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ABSTRACT OF THE DISSERTATION 

 

Customization of Path and Site Response Components of Global Ground Motion Models for 

Application in Sacramento-San Joaquin Delta Region of California 

 

by 

 

Tristan Edward Buckreis 

Doctor of Philosophy in Civil Engineering 

University of California, Los Angeles, 2022 

Professor Scott J. Brandenberg, Co-Chair 

Professor Jonathan P. Stewart, Co-Chair 

 

 

Ground motion models (GMMs) are used to assess seismic demands given parameters descriptive 

of source, path, and site conditions. The current models used in California were developed from a 

global database, and incorporate path and/or site adjustments representing the statewide average. 

My research is concerned with improving ground motion predictions in the Sacramento-San 

Joaquin Delta region of northern California. The Delta is home to vital infrastructure which 

includes over 1,770 km of levees that serve as a conduit for approximately two-thirds of the state’s 

drinking-water supply. As such, levee damage from earthquakes is potentially catastrophic. 

Seismic hazards are controlled mostly by nearby sources, however distant larger sources are also 

impactful. Seismic waves from these sources cross many physiographic provinces to reach the 
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Delta, hence complex path effects deviating from the statewide average are expected. Furthermore, 

much of the Delta is underlain by soft peaty-organic soils, which are absent from databases used 

to develop global GMMs. These factors can be accounted for by customizing GMMs for the Delta 

subregion, particularly the path and site response components. 

The approach followed in this research was to first develop a California ground motion 

database with particular emphasis on northern California and the Delta subregion. Path effects 

were modeled to allow for different anelastic attenuation in each of nine distinct physiographic 

domains, which has a stronger physical basis than prior cell-specific methods. The regionally 

customized path model was used with the ground motion data to derive observation-based site 

amplification at 36 sites in and around the Delta. Based on those results, I then developed two 

subregional site response models. The first model relates small-strain amplification with the time-

averaged shear wave velocity in the upper 30 m (VS30), and can be applied for all sites in the Delta 

and immediately surrounding areas. The second model incorporates additive terms to the VS30-

based model to account for site resonance effects and additional levels of amplification; the 

independent variables are derived from microtremor horizontal-to-vertical spectral ratios 

(mHVSR). Collectively, these regionally-calibrated models significantly reduce bias and 

variability for ground motion predictions in the Delta region.    
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 Introduction 

CHAPTER 1 

Introduction 

1.1. Motivation of Research 

The Sacramento-San Joaquin Delta region of California – hereafter Delta – is the largest freshwater 

tidal estuary on the west coast of the United States, which provides hydrological conditions well 

suited for the deposition of peaty-organic soils (Drexler 2011). Peat is a unique material in the 

context of geotechnical engineering not only for its problematic characteristics (e.g., low shear 

strength, high compressibility, high water content, etc.) but also for its ability to vary widely 

spatially and temporally (Kazemian et al. 2011). Nonetheless, the Delta region is home to more 

than 1,700 km of levees that serve as a conduit for approximately two-thirds of California’s 

drinking water and protect roughly 700,000 acres of land, much of it below sea level due to peat 

subsidence. 

 Seismic hazards in the Delta region are appreciable, but ground motion prediction is 

complicated by large epistemic uncertainty associated with site response through the deep soft 

soils in the region, including the surficial peats. Such site conditions are well outside of the range 

considered in databases used for ground motion model (GMM) development, including the site 

database developed in the NGA-West2 project (Seyhan et al. 2014). For example, the softest sites 

in that database have 30-m time-averaged shear wave velocities (VS30) of about 150 m/s, whereas 
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many Delta sites have much softer conditions. As a result, NGA-West2 GMMs, and in particular 

their site terms, are not calibrated for the geologic conditions encountered in the Delta.  

A major, but heretofore, untapped resource was available to address the site response 

problem in the Delta – a network of modern ground motion sensors across the Delta and elsewhere 

in California (e.g., Clayton et al. 2013; Kuyuk and Allen 2013; Krischer et al. 2015; Li 2021). 

Moreover, processing tools are coming online that streamline the task of signal processing (e.g., 

Hearne et al. 2019, Ramos-Sepulveda et al. 2023). As a result, substantial amounts of ground 

motion data are now available, often > 100 recordings per event in northern California, albeit 

generally for relatively low shaking amplitudes. To apply this information requires careful 

attention to quality control, storage, and management of data. It has been over a decade since the 

conclusion of the data synthesis component of the NGA-West2 project in 2011, and since that time 

no large-scale efforts were made to assemble and disseminate more recent high-quality ground 

motion data in California.  

While some researchers have taken on the burden of processing and assembling more 

recent data, the majority have not. As a result, most of the source, path, and site models for 

California applications published in recent years (since NGA-West2) are either developed using 

the NGA-West2 dataset, which encompasses a comparatively small parametric range (i.e., fewer 

exceptionally soft/hard sites, fewer near-source observations, etc.), or are potentially developed 

using inconsistent databases (i.e., NGA-West2 in combination with more recent ground motion 

data with less carefully, fully automated processing, and inconsistent metadata assignment 

protocols). As described below, my thesis work and that of several collaborators at UCLA 

addresses this problem, and forms the starting point for the systematic data compilation in the 

pending NGA-West3 project.  
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1.2. Research Objectives and Scope 

The overall objective of the research presented in this dissertation is to develop regionally-

calibrated source, path, and site response models applicable for the unique conditions encountered 

in the Delta region. This involves, assignment of accurate site parameters from geotechnical site 

characterization data, seismic path effects, site response in very soft soils, and a multitude of 

related problems in geotechnical engineering and engineering seismology. The scope of my work 

may be summarized by six items, as follows: 

1. Development of a publically available ground motion database with emphasis on events 

that produced recordings at ground motion recording sites at locations within the Delta 

and the surrounding areas (i.e., northern California). This work benefits the greater 

scientific community by adding to the global database of ground motions for active 

tectonic regions.  

2. Collection and organization of geotechnical site characterization data, such as boring 

logs, cone penetration testing, seismic velocity measurements, and microtremor testing 

for horizontal-to-vertical spectral ratios (mHVSR). All collected data have been made 

available through the velocity profile database (VSPDB; Ahdi et al. 2018). 

3. Based on the data in the VSPDB, development of regionally calibrated proxy-based 

models for assigning site parameters for soft soil sites in the Delta without a seismic 

velocity profile. 

4. Analysis of ground motions to investigate regional path effects and source biases. 

Development of adjusted path terms in GMMs to account for regional variations.  

5. Nonergodic analysis of ground motions to estimate site terms, from which site response 

for linear conditions at locations across the Delta and surrounding areas was derived. 
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Development of regionally-calibrated site response model(s) to capture the main 

attributes of the observed site responses conditional on various site parameters.  

6. Assessment of all produced models with respect to performance and variability, and 

development of regionally-calibrated aleatory variability model(s). Models should 

produce unbiased predictions and reduce uncertainty when compared to ergodic 

models. 

1.3. Organization 

The organization of this dissertation is described as follows: 

Chapter 2 describes the development of a database for ground motion studies. In this 

chapter, I present my data collection effort which was targeted at ground motions in northern 

California. Next, I discuss the assignment of source, site, and distance metadata and the integration 

of several data collection efforts into a centralized Californian dataset. Lastly, I present the 

publically available ground motion relational database (GMDB), tools to transfer data into the 

database, and an online interface to help users access the data. The work related to developing the 

GMDB is described in a paper to be presented at Geo-Congress 2023. 

Chapter 3 focuses on site characterization data to facilitate the assignment of site 

parameters in the Delta. I first describe the collection and synthesis of geotechnical site 

characterization data from publically available sources and field explorations. Then I describe the 

analysis of these data to assign site parameters related to peat thickness, VS30, and mHVSR with 

special attention given to peak features.  

Chapter 4 focuses on subregional path effects in California. I will first introduce relevant 

literature regarding ergodic and nonergodic path models, as well as prior regionalization of 
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California. Next, I describe the subset of ground motion data from the GMDB that was used in my 

study. I outline the residuals analyses and novel modeling approach which was used to investigate 

spatially variable path effects. I also investigated unique source effects attributed to induced 

earthquakes originating in The Geysers region. Lastly, I developed a subregional anelastic path 

model and assessed its performance against an ergodic GMM. Much of the contents of Chapter 4 

are contained in a paper submitted to the Bulletin of the Seismological Society of America (in 

review).  

Chapter 5 presents the empirical study of site response for the Delta subregion which is the 

culmination of my work, and was made possible by efforts presented in Chapters 2 through 4. In 

this chapter, I discuss the subset of ground motion data recorded by seismic instruments in the 

Delta; outline residuals analysis to extract nonergodic site response at each site; and develop 

subregion-specific site amplification and aleatory variability models conditioned on the site 

parameters discussed in Chapter 2. 

Finally, Chapter 6 summarizes the scope and major findings from this study, and provides 

recommendations for future work based on what I have learned throughout my research. 
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 Development of a Ground Motion Relational Database 

CHAPTER 2 

Development of a Ground Motion Relational Database 

2.1. Introduction and Project Motivation 

Several Next-Generation Attenuation (NGA) research programs have developed collections of 

ground motion data and metadata. These projects have considered shallow crustal events in active 

tectonic regions (NGA-West2; Bozorgnia et al. 2014), crustal events in stable continental regions 

(NGA-East; Goulet et al. 2021a), and subduction earthquakes (NGA-Sub; Bozorgnia et al. 2022). 

Each of these programs has developed a uniformly processed dataset of recorded earthquake 

ground motions and associated source, path, and site metadata for use in their respective tectonic 

regimes. The metadata compiled in these projects, while broadly similar, have differences that 

reflect considerations that may be unique for a given tectonic regime; e.g. event-type assignments 

(intraslab, interface, etc.) for subduction zones. The ground motion data are provided as intensity 

measures (e.g., peak metrics and pseudo-spectral acceleration at a specified damping level: PSA) 

in all three datasets, and in most cases, ground motion time series are available for download from 

publicly accessible web sites (https://ngawest2.berkeley.edu/ and 

https://www.risksciences.ucla.edu/nhr3/gmdata).  The NGA datasets are used by researchers to 

develop GMMs and by practicing engineers as part of site-specific hazard characterization studies.  

The NGA-West2 dataset includes a large volume of data from California. The overall 

dataset contains 600 events, 4,151 stations, and 21,539 multi-component recordings (generally 3-

component, but some recordings are missing an individual direction). The California component 

https://ngawest2.berkeley.edu/
https://www.risksciences.ucla.edu/nhr3/gmdata
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of this database consists of 376 events, 1,647 stations, and 15,397 recordings.  A majority of the 

California data are from small magnitude (M < 4.5) events in southern California or near the San 

Francisco Bay Area, with less populated areas having fewer – if any – recordings. Since 

completion of the NGA-West2 data collection efforts in 2011, the amount of seismic 

instrumentation across the state has increased (Kuyuk and Allen 2013), which means that the 

quantity and spatial distribution of data produced from a single event is much greater than a similar 

event included in NGA-West2. The subject of this chapter is a ground motion database (GMDB) 

that has been developed with emphasis on California data that is inclusive of NGA-West2 and 

more recent events. The GMDB has been assembled as a relational database that is publicly 

accessible through an application programming interface (API). The organization of the GMDB is 

similar to that used in NGA-Sub (Mazzoni et al. 2022).  

2.2. Ground Motion Data 

A number of recent studies have developed California ground motion data for events since 2011 

in a consistent manner. These studies include ground motion analysis for the 2019 Ridgecrest 

earthquake sequence (Ahdi et al. 2019) and non-ergodic site response studies to assess site 

response predictability (Wang 2020). These efforts increased the quantity of available ground 

motions in southern California. A key element in my doctoral work is an empirically based site 

response model for the Sacramento-San Joaquin Delta (hereafter Delta) region (discussed in 

Chapter 5), therefore the need existed to assemble additional ground motion data in northern 

California. The following sections describe my data collection effort (which is published as a 

curated dataset on DesignSafe; Buckreis et al. 2022), the integration of available California ground 

motion data into a unified dataset, and development of the relational database itself. 
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2.2.1. Data Selection, Processing, and Distributions 

Ground motion data within the Delta is necessary to facilitate development of the regional site 

response model discussed in Chapter 5. I identified events that occurred between 2011 and 2021 and 

that were recorded by one or more stations within the Delta. Additional screening was performed to 

consider only events with M ≥ 4.0 since spectral shape effects at low M can produce apparent site 

nonlinearities (Stafford et al. 2017), which can complicate the analysis of site terms. Moreover, I 

only considered events within 400 km of the Delta since weak motions beyond this distance may be 

screened out, thereby favoring unusually strong records (introducing bias). The search produced 71 

events with M between 4.0 and 6.5 which were recorded by over 1,309 seismic stations. Figure 

2.1(a) and (b) present maps showing the event and station locations, respectively.  

Raw time-series records for all available stations for each event were obtained from the 

Incorporated Research Institutions for Seismology (IRIS) using the “obspy” package in Python 

(Krischer et al. 2015), and cross-checked against those available from the Center for Engineering 

Strong Motion Data (CESMD) data repository maintained by the California Strong Motion 

Instrumentation Program (CSMIP) (https://www.strongmotioncenter.org/). In the case of some 

Delta stations, records were obtained directly from the seismic network maintained by the California 

Department of Water Resources (DWR) with the assistance of Mike Driller and Nick Novoa. 

Additional screening was performed to remove apparent unreliable and duplicate records which may 

exist due to multiple co-located instruments at a site. In the event of co-located accelerometer and 

seismometer, both recording meaningful signals, I prefer the motion recorded by the seismometer 

unless there is evidence of amplitude clipping, in which the time-series recorded by the 

accelerometer is used.  

https://www.strongmotioncenter.org/
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(a)            (b) 

 

Figure 2.1: (a) Map of earthquake locations and mechanisms – symbol color represents corresponding data collection effort [blue – 

NGA-West2; green Ahdi et al. (2019); red – Wang (2020); and yellow – Buckreis et al. (2022)]; (b) Map of seismic station location – 

symbol color represents if the station was included in NGA-West2 database (blue) or new from one of the three recent collection efforts 

(yellow). 
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Each of the three-component records are processed individually according to standard 

protocols developed during the Pacific Earthquake Engineering Research center (PEER)-NGA 

projects (e.g., Goulet et al 2021b). Signal processing was performed in R (R Core Team 2022), where 

for each component I manually: 

1. Accepted or rejected the raw time-series, 

2. Selected P-wave and S-wave arrival times, 

3. Selected high- and low-pass corner frequencies for filtering, and 

4. Inspected the quality and acceptability of the processed displacement trace, response 

spectrum, and Fourier amplitude spectrum (FAS) results after filtering.  

Task (1) requires that I examine the raw time-series to determine if the record contains a 

meaningful signal. The two extreme cases are: (1) a clean record which has a pronounced 

(earthquake) signal which will be accepted; and (2) a record which appears to be entirely noise (the 

amplitude of the signal does not exceed the noise threshold of the instrument) which will be rejected. 

Records which are not easily identified as clean or noise require windowing via selection of P-wave 

and S-wave arrival times to identify a “noise” and “signal” window, although all records which are 

initially accepted go through this process. The signal-to noise ratio (SNR) of the FAS is utilized to 

objectively assess whether a particular record contains a meaningful signal or not over some 

frequency bandwidth. Frequency bands with corresponding SNR ≥ 3 are deemed to contain 

meaningful signals. The high-pass corner frequency is selected as the lowest frequency with SNR>3 

that adequately reduces low-frequency artifacts from the displacement trace. I did not consider shape 

of the low frequency portion of the FAS when assigning the high-pass corner frequency (e.g., if the 

shape of the FAS was relatively flat for a low-frequency interval above the high-pass frequency, in 
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apparent violation of seismological theory, but the SNR and displacement checks are satisfied, the 

high-pass corner frequency is nonetheless accepted). A low-pass filter was also sometimes applied 

to reduce the effects of noise on short-period spectral accelerations. Ground motion processing is 

highly sensitive to the selection of corner frequencies, therefore the last two tasks which require 

judgement are critical to ensure that the processed ground motions are not under- or over-processed.  

The 71 events produced 9,875 usable three-component records. The distribution of these data 

with respect to M, Joyner-Boore distance [RJB; discussed in Section 2.3.1(c)], and site condition [30 

m time-averaged shear wave velocity - VS30; discussed in Section 2.3.1(b)] is shown in Figure 2.2. 

The dataset, in combination with Ahdi et al. (2019) and Wang (2020), significantly expands the 

number of records for events with 4 < M < 5 and for soft soil sites (VS30 < 300 m/s). Figure 2.3 

presents the number of usable horizontal ground motions per period defined as T < 1/(1.25fcHP), 

where fcHP is the greater of the two horizontal high-pass corner frequencies selected during signal 

processing. The recently added data has a more rapid rate of decay of number of usable records with 

period for T > 10 sec than the NGA-West2 data. This likely results from the relatively small 

magnitudes of the recent data, which produce much less long-period energy. The reduced long-

period energy increases the likelihood that records will be noise-dominated at these long periods. 
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Figure 2.2: Data distributions for NGA-West2 (blue), Ahdi et al. (2019) (green), Wang (2020) 

additions (red), and Buckreis et al. (2022) additions (yellow) datasets. 

 

 

Figure 2.3: Number of usable ground motions per period. 
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2.2.2. Intensity Measure Calculations 

Intensity measures (IMs) are parameters computed from ground motions and are used quantify 

certain attributes. NGA-West2 included peak IMs such as peak ground acceleration (PGA) and peak 

ground velocity (PGV), as well as 5% damped PSA for 111 oscillator periods between 0.01 s and 20 

s. NGA-Sub and NGA-East expanded the selection of IMs to include Arias intensity (IA; Arias 1970), 

times corresponding to select percentiles of IA used to facilitate calculation of significant durations 

(IA-times), and FAS. Other commonly used IMs include the cumulative absolute velocity (CAV; 

EPRI 1988) and standardized CAV (CAV5).  

All IMs excluding FAS are calculated for individual components (two orthogonal-horizontal 

and one vertical) as well as the combined horizontal minimum-, median-, and maximum-component 

(RotD00, RotD50, and RotD100, respectively) defined by Boore (2010). PGA, PGV, PSA, IA, and 

IA-times are obtained using the “RCTC” package in R (Wang et al. 2017). The orientation-

independent horizontal component FAS (effective amplitude spectra; EAS) as defined by Kottke et 

al. (2021) is calculated using Python routines consistent with Kottke (2020).  

2.3. Ground Motion Metadata 

The ground motion data discussed in the previous section do not provide significant utility on their 

own. Parameters which describe the source, site, and path attributes associated with each 

individual ground motion are therefore required for model development and for use as additional 

screening criteria in forward applications. This section presents the metadata sources, methods, 

and routines used to assign ground motion metadata, which includes resolving differences between 

data from distinct datasets.  
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2.3.1. Assignment of Parameters 

(a) Source Parameters 

Earthquake-source parameters include origin date and time, hypocenter coordinates (longitude, 

latitude, and depth), seismic moment and moment magnitude (M), and nodal plane solution (strike, 

dip, and rake). These data are taken from the Global Centroid Moment Tensor (CMT) project 

(Ekström et al. 2012), the National Earthquake Information Center (NEIC) at the United States 

Geological Survey (USGS) or the Northern California Earthquake Data Center (NCEDC) housed at 

UC Berkeley. CMT origin times, M, and nodal plane solutions are preferred because they are derived 

using global recordings that average out radiation pattern variability and provide between-region 

consistency. CMT hypocenter coordinates are not preferred because the solution corresponds to the 

center of the earthquake moment distribution in time and space (Ekström et al. 2012), which may 

not align well with the location of the initial slip. Therefore, the preferred location as reported by the 

Advanced National Seismic System (ANSS) Comprehensive Earthquake Catalog (ComCat) is used 

(generally the NCEDC solution). The CMT did not contain data for 50 out of the 71 new events, in 

which case the preferred origin solution (i.e., time, M, and nodal plane solutions) as reported by the 

ANNS ComCat were adopted. Faulting mechanisms are assigned based on rake angle relationships 

given in Ancheta et al. (2013). 

Parameters that describe the fault rupture surface as one or more rectangles (upper-left corner 

coordinates and dimensional length and width) are necessary to calculate source-to-site distances 

described in Section 2.3.1(c). All 71 events I collected data for do not have available finite-fault 

models in literature, therefore the simulation procedure described in Contreras et al. (2022) was 

performed for all 71 events using the CCLD5 program to obtain rupture surface parameters. When 
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simulating ruptures for events near the plate boundary region I used only the nodal plane orientation 

parallel to the San Andreas Fault, otherwise simulations were ran using both nodal plane solutions. 

Appropriate models for rupture area and aspect ratio given M are selected by CCLD5 by specifying 

the tectonic regime (i.e., shallow crustal). 

(b) Site Parameters 

Site parameters include location (latitude, longitude, elevation, and depth), topographic slope, terrain 

class, surficial geological unit, VS30, and depth parameters z1.0 and z2.5 which represent depths to a 

shear wave velocity (VS) of 1.0 and 2.5 km/s, respectively. Locations of each station were compared 

between those obtained from IRIS, NCEDC, CESMD, and the Southern California Earthquake Data 

Center (SCEDC) housed at Caltech, as available. For nearly all stations, locations agreed well and 

data from the catalog with the most significant digits was adopted. Stations with contradicting 

locations were handled on a case-by-case basis.  

Coordinates were used in GIS software to assign terrain class (Iwahashi and Pike 2007) and 

calculate topographic slope using 3 arc-sec resolution digital elevation maps. Geological units for 

sites within California were assigned from Wills et al. (2015), while sites in Oregon, Nevada, and 

Utah were assigned units from local geologic maps (Ludington et al. 2005; Rowley et al. 2006; Biek 

et al. 2010; and Smith and Roe 2015). 

VS30 values were assigned according to the following hierarchy: 

1. Computed from a nearby measured VS profile to a depth (zp) of at least 30 m. 
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2. Estimated using the extrapolation relationship of Boore (2004) with California-specific 

regression coefficients from Kwak et al. (2017a) when a nearby shallow measured VS 

profile exists (zp < 30 m). 

3. Estimated using regional VS30 proxy-based relationships (e.g., peat-thickness proxy 

model for sites located in the Delta, described in Section 3.3.2a). 

4. Estimated using a weighted combination of kriging-interpolated (Thompson 2018), slope 

(Wald and Allen 2007), terrain (Yong et al. 2012), and/or geology based proxy models 

as described in Wang (2020).  

Geology-based VS30 proxy models exist for California (Wills et al. 2015), Oregon (Ahdi et 

al. 2017), and Utah (McDonald and Ashland 2008), however no models are published for Nevada, 

where a significant number of new sites are located. Given the relative proximity of most Nevada 

sites to California, I felt it would be acceptable to relate geologic units given by Ludington et al. 

(2005) to counterparts in Wills et al. (2015) so that geology-based VS30 estimates could be 

considered. Table 2.1 summarizes these mappings, and Figures 2.4 through 2.6 present maps 

illustrating their spatial distributions. As observed in Figures 2.4 through 2.6, there is good 

agreement at the border between California and Nevada for respective units, which suggests that the 

mappings presented in Table 2.1are appropriate since geologic properties are not expected to change 

based on governmental borders. 
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Table 2.1: Summary of mapping Ludington et al. (2005) geologic units to Wills et al. (2015) geologic units. 

Wills et al. (2015) Ludington et al. (2005) 

Geologic 

Unit 
𝑽𝑺𝟑𝟎 (m/s) Description 

Geologic 

Unit 
Description 

Xtaline 710.1 ± 393.8 

Crystalline rocks, 

including Cretaceous 

granitic rocks, 

Jurassic metamorphic 

rocks, schist, and 

Precambrian gneiss. 

CZq 

Quartzite and minor amounts of conglomerate, phyllitic siltstone, limestone, 

and dolomite. Includes Prospect Mountain Quartzite, Osgood Mountain 

Quartzite, and Gold Hill Formation in northern Nevada, and Stirling Quartzite, 

Wood Canyon Formation, and Zabriskie Quartzite in southern Nevada. 

CZs 

Phyllitic siltstone, quartzite, and lesser amounts of limestone and dolomite. 

Includes Reed Dolomite; Deep Spring, Campito, Poleta, Harkless, and Saline 

Valley Formations; and Mule Spring Limestone 

Kgr Granitic rocks. Mostly quartz monzonite and granodiorite 

KJim 

Igneous and metamorphic complex. Pegmatitic granite and other granitic rocks 

complexly intermixed with metasedimentary rocks. Considered to be Mesozoic 

igneous complex intruding lower Paleozoic and possibly Precambrian Z 

sedimentary rocks. Grades into units shown on map as lower Paleozoic. Ruby 

Mountains and East Humboldt Range, Elko County 

MZgr 
Granitic rocks, western Nevada (Mesozoic). Mostly quartz monzonite and 

granodiorite. Inconclusively dated or not dated radiometrically 

PMh 

Havallah sequence of Silberling and Roberts (1962). Chert, argillite, shale, 

greenstone, and minor amounts of siltstone, sandstone, conglomerate, and 

limestone. Includes Schoonover Formation of Fagan (1962) and Reservation 

Hill Formation in Elko County, Farrel Canyon Formation in southwestern 

Humboldt County, Havallah and Pumpernickel Formations in Pershing, 

Lander, and parts of Humboldt Counties, and rocks originally considered a part 

of the Pablo and Excelsior Formations in northern Nye, northern Esmeralda, 

and southern Mineral Counties. Assignment of some rocks to the Havallah 

sequence in the East Range, Pershing County, is highly uncertain. Includes 

rocks ranging in age from Late Mississippian to Early Permian 

Xm 
Metamorphic rocks. Gneiss and schist and lesser amounts of gneissic granite, 

pyroxenite, hornblendite, migmatite, pegmatite, and marble. 

Zw 
Wyman formation. Phyllite and phyllitic siltstone and minor amounts of 

limestone, dolomite, and sandstone 
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Wills et al. (2015) Ludington et al. (2005) 

Geologic 

Unit 
𝑽𝑺𝟑𝟎 (m/s) Description 

Geologic 

Unit 
Description 

Qal1 228.2 ± 48.0 

Quaternary 

(Holocene) alluvium 

in areas of very low 

slopes (less than 

0.5%) 

Qa† Alluvial deposits. Locally includes beach and sand dune deposits 

Qal2 293.5 ± 73.5 

Quaternary 

(Holocene) alluvium 

in areas of moderate 

slopes (0.5 - 2.0%) 

Qp† Playa, marsh, and alluvial-flat deposits, locally eroded. 

Qal3 351.9 ± 112.2 

Quaternary 

(Holocene) alluvium 

in areas of steep 

slopes (greater than 

2%) 

Qoa 386.6 ± 145.1 

Quaternary 

(Pleistocene) 

alluvium 

QToa Older alluvial deposits. 

Tv 518.9 ± 172.0 

Tertiary volcanic 

units including the 

Conejo Volcanics in 

the Santa Monica 

Mountains and the 

Leona Rhyolite in the 

East Bay Hills. 

Ta2 Andesite and related rocks of intermediate composition. Flows and breccias 

Ta3 Andesite and related rocks of intermediate composition. Flows and breccias 

Tb Basalt flows. 

Tba 

Andesite and basalt flows. Mostly in about 17 to about 6 m.y. age range. In 

Humboldt County, locally includes rocks as old as 21 m.y. May include rocks 

younger than 6 m.y. in places 

Tgr Granitic rocks. Mostly quartz monzonite and granodiorite 

Tt2 
Welded and nonwelded silicic ash-flow tuffs. Locally includes thin units of air-

fall tuff and sedimentary rock 

Tt3 
Welded and nonwelded silicic ash-flow tuffs. Locally includes thin units of air-

fall tuff and sedimentary rock 
†   Calculate topographic slope to correctly map to Wills et al. (2015) “Qal” unit.
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Figure 2.4: Spatial distribution of Nevada geologic units mapped as “Tv” in Wills et al. (2015). Inset maps illustrate good agreement 

of geologic unit across the state border. 
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Figure 2.5: Spatial distribution of Nevada geologic units mapped as “Xtaline” in Wills et al. (2015). Inset maps illustrate good agreement 

of geologic unit across the state border.  



 

21 

 

 

Figure 2.6: Spatial distribution of Nevada geologic units mapped as “Qal1”, “Qal2”, and “Qal3” in Wills et al. (2015). Inset maps 

illustrate good agreement of geologic unit across the state border. 
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Basin depth parameters (z1.0 and z2.5) were obtained from the most recently published 

California seismic velocity models (Lee et al. 2014; Shaw et al. 2015; Chen and Lee 2017; and 

Aagaard and Hirakawa 2021). Sites located within the modeled domain of more than one model are 

assigned multiple depth values for each depth term. 

(c) Distance Parameters 

Site-to-source distances are calculated using the P4CF routine which considers the rupture 

representations described in Section 2.3.1(a) and station coordinates. Details of the routine are 

described in Contreras et al. (2020). The recorded distance metrics include the closest distance from 

the site to any point on the rupture surface (RRUP), closest distance from the site to any point on the 

surface projection of the rupture surface (RJB), distance measured perpendicular to the fault strike 

from the surface projection of the top edge of the rupture surface (Rx), distance measured parallel to 

the fault strike from the midpoint of the surface projection of the rupture surface (Ry), the root-mean-

square distance (Rrms), the epicentral distance (Repi), and the hypocentral distance (Rhyp).  

2.3.2. Integration of Ground Motion Data from Different Collection Efforts 

The ground motion datasets of NGA-West2, Ahdi et al. (2019), Wang (2020), and Buckreis et al. 

(2022) contain similar fields, however significant effort was needed to integrate them into a unified 

dataset. The number of usable records available at a site is a principal consideration in determining 

whether or not a site-specific ground motion study is feasible. Therefore, mapping records to their 

appropriate seismic station across datasets is vital to integrating the separate collection efforts.  

The recent datasets [Ahdi et al. (2019), Wang (2020), and Buckreis et al. (2022)] were 

coordinated in such a manner that stations could easily be matched by their unique network and 
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station code combinations, however no network information was recorded in NGA-West2 and many 

station codes were not populated. Furthermore, station coordinates may be rounded and/or their 

precision truncated. Manual screening of the more than 2,754 seismic stations is not practical, 

therefore a semi-automated procedure was developed to reduce the number of stations requiring 

manual inspection.  

Station codes, names, and coordinates represent a combination of metadata that should be 

unique to a given station. Under this premise, we can first identify potential matches by computing 

distances between pairs of stations using coordinate information from two separate datasets. Pairs 

which are relatively close (within 1 km or 0.01o in coordinate precision) may be a match and require 

further screening, however stations with no other nearby stations in the separate dataset are deemed 

to be distinct. During the second screening, pairs of station codes and names are compared using 

fuzzy logic. Fuzzy logic deals with approximate reasoning by assigning logic values ranging from 

zero to one, which represent completely false or completely true, respectively (Zadeh 1988). “Fuzzy 

string matching” is an application of fuzzy logic with the goal of identifying strings that 

approximately match a pattern. Using the “fuzzywuzzy” package in Python (Inc 2014), this approach 

assigns similarity scores to pairs of station codes and names for the potential matches. A normalized 

aggregate score is computed as the sum of individual scores divided by two, and represents the 

degree to which two stations can be considered a match.  

Stations with normalized aggregate scores equal to one are interpreted to be perfect matches, 

however these are rare.  Relatively large aggregate scores (> 0.85) generally correspond to matching 

stations, and are flagged as such after a quick review. Pairs with low aggregate scores (< 0.15) and 

large in-between distance (> 0.5 km or 0.005o in coordinate precision) are separated, and any stations 
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which do not have another potential match with corresponding aggregate score greater than 0.15 are 

considered distinct. The number of remaining pairs of potential matches is manageable, and as such 

are sorted by aggregate scores in descending order and screened manually. Using this approach, 

2,754 seismic stations were deemed to be unique after unifying the four datasets, the locations of 

which are presented in Figure 2.1(b).  

In addition to unifying the station metadata, I update site parameters for all stations in a 

consistent manner as that described in Section 2.3.1(b). Given the recent efforts to make measured 

VS profiles available (e.g., Ahdi et al. 2018), VS30 values for many NGA-West2 stations have been 

updated. NGA-West2 formally had 391 sites in CA with VS30 computed from a measured VS profile, 

however the updated CA GMDB contains 651 sites with computed VS30 values (i.e., “measured”). 

Distributions of measured and inferred VS30 values are shown in Figure 2.7 for NGA-West2 and the 

unified California dataset (referred to as “CA GMDB”). The extremes of the VS30 distributions (<200 

m/s and >700 m/s) are dominated by sites with measured data.  

 



 

25 

 

 

Figure 2.7: Distribution of measured (yellow) and inferred (blue) VS30 values for NGA-West2 

(left) and unified dataset (right). Insets show expanded views of distribution tails. 

 

In addition to screening for duplicate stations, the aforementioned approach was adapted to 

help assign networks (and their associated network codes) to the majority of NGA-West2 California 

stations. The motivation for this effort arose from the fact that it is easier to screen for duplicate 

stations based on their unique network and station code combinations, and that this process will need 

to be undertaken each time new data is added. I set out to assign networks to the remaining NGA-

West2 California stations by comparing NGA-West2 station metadata to all available California 

stations downloaded from IRIS, NCEDC, SCEDC, and CESMD. I was able to identify the 

corresponding networks from the available metadata for all but 94 of the 1,647 stations, of which I 

suspect most to be decommissioned. 

Unifying the event-related fields is trivial in comparison to that required for the stations. The 

number of events is of manageable size, and the unique origin information (date, time, and location) 

is sufficient enough to manually screen for event matches. Unsurprisingly, no event conflicts were 
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identified between the four datasets, and the locations of 479 unique events are presented in Figure 

2.1(a). Event metadata were adopted as those recorded in each dataset.  

Now that the datasets have been methodically unified, I assign new unique identifiers to each 

earthquake, station, and ground motion record which I refer to as event_id’s, station_id’s, and 

motion_id’s, respectively. The unified California dataset is made up of 33,370 ground motions, 

which is more than double the size of the California NGA-West2 subset.  

2.4. Relational Database 

NGA-West2 and NGA-East were managed as large spreadsheet files, while NGA-Sub was 

organized as a relational database hosted and managed on a local PC (e.g., Mazzoni et al. 2022). 

Products from all three NGA databases were published as a series of spreadsheet files referred to 

as flatfiles. The objective of the work presented here is to develop a web-served publicly accessible 

relational database that users can query. Motivation for a web-served relational database is driven 

by four factors: 

1. The spreadsheet flatfiles have become rather large and unwieldy as the amount of data 

has grown; 

2. Users often desire specific fields of data that can be accessed by targeted queries rather 

than having to download undesired data with the desired data;  

3. Database queries are generally significantly faster than file input/output operations 

since relational databases are stored in a combination of random access memory and 

disk space; and 
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4.  The relational structure reduces the potential for inconsistent metadata (e.g., different 

site parameters for different recordings made at the same site). 

The relational database is created using the Structured Query Language (SQL) database 

format utilizing the MySQL InnoDB storage engine, which balances reliability and performance. 

This management system allows for fields to have predefined data types which include numeric 

(e.g., “INT”, “FLOAT”, etc.), temporal (e.g., “DATE” and “DATETIME”), or string types (e.g., 

“VARCHAR”, “MEDIUMTEXT”, etc.), which helps to ensure data integrity by only allowing 

entries conforming to valid data types. Furthermore, tables are arranged on the server to optimize 

queries based on table relationships defined by shared fields called “keys”. A primary key denotes 

a unique identifier for each table entry, and a foreign key is a field in a separate table that identifies 

the corresponding entry from the table where it is the primary key. Since it is most efficient to 

query integer values in SQL, keys are defined as unique integer numbers. This section describes 

the database structure, reasoning for organization methods, the methods used to prepare data for 

integration into the database, and other elements developed to help users access the data.  

2.4.1. Database Structure 

Querying the database requires knowledge of the schema, which describes the tables, 

fields, and relationships among the many tables in the database. One advantage of a relational 

schema is that it can easily accommodate changes and additions over time as warranted. This is 

beneficial because future research will likely include additional information which we do not 

currently store, but simple alterations could be made to accommodate the data. The current GMDB 

schema is a result of extensive discussion among the project team members, and is comprised of 

25 distinct tables. A list of table names is provided in Table 2.2, which are grouped into five 
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categories: event tables, station-site tables, ground motion metadata, ground motion data, and 

auxiliary information. A simplified diagram describing the full schema is presented in Figure 2.8. 

The following subsections discuss each category in detail. 

 

Table 2.2: List of table names in GMDB schema. 

Group Type Table Name Number of Fields 

Event Tables 

event_type 2 

event 28 

finite_fault 8 

finite_fault_seg 11 

finite_fault_kinematic_parameter 10 

aftershock_mainshock 4 

event_eqid 4 

Station-Site Tables 

network 8 

station 10 

site 20 

vs30_code 3 

basin_model 4 

basin_site 5 

station_ssn 4 

Ground Motion Metadata 
motion 30 

collection_motion 4 

Ground Motion Data 

component 3 

response_spectra 5 

fourier_spectra 7 

intensity_measure 9 

time_series_metadata 16 

time_series_data 3 

Auxiliary Information 

collection 4 

geometry 7 

user 6 
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Figure 2.8: Diagram of simplified schema including primary and foreign key relationships; event tables colored red; station-site tables 

colored green; ground motion metadata tables colored blue; ground motion data tables colored yellow; and auxiliary information tables 

colored gray. 
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(a) Event Tables 

Event metadata are any information related to characterizing an earthquake, such that that discussed 

in Section 2.3.1(a), and are organized into seven tables: event, finite_fault, finite_fault_segment, 

finite_fault_kinematic_parameter, aftershock_mainshock, event_type, and event_eqid.  Figure 2.9 

presents the detailed fields, their data types, and key relationships between event tables in the 

GMDB.  

 

 

Figure 2.9: Detailed fields and datatypes for event tables. 
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The event table stores the most common earthquake related metadata, with event_id serving 

as the primary key. In addition to source parameters, the event table also records the unique ID 

assigned by the ANSS ComCat in the comcat_id field. All numeric fields are stored as “FLOAT” 

data types, and descriptive fields including event_name, magnitude_type, and comcat_id are stored 

as “VARCHAR” string objects (this extends to all other tables). Longitude and latitude fields are 

stored as “FLOAT(8,5)” datatypes, which preserves up to five significant digits after the decimal 

point (approximately 1.11 m resolution, although event locations are typically reported with three 

significant digits after the decimal point). Origin times are stored as “DATETIME” objects in the 

datetime field which allows the use of time operations to easily and efficiently construct queries with 

temporal constraints. Faulting mechanisms are assigned based on rake angle relationships defined 

in Ancheta et al. (2013) in the mechanism_based_on_rake field, and the presence of surface rupture 

is stored as a binary indicator (0 = “no” or 1 = “yes”) in the coseismic_surface_rupture field. The 

mechanism_based_on_rake, magnitude_uncertainty_study_class, basis_for_surface_rupture, and 

extensional_regime fields are stored as integer-valued codes to facilitate efficient querying, the 

definitions of which are provided in Tables 2.3 – 2.6. 

 

Table 2.3: Integer definitions for mechanism_based_on_rake, adopted from Ancheta et al. (2013). 

Code Mechanism Criteria Based on Rake (𝝀) 

0 Strike-Slip 

-180o < 𝜆 < -150o 

-30o < 𝜆 < 30o 

150o < 𝜆 < 180o 

1 Normal -120o < 𝜆 < -60o 

2 Reverse 60o < 𝜆 < 120o 

3 Reverse – Oblique 
30o < 𝜆 < 60o 

120o < 𝜆 < 150o 

4 Normal – Oblique 
-150o < 𝜆 < -120o 

-60o < 𝜆 < -30o 
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Table 2.4: Integer definitions for magnitude_uncertainty_study_class, adopted from Ancheta et 

al. (2013). 

Code Magnitude Uncertainty Class Description 

1 Recent events well studied 

2 Older events well studied, or recent events not well studied 

3 Older events not well studied 

 

Table 2.5: Integer definitions for basis_for_surface_rupture, adopted from Ancheta et al. (2013). 

Code 
Ancheta et al. 

(2013) 
Magnitude Uncertainty Class Description 

1 sfdoc 
Reference documents the presence or absence or surface 

faulting 

2 sfdis Surface faulting discussed in references 

3 locdis Location of earthquake discussed in references 

4 M<6 M < 6, likelihood of existence of surface rupture is small 

5 M~6 M ≈ 6, likelihood of existence of surface rupture is small 

6 M>7 M ≥ 7, likelihood of existence of surface rupture is large 

 

Table 2.6: Integer definitions for extensional_regime, adopted from Ancheta et al. (2013). 

Code Extensional Regime Description 

0 No 

1 Yes 

2 Convergent 

3 Transform 

 

Rupture surface representations and associated data for each event are stored in the 

finite_fault, finite_fault_segment, and finite_fault_kinematic_parameter tables. The finite_fault 

table stores general rupture surface information including the total length (fault_length), width 

(fault_width), area (fault_area), and depth to top of the rupture model (ztor), as well as an integer 

field (ffm_model) which takes the value of “1” if the representation is derived from a published 
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finite-fault model, or “0” if the rupture surface is simulated using the procedure described in 

Contreras et al. (2022). The finite_fault table is connected to the event table via the event_id foreign 

key. Although it is possible for several finite-fault model representations to exist for a single event, 

the GMDB only records information derived from the preferred model as selected using the 

approach described in Contreras et al. (2022). The location and geometric properties of each 

rupture surface are stored in the finite_fault_segment table, and are linked to the finite_fault table 

via the finite_fault_id foreign key. Fault ruptures may be represented by multiple segments, 

therefore the finite_fault_id foreign key represents a “one-to-many” relationship, meaning that one 

finite_fault entry can be related to multiple finite_fault_segment entries. Kinematic parameters 

including average fault displacement, average slip velocity, percent moment release in the top 5 

km of crust, and more are stored in the finite_fault_kinematic_parameter table for events with 

published finite-fault models. 

The aftershock_mainshock table stores data which can be used to identify aftershocks that 

re-rupture the mainshock fault plane or occur within the damaged zone within a time window for 

aftershocks (i.e., “Class 2” events). Class 2 events have been postulated to produce systematically 

lower event terms when compared to “Class 1” events (mainshocks, foreshocks, triggered events, 

and off-plane aftershocks) (Ancheta et al. 2013; Boore et al. 2014). The table functions as a 

junction table between two events in the event table, where aftershock_id corresponds to the 

event_id of the aftershock and mainshock_id is the event_id of the corresponding mainshock. The 

shortest distance between the surface projection of the centroid of the rupture surface of the trial 

event and the closest point on the edge of the surface projection of the mainshock rupture surface 

(CRJB) is stored in the crjb field. Only pairs of events which occur within the Gardner and Knopoff 

(1974) time window are considered, all others are assumed to be Class 1. Users distinguish Class 
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1 and Class 2 events in the aftershock_mainshock table by comparing CRJB to a specified threshold 

distance of their choosing (e.g., CRJB < 15 km suggests Class 2; Ancheta et al. 2013).  

The broader motivation behind the GMDB goes beyond developing a unified relational 

database for California ground motions – indeed, the aim is to include ground motions from all 

tectonic regimes within a uniform framework. This is different from past NGA projects, which 

have separated ground motion data based on tectonic regime, which results in three separate and 

distinct databases:  

1. NGA-West 2 for shallow crustal earthquakes (Bozorgnia et al. 2014). 

2. NGA-Sub for subduction-type earthquakes (Bozorgnia et al. 2022). 

3. NGA-East for stable continental earthquakes (Goulet et al. 2021a). 

As a result of these databases having been developed separately, there is no centralized resource 

that users can query for uniformly processed ground motion data with consistently developed 

metadata fields. The reasoning which led to this decision was likely based on the truth that different 

phenomena are responsible for causing each of the three types of events, therefore they should be 

modeled separately. However, there are regions of the world that experience earthquakes of more 

than one type (e.g., Alaska, Japan, New Zealand, and California), and querying from multiple non-

unified databases may result in data inconsistencies during model development or forward 

applications.  

Modeling the effects of different earthquake types requires that the data be partitioned 

based on type, however there is no requirement that the data be organized and stored separately. 

We introduce an event_type table linked to the event table through the event_type_id foreign key 

as a means to identify the type of earthquake, which represents a “one-to-one” relationship 
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meaning that a given event can only have one event type. This way, all ground motion data from 

around the world can be integrated into the GMDB, and users can query from a centralized 

databased to obtain consistent metadata. This is a long term goal, however as of writing the GMDB 

only contains ground motion data from around CA and central and eastern North America 

(CENA). Table 2.7 presents the current event_type table.  

 

Table 2.7: Current GMDB event_type table. 

event_type_id event_type 

1 Shallow Crustal 

2 Interface 

3 Intraslab 

4 Outer-rise 

5 Induced 

6 Undetermined 

7 Stable Continental 

 

The “earthquake ID” (EQID) assigned to events in NGA products are not adopted as 

event_id’s in the GMDB because NGA-West2 and NGA-East each started their assignments at 

“1”. We assign unique event_id’s in the event table to ensure that the primary keys are unique, 

however users may wish to search the GMDB using familiar EQID’s assigned by individual 

collection efforts unified in the GMDB (e.g., NGA-West2, NGA-East, etc.). The event_eqid table 

provides this mapping through four fields: (1) event_eqid_id which acts as the primary key, (2) 

event_id  foreign key linked to the event table, (3) collection_id foreign key linked to the collection 

table [discussed in Section 2.4.1(e)], and (4) eqid which records the EQID assigned by the 

individual collection (e.g., NGA-West2). The relationships of event_eqid_id to collection_id and 
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event_id are both “one-to-many” relationships meaning that a given event_id can only have one 

EQID for a given collection_id, however individual event_id’s may appear numerous times in 

event_eqid if they exists in multiple collections.   

(b) Station-Site Tables 

Station-site metadata are any information related to the seismic station, network or site 

characterization, and are organized into seven tables: network, station, site, vs30_code, 

basin_model, basin_site, and station_ssn. Figure 2.10 presents the detailed fields, their data types, 

and key relationships between station-site tables in the GMDB. Within the context of the database, 

“station” refers to a particular instrument which provides the ground motion record and “site” 

refers to the physical location of the recording.  

The network and station tables together contain information about the recording 

instrument. The network table stores metadata about seismic networks including their name, 

network code, operator (operation_org), and operating dates (start_date and end_date) assigned 

by the International Federation of Digital Seismograph Networks (FDSN). The network_id is used 

as a foreign key in the station table, which contains information about individual stations including 

the name, station code, housing, depth, and location (station_latitude, station_longitude, and 

station_elevation). The housing field describes the instrument structure type, for which we adopt 

the GMX first letter codes summarized in Table 2.8. The primary key in the station table is 

station_id. 
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Figure 2.10: Detailed fields and datatypes for station-site tables.
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Table 2.8: GMX first letter code descriptions, adopted from Ancheta et al. (2013). 

GMX First Letter Instrument Structure Type 

A 
One-story structure of lightweight construction. Instrument is located at the lowest level and within several 

feet of the ground surface. 

A,B 

Small generally lightweight structure for which we cannot determine the number of stories from the available 

information. These sites generally have COSMOS site code 4 which defines a reference station described as 

either a 1- or 2-story, small, light building. 

B 
Two- to four-story structure of lightweight construction, or very large tall one-story warehouse-type building. 

Instrument is located at the lowest level and within several feet of the ground surface. 

C 
One- to four-story structure of lightweight construction. Instrument is located at the lowest level in a basement 

and below the ground surface. 

D 
Five or more story structure of heavy construction. Instrument is located at the lowest level and within several 

feet of the ground surface. 

E 
Five or more story structure of heavy construction. Instrument is located at the lowest level in a basement and 

below the ground surface. 

F 

Structure housing instrument is buried below the ground surface about 1-2m, at a shallow depth. e.g., tunnel 

or seismic value but shallow embedment. (use 'T' for deeper embedment or 'V' for deeply embedded vaults, 

both not considered 'free-field') 

G Structure of light or heavyweight construction, instrument not a lowest level. 

H Dam either earth or concrete (station at toe of embankment or on abutment) 

I 
Free-field instrument or instrument shelter. Instrument is located at or within several feet of the ground surface, 

and not adjacent to any structure. 

I,F 
These sites generally have COSMOS site code 3 for which the sensors have been buried/set in ground at 

shallow or near surface depths. 

J Concrete Dam structural instrumentation. 

K 
Near a one-story structure of lightweight construction. Instrument is located outside on the ground surface, 

within approximately 3 m from the structure. 

L 
Near a two- to four-story structure. Instrument is located outside on the ground surface, within approximately 

6 m of the structure. 

