\lambda}+(r_{1,\beta_{\lambda}}-1)\delta})w_{\lambda_1+\nu,\lambda_2+\nu}=0.$$

Let $\alpha'_1 = \beta_{\lambda}$. If $\alpha = \beta_{i,p}$, let $\alpha'_2 = \alpha_{i,s-1}$, $\alpha'_1 + \alpha'_2 = \beta_{i,p}$, and $s_{\alpha} = s_{\beta_{i,p}}$, and if $\alpha = \beta_{i,s}$, let $\alpha'_2 = \alpha_{i,p-1}$, $\alpha'_1 + \alpha'_2 = \beta_{i,s}$, and $s_{\alpha} = s_{\beta_{i,s}}$. Now, consider the lie algebra $\mathfrak{sl}_3[t]$ with roots α'_1 , α'_2 , and $\alpha'_1 + \alpha'_2$, and define M to be the $\mathfrak{sl}_3[t]$ module generated by a vector m with the following relations:

$$(x_{\alpha'_i+\mathbb{C}[t]\delta})m = 0$$

$$(h_{\alpha'_i,k\delta})m = \delta_{k,0}((2r-2)\omega_1 + (2s-2r+2)\omega_2)(\alpha'^{\vee})m$$

$$(x_{-\alpha'_1+r_{1,\beta_\lambda}\delta})m = 0$$

$$(x_{-\alpha'_2+(s_\alpha-r_{1,\beta_\lambda}+1)\delta})m = 0$$

$$(x_{-(\alpha'_1+\alpha'_2)+(s_\alpha+1)\delta})m = 0.$$

It is known that this module is isomorphic to the generalized demazure module; namely it can be realized as the submodule

$$\mathbb{U}(\mathfrak{sl}_3[t])(w_1 \otimes w_2) \subset (W_{\mathrm{loc}}^{\mathfrak{sl}_3}(r_{1,\beta_\lambda}\omega_1 + (s_\alpha - r_{1,\beta_\lambda} + 1)\omega_2) \otimes W_{\mathrm{loc}}^{\mathfrak{sl}_3}((r_{1,\beta_\lambda} - 2)\omega_1 + (s_\alpha - r_{1,\beta_\lambda} + 1)\omega_2))$$

where w_1 is the highest weight vector of $W_{\text{loc}}^{\mathfrak{s}l_3}(r_{1,\beta_\lambda}\omega_1 + (s_\alpha - r_{1,\beta_\lambda} + 1)\omega_2)$ and w_2 the highest weight vector of $W_{\text{loc}}^{\mathfrak{s}l_3}((r_{1,\beta_\lambda} - 2)\omega_1 + (s_\alpha - r_{1,\beta_\lambda} + 1)\omega_2)$.

Define a map $M \to V(\lambda_1 + \nu, \lambda_2 + \nu)$ by sending generator to generator. Then the $\mathfrak{sl}_3[t]$ map is well defined; First, it is clear that

$$(x_{\alpha'_i+\mathbb{C}[t]\delta})(w_{\lambda_1+\nu,\lambda_2+\nu}) = 0 \text{ and}$$
$$(h_{\alpha'_i,k\delta})(w_{\lambda_1+\nu,\lambda_2+\nu}) = ((2r_{1,\beta_{\lambda}}-2)\omega_1 + (2s_{\alpha}-2r_{1,\beta_{\lambda}}+2)\omega_2)(\alpha'_i^{\vee})\delta_{k,0}(w_{\lambda_1+\nu,\lambda_2+\nu})$$

Then, by relation (2.2.3), I also have the following:

$$(x_{-\alpha'_1+r_{1,\beta_{\lambda}}\delta})(w_{\lambda_1+\nu,\lambda_2+\nu}) = 0,$$
$$(x_{-\alpha'_2+(s_{\alpha}-r_{1,\beta_{\lambda}}+1)\delta})(w_{\lambda_1+\nu,\lambda_2+\nu}) = 0,$$
$$(x_{-(\alpha'_1+\alpha'_2)+(s_{\alpha}+1)\delta})(w_{\lambda_1+\nu,\lambda_2+\nu}) = 0.$$

