UC Merced
Proceedings of the Annual Meeting of the Cognitive Science
Society

Title
A Theory of Scientific Problem Solving

Permalink
https://escholarship.org/uc/item/0t0211sH
Journal

Proceedings of the Annual Meeting of the Cognitive Science Society, 10(0)

Authors
Jones, Randolph
Langley, Pat

Publication Date
1988

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/0t0211sr
https://escholarship.org
http://www.cdlib.org/

A Theory of Scientific Problem Solving

Randolph Jones (RIONES@CIP.ICS.UCL.EDU)
Pat Langley (LANGLEY@CIP.ICS.UCL.EDU)
Irvine Computational Intelligence Project

Department of Information & Computer Science
University of California, Irvine CA 92717 USA

Introduction

We are interested in computational explanations of the nature of human problem solving.
In the past, many artificial intelligence (AI) systems have implemented problem solving in a
problem-space framework (Newell, 1980). In this paradigm, a problem consists of an initial
state, a goal state, and a set of operators that can be used to transform the initial state
into the goal state. These systems have been moderately successful in providing a formal
analysis of problem solving, but they fail to exhibit many aspects of human cognition. We
have developed a theory of problem solving that accounts for some of these phenomena. In
addition, we have built EUREKA, a system that instantiates this theory, and we have tested
the system in a variety of domains, including scientific reasoning tasks.

Characteristics of Human Problem Solving

We have developed our theory in an attempt to account for many of the characteristics
of human problem solving. Thus, we will begin by discussing some of these characteristics.

Heuristic methods. Humans do not attack problems blindly. In particular, when a person
encounters a new problem, he will not start applying all his knowledge in random patterns
until he solves it. Rather, he uses heuristics, or educated guesses and rules of thumb, to
guide his search for a solution. One type of systematic heuristic problem solving that has
seen some success in Al is means—ends analysis (Ernst & Newell, 1969; Fikes & Nilsson,
1971). At each decision point, these systems attempt to apply an operator that reduces the
differences between the current problem state and the goal. In this way, the search for a
solution is directed down promising paths.

Non-systematic nature. However, humans do not solve problems in a very systematic
manner. If a person finds himself stuck at some point, he can usually not remember all
the steps he took in reaching that point. In many cases, he will simply start the problem
again from the beginning, often duplicating previously failed paths in his new attempts. In
contrast, most of the Al work on problem solving has employed memory-intensive methods,
such as depth-first and best-first search. These techniques assume a large memory in which
they can store all previous goals and states. Using this memory, they can ‘backtrack’ to any
earlier point in the problem, as well as avoid duplicating past failures. Ohlsson (1987) has
studied the non-systematic nature of human problem solving, but most current systems will
attempt to explore their entire problem space systematically if they cannot find a solution.

Performance improvement and Einstellung. Humans learn while they solve problems.
One aspect of this learning involves improved performance. This can be seen when a human

244

mailto:rJ0NES@CIP.ICS.UCI.EDU
mailto:langley@cip.ics.uci.edu

JONES, LANGLEY

transfers knowledge and methods from a previous problem to solve a new problem more
easily. In general, we expect humans to get better as they solve a set of similar problems
(Ohlsson, 1987), but there are also instances when learning causes negative transfer. One
example of this is Einstellung, or the ‘set’ effect. In this case, a person has become so used
to solving problems in a certain way that he ignores a much simpler solution (Luchins, 1942;
Neves & Anderson, 1981).

Response to external stimuli; Insight. Finally, humans are influenced by their environ-
ment. External cues can often aid a person in solving a problem (Dreistadt, 1969). Cues
can also cause people to experience flashes of insight. Hadamard (1949) has detailed four
stages in episodes of scientific insight. The first stage is preparation, in which a scientist
works on a problem for some time with out success. When he gets frustrated and ceases
work on the problem, he enters the incubation stage. Some time later (from a few seconds
to a few years), illumination or insight occurs, during which a potential solution suddenly
pops into the scientist’s head. Finally, during verification, he works out the details of his
solution. We have argued elsewhere (Langley & Jones, 1988) that illumination occurs when
an environmental cue causes the scientist to suddenly retrieve an operator which will aid in
solving his problem.

The EUREKA System

EUREKA is a running LISP program designed to model some of the processes of scientific
discovery and problem solving. It consists of a memory component, a problem solver and a
simple learning mechanism. The memory component can be described at various levels of
abstraction, so we will begin with a low-level description and then discuss the higher level
data representation as it applies to problem solving.