M 
Near a two- to four-story structure with basement. Instrument is located outside on the ground surface, within 

approximately 6 m of the structure. 
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GMX First Letter Instrument Structure Type 

N 
Near a five- to eight-story structure. Instrument is located outside on the ground surface, within approximately 

10 m of the structure. 

O 
Near a five- to eight-story structure with a basement. Instrument is located outside on the ground surface, 

within approximately 10 m of the structure. 

P Castle of masonry construction, massive 1-3 stories. 

Q Associated with a structure, size of structure is not known. 

S Associated with a structure and in the basement, size of structure is not known. 

T Associated with a deep tunnel. 

U On an embankment between two roads and retaining walls. 

V Deeply embedded seismic vault. 

W Structural response. 

Z At depth in borehole or missile silo. 
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The site table contains metadata related to the physical attributes of the recording location 

such as geologic and topographic information. Latitude, longitude, and elevation are also assigned 

to the site (i.e., site_latitude, site_longitude, and site_elevation), which are used to populate other 

metadata fields from published maps. Sites are assigned to stations through the site_id foreign key 

in the station table, which is a one-to-many relationship. Most sites have only been inhabited by 

one station, so site location is usually the same as station location, however this is not always the 

case. For example, a vertical array consists of two or more instruments installed at different depths, 

and the latitude and longitude may be identical or very similar, while elevations will differ. For all 

intents and purposes, stations within a vertical array are located at the same site. Moreover, a 

temporarily deployed station may be decommissioned and replaced by one maintained by a 

permanent network, in which case the new station will be assign to the existing site. Instruments 

in dense arrays, where intra-instrument spacing may be as little as 10 m (e.g., Borrego Valley 

Differential Array), are assigned unique station_id’s and site_id’s because geologic conditions 

may vary considerably over relatively short distances. 

The site table also records the preferred VS30 value recommended for analysis. The 

preferred VS30 value is that which best reflects the median estimate as obtained through agreed 

upon protocols that have evolved over time (e.g., Chiou et al. 2008; Ancheta al. 2014; Wang 2020; 

Ahdi et al. 2022). As discussed in Section 2.3.1(b), VS30 may be computed from a measured VS 

profile or estimated from proxy-based models. The site table includes vs30_code_id and vs30_ref 

fields to record this type of information. An integer valued primary key is assigned to each method 

discussed in Section 2.3.1(b) in the vs30_code table, which is used to populate the vs30_code_id 

field. Current methods and their corresponding integer values are summarized in Table 2.9. The 
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vs30_lnstd field records the uncertainty associated with the preferred VS30 value. The vs30_ref 

entry provides additional information related to how the preferred VS30 was obtained, such as the 

reference to the VS profile used to calculate VS30 through an abbreviation to the data provider and 

an associated identifier. Current providers of measured-VS information include: 

 CESMD (stations with calculated VS30): “CESMD – network-station code” 

 NGA-West 2 flatfile (stations with VS30 code = 0): “NGAW2 – ssn” 

 NGA-East flatfile (stations with VS30 code = 0): “NGAE – ssn” 

 USGS VS30 Compilation (Yong et al. 2015): “USGS – Id” 

 VSPDB: “VSPDB – profile id” 

For sites where VS30 is estimated from proxy-based methods, vs30_ref describes the type of 

proxy model(s) used. Abbreviations for proxy-models types include: 

 “Geo”: geology- or hybrid geology-slope proxies (e.g., Wills et al. 2015). 

  “Kri”: Kriging interpolation if site is located near measured VS30 (e.g., Thompson 

2018). 

  “Terr”: terrain-based proxies (e.g., Yong et al. 2016). 

 “Pea17 – group number”: proxy-based VS30 estimation in Central and Eastern North 

America (CENA) proposed by Parker et al. (2017). 

Note that the expanded list of proxy models implemented in the NGA-Sub project (Ahdi et al. 

2022) have not yet been implemented in the GMDB.  
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Table 2.9: Summary of VS30 codes and their definitions. 

ID Description 
Standard 

Deviation (𝝈ln𝑽) 

0 VS30 computed using profile with zp ≥ 30 m. 0.1 

1 

Profile is available but maximum VS profile depth zp < 30 m. 

VS30 is estimated using the extrapolation relationship of Boore 

(2004), with California-specific regression coefficients from 

Kwak et al. (2017a).  

(0.12 + 𝜎𝑒)
0.5  

Values of 𝜎𝑒given 

in Kwak et al. 

(2017a) 

2 

Estimate VS profile from correlations between VS and 

penetration resistance/effective stress. VS30 computed from 

estimated profile.  

0.25 

3 

No Profile available. VS30 and its variability are assigned based 

on the weighted combination of (1)  geology (pre-Quaternary) 

or hybrid geology-slope proxies (Wills et al. 2015 or local 

correlation for particular geologic units) and (2) CA-specific 

models based on geomorphic terrain categories (Yong 2016; 

Iwahashi and Pike 2007). For the geology-based model, Kriging 

is used if location is near measured VS30 (Thompson et al. 2014; 

Thompson 2018).   

based on weighted 

combination 

4 

No profile available. Surface geology not available. VS30 and its 

variability are estimated using CA-specific models based on 

geomorphic terrain categories (Yong 2016; Iwahashi and Pike 

2007).   

based on category 

statistics 

5 

No profile available. Terrain-based VS30 estimate not available 

(typically because terrain class has null or sparse data). VS30 

estimated using CA-specific models based on geology (pre-

Quaternary) or hybrid geology-slope proxies (Wills et al. 2015). 

Kriging used if near measured VS30 (Thompson et al. 2014; 

Thompson 2018).  

based on category 

statistics 

6 

No profile available. Site in Central and Eastern North America 

(CENA), VS30 and its variability are estimated using CENA-

specific model based on geology, topography, glaciation, and 

location in or outside of a basin (Parker et al. 2017). 

based on category 

statistics 

7 

Known site conditions and geology based on measurements of 

VS profiles at different location but the same geological 

condition. This assignment is only used based on a 

recommendation or site visit from a geologist.  

0.3                

(Goulet et al. 2014) 

8 

Estimate mean VS30 by P-wave seismogram method (Kim et al., 

2016) for sites having multiple ground-motion recordings and 

corresponding VS30 values from measurements.  

0.456 
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The site table includes a basin_province field which corresponds to the site geomorphic 

province classification as defined by Nweke et al. (2022). Integer-valued codes are used to 

facilitate efficient queries. Table 2.10 provides the definitions for basin_province codes, adopted 

from Nweke et al. (2022).  

 

Table 2.10: Definition of basin_province codes, adopted from Nweke et al. (2022). 

Code Definition Description 

0 Mountain-Hill 
Sites without significant sediments, generally 

having topographic relief 

1 Valley “Small” sedimentary structure 

2 Basin Edge Along the basin margin 

3 Basin Site located within the basin interior  

 

The basin_model and basin_site tables are used to assign seismic velocity isosurface depths 

(z1.0 and z2.5) to sites within the geographic domain of basin models. Given that the boundaries 

described by several velocity – or basin – models may overlap (e.g., CVM-S and CVM-H in 

southern California), the GMDB needed a way to allow for multiple estimates to be assigned. 

Furthermore, we store multiple depth estimates because the seismological and earthquake 

engineering communities have yet to agree upon protocols to assign preferred depths. To meet this 

need, the basin_site table acts as a “many-to-many” junction between the site and basin_model 

tables via relationships of site_id and basin_model_id foreign keys. The basin_model table 

contains identifying information for each model (i.e., full name, abbreviation, and reference 

citation), and each model is assigned a unique basin_model_id. Within the basin_site table pairs 

of basin_model_id and site_id are assigned appropriate z1.0 (z1p0) and z2.5 (z2p5) values. An 
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advantage of this structure is that it is flexible enough to accommodate additional estimates as 

newer models are published.  

Just as NGA EQID's are not used as event_id’s, station sequence numbers (SSN’s) assigned 

by NGA products are not adopted for station_id’s. Stations found in multiple NGA databases (e.g., 

NGA-West2 and NGA-Sub or NGA-West2 and NGA-East) sometimes have different SSN’s, so 

we assign unique station_id’s in the station table to ensure that the primary keys are unique. Users 

may wish to search the GMDB using familiar SSN’s assigned by individual collection efforts 

unified in the GMDB (e.g., NGA-West2, NGA-East, etc.), therefore the station_ssn table provides 

this mapping. There are four fields in the station_ssn table: (1) station_ssn_id which acts as the 

primary key, (2) station_id  foreign key linked to the station table, (3) collection_id foreign key 

linked to the collection table [discussed in Section 2.4.1(e)], and (4) ssn which records the SSN 

assigned by the individual collection (e.g., NGA-West2). The relationships of station_ssn_id to 

collection_id and station_id are both “one-to-many” relationships meaning that a given station_id 

can only have one SSN for a given collection_id, however individual station_id’s may appear 

numerous times in station_ssn if they exists in multiple collections.   

(c) Ground Motion Metadata Tables 

Ground motion metadata are any remaining metadata not directly associated with the time-series 

themselves, and are organized into two tables: motion and collection_motion. Figure 2.11 presents 

the detailed fields, their data types, and key relationships between ground motion metadata tables 

in the GMDB. The motion table acts as a junction table between the event and station tables by 

assigning unique motion_id’s to each source-to-site record. All distance metrics calculated in 

Section 2.3.1(c) are stored within the motion table, in addition to a hanging_wall indicator. 
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Hanging wall indicators are defined in Table 2.11. The GMDB also assigns a user_id [discussed 

in Section 2.4.1(e)] to each record to document who is responsible for uploading the ground motion 

data.  

 

 

Figure 2.11: Detailed fields and datatypes for ground motion metadata tables. 
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Table 2.11: Summary of hanging wall indicators, adopted from Abrahamson and Somerville 

(1996) and used by Ancheta et al. (2013). 

Code Abrahamson and Somerville (1996) Definition 

1 hw Site is within the hanging wall region 

2 fw Site is within the footwall region 

3 nu Site is in the neutral region 

4 na Not applicable as fault dip is greater than 70o 

 

The collection_motion table is a junction table relating the collection and motion tables that 

contains a primary key (collection_motion_id), two foreign keys (collection_id and motion_id), 

and a record sequence number (RSN; record_sequence_number) assigned by an individual 

collection (e.g., NGA-West2). The purpose of the table is to group sub-datasets of records together 

within the database structure to facilitate efficient group requests (i.e. particular subsets of ground 

motions), and to map RSN’s from external databases to GMDB motion_id’s (only for motions from 

unified datasets). The many-to-many relationships defined in the table mean that a collection_id 

may have many motion_id’s, and an individual motion_id may belong to several collection_id’s. 

Definition of what a “collection” represents is discussed in Section 2.4.1(e).   

(d) Ground Motion Data Tables 

Ground motion data include acceleration time-series files, associated processing metadata, and any 

calculated metrics, and are organized into six tables: component, time_series_metadata, 

time_series_data, intensity_measure, response_spectra, and fourier_spectra. Figure 2.12 presents 

the detailed fields, their data types, and key relationships between ground motion data tables in the 

GMDB.  
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Figure 2.12: Detailed fields and datatypes for ground motion data tables. 

 

Ground motions are comprised of three as-recorded components: two orthogonal 

horizontal and one vertical. Engineering applications simplify analyses by combining the two as-

recorded horizontal time-series into a single orientation-independent representation, through the 

use of different algorithms (Boore et al. 2006; Boore 2010). By convention, the resulting 

combination is identified as a distinct component. The component table defines and assigns a 

unique component_id to each component commonly used in analyses, as shown in Table 2.12.  
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Table 2.12: Current GMDB component table. 

component_id component_abbreviation component_name 

1 H1 As-recorded horizontal 1 

2 H2 As-recorded horizontal 2 

3 V As-recorded vertical 

4 RotD50 
Median single-component horizontal ground 

motion across all non-redundant azimuths 

5 RotD100 
Maximum single-component horizontal ground 

motion across all non-redundant azimuths 

6 EAS 
Effective amplitude spectrum; orientation-

independent Fourier amplitude spectrum (FAS) 

7 RotD00 
Minimum single-component horizontal ground 

motion across all non-redundant azimuths 

 

The time_series_metadata table stores information related to the time-series data and 

associated metadata. Each motion_id in the motion table relates to at-most three entries in the 

time_series_metadata table corresponding to the three as-recorded components (component_id = 

1, 2, and 3). The azimuths of the two horizontal components are stored in the azimuth field. The 

type of instrument, which is an important factor when considering the reliability of the recorded 

data, is indicated by an integer code in the instrument_type field and options are defined in Table 

2.13. The sampling rate at which the instrument makes measurements is recorded in the 

sampling_rate field. Processing metadata which includes the type of filter used (filter_type), order 

(order_hpass and order_lpass), and selected high- and low-pass corner frequencies (hpass_fc and 

lpass_fc, respectively) are also stored. NGA-West2 filter-type codes (defined in Table 2.14) are 

adopted and used to populate the filter_type field.  
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Table 2.13: Definition of instrument_type codes. 

Code Instrument Type Type of Recording 

1 Accelerometer Acceleration 

2 Seismometer Velocity 

3 MEMS Accelerometer (CSN seismic network) Acceleration 

 

Table 2.14: Definition of filter_type codes, adopted from Ancheta et al. (2013). 

Code Ancheta et al. (2013) Filter Type 

1 O Ormsby 

2 A Acausal Butterworth 

3 C Causal Butterworth 

 

Table 2.15: Definition of late trigger codes, adopted from Ancheta et al. (2013). 

Code Ancheta et al. (2013) Description 

1 d 

Digital with pre-event memory, did not record the first P-

wave onset. In the digital case we are confident that we 

recorded the largest amplitude (provided, later peaks are > 

the nominal trigger level of 0.005 g, which depends on 

instrument, array, etc.). 

2 ? 

Analog recording that probably recorded largest amplitudes 

on the vertical component but the P-wave onset not recorded, 

OR probably recorded largest amplitudes on the horizontal 

component(s) for the S-wave. 

3 Y 

Late trigger, probably did not record the largest vertical 

amplitude, The characteristic diagnostic is that the largest 

amplitude is at start of recording on the vertical component. 

4 DNP Did not process the vertical component (e.g., late trigger) 

5 DNR Did not record the vertical component. 

 

Acceleration time-series data are stored separately in the time_series_data table, where a 

time_series_metadata_id foreign key is used to relate each time_series_data_id to the 

time_series_metadata table. A single-component time-series may have upwards of 40,000 data 
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points, meaning that the time-series data would require around 4 billion rows for the 33,370 

motions currently in the GMDB if a traditional table structure was used [i.e., primary key, foreign 

key, time (FLOAT), and acceleration (FLOAT) fields]. The scalability of this approach would 

introduce performance issues as additional ground motion data is added. Our solution is to store 

these data as JavaScript Object Notation (JSON) string objects in a “MEDIUMTEXT” field 

(acc_vec), which can be read and parsed by most programming languages. The JSON-strings have 

a dictionary-like structure where acceleration (in units of g) is represented as a list of values (e.g., 

{“acceleration (g)”:[a1, a2, … , aN]}, where ai represents the acceleration value and N is the number 

of points). Times are not stored in acc_vec because a time-array can easily be constructed from the 

corresponding sampling_rate in the time_series_metadata table. A secondary benefit to this 

structure is that the time-series data for a single component are stored collectively, which reduces 

the potential of introducing errors when queried (i.e., everything is in one row instead of many).  

The intensity_measure table stores all IMs discussed in Section 2.2.2 except PSA and EAS 

for each individual component. PGA, PGV, CAV, CAV5, and IA are stored as “FLOAT” objects, 

however JSON-strings are used to store the IA-times corresponding to IA-percentages of 5 to 95 in 

increments of 5 % as “MEDIUMTEXT” objects (IA_times). The structure of the JSON-string 

includes a list of percentages and a list of corresponding times (i.e., {“percentage”:[5,10,…,95], 

“time (s)”:[…]}).  

PSA are stored in the response_spectra table as JSON-strings in the Sa field. The structure 

of these JSON-strings includes a list of non-uniformly spaced oscillator periods and a list of 

spectral accelerations (i.e., {“period (s)”:[0.01,0.02,…,20], “Sa”:[…]}). The associated damping 

value is stored in the damping field as a percent.  
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Similarly, EAS are stored in the fourier_spectra table as JSON-strings which includes an 

initial frequency (𝑓0), a log-normally spaced frequency step (Δlog𝑓), and a list of FAS values (i.e., 

{“f0 (Hz)”: 𝑓0, “dlogf”: Δlog𝑓, “FAS (g-s)”:[…]}). The fourier_spectra table also stores the 

number of frequencies per log-cycle (KO_points) and the frequency multiplier defining width 

(window_width) used for Konno-Omachi smoothing as well as the bandwidth window defined by 

Kottke et al. (2021) (smoothing_bandwidth).  

All three IM data tables include motion_id and component_id as foreign keys. 

(e) Auxiliary Information Tables 

Auxiliary information describes anything that is not inherently related to ground motion data, and 

are organized into three tables: collection, user, and geometry. Figure 2.13 presents the detailed 

fields, their data types, and key relationships between auxiliary information tables in the GMDB. 

The collection table stores metadata related to a “collection of motions”, such as a name, 

description, and reference-citation (if related to a publication). Types of collections include 

published datasets (e.g., NGA-West2), sub-datasets describing regional data (e.g., California 

ground motions), and specific datasets used by researchers. Collections referenced in the 

event_eqid and station_ssn tables will only be of the first type, however those referenced in the 

collection_motion table can be anything. The primary function of “collections” are to provide a 

means to quickly and efficiently query sub-datasets associated with particular research projects. 

Only authorized and authenticated users will have permission to upload and edit ground motion 

data and metadata, but all users will be able to define a collection (not yet implemented). 
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Figure 2.13: Detailed fields and datatypes for auxiliary information tables. 

 

The user table contains information about each user including a username, email, and full 

name. Passwords are also stored in an encrypted password field, and are used to authenticate when 

users connect to the GMDB server. As a means of quality assurance, user_id’s are assigned to each 

ground motion in the motion table and correspond to the user who uploaded the data. Only these 

users will have permission to edit the ground motion data/metadata through the API [discussed in 

Section 2.4.3(a)]. Authorized users maintain the ability to edit all data through the back-end.  

Lastly, the geometry table stores geographic and associated metadata for defining 

geographic features. The purpose of this table is to provide a container for supplementary 

geospatial data commonly used in ground motion analyses, and as such it is the only table in the 

GMDB to not have any foreign key relationships. Data are stored as geospatial JSON-strings 

(geoJSON) in the geometry_geojson field (“LONGTEXT”), which can be read and parsed by most 
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programming languages or GIS software. The geometry_class field is used to identify the nature 

of the type of data contained within the geoJSON, and is populated using codes defined in Table 

2.16. The geoJSON geometry type is stored in the geometry_type field using codes defined in 

Table 2.17. Name, description, and reference (if associated with a publication) are also stored for 

each entry.  

 

Table 2.16: Definition of geometry_class codes. 

Code Description Examples 

1 Global region NGA-West2 regions (California, Japan, New Zealand, etc.) 

2 Local region Sacramento-San Joaquin Delta; The Geysers Boundary 

3 Geomorphic feature 
Basin Outline; Volcanic Arc; Tectonic Regime; Glacial 

Extents 

4 Modeling related Described boundaries; Sub-regions for anelastic path model 

 

Table 2.17: Definition of geometry_type codes. 

Code Description 

0 Point 

1 Multipoint 

2 LineString 

3 MultiLineString 

4 Polygon 

5 MultiPolygon 

6 GeometryCollection 

 

2.4.2. Data Organization and Transfer to Relational Database 

An advantage of the GMDB having been developed as a web-serviced and publicly accessible 

resource is that users can access the data as soon as they are uploaded. The main drawback to this 
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approach, however, is the added responsibility to ensure that the data are high-quality and the 

associated metadata are reliable at the time of upload (i.e., adequately checked to minimize errors). 

Ground motion processing has evolved to point where semi-automated procedures can be used to 

select corner frequencies. One such approach is implemented in the “gmprocess” package in 

Python (Hearne et al. 2019) with the addition of a manual review step where an analyst has the 

option to accept, reject, or modify the corner frequencies selected by the automated processing 

procedure based on visual inspection of the acceleration and displacement traces, FAS, and 

response spectrum (Ramos-Sepulveda et al. 2023). The output of this procedure is a hierarchical 

data format file (HDF5) that contains information about the event, stations with recordings, 

processing parameters, and the processed time series data. The processing protocols used are 

consistent with those recommended by PEER (e.g., Goulet et al 2021b). With the processing tools 

having been developed by others, my work was focused on metadata, specifically the development 

of tools to ensure that the associated metadata are correct. 

I developed a Python based Jupyter Notebook (Kluyver et al. 2016) that takes as an input 

the HDF5 file produced by gmprocess. The tool facilitates the assignment of associated metadata 

and uploads that information to the GMDB using interactive widgets from the “ipywidgets” 

package (Jupyter Development Team 2022). Given the fluidity of the GMDB schema to change 

over time, it is necessary to update this Jupyter Notebook in parallel as changes occur. Therefore, 

the version discussed herein (version 1.2) reflects the current schema at the time of writing. The 

application programming interface (API) discussed in the following section [Section 2.4.3(a)] 

allows this Notebook to interact directly with the GMDB through a secure connection using the 

“requests” package (Reitz 2022). Other packages which are fundamental to the functionality of the 

Notebook include “folium” (Python-Visualization 2020), “json” (Davis-Foster 2022), “matplotlib” 
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(Hunter 2007), “numpy” (Harris et al. 2020), “pandas” (Pandas Development Team 2020), 

“pyproj” (Snow et al. 2021), and “scipy” (Virtanen et al. 2020). 

Only authenticated users have permission to upload data to the GMDB, therefore the first 

step in the Notebook is for users to log into their GMDB account. If unsuccessful, a warning will 

be displayed and all subsequent functionality of the Notebook will be disabled. If successful, the 

Notebook will prompt users to select an HDF5 file containing the ground motion data they wish 

to upload. The Notebook will then automatically extract the available event, station, and 

processing metadata as well as the processed time-series and add them to pandas DataFrames for 

review and manipulation within the code. Figure 2.14 shows a screenshot of the interface after the 

Notebook has successfully extracted all available information, providing sample displays for the 

user to confirm that the data have been correctly extracted.  
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Figure 2.14: Screenshot of Jupyter Notebook authentication step, including HDF5 selection and 

display of extracted data. 

 

The next step is to search the GMDB event metadata tables (i.e., GMDB earthquake 

catalog) for potential matches to the event under consideration. Origin date, time, M, and 

hypocenter latitude, longitude, and depth represent unique identifying attributes, and are auto-

populated into a form the user can edit. These parameters are used by the Notebook to constrain 

the query. The objective is to identify existing events within the GMDB with similar identifying 

attributes (i.e., events occurring on the same day in the general vicinity with M ± 0.75). If any 
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potential matches exist, the Notebook prompts the user to identify the correct entry as shown in 

Figure 2.15. The user then has the option to select the event_id of the existing earthquake from a 

drop-down list of potential matches, or to specify that the earthquake does not exist in the GMDB. 

If they select “Earthquake Already in GMDB”, the Notebook takes note of the selected event_id 

and proceeds to the next step. Otherwise, a new form appears requesting the user to input the 

preferred earthquake metadata. This prompt also appears if the initial event search yields no 

potential matches, as shown in Figure 2.16. 

 

 

Figure 2.15: Screenshot of Jupyter Notebook event screening with potential existing event. 
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Figure 2.16: Screenshot of Jupyter Notebook event screening with no potential existing events 

assuming the event has a published finite-fault model. 

 

The event metadata provided in the HDF5 file produced by gmprocess does not generally 

match metadata from preferred sources [Section 2.3.1(a)], therefore the user is responsible for 

ensuring that preferred values are uploaded. The Notebook provides links to the CMT search portal 

and USGS event page (if it exists for the event in question). Authenticated users should be trained 

on how to identify this metadata and navigate those resources to find the necessary information 

and manually populate the corresponding fields in these forms.  

A potentially important aspect of event metadata pertains to the geometry of the finite fault. 

Users are prompted to select whether to upload a rupture surface representation derived from a 
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published finite-fault model (if one exists) or to simulate one. The Notebook provides links to the 

Earthquake-RC Source Model (SRCMOD) Database (Mai and Thingbaijam 2014) and the USGS 

finite-fault page where published finite-fault representations can be found. If multiple finite-fault 

models exist, the user is responsible for selecting and trimming the preferred model using the 

criteria and procedures outlined in Contreras et al. (2022). To upload a representation from 

literature, users first select “Finite-fault model exists” where they are then prompted to enter the 

reference citation and the number of rupture segments, as shown in Figure 2.16. After clicking 

“Continue”, a new form will be displayed which allows the user to enter information for each 

segment individually, which is shown in Figure 2.17. Alternatively, if no finite-fault models exist 

the user can select one of two options to simulate the rupture surface: (1) “Finite-fault model does 

not exist” or (2) “Nodal-planes unknown”. If nodal planes are known users are advised to select 

the first option in which the orientation of the two nodal planes are used during the simulation 

procedure, otherwise the second option should be selected. The Notebook will automatically run 

CCLD5 (Contreras et al. 2022) implementing the inputs specified by the user to simulate the 

rupture surface.  

 

 

Figure 2.17: Screenshot of Jupyter Notebook finite-fault segment entry form. 
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After the user is finished entering the finite-fault segment information or the simulation 

procedure is run, the Notebook will display the event metadata for review, as shown in Figure 

2.18. If the metadata are satisfactory the user can select “Push Earthquake Metadata to GMDB 

Server”, after which the Notebook will construct SQL commands to insert new rows into the event, 

finite_fault, and finite_fault_segment tables. These commands are sent to the GMDB via a “post” 

request through the API which requires authentication. Primary keys (e.g., event_id, 

finite_fault_id, and finite_fault_segment_id) are automatically assigned by the database, therefore 

SQL commands are executed in a systematic order to ensure that primary and foreign key 

relationships remain intact. The Notebook will inform the user of the event_id assigned to the 

event, and prompt them to move forward to the next step. 

 

 

Figure 2.18: Screenshot of Jupyter Notebook display of event metadata tables ready to upload to 

GMDB after user review. 
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New ground motion data may become available after an initial batch of records have been 

uploaded for an event. To accommodate these scenarios, the Notebook next searches the existing 

GMDB for matches with the new records to ensure that no duplicate records are uploaded. This 

check is performed by first identifying GMDB station_id’s which correspond to the new dataset 

based on the unique network code and station code assignments. If a particular station is not able 

to be mapped to a station_id in the GMDB, it is flagged as being a “new station” and the site 

assignment is resolved in a future step. Otherwise, the Notebook will query the GMDB through 

the API for all station_id’s with records of the event, and compare those to the station_id’s in the 

new dataset. If any potential matches exist, the Notebook alerts the user, otherwise the Notebook 

proceeds to the next step.  

Seismic networks are assigned a two-digit network code by the FDSN, which is unique for 

any permanent network. However, temporary networks operating over non-overlapping time spans 

may be assigned the same network code (e.g., “YU” was assigned to “Northern California Delta” 

which operated from 2006 to 2014, and later assigned to the “Caribbean-Merida Andes 

Experiment” which operated from 2016 to 2018). The Notebook will compare all network codes 

within the new dataset to those in the network table conditioned on the origin time of the 

earthquake. To ensure that the Notebook correctly identifies network assignments, it will display 

the results for the user to review. If a network does not currently exist in the GMDB network table, 

the Notebook will prompt the user to upload the network metadata during this step, as illustrated 

in Figure 2.19. Most of the information in the network form is automatically populated using a 

web-services “get” request through the FDSN’s API. A link to the network’s FDSN page is 

provided in the Notebook for users to gather the missing information needed to populate the 

operation organization and DOI fields. When the “Push Network Metadata to GMDB Server” 
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button is pressed, the Notebook constructs an SQL command to insert the new network into the 

network table and posts it through the GMDB API. A network_id is automatically assigned to any 

new network. Once all networks in the new dataset are identified in the network table, the 

Notebook will assign appropriate network_id’s to all records.   

 

 

Figure 2.19: Screenshot of Jupyter Notebook screening for seismic networks and form to upload 

new network metadata. 
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Following completion of the above steps, the Notebook will have assisted the user in 

uploading event and network related metadata information, as well as assigning event_id and 

network_id keys. If there are no new stations, the Notebook will assign station_id’s to each record 

and move on to the next step. However, if there are any new stations, the next step is to assign 

station_id’s and their corresponding site_id’s, which is not trivial as demonstrated in Section 2.3.2. 

To reduce the possibility of entering duplicate information, the Notebook requires the user to 

manually screen all potentially new sites (i.e., new stations) against those already in the GMDB 

on a one-by-one basis. This step in the process was implemented because (1) the number of stations 

which record a particular event is seldom greater than about a hundred, (2) in regions with existing 

ground motion data (e.g., California) the number of new stations will be a fraction of the total 

number, and (3) individual inspection helps to ensure assignment of correct station and site 

metadata.  

The Notebook will create an interactive form which includes a dropdown list of all the new 

stations. For each new station the Notebook will: 

1. Automatically populate editable fields with the station name, latitude, longitude, and 

depth provided by gmprocess; 

2. Display fields which may be used to assign station housing, site geomorphic province, 

and VS30 from measured data; 

3. Query the GMDB for any nearby existing sites; 

4. Query the VSPDB (Ahdi et al. 2018) for nearby geotechnical data including VS profiles, 

travel time data, and cone penetration test (CPT) data;  
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5. Construct an interactive map that includes the location of the new station, locations of 

any nearby existing GMDB sites, locations and type of any nearby VSPDB 

geotechnical data, and concentric circles representing reference distances of 10, 30, 

100, 200, and 300 m centered about the new station; and 

6. Allow the user to specify if the new station is at an existing site, or if a new site should 

be created and site_id assigned. 

A screenshot of the display is presented in Figure 2.20. 

The decision to allow users the ability to manually override the station name, latitude, 

longitude, and depth provided by gmprocess was made because the information provided by 

gmprocess may not be fully accurate. Section 2.3.2 discussed the criteria and methodology used 

to assign these metadata. The Notebook does not currently provide links to appropriate resources 

because it is impractical to provide links for all regional data providers across the globe. Therefore, 

the burden falls on the user to gather these data in the current version of the Notebook. However, 

the map constructed by the Notebook includes satellite imagery which may be useful to improve 

coordinate locations of free-field stations.  

The station housing field adopts the GMX first letter codes defined in Table 2.8, and can 

sometimes be assigned based on satellite imagery. The geomorphic province classes are defined 

in Table 2.10 and are selected using judgement based on knowledge of the local geologic structures 

and inspection of terrain maps, as discussed in Nweke et al. (2022). If the user is not confident 

assigning these parameters at this stage, they have the option to leave them as “NULL” (i.e., select 

“Unknown” and/or “Do not assign province”). Authenticated users have the ability to update 

entries through the API outside of the Notebook, so NULL entries are expected to be updated in 

the future. 
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Figure 2.20: Screenshot of Jupyter Notebook available options when screening new stations. 
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The preferred methods to assign VS30 are from co-located or nearby geotechnical data, as 

summarized in Table 2.9. If nearby geotechnical data exists, the Notebook will populate the 

“VSPDB ID” dropdown list and construct data plots versus depth. VS30 is calculated (or estimated) 

from data at the selected profile and plotted as a vertical red band through the top 30 m of the VS 

plot. Users have the option to “Use profile to assign VS30” or “Do not assign VS30”, one of which 

must be selected. The option to not assign exists because the available data may be relatively far 

away in what the analyst suspects to be incompatible geology, or the data may have apparent 

issues. If the user selects to assign VS30, then the Notebook also estimates the uncertainty 

(vs30_lnstd) and assigns the appropriate vs30_code_id as defined in Table 2.9 and vs30_ref.  

If the new station is co-located at an existing GMDB site, the user does not need to assign 

geomorphic province or VS30. This is because those parameters have previously been assigned to 

the existing site, and the user should indicate this by selecting the appropriate site_id from the 

“Existing Site ID” dropdown list and then click “Existing Site”. Otherwise, the user is urged to 

assign geomorphic province and VS30 (if available) before selecting “+ New Site”. Station metadata 

(name, latitude, longitude, depth, and housing) will be updated for the station regardless of the site 

selection. Once either button is clicked the Notebook will construct and post SQL commands to 

insert station (and site, if new) metadata into the GMDB, assign station_id, site_id, and a 

“reviewed” flag to the new station, and automatically move forward to the next un-reviewed 

station.  

The Notebook interface also allows users to go back to any reviewed station to update the 

station metadata or change their decision of “existing” or “new” site. However, site metadata at 

only “new” sites added by the user can be changed after they are initially created through the 



 

67 

 

Notebook. Furthermore, if the user updates a station from being a “new” site to an “existing” site, 

the Notebook will delete the “new” site if no other stations exist at that site. 

This completes my presentation of the interactive portions of the Notebook. The remaining 

automated features perform the following tasks: 

1. Calculate source-to-site distances as discussed in Section2.3.1(c); 

2. Assign user_id to each record; 

3. Upload the motion table and assign motion_id’s to each record; 

4. Upload the time_series_metadata table and assign time_series_metadata_id’s; 

5. Upload the processed time-series to the time_series table;  

6. Calculate response spectra and intensity measures for the as-recorded components as 

discussed in Section 2.2.2; and  

7. Upload the response_spectra and intensity_measure tables.  

It is important to note that the current version of the Notebook (version 1.2) does not 

populate all fields in the GMDB schema. All essential information has been considered in the 

development of Notebook, but external routines are performed on the back-end to assign VS30 from 

proxy-based methods, basin depth terms z1.0 and z2.5, surficial geologic unit, topographic slope, 

and terrain class as well as to calculate response spectra and intensity measures for rotated 

horizontal components (i.e., RotDXX) and EAS. Additional work is required to manually populate 

other fields not currently handled within the Notebook. 

2.4.3. Online Interface 

The primary mission of the GMDB is to make desired ground motion data and associated metadata 

readily and easily accessible to the public. The SQL based structure has many advantages with 
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respect to storage efficiency and query performance, however not all users will be proficient 

enough in SQL to construct the queries needed to extract data across several tables. As a means to 

circumnavigate user challenges, an application programing interface (API) and online tool have 

been developed to assist users with accessing the data. 

(a) Application Programing Interface (API) 

An API is an intermediary which interacts directly with the database requiring only basic 

knowledge of its implementation. Direct interaction with the GMDB requires knowledge of 

structuring SQL commands and meticulous understanding of the schema, both of which represent 

potential barriers to users. We develop an API which allows users to easily query the GMDB by 

constructing simple query strings with only a basic understanding of the database structure and no 

SQL knowledge required. Complete documentation of the API can be found at 

https://uclageo.com/gm_database/api. 

Queries can be submitted through web services in the form of a uniform resource locator 

(URL) in most web browsers or programming languages. The fundamental components of the 

URL are: 

1. A “base url” utilized in the API: https://uclageo.com/gm_database/api/index.php; 

2. A “resource” which describes the nature of the query (i.e., functionality); and 

3. A list of parameters used to specify the query constraints and return structure (i.e., 

“query string”). 

 The GMDB API currently supports four publicized resources:  

https://uclageo.com/gm_database/api
https://uclageo.com/gm_database/api/index.php
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1. “schema”: Provides access to the organizational structure of the database, which users 

must be familiar with to utilize the following resources. 

2. “flatfile”: Provides a single table synthesized from many tables (i.e., NGA flatfile). 

3. “response_spectra”: Provides a flatfile-style table of response spectra data and 

associated metadata along with an interactive plotting tool.  

4. “fourier_spectra”: Provides a flatfile-style table of FAS and associated metadata along 

with an interactive plotting tool.  

A valid URL takes the form of “base_url/resource?query_string”, where query_string 

parameters are separated by an “&” and cannot contain any spaces. The query_string parameters 

currently supported by the API are summarized in Table 2.18. Each resource behaves a little 

differently, therefore Table 2.18 also includes the associated resources which support each 

parameter. For example, if a user wishes to find out which fields are in the event table, their URL 

would be https://uclageo.com/gm_database/api/index.php/schema?tables=event&table_list=false. 

Additional example URLs are shown in Section 2.4.3(b). 

 

Table 2.18: Summary of GMDB API query string parameters. 

Parameter Description Options 
Supported 

Resources 

format Controls the output format. html, json, csv schema, flatfile 

limit Controls the number of rows returned; default is 50 
non-zero integer 

values 

schema, flatfile, 

response_spectra, 

fourier_spectra 

offset 
Controls the starting index of the returned data; 

default is 0 

non-zero integer 

values 

schema, flatfile, 

response_spectra, 

fourier_spectra 

table_list 
Control whether a list of tables in the database is 

returned 
true, false schema 
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Parameter Description Options 
Supported 

Resources 

tables 
Controls which tables to be included in the query; 

comma separated list of table names (no spaces) 

"Table Name" 

listed in Table 

2.2 

schema, flatfile 

fields Controls which fields are returned by the query; 

All non JSON-

string fields 

shown in 

Figures 2.9-13 

flatfile 

<fields> 

Controls the range of values for a specific field; 

bounds separated by a "-"; parenthesis can be used 

around negative bounds; example: PGA=0.1-0.2 will 

return entries with PGA values between 0.1 and 0.2g. 

varies 

flatfile, 

response_spectra, 

fourier_spectra 

sortby Controls the field by which to sort the data 

All non JSON-

string fields 

shown in 

Figures 2.9-13 

flatfile, 

response_spectra, 

fourier_spectra 

order 
Controls whether to sortby field should be ascending 

or decending; default is ascending 
ASC, DESC 

flatfile, 

response_spectra, 

fourier_spectra 

parse_json 
Controls whether to parse data from native JSON-

string formats into a column format; default is true 
true, false flatfile 

fill_null 

Controls the number to be inserted into NULL fields 

when parsing JSON-strings; only applicable if 

parse_json=true; example: NGA products use "-999" 

Any number flatfile 

 

URL’s passed through the API are parsed on the server’s end to construct the necessary 

SQL command before returning data to the user. In the event that users specify more than one table 

for the tables parameter, the API will check that all tables are joined based on the expected 

primary-to-foreign “key chain”. Best practice is to format query strings with table lists that form 

continuous key chains. For example, “tables=network,station,site” is a continuous key chain from 

the network to the site table through mutual relationships with the station table. A broken key chain 

is one which contains one or more gaps (e.g. “tables=network,site”). The API will fill in any gaps 

as a means to construct a valid query, however the data which is returned will contain entries from 
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tables not specified in the query string. It follows that the API is not a fool-proof method to 

retrieving only desired data, but does simplify the overall process.  

(b) URL Builder Tool 

To help users construct valid URL’s, I developed a “URL Builder Tool” in hypertext markup 

language (HTML) which uses JavaScript to facilitate dynamic interaction. The tool can be 

accessed at https://uclageo.com/gm_database/api/url_builder.php, and currently only supports the 

schema and flatfile resources. The advantage of this format is that users do not need any pre-

installed software to use the tool, so long as they have a functioning web browser. The webpage 

provides an interactive user interface to construct URL’s conditioned on the query_string 

parameters described in Table 2.18.  

Users first select the API resource they wish to utilize, after which the webpage will display 

the appropriate forms the user can populate to construct the query_string. Figure 2.21 presents a 

screenshot of the options available under the schema resource. The URL constructed using the 

available options is displayed in a box labeled “Your URL”, and is visible throughout the process 

even when the page is scrolled down. Users have the option to click the URL, which will open the 

request in a new tab, or to copy the text to their clipboard for easy integration into programming 

language-based web services requests (e.g., Python, R, Matlab, etc.).  

 

https://uclageo.com/gm_database/api/url_builder.php
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Figure 2.21: Screenshot of API URL Builder Tool schema resource options. 

 

The flatfile resource is the primary mechanism to access data from the GMDB, which 

accordingly requires the most flexibility to accommodate tailored requests. The online tool utilizes 

a five step process to simplify the query_string construction as shown in Figure 2.22 and outlined 

below: 

1. Users first select which tables they want to query, as shown in Figure 2.23. The tool 

does not currently allow users to specify desired fields, however those may be added 

externally (e.g., if users are only interested in magnitude and hypocentral depth data in 

the event table, they can add “&fields=magnitude,hypo_depth” to the end of the 

query_string). With respect to ground motion attributes, the tool is set up to return 



 

73 

 

intensity measures but does not allow queries from the time_series_data table, which 

could produce unmanageably large data files returned by API. If the user does not 

specify any tables, the API will return a default set of tables and fields. 

2. If the request requires screening based on earthquake related metadata (origin time, 

location, magnitude, type, and/or mechanism), the user can specify these constraints, 

as shown in Figure 2.24. This form includes an interactive map where the user can 

preview event-specific metadata and dynamically draw a coordinate bounding box. 

3. If the request requires screening based on station-site related metadata (location, VS30, 

z1.0, z2.5, or geomorphic province classification), the user can specify these constraints. 

An interactive map of station locations is included within this form, with functionality 

similar to that described in Step (2).  

4. If the request requires screening based on information about the ground motion records 

themselves (distance, PGA, spectral damping, component, and/or collection 

information), the user can specify these attributes during this step. 

5. Lastly, the user can customize the returned data structure (format, JSON-string parsing, 

sorting, limit, offset, and/or filling NULL entries), as shown in Figure 2.25. 
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Figure 2.22: Screenshot of API URL Builder Tool flatfile resource options. 
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Figure 2.23: Screenshot of API URL Builder Tool flatfile resource step 1 options. 
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Figure 2.24: Screenshot of API URL Builder Tool flatfile resource step 2 options. 

 

 

Figure 2.25: Screenshot of API URL Builder Tool flatfile resource step 5 options. 
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As illustrated in Figures 2.22 through 2.25, the URL is updated dynamically as the forms 

are populated. Individual fields within each form are automatically populated with the parametric 

ranges of data currently stored in the GMDB, and include sanity checks to ensure that the 

constraints are valid (e.g., longitude values must be between -180o and 180o; minimum bounds are 

less than maximum bounds; etc.). Users are not required to complete each step; if any steps are 

skipped the API will use default parameters.  

2.5. Summary and Conclusions 

The GMDB is a resource to provide public access to query up-to-date available ground motion 

data and related metadata from earthquakes around the world. Currently the GMDB only stores 

the unified California ground motion data assembled by NGA-West2, Ahdi et al. (2019), Wang 

(2020), and Buckreis et al. (2022). As of this writing, multiple efforts are ongoing to extend the 

reach of the GMDB, including (1) integration of NGA-East ground motion data (Goulet et al. 

2021); (2) adding recently processed data from the Community Seismic Network in southern 

California (Clayton et al. 2011) and (3) updating of the NGA-East data for events since 2012 

(Ramos-Sepulveda et al. 2022). The schema was developed with these expansions in mind, 

however organizational additions and/or alterations are anticipated as the database grows. 

A workflow to aid authenticated users in uploading ground motion data and assigning 

metadata has been implemented in a Jupyter Notebook. Back-end routines are required to assign 

site related metadata from maps and proxy-based models and to calculate IMs for combined 

horizontal components, however the intention is to incorporate these routines into the Notebook 

in the future. Tools in the form of an API and online URL Builder have been developed to help 

users access the data. 
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 Site Characterization in the Sacramento-San Joaquin Delta 

CHAPTER 3 

Site Characterization in the Sacramento-San Joaquin Delta 

3.1. Introduction 

This chapter presents the collection, synthesis, and analysis of geotechnical site characterization 

data in the Sacramento-San Joaquin Delta region (hereafter Delta). The motivation for undertaking 

this work was to provide the necessary data to reasonably estimate site parameters at seismic 

stations in the Delta which have contributed data to the GMDB (discussed in Chapter 2) and are 

used to investigate regional site response (presented in Chapter 5). An additional objective of the 

work presented here is to provide a model for estimation of site parameters in the Delta when site-

specific velocity profiles are not available, which is useful for forward application of ground 

motion models and probabilistic seismic hazard analysis. 

Following this introduction, different types of geotechnical data are reviewed which are 

used to characterize site conditions. Afterwards, I present the data assembled from publically 

available resources. Given the quantity of critical infrastructure distributed across the Delta, it is 

no surprise that a significant amount of data have been collected. Nevertheless, there existed a 

dearth in information at locations of seismic stations. To address this deficiency, I was actively 

involved with several field explorations to collect vital geotechnical data. A summary of these 

explorations is presented within this chapter. Lastly, I discuss in detail the analysis of peat 
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thickness (𝑡𝑝), shear wave velocity (VS), and horizontal-to-vertical (H/V) data to facilitate the 

assignment of site parameters.  

3.2. Site Characterization Data 

Site characterization is defined as “the process of developing an understanding of the geologic, 

hydrologic and engineering properties at the site including the soil, rock, along with groundwater 

and in many cases, man-modified conditions” (Benson and Yuhr 2016). Accordingly, site 

characterization data is anything that increases the subsurface or surficial understanding of the 

physical site. These data can be measured or observed in situ (at the site), and include information 

about stratigraphy, penetration resistance, and shallow-subsoil seismic properties (i.e., VS and 

H/V).  

Published maps are used to assign information related to surficial geology, elevation, 

topographic slope, and terrain class. Surficial geology refers to the geologic materials at the ground 

surface, usually unconsolidated Quaternary soils, and is represented by qualitative symbols (i.e., 

geological units). Elevation, topographic slope, and terrain class are metrics which describe the 

ground surface, and are obtained from digital elevation models (DEMs); for the present 

applications I use the NASA Shuttle Radar Topographic Mission (SRTM) DEM, which is at a 

horizontal resolution of 3 arc-sec (CGIAR-CSI 2006). Slope and terrain class are computed from 

DEMs through the use of different algorithms that describe the percent change in elevation over a 

certain distance and the general physical attributes, respectively. I perform these calculations using 

QGIS. The assigned terrain classes are based on Iwahashi and Pyke (2007) and are evaluated from 

the DEM using the algorithm presented in Riley et al. (1999).  
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The most direct way to measure stratigraphic information is by drilling a bore hole and 

recovering in situ samples. Cuttings from the boring process and recovered samples are inspected 

by the field engineer to assign soil-type classifications (e.g., Unified Soil Classification System; 

Howard 1986). The depth to the ground water table (GWT) is also recorded. Stratigraphic 

information can also be inferred from cone penetrometer testing (CPT) data. During a CPT, a 

“cone” is advanced into the ground and the tip resistance (𝑞𝑐), sleeve friction (𝑓𝑠), and excess pore 

water pressure (𝑢2; if equipped) are recorded (ASTM D3441). Tip resistance refers to the force 

per unit area (i.e., stress) required to push the tip of the cone through the soil, and 𝑓𝑠 measures the 

stress required to overcome the friction between the soil and the sides of the instrument (i.e., the 

sleeve). Relationships are used to compute soil behavior type (SBT) from CPT data (e.g., 

Robertson 2016), from which stratigraphic information may be inferred. Location of the GWT is 

interpreted from 𝑢2 measurements. 

Penetration resistance is measured directly during a CPT (i.e., 𝑞𝑐), however it can also be 

measured in a boring using the standard penetration test (SPT). During a SPT, the field engineer 

records the number of hammer blows (N) required to drive a standardized sampler over a depth 

interval of 0.45 m (ASTM D1586). Given the circumstances, N represents a discrete measurement 

of penetration resistance, when compared to the relatively continuous 𝑞𝑐 measurements achieved 

through CPT. Many correlations exist which relate measured penetration resistance to soil 

mechanical properties used by engineers (i.e., strength, stiffness, compressibility, etc.).  

Shear wave velocity (VS), which relates to the shear modulus of the soil, is a common 

property used in soil dynamics, and can be measured using either invasive or non-invasive 

geophysical methods. Invasive methods include downhole (ASTM D7400) and crosshole testing 



 

81 

 

(ASTM D4428), P-S suspension logging (ASTM D5753), and seismic CPT (sCPT; ASTM 

D7400). Non-invasive methods measure frequency-dependent surface waves (Rayleigh or Love) 

to develop a dispersion curve (plot of surface wave velocity vs. frequency), which can then be 

inverted to estimate a representative VS profile (Menke 1989). These methods include the spectral 

analysis of surface waves (SASW; Stoke et al. 1994), multi-channel analysis of surface waves 

(MASW; Park et al. 1999), and passive-source microtremor array measurements (MAM; Kanai et 

al. 1954; Horike 1985; Okada et al. 1990). S-wave seismic refraction is a unique type of non-

invasive method which measures body waves that are reflected (or refracted) off layer interfaces 

with impedance contrasts in the subsurface (ASTM D5777).  