Now observe:

$$\begin{aligned} (x_{-(\alpha'_{1}+\alpha'_{2})+(s_{\alpha}-1)\delta})^{2}(x_{-\alpha'_{1}+(r_{1,\beta_{\lambda}}-1)\delta})(w_{1}\otimes w_{2}) \\ &= (x_{-(\alpha'_{1}+\alpha'_{2})+(s_{\alpha}-1)\delta})^{2}(x_{-\alpha'_{1}+(r_{1,\beta_{\lambda}}-1)\delta})w_{1}\otimes w_{2} \\ &+ (x_{-(\alpha'_{1}+\alpha'_{2})+(s_{\alpha}-1)\delta})^{2}w_{1}\otimes (x_{-\alpha'_{1}+(r_{1,\beta_{\lambda}}-1)\delta})w_{2} \\ &+ 2(x_{-(\alpha'_{1}+\alpha'_{2})+(s_{\alpha}-1)\delta})(x_{-\alpha'_{1}+(r_{1,\beta_{\lambda}}-1)\delta})w_{1}\otimes (x_{-(\alpha'_{1}+\alpha'_{2})+(s_{\alpha}-1)\delta})w_{2} \\ &+ 2(x_{-(\alpha'_{1}+\alpha'_{2})+(s_{\alpha}-1)\delta})w_{1}\otimes (x_{-(\alpha'_{1}+\alpha'_{2})+(s_{\alpha}-1)\delta})(x_{-\alpha'_{1}+(r_{1,\beta_{\lambda}}-1)\delta})w_{2} \\ &+ (x_{-\alpha'_{1}+(r_{1,\beta_{\lambda}}-1)\delta})w_{1}\otimes (x_{-(\alpha'_{1}+\alpha'_{2})+(s_{\alpha}-1)\delta})^{2}w_{2} \\ &+ w_{1}\otimes (x_{-(\alpha'_{1}+\alpha'_{2})+(s_{\alpha}-1)\delta})^{2}(x_{-\alpha'_{1}+(r_{1,\beta_{\lambda}}-1)\delta})w_{2}. \end{aligned}$$

Note, since $(x_{-(\alpha'_1+\alpha'_2)+(s_\alpha-1)\delta})w_2 = 0 = (x_{-\alpha'_1+(r_{1,\beta_\lambda}-1)\delta})w_2$, this can be immediately reduced to:

$$(x_{-(\alpha'_1+\alpha'_2)+(s_\alpha-1)\delta})^2(x_{-\alpha'_1+(r_{1,\beta_\lambda}-1)\delta})(w_1\otimes w_2) = (x_{-(\alpha'_1+\alpha'_2)+(s_\alpha-1)\delta})^2(x_{-\alpha'_1+(r_{1,\beta_\lambda}-1)\delta})w_1\otimes w_2.$$

Now consider the \mathfrak{sl}_2 for the simple root $\alpha'_1 + \alpha'_2$ and the $\mathfrak{sl}_2[t]$ module $W_{\mathrm{loc}}(s_\alpha)$ with highest weight vector w. I claim there exists a map $W_{\mathrm{loc}}(s_\alpha) \to \mathbb{U}(\mathfrak{sl}_2[t])(x_{-\alpha'_1+(r_{1,\beta_\lambda}-1)\delta})w_1$ defined by $w \to (x_{-\alpha'_1+(r_{1,\beta_\lambda}-1)\delta})w_1$. Observe:

$$(x_{\alpha'_1+\alpha'_2+k\delta})(x_{-\alpha'_1+(r_{1,\beta_\lambda}-1)\delta})w_1$$

= $(x_{\alpha'_2+(k+r_{1,\beta_\lambda}-1)\delta})w_1 + (x_{-\alpha'_1+(r_{1,\beta_\lambda}-1)\delta})(x_{\alpha'_1+\alpha'_2+k\delta})w_1 = 0,$

$$(h_{(\alpha'_1+\alpha'_2),k\delta})(x_{-\alpha'_1+(r_{1,\beta_\lambda}-1)\delta})w_1$$
$$=\delta_{k,0}s_\alpha(x_{-\alpha'_1+(r_{1,\beta_\lambda}+k-1)\delta})w_1,$$

and

$$(x_{-(\alpha'_1+\alpha'_2)+s_{\alpha}\delta})(x_{-\alpha'_1+(r_{1,\beta_{\lambda}}-1)\delta})w_1 = 0.$$