Memory representation and retrieval

EUREKA includes a long-term memory, represented as a semantic network consisting of
nodes (concepts) connected by a small set of labeled links (relations). Each link has an
associated trace strength, which represents the strength of the connection between the two
attached nodes. For example, a link connecting ‘bird’ to ‘wings’ would probably have a
larger trace strength than a link connecting ‘bird’ to ‘legs’. EUREKA does not embody the
notion of a specific short-term or working memory. However, each node also has associated
with it a level of activation, which exhibits how much attention the concept receives during
problem solving. Using this representation, retrieval of concepts is implemented as a form
of spreading activation (Quillian, 1968; Anderson, 1976, 1983)." When a node is activated,
it ‘spreads’ its activation to nearby nodes in the semantic network. As activation spreads
from a node, this activation is divided up between all the connected nodes in proportion to
the trace strengths of the links involved.

EUREKA’s memory is further organized into conceptual units that are used by the
problem-solving component. Each of these units consists of a collection of nodes in the
semantic network. These collections include operators, problem-space states, and deriva-

1 The type of spreading activation we use is a bit different from that introduced by Quillian, in which
activation was used to find pathways between two concepts. Our approach is more similar to that used by
Anderson (1976) and by Holland, Holyoak, Nisbett, & Thagard (1986) in their work on analogy.

245

JONES, LANGLEY

tional trace structures. Operators and problem-space graphs are well-documented concepts
in problem solving (Newell, 1980), but the third notion bears a more in-depth explanation.
We have borrowed the idea of derivational traces from Carbonell (1986). These are records
of problem-solving episodes in which information is stored about the system’s goals and its
reasons for making certain choices. Derivational traces can be used to remember the details
of previous attempts to solve problems and to aid in solving similar problems.

In EUREKA, a derivational trace is represented as a tree. Each node in the tree represents
a goal, and its children represent the subgoals that must be satisfied in order to achieve
that goal. The system distinguishes between two types of goals: TRANSFORM a problem-
space state into another state, or APPLY an operator to a problem-space state (Ernst &
Newell, 1969). If a node in the derivational trace has no children, it means that either
no subgoals were required to satisfy the goal (success) or no subgoals could be found which
would help satisfy the goal (failure). During problem solving, activation is spread throughout
the derivational trace structure and the rest of memory to aid in choosing operators.

Problem-solving component

EUREKA’s basic problem-solving method is means-ends analysis, similar to that used in
GPS (Ernst & Newell, 1969) and STRIPS (Fikes & Nilsson, 1971). A TRANSFORM goal
can be satisfied by first applying an operator (i.e., setting up an APPLY goal) and then
recursively TRANSFORMing the result. An APPLY goal can be satisfied by TRANSFORMing
the current problem-space state to match the preconditions of the operator to be applied,
and then APPLYing the operator to the resulting state. However, there are a few important
differences.

Given a TRANSFORM goal, STRIPS would exhaustively search its set of operators and
choose the ‘best’ one (using means-ends analysis) to APPLY. In contrast, EUREKA retrieves a
small set of operators by spreading activation throughout its memory from nodes representing
the current problem-space state and goal. The system then passes these operators on to a
STRIPS-like matcher to decide which ones might be useful. The remaining operators are
weighted according to how easily they were retrieved and how useful they have been in the
past. Finally, the system selects a single choice at random based on these values. If no useful
operators are found for a given goal, the problem solver fails.

Another important difference from STRIPS-like problem solvers is that EUREKA does
not have the ability to backtrack. Instead, when the system fails to solve a problem, it
starts over from the initial TRANSFORM goal for that problem. EUREKA attempts to solve
the problem repeatedly, but it may duplicate previous problem-solving paths in the process.
The model continues working until the problem is solved or until it becomes ‘frustrated’
and quits. Frustration occurs when the initial goal has a very high failure rate. Table 1
summarizes the the system’s problem-solving component.

Learning and memory maintenance

In addition to standard problem-solving actions, EUREKA maintains a large derivational
trace structure in its long-term memory. Whenever the system encounters a new situation
during problem solving (e.g. a new problem-space state or a new derivation-trace node), it
adds this situation to the derivational trace. In this fashion, a record of all previous problem

246

JONES, LANGLEY

Table 1. EUREKA's basic problem-solving algorithm.