H/V tests measure vibrations at a site using a three-component seismometer or geophones 

(two-orthogonal horizontal and one vertical). H/V data are used to construct mean horizontal-over-

vertical spectral ratio curves (HVSR; discussed in Section 3.3.3), which relate information about 

resonant frequencies and site amplification. HVSR can be developed from earthquake recordings 

(eHVSR) or from microtremor ambient vibrations recorded using permanent (mHVSR-P) or 

temporarily deployed sensors (mHVSR-T). 

3.2.1. Synthetization of Available Geotechnical Data  

The primary motivation of the work presented in this chapter is to collect site-specific geotechnical 

site characterization data which can aid in the assignment (or estimation) of the site parameters 

discussed in Section 2.3.1(b) of this dissertation. Accordingly, I performed an exhaustive literature 

search for the types of data described in the previous section with emphasis on the Delta region. 

The findings from this effort are presented below as subsections related to geologic and 

topographic data, stratigraphic profiles, VS profiles, and H/V data. The VS and H/V data, including 
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co-located supporting data such as boring or CPT logs, have been entered in into the shear wave 

velocity profile database (www.vspdb.org; Kwak et al. 2021) and as such are readily accessible 

for the broader community.  

(a) Geologic and Topographic Data 

Published resources are commonly used to assign geologic and topographic site parameters, as 

discussed in Section 2.3.1(b). Elevation, topographic slope, and terrain class for Delta sites are 

assigned using the methods described in Chapter 2. Previously I used Wills et al. (2015) to assign 

surficial geologic units to all sites in California, including those in the Delta. Wills et al. (2015) 

provides a simplified representation of regional geologic maps and combines geologic units into 

15 distinct groups that are expected to have similar VS30 distributions (i.e., mean and standard 

deviation). The advantage of this approach is that geology-based VS30-proxy models can be used 

to estimate VS30 at sites with no VS measurements at a state-wide scale. The fundamental drawback 

of Wills et al. (2015) is that it does not distinguish between nuanced geologic features, which may 

prove to be significant in a smaller regional study such as the Delta.  

The young (Holocene) alluvial deposits which occupy much of the Delta are classified 

within the “Qal1” geological unit of Wills et al. (2015) – Quaternary-Holocene alluvium in areas 

of very low slopes. Furthermore, much of the Delta is underlain by peaty-organic deposits which 

are not aptly represented in Wills et al. (2015). Peat is a unique material because it possesses 

problematic characteristics (e.g., low shear strength, high compressibility, high water content, low 

VS, etc.), but also because it has the ability to vary widely spatially and temporally (Kazemian et 

al. 2011). Given the significant potential peat has to influence site response, it is important to 

http://www.vspdb.org/
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identify zones within the Delta where it occurs, therefore a detailed geologic map of the Delta is 

needed.  

Bay Delta Live (2021) provides a detailed geologic map applicable to much of the Delta 

region, and is presented in Figure 3.1. Much of the Delta can be described by four different types 

of alluvium or “peat and muck”, however there is also a large older eolian deposit along the 

southern bank of the San Joaquin River in the western portion of the Delta. Dredge soils, defined 

as an unconsolidated mixture of sediments produced from dredging and dumping activities, are 

encountered in the Sacramento River and near the Port of Stockton. Stiffer more-competent units 

(e.g., Montezuma Formation and Tertiary and Cretaceous Bedrock) are not encountered near the 

ground surface within the Delta legal boundaries (DWR 2018).  
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Figure 3.1: Detailed geologic map of the Delta region (source: Bay Delta Live 2021). 

 

(b) Stratigraphic Profiles 

The Department of Water Resources (DWR) has collected a considerable amount of data within 

the Delta region through field investigations for several projects, including the Peripheral Canal 

(Water Education Foundation 2010) and the Delta Habitat Conservation and Conveyance Program 

(DWR 2022). The alignments for each of these dictate where most of the data has been collected; 

Figure 3.2 shows the locations of 10,137 borings and 4,389 CPTs along the project alignments. 
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Additional data is available through the community shear wave velocity profile database (VSPDB; 

Ahdi et al. 2018) for select locations from Caltrans for sites near the Antioch Bridge and from 

various research studies. It would take a monumental effort to digitize the large number of DWR 

CPTs and boring logs, therefore these data have not been organized and uploaded to the VSPDB 

except in cases where they are co-located with VS profiles. The borehole and CPT data can be 

accessed through the California Natural Resources Open Data web portal 

(https://data.cnra.ca.gov/).    

The available stratigraphic data indicate that peat is present in 89% of borings and CPTs 

performed for several specific DWR projects in much of the central Delta (i.e., Primary Zone), but 

its thickness is typically modest. Peat makes up about 18% of soils encountered within depths of 

0-10 m across much of the Delta with notable exceptions on Sherman, Twitchell, and several other 

neighboring islands where deposits can be up to 15 m thick. Underlying the peat are interbedded 

layers of clays, silts, and sands. In the interiors of Delta islands, ground water is approximately 1.5 

m below the ground surface, and is controlled by pumping related to agricultural activities, 

otherwise ground water would seep out the surface. 

 

https://data.cnra.ca.gov/
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Figure 3.2: Locations of measured stratigraphy via CPT or boring. Inset maps present areas with 

a high density of measurements: (a) near Bethel Island and (b) Clifton Court. Delta legal boundary 

and primary zone delineation is from DWR (2018). 

 

(c) Shear Wave Velocity Profiles 

At the onset of my work, the VSPDB included only 27 VS profiles in and around the Delta, most 

of which located near the edge of the legal boundary (i.e., in environments where peat is not 
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typically encountered). I performed an exhaustive search for data from VS profiles published in 

literature or made available through publically available means (e.g., Caltran’s digital archive of 

geotechnical data – GeoDOG; https://geodog.dot.ca.gov/). This effort produced 17 VS profiles 

shared by Mitchell Craig of California State University, East Bay, one profile from Caltrans 

(Bridge 28-0009), and two profiles shared by Albert Kottke of Pacific Gas and Electric (PG&E). 

DWR, who sponsored much of the work presented throughout this dissertation, shared data from 

a total of 122 new VS profiles (DWR 2012, 2013a-b, 2014a-e, 2015a-b, 2016, 2017; Mike Driller 

personal communication 2018; Mark Pagenkopp personal communication 2019). Lastly, I was 

actively involved with measuring VS data at six additional sites via the sCPT method, as discussed 

in Section 3.2.2(a). All newly assembled data from 155 VS profiles were uploaded to the VSPDB, 

and are accessible at https://vspdb.org/ (Kwak et al. 2021). The locations of these profiles are 

presented in Figure 3.3.  

The VS data were generally obtained from downhole testing during sCPT soundings, 

suspension logging in boreholes, or surface wave testing (SASW or MASW). The majority of 

profiles do not extend deeper than approximately 30 m with velocities at this horizon ranging from 

300 to 400 m/s. Measurements from four suspension logs performed at depths around 90 m 

encountered deep layers with VS between 400 to 600 m/s, these results indicate that much of the 

Delta is composed of a relatively thick layering of soils overlying more competent materials at 

great depths. The typical VS for consolidated peat below Delta levees ranges between 40 to 110 

m/s, and 25 to 80 m/s for unconsolidated free-field deposits. Even underlying nonorganic deposits 

(e.g., soft silty clay to stiff clay) can be exceptionally low ranging between 70 to 190 m/s. 

 

https://geodog.dot.ca.gov/
https://vspdb.org/
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Figure 3.3: Locations of measured shear wave velocity (VS) profiles, the corresponding source of 

data (VSPDB, newly assembled, or measured as part of field explorations related to the work 

presented in this dissertation), and type of site condition (levee or free-field). Inset maps present 

areas with a high density of measurements: (a) Hood, CA, (b) Antioch Bridge, and (c) Clifton 

Court. 
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(d) H/V Measurements 

H/V data has not historically been widely used by practitioners or government agencies in the 

United States, therefore there are very few publically-available measurements in the Delta. One 

firm at the forefront of advocating the collection and use of H/V data is Geometrics, who have 

gathered data worldwide (https://seisimager.com/). Their collection efforts include measurements 

at four sites within the Delta, which are stored in the VSPDB as processed mHVSR curves with 

associated metadata. Given the relevance of information provided from HVSR to site response 

studies, I deployed temporary seismometers at 41 locations to measure H/V which facilitates the 

development of mHVSR-T curves (further discussion provided in Sections 3.2.2(b) and 3.3.3). 

Ambient ground vibrations (i.e., noise) recorded by six permanent seismometers were used where 

field testing was infeasible (i.e., mHVSR-P). Locations of 52 H/V measurements with 

corresponding mHVSR curves are shown in Figure 3.4. Processed mHVSR curves for all sites are 

accessible through the VSPDB at https://vspdb.org/ (Kwak et al. 2021). 

 

https://seisimager.com/
https://vspdb.org/
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Figure 3.4: Locations of H/V data and the corresponding source of data (VSPDB, mHVSR-P, or 

measured as part of field explorations related to the work presented in this dissertation – mHVSR-

T). Inset maps present areas with a high density of measurements: (a) Antioch Bridge, (b) near 

Bethel Island, and (c) Holland Tract.  
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3.2.2. Field Explorations 

The motivation for assembling geotechnical site characterization data in the Delta stems from the 

need to develop site parameters at seismic stations for the purpose of modeling site response. A 

total of 54 stations have recorded earthquake shaking in the Delta since 1969. Figure 3.5 presents 

the locations of these “Delta stations” and whether or not VS and/or H/V data were available 

following the data synthetization effort discussed in Section 3.2.1. A total of 8 stations (or 15%) 

had nearby VS profiles and only 2 (or 4%) had an available mHVSR. Many of the Delta stations 

have significant numbers of earthquake recordings, however their value to the seismological and 

earthquake engineering communities would be significantly enhanced with additional 

geotechnical work. As a result, three field-testing programs were organized and executed in 

coordination with DWR during August-September 2019, December 2020, and March 2022. The 

aims of these investigations were to measure VS profiles (from which VS30 could be computed), 

stratigraphic logs (from which 𝑡𝑝 can be obtained), and H/V data (from which HVSR curves can 

be derived).  

Delta stations were assigned one of three priority levels conditioned on the number of 

available earthquake recordings and available site characterization data. Sites with ≥ 5 recordings 

that were missing 𝑡𝑝, VS, and/or H/V data were assigned the highest priority level. Sites with no 

missing data or decommissioned stations with few recordings were assigned the lowest priority. 

Active stations with few recordings and missing geotechnical data were given an intermediate 

level of priority, because they have the potential to record additional earthquakes in the future. 

Table 3.1 summarizes the type of geotechnical data at each site prior to the field explorations and 



 

92 

 

associated priority level for Delta stations. The following subsections describe the aspects of the 

field explorations related to collecting stratigraphic, VS, and H/V data. 

 

 

Figure 3.5: Locations of 54 “Delta seismic stations” and available site characterization data 

“before” and “after” field explorations. Inset maps present areas with many instruments: (a) 

Antioch Bridge, (b) near Bethel Island, and (c) Holland Tract. 
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Table 3.1: Summary of missing geotechnical site characterization data and priority level. 

Delta Station Latitude (o) Longitude (o) mHVSR Vs Stratigraphy Priority Level 

BK_JEPS 38.2579 -121.8252 No No No 1 

BK_TWIT 38.0971 -121.6832 No No No 1 

CE_57195 37.9753 -121.3140 No No No 1 

CE_57531 37.9332 -121.6956 No No No 1 

CE_57534 37.9119 -121.6219 No No No 1 

CE_67070 38.0150 -121.8130 No No No 3 

CE_67215 37.9925 -121.6384 No No No 1 

CE_67265 38.0377 -121.7515 No Yes Yes 2 

CE_67266 38.0179 -121.7516 No Yes Yes 1 

CE_67523 38.0183 -121.7509 No Yes Yes 1 

CE_67533 38.0155 -121.6396 No No No 1 

CE_67557 38.0141 -121.8148 No No No 2 

CE_67587 38.0390 -121.8986 No No No 1 

CE_67615 38.0005 -121.7830 No No No 1 

CE_67910 38.0435 -121.7520 No No No 2 

NC_C057 37.9555 -121.6979 No No Yes 1 

NP_DIX 38.3771 -121.8424 No No No 1 

NP_EMR 38.0605 -121.4993 No No Yes 1 

NP_KIR 38.0551 -121.4582 No No Yes 1 

NP_LVA1 38.0334 -121.7647 No No No 2 

NP_LVA2 38.0332 -121.7635 No No No 2 

NP_LVA3 38.0328 -121.7631 No No No 1 

NP_LVA4 38.0335 -121.7634 No No No 1 

NP_LVB1 37.9099 -121.5654 No No No 2 

NP_LVB2 37.9098 -121.5656 No No No 2 

NP_LVB3 37.9102 -121.5649 No No No 2 

NP_LVB4 37.9097 -121.5656 No No No 2 

NP_MCD 37.9802 -121.4735 No No No 1 

NP_PLA 37.7987 -121.4632 No No No 1 

NP_SIA 38.0503 -121.7367 Yes No No 1 

WR_AWTP 37.9906 -121.8100 No No No 2 

WR_CKR 38.3145 -121.4920 No No Yes 1 

WR_CLFN 37.8570 -121.5730 No Yes Yes 1 

WR_CLFS 37.8273 -121.5604 No No No 1 

WR_HOLT 37.9551 -121.4227 No No No 1 

WR_MOFF 38.0925 -121.8849 No No Yes 2 

WR_MONN 38.0929 -121.8855 No Yes Yes 1 

WR_SHER 38.0306 -121.7450 No Yes Yes 1 
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Delta Station Latitude (o) Longitude (o) mHVSR Vs Stratigraphy Priority Level 

WR_SIFF 38.0311 -121.7450 No No Yes 1 

WR_STNI 38.1197 -121.5401 No Yes Yes 1 

YU_CEC 37.9381 -121.5968 No No No 1 

YU_HMT 37.9749 -121.5813 No No No 1 

YU_HOL1 37.9748 -121.5818 No No No 1 

YU_HOL2 37.9733 -121.5823 No No Yes 1 

YU_HOL3 37.9733 -121.5844 No No No 1 

YU_SMB 37.9977 -121.6262 Yes No No 3 

YU_SMT 37.9982 -121.6252 No No No 1 

YU_SRB 38.0109 -121.6249 No No No 3 

YU_SRT 38.0107 -121.6246 No No No 1 

YU_STF 37.9925 -121.4516 No No No 3 

YU_WHR 37.8984 -121.4508 No No No 1 

 

(a) Seismic Cone Penetrometer (sCPT) Testing 

sCPT is a quick, reliable, and relatively cheap method used to measure VS in situ using a surface 

source and downhole (within-CPT) geophone, and with the added benefit of also collecting 

information related to penetration resistance and stratigraphic layering (i.e., 𝑡𝑝). Original plans 

included performing sCPTs at all intermediate and high priority level sites, however obtaining 

permission from land owners proved to be difficult. Ultimately, we received permission to perform 

the tests at a total of seven sites, the locations of which are represented by red markers in Figure 

3.3. Gregg Drilling, LLC was contracted to perform the measurements within 5-50 m of each 

seismic station to a terminating depth of 35 m or until refusal is encountered (whichever came 

first). Shear wave travel time data was collected every 1.5 m using an electronic wave generator 

attached to the CPT rig coupled to the ground surface, as shown in Figure 3.6(a). 
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Figure 3.6: (a) Photo of CPT rig and electronic wave generator; (b) Peat cuttings excavated when 

drilling the pilot hole with a hand auger. 

 

The objectives of these tests included obtaining a representative VS profile which could 

be used to calculate VS30 and to identify the presence and thickness of peaty-organic layers. Peat is 

usually encountered near the ground surface where it is difficult to accurately measure penetration 

resistance (from which SBT is calculated to infer soil-type). A pilot hole was usually drilled to a 

depth of 1-2 m to ensure that no utilities are severed during the test and to assist in aligning the 

cone vertically. An added benefit of this step was that we could inspect the cuttings directly to 

identify the soil-type and relative thicknesses of shallow layers, as shown in Figure 3.6(b). 

Methods presented in Robertson (2016) were used to correct for overburden effects and to 

normalize the as-recorded 𝑞𝑐 and 𝑓𝑠, from which SBT are calculated. Layers with SBT values of 2 

are interpreted to be organic soil (i.e., peat). Peat was encountered at three of the seven sites 

investigated with low-to-moderate thicknesses (<1 m – 2 m).    
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All collected data (𝑞𝑐, 𝑓𝑠, 𝑢2, and VS) are available through the VSPDB at 

https://vspdb.org/ (Kwak et al. 2021). Interpretation and analysis of the VS results is presented in 

Section 3.3.2. 

(b) Microtremor Horizontal-Over-Vertical Measurements  

H/V tests are inexpensive non-invasive geophysical measurements that do not require the level of 

permitting or time that invasive site characterization methods need (e.g., CPT and borings). HVSR 

curves can be derived from permanent broadband seismometers (i.e., mHVSR-P) if they 

continuously stream data that is accessible through web services. In several instances, we have 

also deployed temporary three-component broadband seismometers where possible to develop 

usable HVSR curves (i.e., mHVSR-T). The purpose of these mHVSR-T campaigns was to (1) test 

the similarity of mHVSR from permanent and temporary sources and (2) to obtain reliable 

mHVSR data where broadband seismometers are not present, which is the case at 30 of the 54 

stations. Jemile Erdem of the USGS loaned the necessary equipment which facilitated the 

measurement of H/V data at 41 locations, which are shown by red markers in Figure 3.4. Special 

access onto private property was granted through correspondence with DWR, Pittsburg Power 

Plant, Reclamation District No. 341, and four private land owners. Several tests were performed 

on public land near the seismic station (< 100 m). 

The H/V method involves placing a three-component seismometer on the ground surface 

(or buried at a shallow depth – approximately 7.5 to 15 cm) over a length of time to record the 

natural vibrations of the earth, as shown in Figure 3.7. Each measurement was performed within 

practical distances to the seismic station or historic coordinates at decommissioned stations (<10 

m for private sites or <100 m for tests on public lands). The total duration of time is proportional 

https://vspdb.org/
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to the lowest usable frequency of the HVSR curve [discussed in Section 3.3.3(a)]. Since lower 

frequencies potentially provide information about larger geologic structures (i.e., basin resonance), 

I recorded ambient vibrations at each site between 2.5 to 4 hours, which theoretically is sufficiently 

long to resolve resonant frequencies as low as 0.1 Hz. Two seismometers (Güralp 3ESP and 

Trillium Compact) are used as a standard for redundancy.   

 

 

Figure 3.7: (a) Photo of typical H/V equipment setup using two different seismometers (Güralp 

3ESP and Trillium Compact); (b) H/V equipment setup when recording with insulated covers to 

protect from the elements (primarily wind and heat). 

 

The quality of ground coupling can significantly impact the results of the processed HVSR 

curve (SESAME 2004). Burying the sensor into dry somewhat competent soil provides the best 

results and was exercised whenever possible. In urban settings or on surfaces which were too stiff 

to excavate using hand tools, the sensor was placed on the ground surface. Insulated covers 
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(buckets with Mylar foil bubble insulation on their interior) are used to protect the sensor from 

wind and extreme heat, which may introduce artificial noise into the recording, thus contaminating 

the HVSR.  

The raw data and associated metadata collected through my efforts are published as a 

curated dataset on DesignSafe (Buckreis et al. 2021). Processed mHVSR-T are available through 

the VSPDB at https://vspdb.org/ (Kwak et al. 2021). Processing procedures, interpretation, and 

analysis of H/V data are presented in Section 3.3.3.  

3.3. Analysis of Site Characterization Data 

Traditional geotechnical engineering is generally concerned with the mechanical properties of 

different soils and rock (i.e., strength, compressibility, plasticity, etc.). While these metrics are 

important, ground motion modeling utilizes representative site parameters to describe the average 

site condition for use in site response models. Early GMMs explored qualitative parameters which 

describe the general site condition as either “soil” or “rock”. However, modern modelers have 

adopted the use of quantitative parameters such as VS30. The most accurate site parameters are 

those which are derived from site-specific data, although proxy-based methods can be used to 

estimate them in the absence of site characterization data. This section presents analyses of the site 

characterization data discussed in Section 3.2 with special emphasis on assigning site parameters 

to the Delta stations shown in Figure 3.5.  

3.3.1. Peat Thickness 

Peat is an unusually soft and weak material with high small-strain damping (Wehling et al. 2003; 

Kishida et al. 2009). Numerical studies have shown that the presence of peat within the soil column 

https://vspdb.org/
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can have an impact on the overall site response (Kishida et al. 2008; Wang et al. 2022b). 

Accordingly, the thickness of peat (𝑡𝑝) encountered at a site is considered a potentially useful site 

parameter. The utility of 𝑡𝑝 goes beyond site response modeling to include application in 

consolidation, settlement, and other traditional geotechnical analyses.  

Site-specific values for 𝑡𝑝 are easily measured or interpreted from the stratigraphic data 

presented in Section 3.2.1(b). However, 𝑡𝑝 may need to be estimated for locations far from any in 

situ measurement. Deverel and Leighton (2010) present a peat thickness map developed using 

kriging interpolation of data from Atwater (1982), which is shown in Figure 3.8. Estimates for 𝑡𝑝 

can be easily queried from the raster using geodetic coordinates.  

A caveat to this map is that is represents peak thickness circa 1982. Due to subsidence, 

lower peat thicknesses can be anticipated at the present time where the peat is not replenished via 

an active depositional process. To examine the possibility of over-prediction of peat thickness 

using the map in Figure 3.8, I assembled an empirical 𝑡𝑝 dataset from 401 boring logs and CPTs 

performed since 1990, the locations of which are shown in Figure 3.8. Evidence of bias is observed 

when plotting 𝑡𝑝 against the predicted peat thickness (�̂�𝑝), as demonstrated in Figure 3.9(a).  
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Figure 3.8: Locations of CPT and borings performed since 1990 within the area described by the 

Deverel and Leighton (2010) peat-thickness map; Triangle symbols represent measurements 

through a levee and circle symbols represent free-field measurements. 
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Figure 3.9: Plot comparing post-1990 measured peat thicknesses (𝑡𝑝) versus estimated thickness 

(�̂�𝑝) from Deverel and Leighton (2010); (a) all sites together; (b) free-field only sites; (c) levee 

only sites. 

 

The empirical 𝑡𝑝 dataset includes free-field and through-levee measurements. The degree 

of over-prediction observed for the two site conditions is different, as shown in Figure 3.9(b-c). 

Several factors contribute to the general subsidence observed including oxidation and wind erosion 

of exposed desiccated peat, consolidation, and ground water extraction (Deverel and Leighton 

2010). Of these factors, consolidation is likely the mechanism driving the over-prediction at levee 

sites, with oxidation and wind erosions likely negligible. Peat possesses relatively large 

coefficients of primary, secondary, and tertiary compression (Wong et al. 2009). Soils beneath 

levees are exposed to greater vertical consolidation stresses imposed by the self-weight of the levee 

fill. The ultimate amount of consolidation is directly proportional to the coefficients of 

consolidation, the consolidation stress, and stress-history of the soil (i.e., over-consolidation ratio, 

OCR). Soils under larger loading will experience greater amounts of consolidation, all other factors 

held constant. In the free-field sites, consolidation would be expected to be less significant, but 
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oxidation and wind erosion could be appreciable because these peats extend to the surface where 

they are exposed to the atmosphere. The results in Figure 3.9 suggest that of these competing 

factors, the high degrees of consolidation at levee sites are more significant and lead to greater 

reductions of peat thickness since 1982.  

To evaluate trends in the bias, I compute residuals (ln 𝑡𝑝 − ln �̂�𝑝) and plot them against �̂�𝑝, 

as shown in Figure 3.10. A rather constant trend of over-prediction is observed at both free-field 

and levee sites when �̂�𝑝 > 1-3 m, which I interpret to be a result of subsidence effects. Conversely, 

𝑡𝑝 appears to be under-predicted at sites predicted to have minor deposits (�̂�𝑝< 1-3 m). This 

observation is likely an artifact of available data and kriging interpolation, in combination with the 

fact that subsurface layers of peat will never fully disappear. In other words, thin layers of peat 

will experience some degree of subsidence, however the thicknesses are unlikely to go to zero 

unless removed through natural processes (i.e., weathering and erosion) or human excavation.  

 

 

Figure 3.10: Residuals versus estimated peat thickness (�̂�𝑝) from Deverel and Leighton (2010) and 

proposed adjustment; (a) free-field only sites; (b) levee only sites. 
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To correct for subsidence effects, I apply a bilinear adjustment to re-center the residuals 

about zero: 

 𝑡𝑝
∗ = {

�̂�𝑝 × exp (𝑎�̂�𝑝 + 𝑏)

�̂�𝑝 × exp (𝑎𝑡 + 𝑏)  
  
, �̂�𝑝 < 𝑡

, �̂�𝑝 ≥ 𝑡
  (3.1) 

where 𝑡 represents the predicted thickness beyond which constant over-prediction is observed (in 

meters), 𝑎 is the slope of the adjustment ramp (i.e., trend for minor deposits), and 𝑏 is a constant 

adjustment when �̂�𝑝 is zero. Coefficients are regressed separately for free-field and levee sites, and 

are reported in Table 3.2. The proposed adjustment models for each site condition are shown in 

Figure 3.10. 

 

Table 3.2: Coefficients of peat thickness adjustment model (for Deverel and Leighton 2010). 

Site Condition 𝒕 (m) 𝒂 𝒃 (m) 𝝈 (m) 

Free-Field 1.00 -1.2665 0.75 0.99 

Levee 3.10 -0.7031 1.36 0.70 

 

3.3.2. VS30 

(a) Data Distributions 

The most commonly used site parameter in site response models is VS30, which represents the time-

average VS in the upper 30 m of the soil column (e.g., Borcherdt 1994): 

 𝑉𝑆30 =
30 m

𝑡𝑡30
  (3.2) 
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where 𝑡𝑡30 is the duration of time needed for shear waves to travel from a depth of 30 m to the 

ground surface, 

 𝑡𝑡30 = ∫
𝑑𝑧

𝑉𝑠(𝑧)

𝑧=30 m

𝑧=0 m
  (3.3) 

In practice VS30 is computed as a summation across depth intervals of constant velocities, and 

provides a quantitative basis for assigning site class (i.e., NEHRP site class; Dobry et al. 2000). 

The formulation of Equation (3.2) is based on the theoretical definition for velocity, which leads 

to softer layers (i.e., lower VS) having a greater influence on VS30. As discussed in Section 3.2.1(c), 

peats have characteristically low VS values, which lead to relatively low VS30. Values of VS30 

computed from all profiles measured to depths greater than 30 m in the Delta range from 59 to 392 

m/s, with an average value of approximately 206 m/s as shown in Figure 3.11.  

 

 

Figure 3.11: Histogram of VS30 computed from measured VS profiles with 𝑧𝑝 ≥ 30 m in the Delta. 
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The VS30 distributions shown in Figure 3.11 are computed from profiles with and without 

peaty layers, so the average value shown does not provide a good representation for sites with peat. 

These sites can be partitioned based on expected surficial geology (Bay Delta Live 2021) into six 

sub-groups: 

1. Peat and Muck: peat and mud of tidal wetlands and waterways (Holocene). 

2. Alluvium (Supratidal Floodplain): flood basin deposits (Holocene). 

3. Eoloian Deposits: eolian deposits of upper Modesto formation (upper Pleistocene). 

4. Alluvial Fan (Modesto Formation): alluvial fans from glaciated basins – Modesto 

formation (Pleistocene). 

5. Alluvial Fan (Riverbank Formation): alluvial fans from glaciated basins – Riverbank 

formation (upper Pleistocene). 

6. Alluvial Fan (Unglaciated): alluvial fans and terraces from unglaciated drainage basins 

(Holocene – upper Pleistocene). 

Figure 3.12 presents individual histograms of VS30 for each of the six geologic groups. Peat 

sites (Group 1) have an average VS30 of 157 m/s, while most non-peat sites (Groups 2-6) have 

average VS30’s ranging from 218 to 261 m/s. The Alluvial Fan (Riverbank Formation) group is 

atypically stiff with an average VS30 value of 340 m/s, however this unit is not typically encountered 

within the Delta legal boundaries (illustrated in Figure 3.1). As discussed in Section 3.2.1(a), all 

of these sites are mapped as “Qal1” in Wills et al. (2015), which has a predicted VS30 value of 228 

m/s. The Wills et al. (2015) VS30 prediction reasonably captures the behavior observed for non-

peat sites with the exception of Alluvial Fan (Riverbank Formation), as shown in Figure 3.12. 
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Figure 3.12: Histograms of VS30 grouped by Bay Delta Live (2021) geologic unit; mean and 

standard deviation are shown by solid and dashed red lines, respectively; geology-based VS30 

prediction from Wills et al. (2015) shown by black marker with error bar; (a) Peat and Muck; (b) 

Alluvium (Supratidal Floodplain); (c) Eolian Deposits; (d) Alluvial Fan (Modesto Formation); (e) 

Alluvial Fan (Riverbank Formation); (f) Alluvial Fan (Unglaciated).  

 

(b) Peat Thickness VS30 Proxy Model 

VS30 values computed from measured VS profiles are used as site parameters for 13 Delta stations, 

as shown in Figure 3.5. Proxy-based methods are required to estimate VS30 at the remaining 41 

stations from other site parameters including geology, terrain, and topographic slope, however, 

existing models are not calibrated for sites with peat. One option is to develop a new geology 

category calibrated for Peat and Muck sites as assigned from the Bay Delta Live (2021) map, for 
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which a constant value would be assigned. The constant value is estimated by computing the 

average VS30 in natural log units for the combination of all Peat and Muck sites and profiles which 

include peat. I refer to this option as proxy model “0”: 

 ln(�̅�𝑆30)0 =
1

𝑁
∑ ln (𝑉𝑆30,𝑖)
𝑁
𝑖=1   (3.4) 

where ln(�̅�𝑆30) represents the VS30 estimate in natural log units,  𝑉𝑆30,𝑖 is the 𝑉𝑆30 value for profile 

i, and N represents the total number of profiles. ln(�̅�𝑆30)0 is estimated to be equal to 5.0516, which 

corresponds to a VS30 value of about 156 m/s.  

Since VS30 is strongly influenced by soft layers, 𝑡𝑝 holds significant potential to predict 

VS30. Figure 3.13 plots VS30 against 𝑡𝑝, and in general as 𝑡𝑝 increases VS30 decreases. A VS30 proxy 

model for peat sites which uses 𝑡𝑝 as the sole independent variable may be expressed as: 

 ln(�̅�𝑆30) =  𝜇ln𝑉𝑆30 + 𝐶(𝑡𝑝 − 𝜇𝑡𝑝)  (3.5) 

where 𝜇ln𝑉𝑆30 is the natural log mean of all VS30 computed from sites with peat, 𝜇𝑡𝑝 is the mean 

peat thickness in units of meters, and 𝑡𝑝 is the peat thickness at the site of interest. The purpose of 

𝜇ln𝑉𝑆30 and 𝜇𝑡𝑝 are to center the model with respect to ln (𝑉𝑆30) and 𝑡𝑝 so that only a slope 

coefficient (𝐶) need be regressed. Slight differences are observed in the trends between free-field 

and levee sites, therefore two alternate proxy models are considered: ln(�̅�𝑆30)1 which uses a 

general set of coefficients and ln(�̅�𝑆30)2 which uses separate sets of coefficients conditioned on 

site condition (free-field or levee). Table 3.3 summarizes the coefficients of each model, which are 

shown as solid curves in Figure 3.13. 
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Figure 3.13: Plot of peat thickness (𝑡𝑝) versus VS30; regression models for levee, free-field, and 

general site conditions included. 

 

Table 3.3: Summary of peat-thickness VS30 proxy model coefficients. 

Proxy Model Site Condition 𝝁𝐥𝐧𝑽𝑺𝟑𝟎 𝝁𝒕𝒑 (m) 𝑪 𝐥𝐧 𝝈 

𝐥𝐧(�̅�𝑺𝟑𝟎)𝟎 Any 5.0516 - - 0.3953 

𝐥𝐧(�̅�𝑺𝟑𝟎)𝟏 Any 5.0516 3.3000 -0.0928 0.2797 

𝐥𝐧(�̅�𝑺𝟑𝟎)𝟐 
Free-Field 5.0378 3.3885 -0.1039 0.2760 

Levee 5.1056 2.9547 -0.0358 0.2608 

   

 To evaluate the performance of each model, I compute residuals, ln(𝑉𝑆30) − ln (�̅�𝑆30), from 

which model bias and variability can be assessed. Additionally, I compare the performance of 

established models which are not calibrated to the soft-peaty conditions found in the Delta: 

 Wald and Allen (2007) – topographic slope based model. 
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 Yong et al. (2012) – terrain based model. 

 Wills et al. (2015) – geology and gradient based model. 

Histograms of residuals computed from each proxy model are shown in Figure 3.14. Model bias 

is represented by the mean value, where positive and negative values suggest under- and over-

prediction, respectively. Variability is quantified by the standard deviation. Table 3.4 provides a 

summary of each proxy model’s performance. 

 

 

Figure 3.14: Histograms of VS30 residuals computed from different proxy-based models; (a) peat-

geology model [ln(�̅�𝑆30)0] (b) peat-thickness general model [ln(�̅�𝑆30)1]; (c) peat-thickness levee 

and free-field specific coefficients [ln(�̅�𝑆30)2]; (d) geology based (Wills et al. 2015); (e) terrain 

based (Yong et al. 2012); and (f) slope based (Wald and Allen 2007).  
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Table 3.4: Summary of VS30-proxy model performance in the Delta. 

Proxy Model 
Bias 

(mean of residuals) 

Variability 

(standard deviation of residuals) 

𝐥𝐧(�̅�𝑺𝟑𝟎)𝟎 0.0000 0.3953 

𝐥𝐧(�̅�𝑺𝟑𝟎)𝟏 0.0000 0.2797 

𝐥𝐧(�̅�𝑺𝟑𝟎)𝟐 0.0000 0.2728 

Wald and Allen (2007) -0.2864 0.4207 

Yong et al. (2012) -0.4141 0.4124 

Wills et al. (2015) -0.2553 0.3811 

 

All three established models over-predict VS30 at peaty sites and have relatively large 

variabilities (0.38 – 0.42). This is to be expected as these models are not well calibrated for soft 

peaty soil conditions. Therefore, estimated values using these proxy models will result in 

inaccurate results. The geology-based constant adjustment presented at the start of this section 

(ln(�̅�𝑆30)0) significantly reduces the bias, however the variability (0.40) is comparable to the 

established models. It is for this reason that I considered a proxy model conditioned on 𝑡𝑝, aiming 

to not only reduce the bias, but also to reduce variability. As expected, bias from the 𝑡𝑝 based 

models are practically zero (expected because dispersion is computed from the same data used 

during model development), and uncertainty is the lowest (0.27-0.28).  

The performance of ln(�̅�𝑆30)2 is slightly better than ln(�̅�𝑆30)1, which is to be expected 

given the use of additional independent variables. VS30 at levee sites with negligible 𝑡𝑝 is predicted 

to be about 180 m/s as compared to 220 m/s in the free-field. There is a reversal of this trend at a 

𝑡𝑝 of about 2.5 m, as observed in Figure 3.14. One justification may be that the levee-fill materials 

(usually native clays and silts mixed with organics) have unusually low VS, which results in a low 

VS30. Furthermore, the stronger scaling of VS30 with 𝑡𝑝 for free-field conditions than for levee sites 
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may be a result of smaller confining stresses. Confining stresses imposed on peat underneath levees 

will increase their stiffness and reduce their thickness; both of these factors would be expected to 

reduce the overall influence of the peat layer in the VS30 calculation. However, this reasoning is 

speculative, and given the limited available data for levee sites with 𝑡𝑝 ≥ 4 m, there is insufficient 

evidence to conclude that the differences observed between free-field and levee sites is 

meaningful. Therefore, the generalized 𝑡𝑝 based proxy model [ln(�̅�𝑆30)1] is preferred and applied 

to assign site parameters in this project.  

3.3.3. mHVSR 

H/V data is used to develop HVSR curves from which site period and possible resonance effects 

in the site amplification can be identified (Nakamura 1989). The data described in Section 3.2.2(b) 

are time-domain signals of ground vibrations, which require processing and post-processing before 

site parameters can be estimated. This section presents the processing protocols and post-

processing routine which was implemented to assign site parameters at Delta stations.  

(a) Processing 

I implement the procedures proposed by Wang et al. (2022a) in R (R Core Team 2022), which are 

an update to traditional methods (SESAME, 2004; Molnar et al. 2022) to convert time-domain 

signals to mHVSR. These procedures differ slightly from those built into the widely used Geopsy 

software (Wathelet et al. 2020), and can be summarized into six steps: 

1. Windowing 

2. Antitriggering 

3. Signal processing 
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4. Combining horizontal components 

5. HVSR calculation 

6. Resampling and decimation 

The first step requires subdividing the recorded ambient vibrations into windows of shorter 

durations. The lowest prominent peak (𝑓0) in the mHVSR spectrum should be greater than 10/𝑇𝑤𝑖𝑛, 

where 𝑇𝑤𝑖𝑛 is the window length used in seconds (SESAME 2004). However, 𝑓0 can only be 

reliably used if there are a sufficient number of significant cycles (𝑁𝑐𝑦𝑐) within each window, 

defined as: 

 𝑁𝑐𝑦𝑐 = 𝑇𝑤𝑖𝑛𝑓0𝑁𝑤𝑖𝑛  (3.6) 

where 𝑁𝑤𝑖𝑛 represents the number of windows used in the mHVSR spectrum computation. To 

reduce dispersion, especially at low-frequencies, more windows are recommended. Recall, 

ambient vibrations were recorded at each site spanning durations between 2.5 to 4 hours. 𝑇𝑤𝑖𝑛 of 

300 to 450 sec where used during processing (satisfying 𝑁𝑤𝑖𝑛 ≥ 20) to ensure that each mHVSR 

could be reliably used at frequencies above 0.1 Hz (within the frequency domain described by 

GMMs). Since each site possessed ample data, non-overlapping windows are defined. Figure 3.15 

illustrates the windowing procedure for site CE 67265.  
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Figure 3.15: Ambient vibrations recorded at CE_67265. Windowing is performed using 𝑇𝑤𝑖𝑛 = 

300 sec, and individual windows are selected to exclude transient excitations (i.e., antitriggering). 

 

The second step is to perform antitriggering. “Triggering” refers the recording of temporary 

vibrations (or excitations) within a window. Ambient vibrations have relatively uniform 

amplitudes over most time intervals (Molnar et al. 2018), while vibrations caused by traffic or 

other industrial sources will produce transient signals. These transient signals can introduce 

undesirable variability into mHVSR, which is the motivation for antitriggering, or rejection of 

windows with contaminated data. Antitriggering is performed in the time-domain, as illustrated in 

Figure 3.15, and subsequently in the frequency-domain, if necessary. If any component for a 

particular window is found to be problematic, the entire window (three components) is removed. 

The vast majority of Delta stations are in rural locations away from potential sources of 

transient signals, however seven sites are located in busy urban environments (CE_57195, 

CE_57531, CE_67215, CE_67577, CE_67615, CE_67642, and NC_C057), and four others are 
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located within close proximity to the Antioch Bridge (CE_67265, CE_67266, CE_67523, and 

CE_67910). Careful considerations for antitriggering were made for these sites, however the 

accepted windows likely include a mix of true-ambient (low level noise) and low-amplitude 

triggered vibrations (high-level noise). HVSR methods utilize near-vertical incident waves, but 

also involve a significant contribution of surface waves. Triggered vibrations from industrial and 

traffic sources in close proximity to the sensor contain a mixture of surface and reflected, refracted, 

and direct body waves (Mihaylov et al. 2016). The mixture of wave types complicates the 

interpretation of HVSR, because transients may enhance peaks if they have the same frequency 

content as the site, or produce high-frequency peaks not representative of the site condition (Parolai 

and Galiana-Merino 2006). In such cases, it is difficult to determine if the fundamental resonance 

is suppressed by or enhanced by transient signals without a rigorous study. Furthermore, some 

studies suggest that the low-frequency portion of the mHVSR will have greater uncertainty when 

high-level noise is present (Castellaro and Mulargia 2009). These concerns are taken into 

consideration when deriving site parameters from mHVSR curves (discussed in the following 

section). 

Signal processing includes tapering, filtering, and smoothing which is applied to each 

window. A cosine taper with a length of 5% of 𝑇𝑤𝑖𝑛 (Chatelain et al. 2008) and a high-pass corner 

frequency of 0.1 Hz are applied to each window to reduce low-frequency drift in the waveforms. 

Filtering is required because it can influence the outcome of the smoothing operator. In principle, 

mHVSR should theoretically not be affected by filtering because the same filter is applied to all 

three components – this hypothesis was tested and some sensitivity to filtering was encountered 

for frequencies below the high pass filter corner frequency, but negligible differences were 

observed for frequencies above the high pass filter corner frequency, as illustrated in Figure 3.16. 
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Konno and Ohmachi (1998) smoothing is applied to reduce high-frequency noise and to facilitate 

identification of peak features. Spectral smoothing is applied to each component for each window 

individually using a bandwidth parameter equal to 30. 

 

6.

 

Figure 3.16: Comparison of mHVSR when different high-pass corner frequencies are used in 

record processing. (a) HVSR for wide frequency range (0.0005 to 100 Hz) showing differences 

below 0.1 Hz; (b) HVSR for more typical frequency range (0.1 to 100 Hz) showing negligible 

differences. 

 

It is necessary to combine the two as-recorded orthogonal horizontal components into a 

single representative horizontal component to facilitate the HVSR computation. The median 

component (RotD50; Boore 2010) is preferred given its general acceptance and use in ground-

motion studies. However, variable-azimuth components are also computed for distinct azimuths 

between 0 to 180 degrees by geometrically combining the two as-recorded horizontal components 

and both sets of results are provided in the HVSR component of the database (Kwak et al. 2021).  
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HVSR is computed by dividing the smoothed horizontal-component Fourier amplitudes by 

the smoothed vertical-component Fourier amplitude. This is performed for each window, and a 

mean HVSR is obtained by taking the average across windows at each frequency. This averaging 

provides additional smoothing beyond the Konno Ohmachi (1998) smoothing applied to individual 

components. The dispersion of HVSR is computed as the standard deviation of all windows at 

each frequency.  

Lastly, resampling and decimation is required to provide a uniform level of resolution on 

a log frequency scale. The effect of this step is an increase of resolution at low frequencies and 

decrease at high frequencies (the number of samples does not change).  

Figure 3.17(a) shows an example mHVSR curve for the CE 67265 site. Variable 

components are used to construct a polar curve (as shown in Figure 3.17b), from which azimuthal 

variation of mHVSR can be inferred. Polar curves are used to detect complexity that does not 

conform with the assumptions of one-dimensional wave propagation (Cheng et al. 2020). The 0.9 

Hz resonance clearly visible in Figure 3.17 spans across all azimuths, but is strongest in the north-

south direction (0o – 20o and 160o – 180o). Site CE 67265 is positioned between two piers of the 

Antioch Bridge (~60 m span), which is oriented in the north-south direction. The higher energy 

associated with the north-south direction is likely a result of vibrations transferring from the 

structure into the ground, which is generally observed for frequencies in the range of 0.3 – 20 Hz.  
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Figure 3.17: (a) Mean mHVSR curve for CE_67265, HVSR for individual windows shown by 

light gray lines; (b) Azimuthal variation of mHVSR at CE_67265.  

 

(b) Peak Identification  

I examined each mean mHVSR curve individually to identify “peak parameters” which may be 

useful in site response modeling. Peak parameters are those which describe peak features in the 

mean HVSR curve and include the frequency (𝑓𝑝), absolute amplitude (𝑎𝑝), relative amplitude to 

adjacent plateaus (𝑐1), and the half-width (𝑤𝑝). In previous sections f0 was used as a general 

descriptor of site fundamental frequency, however fp is now used to describe a fit parameter which 

can be used as a site parameter, and is expected to relate to f0. The peak detection algorithm 

proposed by Wang et al. (2021) is used to objectively identify peak features and assign 

corresponding peak parameters in R (R Core Team 2022).  

The Wang et al. (2021) algorithm implements a regression tree (Breiman et al. 1984) to 

simplify the mean HVSR curve into a step-wise function. The relative amplitudes and lengths of 

adjacent steps are used to identify peak features – if several peaks are identified the one at the 
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lowest frequency is preferred. If a peak feature is identified, the simplified regression tree data 

within the frequency range between the left-lower step to the right-lower step (relative to the peak 

step) is used to fit a Gaussian pulse function adapted from Ghofrani and Atkinson (2014): 

 𝐹𝐻/𝑉 = 𝑐0 + 𝑐1exp [−
1

2
(
ln(𝑓/𝑓𝑝)

2𝑤𝑝
)
2

] (3.7) 

where 𝑐0 is a frequency-independent constant representing the amplitude of the flat tails. The 

absolute amplitude of the peak is calculated as: 

 𝑎𝑝 = 𝑐0 + 𝑐1 (3.8) 

I added the ability to manually constrain the 𝑐0 parameter during the regression. This 

modification is necessary to adjust the fit at sites where the optimal fit is deemed to be 

unsatisfactory based on visual inspection. Figure 3.18 presents examples illustrating results of the 

peak identification algorithm and fitting routines for sites with no peak, one peak, and multiple 

peaks. Results for 45 Delta stations are summarized in Table 3.5 and shown in Figure 3.19. 

 

 

Figure 3.18: Examples results for peak identification algorithm and peak fitting routine of Wang 

et al. (2021) for Delta sites with (a) no peak, (b) one peak, and (c) multiple peaks. 
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Table 3.5: Summary HVSR peak fitting. 

Delta Station Peak Presence 𝒄𝟎 𝒄𝟏 𝒂𝒑 𝒇𝒑 (Hz) 𝒘𝒑 

BK_JEPS Y 0.8334 1.4573 2.2907 0.6613 0.4950 

BK_TWIT Y 0.9442 2.9397 3.8839 0.6913 0.3133 

CE_57195 N - - - - - 

CE_57531 Y 0.8142 1.5074 2.3216 0.7505 0.5000 

CE_57534 N - - - - - 

CE_67215 Y 1.1000 0.9144 2.0144 0.6945 0.3826 

CE_67265 Y 1.5713 6.1371 7.7084 0.8809 0.1677 

CE_67266 Y 1.5890 2.2760 3.8650 1.7009 0.1206 

CE_67523 Y 1.1000 0.9444 2.0444 2.8892 0.2637 

CE_67533 N - - - - - 

CE_67557 N - - - - - 

CE_67587 Y 1.1000 4.1500 5.2500 1.1052 0.2888 

CE_67615 N - - - - - 

CE_67910 Y 0.8000 4.5000 5.3000 2.3514 0.1821 

NC_C057 N - - - - - 

NP_DIX Y 1.2000 1.0257 2.2257 0.6891 0.3130 

NP_EMR Y 1.0000 3.8300 4.8300 1.0305 0.2848 

NP_KIR Y 1.4560 7.9000 9.3560 2.0822 0.3471 

NP_LVA1 Y 1.1533 3.0546 4.2079 0.7870 0.3674 

NP_LVA2 Y 1.1591 3.5715 4.7306 0.7405 0.3889 

NP_LVA3 Y 1.7500 3.4300 5.1800 1.0001 0.2506 

NP_LVA4 Y 1.1064 5.0877 6.1941 0.8552 0.3434 

NP_MCD N - - - - - 

NP_PLA N - - - - - 

NP_SIA N - - - - - 

WR_CKR N - - - - - 

WR_CLFN N - - - - - 

WR_CLFS N - - - - - 

WR_HOLT Y 1.2300 1.4383 2.6683 0.6471 0.3199 

WR_MOFF Y 0.9700 3.1800 4.1500 1.6487 0.3195 

WR_MONN Y 1.2299 4.2482 5.4781 1.3139 0.1755 

WR_SHER Y 1.1524 4.4550 5.6074 0.7317 0.4024 

WR_SIFF Y 1.0195 2.6451 3.6646 0.7347 0.2452 

WR_STNI Y 1.7900 1.3200 3.1100 1.8221 0.1000 

YU_CEC N - - - - - 

YU_HMT Y 1.2900 2.8563 4.1463 1.5527 0.2391 

YU_HOL1 Y 1.1500 2.6163 3.7663 2.1789 0.3855 

YU_HOL2 Y 1.1900 4.1514 5.3414 2.1240 0.2665 
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Delta Station Peak Presence 𝒄𝟎 𝒄𝟏 𝒂𝒑 𝒇𝒑 (Hz) 𝒘𝒑 

YU_HOL3 Y 1.0500 4.1947 5.2447 4.6526 0.2718 

YU_SMB Y 1.0000 4.2000 5.2000 8.4149 0.2000 

YU_SMT Y 1.5200 1.1500 2.6700 3.1582 0.2000 

YU_SRB Y 1.1020 3.4153 4.5172 5.9005 0.3105 

YU_SRT Y 1.5918 2.8039 4.3957 2.8786 0.2230 

YU_STF Y 1.2300 2.5040 3.7340 2.7315 0.1935 

YU_WHR Y 0.8694 1.0757 1.9451 3.0714 0.3752 
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Figure 3.19: Processed mHVSR curves for 45 Delta stations. Fit Gaussian peak (Equation 3.7) is 

shown in red for sites with identified peaks. 
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Figure 3.19: Continued. 
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Figure 3.19: Continued. 
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Figure 3.20 presents the summary statistics for 45 Delta stations with mean mHVSR curves 

derived from ambient vibrations. Approximately 50-70% of California sites do not have HVSR 

peaks depending on whether relatively liberal or conservative peak identification thresholds are 

adopted (Wang et al. 2021), however 32 (71%) of Delta sites are identified as having peaks, even 

using conservative criteria. One factor which produces peak features is the presence of a strong 

impedance contrast in the soil column, such as that observed between soft-peaty layers and stiffer 

underlying non-organic soils typically encountered at Delta sites. I interpret these peaks as being 

associated with resonance of the portion of the soil column above an impedance contrast, which 

includes the peat layers. The peak features are described by a relatively wide parametric range (i.e, 

0.65 Hz ≤ 𝑓𝑝 ≤ 8.41 Hz, 1.95 ≤ 𝑎𝑝 ≤ 9.36, etc.).  

 

 

Figure 3.20: Mean mHVSR peak summary statistics; (a) peak presence; (b) peak frequency; (c) 

relative peak amplitude; (d) absolute peak amplitude; and (e) peak width. 
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In most cases, I associate the peaks with soft peaty soils and soft non-organic soils, with 

the impedance contrast occurring at the Holocene-Pleistocene interface. For example, the 

WR_MONN site possesses a prominent peak (i.e., fp) in the mHVSR at about 1.3 Hz, which is 

most likely controlled by the peat layer at a depth of six to nine meters, as shown in Figure 3.21. 