Thus, the map is well defined. Finally, since $(x_{-(\alpha'_1+\alpha'_2)+(s_\alpha-1)\delta})^2 w = 0$, I can conclude that

$$(x_{-(\alpha'_1+\alpha'_2)+(s_\alpha-1)\delta})^2(x_{-\alpha'_1+(r_{1,\beta_\lambda}-1)\delta})w_1 = 0,$$

hence

$$(x_{-(\alpha'_1+\alpha'_2)+(s_\alpha-1)\delta})^2(x_{-\alpha'_1+(r_{1,\beta_\lambda}-1)\delta})m = 0$$

and therefore,

$$(x_{-\alpha+(s'_{\alpha}-1)\delta})^2(x_{-\beta_{\lambda}+(r_{1,\beta_{\lambda}}-1)\delta})w_{\lambda_1+\nu,\lambda_2+\nu}=0$$

for both $\alpha = \beta_{i,p}$ and $\alpha = \beta_{i,s}$ with $m_{\alpha} = 2$.

Now suppose that either $\alpha = \beta_{i,p}$ or $\alpha = \beta_{i,s}$ for $1 \le i \le s$ and that $m_{\alpha} = 1$. Then $b_{\alpha} = 1, m'_{\alpha} = 2$, and $s_{\alpha} - 1 = s'_{\alpha}$, so I must show that:

$$(x_{-\alpha+(s_{\alpha}-2)\delta})^{3}(x_{-\beta_{\lambda}+(r_{1,\beta_{\lambda}}-1)\delta})w_{\lambda_{1}+\nu,\lambda_{2}+\nu}=0.$$

Let $\alpha'_1 = \beta_{\lambda}$. If $\alpha = \beta_{i,p}$, let $\alpha'_2 = \alpha_{i,s-1}$, $\alpha'_1 + \alpha'_2 = \beta_{i,p}$, and $s_{\alpha} = s_{\beta_{i,p}}$, and if $\alpha = \beta_{i,s}$, let $\alpha'_2 = \alpha_{i,p-1}$, $\alpha'_1 + \alpha'_2 = \beta_{i,s}$, and $s_{\alpha} = s_{\beta_{i,s}}$.

Now, consider the Lie algebra $\mathfrak{sl}_3[t]$ with roots α'_1 , α'_2 , and $\alpha'_1 + \alpha'_2$, and define M to be the $\mathfrak{sl}_3[t]$ module generated by a vector m with the following relations:

$$\begin{aligned} (x_{\alpha'_i + \mathbb{C}[t]\delta})m &= 0, \\ (h_{\alpha'_i,k\delta})m &= \delta_{k,0}((2r_{1,\beta_{\lambda}} - 2)\omega_1 + (2s_{\alpha} - 2r_{1,\beta_{\lambda}} + 1)\omega_2)({\alpha'_i}^{\vee})m, \\ (x_{-\alpha'_1 + r_{1,\beta_{\lambda}}\delta})m &= 0, \\ (x_{-\alpha'_2 + (s_{\alpha} - r_{1,\beta_{\lambda}} + 1)\delta})m &= 0, \\ (x_{-(\alpha'_1 + \alpha'_2) + s_{\alpha}\delta})m &= 0. \end{aligned}$$