TRANSFORM(Statel,State2)
If Statel satisfies State2
Then Return(Statel)
Else Let Remindings be a set of instantiated operators retrieved
through spreading activation;
Let OpA be an operator selected at random from any
Remindings that reduce differences between Statel and State2;
If OpA is empty
Then Return(Fail)
Else Let State3 be APPLY(OpA,Statel);
If State3 is Fail
Then Return(Fail)
Else Return(TRANSFORM(State3,State2))

APPLY(OpA,Statel)
If OpA can be applied to Statel
Then Return(EXECUTE(OpA,Statel))
Else Let State2 be TRANSFORM(Statel,Preconditions(QOpA));
If State2 is Fail
Then Return(Fail)
Else Return(APPLY(OpA,State2))

solving behavior is stored. If a new situation has already been stored in memory, the trace
strengths of the links involved in that situation are increased slightly. In addition, special
actions are taken upon the success or failure of a goal. Counts are kept to record how often
each goal has succeeded or failed, and when a goal succeeds the trace strengths of the nodes
involved in the goal are increased. These counts are used to estimate the probability that
the goal will succeed or fail in the future.

Evaluation of the EUREKA Model

We have discussed a number of phenomena that our theory should handle. In order to
test the theory, we have implemented it in the EUREKA system. Further, we have designed
a number of problems in various domains to test the system along these lines. In this
section we describe some experiments we have run with respect to the human problem-
solving characteristics we described earlier.

Non-systematic, heuristic methods. EUREKA uses a variant of means-ends analysis that
does not have the ability to backtrack. In addition, it uses spreading activation and counts
of previous failures and successes to aid in conflict resolution. Since trace strengths are
updated when familiar situations are encountered, the system can get stuck repeating old,
unsuccessful behavior. However, the system tries to avoid previously failed states, so it can
break out of this behavior. This encourages the system to explore a wide area in the problem
space. We tested our system on a number of small ‘blocks world’ and ‘chemical structure’?
problems. EUREKA solved these problems after a small amount of exploration. When given
more complicated problems (with no previous problem-solving memory), the system could
not overcome the large problem space. It explored a large section of the space, but could

? These problems are based on Kekulé’s problem of determining the structure of various molecules in-
cluding benzene (Farber, 1966).

247

JONES, LANGLEY

Table 2. ‘Blocks-world’ problems with two blocks.

Length of Number of Percentage of
Problem Goal Optimal Solution Attempts Space Searched

Without | With | Without | With
learning | learning | learning | learning

A over Table 3 — 1 — 5.0
B over Table 3 — 1 — 5.0
A over B 5 — 1 — 8.3
Aon B 7 10 1 65.0 15.0
Table 3. 'Blocks-world’ problems with three blocks.
Length of Number of Percentage of
Problem Goal Optimal Solution Attempts Space Searched
Without | With | Without | With
learning | learning | learning | learning
A over Table 3 — 3 — 6.2
B over Table 3 — 1 — 0.6
C over Table 3 — 1 — 0.6
A over B 5 — 2 — 4.0
B over C 5 — 1 — 1.0
Bon C 7 — 1 — 1.4
A over Bon C 11 — 1 — 2.2
AonBonC 13 10 1 30.0 2.6

not find the solution paths.

Performance improvement. EUREKA does have the ability to improve its performance
based on previous experiences. We gave the system the same sets of ‘blocks-world’ and
‘chemical-structure’ problems. However, this time we ordered the problems from simplest to
hardest and did not erase the system’s memory after each problem. In this case, the system
was able to solve all problems presented to it within three attempts. Tables 2 and 3 provide
data from runs in the ‘blocks-world’ domain. Within each table, the initial states are the
same. The optimal solution length is the size of the smallest derivation trace required to
solve the problem.

FEinstellung. Our theory explains Einstellung in terms of the trace strengths on links in
the semantic network and the success counts kept for each state. Recall that trace strengths
are increased whenever a goal is satisfied. This causes the system to retrieve the successful
operators in similar situations. Combined with the record of success counts, this encourages
the system to duplicate past successful behavior in new, similar situations. To test this effect,
we gave EUREKA a series of ‘water jug’ problems (Luchins, 1942). The first few problems

248

JONES, LANGLEY

required similar solution paths, and EUREKA exhibited improvement in duplicating this path
with each new problem. The last problem could be solved using the same solution, or by
using a unique solution that required only one operator application. The system chose to
duplicate the solution path it had become familiar with from the previous problems, as
humans often do in such situations.

Response to erternal stimuli. As shown in the earlier, there are times when EUREKA
cannot solve a given problem, even if it has all the appropriate operators stored in memory.
This can arise because the problem space is too large or because the appropriate operators
are never retrieved from memory. However, the system can solve these problems in the
presence of the appropriate external cues. We tested the system with the previous difficult
problems, and with a problem simulating Archimedes’ discovery of the principle of displace-
ment?® (Dreistadt, 1968). During each of these problems we activated useful concepts in
long-term memory. The activation from these concepts caused the appropriate operators to
be chosen to solve the problems. The system was thus able to solve problems it could not
normally solve without cues from the environment. We feel this provides an initial account
of the illumination stage of scientific insight. These experiments exhibit how a person might
be unable to solve a problem and then suddenly discover a solution.