This hypothesis is tested by calculating the fundamental site period (T = 1/f0) from the measured 

VS profile as a function of depth to see which depth range controls the resonant peak: 

 𝑇 =
4ℎ

𝑉𝑒𝑞
  (3.9) 

where h is the total thickness and Veq represents an “effective velocity” for the total soil profile. 

Harmonic averaging (Urzúa 1974) is a common method used to estimate Veq: 

 𝑉𝑒𝑞 = 𝑉�̅� =
∑ 𝑑𝑖
𝑛
𝑖=1

∑ 𝑑𝑖/𝑉𝑆𝑖
𝑛
𝑖=1

  (3.10) 

where di is the thickness of any layer, VSi is the corresponding shear wave velocity, and n is the 

number of layers in the soil profile. A drawback of this method is that it tends to overestimate T 

for profiles where VS increases with depth, such as observed in the Delta.  

The simplified Rayleigh method (Dobry et al. 1976) provides more accurate estimates of T 

by accounting for variations of soil properties with depth: 

 𝑇 ≈ 𝑇𝑆𝑅 =
2𝜋

𝜔𝑆𝑅
  (3.11) 

and  

 𝜔𝑆𝑅
2 =

4∑
(ℎ−𝑧𝑚𝑖)

2

𝑉𝑆𝑖
2 𝑑𝑖

𝑛
𝑖=1

∑ (𝑋𝑖+𝑋𝑖+1)
2𝑑𝑖

𝑛
𝑖=1

  (3.12) 
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where the layers, i = 1, 2, 3, …,  n are counted from the bottom up, (h – zmi) is the depth of the 

midpoint of layer i, and Xi and Xi+1 represent the approximate modal shapes at the bottom and top 

of layer i, respectively. Modal shapes are computed from the bottom up with X0 = 0 at the bottom 

of the profile: 

 𝑋𝑖+1 = 𝑋𝑖 +
ℎ−𝑧𝑚𝑖

𝑉𝑆𝑖
2 𝑑𝑖  (3.13) 

 

 

Figure 3.21: Summary of geotechnical data at site WR_MONN: (a) mHVSR and fit peak 

frequency; (b) VS profile; (c) soil behavior type index (SBT) interpreted from boring log; and (d) 

theoretical resonant frequency calculated by harmonic averaging or the simplified Rayleigh 

method (Dobry et al. 1976) as a function of depth. 

 

Figure 3.21(d) presents the variation of f0 with depth computed from harmonic averaging 

and the simplified Rayleigh methods. The trends of both methods are consistent with high-

variability observed at shallow layers, reaching a stable f0 value of about 1 - 2 Hz for soil profiles 
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with depths greater than about 10 m and a minor trend towards higher frequency as deeper layers 

are included (i.e., layers deeper than 10 m do not appreciably change the computed site frequency). 

Values obtained from the harmonic averaging method are consistently lower than those produced 

from the simplified Rayleigh method at depths beyond about 17 m, which is expected since there 

is a modest positive gradient in the VS profile.  Furthermore, the f0 value computed using the total 

soil profile (73 m) agrees well with the fp interpreted from mHVSR (i.e., 1.3 Hz ≈ 1.1 Hz). These 

results suggest that the soil profile above 10 m controls the site resonance, meaning that the peak 

observed at about 1.3 Hz in the mHVSR for site WR_MONN relates to the soil column including 

and above the peat layer. These results are observed consistently at other sites with co-located VS 

and stratigraphic data, providing evidence that mHVSR peaks at Delta sites can be associated with 

soft peaty soils and soft non-organic soils.
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 Subregional Anelastic Path Effects in California 

CHAPTER 4 

Subregional Anelastic Path Effects in California 

The work presented throughout this chapter has been submitted for publication to the Bulletin of 

the Seismological Society of America (Buckreis et al. 202x).  

4.1. Introduction 

Ground motion models (GMMs) predict the natural log mean and standard deviation of intensity 

measures as a function of predictor variables such as magnitude, site-to-source distance, and site 

parameters. The NGA-West1 project (Power et al. 2008) developed GMMs from global databases 

such that the scaling of ground motions with predictor variables represented globally-averaged 

values given the data available at that time. In the NGA-West2 and NGA-Sub projects (Bozorgnia 

et al. 2014, 2022), GMMs were developed for global application, but with regionalization of 

certain parameters, including the GMM constant term (shifting the overall ground motion levels 

up or down relative to the global average); anelastic attenuation coefficients, which control ground 

motion scaling with distance for distances greater than about 80 km, and coefficients describing 

the scaling of ground motions with site parameters.  

An interesting question for ground motion analysts is what degree of regionalization is 

justified by data trends and by regional geology. In California, the regional NGA-West2 relations 

apply state-wide. However, there is past evidence to suggest that refinement within the state is 

needed to account for significant differences in geologic and tectonic conditions. Chiou et al. 

(2010) found different rates of magnitude-scaling in central and southern California while 
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Atkinson and Morrison (2009) found different rates of distance attenuation for these regions (faster 

in the north), with the division located approximately at San Luis Obispo. Kuehn et al. (2019) 

extend regionalization to much finer resolution of 30  30 km cells. Such fine discretization 

facilitates evaluation of spatial variations in GMM coefficients, but there are drawbacks, including: 

(1) there can be few paths passing through cells resulting in unstable coefficients; (2) gridded cell 

boundaries are not optimized to capture the limits of geologic domains; and (3) the model could 

be overfitting the limited data.  

In this chapter, I utilize the expanded ground motion database (relative to NGA-West2) 

described in Section 2.4 to evaluate regional variations in anelastic attenuation coefficients and 

constant terms. Based on geologic maps and prior models for rock-quality factor, I discretize the 

state into nine domains, which is conceptually similar to a discretization of Europe by Kotha et al. 

(2020). These domains represent a substantial refinement of path models relative to those used in 

NGA-West2 (9 vs 1) but are much coarser than those used in Kuehn et al. (2019) (513 cells in 

CA). The models presented here represent a refinement to the ergodic, region-specific path model 

for California in Boore et al. (2014; hereafter BSSA14). The results are expected to be useful for 

regional hazard analyses and non-ergodic site response applications.  

Following this introduction, I present background information on the functional form of 

ergodic path models and prior studies on path regionalization and non-ergodic path modeling. I 

then present a subregionalization model for California modified from Chiou et al. (2010). I 

describe data selection protocols used to obtain a California dataset that is a subset of the GMDB 

described in Section 2.4, and then present data analyses that include residuals calculations. The 

interpretations of residuals indicate some unique conditions in the Geysers region of California 

and path biases for different subregions. The results are used to develop subregional path models.  
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4.2. Background 

4.2.1. Ergodic Path Models 

Ground motion models (GMMs) such as the NGA-West2 models by Abrahamson et al. (2014; 

ASK14), Boore et al. (2014; BSSA14), Campbell and Bozorgnia (2014), and Chiou and Youngs 

(2014) utilize equations to characterize attributes of ground motions. A typical GMM takes the 

following form: 

 ln 𝑌 = 𝑐0 + 𝐹𝐸 + 𝐹𝑃 + 𝐹𝑆 + 𝜖𝑛𝜎  (4.1) 

where lnY represents the natural logarithm of a ground motion intensity measure (IM; PGA – peak 

ground acceleration, PGV – peak ground velocity, or PSA – pseudospectral acceleration at various 

oscillator periods); 𝑐0 is a constant term that adjusts ground motions up and down irrespective of 

the effects of independent variables, and FE, FP, and FS represent scaling functions for how ground 

motion changes with source, path, and site parameters. Error term 𝜖𝑛 is a fractional number of 

standard deviations of lnY away from the mean and 𝜎 represents the total standard deviation of the 

GMM. Typical predictor variables for source, path, and site are moment magnitude (M), rupture 

distance or closest distance to the surface projection of the fault (Rrup or RJB, respectively), and 30 

m time averaged shear wave velocity (VS30). The focus in this Chapter is on the path model (FP) 

and how changes to that model influence the constant term, 𝑐0, both of which can be regionalized.  

The path term, FP, models the decrease of ground motion with distance from the source. 

The BSSA14 path model is formulated as,  

 𝐹𝑃(𝑅𝐽𝐵, 𝐌, 𝑟𝑒𝑔𝑖𝑜𝑛) = [𝑐1 + 𝑐2(𝐌 −𝐌𝑟𝑒𝑓)]𝑙𝑛(𝑅 𝑅𝑟𝑒𝑓⁄ ) + (𝑐3 + Δ𝑐3)(𝑅 − 𝑅𝑟𝑒𝑓)  (4.2) 

where 𝑐1 − 𝑐3 are fixed (global) model coefficients, 𝑅𝑟𝑒𝑓=1 km, Mref = 4.5, and Δ𝑐3 is a coefficient 

for regional differences in anelastic attenuation from the global mean. The first term in Equation 
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(4.2) models geometric spreading and the second models anelastic attenuation, which scales 

ground motion with arithmetic distance. Anelastic attenuation is related to the energy loss 

associated with internal friction during wave propagation (e.g., Boore 2003) and introduces 

downward curvature in log-ground motion vs log (distance) plots for distances greater than about 

80 km. In Equation (4.2), the distance R term is given as,  

 𝑅 = √𝑅𝐽𝐵
2 + ℎ2  (4.3) 

where h is a model coefficient that is introduced to provide near-source saturation.  

4.2.2. Prior Regionalization and Non-Ergodic Path Models 

Whereas Chiou et al. (2010) and Atkinson and Morrison (2009) demonstrated sub-regional 

features in California data at a broad scale (i.e., the northern and southern halves of the state), more 

recent studies have examined certain ground motion features at finer levels of resolution 

(Landwehr et al. 2016, Kuehn et al. 2019, and Erdem et al. 2019).  

Landwehr et al. (2016) produced a GMM for California with spatially varying coefficients 

using the NGA-West2 dataset. The model depends on typical input parameters in addition to 

considering site and event coordinates. Spatially dependent and correlated coefficients were 

derived to develop a varying coefficient model whose values change smoothly in space. Among 

the spatially variable coefficients are those for geometric spreading and anelastic attenuation 

(similar to c1 and c3 in Equation 4.2). A limitation of this approach is that source-to-site specific 

path effects are determined solely by the earthquake location.  

Kuehn et al. (2019) applied a cell-specific attenuation approach originally proposed by 

Dawood and Rodriquez-Marek (2013) to California. The state was divided into non-overlapping 

rectangular cells 3030 km in size, and for each cell, the anelastic attenuation portion of the path 
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model (similar to the (𝑐3 + Δ𝑐3)(𝑅 − 𝑅𝑟𝑒𝑓) term in Equation 4.2) was replaced with a term of the 

form (using similar notation to Equation 4.2):  

 𝑓𝑎𝑡𝑡𝑛(𝑅) =  ∑ 𝑐3,𝑖Δ𝑅𝑖
𝑁𝑐
𝑖   (4.4) 

where Nc is the number of cells the source-to-site path crosses, 𝑐3,𝑖 are gridded anelastic attenuation 

coefficients for each of the Nc cells, and Δ𝑅𝑖 is the path length within the ith cell using the 

appropriate distance parameter for the GMM. Kuehn et al. (2019) performed the modification on 

the ASK14 GMM, which uses the Rrup distance parameter, so in their application R in Equation 

(4.4)was Rrup and the gridded attenuation coefficients were 𝜃17,𝑖. The cell-specific coefficients 

(𝜃17,𝑖) were derived using a Bayesian hierarchical approach using only data from paths that 

traversed the cell; if no paths crossed the cell then the regional mean value (for all of California) 

was assigned. The NGA-West2 database was used to estimate coefficients. This approach 

separates systematic path effects from event and site effects in areas having sufficient data. 

Challenges associated with the application of this approach are data limitations that cause cell-

specific coefficients to be poorly constrained and substantial increase in the complexity of ground 

motion calculations due to the large number of cells that need to be considered. Moreover, it could 

be argued that the use of 513 cell-specific coefficients (or the subset with sufficient data to have 

regressed coefficients) could be an overfit of the training dataset (Babyak 2004).  

Erdem et al. (2019) presented a regional path adjustment to the BSSA14 model that is 

intended for application in the Sacramento-San Joaquin River Delta region of northern California. 

Data from 14 Bay Area events were considered, and instead of using the built-in mechanism for 

accommodating regional variations in attenuation (i.e., the Δ𝑐3 term in Equation 4.2), a third path 

term was added to Equation (4.2) that is dependent on distance and hypocentral depth. Shallow 
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earthquakes (hypocentral depths < 9 km) were found to attenuate faster while deeper events 

exhibited average attenuation when compared to BSSA14.  

The effect of each of these models is to reduce the spatial variability of residuals by 

accounting for regional path effects. These effects indicate that the ground motion residuals are 

spatially non-stationary, which is also known as a non-ergodic process (e.g., Anderson and Brune 

1999). The phrase “non-ergodic” can also be applied to GMMs, which I posit requires that the 

models transform the underlying non-ergodic process into an ergodic one, by removing spatial 

trends in the residuals. Whereas a fully non-ergodic site response model can be achieved when 

sufficient ground motion and geotechnical data are available from the site (Stewart et al., 2017), 

this non-ergodic standard is more difficult to achieve for path modelling. The subregional and cell-

specific models of Kuehn et al. (2019) and Erdem et al. (2019) certainly account for regional 

variations that are missed by the California-wide model of BSSA14, but it is impossible to know 

with currently available information if the level of localization in these models fully captures 

regional variability, thereby rendering residuals as spatially stationary. For this reason, I do not 

refer to the aforementioned models from literature, nor the models developed subsequently in this 

chapter, as non-ergodic. 

4.3. Subregionalization of California 

To construct the initial subregional boundaries for California, I considered a physiographical 

provinces map for the state by Chiou et al. (2010) and spatial trends found in prior studies of rock 

quality factor (QS). Figure 4.1 shows the physiographical provinces map from Chiou et al. (2010). 

In coastal areas, this map distinguishes hilly areas co-located with relatively straight portions of 

the San Andreas plate boundary (coast range), the roughly east-west striking transverse range in 
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southern California south of the big bend in the San Andreas fault, and the peninsular range in 

coastal southern California. Major inland mountainous areas include the Klamath mountains, 

Cascades, and Sierra Nevada. Major basin structures include the central valley, Colorado Desert 

(which includes Imperial Valley), and the peninsular range (which includes large basins in 

southern California). It is noteworthy that the provinces in Figure 4.1 are orders of magnitude 

greater in size than the cells used in Kuehn et al. (2019). 
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Figure 4.1: California physiographical provinces from Chiou et al. (2010) with zones of relatively 

low and high QS from Hauksson and Shearer (2006) and Eberhart-Phillips (2016). 

 

To check the significance of the physiographical province boundaries, I examined the 

variability of QS across California (Hauksson and Shearer 2006; Eberhart-Phillips 2016). The 

studies by Hauksson and Shearer (for southern California) and Eberhart-Phillips (for northern 
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California) used different methods to estimate QS, and their estimates do not align perfectly in 

overlap zones in the central part of the state. Accordingly, I interpret their results to identify areas 

of relatively high, medium, and low QS to a depth of 20 km, which are shown in Figure 4.1. Based 

on the two studies and as shown in Figure 4.1, there is evidence of low QS in the coast range north 

of the Bay Area, high QS in the Sierra Nevada and San Bernardino Mountains, and varying but 

intermediate levels of QS elsewhere. With the exception of the San Bernardino Mountain local 

zone of high QS, these zones corroborate some of the physiographical province boundaries. I 

conclude that these boundaries provide a reasonable basis for regionalization of anelastic 

attenuation, but anticipate that further discretization of the coast range may be needed (given the 

apparently low QS in the north coast area) and that some provinces outside of the coast range and 

Sierra Nevada could potentially be combined. This will be explored subsequently.  

The low-QS region in the north coast range includes a geothermal field colloquially known 

as The Geysers, which is an area characterized by relatively active seismicity. The Geysers 

geothermal field is located about 115 km north of San Francisco as shown in Figure 4.2. Geyser 

events differ from tectonic events in that they are likely induced by geothermal drilling and exhibit 

low stress drops and shallow focal depths (Johnson and Majer, 2017). Previous studies (e.g., Chiou 

et al., 2010) excluded data from these events from analysis citing observed lower than average 

amplitudes. I consider the Geyser events to maximize database breadth and size, but consider 

potential biases in the ground motions.  
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Figure 4.2: Locations of earthquakes used in study; California physiographical provinces and 

subsequent nine study regions outlined by solid black lines. Inset shows outline of Geysers region 

from Viegas and Hutchings (2010) and locations of Geysers events.  
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4.4. Data Resources 

The database applied for the present analyses is a subset of the complete GMDB described in 

Section 2.4. Since spectral shapes have been observed to be sensitive to event magnitude (Stafford 

et al. 2017), I considered all readily available ground motion data from events with M > 4.0 

originating in California, western Nevada, and northern Baja, Mexico. Figure 4.2 shows the 

epicenters of 313 events and locations of 2,519 distinct seismic recording instruments that have 

produced over 26,209 three-component ground motion records used during analysis.  

Data from sites within the Sacramento-San Joaquin Delta, which have unusually strong site 

effects, are removed to avoid introducing additional bias. Magnitude-distance cutoffs suggested 

by BSSA14 were enforced for all ground motions resulting in 26,209 usable ground motions within 

the study region. Horizontal components are combined to median-component (RotD50) intensity 

measures as defined by Boore (2010), and the lowest usable period of the two individual 

components defined as 1/1.25𝑓ℎ𝑝, where 𝑓ℎ𝑝 represents the high-pass corner frequency used during 

signal processing, is used. Figure 4.3 compares the parameter ranges covered by the NGA-West2 

and newly added data. The added events have nearly doubled the database size, mostly from events 

with M < 5 and relatively distant (𝑅𝐽𝐵 ≥ 100 km) recordings. This expansion of the database is 

useful for analysis of anelastic path effects, which is the primary objective of this Chapter. 
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Figure 4.3: Distribution of NGA-West2-subset (blue) and additional (red) datasets used. 

 

4.5. Data Analysis and Model Development 

Ground motion analyses were performed to characterize spatial variations of path effects in 

California and to develop regional models that capture such effects for ground motion and seismic 

hazards analyses.  The approach that was applied consists of the following steps:  

1. Screen the database to remove long-period components of records that are beyond their 

usable oscillator period range. 

2. Perform residuals analyses using the original GMM (denoted here GMM0) to evaluate 

total residuals (Rij) and then partition Rij using a mixed effects approach into model bias 

terms (ck), event terms (𝜂𝐸,𝑖), within-event residuals (𝛿𝑊𝑖𝑗), site terms (𝜂𝑆,𝑗), and 

remaining residuals (𝜖𝑖𝑗). These analyses are described, and the meaning of the various 

terms are provided, in Section 4.5.1 below.  
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3. Investigate bias of 𝜂𝐸,𝑖 for Geyser events and modify the GMM0 constant term and (if 

necessary) source model (i.e. 𝑐0 + 𝐹𝐸 in Equation 4.1) to capture these effects (revised 

model denoted GMM1).  

4. Re-compute residuals using GMM1. If trends of 𝛿𝑊𝑖𝑗 with 𝑅𝐽𝐵 are found, identify a 

path function to capture those trends.  Perform regression to estimate path model 

coefficients (revised model denoted GMM2). As appropriate, combine regions in 

Figure 4.1 for which distinct attenuation features are not identified.  

5. Re-compute 𝑅𝑖𝑗 using the GMM2 models and obtain new estimates for 𝜂𝐸,𝑖, 𝛿𝑊𝑖𝑗, and 

𝜂𝑆,𝑗.  

6. Repeat steps (3) and (5) until an acceptable level of convergence is observed on the 

model coefficients and in random effects 𝜂𝐸,𝑖 and 𝜂𝑆,𝑗.  

7. Evaluate model performance through residuals analyses and dispersion calculations. 

Compare the dispersion of within-event residuals to that achieved with more localized 

cell-specific models (Kuehn et al. 2019).  

4.5.1. Residuals Calculations 

Total residuals (Rij) represent differences between data and the median prediction of a GMM, 

 𝑅𝑖𝑗 = ln(𝑌𝑖𝑗) − 𝜇𝑖𝑗(𝐌𝑖, 𝑅𝐽𝐵,𝑖𝑗, 𝑉𝑆30,𝑗, 𝑧1,𝑗 )  (4.5) 

where ln(𝑌𝑖𝑗) is the natural logarithm of the observed IM at site 𝑗 from event 𝑖 and 𝜇𝑖𝑗 is the natural 

log mean from a GMM conditioned on the indicated parameters (BSSA14 is used here). Total 

residual Rij can be partitioned using mixed-effects analyses (Abrahamson and Youngs 1992, 

Gelman et al. 2014): 

 𝑅𝑖𝑗 = 𝑐𝑘 + 𝜂𝐸,𝑖 + 𝛿𝑊𝑖𝑗 (4.6) 
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The within-event residual is further partitioned as: 

 𝛿𝑊𝑖𝑗 = 𝜂𝑆,𝑗 + 𝜖𝑖𝑗  (4.7) 

Term 𝜖𝑖𝑗 is the remaining residual after systematic effects from source and site have been removed. 

Path effects are investigated in this paper using 𝛿𝑊𝑖𝑗; the partitioning of this residual in Equation 

(4.7)is shown because of its subsequent use in dispersion calculations. The mixed-effects analyses 

are performed in R (Bates et al., 2015) as a subroutine in Python (Gautier, 2009). For brevity, the 

subscript k is omitted from subsequent equations. 

As shown subsequently, residuals (both Rij and 𝛿𝑊𝑖𝑗) exhibit trends with 𝑅𝐽𝐵 for multiple 

regions. When such path model biases are present, they contaminate 𝜂𝐸,𝑖 in the sense that these event 

terms do not solely reflect source attributes. In order to obtain accurate estimates for 𝜂𝐸,𝑖, which is 

particularly important for the Geysers analyses, I only consider observations up to a limiting 

distance within which the trend of residuals with distance are relatively flat. From visual 

inspection, that limiting distance was found to be approximately 100 km. These distance limits are 

relaxed after the first several iterations because at that point path biases have been corrected. 

4.5.2. Analysis of Geyser Event Terms 

The database contains 19 Geyser events that were recorded by many stations over a wide range of 

distances. These events are known to have low stress parameters (Chiou et al., 2010; Johnson and 

Majer, 2017), which in the present context translate into strongly negative 𝜂𝐸,𝑖 (average of  -1.5), 

as shown in Figure 4.4. The Geysers event terms have no clear trends with the source parameters 

of magnitude, hypocentral depth, or rake angle.  
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Figure 4.4: Geyser event terms trends against M (left), hypocenter depth (center), and rake angle 

(right) for the IM of PSA at 0.10 sec. 

 

In principle, source-related biases should not affect path-related analyses because event 

terms are removed in the calculation of 𝛿𝑊𝑖𝑗 (from which path models are regressed). Nonetheless, 

I seek to remove these biases so that they do not inflate between-event variability (𝜏). Due to the 

lack of trends of Geyser event terms with source attributes (Figure 4.4), the only modification to 

the original GMM (Equation 4.1) is in the constant term,  

 ln 𝑌 = (𝑐0 + 𝐼𝑒𝐼) + 𝐹𝐸 + 𝐹𝑃 + 𝐹𝑆 + 𝜖𝑛𝜎 (4.8) 

where 𝐼 represents an indicator variable which takes the value of 1 if the event is induced (i.e., 

Geyser) and 0 otherwise; and 𝑒𝐼 is a constant induced adjustment term.  

Using the subset of 𝑅𝑖𝑗 for Geyser events with 𝑅𝐽𝐵 < 100 km (to minimize the influence of 

relatively complex anelastic path effects in this region), I perform mixed-effects regression to 

estimate 𝑒𝐼 and updated event terms (𝜂𝐸,𝑖
∗ ). Figure 4.5 shows that parameter 𝑒𝐼 is negative for most 

periods thus reducing median ground motions for Geyser events, but for periods 𝑇 > ~2.5 sec 𝑒𝐼 

becomes slightly positive. Due to the relatively small sample size for this period range, I constrain 

𝑒𝐼 ≤ 0 and apply locally weighted scatterplot smoothing (Cleveland 1979) with the weight 
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parameter selected by eye. The resulting event terms average to zero (Figure 4.4). Coefficient 

values for 𝑒𝐼 are tabulated in Table 4.1. 

 

 

Figure 4.5: Induced source correction term (𝑒𝐼) variation with oscillator period. 
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Table 4.1: Coefficient values for 𝑒𝐼. 

IM 𝒆𝑰 IM 𝒆𝑰 IM 𝒆𝑰 

PGV -1.00587 T = 0.170 s -1.46288 T = 1.300 s -0.29434 

PGA -1.54118 T = 0.180 s -1.44629 T = 1.400 s -0.26058 

T = 0.010 s -1.55497 T = 0.190 s -1.41192 T = 1.500 s -0.22454 

T = 0.020 s -1.52176 T = 0.200 s -1.39553 T = 1.600 s -0.18558 

T = 0.022 s -1.53302 T = 0.220 s -1.38070 T = 1.700 s -0.14523 

T = 0.025 s -1.55418 T = 0.240 s -1.33160 T = 1.800 s -0.11247 

T = 0.029 s -1.58064 T = 0.250 s -1.31319 T = 1.900 s -0.07033 

T = 0.030 s -1.58797 T = 0.260 s -1.29240 T = 2.000 s -0.02449 

T = 0.032 s -1.60231 T = 0.280 s -1.22925 T = 2.200 s 0.00000 

T = 0.035 s -1.62408 T = 0.290 s -1.20887 T = 2.400 s 0.00000 

T = 0.036 s -1.63029 T = 0.300 s -1.16721 T = 2.500 s 0.00000 

T = 0.040 s -1.65806 T = 0.320 s -1.11291 T = 2.600 s 0.00000 

T = 0.042 s -1.66991 T = 0.340 s -1.05849 T = 2.800 s 0.00000 

T = 0.044 s -1.67940 T = 0.350 s -1.04339 T = 3.000 s 0.00000 

T = 0.045 s -1.68509 T = 0.360 s -1.00809 T = 3.200 s 0.00000 

T = 0.046 s -1.69156 T = 0.380 s -0.97669 T = 3.400 s 0.00000 

T = 0.048 s -1.69806 T = 0.400 s -0.93761 T = 3.500 s 0.00000 

T = 0.050 s -1.70557 T = 0.420 s -0.91489 T = 3.600 s 0.00000 

T = 0.055 s -1.72066 T = 0.440 s -0.89278 T = 3.800 s 0.00000 

T = 0.060 s -1.73401 T = 0.450 s -0.88045 T = 4.000 s 0.00000 

T = 0.065 s -1.73638 T = 0.460 s -0.86938 T = 4.200 s 0.00000 

T = 0.067 s -1.73708 T = 0.480 s -0.85690 T = 4.400 s 0.00000 

T = 0.070 s -1.73502 T = 0.500 s -0.84871 T = 4.600 s 0.00000 

T = 0.075 s -1.73719 T = 0.550 s -0.84023 T = 4.800 s 0.00000 

T = 0.080 s -1.73847 T = 0.600 s -0.80034 T = 5.000 s 0.00000 

T = 0.085 s -1.72901 T = 0.650 s -0.75637 T = 5.500 s 0.00000 

T = 0.090 s -1.72181 T = 0.667 s -0.74704 T = 6.000 s 0.00000 

T = 0.095 s -1.71417 T = 0.700 s -0.71868 T = 6.500 s 0.00000 

T = 0.100 s -1.70934 T = 0.750 s -0.68039 T = 7.000 s 0.00000 

T = 0.110 s -1.68244 T = 0.800 s -0.63555 T = 7.500 s 0.00000 

T = 0.120 s -1.62517 T = 0.850 s -0.59730 T = 8.000 s 0.00000 

T = 0.130 s -1.58168 T = 0.900 s -0.55478 T = 8.500 s 0.00000 

T = 0.133 s -1.57314 T = 0.950 s -0.51648 T = 9.000 s 0.00000 

T = 0.140 s -1.54847 T = 1.000 s -0.48678 T = 9.500 s 0.00000 

T = 0.150 s -1.52205 T = 1.100 s -0.42390 T = 10.000 s 0.00000 

T = 0.160 s -1.49473 T = 1.200 s -0.33964   
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4.5.3. Path Biases 

I begin by examining in Figure 4.6 the performance of the BSSA14 regional California model 

(with Δ𝑐3 = 0) against the full dataset, which is much larger than the California dataset used in 

the derivation of BSSA14. Figure 4.6 shows flat trends of residual 𝛿𝑊𝑖𝑗 with distance for M > 5 

events. A modest downward trend is present for M < 5 events for large distances (𝑅𝐽𝐵>80 km) 

where anelastic effects are strong; that trend is also visible for all events.   

 

 

Figure 4.6: Trends of within-event residual (𝛿𝑊𝑖𝑗) for PSA at 0.10 sec with distance using (a) full 

California dataset and subsets of earthquakes with (b) M > 5 and (c) M < 5. 

 

Figure 4.7 shows subsets of the data for six sub-regions, which are assigned based on epicenter 

location: North Coast, Bay Area, Central Coast, Sierra-Nevada, Southern Sierra and Mojave, and 

Southern California (sub-region boundaries are shown in Figure 4.2). The sub-region plots shade 

individual residuals according to the fraction of the path within the epicenter sub-region (darker 

indicating higher fractions). Binned means are shown as is a fit line discussed further below. These 

plots demonstrate several notable features:  
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1. The North Coast region has high residuals at close distance (𝑅𝐽𝐵<10 km). These biases are 

caused by Geyser events and are characteristic of bias in the finite fault term h (Equation 

4.3), which in this case is too large. The concern in this Chapter is anelastic effects at larger 

distances, hence I do not modify GMM h terms.  

2. For 𝑅𝐽𝐵>60 km, trends in residuals are downward for the North Coast subregion, upward  

for Sierra Nevada and Southern Sierra and Mojave subregions, and horizontal for the Bay 

Area, Central Coast, and Southern California subregions. Downward and upward curvature 

requires negative and positive ∆𝑐3, respectively.  

3. The different attenuation trends for North Coast and other coast range areas justify 

subdivision of the coast range physiographical province (Figure 4.1). Bay Area and central 

coast groups are also considered due to different geological conditions (Wills et al. 2015).  

4. Variable levels of shading of the data symbols in Figure 4.7 show that attenuation trends 

for events in one subregion are often controlled by neighboring subregions. This feature of 

the data creates a need to consider multiple subregions in the path model, which is 

addressed in the next section.  
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Figure 4.7: Trend of within-event residuals (𝛿𝑊𝑖𝑗) against Joyner-Boore distance (𝑅𝐽𝐵) for PSA 

at 0.05 sec grouped by region of event origination; data points shaded relative to the path weight 

within the region of event origination; results shown for the first iteration. 

 

4.5.4. Path Model Development 

The development of path models has three major steps: (i) identify suitable subregions for 

modeling purposes; (ii) select functions to capture path effects not accounted for with the BSSA14 

path model(Equation 4.2); and (iii) regress model coefficients using the iterative procedure 

outlined at the beginning of this section. As part of these analyses, I also consider differences 

between Geyser and non-Geyser events in the North Coast subregion.  

(a) Subregion Identification 

Plots of 𝛿𝑊𝑖𝑗 with distance as in Figure 4.7 are helpful to visualize differences in attenuation trends 

between subregions. However, I sought a more quantitative basis for evaluating attenuation 
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differences between subregions. This was accomplished by performing event-specific regressions 

as follows: 

 𝛿𝑊𝑖𝑗
 = Δ𝑐3,𝑖(𝑅 − 𝑅𝑟𝑒𝑓) + ∆𝑐0,𝑖  (4.9) 

where Δ𝑐3,𝑖 is an adjustment to Δ𝑐3 for event 𝑖 and ∆𝑐0,𝑖 represents a constant term which allows 

the function to shift vertically to fit the data. Results are plotted in Figure 4.8 for PSA at 0.1 s by 

coloring the focal mechanism diagram according to the Δ𝑐3,𝑖 scale bar. Major findings of this 

exercise are can be summarized as follows:  

 The northern portion of the coast range has more negative Δ𝑐3,𝑖 values for short-period IMs 

than any other subregion, including other portions of the coast range. The attenuation bias 

decreases towards the south, being small for the central coast and having mixed but 

intermediate results in the Bay Area. These distinctions motivated the subdivision of the 

coast range shown in Figures 4.2 and 4.8. The straight-line boundaries, drawn 

approximately perpendicular to the San Andreas Fault, are based on interpretation of 

attenuation results for many IMs and was aided by surficial geologic maps (Wills et al. 

2015).  

 While events in the Sierra Nevada and Basin and Range physiographical provinces both 

produced positive Δ𝑐3,𝑖 values, which can be attributed to the relative integrity of rock in 

the Sierra batholith, the attenuation rates were slightly slower for northern events than those 

in the southern Sierra and adjoining basin and range. This led to the use of two sub-regions: 

Sierra Nevada (SN) and southern Sierra and Mojave (SM).  

 Several physiographical provinces were grouped for practical reasons. The transverse 

ranges, southern coastline sub-province, peninsular ranges, and Colorado Desert were 

combined into the Southern California (SC) subregion due in part to their relatively small 
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size (providing few within-region paths of sufficient length). The Klamath Mountains, 

Cascade Range, Modoc plateau, and northern-most portion of the Basin and Range 

provinces were grouped into the northeastern California (NE) subregion, mainly because 

of sparse data in these areas.  

 Physiographical provinces retained as subregions are the Mojave Desert province, denoted 

here the eastern California Shear Zone (SZ), and the Central Valley (CV). 

It follows that this discretization of California results in nine subregions (Figures 4.2 and 4.8).  

 

 

Figure 4.8: Spatial distribution of event-specific attenuation coefficients (Δ𝑐3,𝑖) for PSA at 0.10 s.  
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(b) Anelastic Attenuation Models 

The general functional form for modeling departures of subregional anelastic attenuation from the 

regional mean is similar to Equation (4.9), but without event indices on coefficients,  

 𝛿𝑊𝑖𝑗
 = ∆𝑐3

∗(𝑅𝑖𝑗 − 𝑅𝑟𝑒𝑓) + ∆𝑐0,𝑟  (4.10) 

For application purposes, the ∆𝑐3
∗ coefficients in Equation (4.10)are applied in the path model as,  

 𝐹𝑃(𝑅𝐽𝐵, 𝐌, 𝑟𝑒𝑔𝑖𝑜𝑛) = [𝑐1 + 𝑐2(𝐌 −𝐌𝑟𝑒𝑓)]𝑙𝑛(𝑅 𝑅𝑟𝑒𝑓⁄ ) + (𝑐3 + ∆𝑐3
∗)(𝑅 − 𝑅𝑟𝑒𝑓)  (4.11) 

The ∆𝑐0,𝑟 coefficients are applied in the overall GMM expression in Equation (4.8) as,  

 ln 𝑌 = (𝑐0 + ∆𝑐0,𝑟 + 𝐼𝑒𝐼) + 𝐹𝐸 + 𝐹𝑃 + 𝐹𝑆 + 𝜖𝑛𝜎 (4.12) 

In the subregional path model, parameter ∆𝑐3
∗ is computed for a particular source-site path as,  

 ∆𝑐3
∗ = ∑ Δ𝑐3𝑟 𝑊𝑟

9
𝑟=1   (4.13) 

where Δ𝑐3𝑟 comprise subregional anelastic coefficients (for 𝑟=1:9), 𝑊𝑟 indicates the proportion of 

the total path which traverses subregion 𝑟, and ∑ 𝑊𝑟
9
𝑟=1 = 1. Weights 𝑊𝑟 are computed from a 

linear source-to-site path drawn from the closest point on the surface projection of the fault to the 

site; using that line the proportion of the path in each subregion is computed, as illustrated in Figure 

4.9. Parameter ∆𝑐0,𝑟 is taken as the value for the subregion where the event originates.  

An alternate form of the path model was also considered in which Equations (4.10)-(4.12) 

are retained but ∆𝑐3
∗ is based only on source location. This source location approach is simpler to 

apply than the subregional path model because fractions of source-site paths need not be computed, 

but has a weaker physical basis because path effects should depend upon crustal attributes along 

the path, not just those at the hypocenter.  Moreover, this alternate form cannot be developed for 

subregions with few if any events in the database (central valley and northeastern California).  
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Figure 4.9: Illustration of how to compute subregion weights (𝑊𝑟) for paths between four sites 

and a single event. 

 

(c) Regression of Coefficients 

I develop subregional constant terms (∆𝑐0,𝑟) and attenuation coefficients (Δ𝑐3𝑟) for PGA, PGV, 

and PSAs for 105 oscillator periods between 0.01 and 10 sec for both path models using damped 

least-squares (Levenberg-Marquardt algorithm; More 1977) regression. To estimate 𝑊𝑟, for the 

subregional path model regressions, I approximated the source-to-site path as a ray between the 
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earthquake epicenter and station coordinates, which is nearly equivalent to the ray between the 

station coordinates and closest surface projection of the fault (used in calculating RJB) for the small 

M events that dominate the dataset.  

The iterative procedure described at the beginning of this section updates coefficients after 

each iteration: 

 𝑃 = 𝑃1 + ∑ (𝑑𝑃)𝑛
𝑁
𝑛=2   (4.14) 

where 𝑃 is the coefficient of interest (e.g., Δ𝑐3,𝑟 or Δ𝑐0,𝑟), (𝑑𝑃)𝑛 is the difference between the 

𝑛𝑡ℎ+1 and 𝑛𝑡ℎ iterations, 𝑃1 is the initial estimate from the first iteration, and 𝑁 is the number of 

iterations required for coefficient estimates to become stable out to the seventh decimal point 

(typically 𝑁=5 provides good results). Example convergence plots for Δ𝑐3,𝑟 and Δ𝑐0,𝑟 are presented 

in Figure 4.10.  

 

 

Figure 4.10: Convergence of 𝛥𝑐3,𝑟 (top) and 𝛥𝑐0,𝑟 (bottom) coefficients for north coast (left), 

Sierra Nevada (center), and southern California (right) subregions for PSA at 0.10 sec. 

 



 

153 

 

Figure 4.11(c) shows that the constant term coefficients (Δ𝑐0,𝑟) produced by the regressions 

are close to zero for all regions. These coefficients, which are needed to fit the data (per Equation 

4.10), do not indicate the relative strengths of ground motions in sub-regions (e.g., from high or 

low stress parameters), which would be better assessed from event term statistics and are not the 

subject of this chapter. The small values of Δ𝑐0,𝑟 are convenient for forward applications, because 

they imply that the anelastic adjustments can be made without other changes to the GMM.  

 

 

Figure 4.11: Regressed model coefficients for preferred subregion path model (left) and source 

model (right). Parts (a) and (b) are regional attenuation coefficient, 𝛥𝑐3,𝑟; Parts (c) and (d) are for 

constant term adjustments (𝛥𝑐0,𝑟). 
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Figure 4.11(a) shows that the attenuation coefficients (Δ𝑐3,𝑟) are strongly period-

dependent, being close to zero at long periods but exhibiting a wide range of variations from zero 

at short periods. As shown previously in Figures 4.7 and 4.8, the North Coast subregion has the 

strongest fast attenuation effect while the Sierra Nevada subregion has the strongest slow 

attenuation effect. Other regions with faster-than-average attenuation at short periods are 

Northeastern California, Bay Area, and Central Valley. Southern Sierra and Mohave is the other 

region with slower attenuation, whereas Southern California, Central Coast, and Eastern California 

shear zone have nearly zero values of Δ𝑐3,𝑟. For comparison, values of ∆𝑐3 for fast- and slow-

attenuation global regions are shown (Japan and Turkey, respectively), which are similar in 

magnitude to some subregional California corrections. In both Figure 4.11(a,c), regressed values 

are shown with discrete symbols, while the lines indicate smoothed representations intended for 

modeling purposes. The smoothed lines trend towards zero at long periods and in no case is the 

sum 𝑐3 + ∆𝑐3 positive. Subregion coefficients for Δ𝑐0,𝑟 and Δ𝑐3,𝑟 are tabulated in Tables 4.2 and 

4.3.  

Figure 4.11 (b,d) show regressed coefficients for the source-based model. This model is 

not recommended for application, but is shown mainly as a point of comparison to illustrate the 

robustness of regional variations, even when a different modeling framework is used. Constant 

term adjustments (Figure 4.11d) are much larger in this case, particularly at mid-periods. This is a 

result of tradeoffs between constant and slope terms in the regressions that produces non-physical 

results when a single attenuation coefficient is used for all recordings produced by events in a 

single subregion. The attenuation coefficients (Figure 4.11b) have qualitatively similar trends but 

are generally closer to zero than for the recommended model (Figure 4.11a).  
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Table 4.2: Coefficient values for 𝛥𝑐3,𝑟. 