It is known that this module is isomorphic to the generalized demazure module; namely it can be realized as the submodule

$$\mathbb{U}(\mathfrak{sl}_{3}[t])(w_{1} \otimes w_{2}) \subset (W_{\mathrm{loc}}^{\mathfrak{sl}_{3}}(r_{1,\beta_{\lambda}}\omega_{1} + (s_{\alpha} - r_{1,\beta_{\lambda}})\omega_{2}) \otimes W_{\mathrm{loc}}^{\mathfrak{sl}_{3}}((r_{1,\beta_{\lambda}} - 2)\omega_{1} + (s_{\alpha} - r_{1,\beta_{\lambda}} + 1)\omega_{2}))$$

where w_{1} is the highest weight vector of $W_{\mathrm{loc}}^{\mathfrak{sl}_{3}}(r_{1,\beta_{\lambda}}\omega_{1} + (s_{\alpha} - r_{1,\beta_{\lambda}})\omega_{2})$ and w_{2} the highest
weight vector of $W_{\mathrm{loc}}^{\mathfrak{sl}_{3}}((r_{1,\beta_{\lambda}} - 2)\omega_{1} + (s_{\alpha} - r_{1,\beta_{\lambda}} + 1)\omega_{2}).$

Define a map $M \to V(\lambda_1 + \nu, \lambda_2 + \nu)$ by sending generator to generator. Then the $\mathfrak{sl}_3[t]$ map is well defined; First, it is clear that

$$(x_{\alpha_i' + \mathbb{C}[t]\delta})(w_{\lambda_1 + \nu, \lambda_2 + \nu}) = 0$$

and

$$(h_{\alpha'_{i},k\delta})(w_{\lambda_{1}+\nu,\lambda_{2}+\nu}) = \delta_{k,0}((2r_{1,\beta_{\lambda}}-2)\omega_{1} + (2s_{\alpha}-2r_{1,\beta_{\lambda}}+2)\omega_{2})({\alpha'_{i}}^{\vee})(w_{\lambda_{1}+\nu,\lambda_{2}+\nu})$$

Then by relation (2.2.3), I also have the following:

$$(x_{-\alpha_1'+r_{1,\beta_{\lambda}}\delta})(w_{\lambda_1+\nu,\lambda_2+\nu}) = 0,$$
$$(x_{-\alpha_2'+(s_{\alpha}-r_{1,\beta_{\lambda}}+1)\delta})(w_{\lambda_1+\nu,\lambda_2+\nu}) = 0,$$
$$(x_{-(\alpha_1'+\alpha_2')+s_{\alpha}\delta})(w_{\lambda_1+\nu,\lambda_2+\nu}) = 0.$$

Now observe:

$$\begin{aligned} (x_{-(\alpha'_{1}+\alpha'_{2})+(s_{\alpha}-2)\delta})^{3}(x_{-\alpha'_{1}+(r_{1,\beta_{\lambda}}-1)\delta})(w_{1}\otimes w_{2}) \\ &= (x_{-(\alpha'_{1}+\alpha'_{2})+(s_{\alpha}-2)\delta})^{3}(x_{-\alpha'_{1}+(r_{1,\beta_{\lambda}}-1)\delta})w_{1}\otimes w_{2} \\ &+ 3(x_{-(\alpha'_{1}+\alpha'_{2})+(s_{\alpha}-2)\delta})^{2}(x_{-\alpha'_{1}+(r_{1,\beta_{\lambda}}-1)\delta})w_{1}\otimes (x_{-(\alpha'_{1}+\alpha'_{2})+(s_{\alpha}-2)\delta})w_{2} \\ &+ 3(x_{-(\alpha'_{1}+\alpha'_{2})+(s_{\alpha}-2)\delta})(x_{-\alpha'_{1}+(r_{1,\beta_{\lambda}}-1)\delta})w_{1}\otimes (x_{-(\alpha'_{1}+\alpha'_{2})+(s_{\alpha}-2)\delta})^{2}w_{2} \\ &+ (x_{-\alpha'_{1}+(r_{1,\beta_{\lambda}}-1)\delta})w_{1}\otimes (x_{-(\alpha'_{1}+\alpha'_{2})+(s_{\alpha}-2)\delta})^{3}w_{2} \\ &+ (x_{-(\alpha'_{1}+\alpha'_{2})+(s_{\alpha}-2)\delta})^{3}w_{1}\otimes (x_{-\alpha'_{1}+(r_{1,\beta_{\lambda}}-1)\delta})w_{2} \\ &+ 3(x_{-(\alpha'_{1}+\alpha'_{2})+(s_{\alpha}-2)\delta})^{2}w_{1}\otimes (x_{-(\alpha'_{1}+\alpha'_{2})+(s_{\alpha}-2)\delta})(x_{-\alpha'_{1}+(r_{1,\beta_{\lambda}}-1)\delta})w_{2} \\ &+ 3(x_{-(\alpha'_{1}+\alpha'_{2})+(s_{\alpha}-2)\delta})w_{1}\otimes (x_{-(\alpha'_{1}+\alpha'_{2})+(s_{\alpha}-2)\delta})^{2}(x_{-\alpha'_{1}+(r_{1,\beta_{\lambda}}-1)\delta})w_{2} \\ &+ w_{1}\otimes (x_{-(\alpha'_{1}+\alpha'_{2})+(s-2)\delta})^{3}(x_{-\alpha'_{1}+(r_{1,\beta_{\lambda}}-1)\delta})w_{2}. \end{aligned}$$