Discussion and Future Work

We have presented a number of characteristics of human problem solving and a theory
that accounts for them. These include heuristic and non-systematic problem solving, perfor-
mance improvement, Einstellung, and stimulus-driven problem solving. Our theory explains
these characteristics in terms of memory retrieval. We have implemented this theory in a
computer simulation called EUREKA, and have tested its behavior in a number of situations.
The results of these studies indicate that the model accounts for the characteristics we have
discussed. We feel these results lend support to our explanation of human problem solving
in terms of memory retrieval.

We plan to extend our theory and the EUREKA system to account for analogical problem
solving and episodes of insight. We have shown that spreading activation has certain prop-
erties that allow transfer in problem-solving behavior. We believe that the same properties
can be exploited to suggest and elaborate analogical solutions based on previous problems.
We also believe that we will be able to account for insightful problem-solving experiences
like those of Kekulé, Archimedes, and Darwin (Barlow, 1959). Elsewhere (Langley & Jones,
1988) we have described insight as a combination of effects from analogy and memory-limited
problem solving. We plan to build these ideas into the EUREKA system, and we are hopeful
that the results of future experimentation will further support our theory.

3 In this problem, the goal is to prove that a crown is made of pure gold. The solution method involves
determining the volume of the crown and comparing that to the volume of a gold brick of the same weight.
However, the crown’s volume cannot be measured by melting it down, because that would destroy the crown.
Archimedes’ key operator, which resulted in the formulation of the principle of displacement, was to measure
the volume of the crown by immersing it in water and measuring the amount of water displaced.

249

JONES, LANGLEY

References

Anderson, J. R. (1976). Language, memory, and thought. Hillsdale, NJ: Lawrence Erlbaum.

Anderson, J. R. (1983). The architecture of cognition. Cambridge, MA: Harvard University
Press.

Barlow, N. (1959). The autobiography of Charles Darwin. New York: Harcourt Brace.

Carbonell, J. G. (1986). Derivational analogy: A theory of reconstructive problem solving
and expertise acquisition. In R. S. Michalski, J. G. Carbonell, & T. M. Mitchell (Eds.),
Machine learning: An artificial intelligence approach, volume 2 (pp. 371-392). Los Altos,
CA: Morgan Kaufmann.

Dreistadt, R. (1968). An analysis of the use of analogies and metaphors in science. The
Journal of Psychology, 68, 97-116.

Dreistadt, R. (1969). The use of analogies and incubation in obtaining insights in creative
problem solving. The Journal of Psychology, 71, 159-175.

Ernst, G., & Newell, A. (1969). GPS: A case study in generality and problem solving. New
York: Academic Press.

Farber, E. (1966). Dreams and visions in a century of chemistry. In R. F. Gould (Ed.),
Kekulé centennial (pp. 129-139). Washington, DC: American Chemical Society.

Fikes, R. E., & Nilsson, N. J. (1971). STRIPS: A new approach to the application of theorem
proving to problem solving. Artificial Intelligence, 2, 189-208.

Hadamard, J. (1949). The psychology of invention in the mathematical field. Princeton, NJ:
Princeton University Press.

Holland, J. H., Holyoak, K. J., Nisbett, R. E., & Thagard, P. R. (1986). Processes of
inference, learning, and discovery. Cambridge, MA: MIT Press.

Langley, P., & Jones, R. (1988). A computational model of scientific insight. In R. Stern-
berg (Ed.), The nature of creativity (pp. 177-201). Cambridge, England: Cambridge
University Press.

Luchins, A. S. (1942). Mechanization in problem solving: The effect of Einstellung. Psycho-
logical Monographs, 5/(248).

Neves, D. M. & Anderson, J. R. (1981). Knowledge compilation: Mechanisms for the autom-
atization of cognitive skills. In J. R. Anderson (Ed.), Cognitive skills and their acquisition
(pp. 57-84). Hillsdale, NJ: Lawrence Erlbaum.

Newell, A. (1980). Reasoning, problem solving, and decision processes: The problem space
hypothesis. In R. Nickerson (Ed.), Attention and performance VIII. Hillsdale, NJ:
Lawrence Erlbaum.

Ohlsson, S. (1987). Transfer of training in procedural learning: A matter of conjectures and
refutations? In L. Bolc (Ed.), Computational models of learning (pp. 55-88). Berlin:
Springer-Verlag.

Quillian, M. R. (1968). Semantic memory. In M. L. Minsky (Ed.), Semantic information
processing. Cambridge, MA: MIT Press.

250

	cogsci_1988_244-250