𝚫𝒄𝟑,𝒓 

Intensity 

Measure 

North 

Coast 
Bay Area 

Central 

Coast 

Sierra 

Nevada 

Southern 

Sierra and 

Mojave 

Eastern CA 

Shear Zone 

Southern 

California 

Central 

Valley 

Northeastern 

California 

PGV -0.0043520 -0.0013296 -0.0007512 0.0023554 -0.0016353 0.0003446 -0.0008945 -0.0015673 -0.0028134 

PGA -0.0089439 -0.0012440 -0.0019318 0.0031416 -0.0020302 0.0003259 -0.0008783 -0.0012976 -0.0046088 

T = 0.010 s -0.0089725 -0.0013082 -0.0019623 0.0029033 -0.0021027 0.0003136 -0.0008951 -0.0016015 -0.0047444 

T = 0.020 s -0.0090577 -0.0012617 -0.0019683 0.0030308 -0.0020994 0.0002204 -0.0009151 -0.0013839 -0.0046733 

T = 0.022 s -0.0090371 -0.0012554 -0.0019754 0.0030590 -0.0020981 0.0002038 -0.0009111 -0.0013382 -0.0046587 

T = 0.025 s -0.0090039 -0.0012366 -0.0019521 0.0031037 -0.0020961 0.0001864 -0.0008910 -0.0012688 -0.0046375 

T = 0.029 s -0.0089442 -0.0011654 -0.0019092 0.0031698 -0.0020700 0.0001669 -0.0008622 -0.0011729 -0.0045659 

T = 0.030 s -0.0089314 -0.0011480 -0.0018900 0.0031865 -0.0020613 0.0001718 -0.0008482 -0.0011476 -0.0045436 

T = 0.032 s -0.0088767 -0.0011010 -0.0018539 0.0032190 -0.0020445 0.0001798 -0.0008205 -0.0010942 -0.0044990 

T = 0.035 s -0.0087800 -0.0010154 -0.0017810 0.0032956 -0.0019978 0.0002102 -0.0007631 -0.0010048 -0.0044058 

T = 0.036 s -0.0087454 -0.0009831 -0.0017544 0.0033305 -0.0019750 0.0002230 -0.0007408 -0.0009763 -0.0043678 

T = 0.040 s -0.0086056 -0.0008551 -0.0016424 0.0034693 -0.0018849 0.0002808 -0.0006455 -0.0008575 -0.0042201 

T = 0.042 s -0.0085399 -0.0007918 -0.0015855 0.0035400 -0.0018386 0.0003122 -0.0005960 -0.0007966 -0.0041444 

T = 0.044 s -0.0084763 -0.0007323 -0.0015351 0.0036165 -0.0017881 0.0003472 -0.0005486 -0.0007383 -0.0040730 

T = 0.045 s -0.0084463 -0.0007028 -0.0015129 0.0036542 -0.0017629 0.0003647 -0.0005254 -0.0007116 -0.0040384 

T = 0.046 s -0.0084166 -0.0006781 -0.0014906 0.0036911 -0.0017382 0.0003821 -0.0005046 -0.0006829 -0.0040089 

T = 0.048 s -0.0083654 -0.0006373 -0.0014524 0.0037619 -0.0016953 0.0004167 -0.0004631 -0.0006525 -0.0039624 

T = 0.050 s -0.0083158 -0.0006179 -0.0014416 0.0038292 -0.0016694 0.0004513 -0.0004289 -0.0006256 -0.0039296 

T = 0.055 s -0.0083265 -0.0005979 -0.0014140 0.0039738 -0.0017141 0.0004099 -0.0003968 -0.0006601 -0.0039489 

T = 0.060 s -0.0083236 -0.0006509 -0.0015522 0.0039259 -0.0017295 0.0003762 -0.0004002 -0.0006969 -0.0039713 

T = 0.065 s -0.0084686 -0.0007483 -0.0016722 0.0039044 -0.0017492 0.0003124 -0.0004398 -0.0008095 -0.0040220 

T = 0.067 s -0.0085506 -0.0007939 -0.0017399 0.0038867 -0.0017784 0.0002808 -0.0004639 -0.0008344 -0.0040718 

T = 0.070 s -0.0086136 -0.0008815 -0.0018362 0.0038750 -0.0018241 0.0002284 -0.0005152 -0.0009177 -0.0041528 

T = 0.075 s -0.0088506 -0.0010441 -0.0020546 0.0038536 -0.0019240 0.0001408 -0.0006100 -0.0010735 -0.0043161 
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𝚫𝒄𝟑,𝒓 

Intensity 

Measure 

North 

Coast 
Bay Area 

Central 

Coast 

Sierra 

Nevada 

Southern 

Sierra and 

Mojave 

Eastern CA 

Shear Zone 

Southern 

California 

Central 

Valley 

Northeastern 

California 

T = 0.080 s -0.0091017 -0.0012223 -0.0022774 0.0037816 -0.0020366 0.0000551 -0.0007147 -0.0012537 -0.0045074 

T = 0.085 s -0.0093652 -0.0014126 -0.0025035 0.0036829 -0.0021494 -0.0000277 -0.0008325 -0.0014501 -0.0047091 

T = 0.090 s -0.0096319 -0.0015992 -0.0027273 0.0035783 -0.0022623 -0.0001078 -0.0009577 -0.0016441 -0.0049098 

T = 0.095 s -0.0099056 -0.0017816 -0.0029498 0.0034674 -0.0023746 -0.0001625 -0.0010775 -0.0018254 -0.0051134 

T = 0.100 s -0.0101687 -0.0019562 -0.0031709 0.0033570 -0.0024833 -0.0002203 -0.0011909 -0.0019792 -0.0053163 

T = 0.110 s -0.0106865 -0.0022661 -0.0033701 0.0031543 -0.0025785 -0.0003256 -0.0013997 -0.0022965 -0.0056852 

T = 0.120 s -0.0111772 -0.0025268 -0.0035739 0.0029602 -0.0026685 -0.0003548 -0.0015106 -0.0025598 -0.0060358 

T = 0.130 s -0.0115260 -0.0027519 -0.0038198 0.0028032 -0.0027543 -0.0003754 -0.0016150 -0.0027801 -0.0063469 

T = 0.133 s -0.0116228 -0.0028188 -0.0038404 0.0027527 -0.0027951 -0.0003816 -0.0016546 -0.0028316 -0.0064436 

T = 0.140 s -0.0118747 -0.0029386 -0.0038835 0.0026644 -0.0028707 -0.0003970 -0.0016905 -0.0029646 -0.0066310 

T = 0.150 s -0.0121446 -0.0030600 -0.0039349 0.0025580 -0.0029209 -0.0003486 -0.0017110 -0.0031192 -0.0068563 

T = 0.160 s -0.0124162 -0.0031336 -0.0039815 0.0024587 -0.0029358 -0.0003234 -0.0017246 -0.0032340 -0.0070485 

T = 0.170 s -0.0125828 -0.0031696 -0.0040234 0.0023649 -0.0029577 -0.0002892 -0.0017341 -0.0033492 -0.0072026 

T = 0.180 s -0.0127737 -0.0032184 -0.0040640 0.0022703 -0.0029842 -0.0002378 -0.0017508 -0.0034246 -0.0073508 

T = 0.190 s -0.0129521 -0.0032416 -0.0040343 0.0021780 -0.0030184 -0.0001878 -0.0017684 -0.0034820 -0.0074708 

T = 0.200 s -0.0129841 -0.0032656 -0.0040335 0.0020855 -0.0030584 -0.0001390 -0.0017893 -0.0035406 -0.0075705 

T = 0.220 s -0.0130433 -0.0033197 -0.0040207 0.0018986 -0.0031527 -0.0001408 -0.0018276 -0.0036217 -0.0077174 

T = 0.240 s -0.0130815 -0.0033889 -0.0039762 0.0017171 -0.0032509 -0.0001300 -0.0018605 -0.0036865 -0.0078351 

T = 0.250 s -0.0130964 -0.0034380 -0.0039428 0.0016372 -0.0032980 -0.0001179 -0.0018753 -0.0037106 -0.0078754 

T = 0.260 s -0.0131082 -0.0034854 -0.0039055 0.0015563 -0.0033444 -0.0000989 -0.0018894 -0.0037292 -0.0079173 

T = 0.280 s -0.0131177 -0.0035852 -0.0038353 0.0014137 -0.0034177 -0.0000605 -0.0019188 -0.0037356 -0.0079674 

T = 0.290 s -0.0131232 -0.0036291 -0.0037989 0.0013502 -0.0034447 -0.0000431 -0.0019366 -0.0037366 -0.0079769 

T = 0.300 s -0.0131291 -0.0036757 -0.0037694 0.0012937 -0.0034624 -0.0000356 -0.0019540 -0.0037319 -0.0079728 

T = 0.320 s -0.0129679 -0.0037321 -0.0037010 0.0011760 -0.0035033 -0.0000384 -0.0019868 -0.0037011 -0.0079689 

T = 0.340 s -0.0128240 -0.0037592 -0.0036308 0.0010688 -0.0035300 -0.0000506 -0.0020093 -0.0036688 -0.0079434 
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T = 0.350 s -0.0127403 -0.0037756 -0.0035895 0.0010193 -0.0035387 -0.0000585 -0.0020154 -0.0036369 -0.0079215 

T = 0.360 s -0.0126614 -0.0037692 -0.0035384 0.0009700 -0.0035484 -0.0000734 -0.0020156 -0.0036154 -0.0078941 

T = 0.380 s -0.0125069 -0.0037550 -0.0034301 0.0008840 -0.0035746 -0.0001007 -0.0020116 -0.0035479 -0.0078281 

T = 0.400 s -0.0123510 -0.0037226 -0.0033172 0.0008725 -0.0036041 -0.0000865 -0.0020018 -0.0034746 -0.0077519 

T = 0.420 s -0.0121609 -0.0036810 -0.0032077 0.0008783 -0.0036398 -0.0000612 -0.0019755 -0.0034002 -0.0076718 

T = 0.440 s -0.0119627 -0.0036286 -0.0031005 0.0008495 -0.0036730 -0.0000551 -0.0019460 -0.0033222 -0.0075896 

T = 0.450 s -0.0118518 -0.0035994 -0.0030543 0.0008453 -0.0036783 -0.0000193 -0.0019293 -0.0032808 -0.0075435 

T = 0.460 s -0.0117399 -0.0035706 -0.0030106 0.0008428 -0.0036782 0.0000119 -0.0019112 -0.0032394 -0.0074949 

T = 0.480 s -0.0115206 -0.0035116 -0.0029279 0.0008266 -0.0036841 0.0000682 -0.0018738 -0.0031580 -0.0073964 

T = 0.500 s -0.0113029 -0.0034534 -0.0028647 0.0008319 -0.0036769 0.0000964 -0.0018319 -0.0030845 -0.0072856 

T = 0.550 s -0.0108099 -0.0033347 -0.0026981 0.0008474 -0.0036239 0.0001679 -0.0017270 -0.0029233 -0.0069697 

T = 0.600 s -0.0103136 -0.0032530 -0.0025172 0.0008526 -0.0035546 0.0002326 -0.0016336 -0.0028000 -0.0066413 

T = 0.650 s -0.0097797 -0.0031847 -0.0023300 0.0008841 -0.0034767 0.0002911 -0.0015514 -0.0027008 -0.0063330 

T = 0.667 s -0.0095988 -0.0031627 -0.0022636 0.0008988 -0.0034418 0.0003153 -0.0015254 -0.0026798 -0.0062435 

T = 0.700 s -0.0092486 -0.0031296 -0.0021341 0.0009232 -0.0033621 0.0003450 -0.0014886 -0.0026405 -0.0060774 

T = 0.750 s -0.0088653 -0.0030907 -0.0019351 0.0009579 -0.0032265 0.0003894 -0.0014646 -0.0026036 -0.0058375 

T = 0.800 s -0.0084834 -0.0030619 -0.0017367 0.0010055 -0.0030790 0.0004419 -0.0014309 -0.0025841 -0.0056128 

T = 0.850 s -0.0081050 -0.0030414 -0.0015982 0.0010607 -0.0029305 0.0004972 -0.0014066 -0.0025801 -0.0053952 

T = 0.900 s -0.0077284 -0.0030166 -0.0014760 0.0010870 -0.0027861 0.0005507 -0.0013655 -0.0025809 -0.0051812 

T = 0.950 s -0.0073511 -0.0029877 -0.0013424 0.0010215 -0.0026391 0.0005999 -0.0013222 -0.0025835 -0.0049749 

T = 1.000 s -0.0069728 -0.0029572 -0.0012053 0.0009335 -0.0024898 0.0006380 -0.0012796 -0.0025853 -0.0047667 

T = 1.100 s -0.0062904 -0.0028740 -0.0009333 0.0008366 -0.0021999 0.0007037 -0.0012093 -0.0025780 -0.0043828 

T = 1.200 s -0.0056003 -0.0027712 -0.0006778 0.0007322 -0.0020833 0.0006126 -0.0011520 -0.0025574 -0.0040467 

T = 1.300 s -0.0049973 -0.0026647 -0.0004244 0.0006354 -0.0019087 0.0005543 -0.0011019 -0.0025376 -0.0037110 

T = 1.400 s -0.0045639 -0.0025499 -0.0001770 0.0005121 -0.0017622 0.0004882 -0.0010557 -0.0025193 -0.0034064 
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T = 1.500 s -0.0038953 -0.0024802 -0.0001259 0.0003985 -0.0016739 0.0003738 -0.0010003 -0.0025013 -0.0031367 

T = 1.600 s -0.0035275 -0.0024287 -0.0000584 0.0002954 -0.0015487 0.0002722 -0.0009313 -0.0024772 -0.0029312 

T = 1.700 s -0.0031504 -0.0023784 0.0000069 0.0002211 -0.0014325 0.0001787 -0.0008555 -0.0024451 -0.0027570 

T = 1.800 s -0.0027644 -0.0023632 0.0000981 0.0001615 -0.0013422 0.0000945 -0.0007774 -0.0024032 -0.0025872 

T = 1.900 s -0.0023743 -0.0023469 0.0000602 0.0001208 -0.0012731 0.0000830 -0.0006996 -0.0023573 -0.0024227 

T = 2.000 s -0.0019816 -0.0023671 0.0000000 0.0000000 -0.0012039 0.0000000 -0.0006203 -0.0023130 -0.0022614 

T = 2.200 s -0.0015498 -0.0024838 0.0000000 0.0000000 -0.0010575 0.0000000 -0.0004594 -0.0022395 -0.0019425 

T = 2.400 s -0.0010001 -0.0026066 0.0000000 0.0000000 -0.0009078 0.0000000 -0.0003705 -0.0021853 -0.0016800 

T = 2.500 s -0.0007738 -0.0026665 0.0000000 0.0000000 -0.0008337 0.0000000 -0.0003280 -0.0021652 -0.0015652 

T = 2.600 s -0.0005474 -0.0027221 0.0000000 0.0000000 -0.0007582 0.0000000 -0.0003014 -0.0021656 -0.0014477 

T = 2.800 s -0.0003704 -0.0028153 0.0000000 0.0000000 -0.0005789 0.0000000 -0.0002032 -0.0021380 -0.0012488 

T = 3.000 s -0.0002187 -0.0028632 0.0000000 0.0000000 -0.0004601 0.0000000 -0.0002023 -0.0021396 -0.0009750 

T = 3.200 s -0.0000788 -0.0029038 0.0000219 0.0000245 -0.0003537 0.0000221 -0.0002036 -0.0021627 -0.0008049 

T = 3.400 s 0.0000401 -0.0029263 0.0000360 0.0000331 -0.0002432 0.0000360 -0.0002368 -0.0021985 -0.0007390 

T = 3.500 s 0.0000444 -0.0029273 0.0000408 0.0000363 -0.0002019 0.0000430 -0.0002479 -0.0022277 -0.0007007 

T = 3.600 s 0.0000477 -0.0029307 0.0000461 0.0000395 -0.0001349 0.0000461 -0.0002871 -0.0022498 -0.0006627 

T = 3.800 s 0.0000513 -0.0029366 0.0000495 0.0000416 -0.0000101 0.0000495 -0.0003658 -0.0023163 -0.0005990 

T = 4.000 s 0.0000502 -0.0029508 0.0000492 0.0000412 0.0000510 0.0000492 -0.0004653 -0.0023829 -0.0005490 

T = 4.200 s 0.0000448 -0.0029699 0.0000441 0.0000368 0.0000430 0.0000448 -0.0004562 -0.0024561 -0.0005101 

T = 4.400 s 0.0000368 -0.0029954 0.0000354 0.0000312 0.0000341 0.0000368 -0.0004544 -0.0025330 -0.0004741 

T = 4.600 s 0.0000261 -0.0029701 0.0000251 0.0000252 0.0000260 0.0000254 -0.0004354 -0.0026125 -0.0004411 

T = 4.800 s 0.0000137 -0.0028732 0.0000167 0.0000198 0.0000200 0.0000143 -0.0004150 -0.0025620 -0.0004253 

T = 5.000 s 0.0000000 -0.0027701 0.0000000 0.0000000 0.0000145 0.0000000 -0.0003774 -0.0025057 -0.0004108 

T = 5.500 s 0.0000000 -0.0025466 0.0000000 0.0000000 0.0000082 0.0000000 -0.0002752 -0.0023188 -0.0003932 

T = 6.000 s 0.0000000 -0.0022925 0.0000000 0.0000000 0.0000037 0.0000000 -0.0001716 -0.0022293 -0.0003540 
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T = 6.500 s 0.0000000 -0.0019967 0.0000000 0.0000000 0.0000016 0.0000000 -0.0001191 -0.0021174 -0.0003005 

T = 7.000 s 0.0000000 -0.0016923 0.0000000 0.0000000 0.0000002 0.0000000 -0.0000627 -0.0020158 -0.0002444 

T = 7.500 s 0.0000000 -0.0013939 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 -0.0018697 -0.0001863 

T = 8.000 s 0.0000000 -0.0010915 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 -0.0017113 -0.0001352 

T = 8.500 s 0.0000000 -0.0007839 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 -0.0015486 -0.0000843 

T = 9.000 s 0.0000000 -0.0004767 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 -0.0013841 -0.0000333 

T = 9.500 s 0.0000000 -0.0001702 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 -0.0012181 0.0000000 

T = 10.000 s 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 -0.0010506 0.0000000 

 

 

Table 4.3: Coefficient values for 𝛥𝑐0,𝑟. 

𝚫𝒄𝟎,𝒓 

Intensity 

Measure 

North 

Coast 
Bay Area 

Central 

Coast 

Sierra 

Nevada 

Southern 

Sierra 

and 

Mojave 

Eastern 

CA Shear 

Zone 

Southern 

California 

Central 

Valley 

Northeastern 

California 

PGV 0.0007371 0.0005161 0.0023289 -0.0033628 0.0008042 0.0021270 0.0001762 0.0000000 0.0000000 

PGA 0.0003538 -0.0035011 -0.0030760 -0.0059568 0.0005254 0.0023358 0.0001337 0.0000000 0.0000000 

T = 0.010 s 0.0003879 -0.0033996 -0.0029975 -0.0060205 0.0004986 0.0022212 0.0001552 0.0000000 0.0000000 

T = 0.020 s 0.0000007 -0.0037354 -0.0033778 -0.0058507 0.0005243 0.0021375 0.0001556 0.0000000 0.0000000 

T = 0.022 s -0.0000776 -0.0038030 -0.0034509 -0.0058170 0.0005296 0.0021214 0.0001556 0.0000000 0.0000000 

T = 0.025 s -0.0001947 -0.0039029 -0.0035586 -0.0057686 0.0005374 0.0020976 0.0001555 0.0000000 0.0000000 

T = 0.029 s -0.0003578 -0.0040548 -0.0037868 -0.0056780 0.0005480 0.0020668 0.0001553 0.0000000 0.0000000 
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T = 0.030 s -0.0004047 -0.0040999 -0.0038452 -0.0056532 0.0005506 0.0020593 0.0001552 0.0000000 0.0000000 

T = 0.032 s -0.0004939 -0.0041897 -0.0039629 -0.0056019 0.0005559 0.0020444 0.0001551 0.0000000 0.0000000 

T = 0.035 s -0.0006282 -0.0043249 -0.0041570 -0.0055114 0.0005639 0.0020230 0.0001548 0.0000000 0.0000000 

T = 0.036 s -0.0006793 -0.0043678 -0.0042220 -0.0054820 0.0005666 0.0020163 0.0001547 0.0000000 0.0000000 

T = 0.040 s -0.0008856 -0.0045365 -0.0044819 -0.0053681 0.0005774 0.0019934 0.0001544 0.0000000 0.0000000 

T = 0.042 s -0.0009915 -0.0046184 -0.0046002 -0.0053136 0.0005828 0.0019935 0.0001543 0.0000000 0.0000000 

T = 0.044 s -0.0010998 -0.0046938 -0.0047180 -0.0052649 0.0005882 0.0019898 0.0001542 0.0000000 0.0000000 

T = 0.045 s -0.0011536 -0.0047274 -0.0047713 -0.0052469 0.0005910 0.0019875 0.0001542 0.0000000 0.0000000 

T = 0.046 s -0.0012073 -0.0047647 -0.0048220 -0.0052243 0.0005937 0.0019859 0.0001542 0.0000000 0.0000000 

T = 0.048 s -0.0013135 -0.0048272 -0.0049227 -0.0052029 0.0005992 0.0019868 0.0001541 0.0000000 0.0000000 

T = 0.050 s -0.0014112 -0.0048706 -0.0050029 -0.0051829 0.0006047 0.0019952 0.0001542 0.0000000 0.0000000 

T = 0.055 s -0.0016349 -0.0049518 -0.0051813 -0.0051379 0.0006185 0.0020140 0.0001545 0.0000000 0.0000000 

T = 0.060 s -0.0017995 -0.0049903 -0.0053372 -0.0050880 0.0006323 0.0020488 0.0001551 0.0000000 0.0000000 

T = 0.065 s -0.0019317 -0.0050229 -0.0054512 -0.0050531 0.0006463 0.0021139 0.0001559 0.0000000 0.0000000 

T = 0.067 s -0.0019774 -0.0050328 -0.0054787 -0.0050509 0.0006519 0.0021402 0.0001562 0.0000000 0.0000000 

T = 0.070 s -0.0020146 -0.0050325 -0.0054979 -0.0050709 0.0006603 0.0021943 0.0001564 0.0000000 0.0000000 

T = 0.075 s -0.0020073 -0.0050063 -0.0054667 -0.0051419 0.0006744 0.0022767 0.0001671 0.0000000 0.0000000 

T = 0.080 s -0.0019666 -0.0049716 -0.0054158 -0.0052731 0.0006884 0.0023733 0.0001697 0.0000000 0.0000000 

T = 0.085 s -0.0019057 -0.0049285 -0.0053404 -0.0053881 0.0007025 0.0024718 0.0001981 0.0000000 0.0000000 

T = 0.090 s -0.0018204 -0.0048588 -0.0052219 -0.0055197 0.0007165 0.0025833 0.0002254 0.0000000 0.0000000 

T = 0.095 s -0.0017221 -0.0047729 -0.0050974 -0.0056645 0.0007306 0.0026957 0.0002518 0.0000000 0.0000000 

T = 0.100 s -0.0015895 -0.0046561 -0.0049504 -0.0058110 0.0007446 0.0028060 0.0002775 0.0000000 0.0000000 

T = 0.110 s -0.0012471 -0.0043758 -0.0046176 -0.0060780 0.0007730 0.0030192 0.0003276 0.0000000 0.0000000 

T = 0.120 s -0.0008595 -0.0040884 -0.0042346 -0.0063429 0.0008021 0.0031056 0.0003539 0.0000000 0.0000000 

T = 0.130 s -0.0003986 -0.0037811 -0.0038078 -0.0065771 0.0008330 0.0031284 0.0003598 0.0000000 0.0000000 
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T = 0.133 s -0.0002464 -0.0036854 -0.0036446 -0.0066433 0.0008429 0.0031073 0.0003609 0.0000000 0.0000000 

T = 0.140 s 0.0001137 -0.0034617 -0.0032592 -0.0067936 0.0008711 0.0030817 0.0003688 0.0000000 0.0000000 

T = 0.150 s 0.0006632 -0.0031385 -0.0026479 -0.0069894 0.0009136 0.0030986 0.0003721 0.0000000 0.0000000 

T = 0.160 s 0.0012322 -0.0028157 -0.0020290 -0.0071411 0.0009612 0.0031048 0.0003597 0.0000000 0.0000000 

T = 0.170 s 0.0017822 -0.0024946 -0.0014021 -0.0072358 0.0010063 0.0030868 0.0003325 0.0000000 0.0000000 

T = 0.180 s 0.0022500 -0.0021764 -0.0008503 -0.0071902 0.0010477 0.0030449 0.0002909 0.0000000 0.0000000 

T = 0.190 s 0.0026773 -0.0018634 -0.0003317 -0.0070653 0.0010851 0.0029862 0.0002393 0.0000000 0.0000000 

T = 0.200 s 0.0030947 -0.0015565 0.0001122 -0.0068385 0.0011206 0.0029069 0.0001909 0.0000000 0.0000000 

T = 0.220 s 0.0038593 -0.0009691 0.0008664 -0.0065409 0.0011781 0.0027005 0.0000806 0.0000000 0.0000000 

T = 0.240 s 0.0045241 -0.0004272 0.0015825 -0.0061199 0.0012239 0.0024697 -0.0000476 0.0000000 0.0000000 

T = 0.250 s 0.0048484 -0.0001592 0.0019070 -0.0058923 0.0012466 0.0023581 -0.0001086 0.0000000 0.0000000 

T = 0.260 s 0.0051260 0.0000979 0.0022143 -0.0056651 0.0012684 0.0022496 -0.0001680 0.0000000 0.0000000 

T = 0.280 s 0.0055287 0.0005679 0.0028106 -0.0052466 0.0013165 0.0020513 -0.0002761 0.0000000 0.0000000 

T = 0.290 s 0.0056606 0.0007636 0.0031036 -0.0050800 0.0013416 0.0019633 -0.0003209 0.0000000 0.0000000 

T = 0.300 s 0.0058114 0.0009659 0.0033173 -0.0048924 0.0013674 0.0018700 -0.0003607 0.0000000 0.0000000 

T = 0.320 s 0.0060494 0.0013150 0.0037700 -0.0045677 0.0014197 0.0016981 -0.0004189 0.0000000 0.0000000 

T = 0.340 s 0.0063089 0.0016557 0.0041447 -0.0042673 0.0014698 0.0015652 -0.0004864 0.0000000 0.0000000 

T = 0.350 s 0.0064042 0.0018031 0.0042744 -0.0041118 0.0014919 0.0014967 -0.0005126 0.0000000 0.0000000 

T = 0.360 s 0.0064782 0.0019405 0.0044582 -0.0039529 0.0015125 0.0014452 -0.0005481 0.0000000 0.0000000 

T = 0.380 s 0.0065590 0.0021829 0.0046484 -0.0036166 0.0015404 0.0013344 -0.0005913 0.0000000 0.0000000 

T = 0.400 s 0.0066122 0.0024113 0.0047819 -0.0032605 0.0015459 0.0012455 -0.0006371 0.0000000 0.0000000 

T = 0.420 s 0.0066330 0.0026010 0.0049113 -0.0029167 0.0015386 0.0011553 -0.0006638 0.0000000 0.0000000 

T = 0.440 s 0.0066449 0.0027515 0.0050390 -0.0025897 0.0015259 0.0010903 -0.0006713 0.0000000 0.0000000 

T = 0.450 s 0.0066522 0.0028248 0.0051027 -0.0024314 0.0015169 0.0010607 -0.0006818 0.0000000 0.0000000 

T = 0.460 s 0.0066559 0.0028777 0.0051665 -0.0023246 0.0015073 0.0010351 -0.0006824 0.0000000 0.0000000 
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T = 0.480 s 0.0066584 0.0029640 0.0053001 -0.0021319 0.0014911 0.0010045 -0.0006888 0.0000000 0.0000000 

T = 0.500 s 0.0066490 0.0030429 0.0054397 -0.0019850 0.0014732 0.0009986 -0.0006857 0.0000000 0.0000000 

T = 0.550 s 0.0064680 0.0031364 0.0057203 -0.0016661 0.0014224 0.0009795 -0.0006751 0.0000000 0.0000000 

T = 0.600 s 0.0062704 0.0032372 0.0059508 -0.0013325 0.0013642 0.0009958 -0.0006460 0.0000000 0.0000000 

T = 0.650 s 0.0060451 0.0033177 0.0061445 -0.0010222 0.0013122 0.0010111 -0.0006071 0.0000000 0.0000000 

T = 0.667 s 0.0059793 0.0033439 0.0062035 -0.0009205 0.0012963 0.0010233 -0.0005972 0.0000000 0.0000000 

T = 0.700 s 0.0058457 0.0033928 0.0063048 -0.0007217 0.0012585 0.0010428 -0.0005735 0.0000000 0.0000000 

T = 0.750 s 0.0056574 0.0034604 0.0064312 -0.0004223 0.0012020 0.0010720 -0.0005398 0.0000000 0.0000000 

T = 0.800 s 0.0054748 0.0035149 0.0065382 -0.0001585 0.0011421 0.0010979 -0.0005056 0.0000000 0.0000000 

T = 0.850 s 0.0052955 0.0035556 0.0066344 0.0001054 0.0010831 0.0011201 -0.0004681 0.0000000 0.0000000 

T = 0.900 s 0.0051218 0.0035784 0.0066991 0.0003544 0.0010276 0.0011363 -0.0004269 0.0000000 0.0000000 

T = 0.950 s 0.0049555 0.0035787 0.0067557 0.0005539 0.0009771 0.0011535 -0.0003824 0.0000000 0.0000000 

T = 1.000 s 0.0047930 0.0035837 0.0067768 0.0007257 0.0009316 0.0011693 -0.0003379 0.0000000 0.0000000 

T = 1.100 s 0.0045063 0.0035558 0.0067462 0.0009381 0.0008521 0.0011972 -0.0002569 0.0000000 0.0000000 

T = 1.200 s 0.0042576 0.0035171 0.0066872 0.0011090 0.0007916 0.0012227 -0.0001874 0.0000000 0.0000000 

T = 1.300 s 0.0040360 0.0034764 0.0065882 0.0012550 0.0007449 0.0012466 -0.0001265 0.0000000 0.0000000 

T = 1.400 s 0.0038001 0.0034412 0.0065077 0.0013922 0.0007020 0.0012751 -0.0000710 0.0000000 0.0000000 

T = 1.500 s 0.0035939 0.0034316 0.0064361 0.0014893 0.0006849 0.0013259 -0.0000274 0.0000000 0.0000000 

T = 1.600 s 0.0033990 0.0034300 0.0064049 0.0015918 0.0006786 0.0013897 -0.0000200 0.0000000 0.0000000 

T = 1.700 s 0.0032396 0.0034545 0.0063673 0.0017083 0.0006751 0.0014929 -0.0000432 0.0000000 0.0000000 

T = 1.800 s 0.0031052 0.0034996 0.0063625 0.0018300 0.0006723 0.0016211 -0.0000868 0.0000000 0.0000000 

T = 1.900 s 0.0030108 0.0035970 0.0063882 0.0019653 0.0006649 0.0017606 -0.0001436 0.0000000 0.0000000 

T = 2.000 s 0.0028945 0.0036718 0.0064470 0.0021014 0.0006521 0.0019154 -0.0001992 0.0000000 0.0000000 

T = 2.200 s 0.0026935 0.0038541 0.0066991 0.0023031 0.0006257 0.0022037 -0.0003276 0.0000000 0.0000000 

T = 2.400 s 0.0025437 0.0040554 0.0069413 0.0024840 0.0006064 0.0025146 -0.0004730 0.0000000 0.0000000 
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𝚫𝒄𝟎,𝒓 

Intensity 

Measure 

North 

Coast 
Bay Area 

Central 

Coast 

Sierra 

Nevada 

Southern 

Sierra 

and 

Mojave 

Eastern 

CA Shear 

Zone 

Southern 

California 

Central 

Valley 

Northeastern 

California 

T = 2.500 s 0.0024944 0.0041648 0.0070536 0.0025438 0.0006020 0.0026855 -0.0005406 0.0000000 0.0000000 

T = 2.600 s 0.0024601 0.0042761 0.0071720 0.0026223 0.0005988 0.0028719 -0.0006042 0.0000000 0.0000000 

T = 2.800 s 0.0024101 0.0044949 0.0074129 0.0027284 0.0006016 0.0034452 -0.0007334 0.0000000 0.0000000 

T = 3.000 s 0.0023328 0.0046868 0.0076676 0.0027756 0.0006138 0.0041175 -0.0008778 0.0000000 0.0000000 

T = 3.200 s 0.0022556 0.0048614 0.0079211 0.0028270 0.0006282 0.0047139 -0.0010289 0.0000000 0.0000000 

T = 3.400 s 0.0021857 0.0050246 0.0081951 0.0028909 0.0006413 0.0053066 -0.0011839 0.0000000 0.0000000 

T = 3.500 s 0.0021423 0.0050881 0.0083394 0.0029260 0.0006463 0.0056036 -0.0012623 0.0000000 0.0000000 

T = 3.600 s 0.0021152 0.0051620 0.0084949 0.0029608 0.0006506 0.0059004 -0.0013398 0.0000000 0.0000000 

T = 3.800 s 0.0020242 0.0052419 0.0087959 0.0030300 0.0006546 0.0065005 -0.0014951 0.0000000 0.0000000 

T = 4.000 s 0.0019610 0.0053142 0.0090483 0.0030766 0.0006533 0.0070943 -0.0016024 0.0000000 0.0000000 

T = 4.200 s 0.0019243 0.0053873 0.0092684 0.0030191 0.0006490 0.0072719 -0.0016619 0.0000000 0.0000000 

T = 4.400 s 0.0019127 0.0054507 0.0094703 0.0030126 0.0006427 0.0075982 -0.0016885 0.0000000 0.0000000 

T = 4.600 s 0.0019819 0.0055181 0.0096650 0.0029828 0.0006345 0.0080540 -0.0016748 0.0000000 0.0000000 

T = 4.800 s 0.0020433 0.0055794 0.0098488 0.0029379 0.0006260 0.0084462 -0.0016414 0.0000000 0.0000000 

T = 5.000 s 0.0021676 0.0056476 0.0102346 0.0028622 0.0006184 0.0089168 -0.0015837 0.0000000 0.0000000 

T = 5.500 s 0.0024661 0.0056850 0.0109673 0.0025728 0.0006019 0.0099181 -0.0014884 0.0000000 0.0000000 

T = 6.000 s 0.0027645 0.0057639 0.0115453 0.0019241 0.0005876 0.0108898 -0.0014697 0.0000000 0.0000000 

T = 6.500 s 0.0029583 0.0058320 0.0121279 0.0006702 0.0005749 0.0118528 -0.0014517 0.0000000 0.0000000 

T = 7.000 s 0.0029910 0.0058669 0.0125753 -0.0000389 0.0005621 0.0128359 -0.0014447 0.0000000 0.0000000 

T = 7.500 s 0.0030345 0.0058622 0.0128972 -0.0007060 0.0005487 0.0138337 -0.0014412 0.0000000 0.0000000 

T = 8.000 s 0.0030442 0.0057885 0.0130802 -0.0011496 0.0005344 0.0148413 -0.0014367 0.0000000 0.0000000 

T = 8.500 s 0.0030611 0.0056969 0.0132674 -0.0015064 0.0005196 0.0158558 -0.0014301 0.0000000 0.0000000 

T = 9.000 s 0.0030726 0.0055922 0.0134478 -0.0018296 0.0005042 0.0168750 -0.0014216 0.0000000 0.0000000 

T = 9.500 s 0.0030750 0.0054790 0.0136200 -0.0021344 0.0004886 0.0178976 -0.0014113 0.0000000 0.0000000 

T = 10.000 s 0.0030684 0.0053607 0.0137853 -0.0024295 0.0004729 0.0189226 -0.0013999 0.0000000 0.0000000 
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(d) Geysers and Tectonic North Coast Events 

In this section, I investigate whether Geyser and tectonic events in the North Coast subregion 

exhibit different attenuation characteristics. To evaluate these effects, event-specific within-event 

residuals are regressed using Equation (4.9)for both event types, with the results shown in Figure 

4.12 for the IM of PSA at 1.0 sec. I find little difference between data trends for the two event 

types. Statistical F-tests were used to evaluate the degree to which data from the two event types 

are distinct (Mishra et al. 2019). These F-tests are performed on residuals from two path models. 

One model is fit using the combined dataset of Geyser and non-Geyser (tectonic) North Coast data, 

while the second is comprised of two separate sets of coefficients fit from the individual datasets. 

By comparing the statistical properties of the two residual datasets I can infer if the path effects 

are different, which is quantified using an F-statistic. P-values computed from the F-statistic range 

from 0.18 to 0.99 for all IMs, which exceed a commonly applied significance level of 0.05. This 

indicates that submodels vs combined model cannot be considered distinct. As a result, I conclude 

that it is unnecessary to discriminate between these event types in model development, which was 

applied in the regressions for the North Coast subregion described above.  
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Figure 4.12: Within-event residuals (𝛿𝑊𝑖𝑗) against 𝑅𝐽𝐵 for PSA at 0.10 sec for (a) Geyser-only 

events, (b) tectonic north coast events, and (c) all north coast (NC) events. Data points shaded 

relative to the path weight within the north coast region. 

 

4.6. Model Performance 

Model performance is evaluated based on attributes of residuals computed using Equation (4.5)but 

with the BSSA14 model updated to include the path adjustments from the subregional path model 

(Equation 4.11) and constant term adjustment from the subregional path model and coefficients 

for Geyser events (Equation 4.12). All model coefficients were taken from Tables 4.1 – 4.3. Total 

residuals were partitioned into event terms and within-event residuals (𝛿𝑊𝑖𝑗) usingEquation (4.6). 

Figure 4.13(a) shows constant terms from the original BSSA14 ergodic model and the updated 

model. I observe a reduction of model bias for PGV, PGA and for periods shorter than about 1.0 

sec with longer periods having similar bias when subregional path effects are considered. This is 

expected since anelastic effects are more pronounced for short period intensity measures, and the 

proposed subregional path model does not modify the ergodic anelastic attenuation slope for longer 

periods. Figure 4.13(b-d) show 𝛿𝑊𝑖𝑗 and binned means for all magnitudes and events with M > 5 

and M < 5 (as in Figure 4.6). The downward trend for M < 5 events has largely been removed.  
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Figure 4.13: (a) Model bias from residuals analysis for the original regional BSSA14 model and 

adjusted subregional model for PGV, PGA and 105 oscillator periods; trends of within-event 

residual (𝛿𝑊𝑖𝑗) for PSA at 0.10 sec with distance using (b) full California dataset, (c) subset of 

earthquakes with M > 5 and (d) subsets of earthquakes with M < 5.  

 

 Figure 4.14 shows 𝛿𝑊𝑖𝑗 vs. distance computed for the updated model for the six subregions 

shown previously in Figure 4.7. For each subregion, the trend of binned means with distance is 

flat, indicating that the variable path effects have been accounted for in the revised model. In the 

case of the North Coast subregion, the misfit at close distances (RJB < 20 km) remains due to the 

lack of adjustment of the h term, but binned means at larger distances retain a flat trend.  
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Figure 4.14: Trend of within-event residuals (𝛿𝑊𝑖𝑗) against Joyner-Boore distance (𝑅𝐽𝐵) for PSA 

at 0.05 sec grouped by region of event origination with updated model; data points shaded relative 

to the path weight within the region of event origination; results shown for the first iteration. 

 

Figure 4.15 shows total, between-event, and within-event standard-deviations (, , and , 

respectively) obtained from residuals computed using the BSSA14 regional GMM for California 

and two datasets: (1) California data in NGA-West2 data and (2) the full dataset utilized in this 

study. These standard-deviations are related as,  

 𝜎 = √𝜏2 + 𝜙2  (4.15) 
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Figure 4.15: Standard-deviations calculated using the default BSSA14 GMM for the subset of 

NGA-West2 data and the complete dataset utilized in this study. 

 

 

All three standard deviations are larger at short periods and smaller at long periods from 

the expanded dataset than from the NGA-West2 data. These increases are likely caused by a 

relatively large amount of small magnitude data, which has large short-period dispersion and 

smaller long-period dispersion. Also potentially contributing to these trends are the increased 

diversity of earthquakes and recording stations in the expanded data, particularly in the northern 

and eastern portions of California.  

Figure 4.16(a) shows the same dispersion terms along with within-event, single station 

variability (𝜙𝑆𝑆) (standard deviation of 𝜖) when residuals are computed using the BSSA14 GMMs 

and using the updated GMMs developed here. The proposed path and constant term models reduce 

variability for all IMs, but particularly at short periods. The bump in dispersion near 0.1 sec in the 
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NGA-West2 model has been repeatedly observed in different studies, and has been attributed by 

some to be a consequence of site response (Al Atik and Abrahamson, 2010). The proposed model 

eliminates the bump in 𝜙𝑆𝑆 and substantially reduces it in 𝜏. The effect on 𝜏 likely stems from path 

corrections for distant recordings reducing path dispersion that had influenced 𝜂𝐸,𝑗 estimates.  

 

 

Figure 4.16: Standard-deviations calculated using the BSSA14 GMM and updated model and (a) 

the full California dataset, (b) the data set exclusive of north coast data, and (c) only north coast 

data. 

 

I investigated causes of the elevated dispersion from the expanded data set (Figure 4.13), 

and found that a contributing factor is the added data for the North Coast subregion. Figure 

4.16(b,c) show the same dispersion terms as used for the full dataset in Figure 4.16(a), but now 

computed from datasets exclusive of North Coast events (Figure 4.16b) and for North Coast events 

only (Figure 4.16c).  The results demonstrate variability reduction for non-North Coast data and 

variability increase for North Coast data. The large variability coming from the North Coast 

subregion may be influenced by unmodelled source effects for Geysers events or from especially 

complex wave propagation effects.  
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After excluding the North Coast data, Figure 4.17(a) shows the magnitude-dependence of 

between-event variability terms (𝜏), which were computed by binning the data into M groups in a 

similar manner to that of BSSA14. Results for both the original BSSA14 model and the updated 

model are shown. The change in binned 𝜏 values is small relative to the standard errors. In both 

cases, the data show a decrease of dispersion with increasing M, whereas BSSA14 show a small 

increase (this increase is only for oscillator periods between 0.08-0.17 sec, elsewhere 𝜏 decreases 

with M). Given the similar levels of 𝜏 in this study with BSSA14, no revisions to the 𝜏 model are 

proposed. Figure 4.17(b,c) show 𝜙 and 𝜙𝑆𝑆 binned by M and 𝑅𝐽𝐵 for the original and updated 

GMMs. The model drawn with the 𝜙𝑆𝑆 results is from Goulet et al. (2018). Comparing binned 𝜙 

and 𝜙𝑆𝑆 values derived using BSSA14 to those from the proposed model, I observe no significant 

within-event variability reductions at close distances for the proposed model, as expected. On the 

other hand, dispersions are reduced at larger distance for M ≤ 4.5 events, which is the source of 

most of the data considered in this study. The lack of dispersion reduction for larger magnitudes 

is based on a small number of well-sampled, large M events, and hence it is unclear to what extent 

regionalized path models are helpful for such earthquakes. Overall, the small difference between 

ergodic aleatory model and the data derived aleatory variations in Figure 4.17 indicate that updates 

to aleatory variability models are not needed when the proposed model is applied. This occurs 

because of two offsetting effects – the enlarged database increases dispersion in the BSSA14 

regional model (Figure 4.15), but the subregional model reduces uncertainty at large distances to 

levels consistent with BSSA14 (Figure 4.17).  
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Figure 4.17: Binned standard deviation terms with their standard errors for PSA at 0.10 sec 

showing (a) magnitude effect on between-event variability (𝜏), (b) distance effect on within-event 

variability (𝜙) and single-station within-event variability (𝜙𝑆𝑆) for small M, and (c) distance effect 

on 𝜙 and 𝜙𝑆𝑆 for large M. Results are for California dataset exclusive of North Coast events. 

BSSA14 = Boore et al. (2014); Gea18 = Goulet et al. (2018). 

 

To investigate effects of the subregional model on dispersion, I plot in Figure 4.18 the 

changes in overall within-event variability (Δ𝜙) and single station variability (𝛥𝜙𝑆𝑆), where 

negative changes indicate reductions. The results indicate standard deviations reductions of up to 

0.07 at short periods and large distances (RJB > 100 km). These changes are comparable to changes 

in total dispersion (σ) from non-ergodic path models as reported in Figure 6 of Kuehn et al. (2019), 

which suggests that the present work, despite the coarser spatial resolution, achieves similar levels 

of within-event variability reduction.  
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Figure 4.18: Changes in within-event variability (𝛥𝜙) and single-station within-event variability 

(𝛥𝜙𝑆𝑆) from BSSA14 to proposed subregional model. Results are binned by distance and 

computed for (a) all California events (b) California dataset exclusive of north coast. Negative 

values indicate variability reduction relative to BSSA14. 

 

4.7. Conclusions 

The anelastic path models in the NGA-West2 GMMs consider broad geopolitical regionalization 

which lacks physical basis and represent average attenuation for large areas. Previous studies have 

shown evidence of variable ground motion characteristics across California, some of which 

proposed regional or cell-based path models to capture variable rates of attenuation. I propose nine 
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physiographical subregions for California derived from prior work (Hauksson and Shearer 2006; 

Chiou et al. 2010; Eberhart-Phillips 2016). A substantially augmented version of the NGA-West2 

California ground motion database was used to facilitate a residuals-based analyses of subregional 

path-effects.  

I demonstrated that Geyser (induced) events possess different source effects when 

compared to other north coast tectonic events. I find path effects between induced and tectonic not 

to be statistically distinct, therefore my analyses of path effects combine them. I introduce an 

induced constant adjustment term (𝑒𝐼) to remove biases related to induced source effects so that 

they do not inflate between-event variability (𝜏).   

I present an iterative approach that identifies subregions with path bias (relative to the 

California-wide model) and adjusts subregional anelastic path coefficients (∆𝑐3
∗; Equation 4.13) 

and constant term adjustment (Δ𝑐0,𝑟). The resulting model, which adjusts the BSSA14 GMM, is 

given by Equation (4.10), in which the 𝐹𝑃 term that accounts for subregional path effects is taken 

from Equation (4.11). Other than the adjusted constant and anelastic attenuation terms, other terms 

are not modified from BSSA14. The aleatory variability is generally unchanged from prior models 

(BSSA14 for 𝜏 and 𝜙; Goulet et al. 2018 for 𝜙𝑆𝑆), although higher variability is found for North 

Coast events. Subregional model coefficients Δ𝑐3,𝑟, Δ𝑐0,𝑟, and 𝑒𝐼 are provided in Tables 4.1 – 4.3.  

Given that the database is dominated by M 4-5 events, an implicit assumption in the 

proposed model that is important for hazard applications is that the frequency-dependent spatial 

variations of anelastic attenuation are equally applicable for the data range and the larger, hazard-

critical magnitude range. Further subregionalization may be needed in some cases such as southern 

California, which was not the main focus of this work.   
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 Region-Specific Site Response in the Sacramento-San Joaquin Delta 

CHAPTER 5 

Region-Specific Site Response in the Sacramento-San Joaquin Delta 

5.1. Introduction 

Site response, in the context of geotechnical earthquake engineering, represents the effects of local 

geological and geotechnical site conditions on earthquake ground motions. Site response can be 

evaluated from one-dimensional or multi-dimensional wave propagation analyses that account for 

the seismic velocity structure or can be inferred from local ground motion recordings. Site response 

models utilize site parameters, such as those discussed in Chapter 2, to estimate the changes in 

ground motions at the surface of a site relative to ground motions for a reference site condition. 

Many factors influence site response, including: 

1. Impedance related to the vertical propagation of seismic waves, generally from stiffer 

(high VS) to softer layers (low VS), which results in amplification to maintain the 

conservation of energy (i.e., as waves slowdown in softer layers their amplitudes must 

increase); 

2. Basin effects associated with large sedimentary structures in the form of basin edge 

effects, focusing, and the generation of surface waves (Graves 1993); 

3. Resonance of particular ground motion frequencies with one or more natural 

frequencies of the site, which results in a relatively narrow band of higher amplification 

(e.g., Idriss and Seed 1968; Seed et al. 1976); and 
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4. Nonlinearity associated with soil modulus reduction and increased damping under 

strong shaking conditions that produce large soil strains, which attenuates high-

frequency ground motions (e.g., Seyhan and Stewart 2014 – SS14; Hashash et al. 

2020). 

The ground motion models (GMMs) used in California are from the NGA-West2 project 

(Bozorgnia et al. 2014). These models have site response components that apply either globally 

for active tectonic regions (e.g., Boore et al. 2014) or apply for broad regions (e.g., California vs. 

Japan; Campbell and Bozorgnia 2014). However, differences have been observed when 

investigating regional site effects at a more local scale (e.g., Landwehr et al. 2016; Nweke et al. 

2022; Wang et al. 2022a). The peaty-organic soils in the Delta have characteristic VS30 values 

typically in the range of 100 to 200 m/s, which is softer than the lower limit for NGA-West2 site 

response models, as shown in Figure 5.1. Furthermore, the soft soils in the Delta typically overlie 

relatively firm, non-organic soils, which can give rise to more pronounced impedance and 

resonance effects than would be typical at non-Delta sites. Accordingly, the peaty soils in the Delta 

produce site effects that are not well represented by site terms in current GMMs. 
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Figure 5.1: VS30 distributions of sites used in NGA-West2 models and at Delta sites (red). 

 

The peaty organic soils in the Delta affect seismic risk for the regional infrastructure in two 

ways: (1) seismic ground motions are affected by site amplification and (2) ground deformation 

potential associated with permanent shear and/or volumetric deformations in peat (Shafiee et al. 

2015). This chapter is concerned with the first of these issues (site response). In this chapter I 

utilize the expanded ground motion database described in Section 2.4 to evaluate empirical site 

response in the Delta. These data have relatively low amplitudes (i.e., weak motions), for which 

significant nonlinear effects are not expected, thus allowing me to investigate the features of local 

site response from non-ergodic analyses. Following this introduction, I describe the selected data 

and then present data analyses that include residuals calculations. The results are used to develop 

site response models conditioned on the site parameters discussed in Section 3.3. 
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5.2. Non-Ergodic Site Responses for Delta Region Stations 

In this section I use ground motion recordings from sites in the Delta subregion as defined by 

DWR (2018) to derive site-specific site responses for use in subsequent modeling. The non-ergodic 

method of site response analysis that is applied here is conceptually similar to Stewart et al. (2017).  

The Delta subregion includes sites with and without peaty-organic soils. This region 

contains 54 seismic instruments. At the time of writing, 43 of these stations have recorded ground 

motions from 69 events (M ≥ 4) in the GMDB discussed in Chapter 2. The vast majority of these 

ground motions were processed as part of this study. 

5.2.1. Data Selection and Attributes 

Table 5.1 provides the metadata, including VS30, peak parameters derived from mHVSR [𝑓𝑝, 𝑐0, 

𝑐1, 𝑎𝑝, and 𝑤 which are defined in Section 3.3.3(b)], and the number of usable recordings, for 

these 43 stations. Magnitude-distance criteria defined by Boore et al. (2014; BSSA14) are enforced 

to avoid potential bias with instrument trigger levels, and operate by eliminating data beyond a 

maximum distance where an appreciable fraction of recordings may not appear in the data as a 

result of having amplitudes below trigger or noise thresholds. Event metadata for the 69 events are 

provided in Table 5.2. Figure 5.2 presents a map of the locations of the events and stations used 

during model development. 
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Table 5.1: Metadata for Delta stations with ground motion records. 