Note, since $(x_{-(\alpha'_1+\alpha'_2)+(s-2)\delta})^3 w_1 = (x_{-(\alpha'_1+\alpha'_2)+(s-2)\delta})^2 w_2 = (x_{-\alpha'_1+(r_{1,\beta_{\lambda}}-1)\delta}) w_2 = 0$, this can immediately be reduced to:

$$(x_{-(\alpha'_1+\alpha'_2)+(s-2)\delta})^3 (x_{-\alpha'_1+(r_{1,\beta_\lambda}-1)\delta})(w_1 \otimes w_2)$$

= $3(x_{-(\alpha'_1+\alpha'_2)+(s-2)\delta})^2 (x_{-\alpha'_1+(r_{1,\beta_\lambda}-1)\delta})w_1 \otimes (x_{-(\alpha'_1+\alpha'_2)+(s-2)\delta})w_2.$

Now consider the \mathfrak{sl}_2 with simple root $\alpha'_1 + \alpha'_2$ and the $\mathfrak{sl}_2[t]$ module $W_{\mathrm{loc}}(s_{\alpha} - 1)$ with highest weight vector w. I claim there exists a map $W_{\mathrm{loc}}(s_{\alpha} - 1) \rightarrow \mathbb{U}(\mathfrak{sl}_2[t])(x_{-\alpha'_1 + (r_{1,\beta_{\lambda}} - 1)\delta})w_1$ defined by $w \rightarrow (x_{-\alpha'_1 + (r_{1,\beta_{\lambda}} - 1)\delta})w_1$.

Observe:

$$(x_{\alpha'_1+\alpha'_2+k\delta})(x_{-\alpha'_1+(r_{1,\beta_{\lambda}}-1)\delta})w_1$$

= $(x_{\alpha'_2+(k+r_{1,\beta_{\lambda}}-1)\delta})w_1 + (x_{-\alpha'_1+(r_{1,\beta_{\lambda}}-1)\delta})(x_{\alpha'_1+\alpha'_2+k\delta})w_1 = 0,$

$$(h_{(\alpha'_1+\alpha'_2),k\delta})(x_{-\alpha'_1+(r_{1,\beta_{\lambda}}-1)\delta})w_1$$

= $\delta_{k,0}(s_{\alpha}-1)(x_{-\alpha'_1+(r_{1,\beta_{\lambda}}+k-1)\delta})w_1,$

and

$$(x_{-(\alpha'_1+\alpha'_2)+(s_\alpha-1)\delta})(x_{-\alpha'_1+(r_{1,\beta_\lambda}-1)\delta})w_1 = 0.$$

Thus, the map is well defined. Finally, since $(x_{-(\alpha'_1+\alpha'_2)+(s_\alpha-2)\delta})^2 w = 0$, I can conclude that

$$(x_{-(\alpha_1'+\alpha_2')+(s_\alpha-2)\delta})^2(x_{-\alpha_1'+(r_{1,\beta_\lambda}-1)\delta})w_1 = 0,$$

hence

$$(x_{-(\alpha_1'+\alpha_2')+(s-2)\delta})^2(x_{-\alpha_1'+(r_{1,\beta_\lambda}-1)\delta})m = 0,$$

and therefore,

$$(x_{-\alpha+(s_{\alpha}-2)\delta})^{3}(x_{-\beta_{\lambda}+(r_{1,\beta_{\lambda}}-1)\delta})w_{\lambda_{1}+\nu,\lambda_{2}+\nu}=0$$

whenever $\alpha = \beta_{i,p}$ and $\alpha = \beta_{i,s}$.