Station   

Code 

Latitude 

(o) 

Longitude 

(o) 

VS30      

(m/s) 

tp        

(m) 

HVSR 

Peak 
c0 c1 ap 

fp        

(Hz) 
w 

No. of 

Records 

BK_JEPS 38.2579 -121.8252 389.8 0.00 Y 0.833 1.457 2.291 0.661 0.495 20 

BK_TWIT 38.0971 -121.6832 157.6 3.10 Y 0.944 2.940 3.884 0.691 0.313 21 

CE_57195 37.9753 -121.3140 306.2 0.00 N - - - - - 19 

CE_57531 37.9332 -121.6956 250.6 0.00 Y 0.814 1.507 2.322 0.750 0.500 18 

CE_57534 37.9119 -121.6219 238.3 0.00 N - - - - - 28 

CE_67215 37.9925 -121.6384 227.5 0.00 Y 1.100 0.914 2.014 0.695 0.383 9 

CE_67266 38.0179 -121.7516 271.6 0.00 Y 1.589 2.276 3.865 1.701 0.121 2 

CE_67523 38.0183 -121.7509 272.0 0.00 Y 1.100 0.944 2.044 2.889 0.264 1 

CE_67533 38.0155 -121.6396 188.4 0.91 N - - - - - 16 

CE_67557 38.0141 -121.8148 324.6 0.00 N - - - - - 2 

CE_67587 38.0390 -121.8986 226.8 0.00 Y 1.100 4.150 5.250 1.105 0.289 20 

CE_67615 38.0005 -121.7830 287.1 0.00 N - - - - - 13 

NC_C057 37.9555 -121.6979 344.9 0.00 N - - - - - 13 

NP_DIX 38.3771 -121.8424 284.8 0.00 Y 1.200 1.026 2.226 0.689 0.313 39 

NP_EMR 38.0605 -121.4993 134.1 3.75 Y 1.000 3.830 4.830 1.030 0.285 17 

NP_KIR 38.0551 -121.4582 158.5 3.03 Y 1.456 7.900 9.356 2.082 0.347 29 

NP_LVA3 38.0328 -121.7631 154.6 4.36 Y 1.750 3.430 5.180 1.000 0.251 6 

NP_LVA4 38.0335 -121.7634 139.8 4.57 Y 1.106 5.088 6.194 0.855 0.343 11 

NP_LVB3 37.9102 -121.5649 195.0 0.54 NA NA NA NA NA NA 4 

NP_LVB4 37.9097 -121.5656 190.1 2.03 NA NA NA NA NA NA 6 

NP_MCD 37.9802 -121.4735 105.8 6.32 N - - - - - 11 

NP_PLA 37.7987 -121.4632 184.7 0.00 N - - - - - 29 

NP_SIA 38.0503 -121.7367 135.8 4.92 N - - - - - 38 

WR_CKR 38.3145 -121.4920 319.9 0.00 N - - - - - 26 

WR_CLFN 37.8570 -121.5730 160.6 3.05 N - - - - - 9 

WR_CLFS 37.8273 -121.5604 185.2 0.00 N - - - - - 14 
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Station   

Code 

Latitude 

(o) 

Longitude 

(o) 

VS30      

(m/s) 

tp        

(m) 

HVSR 

Peak 
c0 c1 ap 

fp        

(Hz) 
w 

No. of 

Records 

WR_HOLT 37.9551 -121.4227 257.0 0.40 Y 1.230 1.438 2.668 0.647 0.320 7 

WR_MOFF 38.0925 -121.8849 169.4 0.00 Y 0.970 3.180 4.150 1.649 0.319 1 

WR_MONN 38.0929 -121.8855 152.0 2.62 Y 1.230 4.248 5.478 1.314 0.176 7 

WR_SHER 38.0306 -121.7450 122.4 10.06 Y 1.152 4.455 5.607 0.732 0.402 7 

WR_SIFF 38.0311 -121.7450 103.4 6.55 Y 1.019 2.645 3.665 0.735 0.245 4 

WR_STNI 38.1197 -121.5401 165.8 6.68 Y 1.790 1.320 3.110 1.822 0.100 4 

YU_CEC 37.9381 -121.5968 228.3 0.00 N - - - - - 9 

YU_HMT 37.9749 -121.5813 191.5 3.21 Y 1.290 2.856 4.146 1.553 0.239 4 

YU_HOL1 37.9748 -121.5818 134.8 3.87 Y 1.150 2.616 3.766 2.179 0.385 4 

YU_HOL2 37.9733 -121.5823 220.7 1.83 Y 1.190 4.151 5.341 2.124 0.266 9 

YU_HOL3 37.9733 -121.5844 235.5 1.52 Y 1.050 4.195 5.245 4.653 0.272 4 

YU_SMB 37.9977 -121.6262 193.2 0.60 Y 1.000 4.200 5.200 8.415 0.200 2 

YU_SMT 37.9982 -121.6252 136.8 3.57 Y 1.520 1.150 2.670 3.158 0.200 5 

YU_SRB 38.0109 -121.6249 180.7 1.41 Y 1.102 3.415 4.517 5.901 0.310 1 

YU_SRT 38.0107 -121.6246 166.5 1.91 Y 1.592 2.804 4.396 2.879 0.223 13 

YU_STF 37.9925 -121.4516 124.8 4.41 Y 1.230 2.504 3.734 2.731 0.193 2 

YU_WHR 37.8984 -121.4508 197.0 0.00 Y 0.869 1.076 1.945 3.071 0.375 13 
NA = No HVSR available. 

 

Table 5.2: Metadata for events recorded by Delta stations. 

event_id Name 
Datetime   

(UTC) 

Latitude 

(o) 

Longitude 

(o) 

Depth 

(m) 
Mw Mechanism 

Geyser 

Event 

Usable 

Records 

Delta 

Records 

53 Livermore-01 1980-01-24 19:00 37.855 -121.816 12.0 5.80 SS N 7 1 

54 Livermore-02 1980-01-27 02:33 37.737 -121.740 14.5 5.42 SS N 8 1 

1910 N of Piedmont, CA 2015-08-17 13:49 37.840 -122.230 5.0 4.01 SS N 208 1 
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event_id Name 
Datetime   

(UTC) 

Latitude 

(o) 

Longitude 

(o) 

Depth 

(m) 
Mw Mechanism 

Geyser 

Event 

Usable 

Records 

Delta 

Records 

1913 ENE of Yountville, CA 2015-05-22 02:53 38.430 -122.250 12.8 4.09 SS N 99 1 

1915 South Napa, CA 2014-08-24 10:20 38.220 -122.310 11.1 6.02 SS N 412 6 

2012 Central California 2006-12-16 06:14 36.174 -120.294 9.6 4.15 SS N 30 3 

2013 NW of Mogul, NV 2008-04-26 06:40 39.523 -119.939 2.8 5.01 SS N 44 2 

2015 Central California 2011-08-27 07:18 36.584 -121.818 7.5 4.64 SS N 218 6 

2016 Northern California 2011-10-27 06:37 39.606 -120.472 12.0 4.73 SS N 132 3 

2017 Northern California 2012-02-13 04:47 38.793 -122.743 1.5 4.17 SS Y 89 7 

2018 El Cerrito, CA 2012-03-05 13:33 37.927 -122.310 8.1 3.98 SS N 78 10 

2019 Northern California 2012-05-05 09:23 38.796 -122.761 1.8 4.26 SS Y 86 8 

2020 Nevada 2012-06-23 03:51 39.318 -119.990 6.4 4.02 SS N 62 8 

2021 
offshore Northern 

California 
2012-07-08 12:05 39.480 -123.804 7.5 4.42 SS N 50 5 

2022 Northern California 2012-09-25 15:15 39.168 -123.166 10.8 4.51 SS N 59 2 

2023 Central California 2012-10-21 06:55 36.310 -120.856 8.6 5.29 SS N 259 14 

2025 WNW of Greenville, CA 2013-05-24 03:47 40.192 -121.060 8.0 5.69 SS N 183 12 

2026 NW of The Geysers, CA 2014-01-12 20:24 38.814 -122.816 1.9 4.54 NS Y 91 5 

2028 
SSW of South Dos Palos, 

CA 
2014-09-28 20:45 36.626 -120.834 7.0 4.43 NS N 127 4 

2029 S of San Juan Bautista, CA 2014-11-20 06:26 36.806 -121.536 6.2 4.23 SS N 139 8 

2033 SSE of Ridgemark, CA 2016-07-19 21:38 36.693 -121.330 5.9 4.21 SS N 138 7 

2034 NNE of Upper Lake, CA 2016-08-10 02:57 39.329 -122.802 14.5 5.09 SS N 86 10 

2035 NW of The Geysers, CA 2016-12-14 16:41 38.822 -122.841 1.5 5.14 SS Y 101 9 

2036 SW of Hawthorn, NV 2016-12-28 08:18 38.376 -118.899 11.3 5.66 SS N 334 16 

2040 NW of The Geysers, CA 2017-04-30 10:12 38.788 -122.777 2.8 3.99 SS Y 99 6 

2041 ESE of Alum Rock, CA 2017-10-10 00:53 37.314 -121.672 9.7 4.09 SS N 201 11 

2042 NE of Gonzales, CA 2017-11-13 19:31 36.631 -121.244 6.3 4.58 SS N 198 12 

2043 SE of Berkeley, CA 2018-01-04 10:39 37.855 -122.257 12.3 4.37 SS N 136 13 

2044 NE of The Geysers, CA 2018-01-18 05:55 38.785 -122.743 1.8 4.23 NS Y 93 6 
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event_id Name 
Datetime   

(UTC) 

Latitude 

(o) 

Longitude 

(o) 

Depth 

(m) 
Mw Mechanism 

Geyser 

Event 

Usable 

Records 

Delta 

Records 

2045 WSW of Byron, CA 2019-07-16 20:11 37.819 -121.757 12.4 4.30 SS N 201 14 

2046 SSE of Pleasant Hill, CA 2019-10-15 05:33 37.938 -122.057 14.0 4.46 SS N 297 18 

2047 SSE of Tres Pinos, CA 2019-10-15 19:42 36.646 -121.274 10.1 4.71 SS N 272 17 

2048 WSW of The Geysers, CA 2019-11-03 20:34 38.775 -122.767 3.1 4.15 SS Y 132 4 

2049 NNW of Cholame, CA 2019-12-17 18:29 35.806 -120.356 6.3 4.28 SS N 162 3 

2050 WNW of Toms Place, CA 2020-02-01 18:36 37.589 -118.822 9.8 4.43 SS N 150 8 

2051 NNE of New Idria, CA 2020-03-03 15:01 36.500 -120.617 10.9 3.99 RS N 123 6 

2052 Northern California 2006-10-20 17:00 38.867 -122.787 2.5 4.58 NS Y 62 1 

2053 Northern California 2006-11-09 08:38 39.359 -123.282 4.1 4.05 SS N 31 2 

2054 Northern California 2007-04-24 21:08 38.795 -122.797 1.7 4.46 NS Y 72 3 

2055 Northern California 2008-05-30 04:48 38.776 -122.764 1.0 4.14 NS Y 51 5 

2056 Northern California 2009-01-04 17:27 38.782 -122.773 3.8 4.27 SS Y 63 8 

2057 Northern California 2011-03-01 02:19 38.815 -122.820 2.3 4.43 NS Y 63 6 

2058 WSW of Cobb, California 2013-03-14 09:09 38.812 -122.786 1.3 4.44 SS Y 171 9 

2059 NE of The Geysers, CA 2017-02-21 00:57 38.796 -122.735 1.3 4.16 NS Y 63 4 

2060 NW of The Geysers 2018-05-10 02:58 38.810 -122.797 1.9 4.19 SS Y 116 7 

2061 NW of The Geysers 2019-04-15 11:54 38.815 -122.799 1.2 4.11 SS Y 88 6 

2062 NW of The Geysers 2019-06-11 07:46 38.814 -122.823 2.0 4.09 NS Y 105 8 

2063 N of Johnson Lane, Nevada 2020-03-21 01:33 39.111 -119.736 17.5 4.81 NS N 223 16 

2064 WSW of Laytonville, CA 2016-11-06 13:00 39.660 -123.637 3.5 4.06 SS N 34 1 

2065 WSW of Laytonville, CA 2017-12-14 04:57 39.608 -123.646 11.0 4.25 NS N 61 1 

2066 
NNW of Redwood Valley, 

CA 
2019-04-29 07:16 39.348 -123.235 18.0 4.33 NS N 96 5 

2067 NNE of Fremont, CA 2015-07-21 09:41 37.578 -121.974 8.4 3.97 SS N 286 7 

2070 NNW of The Geysers, CA 2020-03-25 11:57 38.790 -122.765 2.2 4.06 NS Y 159 10 

2071 WSW of Toms Place, CA 2020-04-05 19:20 37.527 -118.853 14.0 4.05 NS N 150 9 

2072 SE of Bodie, CA 2020-04-11 14:36 38.053 -118.733 11.0 5.24 NS N 317 16 
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event_id Name 
Datetime   

(UTC) 

Latitude 

(o) 

Longitude 

(o) 

Depth 

(m) 
Mw Mechanism 

Geyser 

Event 

Usable 

Records 

Delta 

Records 

2073 SE of Bodie, CA 2020-04-11 16:22 38.042 -118.758 11.0 4.57 NS N 187 16 

2074 
Monte Cristo Range, NV 

Earthquake 
2020-05-15 11:03 38.169 -117.850 11.5 6.49 NS N 522 19 

2075 SSE of Lone Pine, CA 2020-06-24 17:40 36.447 -117.975 8.0 5.80 RS N 481 14 

2076 NW of The Geysers, CA 2020-07-05 16:14 38.788 -122.766 5.0 3.97 RS Y 121 5 

2077 Central California 2008-12-21 17:35 36.675 -121.300 6.8 4.02 NS N 100 9 

2078 SSW of Petrolia, CA 2019-06-23 03:53 40.274 -124.300 18.0 5.58 NS N 166 11 

2079 SE of Bodie, CA 2020-05-31 01:07 38.045 -118.762 8.1 4.34 NS N 168 14 

2080 ESE of Willits, CA 2020-08-19 00:55 39.361 -123.246 11.0 4.22 NS N 81 2 

2081 W of Lakeport, CA 2020-12-06 15:03 39.038 -123.067 5.0 4.41 NS N 158 4 

2082 NW of Pinnacles, CA 2021-01-02 14:42 36.609 -121.213 5.0 4.32 NS N 274 10 

2083 SE of Aromas, CA 2021-01-17 04:01 36.867 -121.611 11.0 4.20 NS N 333 10 

2085 NW or Truckee, CA 2021-05-07 04:35 39.461 -120.315 14.0 4.64 NS N 218 15 

2102 
2019 Ridgecrest EQ 

Sequence Mag 7.06 
2019-07-06 03:19 35.770 -117.599 8.0 7.06 SS N 719 2 

Mechanism abbreviations: SS = Strike-Slip; NS = Normal-Slip; RS = Reverse-Slip 
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Figure 5.2: Map of northern California showing locations of Delta stations and event locations 

considered in this study. 

 

Figure 5.3 presents the distribution of the subregional dataset with respect to M, RJB, and 

VS30. Delta stations have VS30 values ranging from 100 to 400 m/s, with a significant fraction of 

recordings coming from stations with VS30 < 200 m/s. Most data are associated with small 

magnitude events (M < 4.75) originating relatively far from the Delta (RJB > 100 km). Accordingly, 

these motions are relatively weak as shown by the distribution of median component peak ground 

accelerations (PGA) in Figure 5.4. These observations provide evidence that nonlinearity is not 

expected to be significant in the dataset, therefore linear site response is anticipated. 
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Figure 5.3: Data distribution for ground motions recorded at Delta stations. 

 

 

Figure 5.4: Distribution of RotD50 peak ground acceleration (PGA) at Delta stations. 
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5.2.2. Residuals Calculations 

Total residuals (𝑅𝑖𝑗) are calculated from RotD50 intensity measures computed for the selected data 

from Section 5.2.1:  

 𝑅𝑖𝑗 = ln(𝑌𝑖𝑗) − (μlnY)𝑖𝑗  (5.1) 

where ln(𝑌𝑖𝑗) is the intensity measure for event 𝑖 and recording 𝑗 and (μlnY)𝑖𝑗 is the natural log 

mean prediction of that intensity measure using a GMM. I implement the GMM described in 

Chapter 4, which is modified from BSSA14 to include induced source corrections for the Geysers 

region and the subregional anelastic path model. This model takes the form, 

 (μlnY)𝑖𝑗 = (𝑐0 + Δ𝑐0,𝑟 + 𝐼𝑒𝐼) + 𝐹𝐸 + 𝐹𝑃 + 𝐹𝑆  (5.2) 

where 𝐹𝐸 and 𝐹𝑆 represent the source and site terms of BSSA14, respectively, and 𝐹𝑃 is described 

by Equation (4.11). The modifications made to BSSA14 are necessary to remove systematic 

induced-source and path effects, which otherwise would bias the non-ergodic site responses. 

Total residuals (Equation 5.1) are partitioned into event terms (𝜂𝐸,𝑖) and within-event 

residuals (𝛿𝑊𝑖𝑗) using data for all M > 4.0 events in the GMDB (for shallow crustal type events) 

by applying mixed-effects analyses (Abrahamson and Youngs 1992; Gelman et al. 2014), 

 𝑅𝑖𝑗 = 𝑐𝑘 + 𝜂𝐸,𝑖 + 𝛿𝑊𝑖𝑗 (4.6, 5.3) 

These analyses exclude observations from Delta stations. I assume that event biases are accurately 

estimated using only non-Delta observations (> 27 observations for each event, with the exception 

of events 53 and 54). In doing so, 𝜂𝐸,𝑖 values are independent of Delta observations, thus 

eliminating the need to iterate to account for the influence of Delta observations on 𝜂𝐸,𝑖. Within-

event residuals (𝛿𝑊𝑖𝑗) for Delta stations are obtained using Equation (5.3) and represent errors in 

GMM predictions that can be attributed to a combination of systematic site effects at each station 
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and random, event-to-event path errors. If the path errors are indeed random, which they should 

be following the work presented in Chapter 4, they will average to zero when summed over many 

observations. Within-event residuals are further partitioned into site terms (𝜂𝑆,𝑗) and remaining 

residuals (휀𝑖𝑗) using additional mixed effects analyses,  

 𝛿𝑊𝑖𝑗 = 𝜂𝑆,𝑗 + 𝜖𝑖𝑗 (4.7, 5.4) 

The site terms (𝜂𝑆,𝑗) represent approximately the mean misfit of the site ground motions from the 

event-adjusted GMM, which can be used to estimate site response (Section 5.2.3). The standard 

errors (𝑆𝐸𝜂𝑆,𝑗) of site terms are also are estimated.  

5.2.3. Observed Linear Site Response 

Site response models (𝐹𝑆), whether site-specific or ergodic, usually can be expressed in the general 

form of: 

 𝐹𝑆 = 𝐹𝑙𝑖𝑛 + 𝐹𝑛𝑙 (5.5) 

where 𝐹𝑙𝑖𝑛 quantifies the linear amplification and 𝐹𝑛𝑙 quantifies nonlinear effects. For a particular 

site, Stewart et al. (2017) suggested the following form: 

 𝐹𝑆 = 𝑓1 + 𝑓2 ln (
𝑥𝐼𝑀𝑟+𝑓3

𝑓3
) (5.6) 

where the first and second terms represent 𝐹𝑙𝑖𝑛 and 𝐹𝑛𝑙, respectively. 𝑥𝐼𝑀𝑟 is the amplitude of 

shaking for a reference site condition (generally rock) for a particular event at a particular site 

(expressed as an intensity measure, which is often PGA), 𝑓2 represents the slope (generally 

negative) in ln(amplification)-ln(𝑥𝐼𝑀𝑟) space for 𝑥𝐼𝑀𝑟 ≫ 𝑓3, and 𝑓3 represents a transitional value 

of the reference site intensity measure below which the site response is nearly linear, and above 

which the trend of amplification with 𝑥𝐼𝑀𝑟 is nearly linear in log-log space (e.g., 0.1 g in SS14). 
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With the specific form of the site response model having been established, I next turn to 

the estimation of site response using non-ergodic methods. Those methods take the site response 

as the sum of the site response model (used in the GMM applied for residuals analyses) and the 

site term. For this application, we estimate the linear site response (𝑓1) as the sum of the site term 

(established from weak motion data) and the linear part of the site response GMM,   

 (𝑓1)𝑗
𝑜 = 𝜂𝑆,𝑗 + [𝐹𝑆,𝑗 − 𝐹𝑛𝑙,𝑗] (5.7) 

where (𝑓1)𝑗
𝑜 represents the data-derived estimate of the linear site response (the ‘o’ superscript is 

for “observed” and should not be confused with the model estimate of 𝑓1 from Equation 5.6). The 

subtraction of 𝐹𝑛𝑙 in Equation (5.7) is to remove first-order nonlinear effects in the site response 

estimate, although this term is nearly zero in the present case as demonstrated subsequently 

(Section 5.3.5).   

5.3. Site Amplification Model Development 

The modeling approach outlined in this section aims to develop a linear site amplification model 

for the Delta region using weak ground motions (relatively low amplitudes), where significant 

nonlinear effects are not expected. The computed (𝑓1)𝑗
𝑜 values represent the average site 

amplification observed over multiple events for station j, and are used as the observations from 

which site amplification models can be developed. 

The advantage of using (𝑓1)𝑗
𝑜 over 𝛿𝑊𝑖𝑗 during model development is that (𝑓1)𝑗

𝑜 reduces 

the influence of the number of observations at each site during regression methods. This is 

important because sites with the most recordings would otherwise control the regional site 

response, and sites with few recordings would have limited impact. However, the disadvantage is 

that it can be difficult to accurately estimate (𝑓1)𝑗
𝑜 at sites with relatively few recordings – even 
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through mixed-effects methods. To address this issue, I use only data from stations which have 

recorded at least four events (per intensity measure) and consider their associated 𝑆𝐸𝜂𝑆,𝑗 during 

model development through weighted least squares (WLS) regression (Strutz 2016). Each 

observation is assigned a weight (wj) inversely proportional to its 𝑆𝐸𝜂𝑆,𝑗: 

 𝑤𝑗 =
𝑛(𝑆𝐸𝜂𝑆,𝑗)

−2

∑ (𝑆𝐸𝜂𝑆,𝑗)
−2

𝑛
𝑗=1

  (5.8) 

where n represents the number of sites used during regression for each intensity measure (n ≤ 36). 

It follows that stations with smaller 𝑆𝐸𝜂𝑆,𝑗 values will have greater influence during the regression, 

however the influence is inversely proportional to the uncertainty of the (𝑓1)𝑗
𝑜 estimate instead of 

the number of recordings.  

5.3.1. Linear VS30 – Scaling  

Ergodic site response models are typically conditioned on VS30 to capture first-order site effects 

(e.g., SS14; Parker and Stewart 2022). Figure 5.5 presents the distribution of VS30 for Delta stations 

with at least four ground motion records, which ranges from 103 to 390 m/s. Stations with VS30 > 

275 m/s are unlikely to have peat (illustrated in Figure 3.13), hence the Delta subregion includes 

both peat and non-peat sites. To expand the size of the database for non-peat sites, I supplemented 

the dataset with data from 45 “non-Delta” stations in the surrounding area, as shown in Figure 5.6. 

The motivation for including these additional data at this stage of model development is as follows: 

1. The Delta is located within the Central Valley – a large sedimentary basin structure. I 

anticipate basin effects to affect Delta stations, which would also influence site 

response in the greater Delta area. 
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2. To investigate basin effects (presented in Section 5.3.2), residuals must be unbiased 

with respect to first-order site effects modeled by VS30. Therefore, the VS30-scaling 

model should be suited for all site conditions in the Delta region, which includes sites 

without peaty-organic soils.  

3. A VS30-scaling model developed using solely data from Delta stations would only be 

applicable to the parametric range of the data used during development (i.e., VS30 < 300 

m/s). The resulting model would likely be biased for stiffer soil sites, so data in the 

general vicinity of the Delta with similar geologic environments (i.e., within the Central 

Valley) are used to constrain the model for moderately-soft-to-stiff site conditions. 

Figure 5.5 includes the distribution of VS30 for non-Delta stations in the region surrounding the 

Delta. There are five non-Delta stations with 230 m/s ≤ VS30 ≤ 280 m/s, which span a VS30 range 

which includes Delta stations. However, the majority of non-Delta stations are considerably stiffer. 

I assume that the inclusion of non-Delta stations does not have a significant impact on the resulting 

model for the soft-soil conditions (VS30 < 200 m/s), which are the primary concern of this study 

(this is confirmed during a subsequent stage of model development).  
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Figure 5.5: Distribution of VS30 at sites with at least four ground motion records for Delta stations 

(yellow) and non-Delta stations in the surrounding region (blue). 

 

 

Figure 5.6: Map of the Greater Delta Area, showing the locations of Delta and non-Delta stations. 
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Figure 5.7 presents plots of (𝑓1)𝑗
𝑜 against VS30 for PGV, PGA, and PSA at 0.1, 0.3, 1.0, 3.0, 

and 10.0 s, compared to the linear component of the ergodic SS14 model. Binned means of the 

data are plotted with their 95% confidence intervals (the bins are equally spaced on the log scale 

and the binned values are plotted at the median VS30 within each bin). Several noteworthy 

observations can be made: 

1. The ergodic model reasonably captures the observed amplification and VS30-scaling 

[slope of (𝑓1)𝑗
𝑜 with VS30] of non-Delta stations for PGV, PGA, and PSA at periods 

shorter than approximately 3.0 s. However, SS14 under-predicts the amplification and 

VS30-scaling for non-Delta stations for longer periods. This observation provides 

evidence that the ergodic model is generally appropriate for typical non-peaty sites in 

the greater Delta area. The misfits at long periods may result from sedimentary basin 

effects in the Central Valley.  

2. The ergodic model over-predicts site response of Delta stations for PGA and periods 

shorter than about 1.0 s. 

3. The ergodic model seems to reasonably capture the VS30-scaling (i.e., slope with respect 

to VS30) of Delta stations with VS30 > 200 m/s for periods shorter than about 1.0 s. 

4. Across all observed intensity measures, the VS30-scaling appears to saturate (i.e., slope 

goes to zero) for exceptionally soft soil sites. This observation is consistent with the 

findings of recent studies for other regions (Parker and Stewart 2022 for global 

subduction zones; Nweke et al. 2022 for southern California basins).  

5. The ergodic model appreciably under-predicts the site response and VS30-scaling for 

Delta stations at periods longer than about 3.0 s. This observation is similar to (1) and 

may result from Central Valley sedimentary basin response long-period site response.  
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6. Lastly, the variability of the (𝑓1)𝑗
𝑜 data with respect to VS30 appears from visual 

inspection to be quite large (especially for short-to-intermediate periods). This suggests 

that site response in the Delta may be influenced by phenomena that are poorly 

represented by VS30; subsequently, I consider additional parameters for their ability to 

capture additional site response effects. 
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Figure 5.7: Plots of observed linear amplification [(𝑓1)𝑗
𝑜] versus VS30 for (a) PGV, (b) PGA, and 

PSA at (c) T = 0.1s, (d) T = 0.3s, (e) T = 1.0s, (f) T = 3.0s, and (g) T = 10.0s. 
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Based on visual inspection, I developed a functional form to represent the observed data 

trends, 

 𝐹𝑙𝑖𝑛(𝑉𝑆30) =

{
 
 
 

 
 
 𝑐1 ln (

𝑉𝑆30

𝑉1
) + 𝑐2 ln (

𝑉1

𝑉2
) + 𝑐 ln (

𝑉2

𝑉𝑟𝑒𝑓
)   𝑉𝑆30 < 𝑉1           

𝑐2 ln (
𝑉𝑆30

𝑉2
) + 𝑐 ln (

𝑉2

𝑉𝑟𝑒𝑓
)                           𝑉1 ≤ 𝑉𝑆30 < 𝑉2

𝑐 ln (
𝑉𝑆30

𝑉𝑟𝑒𝑓
)                                                      𝑉2 ≤ 𝑉𝑆30 < 𝑉𝑐

𝑐 ln (
𝑉𝑐

𝑉𝑟𝑒𝑓
)                                                      𝑉𝑐 ≤ 𝑉𝑆30          

 (5.9) 

where 𝑐1, 𝑐2, and 𝑐 are VS30-scaling coefficients, 𝑉1, 𝑉2, and 𝑉𝑐 are limiting velocities, and 𝑉𝑟𝑒𝑓 is 

the reference site condition where 𝐹𝑙𝑖𝑛 = 0 (VS30 = 760 m/s). The first two model components (1st 

and 2nd rows) effectively represent the VS30-scaling in the Delta for exceptionally soft and soft-to-

moderate site conditions, respectively. The third and fourth components match the SS14 model; 

the only modification is an added lower limiting velocity on the third component (i.e., 𝑉2). The 

coefficients 𝑐 and 𝑉𝑐 are adopted from SS14, and 𝑐1, 𝑐2, 𝑉1, and 𝑉2 are estimated for the Delta 

subregion. 

The model is first fit to the data with all four free parameters using WLS regression. VS30-

scaling coefficients 𝑐1 and 𝑐2 are constrained to be zero or negative, since site response has been 

observed to increase as sediment stiffness decreases across many investigations spanning over 50 

years (e.g., Borcherdt and Gibbs 1976, Seed et al. 1976, Idriss 1990, Borcherdt and Glassmoyer 

1994). 𝑉1 is constrained to be less than 𝑉2, which is constrained to be less than or equal to 𝑉𝑟𝑒𝑓 to 

ensure a continuous function and enforce a reference velocity 𝑉𝑟𝑒𝑓 = 760 m/s. From these results, 

𝑐1 was identified to be the most stable parameter in terms of lacking sudden between-period 

fluctuations and was set to a constant value of zero, effectively removing the first term in the first 

model component of Equation (5.9). 
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A second WLS regression was performed with 𝑐2, 𝑉1, and 𝑉2 estimated as free parameters. 

These results indicated that 𝑉1 was the most stable parameter. Regressed values of 𝑉1 were 

smoothed using the locally weighted scatterplot smoothing algorithm (Cleveland 1979). A third 

and fourth round of WLS regressions and smoothing were conducted to set 𝑉2 and 𝑐2, respectively. 

Figure 5.8 presents the as-regressed and final smoothed-coefficients of the proposed VS30-scaling 

model. Coefficients are listed in Table 5.3, and Figure 5.9 compares the fit of SS14 and the 

proposed model to the data for the same intensity measures shown in Figure 5.7.  

 

Figure 5.8: As-regressed and final-smoothed coefficients for VS30-scaling model; (a) VS30-scaling 

coefficients 𝑐, 𝑐1, and 𝑐2; (b) limiting velocities 𝑉𝑐, 𝑉1, and 𝑉2. In some cases, the result of multiple 

rounds of smoothing are shown as crosses. 
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Table 5.3: Coefficient values for 𝑐, 𝑐1, 𝑐2, 𝑉𝑐, 𝑉1, and 𝑉2. 

Intensity 

Measure 
𝒄𝟏 

𝑽𝟏         

(m/s) 
𝒄𝟐 

𝑽𝟐         

(m/s) 
𝒄 

𝑽𝒄     
(m/s) 

𝑽𝒓𝒆𝒇 

(m/s) 

PGV -0.20509 221.47 -1.07806 491.32 -0.84000 1300.00 760.00 

PGA 0.00000 135.82 -0.45979 760.00 -0.60000 1500.00 760.00 

T = 0.010 s 0.00000 122.35 -0.46808 760.00 -0.60372 1500.20 760.00 

T = 0.020 s 0.00000 122.35 -0.43790 760.00 -0.57388 1500.36 760.00 

T = 0.022 s 0.00000 122.35 -0.43182 760.00 -0.56675 1500.68 760.00 

T = 0.025 s 0.00000 122.35 -0.42275 760.00 -0.55520 1501.04 760.00 

T = 0.029 s 0.00000 122.35 -0.41004 760.00 -0.53850 1501.26 760.00 

T = 0.030 s 0.00000 122.35 -0.40643 760.00 -0.53414 1502.95 760.00 

T = 0.032 s 0.00000 122.35 -0.39943 760.00 -0.52529 1503.12 760.00 

T = 0.035 s 0.00000 122.35 -0.38881 760.00 -0.51192 1503.24 760.00 

T = 0.036 s 0.00000 122.35 -0.38503 760.00 -0.50752 1503.32 760.00 

T = 0.040 s 0.00000 122.35 -0.36995 760.00 -0.49065 1503.35 760.00 

T = 0.042 s 0.00000 122.35 -0.36244 760.00 -0.48290 1503.34 760.00 

T = 0.044 s 0.00000 122.35 -0.35509 760.00 -0.47572 1503.13 760.00 

T = 0.045 s 0.00000 122.35 -0.35155 760.00 -0.47236 1502.84 760.00 

T = 0.046 s 0.00000 122.35 -0.34788 760.00 -0.46915 1502.47 760.00 

T = 0.048 s 0.00000 122.35 -0.34089 760.00 -0.46321 1502.01 760.00 

T = 0.050 s 0.00000 122.35 -0.33437 760.00 -0.45795 1501.42 760.00 

T = 0.055 s 0.00000 122.35 -0.31860 760.00 -0.44787 1500.71 760.00 

T = 0.060 s 0.00000 122.35 -0.30423 760.00 -0.44186 1499.83 760.00 

T = 0.065 s 0.00000 122.35 -0.29096 760.00 -0.43951 1498.74 760.00 

T = 0.067 s 0.00000 122.35 -0.28600 760.00 -0.43950 1497.42 760.00 

T = 0.070 s 0.00000 122.35 -0.27961 760.00 -0.44040 1495.85 760.00 

T = 0.075 s 0.00000 122.35 -0.27173 760.00 -0.44411 1494.00 760.00 

T = 0.080 s 0.00000 122.35 -0.26531 760.00 -0.45020 1491.82 760.00 

T = 0.085 s 0.00000 122.35 -0.26017 760.00 -0.45813 1489.29 760.00 

T = 0.090 s 0.00000 122.35 -0.25682 760.00 -0.46732 1486.36 760.00 

T = 0.095 s 0.00000 122.35 -0.25414 760.00 -0.47721 1482.98 760.00 

T = 0.100 s 0.00000 122.35 -0.25327 760.00 -0.48724 1479.12 760.00 

T = 0.110 s 0.00000 122.35 -0.25546 760.00 -0.50632 1474.74 760.00 

T = 0.120 s 0.00000 122.35 -0.25972 760.00 -0.52438 1469.75 760.00 

T = 0.130 s 0.00000 122.35 -0.26737 759.68 -0.54214 1464.09 760.00 

T = 0.133 s 0.00000 122.35 -0.27054 759.17 -0.54752 1457.76 760.00 

T = 0.140 s 0.00000 122.35 -0.27864 756.77 -0.56032 1450.71 760.00 

T = 0.150 s 0.00000 122.42 -0.29305 750.93 -0.57962 1442.85 760.00 

T = 0.160 s 0.00000 123.34 -0.30931 746.44 -0.60052 1434.22 760.00 

T = 0.170 s 0.00000 125.02 -0.32719 743.63 -0.62252 1424.85 760.00 
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Intensity 

Measure 
𝒄𝟏 

𝑽𝟏         

(m/s) 
𝒄𝟐 

𝑽𝟐         

(m/s) 
𝒄 

𝑽𝒄     
(m/s) 

𝑽𝒓𝒆𝒇 

(m/s) 

T = 0.180 s 0.00000 127.46 -0.34627 741.27 -0.64486 1414.77 760.00 

T = 0.190 s 0.00000 129.65 -0.36569 738.83 -0.66681 1403.99 760.00 

T = 0.200 s 0.00000 131.86 -0.38570 736.22 -0.68762 1392.61 760.00 

T = 0.220 s 0.00000 134.52 -0.42744 730.49 -0.72431 1380.72 760.00 

T = 0.240 s 0.00000 136.07 -0.46906 724.54 -0.75646 1368.51 760.00 

T = 0.250 s 0.00000 136.18 -0.48940 721.76 -0.77177 1356.21 760.00 

T = 0.260 s 0.00000 136.17 -0.50886 718.94 -0.78697 1343.89 760.00 

T = 0.280 s 0.00000 136.03 -0.54391 713.80 -0.81613 1331.67 760.00 

T = 0.290 s 0.00000 135.92 -0.55842 711.27 -0.82950 1319.83 760.00 

T = 0.300 s 0.00000 135.84 -0.57401 708.68 -0.84165 1308.47 760.00 

T = 0.320 s 0.00000 135.82 -0.60141 702.98 -0.86175 1297.65 760.00 

T = 0.340 s 0.00000 135.82 -0.62957 690.97 -0.87726 1287.50 760.00 

T = 0.350 s 0.00000 135.82 -0.64156 684.88 -0.88375 1278.06 760.00 

T = 0.360 s 0.00000 137.96 -0.65254 680.16 -0.88965 1269.19 760.00 

T = 0.380 s 0.00000 143.87 -0.67259 670.54 -0.90038 1260.74 760.00 

T = 0.400 s 0.00000 148.29 -0.69236 661.56 -0.91092 1252.66 760.00 

T = 0.420 s 0.00000 154.05 -0.71227 652.47 -0.92241 1244.80 760.00 

T = 0.440 s 0.00000 156.64 -0.73321 643.10 -0.93459 1237.03 760.00 

T = 0.450 s 0.00000 157.29 -0.74383 638.34 -0.94075 1229.23 760.00 

T = 0.460 s 0.00000 157.86 -0.75511 633.28 -0.94686 1221.16 760.00 

T = 0.480 s 0.00000 158.69 -0.77858 623.37 -0.95863 1212.74 760.00 

T = 0.500 s 0.00000 158.86 -0.80306 612.95 -0.96930 1203.91 760.00 

T = 0.550 s 0.00000 167.18 -0.85829 607.39 -0.98925 1194.59 760.00 

T = 0.600 s 0.00000 170.89 -0.91435 597.11 -1.00120 1184.93 760.00 

T = 0.650 s 0.00000 175.24 -0.97039 585.04 -1.00780 1175.19 760.00 

T = 0.667 s 0.00000 177.48 -0.98894 581.36 -1.00930 1165.69 760.00 

T = 0.700 s 0.00000 183.28 -1.01742 574.21 -1.01170 1156.46 760.00 

T = 0.750 s 0.00000 190.89 -1.05163 563.25 -1.01540 1147.59 760.00 

T = 0.800 s 0.00000 197.85 -1.08814 552.73 -1.02100 1139.21 760.00 

T = 0.850 s 0.00000 206.50 -1.12254 544.38 -1.02820 1131.34 760.00 

T = 0.900 s 0.00000 209.46 -1.15520 543.47 -1.03600 1123.91 760.00 

T = 0.950 s 0.00000 213.06 -1.18624 541.29 -1.04360 1116.83 760.00 

T = 1.000 s 0.00000 217.16 -1.21816 537.68 -1.05000 1109.95 760.00 

T = 1.100 s 0.00000 224.23 -1.27804 531.07 -1.05730 1103.07 760.00 

T = 1.200 s 0.00000 229.98 -1.33802 525.56 -1.05840 1096.04 760.00 

T = 1.300 s 0.00000 235.08 -1.39817 520.37 -1.05540 1088.67 760.00 

T = 1.400 s 0.00000 238.99 -1.45739 515.41 -1.05040 1080.77 760.00 

T = 1.500 s 0.00000 242.25 -1.51790 511.41 -1.04540 1072.39 760.00 

T = 1.600 s 0.00000 248.08 -1.57875 507.67 -1.04210 1061.77 760.00 
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Intensity 

Measure 
𝒄𝟏 

𝑽𝟏         

(m/s) 
𝒄𝟐 

𝑽𝟐         

(m/s) 
𝒄 

𝑽𝒄     
(m/s) 

𝑽𝒓𝒆𝒇 

(m/s) 

T = 1.700 s 0.00000 254.18 -1.63804 505.87 -1.04040 1049.29 760.00 

T = 1.800 s 0.00000 259.65 -1.67895 503.48 -1.03970 1036.42 760.00 

T = 1.900 s 0.00000 265.49 -1.70020 501.64 -1.03950 1023.14 760.00 

T = 2.000 s 0.00000 271.18 -1.73884 499.91 -1.03920 1009.49 760.00 

T = 2.200 s 0.00000 273.48 -1.81489 497.09 -1.03680 995.52 760.00 

T = 2.400 s 0.00000 275.99 -1.88944 495.09 -1.03230 981.33 760.00 

T = 2.500 s 0.00000 276.46 -1.92405 494.26 -1.02940 966.94 760.00 

T = 2.600 s 0.00000 278.68 -1.95588 493.52 -1.02620 952.34 760.00 

T = 2.800 s 0.00000 277.29 -2.02305 492.39 -1.01900 937.52 760.00 

T = 3.000 s 0.00000 278.12 -2.11165 491.68 -1.01120 922.43 760.00 

T = 3.200 s 0.00000 285.99 -2.19226 491.18 -1.00320 908.79 760.00 

T = 3.400 s 0.00000 292.42 -2.27232 490.93 -0.99512 896.15 760.00 

T = 3.500 s 0.00000 296.02 -2.31592 490.82 -0.99100 883.16 760.00 

T = 3.600 s 0.00000 300.79 -2.33828 490.74 -0.98682 870.05 760.00 

T = 3.800 s 0.00000 310.68 -2.41052 490.63 -0.97826 857.07 760.00 

T = 4.000 s 0.00000 318.94 -2.53754 490.58 -0.96938 844.48 760.00 

T = 4.200 s 0.00000 327.33 -2.66729 490.56 -0.96012 832.45 760.00 

T = 4.400 s 0.00000 336.53 -2.79888 490.56 -0.95049 821.18 760.00 

T = 4.600 s 0.00000 339.52 -2.93050 490.61 -0.94050 810.79 760.00 

T = 4.800 s 0.00000 341.65 -2.98538 490.64 -0.93018 801.41 760.00 

T = 5.000 s 0.00000 343.95 -3.04025 490.68 -0.91954 793.13 760.00 

T = 5.500 s 0.00000 348.59 -3.11297 490.80 -0.89176 785.73 760.00 

T = 6.000 s 0.00000 352.61 -3.22161 490.90 -0.86286 779.91 760.00 

T = 6.500 s 0.00000 356.10 -3.30329 490.99 -0.83355 775.60 760.00 

T = 7.000 s 0.00000 358.06 -3.34135 491.07 -0.80457 772.68 760.00 

T = 7.500 s 0.00000 358.96 -3.34668 491.15 -0.77665 771.01 760.00 

T = 8.000 s 0.00000 359.90 -3.34912 491.24 -0.75033 760.81 760.00 

T = 8.500 s 0.00000 358.21 -3.35052 491.33 -0.72544 764.50 760.00 

T = 9.000 s 0.00000 356.26 -3.35141 491.41 -0.70161 768.07 760.00 

T = 9.500 s 0.00000 354.19 -3.35200 491.49 -0.67850 771.55 760.00 

T = 10.000 s 0.00000 352.06 -3.35200 491.56 -0.65575 775.00 760.00 
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Figure 5.9: Plots comparing the fit of ergodic model (SS14) and region-specific model (this study) 

to observed linear amplification [(𝑓1)𝑗
𝑜] versus VS30 for (a) PGV, (b) PGA, and PSA at (c) T = 0.1s, 

(d) T = 0.3s, (e) T = 1.0s, (f) T = 3.0s, and (g) T = 10.0s. 
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Figure 5.10 compares median amplification as predicted by the ergodic model (SS14) and 

the Delta-specific VS30-scaling model for VS30 = 100, 200, 300, 400, and 500 m/s. In general, the 

differences in amplification increase as VS30 decreases. This is to be expected since SS14 

extrapolates VS30-scaling for soft-soil conditions. The SS14 model does not have VS30-saturation 

for soft sites, whereas Delta subregional data saturate at VS30 < 200 ~ 300 m/s. For all site 

conditions the region-specific amplification is smaller than SS14 at periods shorter than about 0.7 

s, whereas long-period amplification is larger for VS30 = 200  400 m/s. Amplification predicted 

by the two models for non-Delta site conditions (i.e., VS30 > 400 m/s) have better agreement, which 

indicates that the transition from Delta-specific to SS14 for stiffer sites operates as expected. 

 

 

Figure 5.10: Comparisons of the predicted amplification from the proposed model for the Delta 

sub-region to the ergodic prediction from SS14. Amplification shown for VS30 = 100, 200, 300, 

400, and 500 m/s. 

 

As shown in Figures 5.8(b) and 5.10, an unexpected feature of the sub-regional model is 

that VS30-scaling saturation affects a wider range of velocities as the period increases (i.e., 𝑉1 
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increases with period). This observation differs from other recent models, for which saturation is 

relatively stable with period or occurs at lower VS30’s as periods increase (e.g., Nweke et al. 2022; 

Parker et al. 2022). When saturation occurs, it indicates that VS30 has lost its predictive power for 

site response. This does not necessarily mean that site response is invariant across the saturation 

range, but that underlying physics are associated with phenomena that are not captured by the VS30 

parameter (e.g., resonance effects, multi-dimensional wave propagation). The predictive power of 

additional parameters is investigated in subsequent subsections.  

Within-event residuals (𝛿𝑊𝑖𝑗
𝑣) are computed from the BSSA14 GMM modified to include 

the site response model in Equation (5.9) and the regional path model from Chapter 4,   

 𝛿𝑊𝑖𝑗
𝑣 = ln(𝑌𝑖𝑗) − [(𝑐0 + Δ𝑐0,𝑟 + 𝐼𝑒𝐼) + 𝐹𝐸 + 𝐹𝑃 + 𝐹𝑙𝑖𝑛,𝑖𝑗(𝑉𝑆30) + 𝐹𝑛𝑙,𝑖𝑗 + 𝜂𝐸,𝑖]  (5.10) 

where the site response is solely a function of VS30 and PGAr (i.e., 𝐹𝑛𝑙). The ‘v’ superscript indicates 

that the residuals are computed using a model that includes VS30-scaling. For the present analysis, 

the nonlinear model is taken from SS14. These residuals are partitioned using mixed effects 

analyses to estimate site terms (𝜂𝑆,𝑗
𝑣 ), which represent the difference between site-specific observed 

amplification and the GMM described by Equation (5.10), and the remaining residual (𝜖𝑖𝑗). 

 𝛿𝑊𝑖𝑗
𝑣 = 𝜂𝑆,𝑗

𝑣 + 𝜖𝑖𝑗 (5.11) 

Figure 5.11 shows the variation of 𝜂𝑆,𝑗
𝑣  with VS30 for the sites used during model 

development for PGV, PGA, and PSA at 0.1, 0.3, 1.0, 3.0, and 10.0 s. As expected, trends for the 

data are relatively flat and binned means are near zero, which indicates that the VS30-scaling model 

accurately captures first-order site effects (i.e., those described by VS30). As noted previously, there 

is relatively large variability for sites with VS30 < 250 m/s.  
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Figure 5.11: Trends of VS30-dependent site terms (𝜂𝑆,𝑗

𝑣 ) against VS30 for Delta and non-Delta 

stations for (a) PGV, (b) PGA, and PSA at (c) T = 0.1s, (d) T = 0.3s, (e) T = 1.0s, (f) T = 3.0s, and 

(g) T = 10.0s. 
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5.3.2. Dependence of Site Response on Isosurface Depth 

The principal site parameter beyond VS30 that has been found to be correlated to site response is 

the depth to a shear wave velocity isosurface, generally 1.0 or 2.5 km/s (𝑧1.0 or 𝑧2.5, respectively). 

Relationships between site response and 𝑧1.0 or 𝑧2.5 have been established for southern California 

basins (Day et al. 2008), for broad regions (California and Japan) in the NGA-West2 project 

(Abrahamson et al. 2014, BSSA14, Campbell and Bozorgnia 2014, Chiou and Youngs 2014), for 

basins in the Pacific Northwest and Japan in the NGA-Sub project (Abrahamson and Gulerce 2022, 

Kuehn et al. 2020, Parker and Stewart 2022), and for geomorphic provinces in southern California 

(Nweke et al. 2022). Here I examine potential variations of site response with 𝑧1.0 for the Delta 

subregion.  

To estimate depth parameters for Delta sites, I use the USGS San Francisco Community 

Velocity Model (Hirakawa and Aagaard 2021; SFCVM v21.1), which is currently the only such 

model for the Delta region and surrounding portions of the Central Valley. An important difference 

between USGS SFCVM and southern California models (CVM-S4, Lee et al. 2014; CVM-H, 

Shaw et al. 2015) is that seismic tomography is not used in the development of SFCVM. 

Tomography provides a means by which spatial variations in isosurface depths can be established. 

Because that information is not used in SFCVM, velocity profiles are spatially invariant within 

geologic units. The procedures used to establish unit-specific velocity profiles are described by 

Brocher (2005a-b; 2006), Hardebeck et al. (2007), Thurber et al. (2007), Aagaard et al. (2020) and 

Hirakawa and Aagaard (2021).  

Previous research has shown that 𝑧1.0 and VS30 are correlated in California (e.g., Chiou and 

Youngs 2014; Nweke et al. 2022). It is important to account for this correlation when developing 

models jointly conditioned on this combination of site parameters. To reduce the multicollinearity 
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of 𝑧1.0 and VS30, I evaluate mean basin depths (𝑧1̅.0) conditioned on VS30, compute the differential 

depth (𝛿𝑧1.0) as defined in Equation (5.12), and investigate dependencies of site response on 

differential depth.  

 𝛿𝑧1.0 = 𝑧1.0 − 𝑧1̅.0 (5.12) 

Separate 𝑧1̅.0 relationships have been developed for California and Japan (Chiou and Youngs 2013) 

and Cascadia (Parker and Stewart 2022). Moreover, Nweke et al. (2022) demonstrated that 𝑧1̅.0 

relationships for a given region can vary based on seismic velocity model by comparing results 

between the CVM-S4 and CVM-H models. Given these between-region and within-region 

variations, it is possible that the relationship for the Delta may differ from the state-wide model 

from Chiou and Youngs (2014). Therefore, I sought to develop a centering model for the Central 

Valley (which encompasses the Delta region). 

 The necessary data required to develop a 𝑧1̅.0-VS30 model consists of VS30 and 𝑧1.0 values 

(measured or estimated) for sites within the Central Valley. I adopt the Central Valley boundary 

as defined by Chiou et al. (2010) (identical to the Central Valley subregion utilized in the 

subregional anelastic path model presented in Section 4.3). The ground motion database (GMDB) 

assembled as part of Chapter includes 136 sites within this domain. Querying the community shear 

wave velocity profile database (Ahdi et al. 2018; VSPDB) produced 104 sites which are used to 

supplement the GMDB data. These are screened to remove duplicates yielding 225 distinct sites, 

the locations of which are shown in Figure 5.12. 
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Figure 5.12: Map of the Central Valley and Delta showing locations of sites with VS30 from the 

Velocity Profile DataBase (VSPDB) and the Ground Motion DataBase (GMDB) overlaid with 𝑧1.0 

depth raster from the USGS San Francisco Seismic Velocity Model (SFCVM v21.1). 