Finally, suppose $\alpha = \beta_s$. Then $m_{\beta_s} = 1$, so $m'_{\beta_s} = 2$ and $s_{\beta_s} = s'_{\beta_s} + 1$. Thus, I

want to show that

$$(x_{-\beta_s+2(s_{\beta_s}-2)\delta})^3(x_{-\beta_\lambda+(r_{1,\beta_\lambda}-1)\delta})w_{\lambda_1+\nu,\lambda_2+\nu}=0.$$

I have that:

$$(h_{\beta_s,k\delta})(x_{-\beta_\lambda+(r_{1,\beta_\lambda}-1)\delta})w_{\lambda_1+\nu,\lambda_2+\nu} = 2(s_{\beta_s}-1)\delta_{k,0}(x_{-\beta_\lambda+(r_{1,\beta_\lambda}-1)\delta})w_{\lambda_1+\nu,\lambda_2+\nu}$$

and

$$(x_{\beta_s+k\delta})(x_{-\beta_\lambda+(r_{1,\beta_\lambda}-1)\delta})w_{\lambda_1+\nu,\lambda_2+\nu} = 0 \text{ for } k \ge 0$$

Hence, there exists a map

$$W_{\rm loc}^{\mathfrak{sl}_2}(2(s_{\beta_s}-1)) \to \mathbb{U}(\mathfrak{sl}_2[t^2])(x_{-\beta_\lambda+(r_{1,\beta_\lambda}-1)\delta})w_{\lambda_1+\nu,\lambda_2+\nu}$$

sending the generator $w_{2(s_{\beta_s}-1)}$ of $W_{\text{loc}}^{\mathfrak{sl}_2}(2(s_{\beta_s}-1))$ to $(x_{-\beta_{\lambda}+(r_{1,\beta_{\lambda}}-1)\delta})w_{\lambda_1+\nu,\lambda_2+\nu}$. Then, since $(x_{-\beta_s+2(s_{\beta_s}-2)\delta})^3w_{2(s_{\beta_s}-1)} = 0$, I conclude that

$$(x_{-\beta_s+2(s_{\beta_s}-2)\delta})^3(x_{-\beta_\lambda+(r_{1,\beta_\lambda}-1)\delta})w_{\lambda_1+\nu,\lambda_2+\nu}=0.$$

Therefore, I have

$$(x_{-\alpha+b_{\alpha}(s'_{\alpha}-1)\delta})^{m'_{\alpha}+1}(x_{-\beta_{\lambda}+(r_{1,\beta_{\lambda}}-1)\delta})w_{\lambda_{1}+\nu,\lambda_{2}+\nu}=0$$

whenever $\beta_{\lambda}(\alpha^{\vee}) = 1.$

The last case I must consider is when $\beta_{\lambda}(\alpha^{\vee}) = 2$. This occurs only when $\alpha = \beta_{\lambda}$. Since $m_{\beta_{\lambda}} = 2$, I have $m'_{\beta_{\lambda}} = m_{\beta_{\lambda}}$ and $s_{\beta_{\lambda}} = s'_{\beta_{\lambda}} + 1 = r_{1,\beta_{\lambda}} - 1$. Thus, I must show that

$$(x_{-\beta_{\lambda}+(r_{1,\beta_{\lambda}}-3)\delta})^{3}(x_{-\beta_{\lambda}+(r_{1,\beta_{\lambda}}-1)\delta})w_{\lambda_{1}+\nu,\lambda_{2}+\nu}=0.$$