 

 VS30 values are computed from deep VS profiles (𝑧𝑝 ≥ 30 m) obtained from the VSPDB, or 

extrapolated from shallow profiles (𝑧𝑝 < 30 m) using the approach presented by Boore (2004) with 

the California-specific coefficients reported by Kwak et al. (2017). Many of the sites incorporated 

into this compilation were prepared for use and uploaded to the VSPDB as part of this project 

[Section 3.2.1(c)]. Measured VS profiles are also examined individually for 𝑧1.0. Twelve sites 

encounter VS ≥ 1,000 m/s, for which the measured 𝑧1.0 is used in lieu of the SFCVM model 

estimate. These sites correspond to locations along the edge of the basin structure. The distribution 
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of Central Valley data in VS30-𝑧1.0 space is shown in Figure 5.13. Individual data points are shown 

along with binned means and their 95% confidence intervals (bins are evenly spaced in log units 

of VS30). The binned means indicate that the relationship proposed by Chiou and Youngs (2014) 

does not properly capture the observed trend, therefore a regionally-specific relationship is 

warranted. 

 

 

Figure 5.13: Distribution of Central Valley data in VS30-𝑧1.0 space, including mean depth (𝑧1̅.0) 

models from Chiou and Youngs (2014) for California and as regressed from the data using the 

functional forms presented in Equations (5.13) and (5.14). 

 

 I sought to develop an improved fit to the data while also enforcing physical bounds at the 

limits, where depth scaling saturates, by adopting the functional form presented in Nweke et al. 

(2022) which returns 𝑧1̅.0 in units of km: 

 𝑧1̅.0 = 𝑐1 [1 + erf (
log(𝑉𝑆30)−log(𝜈𝜇)

𝜈𝜎√2
)] + 𝑐0  (5.13) 
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where 𝑐0 represents the deepest depth within the basin (at the lowest VS30 values), 𝑐1 is the slope 

of the scaling relationship, 𝜈𝜇 defines the center where the slope is the steepest, and 𝜈𝜎 represents 

the width of the ramp. The erf function can be solved in most numerical software packages. A 

simplified functional form which eliminates the 𝑐1 coefficient and replaces the erf function is also 

investigated: 

 𝑧1̅.0 =
𝑐0

1+exp[1.702(
log (𝑉𝑆30)−log (𝜈𝜇)

𝜈𝜎
)]

  (5.14) 

where 1.702 renders a logistic function that very closely approximates a cumulative distribution 

function.  

 The dataset shown in Figure 5.13 includes VS30-values calculated from deep profiles, 

extrapolated from shallow profiles, and inferred from proxy-based model(s) – each of which 

possess different degrees of uncertainty (𝜎𝑙𝑛𝑉𝑆30) as summarized in Table 2.9. To account for this 

during the regression, I apply weights (𝑤𝑖) inversely proportional to 𝜎𝑙𝑛𝑉𝑆30: 

 𝑤𝑖 =
𝑛(𝜎𝑙𝑛𝑉𝑆30)

−2

∑ (𝜎𝑙𝑛𝑉𝑆30)
−2

𝑛
𝑖=1

  (5.15) 

The binned means shown in Figure 5.13 were calculated considering these weights.  

 The data in Figure 5.13 show that SFCVM predicts a maximum 𝑧1.0 of 600 m in the Central 

Valley, therefore I constrain 𝑐0 to be 0.6 km for both functional forms. To enforce the 𝑧1.0 = 0 m 

boundary condition for large values of VS30 in Equation (5.13), I pad the dataset with 80 fictitious 

observations (i.e., 80 points between 850 and 3000 m/s with 𝑧1.0 = 0 m). This padding is not needed 

when regressing Equation (5.14). WLS regression is applied for both functionals to obtain 

estimates for 𝑐1 (Equation 5.13) only], 𝜈𝜇, and 𝜈𝜎 – the values of which are tabulated in Table 5.4.  
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Table 5.4: Basin depth predictive model coefficients for Equations (5.13) and (5.14). 

Equation 𝒄𝟎 (km) 𝒄𝟏 𝝂𝝁 (m/s) 𝝂𝝈 

(5.13) 0.6 -0.3006 ± 0.0025 494.20 ± 4.04 0.1282 ± 0.0053 

(5.14) 0.6 - 496.00 ± 8.73 0.1324 ± 0.0140 

 

 The results for both functions, shown by the solid red and dotted blue lines in Figure 5.13, 

provide reasonable fits to the binned means and are nearly identical. Central Valley-specific 

models suggest a steeper depth scaling relationship and deeper maximum depths when compared 

to the California-specific model proposed by Chiou and Youngs (2014). Another notable 

observation is a perfect fit at VS30 less than about 250 m/s, which is exclusively sites within the 

Delta. This results from constant values of depth (600 m) within this domain, because of the 

consistent geology. In reality, some variations are likely, due in part to known faulting in the region 

(e.g., Midland fault, Deverel et al. 2016). A consequence of these uniform depths is that 𝛿𝑧1.0 

values, whether computed using 𝑧1̅.0 from Equations (5.13) or (5.14), have practically no variation 

for Delta-only stations, as shown in Figure 5.14.  

 

 

Figure 5.14: Histograms of differential basin depth (𝛿𝑧1.0) for (a) Delta stations and (b) non-Delta 

stations using Equations (5.13) and (5.14). 
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 Equation (5.14) was used to develop 𝛿𝑧1.0 for each of the Delta and non-Delta Central 

Valley sites. The depth-dependence of site response is then investigated by plotting in Figure 5.15 

𝜂𝑆,𝑗
𝑣  against 𝛿𝑧1.0 for PGV, PGA, and PSA at 0.1, 0.3, 1.0, 3.0, and 6.0 s. A binned mean for all 

Delta stations is positioned at 𝛿𝑧1.0 = 0 km, other binned means represent the mean trend of non-

Delta stations. In general, the data indicate systematic trends between 𝜂𝑆,𝑗
𝑣  and 𝛿𝑧1.0 for long 

periods (T > 2.4 s), but no appreciable depth dependence for short periods (T < 0.45 s). To better 

visualize these trends, I use WLS regression to fit a preliminary basin model (𝐹𝐵) of the tri-linear 

functional form proposed by Nweke et al. (2022): 

 𝐹𝐵 = {

𝑓7 + 𝑓6𝑓8     
𝑓7 + 𝑓6𝛿𝑧1.0
𝑓7 + 𝑓6𝑓9     

    
𝛿𝑧1.0 < 𝑓8
otherwise
𝛿𝑧1.0 > 𝑓9

  (5.16) 

where 𝑓6 is the slope of the differential depth scaling (natural log amplification per unit depth), 𝑓7 

represents 𝐹𝐵(𝛿𝑧1.0 = 0) in natural log units, and 𝑓8 and 𝑓9 represent the lower and upper 

differential depth limits between which site response scales with 𝛿𝑧1.0. Parameters 𝑓8 and 𝑓9 were 

set to -0.25 km and 0.2 km by visual inspection. 

The results in Figure 5.15 conform well to the current understanding of basin effects (i.e., 

larger amplification for sites on thicker sediment deposits especially at long periods), however the 

model requires further refinement before it can be recommended for use. In this project, our aim 

is to predict site response within the Delta, with special consideration of sites with peaty-organic 

soils. Delta sites generally have VS30 < 250 m/s, as shown in Figure 5.1. Because SFCVM model 

depth estimates are uniformly 600 m for all Delta sites, a depth-based model has no ability to 

resolve differences in site response between Delta sites. Accordingly, I recommend against using 

an 𝐹𝐵 model in engineering application. However, the work presented herein may support future 

work to better model basin effects in the greater Central Valley.  
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Figure 5.15: Trends of VS30-dependent site terms (𝜂𝑆,𝑗

𝑣 ) against 𝛿𝑧1.0 for Delta and non-Delta 

Central Valley stations for (a) PGV, (b) PGA, and PSA at (c) T = 0.1s, (d) T = 0.3s, (e) T = 1.0s, 

(f) T = 3.0s, and (g) T = 6.0s. 
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5.3.3. Site Resonance Effects 

The average 𝜂𝑆,𝑗
𝑣  for Delta sites suggests that the current 𝐹𝑙𝑖𝑛 model, which captures only VS30-

scaling, provides unbiased predictions for the Delta sites as a whole, as illustrated in Figure 5.16. 

However, such models cannot capture site-specific resonance effects, because the model prediction 

is smoothed over a large number of sites with varying characteristics. For example, when I examine 

𝜂𝑆,𝑗
𝑣  for individual sites, two trends with respect to period emerge: 

1. A flat trend for periods less than about 0.1 s, which sometimes extends to longer periods 

as well. 

2. Significant peak features for many sites at intermediate-to-long periods and generally 

larger dispersion. 

 

 

Figure 5.16: Average un-modelled site response (𝜂𝑆,𝑗
𝑣 ) for Delta sites with reliable estimates. 

 

Figure 5.17 shows VS30-dependent within-event residuals using Equation (5.10) and the site 

terms derived from them (𝜂𝑆,𝑗
𝑣 ) for two sites. Site WR_CKR has a flat trend with period, indicating 
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a lack of peaks, whereas CE_67587 has a strong peak near 0.8 s. The behavior of sites with no 

systematic features (such as WR_CKR) suggests that the period-dependence of site response is 

adequately captured by the VS30-scaling model (although a general bias may still be present), while 

the behavior of other sites (such as CE_67587) indicates that site resonances are influencing site 

response in a manner that is not captured by the VS30-scaling model presented in Section 5.3.1.  

 

 

Figure 5.17: Examples of individual un-modelled site response (𝜂𝑆,𝑗
𝑣 ) for sites with (a) no 

systematic features (WR_CKR) and (b) significant peak features (CE_67587). 

 

Given the complex processes that produce ground motions relative to the simplicity of 

available predictive tools, I expect some randomness in the observed site response. This 

randomness often results in many local maxima and minima, which are not always repeatable 

across multiple events. However, peaks are consistently observed at many Delta stations, and 

because such peaks have a strong physical basis (i.e., increased amplification associated with site 

resonances), I seek to incorporate these features into the regional site response model. In the 
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remainder of this section, I identify peaks in the site response. The following section (5.3.4) links 

the site response peaks to peaks in mHVSR measurements from Delta sites.  

(a) Peak-Resonance Identification Algorithm 

When investigating site resonance using HVSR methods, analysists rely on criteria for the 

objective identification of peak features (e.g., SESAME 2004; Wang et al. 2021; Molnar et al. 

2022). I posit that similar criteria should be applied to assess site resonance from non-ergodic site 

responses, although adjustments to the criteria are required given the differences in the nature of 

the data. In general, “peaks” are defined as features possessing the following key attributes:  

1. Relatively localized (i.e., the width should not span too large of a period/frequency 

range),  

2. Have sufficiently large mean amplitude relative to adjacent periods/frequencies, and 

3. Have sufficient confidence that the feature is meaningful (i.e., uncertainty in 

amplitudes or frequencies should not be too large).  

I propose a peak detection algorithm adapted from that recommended by Wang et al. (2021) for 

application to site response, which considers the three attributes listed above. For the purposes of 

this section, site response refers to the unmodeled site response after VS30-scaling effects have been 

accounted for (i.e., 𝜂𝑆,𝑗
𝑣  as computed in Equation 5.11).  

The principal challenge in assessing the first two attributes is defining the amplitudes and 

locations (periods/frequencies) of site response peaks; what is required is a parameterization of 

site response amplitudes adjacent to peak features and within peak features. I implement a 

regression tree (Breiman et al. 1984), which is a predictive modeling approach in machine learning, 

to effectively smooth and simplify the empirical site response as a piecewise function of non-
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overlapping linear segments (i.e., steps). A complexity parameter (𝑐𝑝) is used to specify the penalty 

in tree regression. Large values of 𝑐𝑝 produce relatively crude fits with wide steps, whereas smaller 

values produce better fits with narrow steps. Figure 5.18 illustrates the influence of the 𝑐𝑝 

parameter on the tree regression for an individual site. If 𝑐𝑝 is too large, the fit is poor, whereas if 

𝑐𝑝 is too small, there is the potential that the tree regression captures too many small peaks, which 

is not amendable to defining a stable peak-adjacent plateau.   

 

 

Figure 5.18: Schematic illustration of regression tree fitting of site response data with different 

values of the complexity parameter (𝑐𝑝) for site NP_KIR; (a) 𝑐𝑝 = 0.001; (b) 𝑐𝑝 = 0.0003; (c) 𝑐𝑝 = 

0.00005. 

 

An optimal (or preferred) value of 𝑐𝑝 captures the main features of site response peaks 

without over-fitting. Selection of the preferred value of 𝑐𝑝 is subjective. Using trial and error with 

visual inspection, I find that 𝑐𝑝 = 0.0003 provides a reasonable balance between accuracy and 

reliability (in Python; Pedregosa et al. 2011). This value is lower than the recommended values 

suggested by Wang et al. (2021) for peak detection using HVSR data (i.e., 𝑐𝑝 = 0.002-0.003), 

which is to be somewhat expected since site response features are generally more subtle than those 
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observed in typical HVSR. Specifically, when comparing the amplitudes of peak features to those 

of stable plateaus in mHVSR and 𝜂𝑆,𝑗
𝑣 , the differences between the two for mHVSR are usually 

greater than 𝜂𝑆,𝑗
𝑣 . The relative difference in amplitudes, which is usually related to the overall range 

of amplitudes, has significant impact on the regression tree results. In other words, a relatively 

simple model can capture prominent peaks and adjacent plateaus (such as in mHVSR), while 

higher complexity is required to be able to distinguish less pronounced peak features from adjacent 

plateaus (as with 𝜂𝑆,𝑗
𝑣 ).  

The peak detection algorithm operates on the stepped results of tree regression and is 

shown as a flow chart in Figure 5.19. The algorithm operates as follows: 

1. Identify potential peak steps: Step i is a peak if its amplitude (𝑎𝑚𝑝𝑝) is larger than 

those of steps i – 1 and i + 1.  

2. For each potential peak step in Task (1), identify the left-peak-adjacent step-plateau 

(𝑠𝑡𝑒𝑝𝑙). This identification has the following sub-steps:  

i. Let j denote the number of steps to the left of the peak step (i.e., j = 0 is the peak 

step i; j = 1 is the step immediately to the left of step i; j = 2 is the second step to 

the left of step i; and so on). 

ii. Starting at j = 1, obtain the left step amplitude (𝑎𝑚𝑝𝑖−𝑗) and calculate the width 

(natural log difference of maximum and minimum period of step i – j; 𝑤𝑖𝑑𝑖−𝑗). 

iii. If 𝑎𝑚𝑝𝑖−𝑗 > 𝑎𝑚𝑝𝑖−𝑗+1, then step i – j + 1 is the left-peak-adjacent step plateau, 

and proceed to Task (3). Otherwise, continue to Sub-task (iv). 
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iv. If 𝑖𝑑𝑖−𝑗 > 𝑠𝑡𝑒𝑝𝑡ℎ𝑟𝑒𝑠, the step is sufficiently wide to be considered a plateau, and 

step i – j is the left-peak-adjacent step plateau, and proceed to Task (3). 

Otherwise, continue to Sub-task (v). 

v. If i – j = 1 (i.e., the first step), then go back through all left-steps and select the 

step with the largest width, and proceed to Task (3).  

3. For each potential peak step in Task (1), identify the right-peak-adjacent step-plateau 

(𝑠𝑡𝑒𝑝𝑟). 

i. Let j denote the number of steps to the right of the peak step (i.e., j = 0 is the 

peak step i; j = 1 is the step immediately to the right of step i; j = 2 is the second 

step to the right of step i; and so on). 

ii. Starting at j = 1, obtain the right step amplitude (𝑎𝑚𝑝𝑖+𝑗) and calculate the width 

(log difference of maximum and minimum period of step i + j; 𝑤𝑖𝑑𝑖+𝑗). 

iii. If 𝑎𝑚𝑝𝑖+𝑗 > 𝑎𝑚𝑝𝑖+𝑗−1, then step i + j – 1 is the right-peak-adjacent step plateau, 

and proceed to Task (4). Otherwise, continue to Sub-task (iv). 

iv. If 𝑖𝑑𝑖+𝑗 > 𝑠𝑡𝑒𝑝𝑡ℎ𝑟𝑒𝑠, the step is sufficiently wide enough to be considered a 

plateau, and step i + j is the right-peak-adjacent step plateau, and proceed to Task 

(4). Otherwise, continue to Sub-task (v). 

v. If i + j = n, where n represents the number of steps in the piecewise function, then 

go back through all right-steps and select the step with the largest width, and 

proceed to Task (4).  

4. For each potential peak step in Task (1), compute the peak width (𝑤𝑖𝑑𝑝): 

i. Identify the maximum period of the left-peak-adjacent step plateau (𝑇𝑙). 

ii. Identify the minimum period of the right-peak-adjacent step plateau (𝑇𝑟). 
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iii. Compute 𝑤𝑖𝑑𝑝 = ln (𝑇𝑟) – ln (𝑇𝑙). 

5. For each potential peak step in Task (1), compute 𝑘 = (𝑎𝑚𝑝𝑝 – �̅�𝑆,𝑗
𝑣 )/ 𝑆𝐸̅̅̅̅ 𝜂𝑆,𝑗

𝑣
  for the left- 

and right-peak-adjacent step plateaus, where  �̅�𝑆,𝑗
𝑣  and 𝑆𝐸̅̅̅̅ 𝜂𝑆,𝑗

𝑣
  represent the average 

amplitude and standard error over the step width, and 𝑘 represents a non-zero 

multiplier. 

6. Identify clear peak features from among potential peaks: Clear peaks are those which 

satisfy the following criteria: 

(a) The difference between 𝑎𝑚𝑝𝑝 and the maximum of 𝑎𝑚𝑝𝑙 and 𝑎𝑚𝑝𝑟 should 

exceed a threshold: 𝑎𝑚𝑝𝑝 −max(𝑎𝑚𝑝𝑙, 𝑎𝑚𝑝𝑟) ≥ 𝑎𝑚𝑝𝑡ℎ𝑟𝑒𝑠. 

(b) The peak should not be too wide: 𝑤𝑖𝑑𝑝 ≤ 𝑤𝑖𝑑𝑡ℎ𝑟𝑒𝑠. 

(c) There should be sufficient confidence that the mean peak amplitude (𝑎𝑚𝑝𝑝) is 

greater than the right- and left-peak-adjacent step plateau amplitudes: 

min(𝑘𝑙, 𝑘𝑟) ≥ 𝑘𝑡ℎ𝑟𝑒𝑠. 
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Figure 5.19: Flowchart illustrating site response peak detection algorithm utilizing tree regression of 𝜂𝑆,𝑗
𝑣 .
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The algorithm parameters (𝑠𝑡𝑒𝑝𝑡ℎ𝑟𝑒𝑠, 𝑎𝑚𝑝𝑡ℎ𝑟𝑒𝑠, 𝑤𝑖𝑑𝑡ℎ𝑟𝑒𝑠, and 𝑘𝑡ℎ𝑟𝑒𝑠) can be applied with 

different levels of conservatism, depending on user preference. Smaller values of 𝑠𝑡𝑒𝑝𝑡ℎ𝑟𝑒𝑠 and 

𝑤𝑖𝑑𝑡ℎ𝑟𝑒𝑠, and larger values of 𝑎𝑚𝑝𝑡ℎ𝑟𝑒𝑠 and 𝑘𝑡ℎ𝑟𝑒𝑠 result in a more conservative algorithm (i.e., 

fewer peaks identified). Conversely, larger values of 𝑠𝑡𝑒𝑝𝑡ℎ𝑟𝑒𝑠 and 𝑤𝑖𝑑𝑡ℎ𝑟𝑒𝑠, and smaller values 

of 𝑎𝑚𝑝𝑡ℎ𝑟𝑒𝑠 and 𝑘𝑡ℎ𝑟𝑒𝑠 result in a more liberal algorithm (i.e., more peaks identified). Sites which 

clearly possess or do not possess peak features (Figure 5.20a,b) are less sensitive to selection of 

these parameters. However, the algorithm results for sites with ambiguous peak features (Figure 

5.20c,d) can vary depending on the selections. The 𝑠𝑡𝑒𝑝𝑡ℎ𝑟𝑒𝑠 parameter carries significant 

influence because it is used to define the left- and right-peak adjacent step-plateaus, which are used 

to derive the quantities that the other parameters are checked against (in cases where a local trough 

is not present). The tree regression utilizes many steps with relatively short widths to capture steep 

slopes (such as those coming off of peak amplitudes). It follows that once the step width becomes 

subjectively large enough, then the peak feature has transitioned to a plateau. Similarly, 𝑎𝑚𝑝𝑡ℎ𝑟𝑒𝑠 

and 𝑤𝑖𝑑𝑡ℎ𝑟𝑒𝑠 are used to check if the potential peak has sufficiently large amplitude relative to 

adjacent amplitudes and that the feature is localized, respectively.  
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Figure 5.20: Examples of features observed in site response: (a) site with a clear peak (NP_LVA3); 

(b) site with no peak (WR_CKR); and (c) site with an ambiguous peak feature (WR_CLFN); and 

(d) site with an ambiguous peak feature (YU_HOL2). 

 

The values of 𝑠𝑡𝑒𝑝𝑡ℎ𝑟𝑒𝑠, 𝑎𝑚𝑝𝑡ℎ𝑟𝑒𝑠, and 𝑤𝑖𝑑𝑡ℎ𝑟𝑒𝑠 were initially selected by calibrating the 

algorithm to correctly predict peaks using only sites which clearly possessed or did not possess 

peak features. I later reduced 𝑎𝑚𝑝𝑡ℎ𝑟𝑒𝑠 to account for the smaller relative amplitudes which were 

observed in the sites with ambiguous peaks, and relied on the 𝑘𝑡ℎ𝑟𝑒𝑠 parameter to distinguish if the 

computed relative amplitudes were reliable. It follows that the recommended values for 𝑠𝑡𝑒𝑝𝑡ℎ𝑟𝑒𝑠, 

𝑎𝑚𝑝𝑡ℎ𝑟𝑒𝑠, 𝑤𝑖𝑑𝑡ℎ𝑟𝑒𝑠, and 𝑘𝑡ℎ𝑟𝑒𝑠 are 0.65, 0.27, 2.3, and 1.0, respectively. Figure 5.21 presents the 

algorithm results for the Delta stations used in this study. Of the 36 sites with reliable 𝜂𝑆,𝑗
𝑣  



 

221 

 

estimates, 17 (47%) are identified as possessing a peak. The following sub-section aims to 

parameterize these peak features for the purpose of model development (discussed in Section 

5.3.4).  

 
Figure 5.21: Results of peak-resonance identification algorithm for 36 Delta sites. Fit tree-

regression of 𝜂𝑆,𝑗
𝑣  shown by blue step-function, and identified peaks in the site response are 

indicated by yellow (sites with no peak in the site response do not have any yellow in their plots). 
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Figure 5.21: continued. 
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Figure 5.21: continued. 
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(b) Parameterization of Site Resonance Peak Features 

In order for peak features to be modelled in a practical context, it is essential to parameterize site 

response peaks like in Figure 5.17(b). Based on observed features of peaks (i.e., the presence of a 

dip in amplitude immediately before the peak feature for all sites, which is not observed 

immediately following the peak feature for most sites), I select a hybrid Ricker Wavelet (Ryan 

1994) and Gaussian Pulse function (Squires 2001) to capture the peaked shape of 𝜂𝑆,𝑗
𝑣  at Delta 

sites. The Ricker Wavelet function is used to capture unmodeled site resonance effects that 

dominate amplification shapes at short to intermediate periods (𝑇 < 𝑓𝑝
−1), while the Gaussian Pulse 

function is used at longer periods (𝑇 > 𝑓𝑝
−1): 

 𝑓1(𝑇, 𝑓𝑝) =

{
 
 

 
 𝑎0 +

2𝑎1

√3𝑎2𝜋
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)
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)

2

+ 𝑎3]     𝑇 > 𝑓𝑝
−1

  (5.17) 

where 𝑎0 controls the overall level of site amplification (i.e., constant adjustment up or down), 𝑎1 

scales the amplitude of the Ricker Wavelet function, 𝑎2 describes the width of the Ricker Wavelet 

peak in natural log period units (𝑎2/3 approximates the width of the Gaussian Pulse peak), 𝑎3 

describes the difference in amplification between short and long periods, and 𝑓𝑝 represents the 

frequency of the peak. 

I perform least squares regression of Equation (5.17) on 𝜂𝑆,𝑗
𝑣  for the 17 Delta sites which 

were identified to have peaks by the algorithm presented in Section 5.3.3(a), which are identified 

in Figure 5.21. The results of these regressions are shown in Figure 5.22 and summarized in Table 

5.5. 
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Figure 5.22: Results of fitting Equation (5.17) on 𝜂𝑆,𝑗
𝑣  for Delta sites with identified peak-

resonance; fit shown by solid red line. 
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Figure 5.22: continued. 

 

Table 5.5: Summary of 𝜂𝑆,𝑗
𝑣  peak fitting using Equation (5.17). 

Delta Station �̂�𝒑 (Hz) 𝒂𝟎 𝒂𝟏 𝒂𝟐 𝒂𝟑 

BK_TWIT 0.7207 0.4191 0.2786 0.7472 0.1095 

CE_67587 1.2382 0.4411 0.2804 0.5526 0.2274 

CE_67615 1.9994 0.0138 0.1260 0.8292 -0.2751 

NP_EMR 1.2380 -0.4949 0.3023 0.4715 -0.2990 

NP_KIR 2.1100 0.1972 0.0635 0.4366 -0.1176 

NP_LVA3 0.9882 0.1162 0.2672 0.5812 0.1087 

NP_LVA4 1.0019 0.0596 0.2768 0.5275 -0.0300 

NP_LVB4 2.3831 0.5355 0.1011 0.5130 0.2457 

WR_CLFN 2.8571 -0.0110 0.0760 0.3851 0.0000 

WR_MONN 1.4084 0.2590 0.2144 0.4117 -0.1388 

WR_SHER 0.9276 0.2526 0.2015 0.5302 0.0660 

WR_SIFF 0.8120 0.0010 0.2869 0.6113 -0.0363 

WR_STNI 2.0911 -0.2055 0.0907 0.5151 -0.6571 

YU_HMT 1.6127 0.1276 0.1216 0.3022 0.1348 

YU_HOL2 2.1757 0.2032 0.0621 0.2201 0.0739 

YU_HOL3 4.6360 0.1069 0.1326 0.4154 -0.0878 

YU_SRT 2.8219 0.2025 0.1398 0.3354 -0.1263 
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5.3.4. Linking Site Response to mHVSR Site Parameters 

The resonance effects described and quantified in the previous section are in site response. Such 

effects cannot be predicted by VS30-scaling models such as that developed in Section 5.3.1. Here I 

investigate whether these effects are related to peaks in microtremor-based horizontal-to-vertical 

spectral ratios (mHVSR), as described for Delta sites in Section 5.3.3(b).  

There are two general types of HVSR measurements – from microtremors (mHVSR) and 

earthquake recordings (eHVSR). Most past research relating HVSR to site response has used 

eHVSR, including Héloïse et al. (2012), Zhao and Xu (2013), Ghofrani et al. (2013) and Kwak et 

al. (2017b) for Japan, Hassani and Atkinson (2016, 2018b) for central and eastern North America, 

Hassani and Atkinson (2018a) for California, and Panzera et al. (2021) for Switzerland. The use 

of eHVSR is convenient because the data required to measure HVSR is readily available. The 

problem with using eHVSR is that the recordings used to develop the HVSR site parameters are 

not independent of those used to compute the site response. As a result, the correlation between 

eHVSR site parameters and site response is likely to be stronger than that provided by independent 

data such as mHVSR. For this reason, we only use mHVSR as the basis for site parameters used 

to develop the model components in this section. A similar approach was used previously for 

another subregion having peaty organic soil – Obihiro in Hokkaido, Japan (Wang et al. 2022a).  

An effort has been underway to develop mHVSR data for sites in California and to evaluate 

the characteristics of that data. A database and data processing protocols are described in Wang et 

al. (2022b). Analyses of the data have shown that a modest percentage of sites (25-35%) have 

significant HVSR peaks, using peak identification protocols similar to those described in Section 

5.3.3 (Wang et al. 2021).  As part of the present study, the database was augmented for Delta sites 

as described in Section 3.3.3.  
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The Delta is rather unique in California because the geologic environment and depositional 

history results in a high percentage of sites (~71%) having strong impedance contrasts, which 

produce significant mHVSR peaks. It follows that site parameters, such as those summarized in 

Table 5.1 (𝑐0, 𝑐1, 𝑎𝑝, 𝑓𝑝 and 𝑤𝑝), may have significant potential to improve site response in this 

subregion. The questions addressed in this sub-section include the following: 

1. Can mHVSR be used to predict the presence of peaks in the site response? 

2. When mHVSR contain peak features, can the associated site parameters be used to 

improve predictions of site response? 

3. Can other site parameters (unrelated to peaks) derived from mHVSR be used to 

improve predictions of site response, at sites with and without mHVSR peak features? 

(a) Predicting Resonance in Site Response from mHVSR 

Of the 54 Delta seismic stations, 36 have sufficient numbers of recordings to provide reliable 𝜂𝑆 

estimates  (Section 5.2.1). Of those 36 sites, 34 have on-site measurements of mHVSR where 16 

(47%) possess 𝜂𝑆,𝑗
𝑣  peak features. In this section, I compare the presence of peak features in 

mHVSR and 𝜂𝑆,𝑗
𝑣  for each site and classify them into one of four categories defined in the confusion 

matrix in Table 5.6. Table 5.7 provides a detailed summary of the presence of peak features in 

both mHVSR and 𝜂𝑆,𝑗
𝑣  for the 34 sites considered during modeling. 

 

Table 5.6: Qualitative class definition for observed peak features. 

  mHVSR 
  No Peak Peak 

𝜼𝑺,𝒋
𝒗  

No Peak 
Class I 

(10 sites – 29%) 

Class III 

(8 sites – 24 %) 

Peak 
Class IV 

(2 sites – 6%) 

Class II 

(14 sites – 41%) 
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Table 5.7: Summary of presence of peak features in 𝜂𝑆,𝑗
𝑣  mHVSR. 

Delta Station Peak in 𝜼𝑺,𝒋
𝒗  Peak in mHVSR Class 

BK_JEPS No Peak Peak III 

BK_TWIT Peak Peak II 

CE_57195 No Peak No Peak I 

CE_57531 No Peak Peak III 

CE_57534 No Peak No Peak I 

CE_67215 No Peak Peak III 

CE_67533 No Peak No Peak I 

CE_67587 Peak Peak II 

CE_67615 Peak No Peak IV 

NC_C057 No Peak No Peak I 

NP_DIX No Peak Peak III 

NP_EMR Peak Peak II 

NP_KIR Peak Peak II 

NP_LVA3 Peak Peak II 

NP_LVA4 Peak Peak II 

NP_MCD No Peak No Peak I 

NP_PLA No Peak No Peak I 

NP_SIA No Peak No Peak I 

WR_CKR No Peak No Peak I 

WR_CLFN Peak No Peak IV 

WR_CLFS No Peak No Peak I 

WR_HOLT No Peak Peak III 

WR_MONN Peak Peak II 

WR_SHER Peak Peak II 

WR_SIFF Peak Peak II 

WR_STNI Peak Peak II 

YU_CEC No Peak No Peak I 

YU_HMT Peak Peak II 

YU_HOL1 No Peak Peak III 

YU_HOL2 Peak Peak II 

YU_HOL3 Peak Peak II 

YU_SMT No Peak Peak III 

YU_SRT Peak Peak II 

YU_WHR No Peak Peak III 
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The categories in the confusion matrix (Table 5.6) indicate the consistency of peak 

identification: Cases I and II indicate consistent results (both without peaks, both with peaks, 

respectively, which can also be referred to as true negatives and true positives). Cases III and IV 

indicate inconsistent results, with Case III being false positives (mHVSR peak, site response no-

peak) and Case IV being false negatives (mHVSR no peak, site response peak). The accuracy of 

mHVSR is the percentage of peak or no-peak identifications that match the site response result, 

and is computed as the ratio of Case I and II sites divided by the total (71%). Considering sites 

with mHVSR peaks, the precision (percentage of sites with mHVSR peaks correctly predicted) is 

about 64%. The recall of the dataset, or the percentage of total results correctly predicted when 

there is a 𝜂𝑆,𝑗
𝑣  peak, is about 87.5%, which does not consider the results of non-peak sites. The F1-

score computed from the precision and recall is 73.7%. These metrics suggest that the existence 

of a mHVSR peak is a good indicator of when we can expect site-resonant effects in the site 

response, however there are other contributing factors which sometimes result in inaccurate 

predictions. Therefore, I plotted together in Figure 5.23 mHVSR and 𝜂𝑆,𝑗
𝑣  trends for each site to 

facilitate visual inspections that may help to improve predictions. Both plots use period axes – for 

𝜂𝑆,𝑗
𝑣  period indicates oscillator periods, whereas for mHVSR period is the inverse of frequency.  
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Figure 5.23: Comparisons of mHVSR and 𝜂𝑆,𝑗
𝑣  features for Delta stations. Fit of mHVSR peak 

shown by red Gaussian pulse (Equation 3.7). Fit of 𝜂𝑆,𝑗
𝑣 -parameterization per Equation (5.17) 

shown in red. Sites with no peaks (mHVSR or 𝜂𝑆,𝑗
𝑣 ) do not have red lines shown. 
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Figure 5.23: continued. 
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Figure 5.23: continued. 
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Figure 5.23: continued. 
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Figure 5.23: continued. 
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Figure 5.23: continued. 
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A recurring feature of the plots shown in Figure 5.23 is that site-resonance effects are 

generally only observed at sites with prominent mHVSR peaks (i.e., relatively large 𝑎𝑝). To test 

this observation, I construct correlation plots between pairs of peak site parameters derived from 

mHVSR distinguishing sites with and without 𝜂𝑆,𝑗
𝑣  peak features, as shown in Figure 5.24.  

 

 
Figure 5.24: Correlation plots between pairs of peak site parameters derived from mHVSR. 

 

The plots in Figure 5.24 show that sites with clear site response peaks generally have 

mHVSR peaks with 𝑎𝑝 ≥ 3, and small tail amplitudes (𝑐0). Using logistic regression (Lottes et al. 
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1996), I develop a probabilistic model conditioned on 𝑐0 and 𝑎𝑝 to predict the presence of site 

response peaks: 

 𝑃𝑝𝑒𝑎𝑘(𝑐0, 𝑎𝑝) =
1

1+exp[−𝑄𝑝𝑒𝑎𝑘(𝑐0,𝑎𝑝)]
 (5.18) 

where 

 𝑄𝑝𝑒𝑎𝑘(𝑐0, 𝑎𝑝) =  𝛽0 + 𝑐0𝛽1 + 𝑎𝑝𝛽2 (5.19) 

where 𝑃𝑝𝑒𝑎𝑘 represents the probability of a site response peak (0 ≤ 𝑃𝑝𝑒𝑎𝑘 ≤ 1), and estimates for 

𝛽0, 𝛽1, and 𝛽2 are tabulated in Table 5.8.  

 

Table 5.8: Estimates and standard errors for coefficients in Equation (5.19). 

Coefficient Value Standard Error 

𝜷𝟎 -19.2471 11.2033 

𝜷𝟏 3.8467 3.0136 

𝜷𝟐 4.3943 2.3088 

 

Figure 5.25 illustrates the variation of peak probabilities in 𝑐0 versus 𝑎𝑝 space. A 

relatively narrow band separates sites predicted to have or not have site response peaks. The main 

outlier in Figure 5.25 is the YU_HOL1 site, which was not identified as having a site response 

peak but has a predicted peak probability of 𝑃𝑝𝑒𝑎𝑘 = 0.85. YU_HOL1 is characterized with 𝑎𝑝 and 

𝑐0 values similar to other sites exhibiting site-resonance effects in 𝜂𝑆,𝑗
𝑣 . However, as shown by the 

plots in Figure 5.23, a local high in the mean 𝜂𝑆,𝑗
𝑣  is present at around 0.4-0.6 s, but a peak is not 

identified because the uncertainty is relatively large.  

To evaluate the model performance, we compare its predictions to a reference model, 

referred to here as a binomial model, in which the presence of a mHVSR peak is assumed to 

correspond to a site response peak. This comparison, shown in Table 5.9, shows that the logistic 



 

239 

 

model is an improvement to the binomial model as reflected by increased accuracy, precision, 

recall, and F1 scores. It is important to note that the predictive model for peak probabilities in 

Equations (5.18) and (5.19) was developed for Delta sites and has unknown applicability for sites 

in other domains.  

 

 

Figure 5.25: Probability distribution of logistic model for expecting site-resonance effects in 𝑐0 

versus 𝑎𝑝 space. 
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Table 5.9: Qualitative comparison of binomial and logistic site-resonance effects predictive 

models based on mHVSR peak features. 

Binomial Model 

(peak in mHVSR = peak in 𝜼𝑺,𝒋
𝒗  and no peak in mHVSR = no peak in 𝜼𝑺,𝒋

𝒗 ) 

 Correct 

Prediction 

Incorrect 

Prediction 
Accuracy Precision Recall 𝑭𝟏-Score 

mHVSR 

Peak 
14 8 

70.59% 63.64% 87.50% 73.68% 
mHVSR 

No Peak 
10 2 

Logistic Model 

[Equation (5.18), assuming 𝑷𝒑𝒆𝒂𝒌 threshold of 50%] 

 Correct 

Prediction 

Incorrect 

Prediction 
Accuracy Precision Recall 𝑭𝟏-Score 

mHVSR 

Peak 
21 1 

91.18% 95.45% 91.30% 93.33% 
mHVSR 

No Peak 
10 2 

 

(b) Using mHVSR Peak Parameters to Predict Amplification from Site Resonance 

As discussed in Section 5.3.3, about 70% of Delta sites were classified as having site response 

peaks. In this sub-section, for those sites I relate site response peaks to site parameters derived 

from mHVSR. The aim is to model the site response peaks for use as a supplement to the VS30-

scaling model.  

I model site response peaks using a function consistent with Equation (5.17), but with two 

changes: (1) the 𝑎0 coefficient is dropped and (2) the amplitude is scaled by 𝑃𝑝𝑒𝑎𝑘: 

 𝑓1,𝑝𝑒𝑎𝑘(𝑇, 𝑓𝑝, 𝑃𝑝𝑒𝑎𝑘) =

{
 
 

 
 𝑃𝑝𝑒𝑎𝑘

2𝑎1

√3𝑎2𝜋
1
4

[1 − (
ln(𝑇�̂�𝑝)

𝑎2
)
2

] exp [−
1

2
(
ln(�̂�𝑝)

𝑎2
)]
2

                𝑇 ≤ 𝑓𝑝
−1

𝑃𝑝𝑒𝑎𝑘[𝑓1(𝑓𝑝
−1, 𝑓𝑝) − 𝑎3] exp [−

1

2
(
ln((𝑇 �̂�𝑝)

−1
)

2𝑎2/3
)

2

+ 𝑎3]     𝑇 > 𝑓𝑝
−1

 

  (5.20) 

where 𝑓𝑝 is the fitted peak frequency of site amplification, and 𝑎1 − 𝑎3 are regression coefficients.  
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Figure 5.26 shows the relationships between mHVSR peak frequency (𝑓𝑝) and each of the 

regression coefficients. As expected, the strongest correlation is with 𝑓𝑝 but correlations with 𝑎1 

and 𝑎2 are also observed.  Parameter 𝑐3 has weaker correlation with 𝑓𝑝 and was set to a constant 

value of zero. Least squares regression is used to relate 𝑓𝑝 to 𝑓𝑝 as a linear function in natural log 

– natural log space, and 𝑎1 and 𝑎2 to 𝑓𝑝 as bilinear functions in semi – natural log space (these 

functions saturate for relatively high 𝑓𝑝).  

  

 𝑓𝑝(𝑓𝑝) = exp[𝑚 ln(𝑓𝑝) + 𝑏]  (5.21) 

 𝑎1(𝑓𝑝) = {
𝑚 ln(𝑓𝑝) + 𝑏       𝑓𝑝 < 𝑓𝑙𝑖𝑚
𝑚 ln (𝑓𝑙𝑖𝑚) + 𝑏   𝑓𝑝 ≥ 𝑓𝑙𝑖𝑚

  (5.22) 

 𝑎2(𝑓𝑝) = {
𝑚 ln(𝑓𝑝) + 𝑏       𝑓𝑝 < 𝑓𝑙𝑖𝑚
𝑚 ln (𝑓𝑙𝑖𝑚) + 𝑏   𝑓𝑝 ≥ 𝑓𝑙𝑖𝑚

  (5.23) 

Estimates and their associated standard errors for the coefficients in Equations (5.21) – (5.23) are 

given in Table 5.10. 

 

Table 5.10: Estimates and standard errors for coefficients in Equations (5.21) – (5.23). 

Equation 𝒎 𝒃 𝒇𝒍𝒊𝒎 (Hz) 

(5.21) 0.9265 ± 0.0212 0.0978 ± 0.0235 - 

(5.22) -0.1790 ± 0.0420 0.2355 ± 0.0157 2.08 ± 0.49 

(5.23) -0.3378 ± 0.1467 0.5213 ± 0.0344 1.55 ± 0.42 
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Figure 5.26: Relationships of mHVSR peak frequency (𝑓𝑝) and coefficients of Equation (5.20): 

(a) 𝑓𝑝; (b) 𝑎1; (c) 𝑎2; and (d) 𝑎3. 

 

The updated GMM uses the VS30-scaling model in Equation (5.9)and the mHVSR-based 

model in Equation (5.20),  

 𝛿𝑊𝑖𝑗
𝑣,𝑝 = ln(𝑌𝑖𝑗) − [(𝑐0 + Δ𝑐0,𝑟 + 𝐼𝑒𝐼) + 𝐹𝐸 + 𝐹𝑃 + 𝐹𝑙𝑖𝑛,𝑖𝑗(𝑉𝑆30) + 𝑓1,𝑝𝑒𝑎𝑘,𝑗 + 𝐹𝑛𝑙,𝑖𝑗 + 𝜂𝐸,𝑖] 

  (5.24) 

where the linear site response is now a function of VS30, 𝑓𝑝, 𝑎𝑝, and 𝑐0 [i.e., 𝐹𝑙𝑖𝑛(𝑉𝑆30, 𝑓𝑝 , 𝑎𝑝, 𝑐0) = 

𝐹𝑙𝑖𝑛(𝑉𝑆30) + 𝑓1,𝑝𝑒𝑎𝑘(𝑓𝑝, 𝑎𝑝, 𝑐0)]. Using this model and the previously-derived event terms, within-

event residuals (𝛿𝑊𝑖𝑗
𝑣,𝑝

) are computed and subsequently partitioned into site terms (𝜂𝑆,𝑗
𝑣,𝑝

).  

 𝛿𝑊𝑖𝑗
𝑣,𝑝 = 𝜂𝑆,𝑗

𝑣,𝑝 + 𝜖𝑖𝑗 (5.25) 
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Superscripts ‘v’ and ‘p’ indicate that that site terms are computed with a model that considers VS30 

and mHVSR peak parameters. The remaining residual after the site term is accounted for is 𝜖𝑖𝑗. 

Figure 5.27 shows the variation of 𝜂𝑆,𝑗
𝑣  and 𝜂𝑆,𝑗

𝑣,𝑝
 with oscillator period for Delta sites. As 

expected, the trend of 𝜂𝑆,𝑗
𝑣,𝑝

 is flatter than 𝜂𝑆,𝑗
𝑣  especially for periods between 0.4 and 2.5 s at sites 

with 𝑃𝑝𝑒𝑎𝑘 > 50% (where site resonance effects are the most pronounced). Additionally, the 

variability between 0.4 and 2.5 s is significantly reduced. These observations indicate that lowest-

frequency mHVSR peaks (𝑓1,𝑝𝑒𝑎𝑘) improve the modeling of site effects related to resonance 

features. However, relatively large variability at short periods remains, and this model produces 

no modification of the VS30-scaling model for sites with low 𝑃𝑝𝑒𝑎𝑘. 

 

 
Figure 5.27: Comparison of bias in average site amplification predicted by 𝐹𝑙𝑖𝑛(𝑉𝑆30) and 

𝐹𝑙𝑖𝑛(𝑉𝑆30, 𝑓𝑝, 𝑎𝑝, 𝑐0) for (a) all Delta sites, (b) sites predicted to have minimal site resonance (𝑃𝑝𝑒𝑎𝑘 

< 50%), and (c) sites predicted to have impactful site resonance (𝑃𝑝𝑒𝑎𝑘 > 50%). 
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(c) Using mHVSR to Predict General Amplification 

The effect of including site parameters derived from mHVSR peak features is a reduction in bias 

and variability within the period range affected by site resonance effects (periods between 0.4 and 

2.5 s). As shown in Figure 5.27, the average remaining bias (�̅�𝑆,𝑗
𝑣,𝑝

) is period dependent, with 

relatively flat trends for any site condition at periods shorter than about 1 s. Furthermore, sites 

predicted to have site response peaks (𝑃𝑝𝑒𝑎𝑘 > 50%) have a positive bias, while sites with 𝑃𝑝𝑒𝑎𝑘 < 

50% have a slightly negative bias within this period range. To address these biases, we investigate 

their association with mHVSR amplitudes.  

Precedent has been set by previous research efforts to incorporate mHVSR amplitudes into 

site response models. Senna et al. (2008) proposed a site response model for Japan conditioned on 

mHVSR and geologic or topographic units, where the shape of a reference spectrum is modified 

by a period dependent factor based on the mHVSR shape. Pinilla-Ramos et al. (2022) propose a 

mHVSR-based site response model for California, which similarly uses the whole period-

dependent spectrum to predict amplification. These approaches differ from the work presented in 

this chapter because they do not systematically separate site resonance effects from general 

amplification. Pinilla-Ramos et al. (2022) present a model conditioned on mHVSR and VS30, where 

mHVSR was found to have the greatest influence for periods between 0.5 and 4 s. These findings 

suggest that use of mHVSR amplitudes may have value for site response prediction, which is 

examined next using the Delta subregional data set.  

Given that trends of 𝜂𝑆,𝑗
𝑣,𝑝

 are relatively flat for short-to-intermediate periods, I seek to 

capture the general level of site amplification with mHVSR amplitudes via a constant adjustment 

which goes to zero at long periods. Equation (5.26) presents the function used to model general 
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amplification (𝑓1,𝑚𝑒𝑎𝑛) conditioned on the mean mHVSR amplitude computed over some 

frequency bandwidth (𝜇𝑚𝐻𝑉𝑆𝑅). 

 𝑓1,𝑚𝑒𝑎𝑛(𝑇, 𝜇𝑚𝐻𝑉𝑆𝑅) =
𝑎4

1+exp[1.702(
𝑙𝑛(𝑇/𝑇1)

0.385
)]

  (5.26) 

where T1 is the period on which the ramp function is centered (1.5 s), and 

 𝑎4(𝜇𝑚𝐻𝑉𝑆𝑅) = {

𝑚1 𝜇1 −𝑚0              𝜇𝑚𝐻𝑉𝑆𝑅 < 𝜇1
𝑚1 𝜇𝑚𝐻𝑉𝑆𝑅 −𝑚0    otherwise      
𝑚1 𝜇2 −𝑚0              𝜇𝑚𝐻𝑉𝑆𝑅 > 𝜇2

  (5.27) 

where 𝑚1 describes the slope of amplification scaling with respect to 𝜇𝑚𝐻𝑉𝑆𝑅, 𝑚0 is a constant, 

and 𝜇1  and 𝜇2 represent limiting values below- and above-which amplification scaling saturates, 

respectively. The logistic relation in Equation (5.26)produces constant amplification for T < T1 = 

1.5 s followed by a transition to zero, as shown in Figure 5.28. The constant values in Equation 

(5.26)were selected to provide a smooth transition to zero amplification at periods greater than 

about 3 s. 

 

  

Figure 5.28: Schematic illustrating the period dependence of the mHVSR-based constant 

amplification adjustment (𝑓1,𝑚𝑒𝑎𝑛). 