Consider the lie algebra $\mathfrak{sl}_2[t]$ with simple root β_{λ} and define M to be the $\mathfrak{sl}_2[t]$ module generated by m subject to the following relations:

$$\begin{split} (x_{\beta_{\lambda}+\mathbb{C}[t]\delta})m &= 0\\ (h_{\beta_{\lambda},k\delta})m &= \delta_{k,0}((\lambda+2\nu)(\beta_{\lambda}^{\vee}))m\\ (x_{-\beta_{\lambda}+(r_{1,\beta_{\lambda}})\delta})m &= 0. \end{split}$$

It is known that this module is isomorphic to the generalized Demazure module; namely it can be realized as the submodule

$$\mathbb{U}(\mathfrak{sl}_2[t])(w_1 \otimes w_2) \subset (W_{\mathrm{loc}}^{\mathfrak{sl}_2}(r_{1,\beta_\lambda}) \otimes W_{\mathrm{loc}}^{\mathfrak{sl}_2}(r_{1,\beta_\lambda}-2))$$

where w_1 is the highest weight vector of $W_{\text{loc}}^{\mathfrak{sl}_2}(r_{1,\beta_\lambda})$ and w_2 the highest weight vector of $W_{\text{loc}}^{\mathfrak{sl}_2}(r_{1,\beta_\lambda}-2)$. Define a map $M \to V(\lambda_1 + \nu, \lambda_2 + \nu)$ by sending generator to generator. Then the $\mathfrak{sl}_2[t]$ map is well defined; First, it is clear that

$$(x_{\beta_{\lambda}+\mathbb{C}[t]\delta})w_{\lambda_{1}+\nu,\lambda_{2}+\nu} = 0$$
$$(h_{\beta_{\lambda},k\delta})m = \delta_{k,0}((\lambda+2\nu)(\beta_{\lambda}^{\vee}))w_{\lambda_{1}+\nu,\lambda_{2}+\nu}.$$

Then, by relation (2.2.3), I also have

$$(x_{-\beta_{\lambda}+(r_{1,\beta_{\lambda}})\delta})w_{\lambda_{1}+\nu,\lambda_{2}+\nu}=0.$$

Now, since $(x_{-\beta_{\lambda}+(r_{1,\beta_{\lambda}}-1)\delta})w_2 = 0$ and $(x_{-\beta_{\lambda}+(r_{1,\beta_{\lambda}}-3)\delta})^2w_2 = 0$, I have that

$$(x_{-\beta_{\lambda}+(r_{1,\beta_{\lambda}}-3)\delta})^{3}(x_{-\beta_{\lambda}+(r_{1,\beta_{\lambda}}-1)\delta})(w_{1}\otimes w_{2})$$
$$=(x_{-\beta_{\lambda}+(r_{1,\beta_{\lambda}}-3)\delta})^{3}(x_{-\beta_{\lambda}+(r_{1,\beta_{\lambda}}-1)\delta})w_{1}\otimes w_{2}$$
$$+3(x_{-\beta_{\lambda}+(r_{1,\beta_{\lambda}}-3)\delta})^{2}(x_{-\beta_{\lambda}+(r_{1,\beta_{\lambda}}-1)\delta})w_{1}\otimes (x_{-\beta_{\lambda}+(r_{1,\beta_{\lambda}}-3)\delta})w_{2}.$$

I claim there exists a map $W_{\text{loc}}^{\mathfrak{sl}_2}(r_{1,\beta_{\lambda}}-2) \to \mathbb{U}(\mathfrak{sl}_2[t])(x_{-\beta_{\lambda}+(r_{1,\beta_{\lambda}}-1)\delta})w_1$ defined by $w \to (x_{-\beta_{\lambda}+(r_{1,\beta_{\lambda}}-1)\delta})w_1.$

Observe:

$$(x_{\beta_{\lambda}+\mathbb{C}[t]\delta})(x_{-\beta_{\lambda}+(r_{1,\beta_{\lambda}}-1)\delta})w_{1}=0,$$

$$(h_{\beta_{\lambda},k\delta})(x_{-\beta_{\lambda}+(r_{1,\beta_{\lambda}}-1)\delta})w_{1}$$
$$=\delta_{k,0}(r_{1,\beta_{\lambda}}-2)(x_{-\beta_{\lambda}+(r_{1,\beta_{\lambda}}-1)\delta})w_{1},$$

and

$$(x_{-\beta_{\lambda}+(r_{1,\beta_{\lambda}}-2)\delta})(x_{-\beta_{\lambda}+(r_{1,\beta_{\lambda}}-1)\delta})w_{1}=0.$$

Hence, the map is well defined, and therefore I can conclude that

$$(x_{-\beta_{\lambda}+(r_{1,\beta_{\lambda}}-3)\delta})^2(x_{-\beta_{\lambda}+(r_{1,\beta_{\lambda}}-1)\delta})w_1=0,$$

and thus,

$$(x_{-\beta_{\lambda}+(r_{1,\beta_{\lambda}}-3)\delta})^{3}(x_{-\beta_{\lambda}+(r_{1,\beta_{\lambda}}-1)\delta})w_{\lambda_{1}+\nu,\lambda_{2}+\nu}=0.$$

4.2.4 Relation (2.2.5)

Finally, I must show that relation (2.2.5) holds; that is, that

$$(x_{-\beta+s'_{\beta}\delta})^2(x_{-\beta_{\lambda}+(r_{1,\beta_{\lambda}}-1)\delta})w_{\lambda_1+\nu,\lambda_2+\nu}=0$$

for $\beta \in R(\lambda'_1, \lambda'_2)$, where $\lambda'_1 = \lambda_1 - \beta_\lambda - \nu_0$, $\lambda'_2 = \lambda_2 - \nu_0$, and ν_0 is as defined in Lemma 7. Using Lemma 3 along with the fact that $\lambda_1(\beta^{\vee}) \ge \lambda_2(\beta^{\vee})$, it becomes clear that $\beta \in R(\lambda'_1, \lambda'_2)$ if and only if $\beta \in R(\lambda_1, \lambda_2)$ and $\beta_\lambda(\beta^{\vee}) = 0$. Thus, $\beta_\lambda + \beta \notin R^+$, and $s'_\beta = s_\beta$. Hence, I have that

$$(x_{-\beta+s'_{\beta}\delta})^2(x_{-\beta_{\lambda}+(r_{1,\beta_{\lambda}}-1)\delta})w_{\lambda_1+\nu,\lambda_2+\nu}=0,$$

and therefore, the relation holds. This concludes the proof of Proposition 8.

Bibliography

- [1] Roger Carter. Lie Algebras of Finite and Affine Type. Cambridge University Press, 2005.
- [2] Vyjayanthi Chari, Justin Davis, and Ryan Moruzzi Jr. Generalized Demazure Modules and Prime representations in Type D_n . November 2019.
- [3] Vyjayanthi Chari and R. Venkatesh. Demazure Modules, Fusion Products and Q-Systems. Communications in Mathematical Physics, October 2014.
- [4] Justin Sean 'Tore Davis. Generalized Demazure Modules with Level Two Filtrations. PhD thesis, UC Riverside, 2020.
- [5] Ghislain Fourier and Deniz Kus. Demazure modules and Weyl modules: The twisted current case. Trans. Amer. Math. Soc. 365 (2013). no.11. 6037-6064, August 2011.
- [6] Ghislain Fourier and Peter Littelmann. Weyl modules, Demazure modules, KRmodules, crystals, fusion products and limit constructions. Adv. Math. 211 (2007), no. 2, 566–593, 2007.
- [7] Brian Hall. Lie Groups, Lie Algebras, and Representations: An Elementary Introduction. Springer, 2015.
- [8] James E. Humphreys. Introduction to Lie Algebras and Representation Theory. Springer-Verlag, 1972.
- [9] Victor G. Kac. Infinite Dimensional Lie algebras. Cambridge University Press, 1990.
- [10] Deniz Kus and R. Venkatesh. Twisted Demazure modules, fusion product decomposition and twisted Q-systems. *Represent. Theory 20 (2016)*, 94-127, September 2014.
- [11] Katsuyuki Naoi. Weyl modules, Demazure modules and finite crystals for non-simply laced type. Adv. Math. 229 (2012), no.2, 875–934., 2012.