 

246 

 

To estimate the coefficients in Equation (5.27), I compute the average values of 𝜂𝑆,𝑗
𝑣,𝑝

 

(denoted 𝜇𝜂𝑆,𝑗
𝑣,𝑝) and 𝜇𝑚𝐻𝑉𝑆𝑅 over different period bandwidths. 𝜇𝑚𝐻𝑉𝑆𝑅 is computed from 

lognormally spaced amplitudes (i.e., constant number of samples per log cycle) to reduce sampling 

bias. Figure 5.29 presents example plots of 𝜇𝜂𝑆,𝑗
𝑣,𝑝 versus 𝜇𝑚𝐻𝑉𝑆𝑅 calculated over different period 

ranges, and the results of regressing Equation (5.27). In cases where there are meaningful trends, 

there is a positive correlation (𝜇𝜂𝑆,𝑗
𝑣,𝑝 increases as 𝜇𝑚𝐻𝑉𝑆𝑅 increases). Inspection of similar plots for 

many period ranges and consideration of the coefficients of determination (R2), led me to conclude 

that the combination of 𝜇𝜂𝑆,𝑗
𝑣,𝑝 computed over the period range of 0.01 to 3 s and 𝜇𝑚𝐻𝑉𝑆𝑅 computed 

from 0.33 to 50 Hz provides the strongest correlation as shown in Figure 5.29(f) (50 Hz is used as 

the upper frequency limit because it coincides with the Nyquist frequency of many permanent 

seismometers). The recommended values for 𝑚0, 𝑚1, 𝜇1, and 𝜇2 are given in Table 5.11.  
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Figure 5.29: Relationship between average unmodeled site response after considering VS30-scaling 

and peak-resonance effects (𝜇𝜂𝑆,𝑗
𝑣,𝑝) computed for period ranges of 0.01-10 sec (a-c) and 0.01-3 sec 

(d-f) with mean mHVSR amplitudes (𝜇𝑚𝐻𝑉𝑆𝑅) computed over frequency ranges of 0.1-50 Hz (a 

and d), 1-50 Hz (b and e), and 0.33-50 Hz (c and f).  

 

Table 5.11: Estimates and standard errors for coefficients in Equation (5.27). 

Coefficient Value Standard Error 

𝒎𝟎 0.5760 0.2122 

𝒎𝟏 -0.7435 0.2516 

𝝁𝟏 0.8228 0.0000 

𝝁𝟐 1.5224 0.1728 

 



 

248 

 

(d) Remaining Site Response Features 

The additional amplification contributed by mHVSR-based site parameters to the regional site 

response model, which is added to 𝐹𝑙𝑖𝑛(𝑉𝑆30), may be described as the sum of Equations (5.20) 

and (5.26): 

 𝐹𝑙𝑖𝑛(𝑓𝑝, 𝑎𝑝, 𝑐0, 𝜇𝑚𝐻𝑉𝑆𝑅) = 𝑓1,𝑝𝑒𝑎𝑘(𝑇, 𝑓𝑝, 𝑎𝑝, 𝑐0) + 𝑓1,𝑚𝑒𝑎𝑛(𝑇, 𝜇𝑚𝐻𝑉𝑆𝑅)  (5.28) 

Using this model and the previously-derived event terms, within-event residuals (𝛿𝑊𝑖𝑗
𝑣,𝐻/𝑉

) are 

computed 

𝛿𝑊𝑖𝑗
𝑣,𝐻/𝑉

= ln(𝑌𝑖𝑗) − [(𝑐0 + Δ𝑐0,𝑟 + 𝐼𝑒𝐼) + 𝐹𝐸 + 𝐹𝑃 + 𝐹𝑛𝑙,𝑖𝑗 + 𝐹𝑙𝑖𝑛,𝑗(𝑉𝑆30) + 

 𝐹𝑙𝑖𝑛,𝑗(𝑓𝑝, 𝑎𝑝, 𝑐0, 𝜇𝑚𝐻𝑉𝑆𝑅) + 𝜂𝐸,𝑖]  (5.29) 

where the linear site response is a function of VS30, 𝑓𝑝, 𝑎𝑝, 𝑐0, and 𝜇𝑚𝐻𝑉𝑆𝑅: 

 𝐹𝑙𝑖𝑛(𝑉𝑆30, 𝑓𝑝, 𝑎𝑝, 𝑐0, 𝜇𝑚𝐻𝑉𝑆𝑅) = 𝐹𝑙𝑖𝑛(𝑉𝑆30) + 𝐹𝑙𝑖𝑛(𝑓𝑝, 𝑎𝑝, 𝑐0, 𝜇𝑚𝐻𝑉𝑆𝑅) (5.30)      

Those residuals are subsequently partitioned into site terms (𝜂𝑆,𝑗
𝑣,𝐻/𝑉

).  

 𝛿𝑊𝑖𝑗
𝑣,𝐻/𝑉

= 𝜂𝑆,𝑗
𝑣,𝐻/𝑉

+ 𝜖𝑖𝑗 (5.31) 

Superscripts ‘v’ and ‘H/V’ indicate that that site terms are computed with a model that considers 

VS30, mHVSR peak parameters, and mHVSR amplitude parameters. The remaining residual after 

the site term is accounted for is 𝜖𝑖𝑗 Delta sites can be broadly grouped into four categories based 

on remaining 𝜂𝑆,𝑗
𝑣,𝐻/𝑉

 features: (1) sites with relatively flat trends with respect to period; (2) sites 

with uncaptured peak-site resonance; (3) sites with upward trending 𝜂𝑆,𝑗
𝑣,𝐻/𝑉

 with increasing period; 

and (4) sites with downward trending 𝜂𝑆,𝑗
𝑣,𝐻/𝑉

 with increasing period, as shown in Figure 5.30. 
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Figure 5.30: Plots of grouped mHVSR and 𝜂𝑆,𝑗
𝑣,𝐻/𝑉

 for Delta sites which exhibit (a) relatively flat 𝜂𝑆,𝑗
𝑣,𝐻/𝑉

 trends, (b) uncaptured peak 

resonance, (c) upward trending 𝜂𝑆,𝑗
𝑣,𝐻/𝑉

 with increasing period, and (d) downward trending 𝜂𝑆,𝑗
𝑣,𝐻/𝑉

 with increasing period. 
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Sites with relatively flat 𝜂𝑆,𝑗
𝑣,𝐻/𝑉

 trends exhibit amplification which is more or less captured 

by 𝐹𝑙𝑖𝑛(𝑉𝑆30, 𝑓𝑝, 𝑎𝑝, 𝑐0, 𝜇𝑚𝐻𝑉𝑆𝑅) over the full period range being modeled. Sites with uncaptured 

peak resonance (BK_TWIT, CE_67587, CE_67615, NP_EMR, NP_LVB4, and WR_CLFN) fall 

into one of three categories: (1) sites with no mHVSR available (NP_LVB4); (2) sites with no 

mHVSR peak (CE_67615 and WR_CLFN); or (3) sites with exceptionally large site resonance 

effects which are not fully accounted for by 𝑓1,𝑝𝑒𝑎𝑘. The uncaptured peak response manifests from 

a lack of mHVSR data or poor fit prediction by 𝑓1,𝑝𝑒𝑎𝑘 which represents the average regional 

behavior conditioned on 𝑓𝑝. Therefore, regardless of which category these sites fall into, little can 

be done to improve the site response predictions. 

Sites that exhibit upward- and downward-trending 𝜂𝑆,𝑗
𝑣,𝐻/𝑉

 with increasing period exhibit 

characteristic signatures of basin effects with positive and negative 𝛿𝑧1.0, respectively. Recall, 

USGS SFCVM does not provided detailed 𝑧1.0 estimates in the Delta region, so traditional basin 

effect modeling approaches are not currently viable in the Delta (Section 5.3.2). Pinilla-Ramos et 

al. (2022) postulate that mHVSR amplitudes provide more information about long-period site 

response than basin depths (e.g., 𝑧1.0), since they inherently capture long-period amplification 

associated with the deeper velocity structure. Therefore, I compare trends of mHVSR amplitudes 

between these groups and those of relatively flat-trending sites to assess the predictive power of 

mHVSR for basin effects. Plots of average mHVSR are included for each group in Figure 5.30, 

and are plotted together in Figure 5.31.  
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Figure 5.31: Average mHVSR for all Delta sites (black), sites with relatively flat 𝜂𝑆,𝑗
𝑣,𝐻/𝑉

 (red), 

sites with uncaptured peak resonance (orange), sites with upward-trending 𝜂𝑆,𝑗
𝑣,𝐻/𝑉

 (green), and sites 

with downward trending 𝜂𝑆,𝑗
𝑣,𝐻/𝑉

 (blue). 

 

The average mHVSR for each group exhibit similar trends, and all are within one standard 

deviation of the average mHVSR for all Delta sites (Figure 5.31) for all periods. Furthermore, 

when examining the spatial distribution of these sites (as shown in Figure 5.32), there appears to 

be no systematic clustering of any group. These observations suggests that mHVSR amplitudes 

may not significantly improve predictions of long-period (basin) amplifications within the current 

modeling context. However, these observations do not provide substantial evidence on their own 

that mHVSR amplitudes do not provide more information about long-period site response than 

basin depths, because 𝐹𝑙𝑖𝑛(𝑉𝑆30, 𝑓𝑝, 𝑎𝑝, 𝑐0.𝑚𝐻𝑉𝑆𝑅 , 𝜇𝑚𝐻𝑉𝑆𝑅) describes site effects conditioned on 

VS30 and mHVSR, both of which have been shown to correlate with 𝑧1.0.  

The remaining unmodelled site response effects are quantified in the aleatory variability 

model presented in Section 5.4.2.  
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Figure 5.32: Map of locations of Delta sites grouped by trend of remaining site response: sites 

with relatively flat 𝜂𝑆,𝑗
𝑣,𝐻/𝑉

  (red), sites with uncaptured peak resonance (orange), sites with upward-

trending 𝜂𝑆,𝑗
𝑣,𝐻/𝑉

 (green), and sites with downward trending 𝜂𝑆,𝑗
𝑣,𝐻/𝑉

 (blue). 

 

5.3.5. Effect of Nonlinearity 

The models presented in Sections 5.3.1 – 5.3.4 were developed from relatively weak ground 

motions and are intended to predict linear site amplification. To investigate the potential effects of 

nonlinearity, I examine 𝛿𝑊𝑖𝑗
𝑣,𝐻/𝑉

 relative to PGA for the reference rock condition (PGAr; for VS30 

= 760 m/s) predicted using the GMM with the linear site terms in Equation (5.28) (Figure 5.33). 

A flat trend is expected if the site response from the events summarized in Table 5.2 is effectively 

linear, whereas nonlinearity would produce a downward trend for short period intensity measures.  
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Figure 5.33: Plots of within-event residuals (𝛿𝑊𝑖𝑗) versus PGAr for (a) PGV, (b) PGA, and PSA 

at (c) T = 0.1s, (d) T = 0.3s, (e) T = 1.0s, (f) T = 3.0s, and (g) T = 10.0s. 
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The data are shown in Figure 5.33 along with binned means and their 95% confidence 

intervals (roughly three bins per log cycle of PGAr). The largest PGAr value is 0.13 g and 90% of 

the observations have PGAr < 0.0025 g. The data trends are generally flat, being nearly perfectly 

so for PGAr < 0.005 g. For stronger motions, there is an apparent downward trend at short periods, 

particularly for Sa at 0.1 sec, although the statistical significance of the trend is arguable because 

the data for stronger shaking are limited and the confidence intervals overlap zero. If the downward 

trends is interpreted as nonlinearity, it occurs at relatively low PGAr levels relative to existing 

models for non-peat sits (e.g., 0.1 g; SS14). A relatively low transitional ground motion level for 

nonlinear response might be anticipated because of the exceptionally soft conditions in the Delta. 

Peaty organic soils are relatively soft, meaning that smaller ground motion levels are required to 

elicit large strains (shear strain is roughly proportional to PGV/VS, and VS is low for peats).  

These observations suggest that nonlinearity may have influenced a small fraction (< 5%) 

of the ground motions used to estimate the nonergodic site response. As a result, my conclusion is 

that nonlinear effects are not expected to have a significant impact on the presented models. 

5.4. Subregional Model Performance and Comparison to Global Ergodic Model 

The recommended subregional model begins with the BSSA14 GMM, updates the anelastic path 

model as presented in Chapter 4, and updates the site response using one of two potential 

subregional models. The first subregional model requires VS30 only and is denoted  𝐹𝑙𝑖𝑛(𝑉𝑆30) 

(Equation 5.9). The second subregional model uses VS30 in combination with mHVSR parameters 

and is denoted 𝐹𝑙𝑖𝑛(𝑉𝑆30, 𝑓𝑝, 𝑎𝑝, 𝑐0, 𝜇𝑚𝐻𝑉𝑆𝑅) (Equation 5.30). This section presents a comparison 

of the predictions of three site response models: (1) SS14, (2) 𝐹𝑙𝑖𝑛(𝑉𝑆30), and (3) 

𝐹𝑙𝑖𝑛(𝑉𝑆30, 𝑓𝑝, 𝑎𝑝, 𝑐0, 𝜇𝑚𝐻𝑉𝑆𝑅). Figure 5.34 presents individual plots for each Delta sites showing 
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amplification versus oscillator period as observed from non-ergodic site response and as predicted 

using each site response model.  

 
Figure 5.34: Comparisons of observed mean linear amplification [(𝑓1)𝑗

𝑜] with 95% confidence 

intervals and model predictions provided from SS14 (ergodic model) and two proposed regional 

models for the Delta [𝐹𝑙𝑖𝑛(𝑉𝑆30) and 𝐹𝑙𝑖𝑛(𝑉𝑆30, 𝑓𝑝, 𝑎𝑝, 𝑐0, 𝜇𝑚𝐻𝑉𝑆𝑅)] for individual sites. 
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Figure 5.34: Continued. 
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Figure 5.34: Continued. 

 

The results shown in Figure 5.34 illustrate the significant bias when extrapolating SS14 to 

the soft-soil conditions encountered in the Delta, and the improved fits that are realized when using 
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the regionally calibrated site response models [𝐹𝑙𝑖𝑛(𝑉𝑆30) and 𝐹𝑙𝑖𝑛(𝑉𝑆30, 𝑓𝑝, 𝑎𝑝, 𝑐0, 𝜇𝑚𝐻𝑉𝑆𝑅)]. The 

following subsections quantitatively compare model bias and variability, and present aleatory 

variability models for forward application of the regional site response models. 

5.4.1. Model Bias 

Model bias is evaluated as the mean misfit of site terms computed when implementing each of the 

site response models. Figure 5.35 presents plots of 𝜂𝑆,𝑗 versus oscillator period for all Delta sites, 

sites likely without peaks (𝑃𝑃𝑒𝑎𝑘 < 50%), and sites likely with peaks (𝑃𝑝𝑒𝑎𝑘 > 50%). As expected, 

the regionally calibrated models [𝐹𝑙𝑖𝑛(𝑉𝑆30) and 𝐹𝑙𝑖𝑛(𝑉𝑆30, 𝑓𝑝, 𝑎𝑝, 𝑐0, 𝜇𝑚𝐻𝑉𝑆𝑅)] perform better than 

SS14 (i.e., are less biased). The substantial bias of SS14 demonstrates the need for region-specific 

site factors for exceptionally soft soils. When examining biases of the two subregional models 

(Figure 5.35a), there are negligible differences between 𝐹𝑙𝑖𝑛(𝑉𝑆30) and 

𝐹𝑙𝑖𝑛(𝑉𝑆30, 𝑓𝑝, 𝑎𝑝, 𝑐0, 𝜇𝑚𝐻𝑉𝑆𝑅), both of which are effectively zero.  

When examining 𝑃𝑃𝑒𝑎𝑘 < 50% and 𝑃𝑝𝑒𝑎𝑘 > 50% sites, 𝐹𝑙𝑖𝑛(𝑉𝑆30, 𝑓𝑝, 𝑎𝑝, 𝑐0, 𝜇𝑚𝐻𝑉𝑆𝑅) 

generally performs better than 𝐹𝑙𝑖𝑛(𝑉𝑆30), except for periods > 3 s where the results are identical. 

The 𝐹𝑙𝑖𝑛(𝑉𝑆30) model under-predicts on average ground motions at short- to intermediate-periods 

(T < 3 s) for non-peak sites and over-predicts ground motions for this same period range for peak 

sites. When averaged across all sites, the model is unbiased. The  𝐹𝑙𝑖𝑛(𝑉𝑆30, 𝑓𝑝, 𝑎𝑝, 𝑐0, 𝜇𝑚𝐻𝑉𝑆𝑅) 

model removes these biases for both types of sites.  
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Figure 5.35: Comparison of bias in average site amplification predicted by SS14 and the two 

proposed regional site response models [𝐹𝑙𝑖𝑛(𝑉𝑆30) and 𝐹𝑙𝑖𝑛(𝑉𝑆30, 𝑓𝑝, 𝑎𝑝, 𝑐0, 𝜇𝑚𝐻𝑉𝑆𝑅)] for (a) all 

sites, (b) sites predicted to have minimal site resonance (𝑃𝑝𝑒𝑎𝑘 < 50%), and (c) sites predicted to 

have impactful site resonance (𝑃𝑝𝑒𝑎𝑘 > 50%). 
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5.4.2. Aleatory Variability 

Residuals are computed using the BSSA14 GMM with the updated the anelastic path model as 

presented in CHAPTER 4:Chapter 4 and using one of three site response models: (1) SS14 (applied 

inside and outside of Delta), (2) subregional VS30-based site response model (within-Delta only), 

and (3) subregional combined VS30- and mHVSR-based site response model (within-Delta only). 

Aleatory variability terms that are computed include total (standard deviation of total residuals, 

𝜎), between-event (standard deviation of event terms, 𝜏), within-event (standard deviation of 

within-event residuals, 𝜙), site-to-site (standard deviation of site terms, 𝜙𝑆2𝑆), and single-station 

(standard deviation of remaining residuals 𝜖𝑖𝑗, 𝜙𝑆𝑆). These standard deviations are computed as 

part of the mixed effects analyses, not strictly as the standard deviations of the respective terms 

(the above descriptions are therefore qualitative). The within-event variability is related to 𝜙𝑆2𝑆 

and 𝜙𝑆𝑆 as, 

 𝜙 =  √𝜙𝑆2𝑆
2 + 𝜙𝑆𝑆

2   (5.32) 

The single-station variability (𝜙𝑆𝑆) includes path-to-path variability, which was examined 

previously in Section 4.6, however it is revisited again here now considering data from Delta sites.  

Figure 5.36 shows each of the standard deviation terms for the total California dataset and 

the Delta subset. The regionally calibrated site response models do not affect the results of the total 

California dataset. However, there are significant changes of within-event variability and its 

components (𝜙𝑆2𝑆 and 𝜙𝑆𝑆) for the Delta subset for most oscillator periods. 
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Figure 5.36: Standard-deviations calculated using SS14 and the proposed Delta-specific linear site 

response models which represent (a) total variability (𝜎); (b) between-event variability (𝜏); (c) 

within-event variability (𝜙); (d) site-to-site variability (𝜙𝑆2𝑆); and (e) single-station within-event 

variability (𝜙𝑆𝑆).  

 

Goulet et al. (2018; Gea18) provides an ergodic 𝜙𝑆𝑆 model conditioned on M, which is 

shown in Figure 5.37 with computed mean 𝜙𝑆𝑆 values and their 95% confidence intervals from 

the Delta sites. The 2019 Ridgecrest M7.1 mainshock is the only event in the Delta subset with M 

≥ 6.5, hence the large uncertainty and between-period variability in Figure 5.37(b). Focusing on 

the M < 5 data, the Gea18 model generally falls within the confidence intervals of the Delta results. 

Accordingly, I do not consider a Delta-specific 𝜙𝑆𝑆 model to be justified. This conclusion is 

consistent with that reached in Section 4.6, which was also to recommend use of the Gea18 𝜙𝑆𝑆 

model. 
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Figure 5.37: Single-station standard deviations (𝜙𝑆𝑆) for the Goulet et al. (2018; Gea18) 𝜙𝑆𝑆 

model and the Delta data calculated using SS14 and the proposed Delta-specific linear site 

response models for (a) M ≤ 5.0 and (b) M ≥ 6.5. 

 

Site-to-site variability (𝜙𝑆2𝑆) represents uncertainty in site response modeling. It is null 

when site response is non-ergodic, but is non-zero for ergodic, regional, or subregional models. A 

reference global model for 𝜙𝑆2𝑆 is provided by Al Atik (2015). Her model is based on residuals 

analyses of the NGA-West2 dataset, which was subsequently refined by Gea18 for BSSA14. 𝜙𝑆2𝑆 

was found to be magnitude-dependent, as shown in Figure 5.38. I compare computed mean values 

of 𝜙𝑆2𝑆 and their 95% confidence intervals to the NGA-West2 results reported by Gea18. The 

subregional 𝜙𝑆2𝑆 for the Delta are significantly lower than those in the global model (even when 

using SS14). 𝐹𝑙𝑖𝑛(𝑉𝑆30) (Equation 5.9) does not reduce variability when compared to SS14 for 

periods shorter than about 1.5 s, however significant improvement is observed at long periods. VS30 

is the only dependent variable used in both models, however the multilinear form of 𝐹𝑙𝑖𝑛(𝑉𝑆30) is 

able to better capture the trends observed in site response at long periods. 

𝐹𝑙𝑖𝑛(𝑉𝑆30, 𝑓𝑝, 𝑎𝑝, 𝑐0, 𝜇𝑚𝐻𝑉𝑆𝑅) (Equation 5.30) reduces variability with respect to SS14 and 



 

263 

 

𝐹𝑙𝑖𝑛(𝑉𝑆30) for T < 3.0 s, where for longer periods the reduction is identical to that achieved by 

𝐹𝑙𝑖𝑛(𝑉𝑆30). These observations are consistent for both small and large M (at different levels), and 

provide evidence warranting a region-specific 𝜙𝑆2𝑆 model. 

 

 
Figure 5.38: Site-to-site standard deviations (𝜙𝑆2𝑆) for global data calculated using BSSA14 

(Goulet et al., 2018: Gea18) and the Delta data calculated using SS14 and the proposed Delta-

specific linear site response models for (a) M < 5 and (b) M ≥ 5. 

 

I formulate a model for 𝜙𝑆2𝑆 that is M-dependent for each of the two regionally calibrated 

site response models, which is consistent with the functional form proposed by Nweke et al. 

(2022). 

 𝜙𝑆2𝑆(𝑴) =

{
 
 

 
 
𝜙𝑆2𝑆,1                                         𝑴 ≤ 5        

√𝜙𝑆2𝑆,1
2 − Δ𝑉𝑎𝑟(𝑴 − 5)      5 < 𝑴 < 6

√𝜙𝑆2𝑆,1
2 − Δ𝑉𝑎𝑟                      𝑴 ≥ 6        

  (5.33) 

where 𝜙𝑆2𝑆,1 is the site-to-site standard deviation for small M, and is modeled for each site 

response model as: 
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 [𝜙𝑆2𝑆,1]𝑉𝑆30
(𝑇) = {

0.1793 𝑇 + 0.3211                𝑇 < 0.35 s              
0.3839                                      0.35 ≤ 𝑇 < 0.96 s
−0.1736 ln(𝑇) + 0.3809     0.96 ≤ 𝑇 < 2.54 s
0.2151                                      2.54 s ≤ 𝑇              

  (5.34) 

and 

 [𝜙𝑆2𝑆,1]𝑉𝑆30,𝑓𝑝,𝑎𝑝,𝑐0,𝜇𝑚𝐻𝑉𝑆𝑅
(𝑇) = {

0.2731 𝑇 + 0.2558                𝑇 < 0.27 s              
0.3144                                      0.27 ≤ 𝑇 < 0.68 s
−0.0964 ln(𝑇) + 0.2981     0.68 ≤ 𝑇 < 1.95 s
0.2127                                      1.95 s ≤ 𝑇              

  (5.35) 

where Δ𝑉𝑎𝑟 represents the change in variance from small-to-large magnitudes, and is modeled as: 

 Δ𝑉𝑎𝑟(𝑇) = {

0.2012 𝑇 + 0.0489                𝑇 < 0.16 s              
0.0817                                      0.16 ≤ 𝑇 < 0.57 s
−0.0750 ln(𝑇) + 0.0399     0.57 ≤ 𝑇 < 1.69 s
0.0007                                      1.69 s ≤ 𝑇             

  (5.36) 

The dependencies of 𝜙𝑆2𝑆 on the underlying site response model are contained within the 

𝜙𝑆2𝑆,1 terms, which are plotted in Figure 5.39(a). The models described by Equations (5.34) and 

(5.35) are shown by the black curves. Computed Δ𝑉𝑎𝑟 values from both models suggest similar 

M-dependence effects, as shown in Figure 5.39(b). Accordingly, a single smoothed Δ𝑉𝑎𝑟 model 

is recommended, which is described by Equation (5.36). The patterns of both models suggest that 

variability is the greatest at intermediate periods, which coincides with the range of fundamental 

site periods at Delta sites. Δ𝑉𝑎𝑟 in the Delta is less than what Nweke et al. (2022) found in southern 

California.  
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Figure 5.39: (a) Site-to-site standard deviations (𝜙𝑆2𝑆) for Delta data with M ≤ 5.0 calculated 

using the proposed Delta-specific linear site response models, with their recommended 𝜙𝑆2𝑆,1 

models; and (b) 𝛥𝑉𝑎𝑟 results and recommended model. 

 

5.5. Conclusions 

Site conditions in the Delta region of California are often much softer than the recommended range 

from global ergodic site response models, such as SS14.  Not surprisingly, extrapolation of global 

models to these softer site conditions leads to strongly biased predictions and is subject to large 

epistemic uncertainty. In this chapter, a subregional model specific to Delta sites and immediately 

surrounding regions is developed to facilitate more reliable ground motion predictions in this 

critical region.  
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Nonergodic site response analyses methods are applied using ground motion data recorded 

at 36 seismic stations in the Delta region. These site responses comprise the “observations” (or 

data) from which regionally-calibrated linear site response models are developed. The range of 

VS30 in the study region is 100 – 390 m/s, with 22 sites (~61%) having peaty-organic deposits with 

peat thicknesses ranging from 0.4 m to 10.1 m. 

I demonstrated that VS30-scaling effects in the Delta and surrounding region are different 

than what is observed globally (i.e., SS14). Most notably, levels of amplification are lower for 

short periods, higher at long periods, and VS30-scaling saturates for soft site conditions (VS30 < 150-

200 m/s). The proposed VS30-scaling model (Equation 5.9) can be used for any site conditions 

encountered in the Delta, and is a standalone model. We have not extended the VS30-scaling model 

to incorporate sediment depth effects because the available basin depth model provides uniform 

depth estimates across the study region, and therefore cannot distinguish different site conditions.   

After removing first-order site effects (i.e., VS30-scaling), peak features related to site 

resonance effects were observed in the remaining site response for many sites (about 47%). An 

automated algorithm was presented to objectively identify the presence of these features for 

modeling purposes. The correlation between the presence of peaks in mHVSR and site response 

is good but arguably insufficient (only about 70% of sites with mHVSR peaks also have site 

response peaks). To improve predictions of site response peaks, a logistic function conditioned on 

mHVSR peak attributes (𝑓𝑝, 𝑎𝑝, and 𝑐0) was developed, which improved site response peak 

identification (91% success rate). A hybrid Riker wavelet and Gaussian pulse parametric model 

was then formulated to predict attributes of site response peaks given the peak probability and 

mHVSR peak attributes (Equations 5.18 – 5.20). These models are additive to the VS30-scaling 

model.  
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Third-order site effects (i.e., general levels of amplification that remain after VS30-scaling 

and mHVSR peak effects have been accounted for) were found to correlate with the average 

mHVSR amplitudes computed over the frequency range from 0.33 to 50 Hz (𝜇𝑚𝐻𝑉𝑆𝑅). A site 

response adjustment factor that is constant at short periods and smoothly transitions to zero at 

periods longer than about 3 s is used to model this effect (Equation 5.26). The complete mHVSR-

informed contribution for predicting site amplification is the sum of the peak and constant models 

(Equation 5.28). Equation (5.28) can only be used when mHVSR is available at a site, and is 

additive to the VS30-scaling model (Equation 5.9).  

The regionally-calibrated VS30-scaling model and mHVSR-informed variant were shown 

to significantly reduce bias when compared to the predictions provided by SS14. The VS30-scaling 

model does not appreciably change the aleatory variability (𝜙𝑆2𝑆) for periods shorter than about 

1.5 s, however significant reductions around the order of 0.1 (natural log units) are observed at 

long periods. When the mHVSR-informed model components are used,  𝜙𝑆2𝑆 is reduced by about 

0.05 to 0.1 (natural log units) for short-to-intermediate periods.  

Aleatory variability models for 𝜙𝑆2𝑆 were proposed that should be used in conjunction with 

the appropriate site amplification model (VS30-scaling only or mHVSR-informed variant). These 

models can be used with existing models from literature for 𝜙𝑆𝑆 (Goulet et al. 2018) and 𝜏 

(BSSA14).  

The subregional models presented in this chapter are intended to predict linear site response 

in the Delta region of northern California. These models were developed using weak ground 

motions. Nonlinearity is expected for hazard level analyses, and is expected to have non-

insignificant impacts on site amplifications in the Delta. Ongoing work is investigating nonlinear 
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effects for the purpose of developing a comprehensive regional site response model for forward 

application. 

The models were developed using data from 36 seismic stations with VS30 between 

approximately 100 to 390 m/s, peat thicknesses (𝑡𝑝) between 0.4 to 10.1 m, and mHVSR peak 

frequencies (𝑓𝑝) between approximately 0.6 to 4.0 Hz. Bias could be expected for sites in the study 

region if they possess site characteristics significantly different than those used during model 

development. The Delta-specific subregional models should not be considered as applicable to 

other soft-soil regions without proper validation. However, the modeling approach outlined herein 

can be applied to other regions with unusual geologic conditions that may substantially impact site 

response.
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 Conclusions and Recommendations 

CHAPTER 6 

Conclusions and Recommendations 

6.1. Conclusions 

This dissertation presents a comprehensive description of procedures that can be applied to 

investigate regional source, path, and site response using empirical data. The collection, 

organization, and management of ground motion data is presented in Chapter 2. The geotechnical 

data and analysis methods used to assign site parameters for use as inputs in site response models 

is discussed in Chapter 3. Chapter 4 focuses on correcting for regional source and subregional 

anelastic path effects, in effect removing source- and path-bias from site terms for use in non-

ergodic methods to facilitate the investigation of regional site response in Chapter 5. Although the 

regionally-calibrated site response models presented in Chapter 5 were the primary research 

objective, several insights and conclusions were reached during each phase of the research. 

The relational ground motion database (GMDB), which was discussed in Chapter 2, 

provides a much needed augmentation of ground motion data to the California subset of the NGA-

West2 database. The GMDB is envisioned to grow as additional ground motion data become 

available. This increase of available data has the potential to greatly impact the earthquake 

engineering and seismology communities of California, as more and more researchers and 

practitioners utilize the data. The GMDB schema has been set up to be able to store ground motion 
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data from any tectonic regime, which is a novel framework. The relational structure provides 

several advantages over traditional flatfiles: 

1. Tables in relational databases reduce the potential for inconsistent metadata since 

metadata are entered only once. 

2. As the amount of data grows, flatfiles become rather unwieldly whereas the 

serviceability and performance of a relational structure is able to accommodate growth. 

3. Database queries are generally significantly faster than file input/output operations 

because databases store much of their data in random access memory (RAM) rather 

than on disk storage. 

4. Specific fields are easily extracted in a relational structure, while the entire flatfile must 

be read to extract specific fields. 

5. Flatfiles are generally published as versions, in which the burden falls onto the user to 

ensure they have the most up-to-date data. In contrast, data are made publically 

accessible through the act of uploading to the GMDB, so users can assume they have 

the most up-to-date data if they include a “get request” through the API in their codes 

(discussed in Section 2.4.3).  

Pertaining to item 5 above, flatfiles do have certain advantages over dynamic databases. 

Specifically, a snapshot of the database at a specific time may be stores in a flatfile such that a 

particular study is reproducible. For this reason, the GMDB is configures to output a flatfile upon 

user request through an application programming interface.  

In addition to organizational, management, and dissemination advantages summarized above, the 

effort of creating the GMDB resulted in the development of screening protocols which helped to 
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resolve metadata inconsistencies between separate data collection efforts. These protocols can be 

easily adapted for other applications.  

 The site characterization data discussed in Chapter 3 was used to assign site parameters for 

Delta ground motion recording sites co-located with measurements, and also facilitated the 

development of predictive models for site parameters when site velocity profile data is not 

available. In general, peat is widely encountered across the Delta, however usually with relatively 

modest thickness. A contributing factor to the relatively thin deposits of peat is subsidence, for 

which I developed an adjustment to the peat thickness (𝑡𝑝) raster published by Deverel and 

Leighton (2010) (Equation 3.1). Peat thickness was found to have strong correlation to VS30 and 

the presence of peak features in mHVSR. I presented a 𝑡𝑝-based VS30 proxy model for the Delta 

(Equation 3.5), where VS30 is modeled to be inversely proportional to 𝑡𝑝. Using the mHVSR peak 

fitting algorithm proposed by Wang et al. (2022), I found that mHVSR peak features manifest at 

approximately 70% of Delta sites, which is significantly more often than what is observed across 

California as a whole.  

In Chapter 4, I proposed a subregional anelastic path model which uses nine 

physiographical subregions for California derived from prior work (Hauksson and Shearer 2006; 

Chiou et al. 2010; Eberhart-Phillips 2016). I demonstrated that Geyser (induced) events possess 

different source effects when compared to other north coast tectonic events. I find path effects 

between induced and tectonic events to not be statistically distinct, therefore my analyses of path 

effects combined them. I introduce an induced constant adjustment term (𝑒𝐼) to remove bias related 

to induced source effects so that they do not inflate between-event variability (𝜏), which is 

tabulated in Table 4.1. 
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I presented an iterative approach that identified subregions with path biases (relative to a 

California-wide model), adjusts subregional anelastic path coefficients (∆𝑐3
∗; Equation 4.13), and 

adjusts constant term (Δ𝑐0,𝑟), which are tabulated in Tables 4.2 and 4.3. Other than the adjusted 

constant and anelastic attenuation terms, other terms were not modified from the Boore et al. 

(2014; BSSA14) GMM. The aleatory variability was generally unchanged from prior models 

(BSSA14 for 𝜏 and 𝜙; Goulet et al. 2018 for 𝜙𝑆𝑆), although higher between-event variability was 

found for North Coast events.  

The soft soil site conditions encountered in the Delta were shown to produce site effects 

that are not properly captured by current site response models (e.g., Seyhan and Stewart 2014; 

SS14). Nonergodic site response analyses methods were applied using ground motion data to 

develop estimates of period-dependent linear site response at 36 locations across the Delta and 

surrounding areas. Based on these observations, a VS30-scaling model (Equation 5.9) was 

developed.  Relative to SS14, the subregional model predicts lower levels of amplification at short 

periods and higher levels at long periods. Unlike SS14, VS30-scaling saturates for soft site 

conditions (VS30 < 150-200 m/s).  

The presence of peak features in mHVSR was found to correlate with the presence of peaks 

in site response for a majority of Delta sites. A predictive model was developed to estimate the 

presence of peaks in site response, which consists of a logistic function conditioned on mHVSR 

peak attributes (Equations 5.18 and 5.19). A Hybrid Ricker wavelet and Gaussian pulse parametric 

model is used to model site response peaks conditional on mHVSR peak attributes (Equation 5.20). 

An additional adjustment to site response, to correct for general levels of amplification that remain 

after VS30-scaling and mHVSR peak effects are accounted for, is provided at short periods and 

smoothly transitions to zero at periods longer than about 3 s (Equation 5.26). These models can 
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only be used when mHVSR is available at a site. They are additive to the VS30-scaling model 

(Equation 5.9), which combine to form the combined model described by Equation (5.30). 

The regionally-calibrated site response models were shown to significantly reduce bias and 

variability when compared to the predictions provided by a global-ergodic model (e.g., SS14). The 

VS30-scaling model reduces bias over all period ranges and variability at long periods (T > 1.5 s). 

The mHVSR-informed model further reduces bias for sites likely without site response peaks 

(𝑃𝑝𝑒𝑎𝑘 < 50%) and sites likely to have peaks (𝑃𝑝𝑒𝑎𝑘 > 50%), and variability at short-to-intermediate 

periods (T < 1.5 s). Aleatory variability models for 𝜙𝑆2𝑆 are proposed for the VS30-scaling model 

and VS30-scaling plus mHVSR-informed models in Equations (5.33) – (5.36). These models are 

recommended for use with existing models from literature for 𝜙𝑆𝑆 (e.g., Goulet et al. 2018) and 𝜏 

(BSSA14). 

6.2. Recommendations for Future Research 

The research presented in this thesis provides a launch point for a number of additional studies that 

would benefit ground motion modeling in the Delta subregion and across California. Future work 

can be divided into three broad categories: (1) work related to advancing the GMDB, (2) work 

related to empirical ground motion studies which will benefit from the expanded GMDB, and (3) 

seismic related studies in the Delta. 

6.2.1. Updates to the Ground Motion Database (GMDB) 

As described in Chapter 2, the GMDB is designed and expected to be a living database, not a static 

repository of data. The California subset of the GMDB is well populated, however there are a 

significant number of M ≥ 3.0 earthquakes that have occurred since the completion of NGA-West2 

data collection efforts that have yet to be assembled at the time of writing this dissertation. With 
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the advancement of semi-automated ground motion processing tools (e.g., Ramos-Sepulveda et al. 

2023), ground motions from these earthquakes can relatively efficiently be processed and 

reviewed.  

Future work is necessary to update the Jupyter Notebook described in Section 2.4.2 to 

streamline data transfer into the GMDB. In particular, the foreseen necessary updates include: 

1. Integration of recent and future schema updates. The current version of the Notebook 

was developed to be consistent with the initial GMDB schema, however many fields 

and several tables have since been added to store additional metadata. Continuous 

updating of the Notebook is necessary to ensure that all GMDB fields get populated. 

2. For sites located in California, add the capability to automatically assign site parameters 

(e.g., VS30 from proxy-based methods, geological units, isosurface depths, etc.). The 

project team includes experts who are knowledgeable of the agreed upon methods used 

to assign site parameters in California, which are currently performed through external 

scripts in R and Python. These scripts can be incorporated into the Notebook to assign 

all site parameters for California sites.  

3. Sites located outside of California require consultations with experts familiar in those 

environments, so fully automated site parameter assignments are not yet realizable in 

these regions. Once experience is obtained and community consensus is reached, these 

methods can be integrated into the Notebook. 

4. Recent additions to the GMDB schema include distance metrics and derived site 

parameters included in NGA-West2. Codes need to be written and vetted to compute 

these values for all recently added ground motions and sites, and for any new data 

added in the future.  
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5. Lastly, the functions to compute the RotDXX intensity measures need to be 

incorporated. The scripts which are currently used to compute these metrics are 

inefficient and take a substantial amount of time. Work should be done to improve these 

codes to increase efficiency, so that RotDXX metrics can be computed and uploaded 

at the time the time-series are uploaded.   

Similarly, the API and URL builder tool may require updating as changes are made to the 

GMDB schema. Additional tools need to be created to allow users to efficiently obtain time-series 

data and associated metadata for forward applications, and to upload user-defined collections. 

These tools will likely come in the form of additional API resources and interactive web portals.  

The schema has been meticulously developed to be able to accommodate ground motion 

data from any tectonic regime (i.e., NGA-West2, NGA-East, and NGA-Sub type data in one 

unified database). Currently the GMDB only stores ground motion data in California and CENA 

(i.e., NGA-East). As data is added from other regions and other tectonic regimes (i.e., subduction 

type events), changes to the schema are likely to be warranted.  

Lastly, it is anticipated that future NGA projects (i.e., West3, Sub2, and East2) will use a 

relational database structure, as done for example with NGA-Sub (Mazzoni et al. 2022). I 

anticipate that some aspects of the GMDB framework will be adopted and improved upon for 

NGA-West3 and subsequent NGA projects. Additionally, the work performed by the GMDB team 

serves as a precursor to the types of issues which should be addressed during these future projects, 

namely: 

1. Translating fields from a flatfile structure into a relational schema, which can be easily 

navigated by users. 
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2. Resolving metadata inconsistencies between separate NGA products (e.g., station and 

site databases). 

3. Dissemination as a queryable database in addition to flatfile releases for version 

control. NGA-Sub tables were released as a series of CSV files which mirror a 

relational database, but is in principle not a publically queryable database.  

The lessons learned and protocols developed by the GMDB project team will prove to be beneficial 

to future NGA and other ground motion database projects. 

6.2.2. Applications of the GMDB 

Applications of ground motion data in current and future versions of the GMDB are nearly 

limitless. However, I focus in this subsection on general applications of ground motion data to the 

advancement of modeling path effects and site response.  

(a) Path Effect Modeling 

The modeling framework presented in Chapter 4 is an adaptation of the cell-specific method 

presented by Dawood and Rodriquez-Marek (2013) to consider physical constraints during 

discretization, which I refer to as a “subregional method”. The results of my work suggest that 

subregionalization leads to similar results as a model developed using the cell-specific method 

with significantly more zones (e.g., Kuehn et al. 2019). An obvious follow-up is to perform a 

rigorous quantitative comparison between Kuehn et al. (2019) and the model presented in Chapter 

4, both derived from an identical dataset. I suspect that the Keuhn et al. (2019) model (with updated 

coefficient values based on the expanded dataset) will perform better than the model presented in 

Chapter 4. What we should seek over the long term are an appropriate number geology-based 

subregions that can produce similar performance to that achieved by arbitrary cells. These 
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subregions must be constrained by some logical means, therefore advanced studies of 𝑄𝑆 would 

likely prove to be invaluable.  

Work should be conducted to determine the level of subregion resolution that can be used 

to practically quantify non-ergodic path effects. As discussed in Section 4.2.2, a fully non-ergodic 

path model is a conceptualization that is difficult to verify because path effects represent a coupling 

of a particular source and site, and cannot be modeled as a feature at a point in space. However, a 

path model can be assumed to be practically non-ergodic once no additional reduction in aleatory 

variability is achieved when increasing the complexity of the model. This is a topic which I suspect 

to be the subject of many investigations in the upcoming years, weather modelers choose to use 

subregional, cell-specific, or some yet-to-be presented method. 

 A separate follow-up is to perform similar studies using identical subregions with different 

base GMMs (e.g., Abrahamson et al. 2014; Campbell and Bozorgnia 2014; Chiou and Youngs 

2014; and Idriss 2014). I suspect similar conclusions, however the coefficient estimates will be 

different. The combination of these models can then be used to perform probabilistic seismic 

hazard analysis, to assess the impact of non-ergodic path effects on hazard. Hazard levels at most 

sites are controlled by nearby sources, so I anticipate minor impacts from updating the anelastic 

path models. However, sites where distant sources contribute non-insignificant levels (e.g., 

megathrust events for sites in northern California; Figure 6.1) are likely to be affected by updating 

anelastic path models.  
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Figure 6.1: Disaggregation results for a site in Sacramento, California and a return period of 475 

years. Disaggregation performed using the USGS Unified Hazard Tool (Dynamic: Conterminous 

U.S. 2014 update – v4.2.0). 

 

 One of the primary limitations of non-ergodic path modeling methods (i.e., cell-specific or 

subregional) is data availability. These types of models can only be developed for regions with a 

sufficiently dense distribution of data to confidently constrain anelastic coefficients (e.g., 

California, Japan, New Zealand, etc.). There exist many regions affected by seismic demands, 

which do not have sufficient instrumentation to develop non-ergodic path models. This is where I 

think subregional methods can provide some insight over cell-specific counterparts.  

Fundamentally, subregionalization is the act of discretizing some domain with 

consideration of physical attributes. Just as early site response models separated amplification 

response for generic soil and rock sites (e.g., Abrahamson and Silva 1997), subregionalization can 

be performed using generic crustal features (e.g., accretionary, batholiths, pull-apart, etc.). If the 

anelastic coefficients for these generic subregions are found to exhibit similar characteristics, then 

an ergodic but subregionalized modeling approach can be pursued. In other words, a generic 
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subregional path model can be developed and subsequently applied in regions of sparse data. The 

challenging aspect of this proposal is developing the subregionalization, which will require 

collaboration of experts across different fields from around the world to develop generic categories 

which are internally compatible.  

My final recommendation for future work related to modeling path effects is to consider 

the spatial variability of geometric spreading and the depth of wave propagation (i.e., 3D 

subregionalization). Current path modeling approaches, including the subregional method 

presented in this dissertation, assume a 2D-straight path between the earthquake and the site, which 

is an over simplification. Rates of anelastic attenuation are usually less for more competent 

materials (higher VS), which are generally found at greater depths. True ray paths will take the 

fastest route, which will result in deviations from a straight line in 2D and 3D space. It follows that 

3D seismic velocity models (e.g., Lee et al. 2014; Shaw et al. 2015; Hirakawa and Aagaard 2021) 

can be used to help define subregionalization with depth constraints. However, estimation of 

depth-dependent subregional anelastic coefficients (Δ𝑐3,𝑟) will be more challenging than for 2D 

coefficients. Seismic ray-tracing methods which define rules about how seismic waves propagate 

through 3D domains (e.g., Julian and Gubbins 1977; Nakanishi and Yamaguchi 1986; Vidale 

1988; Rawlinson et al. 2008) can be adopted by modelers. This style of modeling is likely overly 

optimistic, however as more and more ground motion data becomes available it becomes 

increasingly possible. 

(b) Site Response Modeling 

Nonergodic site response methods which utilize ground motion data are only possible at sites 

which have recorded many events. Prior to the development of the GMDB, only 508 sites in 

California had five or more ground motion records available. That number has since grown to 
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1,292 sites in the GMDB at the time of writing this dissertation, illustrating the impact of recent 

data collection efforts. The increase of the number of records per site is accompanied by an 

increase in the range of site conditions [Section 2.3.1(b)]. These two factors combined mean that 

state-wide and subregional assessments (e.g., Parker and Baltay 2022; Chapter 5) of site-response 

using nonergodic methods may provide significant improvements over existing ergodic site 

response models.  

In Section 5.3.2, I examined the dependence of site response on isosurface depth (e.g., 𝑧1.0) 

for the Central Valley and observed significant basin effects (Figure 5.15), but did not recommend 

a model for application in the Delta region due to the uniform 𝑧1.0 estimates provided by USGS 

SFCVM. A follow-up study with the aim of improving SFCVM (i.e., use of seismic tomography) 

followed by a rigorous study of basin effects in the Central Valley, would prove to be beneficial. 

Furthermore, recent work has been done to re-evaluate basin effects in southern California basins 

(e.g., Nweke et al. 2022), therefore similar studies in northern California (i.e., Bay Area basins) 

should be conducted.  

The application of mHVSR data for predicting site response has received attention in recent 

years (e.g., Wang et al. 2022a,b; Pinilla-Ramos et al. 2022). The work presented in Section 5.3.4 

demonstrates the potential for site parameters derived from mHVSR to improving site response 

predictions. A promising approach, applied previously by Kwak et al. (2017), Hassani and 

Atkinson (2018a), and Wang et al. (2022a), is to separate the effects of site-resonant peak features 

from general levels of amplification from VS30-scaling models. Peak features are observed less 

frequently across the state as a whole (about 25-35% of sites with data have peak features; Wang 

et al. 2021), so a state-wide investigation could provide significant insight into the utility of 

mHVSR on improving site response predictions at sites without prominent mHVSR peak features. 
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Specifically, investigations into the utility of mHVSR to improve long-period site response 

predictions (i.e., basin effects), and comparisons to conventional site parameters (e.g., 𝑧1.0 and 

𝑧2.5), are needed. 

6.2.3. Path Forward for Research in the Delta 

The site response models presented in Chapter 5 are only applicable to the elastic, or linear, site 

response. In the absence of strong ground motion records, simulations via ground response 

analyses (GRA) can be used to assess the effects of nonlinearity. I am currently working with a 

colleague, Pengfei Wang (Old Dominion University), to perform GRA to develop a large 

simulated dataset from which a nonlinear model will be developed. The nonlinear model is 

expected capture typical strain-dependent effects (i.e., soil softening which increases damping and 

shifts amplification to progressively lower frequencies), in addition to modifications of site-

resonance effects (shortening peak frequencies, while widening peaks and decreasing their 

amplitudes). Following the conclusion of this work, a comprehensive site response model 

calibrated for the Delta subregion will be complete.  

Seismic hazards pose a major risk for critical infrastructure (e.g., levees, gas pipelines) in 

the Delta (DRMS 2009). The work presented in Chapters 3, 4, and 5 provide significant 

advancements to the characterization and prediction of seismic ground motions in the Delta region. 

Updated regional seismic hazard analysis should be performed to re-assess hazard levels and 

identify the contributing sources using methods outlined by Wang et al (2022c). Furthermore, the 

subregional anelastic path (Equation 4.11) and regionally-calibrated site response models 

(Equations 5.9 and 5.30) can be used to analyze the system reliability of Delta levees using the 

framework proposed by Zimmaro et al. (2019). The results of these types of studies will likely 
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have high-impact, given the potential state-wide repercussions if significant damage to the vital 

Delta infrastructure were to occur.   
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